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Abstract

In this thesis we focus on the construction of models in which a supersymmetry breaking

hidden sector is located on one fixed point of an extra dimensional interval and the effects

are gauge mediated across this interval to the other fixed point where the supersymmetric

standard model is located. We use the formalism of current correlators to encode super-

symmetry breaking effects and explore flat, warped and deconstructed extra dimensions.

We also apply these techniques to models of metastable supersymmetric breaking in N = 1

Supersymmetric Quantum Chromodynamics.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is a widely accepted and accurately tested

theory that describes the bosonic interactions of the strong, weak and electromagnetic

forces between the fermionic quarks and leptons that make up the familiar and every-

day world around us. It is a Lorentz invariant Quantum Field Theory (QFT) of gauge

interactions. These standard model forces, are described by the exchange of excitations

of bosonic gauge fields. The quarks and leptons are excitations of fermionic fields. Ad-

ditionally, the standard model includes a Higgs scalar field. Unfortunately, as a theory

it is sick and incomplete. Firstly there is nothing within the theory that determines the

electroweak scale from which most of the theory relies. Secondly this scale, set by the

Higgs mass, is extremely unstable under quantum corrections unless there is a fine tuning

to the 38th decimal place [6]: the Hierarchy problem. Other criticisms may be mounted

against it: the standard model makes no attempt to unify with the force of gravity and

seems rather poor at explaining physics on large scales, such as the composition of Dark

matter and Dark energy relative to the visible matter of the universe.

The Large Hadron Collider (LHC) at CERN is expected to test various extensions

of the standard model of high energy physics. One very well motivated extension is

supersymmetry (SUSY). Mathematically, the boson and fermion fields of the standard

model are representations of the Lorentz symmetry group. The generators of this group are

represented only by bosonic generators Pµ and Mµν . As there are bosonic and fermionic

fields within the standard model, it is logical to suggest that the Lorentz symmetry group

may be extended to include generators that are also fermionic: a supersymmetric quantum

field theory. From a mathematical viewpoint, this is a rather innocuous suggestion. When

taken as a serious description of nature it has some profound and far reaching consequences.

1



1.1. Why Supersymmetry? 2

Firstly, it predicts a supersymmetric standard model of particle physics, in which all known

fields have superpartners, with differing spins. The constraints of the observed standard

model on these unobserved fields leads to the conclusion that this symmetry, if it exists,

is broken. Perhaps more profoundly, these constraints imply that it is broken in a local

hidden sector that is not included within the standard model and that this breaking is

then mediated to the supersymmetric standard model. Further, for this symmetry to be

broken dynamically, and importantly to supply a natural hierarchy of scales, implies a

hidden sector that is described by a strongly coupled gauge theory.

A softly broken supersymmetric standard model is a natural solution to many of the

puzzles of the standard model such as the Hierarchy problem [7]. Additionally, supersym-

metry has useful dark matter candidates which the most accurate astrophysical observa-

tions and the Cosmological model [8], Lambda CDM (the cosmological constant plus cold

dark matter), predicts makes up 25% of the universe, of which visible matter makes up

only 4%. Additional hints of supersymmetry arise from its enhancement of gauge coupling

unification of the standard model as required by Grand Unified Theories (GUT) [9]. Fi-

nally, supersymmetry is a necessary component of superstring theory, which does supply

a consistent framework from which the standard model and gravity may both arise.

This introductory chapter will motive the study of supersymmetry, its breaking and

its mediation across and extra dimension via gauge interactions. Of course there are many

alternative proposals for extensions of the standard model with or without supersymme-

try and with or without extra dimensions. We will simply outline some of the guiding

motivations for choosing this particular research direction.

1.1 Why Supersymmetry?

The (non supersymmetric) standard model, and in particular electroweak symmetry break-

ing, is unnatural [10–14] as a field theory as the Higgs mass is extremely unstable under

quantum corrections unless there are finely tuned counterterms in its Ultra Violet (UV)

completion. A straightforward calculation of the one loop correction to the physical Higgs

field h, two point function, from couplings with fermions, for instance top quarks 1

L = −λf f̄LfRφ− λf f̄RfLφ
∗. (1.1)

1We are using four component notation here.



1.1. Why Supersymmetry? 3

The complex scalar may be written as2

φ(x) =
1√
2
[v + h(x) + iχ(x)] (1.2)

where Re[φ] = 1√
2
(h + v) in unitary gauge where χ = 0, gives a quadratically divergent

integral, as well as logarithmically divergent one (to show this use d4p = 2π2p2dp2 and

x = p2 +m2
f :

Π(0)fhh = (−1)

∫
d4p

(2π)4
Tr(

−iλf√
2

)
i

/p−mf
Tr(

−iλf√
2

)
i

/p−mf

= −2λ2
f

∫
d4p

(2π)4
[

1

p2 −m2
f

+
2m2

f

(p2 −m2
f )

2
] (1.3)

The divergence may be absorbed into counter terms leaving a finite correction to the

propagator of order
λf

8πm
2
f , which one may argue is not so fine tuned, albeit rather arbitrary.

However, any UV GUT completion will inevitably introduce similar contributions whose

mass scale is now MGUT ∼ 1016 − 1018GeV, such that even the usual finite terms result

in a cancellation between bare mass and renormalised mass to within a few 100 GeV.

The introduction of superpartners for fermions3, the complex scalars f̃L, f̃R, will gen-

erate couplings of the form

λ̃f |φ|2(|f̃L|2 + |f̃R|2) (1.4)

These provide additional contributions to the two point function:

Π(0)f̃hh = −λ̃f
∫

d4p

(2π)4
(

1

p2 −m2
fL

+
1

p2 −m2
fR

)

+(λ̃fv)
2

∫
d4p

(2π)4
[(

1

(p2 −m2
fL

)2
+

1

(p2 −m2
fR

)2
]

= −2λ2

∫
d4p

(2π)4
[

1

p2 −m2
f

+
2m2

f

(p2 −m2
f )

2
] (1.5)

Remarkably if the Yukawa coupling λ2
f = −λ̃f , the combined quadratic divergences from

scalars and fermions cancel exactly, regardless of any of the mass scales introduced. The

presence of supersymmetry in the Lagrangian naturally acts to remove quadratic diver-

gences and are therefore rather soft. Remarkable also is that the remaining divergences

depend on the mass splitting between fermion and sfermion masses δ2 = m2
f̃
−m2

f such

2A different parameterisation is φ(x) = 1√
2
(v + ρ(x))e−iζ(x)/v

3see appendix A for superspace notaton



1.2. Dynamical Supersymmetry Breaking 4

that if even the vacuum of the theory is supersymmetric, all divergences cancel exactly

(with a little help from D.1.23):

Π(0)fhh + Π(0)f̃hh ≃ −i
λ2
f

16π2
[4δ2(1 +

1

2
log

m2
f

µ2
)] +O(δ4) (1.6)

In the superspace formalism (See appendix A) which we adopt throughout this thesis both

Eqn. (1.1) and Eqn. (1.4) compactly arise from the superpotential

∫
d2θλfHΦLΦR +

∫
d2θ̄λfH

∗Φ∗
LΦ∗

R (1.7)

when computing the Yukawas and F-term potential, respectively. Extending the standard

model with N = 1 supersymmetry with two Higgs superfields for anomaly cancellation and

to keep the superpotential holomorphic, plus terms that break supersymmetry softly as

demonstrated above, is known as the Minimal Supersymmetric Standard Model (MSSM).

The soft terms we may add to the MSSM are

LSoft = −φ∗i (m2
φ)ijφj+(

1

3!
Aijkφiφjφk−

1

2
Bijφiφj+Ciφi+h.c.)−

1

2
(Mλλλ+Mλλ

†λ†) (1.8)

This thesis will focus on the theoretical computation of the soft terms for scalars m2
φ and

the gauginos Mλ.

In summary, (1) The introduction of superpartners for scalars, in particular the Higgs

of the standard model, protects these scalar fields from quadratic divergences in its self

energy. (2) As long as the superpartners of a scalar have a similar mass to the scalar,

the scalar mass is shielded from loop corrections from other heavier particles that may

arise in any Grand Unified Theory (GUT) or higher dimensional extension of the standard

model which may act as a UV completion. In summary, supersymmetry is a natural way

to improve the standard model and protect electroweak physics from UV effects. It does

not yet explain the electroweak scale.

1.2 Dynamical Supersymmetry Breaking

Dynamical supersymmetry breaking is a natural way to explain the electroweak scale:

“As was first suggested by Witten [15], we would like the mechanism which

spontaneously breaks supersymmetry to be dynamical. This means that it

arises from an exponentially small effect, and therefore it naturally leads to

a scale of supersymmetry breaking, Ms, which is much smaller than the high
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energy scales in the problem Mcutoff (which can be the Planck scale or the

grand unified scale):

Ms = e−c/g(Mcutoff)2Mcutoff ≪Mcutoff . (1.9)

This can naturally lead to hierarchies. For example, the weak scale mW can

be dynamically generated, explaining why mW /mP l ∼ 1017.”(From [16])

As the dynamics is strongly coupled, perturbation theory in the fundamental “quarks”

and “gluons” is of little use here. However much more may be learned about the low

energy dynamics by writing an effective Lagrangian which contains the low energy degrees

of freedom and preserves the symmetries and interactions of the system. For instance the

linear sigma model is used to describe mesons which encapsulate the collective behaviour

of quarks and gluons at low energies. Corrections to the effective description are due

to an expansion of operators in k2/Λ2, where k2 is the the momomenta and Λ2 is the

scale at which the fundamental variables become strongly coupled. The strongly coupled

microscopic theory and the effective macroscopic theory are said to be within the same

“Universality Class” as they both flow to the same infrared fixed point, within the space

of dimensionless couplings. Precisely at the fixed point the descriptions are no longer

effective, they are exact. This provides the notion that two (or more) descriptions may

be dual. One description may offer a more useful perturbative description to examine

its low energy properties. Equally one may start with dual descriptions and, by adding

various operators or deformations, build useful effective descriptions. Further, one may

on occasion make these flows arbitrarily close, such that the duality holds along an entire

flow [17,18].

Much progress has been made in understanding dynamical supersymmetry breaking

via the use of dualities [17, 19–22] and in particular Seiberg duality [23, 24], in which

exactly dual descriptions can be found at conformal fixed points, which then become

effective descriptions after adding deformations such as small quark masses in the “electric”

or fundamental microscopic description. This progress has culminated in the viewpoint

that supersymmetry is broken dynamically in a metastable minima [25], the ISS model,

which is usually explored in its “magnetic” or IR-free description. This development in

supersymmetry breaking is rather compelling and many questions seems to have a natural

footing within this construction. For instance stability of the metastable broken vacuum
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is ensured by a parametrically small parameter

ǫ =

√
m

Λ
≪ 1 (1.10)

where m is the quark mass scale and Λ is the strong coupling scale. Stability also arises

dynamically: the universe naturally cools towards a vacuum with more light degrees of

freedom, and at lower temperatures the vacuum becomes trapped and parametrically long

lived [26, 27]. GUT unification and its breaking may also be dynamically explained by

the behaviour of the breaking of flavour symmetries of the hidden sector [5]. Additionally

the potential between the two vacua of the ISS model [25] is generically long and flat,

providing a natural candidate for inflation. Throughout this thesis we have in mind that

supersymmetry is broken in this, or some related, way. What we hope to contribute, in this

thesis, is a rigorous theoretical framework for analysing different methods of mediating this

type of supersymmetry breaking. We will argue that we are compelled to suggest gauge

mediation and in particular some sort of effective extra dimension, in which massive vector

like objects participate in this mediation. We will discuss these issues further in chapters

3 and 6.

A perhaps alternate viewpoint due to Randall and Sundrum [28], as a solution to the

Hierarchy problem, is when the geometry of spacetime generates a hierarchy of scales.

Starting from the AdS5 metric given by

d2s = e−2kyηµνdxµdxν + dy2. (1.11)

1/k is the AdS curvature scale, we may look at intervals of this space with 0 ≤ y ≤ ℓ with

ℓ = πR. Mass terms geometrically located at y = ℓ will be exponentially suppressed such

that

M = e−kℓM0 (1.12)

In general, one still needs supersymmetry to protect this hierarchy. In fact it is rather

enticing to suggest that if the local hidden sector that breaks supersymmetry dynamically

is both approximately conformal and has a large gauge group, then one may construct a

low energy effective Lagrangian via the AdS/CFT correspondence. One may then argue

that the exponential warp factor is similarly capturing the dynamically generated hierachy

of scales between supersymmetry breaking scale and that of the UV scale. The supersym-

metric “slice of AdS” with supersymmetry breaking on the IR fixed point, mediated to

the UV fixed point by gauge interactions may act as a powerful effective description of
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the period of approximately conformal running of the hidden sector gauge group. Im-

portantly, fields that live in the full five dimensions will have a Kaluza-Klein (kk) mode

expansion, with masses associated with the AdS warp factor, roughly Mn ∼ nπke−kℓ due

to the interval of length ℓ.

To be clear, we are not constructing an AdS description of the MSSM, but rather

taking a conceptually different construction. For concreteness, we have in mind an N = 1,

SU(NF )×SU(Nc)CFT in the UV description. The SU(Nc)CFT is approximately conformal

between the UV scale Mplanck, down to some scale which will equate to Mkk the mass

of the lightest kk mode. In the IR the SU(Nc)CFT breaks supersymmetry which is,

essentially captured on the IR brane of the AdS dual description. This gauge group and

matter content may admit an AdS dual low energy effective description, just as under

Seiberg duality, a UV-free electric description admits an IR dual magnetic description.

The SU(NF ) is a global flavour symmetry for which some subgroup is weakly gauged and

associated with the MSSM gauge group or parent GUT SU(5). The global currents of this

flavour symmetry would in principle require all order corrections from the hidden sector

in terms of the electric description, when in the IR (the currents in the electric desciption

are well defined in the UV), but since we have a low energy effective description, we can

in principle determine those corrections in terms of the dual variables. We also point out

that SU(3)c QCD has well defined UV currents of the SU(2) and U(1) global groups. In

the IR, various tools are applied such as operator product expansions, sum rules, Padé

approximations and AdS/QCD to determine the structure of these currents.

In particular, we should expect that on the IR brane, should be some O’Raifeartaigh

type model [29], perhaps rather similar to the magnetic description of the ISS construc-

tion [25]. This is simply parameterised by currents located on the IR brane. Under the

correspondence, a global symmetry of the CFT is interpreted as a gauge symmetry of the

bulk and resonances of the CFT act as Kaluza-Klein modes of the gauge symmetry. On

the CFT side, these fields should be thought of as part of the currents themselves, form

factors, which on the AdS side appear as mediators of the IR brane localise currents. Most

compelling in this construction is that as the gauge fields live in the bulk, Kaluza-Klein

modes of the gauge fields will participate in the mediation of supersymmetry breaking. A

closely related phenomena arises both in QCD as “Vector Meson Dominance” [30,31] and

also rather naturally, although most often a subleading effect, within ISS models them-

selves, whenever one embeds the standard model gauge groups within a flavour group that
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exhibits “magnetic colour-flavour locking” [32]. It may help conceptually to think of chap-

ter 3 as capturing a truncated version of the AdS model we are suggesting, which includes

only the first Kaluza-Klein modes and the IR brane supersymmetry breaking sector. We

will return to these topics in chapters 3 and 6.

1.3 Why a Hidden Sector?

So far we have argued that supersymmetry protects the hierarchy of scales between the

Planck scale and the electoweak scale and that dynamically broken supersymmetry arising

from strong dynamics naturally generates this hierarchy in the form of the supersymmetry

breaking. This equation is modified by the introduction of supergravity. In fact the

constraints of supersymmetry require that the standard model does not directly participate

in the breaking of supersymmetry and the argument is as follows:

In superspace notation, the supersymmetric standard model (SSM) action S, will have

a superpotential W :

S =

∫
d8z[Wδ2(θ̄) +W †δ2(θ)], (1.13)

where
∫
d8z =

∫
d4xd2θd2θ̄. Where we have explicitly assumed a perturbative description

with canonical Kähler potential. Through derivatives of the superpotential, one encodes

fermion mass terms, scalar mass terms and Yukawa couplings. As a result these quantities

are constrained and related. The upshot are some supertrace mass sum rules [33]:

STrM2 =

1/2∑

J=0

(−1)2J (2J + 1)m2
J = 0 (1.14)

with J labelling the spin of the states. In fact this can be shown to be true over each

chiral supermultiplet and including arbitrary gauge interactions [34]

STrM2 = −2T a 〈Da〉 (1.15)

These mass sum rules imply that if supersymmetry is broken within the SSM then for

every standard model particle, there must be a superpartner with a mass lighter or equal

to the standard model particle clearly ruled out by experiment [35]. These sum rules

are protected as a consequence of the Nonrenormalisation theorem which states that the

superpotential 1.13, which is holomorphic, does not receive any renormalisation at any

order in perturbation theory. This theorem may be motivated intuitively by realising that
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all local4 loops written in superspace must have a minimum of two internal propagators

or equivalently
∫
d8zDDD̄D̄ must appear, which is not holomorphic.

This leads to the requirement of a hidden sector where supersymmetry is broken. The

hidden sector can supply the necessary explicit breaking soft terms, such as the gaugino and

sfermion masses, necessary for the SSM superpartner masses and to evade the constraints

of the sum rules. From the perspective of the visible sector, the soft terms explicitly break

the sum rules however these terms may be generated by a supersymmetry breaking sector

that necessarily obeys these sum rules.

1.4 Interlude: Form factors

The scattering part of the S-matrix between an ingoing state A and an out going state B

is given by

〈B|
∫
dtHext|A〉 =

∫
d4xAµ(x) 〈B|jµ(x)|A〉 . (1.16)

If the external states are not fundamental, i.e. composite, we can therefore think of the

matrix element as the definition of the current. Translation invariance allows us to define

〈B|jµ(x)|A〉 = 〈B|jµ(0)|A〉 ei(PA−PB).X . (1.17)

The simplest example [36] is of the (4-component Dirac) electron. Inclusion of radiative

corrections will give a result of the form

〈ē(p)|jµ(0)|e(p′)〉 = ge

(
F1(q

2)γµ +
iΣµνqν
m

F2(q
2)

)
(1.18)

One may choose to contract with spinor wavefunctions ψ(x) = u(p)−ip.x to obtain a spin

index contracted form factor. F (q2) is a momentum dependent form factor (q = p′ − p),

which to lowest order F1 = 1 and F2 = 0. In the Hadronic world, one may think of the

electromagnetic and weak forces as “external fields”. The external probe fields therefore

couple to Hadronic currents [37]. A simple example is that of the π+ meson

〈π(p)|jµ(0)|π(p′)〉 = geFπ(q
2)(p+ p′)µ (1.19)

What one finds experimentally is not Fπ(q
2) = 1, and additionally it is presumed that

F (∞) = 0. In fact it is argued that if an intermediate ρ meson is exchanged then from

4in coordinate space
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general considerations the form factor is

F (p2) =
m2
ρ

p2 −m2
ρ

. (1.20)

This is vector meson dominance. What is perhaps less obvious is that one may think of

the ρ meson as a Kaluza-Klein mode of the photon, such that the form factor is given by

a bulk propagator. Schematically with m0 = 0 and m1 = mρ,

F (p2) = −p2
n=1∑

n=0

(−1)n

p2 −m2
n

. (1.21)

That hadronic form factors appear from weakly gauged global symmetries of the UV the-

ory, and that their form may be modelled by a gauge symmetry in some higher dimensional

space, has lead to Hidden Local Symmetry models and AdS/QCD as a very compelling

description of low energy QCD [30, 38–42]. We are strongly compelled to argue that this

generic feature of strongly coupled gauge theories will manifest itself in interactions with

a supersymmetry breaking hidden sector, including in the generation of soft terms for the

MSSM.

1.5 Gauge Mediation

So far we have a picture of supersymmetry being broken in a sector that is not part of the

Minimal Supersymmetric Standard Model (MSSM) and additionally we have a sensible

dynamical method of breaking supersymmetry. The transmission of the supersymmetry

breaking effects to the MSSM may arise from either gauge or gravitational interactions. In

this thesis we shall explore gauge mediation and not comment further on gravity mediation.

1.5.1 General Gauge Mediation

Figure 1.1: A pictorial of gauge mediation. The visible MSSM and susy breaking hidden

sector completely decouple as the standard model gauge couplings (α) go to zero.

General gauge mediation [43] can be defined as follows; In the limit that the standard

model gauge couplings αi → 0, i = 1, 2, 3 labelling U(1), SU(2), SU(3) respectively, the
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theory decouples into three sectors: a sector that breaks SUSY, the MSSM matter and

the gauge mediating sector, as in figure 1.1 . Strictly speaking, it is only necessary that

the α coupling the standard model/mediating sector decouple. Computations may be

made perturbatively in the MSSM gauge couplings αi(µ) between MSUSY ≥ µ ≥ Mz.

Typically, this construction may be achieved by first building a hidden sector such as

the ISS construction and then weakly gauging a flavour symmetry of the hidden sector

and associating this with the MSSM gauge groups. The currents and correlators of this

weakly gauged global symmetry encode the supersymmetry breaking effects. Within this

framework, one may look at variations on this theme by changing either of the three

sectors [44–55]. For the most part four dimensional models have focused on comparing

different SUSY breaking sectors, i.e. different currents, whilst holding the other two

sectors fixed. In this thesis we will change the mediating sector, whilst staying within

the definition of general gauge mediation. In particular we would like to explore models

where the mediating sector has Kaluza-Klein modes and for that we will explore both five

dimensional models and deconstructed four dimensional ones.

There is an important additional point on the framework of GGM is that it allows

strongly coupled hidden sectors to be encoded into current correlators so that they may

be extensively studied. If the hidden sector is strongly coupled then in principle the

current correlators must be known exactly with regard to αhidden. In this case the current

correlators simply parameterise our ignorance in terms of the current correlators and we

compute soft masses perturbatively in the αi’s.

A far more powerful use of the current correlator framework arises from the use of

dualities. As the hidden sector and visible sector completely decouple, one may use a dual

description of the currents of the weakly gauged global symmetry, in terms of the effective

variables. Within the ISS construction this naturally arises as one takes the two point

functions of the magnetic degrees of freedom of the hidden sector even though the true

fundamental current correlators are in terms of strongly coupled variables. In this thesis

we will show that even truly four dimensional models, with regard to the microscopic

description, may have an apparent extra dimensional structure, within the macroscopic

description. This arises both in the sense of (De)constructed extra dimensions [3] and

through the AdS/CFT correspondence [2]. Heuristically, in principle all-order current

correlators on the left hand side may be factorisable:

〈J(p)J(−p)〉 → [F (
p2

m2
v

)]2 〈J̃(p)J̃(−p)〉 + ... (1.22)
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such that it may be described by a current correlator of the effective degrees of freedom,

multiplied by a momentum dependent form factor F (p2/m2
v). The ellipses denote that the

right hand side is a perturbative expansion in gweak of the all-order current correlators on

the right hand side. From the perspective of the weak side of the duality the form factor

arises due to Kaluza-Klein modes of the vector superfield, with mass mv, participating in

the mediation of supersymmetry. From the perspective of field theory these are vector-like

resonances of the strongly coupled description. The form factor is associated with a bulk

propagator

F (p2/m2
v) ∼ 〈φ(x, 0)φ(x, ℓ)〉 . (1.23)

In this sense the GGM construction truly captures the essence that a four dimensional

calculation on one side is equivalent to a 5d calculation on the other side of a duality

transformation. For the particular case of a two site lattice model, we will show that this

form factor is completely dominated by the first kk mode mass, and we recover exact vector

meson dominance. In fact it is quite reasonable that this type of factorisable structure

should occur under the duality, as both the four dimensional general gauge mediation [43]

equations for the scalar masses should be valid and so should the five dimensional scalar

mass equations of the dual five dimensional models.

This motivation for exploring extra dimensions, which may be understood by compar-

ing with QCD physics. The strong force binding quarks as fundamental objects at high

energies, is a gauge theory which at low energies has an effective description of baryons

and mesons. In particular the vector like spin-1 mesons for example the octet containing

ρ mesons, appear to arise from a purely emergent local symmetry due to the effects of

strong coupling [30, 31]. This symmetry is not apparent in the high energy quark de-

scription. In fact these resonances behave like the lightest Kaluza-Klein particles of an

extra dimension. Not only are vector mesons detectable in experiment, they also influence

many physical processes of the standard model through an effect known as “vector me-

son dominance” [56], whereby the form factor of π+ interacting with electromagnetism, is

dominated by the ρ meson. If the hidden sector is strongly coupled, it seems likely that

the analogue of vector mesons should arise in the low energy effective description and play

an important role in phenomenology.

Gauge mediation in five dimensions captures the analogous effect. In the process of

this thesis we will demonstrate how purely four dimensional models of SQCD may develop

effective Kaluz-Klein modes analogous to ρ mesons and that they act to screen scalar
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masses analogous to vector meson dominance. We will then show that by interpreting the

hidden sector as having an effective AdS dual description, one may further capture similar

features. All these developments will become more apparent in the later chapters: chapter

2 will simply focus on a rigorous five dimensional extension of general gauge mediation.

1.5.2 Gaugino Mediation and GGM5D

Typically in extra dimensional models of gauge mediation, the Kaluza-Klein modes of the

vector multiplet participate in the mediation of supersymmetry. This acts to screen scalar

masses of the MSSM, as was first shown rather rigorously by Mirabelli & Peskin [57] and

is pictured in figure 1.2.

V isible

brane

Hidden

brane

Figure 1.2: A pictorial of the leading order (α2) sfermion mass contributions due to general

gauge mediation across an interval. Sfermion mass contributions on the visible brane are

generated by supersymmetry effects encoded in current correlators (blobs) located on the

hidden brane.

As a result, for a minimal hidden sector, typically the gaugino mass is the only non-zero soft

term and additionally, gaugino mass contributions in the renormalisation group equations

(RGE’s) [58–60] pictured in figure 1.3, will generate scalar masses for the MSSM. This

was explored phenomenologically in models of Gaugino mediation [61–64]. As the whole

theory depends on only one soft term, it is rather predictive.
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V isible

brane

Hidden

brane

Figure 1.3: A diagram representing a subleading (order α3) contribution to sfermion

masses (pext = 0) through a gaugino mediated double mass insertion of the Majorana

soft mass on the hidden brane. For non-zero external scalar momenta, this diagram is a

correction to the scalar kinetic term, leading to the soft mass contribution to one loop

renormalisation group equations (RGE’s) for sfermions.

We would like to empasise that this is simply a particular, and minimal case, of a far

broader space of possible five dimensional constructions. General gauge mediation in five

dimensions may be shown to interpolate between the screened and unscreened (or four

dimensional) limit of scalars masses, as is shown in chapter 5: Hybrid mediation. Further,

as in general gauge mediation, both four and five dimensions, the gaugino and sfermion

current correlators are not related, so it is rather simple to construct a model in which

for example, the gaugino Majorana mass is vanishingly small through an approximate

R-symmetry, the scalar masses are only partially screened in the Hybrid regime, and the

erstwhile massless gaugino gets a Dirac mass instead [65]. This is just one example of the

rich set of phenomenologically unexplored possibilities that we hope general gauge medi-

ation in five dimensions may be applied to, which seem no more or less likely than the

benchmark construction of Gaugino mediation. Additionally, we emphasise that general

gauge mediation in five dimensions gives a natural geometric interpretation of the decou-

pling limit of GGM, as the hidden and visible sectors are spatially separated on different

fixed points it makes direct couplings impossible by construction. Further, the screening

effect on the scalar masses may alleviate many problems found in models of ISS [25] of

anomalously light gauginos relative to scalars.
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1.6 Chapter Summary

This chapter has summarised the motivations for a supersymmetric standard model in

which supersymmetry breaking is described by a hidden sector and gauge mediated to the

MSSM. We have also given an outline for this thesis in which we will focus on gauge me-

diated supersymmetry breaking across an extra dimension within the program of current

correlators which allows for a model independent construction which is also applicable

for analysing strongly coupled hidden sectors. The remaining of this thesis will work as

follows: in chapter 2 we will outline the framework of using current correlators to encode

brane to brane mediation of supersymmetry on a R1,3 × S1/Z2 background. In chapter 3

we will demonstrate the utility of this framework by applying it to models of metastable

supersymmetry breaking. In the same chapter, we will show how ISS-like models may

generate an effect extra dimension through “magnetic colour-flavour locking” which will

motive chapter 4 in which we focus on deconstructing an extra dimension from purely

four dimensional lattice constructions. In chapter 5 will focus on a simplified model of an

extra dimension in which there is only one massive kk mode and show that this allows for

analytic analysis of a new hybrid regime where mv ∼ M . In chapter 6 we will apply the

framework of current correlators to an AdS5 background which goes some way to achiev-

ing the aim of using general gauge mediation to explore the supersymmetry breaking of

strongly coupled hidden sectors. In chapter 7 we conclude and discuss future directions.

It may be helpful for the readers to note the following publications that each chapter

is broadly based upon:

• Chapter2: “General Gauge Mediation in Five Dimensions” [1], M.McGarrie and

R.Russo.

• Chapter3: “General Gauge Mediation in Five Dimensions” [1], M.McGarrie and

R.Russo.

and “Direct Gaugino Mediation,” [66], D. Green, A. Katz, and Z. Komargodski.

• Chapter4: “General Gauge Mediation and Deconstruction” [3], M.McGarrie.

• Chapter5: “Hybrid Gauge Mediation” [4], M.McGarrie.

• Chapter6: “Warped General Gauge Mediation” [2], M.McGarrie and D.C.Thompson.



Chapter 2

General Gauge Mediation in Five

Dimensions

In this chapter we use the “General Gauge Mediation” formalism to describe a 5D setup

with an S1/Z2 orbifold. The original publication is [1]. We first consider a model in-

dependent SUSY breaking hidden sector on one boundary and generic chiral matter on

another. In our analysis the susy breaking dynamics is confined to a 4d brane and thus

the current correlators are exactly those of the usual GGM formalism and are independent

of momentum in the 5th dimension. In the “bulk” or five dimensional space we place five

dimensional Super Yang Mills whose conventions can be found in appendix B; this sector

plays the role of the mediating sector. Throughout this chapter we apply the analysis

of [57] in the context of GGM and rederive the scalar and gaugino masses in terms of

the current correlators. We find the gaugino, sfermion and hyperscalar mass formulas for

minimal and generalised messengers in different regimes of a large, small and intermediate

extra dimension of length ℓ. We also briefly discuss Semi-Direct gauge mediation.

Realistic models of hidden sectors that break supersymmetry are commonly described

by N = 1 SQCD messengers coupled to a spurion. The use of Seiberg duality often allows

for an otherwise strongly coupled hidden sector to be perturbatively described using its IR

free dual magnetic description in which at lowest order in αmag the sector reduces to the

form of messengers coupled to a spurion. For these reasons we will demonstrate in section

2.3 the explicit encoding of a perturbative hidden sector into current correlators and give

more explicit formula for these types of models. These results will build the foundations

which will then allow us to explore a fully realistic ISS scenario in the next chapter.

16
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2.1 Framework

In this section we recall the main features of N = 1 super Yang-Mills and hypermultiplet

matter in 5d. Once compactified on an orbifold of S1/Z2, a positive parity vector multiplet

couples to the boundaries of the orbifold and we associate this with the standard model

gauge groups in the bulk. The remaining fields fill a negative parity chiral multiplet which

we do not couple to the boundaries. Similarly we will outline features of the orbifold

compactified hypermultiplet. A complete description is found [67], see also Appendix B.

We first focus on the pure super Yang-Mills theory. The action written in components

is

SSYM5D =

∫
d5x Tr

[
−1

2
(FMN )2 − (DMΣ)2 − iλ̄iγ

MDMλ
i + (Xa)2 + g5 λ̄i[Σ, λ

i]

]
. (2.1)

The coupling 1/g2
5 has been rescaled inside the covariant derivative, DM = ∂M + ig5AM .

The other fields are a real scalar Σ, an SU(2)R triplet of real auxiliary fields Xa, a = 1, 2, 3

and a symplectic Majorana spinor λi with i = 1, 2 which form an SU(2)R doublet. The

reality condition is λi = ǫijCλ̄Tj . Next, using an orbifold S1/Z2 the boundaries will preserve

only half of the N = 2 symmetries. We choose to preserve ǫL and set ǫR = 0. We have a

parity operator P of full action Pφ(y) = Pφ(−y) and define PψL = +ψL PψR = −ψR for

all fermionic fields and susy parameters. One may then group the susy variations under

the positive parity assignments and they fill an off-shell 4d vector multiplet V (xµ, x5).

Similarly the susy variations of odd parity form a chiral superfield Φ(xµ, x5). We may

therefore write a 5d N = 1 vector multiplet as a 4d vector and chiral superfield:

V = − θσµθ̄Aµ + iθ̄2θλ− iθ2θ̄λ̄+
1

2
θ̄2θ2D (2.2)

Φ =
1√
2
(Σ + iA5) +

√
2θχ+ θ2F , (2.3)

where the identifications between 5d and 4d fields are

D = (X3 −D5Σ) F = (X1 + iX2) , (2.4)

and we used λ and χ to indicate λL and −i
√

2λR respectively. The vector and chiral

superfield have a Kaluza-Klein (kk) mode expansion given by

V (x, y) =
1√
ℓ
V 0(x) +

√
2

ℓ

∞∑

n=1

V n(x) cos
nπy

ℓ
(2.5)

Φ(x, y) =

√
2

ℓ

∞∑

n=1

Φn(x) sin
nπy

ℓ
. (2.6)
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The bulk hypermultiplet action

SH5D =

∫
d5x[−(DMH)†i (D

MH i) − iψ̄γMDMψ + F †iFi − g5ψ̄Σψ (2.7)

+g5H
†
i (σ

aXa)ijH
j + g2

5H
†
iΣ

2H i + ig5
√

2ψ̄λiǫijH
j − i

√
2g5H

†
i ǫ
ijλ̄jψ ]

decomposes into a positive and negative parity chiral superfield, PH = +H and PHc =

−Hc:

H = H1 +
√

2θψL + θ2(F1 +D5H2 − g5ΣH2) (2.8)

Hc = H†
2 +

√
2θψR + θ2(−F †

2 −D5H
†
1 − g5H

†
1Σ) . (2.9)

With our conventions,the dimensions of (Hi, ψ, Fi) are (3
2 , 2,

5
2). The hypermultiplets are

intriguing, as in the simplest case they also only couple to the branes via the gauge coupling

g5 so they satisfy the framework of general gauge mediation.

In the next section we will locate a susy breaking hidden sector on one boundary of

the orbifold. We will encode the hidden sector into a set of current correlators, and use

the positive parity vector multiplet to generate, a gaugino mass, construct loops across

the bulk to generate sfermion masses on the other orbifold boundary and finally construct

loops to generate a mass for the zero mode of the bulk hypermultiplets.

2.2 General Gauge Mediation for bulk and boundaries

In this section we follow [43] and use the formalism of current correlators in a 5D orbifold

R1,3 × S1/Z2 where supersymmetry is broken only on one of the two planes at the end of

the interval. The gaugino and sfermion mass are written in terms of current correlators

on the supersymmetry breaking plane. Additionally we explore the hypermultiplet scalar

and fermion masses via the same set of current correlators.

In a supersymmetric gauge theory, global current superfields J A have the component

form

J A = JA + iθjA − iθ̄j̄A − θσµθ̄jAµ +
1

2
θ2θ̄σ̄µ∂µj

A − 1

2
θ̄2θσµ∂µj̄

A − 1

4
θ2θ̄2�JA , (2.10)

which by definition satisfies the conditions

D̄2J A = D2JA = 0 . (2.11)

This implies the usual current conservation on jµ: ∂
µjAµ = 0. We now gauge the global

symmetry and couple the current to the vector superfield with

Sint = 2g5

∫
d5xd4θJVδ(x5) =

∫
d5xg5(JD − λj−λ̄j̄ − jµAµ)δ(x5) (2.12)
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We may relate 4d brane localised currents as 5d currents by J5d = J4dδ(x5). The vector

multiplet is five dimensional but is written in 4 dimensions as V (xµ, x5) and has been

coupled to the boundary fields. The 5d coupling, g5, has mass dimension, Dim[g5] = (4−D)
2 .

In this normalisation, following Eqn. (B.1.21), the mass dimensions of (Aµ,Σ, λi,Xa) are

(3/2, 3/2, 2, 5/2). It follows that 5d currents that couple to these fields, (Jµ, Jλi , JXa)

have mass dimension (4, 7/2, 3). δ(x5) carries a mass dimension 1. We explicitly insert

the relation for the D term and keep the auxiliary fields X3. The change of the effective

Lagrangian to O(g2
5) is

δLeff = −g2
5C̃1/2(0)iλσ

µ∂µλ̄− g2
5

1

4
C̃1(0)FµνF

µν (2.13)

− g2
5

1

2
(MB̃1/2(0)λλ +MB̃1/2(0)λ̄λ̄)

+
1

2
g2
5C̃0(0)(X

3)2 +
1

2
g2
5C̃0(0)(D5Σ)2 − g2

5C̃0(0)(D5Σ)X3

+ g2
5 〈Jjµ〉 ((D5Σ)Aµ −X3Aµ) + · · · .

These are evaluated in the IR (pµext = 0). When using these components to construct the

diagrams in Figure 1, one must include the full momentum dependence. The B̃ and C̃

functions are related to momentum space current correlators, found below. The last 4

terms require comment: the first three of these replace the D2 term, in the last line the

current correlator is found to be zero [50]. In position space, the current correlators can

be expressed in terms of their mass dimension1 and some functions Cs and B 1
2
,

〈J(x, x5)J(0, x′5)〉 =
1

x4
C0(x

2M2)δ(x5)δ(x
′
5) (2.14)

〈jα(x, x5)j̄α̇(0, x′5)〉 = − iσµαα̇∂µ(
1

x4
C1/2(x

2M2))δ(x5)δ(x
′
5) (2.15)

〈jµ(x, x5)jν(0, x
′
5)〉 =(∂2ηµν − ∂µ∂ν)(

1

x4
C1(x

2M2))δ(x5)δ(x
′
5) (2.16)

〈jα(x, x5)jβ(0, x
′
5)〉 =ǫαβ

1

x5
B1/2(x

2M2)δ(x5)δ(x
′
5) (2.17)

〈jµ(x, x5)J(0, x′5)〉 =cM2∂µ(
1

x2
)δ(x5)δ(x

′
5) (2.18)

M is a characteristic mass scale of the theory (e.g. the fermion mass of the SUSY break-

ing messenger multiplet). B1/2 is a complex function, Cs, s = 0, 1/2, 1, is real. When

supersymmetry is unbroken

C0 = C1/2 = C1 , and B1/2 = 0 . (2.19)

1Renormalised operators of conserved currents receive no rescalings ZJ = 1 and no anomalous dimension

γJ = 0
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Supersymmetry is restored in the UV such that

lim
x→0

C0(x
2M2) = lim

x→0
C1/2(x

2M2) = lim
x→0

C1(x
2M2) , and lim

x→0
B1/2(x

2M2) = 0 . (2.20)

C̃s and B̃ are Fourier transforms of Cs and B,

C̃s

(
p2

M2
;
M

Λ

)
=

∫
d4xeipx

1

x4
Cs(x

2M2)

MB̃1/2

(
p2

M2

)
=

∫
d4xeipx

1

x5
B1/2(x

2M2) .

(2.21)

The C̃s and B̃ terms are the nonzero current correlator functions of the components of

the current superfield. The correlators have positive parity (P = +1) as they live on

the wall. Using the full action of P, the Fourier transforms over x5 and x′5 removes the

delta functions. In this off-shell formalism δ(0) does not enter explicitly in the calculation

(compare with [57]). In momentum space we have,

〈J(p, p5)J(−p, p′5)〉 =C̃0(p
2/M2) (2.22)

〈jα(p, p5)j̄α̇(−p, p′5)〉 = − σµαα̇pµC̃1/2(p
2/M2) (2.23)

〈jµ(p, p5)jν(−p, p′5)〉 = − (p2ηµν − pµpν)C̃1(p
2/M2) (2.24)

〈jα(p, p5)jβ(−p, p′5)〉 =ǫαβMB̃1/2(p
2/M2) (2.25)

〈jµ(p, p5)J(−p, p′5)〉 =cM2 2π2ipµ
p2

(2.26)

We see that the current correlators are completely independent of the momentum in the

fifth dimension. The analysis of [50] demonstrates that c = 0 in the last equation.

We shall frequently express our results in terms of the “supertraced” set of these

current correlators

[3C̃1(p
2/M2) − 4C̃1/2(p

2/M2) + C̃0(p
2/M̂2)] = Ω

(
p2

M2

)
. (2.27)

The numerical coefficient in front of the C̃s terms in Eqn. (2.27) is associated with the

off-shell degrees of freedom of the bulk propagating vector multiplet and arise from taking

an index contraction of the current correlators.

2.2.1 Gaugino masses

At g2 order the susy breaking contribution to the gaugino mass can be read directly

from the Lagrangian (2.13) after rescaling λ so as to canonically normalise the bulk ac-

tion (B.1.21):

Mnm
λ = g2

4MB̃1/2(0) . (2.28)
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These terms are of Majorana type and couple every Kaluza-Klein mode with every other

mode with the same coefficient. In addition we have the usual Kaluza-Klein tower of

masses (p5 = nπ
ℓ ) which are of Dirac type and mix λLn and λRn . The mass eigenstates will

be in general a linear combination involving different Kaluza-Klein modes. This is similar

in vein to the “see-saw” mechanism and for large ℓ the lowest mass eigenstate can become

very light. This highlights that for bulk mediation, the scale ΛG is not a good scale and

must be replaced by the lightest gaugino mass eigenvalue. We comment on three regimes:

Small ℓ When the scale of the extra dimension 1/ℓ is much bigger than the scales
√
F

and M then we return to an effective 4d theory and the zero mode mass is given

by (2.28).

Intermediate ℓ When F ≤ 1/ℓ2 ≪ M2 the susy breaking mass Mmn
λ is of order F/M

and the K.K. mass is much bigger because F/M ≤ (1/M)(1/ℓ2) ≪ 1/ℓ. In this case

the gaugino mass is still given by (2.28) and ΛG is a good scale.

Large ℓ When 1/ℓ2 ≪ F , then one must be careful and see how F and M scale. For

instance if F ∼M/ℓ, which is possible in this regime, then there is a sizeble mixing

between the various K.K. modes and the first mass eigenstate is lighter than Mnm
λ .

If Mnm
λ ≫ 1/ℓ the lightest gaugino eigenstate can have a much lower mass than

Mnm
λ due to mixing with the tower of K.K. modes. In this case ΛG is not a good

scale.

2.2.2 Sfermion masses

At leading order in α, the sfermion masses can be determined in terms of the C̃s current

correlator functions and propagation of the vector multiplet in the bulk. This corresponds

to the 8 diagrams in figure 2.1. The “blobs” are current correlators located on the hidden

brane. The scalar lines are located on the visible brane. The intermediate propagators are

the bulk fields and are components of the vector multiplet in the bulk. The full momentum

dependence of the current correlators must be taken into account as they form a part of a

loop on the scalar propagator. The full set of diagrams are accounted for in [57] including

the two vanishing diagrams associated with 〈jµJ〉 (see also [50]). The top right most

diagram contributes nothing to the mass due to transversality, when taking the external

momentum to zero. The middle row has an auxiliary field X3 which cannot propagate

across the bulk so its diagrams vanish and only the middle one of that row survives. In
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conclusion, when computing the soft mass terms, only the first two diagrams and the

middle diagram of the middle row survive. They are the final “supertraced” combination

with the same structure as in the 4D case.

Key :

Fermion Scalar Gaugino Gauge X3 Σ

Figure 2.1: The graphical description of the two point functions to the soft sfermion

masses. In the top row, the first diagram is from 〈jαj̄α̇〉 and the second and third are

from 〈jµjν〉. The middle row are all separately related to 〈JJ〉, only the middle diagram

survives propagation across the bulk. The final row is constructed from couplings to 〈Jjµ〉
and are exactly equal to zero [50].

To compute the three diagrams we need the propagator of a free massless bulk field

〈
a(x, x5)a(y, y5)

〉
=

∫

p5

i

p2 − (p5)2
e−ip·(x−y)(eip5(x

5−y5) + Peip5(x
5+y5)) , (2.29)

where ∫

p5
=

∫
d4p

(2π)4
1

2ℓ

∑

p5

, (2.30)

with p5 summed over the values πn/ℓ, n = integer. We propagate from x5 = 0 to y5 = ℓ.

The propagator was found by use of the full action of P on the Fourier transformation from

position to momentum space, where P is the parity eigenvalue ±1. The mass eigenstates

arise as a Higgs mechanism and is naturally found from a geometric sum of mass insertions.

The exponents of the 5th dimension, in brackets, for two propagators will reduce to

4(−1)n+n̂. (2.31)
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In particular, this factor encodes the finite separation of the branes and will allow for a

convergent finite answer for the soft mass. It should also be noted neither brane (current

correlator) conserves the incoming to outgoing p5 momenta. All vertex couplings can be

determined by expanding out a canonical Kähler potential for a chiral superfield, which can

be seen by example in Appendix D. We would like to factor out all the extra dimensional

contributions to the sfermions so that it leaves the GGM result multiplied by higher

dimensional contributions. We find

m2
f̃

=
∑

r

g4
r(5d)c2(f ; r)Er (2.32)

where

Er = −
∫

d4p

(2π)4
1

ℓ2

∑

n,n̂

(−1)n+n̂

p2 − (p5)2
p2

p2 − (p̂5)2
Ωr(

p2

M2
), (2.33)

where we used the regularisation of the K.K. sum described in Eq.(29) of [57]. r = 1, 2, 3.

refer to the gauge groups U(1), SU(2), SU(3). c2(f ; r) is the quadratic Casimir for the

representation of f under the gauge group r. We have followed the convention of [55] by

using E, reserving A for A-terms. The numerical coefficient in front of the C̃s terms in

Eqn. (2.33) are essentially set by taking an index contraction of the current correlators

Eqn. (2.22) to Eqn. (2.24).

To make further progress we must identify different expansion limits of this result. In

particular for large and small ℓ regimes one may obtain either four dimensional general

gauge mediation, or the screened five dimensional limit.

We use Matsubara frequency summation to identify

1

ℓ

∑

n

(−1)n
1

k2 + (k5)2
=

∮
dk5

2π

2eik5ℓ

e2ik5ℓ − 1

1

k2 + (k5)2
=

1

k

1

sinh kℓ
. (2.34)

We obtain

Er =−
∫

d4p

(2π)4
(

1

p sinh pℓ
)2p2Ωr(

p2

M2
) (2.35)

The full answer is a the 4d GGM [43] answer multiplied by a momentum dependent form

factor

f(pℓ) = (
pℓ

sinh pℓ
)2. (2.36)

plotted in figure 2.2. We may recover the four dimensional limit ℓ→ 0, where

1

k

1

sinh kℓ
→ 1

ℓk2
. (2.37)
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Figure 2.2: A plot of the momentum dependent form factor that suppresses leading order

sfermion masses due to bulk mediation of supersymmetry breaking, after a Matsubara

summation of all kk modes. When pℓ → 0 one recovers four dimensional general gauge

mediation. When pℓ ≥ 0 one obtains screening of the leading order scalar soft mass.

Subleading contributions

In this section we would like to discuss the subleading contribution to sfermion masses

(pext = 0) pictured in figure 1.3 (See also [61, 62, 69]). In the all order kk model [1] its

contribution is given by

δm2
f̃

=
∑

r

c2(f ; r)
g6
5

2ℓ3

∫
d4p

(2π)4
p2

∑

n,n̂,ˆ̂n

(−1)n+n̂

p2 + p2
5

MB̃1/2(p
2/M2)

p2 + p̂2
5

MB̃1/2(p
2/M2)

p2 + ˆ̂p2
5

. (2.38)

In general, this integral is divergent due to the brane to same brane propagator on the

hidden brane that connects the double mass insertions. The four dimensional limit, when

M ≪ 1
ℓ i.e. ℓ is small one finds

δm2
f̃

=
∑

r

c2(f ; r)
g6
4d

2

∫
d4p

(2π)4
1

p4
(MB̃1/2(p

2/M2))2. (2.39)

In the limit 1
ℓ ≪M one may carry out a Matsubara summation and finds

δm2
f̃

=
∑

r

c2(f ; r)
g6
5

2

∫
d4p

(2π)4

(
MB̃1/2(0)

)2

p sinh2(pℓ) tanh(pℓ)
(2.40)

where in this limit

lim
p2

M2 →0

MB̃1/2(p
2/M2) = MB̃1/2(0). (2.41)

The integral is IR divergent and must be regulated. We choose

δm2
f̃

=
∑

r

c2(f ; r)
g6
4

2

(
MB̃1/2(0)

)2
∫ ∞

0

2π2dy

(2π)4
[

y2

sinh2(y) tanh(y)
− e−Λy

y
] (2.42)

δm2
f̃

=
∑

r

c2(f ; r)
g6
4

16π2

(
MB̃1/2(0)

)2
[3/2 + γ + log Λ/2], (2.43)
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Schematically, for a messenger sector, one can compare the leading order and subleading

contribution

m2
f̃
∼ (

α

4π
)2Λ2

S

1

(Mℓ)2
+ (

α

4π
)3Λ2

G (2.44)

such that it is not always clear which term is truly leading order. ΛS is the four dimensional

scalar mass scale and ΛG is the gaugino mass scale. When ΛS ∼ ΛG comparing α/4π versus

1/(Mℓ)2 may be sufficient, however models with an approximate R-symmetry may also

suppress ΛG. It is worth emphasising that for the generalised messenger sector discussed

in this paper and for typical values of M , ℓ and α when 1
ℓ ≪M , the double mass insertion

in figure 1.3 is most likely to be the largest contribution to sfermion masses, however

for ISS-like models [1, 66] where the gaugino mass is suppressed due to an R-symmetry,

figure 1.2 is the leading contribution. We also stress that it is completely reasonable to

build models whereby 1
ℓ ∼M , in which case this model is in a Hybrid regime where both

digrams will play significant roles in the contribution of soft masses to scalars, for example

in chapter 5. It is also useful to note that the subleading diagram may act as a bound, at

the high scale M , on the ratio of masses:

m2
λ

m2
f̃

. (
4π

α
) ∼ 300 (2.45)

where in the last line we took α(MGUT )=0.04.

2.2.3 Hypermultiplet scalar masses

The supersymmetry breaking masses of the bulk hypermultiplet scalars and hypermultiplet

fermions can also be computed in the gauge mediation setup and couple to the hidden

brane exclusively via g5, when using the action Eqn. (2.8). The diagrams for the scalars are

similar to those of Figure 1, but include an additional contribution with a bulk propagator,

indicated with the ⊗ symbol, coupling the positive parity gaugino to the negative parity

bulk fermion

〈λLαλRβ〉 =

∫
d4k

(2π)4
1

2ℓ

∑

k5

ik5ǫαβ
k2 − k2

5

e−ik.(x−y)(eik5.(x5−y5) + Pe−ik5.(x5+y5)) (2.46)

A similiarly constructed propagator can be written in the sin(k5x5) and cos(k5x5) basis

for the 5D wavefunction. To compute the diagrams: The current correlators (blobs) are

brane localised, however the vertices joining the vector fields to the hyperscalar must be

integrated over all of y5. One must also specify the 5d wavefunction (p5 momenta) of the
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Figure 2.3: The graphical description of the two point functions to the hypermultiplet

scalar masses. Unlike the sfermion diagrams, the scalar field propagator does not lie on a

brane; the position of the vertex point must be integrated over for both external sewing

points when computing the diagrams. The parity of the external bulk scalar legs must

also be specified.

external hyperscalar legs using

1√
2ℓ

(ei
nπ
ℓ
y5 + Pe−i

nπ
ℓ
y5) (for n 6= 0),

1√
ℓ

(for n = 0) (2.47)

at the sewing point y5, which is then integrated over. The second diagram does not

contribute to the mass due to transversality. The rectangle in the final diagram represents

that the diagram is completely localised on the hidden sector brane, including the vertices

that couple to the external hyperscalar legs.

We will focus on the zero mode mass (m0H̄0H0)

m2
H0

=
∑

r

g4
r(5d)c2(f ; r)Dr (2.48)

where

Dr = −
∫

d4p

(2π)4
1

2ℓ2

∑

n

(
p

p2 + (p5)2
)2Ωr(

p2

M2
), (2.49)

Dr =−
∫

d4p

(2π)4
coth(pℓ) + pℓcsch2(pℓ)

2pℓ
Ωr(

p2

M2
). (2.50)

The momentum integral is UV divergent. Physically this is to be expected as the hy-

permultiplet is not brane localised and so unlike the sfermion masses there is no brane

separation to suppress large momenta contributions. We can extract the ℓ dependent susy
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breaking mass /Dr [70]. We take Dr = /Dr + independent of ℓ where

/Dr =−
∫

d4p

(2π)4
coth(pℓ) + pℓcsch2(pℓ) − 1

2pℓ
Ωr(

p2

M2
) (2.51)

Both in the case of bulk scalars and in the previous section on brane-localised scalars,

we focused just on the case of external states at zero momentum. It would be interesting

relax this condition and study, in a GGM setup, higher derivative operators by following

the analysis of [71,72].

2.2.4 Vacuum Energy

The propagation of supersymmetry breaking effects in the bulk produces a non zero vac-

uum energy. The computation of the vacuum diagrams at the order O(g2
5) is similar to the

scalar masses in the previous sections. Similarly to the computation of the hypermultiplet

scalar masses, the diagram with X3 and that with D5Σ combine and yield a contribution

proportional to p2C̃0. By including all other diagrams we obtain

EV ac/V4d =
1

4
g2
5dG

∫
d4p

(2π)4
p

tanh(pℓ)
Ωr(

p2

M2
). (2.52)

dG is the dimension of the adjoint representation of the gauge group r. The vacuum energy

is also UV divergent. The Casimir energy is the component of the vacuum energy where

the bulk propagation winds x5. This, in general, will contribute to the determination of

the physical value of ℓ, along with other supergravity corrections. The Casimir energy is

given by
ECas

V4
=

1

2
g2
5dG

∫
d4p

(2π)4
p

e2pℓ − 1
Ωr(

p2

M2
). (2.53)

2.2.5 Semi-Direct Gauge Mediation via the bulk

In [51] semi-direct gauge mediation in a 4d setup is explored using current correlators. In

this section we comment on the semi-direct case in our 5d setup with two 4d Branes and a

5d bulk. One brane is the MSSM brane, described by some generic chiral matter, charged

under the visible gauge group Gv, which lives in the 5d bulk. The other brane is a SUSY

breaking brane. The messenger fields are located on this brane and are charged under both

Gv and a brane localised gauge group Gh. The messengers do not participate directly in

the susy breaking dynamics, however they couple to the brane localised susy breaking
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sector via gauge interactions with gauge group Gh and by construction the messengers

and susy breaking sector decouple as gh → 0.

The Gaugino masses vanish at leading order (three loops) precisely because of the

argument of [51]. The sfermion masses in a flat bulk are found to be

m2
f̃

=
∑

r

g
(v)4
r(5d)g

(h)4
r(4d)c2(f ; r)Er (2.1)

where

Er = +

∫
d4p

(2π)8
1

ℓ2

∑

n,n̂

(−1)n+n̂

p2 − (p5)2
p2K(p2/m2)

p2 − (p̂5)2
Ωr(

p2

M2
). (2.2)

m is the mass of the messengers. Ks(p
2/m2) are the kernels, which in principle could be

different for each of s = 0, 1/2, 1. In [51], it was checked that K0 = K1/2 = K1, so we will

ignore this supscript index.

As a final comment, one motivation for GGM5D is that it makes the partitioning of the

hidden and visible sector a geometric feature. One may be motivated to make semi-direct

mediation a geometric feature too by placing the SUSY breaking sector X, the messengers

φ, φ† and the MSSM on three distinct branes. It would be interesting to study explicitly

if it is possible to realise such a possibility in a concrete model.

2.3 Generalised Messenger sector

In this section we give a concrete description of the 4-dimensional susy breaking brane and

consider two sets of chiral messenger φi, φ̃i coupled to a spurion field X. We follow [73]

and extend the usual setup of a generalised messenger sector to the case where the gauge

multiplet propagates in a 5d orbifold.

The superpotential describing the coupling of the messengers and the spurion is iden-

tical to that considered in [73] and is localised in the fifth dimension on the susy breaking

brane

Wφ = M(X)ij φiφ̃j = (m+Xλ)ij φiφ̃j (2.1)

where m and λ are generic matrices. We assume that all chiral fields have canonical kinetic

term and so, after a field redefinition, we can take M = m+ 〈X〉λ to be diagonal with real

eigenvalues m0k, where, as usual, 〈X〉 is the vev of the scalar component of the spurion

superfield X = 〈X〉 + θ2F . Further, we take Fλ to be hermitian and by using unitary

matrices one may diagonalise the bosonic mass-squared matrix

M2
± = U †

±(M2 ± Fλ)U± (2.2)
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Such that M2
± has real eigenvalues m2

±k. We define two mixing matrices:

A±
kn = (U †

±)kn(U±)nk B±
kn = (U †

±U∓)kn(U
†
∓U±)nk (2.3)

The calculations are carried out explicitly in section D; in this section we simply display

the results.

2.3.1 Gaugino masses

As we have seen in the previous section, the Majorana gaugino mass matrix of the 5d

model couples every Kaluza-Klein mode to every other with the same coefficient and this

contribution is captured in (2.28). In this case we can compute explicitly the correlator

determining MB̃1/2 by using (D.1.5)

Mr = g2MB̃1/2(0) =
αr
4π

ΛG , ΛG = 2

N∑

k,n=1

∑

±
± dkn A

±
kn m

0
n

(m±
k )2 log((m±

k )2/(m0
n)

2)

(m±
k )2 − (m0

n)
2

.

(2.4)

k, n are messenger indices running from 1 to N , the number of messengers, while dkn is

nonzero and equal to dk or dn only if φn and φ̃k are in the same representation. In the full

mass matrix one must take into account the Dirac masses of the Kaluza-Klein tower itself.

However, the susy breaking contribution Eqn. (2.4) is identical to the purely 4-dimensional

case and it is possible to follow [73] for various case by case simplifications. For instance,

when F ≪M2, to lowest order in F/M2 and for SU(N) fundamentals one finds

ΛG =
N∑

k=1

Fλkk
m0
k

= F∂X log detM (2.5)

which is a familiar 4d result.

2.3.2 Sfermion masses

The sfermion masses are sensitive to the extra dimension ℓ. In the small ℓ limit the 4d

results are recovered and this is fully explored in [73].

Large ℓ

When 1/ℓ2 is smaller than the scales F and X2 the sfermions masses can be written as

m2
ef
= 2

3∑

r=1

Cr
ef

(αr
4π

)2
Λ2
S (2.6)
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Figure 2.4: A plot of the function h(x) between x = 0 and x = 1.

Cr
ef

are the quadratic Casimirs of f̃ in the gauge group r. The sfermion scale Λ2
S is2

Λ2
S =

∑

k,n

ζ(3)

ℓ2

∑

±
dkn[B

±
kn[

2m2
±k

m2
±k −m2

∓n
logm2

±k − 1] + δkn[logm
2
±km

4
0k]

− 4A±
kn

(m2
±k −m2

0n)
[m2

±k logm2
±k −m2

0n logm2
0n − 1] (2.7)

− 2A±
kn

(m2
±k −m2

0n)
2
[(m2

±k −m2
0n)(m

2
±k +m2

0n) − 2m2
±km

2
0n log

m2
±k

m2
0n

]]

We may reduce to minimal gauge mediation [74] by setting m = 0 in equation (2.1)

Λ2
S =

(
F

X

)2 (
1

λkXℓ

)2 N∑

k=1

ζ(3)dkkh(xk) (2.8)

xk =
F

λkX2
(2.9)

h(x) =
3

2
[
4 + x− 2x2

x4
log(1 + x) +

1

x2
] + (x→ −x) (2.10)

h(x) for x < 0.8 can be reasonably approximated by h(x) = 1 and λk are the eigenvalues

of λ in (2.1). The limit of small multi-messenger mixing effects gives

Λ2
S =

N∑

k=1

ζ(3)dkk
F 2λ2

k

ℓ2(m0
k)

4
h

(
Fλk

(m0
k)

2

)
(2.11)

In the h(x) = 1 limit, and small multi messenger mixing, we would like to derive the

analog sfermion formula found in [75]. The additional |ℓ2Mi|2 factors cannot be taken

2See Appendix D for its derivation.
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inside such that we find

Λ2
S =

ζ(3)

2

N∑

i=1

|F |2
|ℓMi|2

∂2

∂X∂X∗ (ln |Mi|2)2 (2.12)

Where Mi are in this case the complex eigenvalues of M.

Intermediate ℓ

In the intermediate limit that F ≤ 1/ℓ2 ≪ M2, the large ℓ results are still valid and

h(x) = 1. Reducing to minimal gauge mediation (W = XΦΦ̄) we find

Λ2
S =

1

ℓ2
2F 2

m4
ζ(3)

N∑

k=1

dkk (2.13)

The limit of small multi-messenger mixing effects gives

Λ2
S =

1

ℓ2

N∑

k=1

dkk
2F 2λ2

k

(m0
k)

4
ζ(3) (2.14)

Finally we comment on the ratio
Λ2

G

Λ2
S
. In “(Extra) Ordinary Gauge Mediation” [75],

this quantity is defined as Neff and it may vary continously between 0 and N , the number

of messengers. This definition is peculiar to the 4d models; we may easily have Λ2
S → 0

and Neff → ∞ in this 5D construction. To avoid confusion we will refer to it as a ratio

and not as Neff .

2.3.3 Hyperscalar zero mode mass

The positive parity scalar of the hypermultiplet have a susy breaking mass term. In this

paper we compute only the zero mode scalar. We may use the same expansions of the

function in square brackets (Appendix D.1.1) we used for the sfermion masses. In general

we can define

m2
H0

= 2

3∑

r=1

CrH

(αr
4π

)2
Λ2
H0
. (2.15)

CrH is the Casimir of the representation r of the positive parity hypermultiplet H. We

now look at the various limits.

Small ℓ

In the small ℓ limit we start with Eqn. (2.49) and truncating the tower we find

Dr = −
∫

d4p

(2π)4
1

p2
Ωr(

p2

M2
). (2.16)
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This is exactly the 4d result for sfermion masses found in [43]. We may use all the

generalised messenger results of [73], with the identification

Λ2
H0

= Λ2
S(4d) (2.17)

where Λ2
S(4d) is the 4d result found in [73].

Large ℓ

When 1/ℓ2 is smaller than the scales F and X2 we may start from Eqn. (2.51). We know

that the function in square brackets is independent of p and can be found in appendix

D.1.1, so we may evaluate the p dependent integral independently. The result is

Λ2
H0

=
2

3
Λ2
S (2.18)

Λ2
S is written explicitly in the previous subsection. The intermediate ℓ limit can be found

by setting h(x) = 1. The zero mode fermions of the hypermultiplet receive no susy

breaking mass corrections at order g4
5d.

2.3.4 Casmir Energy

The Casimir energy can be computed for the generalised messenger sector just as for the

sfermion and hyperscalar zero mode mass by using the results of appendix D. In particular

using Eqn. (2.53) and restricting to the case of minimal gauge mediation and for a single

set of fundamental messengers we find

ECas/V4d = −g2
4

ddgζ(5)

512π4

F 2
X

(Xℓ)4
h(x). (2.19)

This result reproduces exactly the result of [57].

2.4 Chapter Summary

We have computed bulk gauge mediated supersymmetry breaking of N = 1 supersymme-

try from a hidden to a visible brane, using the current correlator techniques of [43]. We

obtained analytic results for both semi-direct and direct coupling of the messengers and

susy breaking sector, located on a hidden brane.

To summarise, we have found that there are two limits, one in which the leading order

scalar masses are four dimensional and one in which kk modes are lighter than the scale

M , in which case we have found the leading order scalar masses are screened. Overall we
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have shown that the lightest gaugino mass is unaffected by the extra dimension. We would

like to emphasise one point, the RGE equation for scalar masses in the five dimensional

limit will differ from the four dimensional RG equation there will be many more gaugino

masses.

In the next chapter will demonstrate how the framework so far constructed, may be ap-

plied to model building using Seiberg duality and in particular metastable supersymmetry

breaking models of the ISS type.



Chapter 3

Dynamical Supersymmetry

breaking: ISS on the brane

A particularly popular and natural form of gauge mediated supersymmetry breaking is

the construction of ISS [25]. In ISS, supersymmetry is broken non-perturbatively in the

electric SU(Nc) description and is metastable. It is a simple N = 1 SQCD model and

as a result one may apply Seiberg duality to obtain an effective magnetic description in

which supersymmetry breaking can be explored perturbatively. It is well known that this

theory has a signature of light gauginos relative to heavier sfermions and this is seen as

an unfortunate drawback.

In this section we turn to an explicit application of 5D general gauge mediation which

will alleviate the above mentioned problem by screening the leading order scalars masses.

We construct a scenario in which the ISS model [25,76] is located on the hidden brane. We

choose to explore supersymmetry perturbatively in the macroscopic (magnetic) variables

in the window Nc+2 ≤ Nf ≤ 3
2Nc. We have an N = 1 SQCD with magnetic gauge group

SU(N) and Nf flavours where N = Nf −Nc. The superpotential is

WISS = hTrϕ̃Mϕ− hTr[µ2M ] + [Deformations] (3.1)

The magnetic meson M is a gauge singlet and an adjoint of the flavour group. The

magnetic quarks ϕ and ϕ̃ are fundamental (antifundamental) of the gauge group and an-

tifundamental (fundamental) of the flavour group, respectively. Supersymmetry is broken

by rank condition when Nf > N , as only the first N F terms of M can be set to zero.

34
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Following the model explored in [5, 77–79], the matrix µ is explicitly broken

µ2
AB =


 m2

IN 0

0 µ2
INF−N




AB

(3.2)

with µ < m, and additionally we include the deformation

δW = h2mzTrZ̃Z. (3.3)

As mentioned mentioned more fully in [5, 77–79], this deformation explicitly breaks R-

symmetry thus allowing gaugino masses. The final unbroken vacuum symmetry groups

and matter content is

Field SU(N)D SU(Nf −N)f

M =


 YNxN ZNx(Nf -N)

Z̃(Nf -N)xN X(Nf -N)x(Nf -N)




Nf xNf


 Adj + 1 �̄

� 1





 1 �

�̄ Adj + 1




ϕ =


 λN×N

ρNf−N×N




NfxN


 Adj + 1

�





 1

�̄




ϕ̃ =


 λ̃N×N

ρ̃N×Nf−N




NxNf


 Adj + 1

�̄





 1

�




Where SU(N)D arose from the magnetic “colour flavour locking” of SU(N)mag×SU(N)f .

The superpotential is

W = hTr(λ̃Y λ+ ρ̃Zλ+ λ̃Z̃ρ+ ρ̃Xρ) − h2m2TrY − h2µ2TrX + h2mzTrZ̃Z. (3.4)

We have two choices of embeddings: we choose to weakly gauge either of the flavour

symmetry groups SU(N)f or SU(Nf −N)f and associate it with the gauge group in the

bulk. One may choose for simplicity an SU(5) standard model “parent” gauge group. The

messengers of this model are the ρ’s and Z’s in either embedding. Additionally for the

embedding of SU(Nf−N)f the degrees of freedom of X may also contribute as messengers

as has been explored in [5]. The other fields do not contribute as messengers. We take

these fields to have a canonical Kähler potential and all the matter on the MSSM brane

to have a canonical Kähler potential coupled to this bulk gauge superfield. Classically the

potential is

VISS = (Nf −N)|h2µ4|. (3.5)

TrX singlet is the Goldstino superfield and the scalar component is a classical modulus

and its vacuum expectation value, X0 is found by minimising

VTotal = VISS + VCW + VCasimir (3.6)
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where VCW is the corresponding Coleman-Weinberg potential

VCW =
1

64π2
STrM4Log

M2

Λ2
=

1

64π2
(Trm4

BLog
m2
B

Λ2
− Trm4

FLog
m2
F

Λ2
). (3.7)

The Casimir energy is sufficiently suppressed to be ignored at this stage. We find

X0 = 〈X〉 =
1

2
hmz, M2

X =
h4µ̂2

12µ2π2


 µ̂2 − 9

40X0
2

− 9
40X0

2 µ̂2


 (3.8)

where we have expanded to first order in h,mz and in µ̂/µ up to first non-vanishing

order [5]. We have suppressed factors of N(Nf − N) in the expression for M2
X coming

from tracing over degenerate mass eigenavalues.

3.1 Large ℓ mediation

The susy breaking contribution to the gaugino masses are

mnn̂
λ =

α

4π
ΛG =

α

4π
FX

∑

i

∂XMi

Mi
(3.9)

where Mi are the eigenvalues of the fermion mass matrix of messengers derivable from

Eqn. (3.4) and computed in [5, 78]. The messenger sector is dominantly (ρ, Z) in both

embeddings of the standard model and we find the susy breaking mass to be

ΛG =
Nh2µ2mz

(m2 − hX0mz)
. (3.10)

As we have highlighted throughout, the mass eigenstates must be found after inclusion of

the kk masses, to the mass matrix. The sfermion masses can be found, using the results

of the previous section, from

m2
f̃

= 2Cf̃ (
α

4π
)2Λ2

S (3.11)

with

Λ2
S =

Nζ(3)

ℓ2
|FX |2

∑

i

|∂XMi

M2
i

|2 (3.12)

We find

Λ2
s = ζ(3)Nµ4

ℓ2
× (3.13)

[2m6+2h3m2m3
z(3hmz−2X)+h4m4

z(X0−hmz)2+m4(9h2m2
z+2hmzX0+X2

0 )]
(m2−hmzX0)4(4m2+(X0−hmz)2)

Which is non-zero but highly suppressed.
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3.2 Intermediate ℓ mediation

In the intermediate range that F ≤ 1/ℓ2 ≪M2 the vacuum energy is given by Eqn. (2.19),

with h(x) = 1 This time, however, the zero mode gaugino mass can be approximated by

Eqn. (3.9):

m0
λ =

Nαh2µ2mz

4π(m2 − hX0mz)
. (3.14)

and there is no problem of kk mixing. The sfermion masses are still given by Eqn. (3.12).

As a first approximation, one may ignore this contribution to sfermion masses entirely.

One then lets the renormalisation group flow at the high scale down to the low scale

generate sufficiently heavy sfermions to avoid current bounds.

3.3 The Emergent Lattice

In the previous section we placed the ISS model on the fixed point of the extra dimension

and the theory is truly five dimensional. In this section we will demonstrate how an

effective extra dimension may emerge in the magnetic description of certain classes of

SQCD theories and will motivate a lattice (de)construction of the general gauge mediation

formalism.

First a crucial comment is necessary. Under Seiberg duality global symmetries are

preserved. This must be so as global symmetries are associated with observable currents

and so must be the same under the duality. The gauge symmetries on the other hand,

are a redundancy in the description. One may ask how it is possible that two theories

may have differing number of gauge bosons and gauginos. Importantly the two theories

are at a scale invariant fixed point, where there are no asympotically free states and no

well defined particle interpretation. We can of course deform the model by adding quark

masses to the electric description W = mTr[Q.Q̃] and now particle states are well defined

and the duality becomes an effective one. In fact it is curious to ask what becomes of the

gauge bosons of the SU(Nf − Nc) magnetic group? The answer lies in that the dual of

the quark mass matrix completely Higgs’ the magnetic gauge group and those degrees of

freedom become vector mesons. As a result in terms of the low energy effective description

the gauge fields are now observable as vector mesons.

A further insight is necessary. If we weakly gauge a global symmetry, then additional

massless vector fields arise which are not related to the Seiberg duality. One can think of

these fields as external “probes” of the SQCD theory. However, if the magnetic SU(Nf −
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Nc) group, or some subgroup of this, undergoes a “magnetic colour-flavour locking” with

the weakly gauged global symmetry, then the vector fields will appear to have massless

modes and Kaluza-Klein modes from the vector mesons: a deconstructed extra dimension

emerges. From the perspective of the electric description, resonances have filled the first

level of a Kaluza-Klein tower on top of the massless external fields. From the perspective

of the magnetic description, this can be seen to take place dynamically as the system

undergoes the locking.

The remainder of this chapter is essentially a review of [66], which demonstrates how

the locking arises dynamically, which we feel is crucial in developing many of the concepts

in the remainder of this thesis and as a building block in the AdS/CFT construction of

chapter 6.

In [66] An electric SQCD hidden sector was chosen

Field SU(Nc) SU(k)f SU(Nf − k)f U(1)′

Q =
(Qa

Qi

)
�

(1
�

) (
�

1

)
1

Q̃ = (Q̃a, Q̃i) � (�, 1) (1,�) -1

Sai 1 � � -1

S̃ia 1 � � 1

where the indices i, j = 1, ..., k and a, b = k, ...,Nf , with the superpotential

Welectric = mJ
IQ

IQ̃J + Sai Q
iQ̃a + S̃iaQ

aQ̃i (3.15)

The factor h = Λe/λ of the previous section has been set to one for simplicity. The flavour

symmetires may be thought of as arising from SU(Nf )L × SU(Nf )R →֒ SU(Nf )diag after

the introduction of the quark mass term, which is then further broken to SU(Nf )diag →֒
SU(k)f × SU(Nf − k)f after the introduction of the Sai Q

iQ̃a operators. The flavour

symmetry preserving masses are mJ
I = m1δ

j
i ⊕m2δ

b
a.

In the window N2 + 2 ≤ Nf ≤ 3
2Nc, this theory flows to an IR free magnetric Seiberg

dual description with gauge group SU(Nf −Nc) = SU(N) and UV cutoff Λ. The super-

potential is given by

Wmag = qΦq̃ + ΛST̃ + ΛS̃T + ΛTr(mΦ) (3.16)

The representations of the magnetic description are given by



3.3. The Emergent Lattice 39

Field SU(Nf −Nc)mag SU(k)χ SU(Nf − k)

Φ =


 N T̃ ia

T ai M




Nf xNf

1


 Adj + 1 �

�̄ 1





 1 �̄

� Adj + 1




q =
(
χi
ψa

)
�

(
�

1

) (1
�

)

q̃ = (χ̃i, ψ̃a) � (�, 1) (1,�)

Sai 1 � �

S̃ia 1 � �

where we have chosen subscript labellings of the groups to make clearer the patterns of

breaking. After integrating out the heavy states using the equations of motion of the S’s,

one obtains

W = χNχ̃+ ψMψ̃ − µ2
1N

i
i − µ2

2M
a
a (3.17)

where µ2
1, 2 = −m1, 2Λ. The theory now has two sectors which in principle decouple when

gmag → 0 but more importantly the MSSM completely decouples when gMSSM → 0

Next, we proceed to explore the vacuum symmetries of the theory. If we choose for

simplicity k = Nf −Nc = N then we see that all χ’s are will be Higgsed as that F terms

of N i
i can all be set to zero:

〈χχ̃〉 = µ2
1IN (3.18)

Using the remaining symmetries, one may further diagonalise the χ’s to the vacuum

〈χ〉 = µ1IN 〈χ̃〉 = µ1IN (3.19)

Crucially, these χ fields will play the role of linking chiral superfields in a deconstructed

model and they link the SU(N)mag lattice site with the SU(k)χ flavour site.

In the second sector M has maximum rank Nf − k = Nc however the matrix (ψ.ψ̃)

has rank N . For Nc > N supersymmetry is broken by rank condition as only the first

N F terms may be set to zero. Hence the global symmetries will break further from

SU(Nf − k) →֒ SU(Nf − k −N) × SU(N)λ and one finds

Field SU(Nf −Nc)mag SU(Nf − k −N)ρ SU(N)λ

M =


 Y Z

Z̃ X


 1


 Adj + 1 �

�̄ 1





 1 �̄

� Adj + 1




ψ =
(λ
ρ

)
�

(1
�

) (
�

1

)

ψ̃ = (λ̃, ρ̃) � (1,�) (�, 1)
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where 〈λ〉 = µ2IN , 〈λ̃〉 = µ2IN , 〈Y 〉 = 0. As the flavour symmetries are broken we may

choose different masses identify µ3INf−k−N as the unhiggsed part of the original µ2INf−k

masses. The classical vacuum is now given by

V = (Nf − k −N)|µ4
3| (3.20)

The TrX singlet is the Goldstino superfield of spontaneous supersymmetry breaking. As

the fermionic component is a massless Goldstino, the scalar is a pseudomodulus. The

supersymmetry breaking sector has the symmetry groups SU(Nf −Nc)mag × SU(N)λ →֒
SU(N)D times the unaltered flavour group SU(Nf−k−N)ρ. The supersymmetry breaking

sector has an approximate R-symmetry and one may choose different deformations such

as the mzTrZ̃Z demonstrated in the previous section. The sector of messengers and

supersymmetry breaking field has a similar structure to the one analysed in the previous

section, althought the rank conditions arise differently. In this model the SU(k)χ flavour

group must be weakly gauged and associated with the standard model. This weakly

gauged group then shares properties with the visible sector fixed point of the previous

model. Similarly the hidden brane is equivalent to the SU(NF − Nc)mag lattice site.

As discussed before, this model is crucial for developing a dynamical description of how

a system undergoes the “magnetic colour-flavour locking” and vector mesons fill up as

kk modes above the massless external “probe” gauge fields of the weakly gauged global

symmetry. This strongly motivates the AdS/CFT construction of chapter 6 whereby a

weakly gauged global symmetry of the UV CFT description arises as a gauge symmetry

in the bulk AdS description.

Many questions still remain. It would be very interesting to see if one can populate

more levels of the Kaluza-Klein tower dynamically using Seiberg duality and finally arise

at a contintum limit of AdS space, perhaps starting from the conformal window with

large Nc. This also strongly motivates a study of observing these kk modes at the LHC

and furthermore by interpreting them as resonances of a strongly coupled hidden sector,

extract from them properties of the hidden sector, such as their internal degrees of freedom

as UV quarks, and their quantum numbers under the SU(Nc) UV gauge group. Some

work in this direction has already been completed [80–82].



Chapter 4

General Gauge Mediation and

Deconstruction

In this chapter we locate a supersymmetry breaking hidden sector and supersymmetric

standard model on different lattice points of a quiver gauge diagram [83–89]. The hidden

sector is encoded in a set of current correlators and the effects of the current correlators

are mediated by the lattice site gauge groups with “lattice hopping” functions and through

the bifundamental matter that links the lattice sites together. We show how the gaugino

mass, scalar mass and Casimir energy of the lattice can be computed for a general set

of current correlators and then give specific formulas when the hidden sector is specified

to be a generalised messenger sector. The results reproduce the effect of five dimensional

gauge mediation of chapter 2 from a purely four dimensional construction [69].

In this construction each lattice site is a copy of a four dimensional supersymmetric

standard model parent gauge group SU(5). Each lattice site is connected using bifunda-

mental chiral superfields that link the lattice together. The combination of super Yang-

Mills with specified “lattice hopping” vectors and the bifundamental linking matter, will

mediate the supersymmetry breaking effects from the hidden sector lattice site to the stan-

dard model lattice site, to generate sfermion masses [69,90]. In this model, the lattice site

spacing a will be the scale that suppresses the momentum in the loops for sfermion masses.

We shall see that effective five dimensional suppression effects arise when 1
(Na)2

≪M2 and

that we recover four dimensional effects when M2 ≪ 1
(Na)2

. At low energies this lattice

construction is equivalent to the five dimensional orbifold model mentioned above. The

scale a arises in the masses of the propagating gauge fields and bifundamental matter

which resemble KK states at low energies. The masses of the KK spectrum are generated

41
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by the vacuum expectation value of the scalars of the bifundamental chiral superfields that

link the lattice together and so we see that these suppression methods are all related.

4.1 Framework

This section concisely reviews the construction of the orbifold moose (quiver gauge di-

agram) following the work of [69]. We start with a lattice of four dimensional, SU(5)i

super Yang-Mills gauge groups all identified with the gauge groups of the supersymmetric

standard model. The matter content of the lattice is:

SU(5)0 SU(5)1 · · · SU(5)N−2 SU(5)N−1

P̃1, . . . , P̃5 1 · · · 1 1

Q1 · · · 1 1
...

...
...

. . .
...

...

QN−1 1 1 · · ·
P1, . . . , P5 1 1 · · · 1

51,2,3 1 1 · · · 1

101,2,3 1 1 · · · 1

Hd 1 1 · · · 1

Hu 1 1 · · · 1

Φ 1 · · · 1 1

Φ̃ 1 · · · 1 1

X 1 1 · · · 1 1

The Q β
iα are bifundamental chiral superfields that link the SU(M)N lattice sites together.

The α, β are gauge indices labelling the fundamental or antifundamental of the gauge

group SU(M). The bifundamental scalars all obtain a vacuum expectation value v, which

may be generated by some dynamical superpotential [69, 84]. The indices i, j, k label the

lattice, running from i = 0 to N−1 (mod N) with lattice spacing a = 1/(
√

2gv), such that

ℓ = Na is the length of the lattice. The five chiral multiplets P̃ and five P are localised

on the endpoint lattice sites and are required to cancel anomalies due to the breaking

of “hopping” symmetry at the lattice end points. These are inessential to the discussion

of gauge mediation. The 5, 10 and Hu,Hd play the role of the standard model matter

and Higgs superfields. Additionally, we may add the fields Φ, Φ̃ as messenger superfields

coupled to a spurion X = 〈X〉 + θ2F . These fields will enter the discussion when we



4.1. Framework 43

specify a generalised hidden sector in a later section.

The bifundamental scalars are given a vacuum expectation value and fluctuations about

that value, Q β
iα = vδ β

α + φ β
iα . The scalar kinetic terms of the bifundamental matter are

used to generate a mass matrix for the gauge bosons, via the Higgs mechanism. The mass

spectrum is computed in [69] and in [83,84,86]. For the gauge bosons, the masses are

m2
k = 8g2v2 sin2(

kπ

2N
) k = 0, ..., N − 1. (4.1)

A key attribute of this setup is that lattice eigenstates are not mass eigenstates of the

system. The mass eigenstates are given by

Ãk =

√
2

2δk0N

N−1∑

j=0

cos
(2j + 1)kπ

2N
Aj k = 0, ..., N − 1. (4.2)

These are even parity modes. The fermion mass matrix of bifundamental fermions qi and

gauginos λi must be diagonalised as in [69]. The even states λi have masses

m2
k = 8g2v2 sin2(

kπ

2N
) k = 0, ..., N − 1 (4.3)

and eigenvectors

λ̃+
k =

√
2

2δk0N

N−1∑

j=0

cos
(2j + 1)kπ

2N
λj k = 0, ..., N − 1. (4.4)

The odd parity fermions qi have masses

m2
k = 8g2v2 sin2(

kπ

2N
) k = 1, ..., N − 1 (4.5)

with eigenstates

λ̃−k =

√
2

N

N−1∑

j=1

sin
jkπ

2N
qj k = 1, ..., N − 1. (4.6)

In the continuum limit, the fermions qi should coincide with the adjoint fermion χ of

a negative parity chiral superfield. To construct this adjoint fermion one identifies the

bifundamental scalar with the unitary link variable: Q β
αi = vU β

αi where U is a unitary

matrix. Keeping track of indices we may relabel (U β
α )†iq

β
γ = χ α

γi , where both indices α, γ

are valued at the i’th lattice site. A negative parity adjoint scalar Σ is similarly defined

and as the multiplet is supersymmetric, the mass spectrum and eigenstates are equivalent

to that of the fermion.
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Using the above eigenfunctions, the mixed space scalar propagator can readily be

determined by insertion of a closure relation for the mass eigenstates. The result is

〈p2; k, l〉 =
2

N

N−1∑

j=0

1

2δj0
cos(

(2k + 1)jπ

2N
) cos(

(2l + 1)jπ

2N
)

1

p2 + ( 2
a)

2 sin2( jπ2N )
. (4.7)

In summary, the resulting low energy degrees of freedom and field content for large N is

that of an N = 1 positive parity vector multiplet and negative parity chiral superfield of

N = 1 super Yang-Mills in five dimensions compactified on R1,3 × S1/Z2 [1, 67].

4.1.1 The periodic lattice

It is useful to compare this construction with that of a periodic lattice corresponding to

a 5d theory compactified on a circle [69]. The anomaly cancelling P and P̃ fields are

unwanted in the periodic construction. All the bulk fields have a mass spectrum given by

m2
k = 8g2v2 sin2(

kπ

N
) k = 0, ..., N − 1. (4.8)

The vector superfield mass eigenstates are also related to the lattice eigenstates through

Ṽk =
1√
N

N−1∑

j=0

ei(2πkj)/NVj k = 0, ..., N − 1. (4.9)

The mixed space scalar propagator for the circle may also be written as

〈p2; k, l〉 =
1

N

N−1∑

j=0

e−i(2πkj)/Nei(2πℓj)/N
1

p2 +m2
j

. (4.10)

The low energy degrees of freedom are of a full 4d N = 2 model, including restoring the

zero modes that had been projected out by negative parity, in the interval case.

4.2 Lattice localised currents

This section will encode a SUSY breaking sector, localised on the lattice site i=0 in terms

of current correlators [43]. The lattice has a set of vector superfields {Vi} and a set of

current multiplets {Ji} associated to the bifundamental matter linking the lattice1. The

supersymmetric standard model matter (visible sector) will form a current multiplet J v
N−1.

Additionally, we may locate a hidden sector at lattice point i = 0, J h
0 .

1In this discussion we will ignore the currents of the fields Pi and P̃i.
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We may couple the hidden sector current multiplet to the lattice gauge fields

Sint = 2g

∫
d4xd4θJ h

0 V0 = g

∫
d4x(JD0 − λ0j−λ̄0j̄ − jµA

µ
0 ) (4.1)

As this whole discussion refers to the hidden sector current multiplet J h
0 at i = 0, we will

drop the hidden sector index. The change of the effective Lagrangian on the i=0 lattice

site to O(g2) is

δLeff = − g2C̃1/2(0)iλ0σ
µ∂µλ̄0 − g2 1

4
C̃1(0)F0µνF

µν
0 +

1

2
g2C̃0(0)D

2
0

− g2 1

2
(MB̃1/2(0)λ0λ0 +MB̃1/2(0)λ̄0λ̄0).

In the next subsections we will use this effective action to determine soft mass formulas

and the Casimir energy of the lattice.

4.2.1 Gaugino masses

A soft supersymmetry breaking gaugino mass for the i = 0 lattice sites arises at tree level.

It is given by

mλ,i=0 = g2MB̃1/2(0) (4.2)

In the continuum orbifold scenario [1], the orbifold fixed points break Lorentz invariance

in the fifth dimension and this is signified by the “brane”2 localised current correlators

not preserving incoming and outgoing p5 momenta. These current correlators therefore

couple, equally, to all states of the K.K. tower of vector superfields. In the lattice picture

the currents only coupled to fields at a single lattice site. However it is precisely because

the lattice fields are a sum of mass eigenstates, that the current correlator still generates

a correction to all mass eigenstates in the lattice picture. The soft term mass must be

included in the full mass matrix of all fermions (λi, qi) in the lattice and if we assume that

mλ,i=0 is small, we may treat this as a perturbation of the full mass matrix. This process

is outlined in [69] and one finds the zero mode mass is

m0 =
g2

N
MB̃1/2(0). (4.3)

The four dimensional coupling is determined from g2
4d = g2/N . The mass splittings are

also similarly obtained

m2
k = 4g2v2(sin

kπ

2N
± g√

2vN
MB̃1/2(0) cos2 kπ

2N
) sin

kπ

2N
, k = 1, ..., N − 1. (4.4)

2The word “brane” being used to denote the ends of an interval, where matter is located in five

dimensional orbifold constructions.
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Heuristically, we see that it is the process of moving from lattice states to mass eigenstates

that reproduces the orbifold effect of a soft mass coupling to all K.K. modes.

4.2.2 Sfermion masses

Key : Fermion Scalar Gaugino Gauge Σ

Figure 4.1: The graphical description of the contributions of the two point functions to

the sfermion soft masses. The “blobs” represent hidden sector current correlators on the

lattice site i = 0. From left to right the diagrams represent the correlator 〈jαj̄α̇〉 mediated

by the “lattice hopping” gauge bosons, 〈jµjν〉 by the gaugino and 〈JJ〉 by the adjoint

scalar built from the bifundamental linking scalars fields. The scalar and fermion lines at

the bottom are located at the lattice site i = N − 1.

We would like to propagate the effects of supersymmetry breaking from the i = 0

lattice site to the i = N − 1 site to generate scalar masses for the MSSM located at that

site. This is a loop diagram with intermediate gauge boson, gaugino and Di term as can be

seen in figure 4.1. The gauge boson and gaugino are dynamical and they may propagate

around the lattice using the “lattice hopping” wavefunction. The lattice scalar propagator

Eqn. (4.7) from the hidden sector lattice site to visible lattice site is

〈q; 0, N − 1〉 =
2

N

N−1∑

j=0

1

2δj0
(−1)j cos2 jπ

2N

q2 + ( 2
a)

2sin2 jπ
2N

= a2
N−1∏

j=0

1

(aq)2 + 4 sin2 jπ
2N

. (4.5)

For the periodic lattic case the same final equation holds, after adjusting for the mass

eigenstates by 2N → N in the denominator. We highlight that from interval to interval

fixed point propagators, the factor (−1)j arises. This factor is crucial in the cancellation

of alternate states of the K.K. tower which generates the suppression of sfermion masses

at large momenta and keeps “brane to brane” diagrams UV finite. This factor does not

arise in “brane” to same “brane” diagrams, which is why the vacuum energy diagram is

divergent. Equally, diagrams with a double insertion of the gaugino mass will also be UV

divergent. To generate a gaugino or gauge boson propagator we supplement this scalar
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propagator with the correct Lorentz structure of a fermion, σµαα̇∂µ or transverse gauge

projector Pµν = (∂2ηµν − ∂µ∂ν)/∂2 as necessary. The remaining diagram propagated by

Σ, is not so simple. In orbifold models [1], the D term is given by D = (∂5Σ+ iX3), where

Σ is a dynamical negative parity scalar field and ∂5 is a derivative in the fifth direction.

This field contributes to the propagation of supersymmetry across the interval. To make

the Di=0 dynamical on the lattice, one may integrate out this auxiliary field in terms of

the lattice currents and find

Di = gJi = gtr((Qβα)†iT
aγ
α Q β

γi −Q β
αi−1T

aγ
β (Q γ

α )†i−1). (4.6)

The index a is a generator index running from 1 to N2 − 1. Next, using Q β
αi = vU β

αi

where U is a unitary matrix and keeping track of the indices of each gauge group one finds

Di =
1√
2a

(T aΣi − Σi−1T
a) + ... (4.7)

where we have relabelled (U β
α )†iQ

β
γ = Σ α

γi . The contraction of indices has resulted in an

adjoint scalar Σ of the i’th lattice site and both indices α, γ are valued at the same lattice

site. In the continuum limit, the D term is a lattice derivative of Σ [91]:

1√
2
∂5Σ =

1√
2

lim
a→0

Σ(y + a) − Σ(y)

a
. (4.8)

We may now associate Σ with the negative parity scalar of the 5D N = 1 super Yang-Mills

action. An additional manipulation used to calculate this diagram in orbifold models, is

to use

δ(0) =
1

2ℓ

∑

n

p2 −m2
n

p2 −m2
n

(4.9)

to exchange m2
n terms, generated by the derivative ∂5, for p2. Whilst this manipulation

is rather less precise on the lattice than in the continuum limit, it is necessary to ensure

that corrections to the beta function due to a supersymmetric hidden sector cannot gen-

erate sfermion masses. Collecting the contributions from all three diagrams, the sfermion

formula is

m2
f̃

=
∑

r

g4
rc2(f ; r)Er (4.10)

where

Er=−
∫

d4p

(2π)4
p2〈p2; 0, N−1〉〈p2; 0, N−1〉[3C̃(r)

1 (p2/M2) − 4C̃
(r)
1/2(p

2/M2) + C̃
(r)
0 (p2/M2)].

(4.11)



4.2. Lattice localised currents 48

For the interval model, using Eqn. (4.7) gives

Er=−
∫

d4p

(2π)4
a4p2



N−1∏

j=0

1

(ap)2 + 4 sin2 jπ
2N




2

[3C̃
(r)
1 (p2/M2) − 4C̃

(r)
1/2(p

2/M2) + C̃
(r)
0 (p2/M2)].

(4.12)

The same equation holds in the periodic case, using the periodic mass eigenstates 4 sin2 jπ
N .

In this equation, we have used a standard model lattice with gauge coupling gr where

r = 1, 2, 3 refering to the group U(1), SU(2), SU(3) respectively. c2(f ; r) is the quadratic

Casimir of the representation f of the scalar mass in question, under the gauge group r.

The integral is UV and IR finite. As discussed in the introduction, one can see that the

momentum integral in this equation will be suppressed by the product of KK propagators

with length scale a entering from the mass of the KK modes. The limit in which there is

a single lattice site (N = 1) is the corresponding four dimensional limit. We find

Er = −
∫

d4p

(2π)4
1

p2
[3C̃

(r)
1 (p2/M2) − 4C̃

(r)
1/2(p

2/M2) + C̃
(r)
0 (p2/M2)]. (4.13)

This equation reproduces exactly the result of “General gauge mediation” [43]. For N = 2

lattice sites, we may take the two gauge eigenmasses to be m0 = 0 and m1 = mv. For the

sfermion mass formula, one obtains

Er = −
∫

d4p

(2π)4
1

4p2
[

m2
v

p2 +m2
v

]2[3C̃
(r)
1 (p2/M2) − 4C̃

(r)
1/2

(p2/M2) + C̃
(r)
0 (p2/M2)] (4.14)

where the unwanted factor of 1/4 is absorbed into the gauge coupling g2
4d = g2/N .

4.2.3 The Casimir energy

In a globally supersymmetric theory the vacuum energy is zero. Supersymmetry breaking

effects of the hidden sector will generate a vacuum energy and the lattice dependent part

of this vacuum energy will correspond, in the continuum limit, to the Casimir energy of a

higher dimensional theory [1,57,91]. To calculate the Casimir energy we must compute the

vacuum diagrams that appear in figure 2 of [46]. Each vacuum diagram may be generated

by simply forming a closed loop with the field that propagates each current correlator in

the effective action. The propagation is from the zeroth lattice site back to the zeroth

lattice site in the loop. The zero to zero lattice site propagator is given by

〈q2; 0, 0〉 =
1

Nq2
[1 +

N−1∑

k=1

2(aq)2 cos2 kπ
2N

(aq)2 + 4 sin2 kπ
2N

]. (4.15)
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This time there is no product form for the propagator as the (−1)j is absent. The vacuum

energy is given by

Evac
V4d

=
∑

r

g2
rdg

∫
d4p

(2π)4
p2 〈p2; 0, 0〉 [3C̃

(r)
1 (

p2

M2
) − 4C̃

(r)
1/2(

p2

M2
) + C̃

(r)
0 (

p2

M2
)]. (4.16)

dg is the dimension of the adjoint representation of the gauge group r. This integral

is UV divergent. To extract from this the finite Casimir energy, one must extract the

continuum limit of this sum. The prescription for this is found in [91]. Additionally, the

appendix includes relevant steps which are applied in the next section, where we focus on

a generalised messenger sector for which the C̃s terms may be determined.

4.3 Generalised messenger sector

In this section we give a concrete description of matter content of the SUSY breaking sector

located at the zeroth lattice site, following the construction of [74]. We consider sets of N

chiral superfield messengers3 Φi, Φ̃i in the vector like representation of the lattice gauge

group, coupled to a SUSY breaking spurion X = M +θ2F with F ≪M2. Generalisations

to arbitrary hidden sectors are a straightforward application of the results of [1, 73]. The

superpotential is

W = Xηi ΦiΦ̃i (4.1)

In principle ηij is a generic matrix which may be diagonalised to its eigenvalues ηi [74].

The messengers will couple to the bulk vector superfield as

δL =

∫
d2θd2θ̄

(
Φ†
ie

2gV aTa
Φi + Φ̃†

ie
−2gV aTa

Φ̃i

)
+

(∫
d2θ W + c.c.

)
(4.2)

We can extract the multiplet of currents from the kinetic terms in the above Lagrangian.

The current correlators can then be computed and their results can be found in [1,43,73].

We will use the result of these current correlators to determine the gaugino massses,

sfermion masses and Casimir energy.

4.3.1 Gaugino masses

The SUSY breaking zero mode Majorana gaugino mass is found by first evaluating the

current correlator in Eqn. (4.2), which may be found in [1, 43,74], and then diagonalising

3We hope that this index i which runs 1 to N , the number of messengers, does not get confused with

the lattice site index of the previous section.
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the full fermion mass matrix and extracting the zero mode as discussed in the previous

section. For the zero mode this simply fixes g2/N = g2
4d. The zero mode gaugino mass is

found to be

mr
λ0

=
αr
4π

ΛG , ΛG =
N∑

i=1

[
dr(i)F

M
g(xi)] (4.3)

The label r = 1, 2, 3 refers to the gauge groups U(1), SU(2), SU(3), dr(i) is the Dynkin

index of the representation of Φi, Φ̃i and

g(x) =
(1 − x) log(1 − x) + (1 + x) log(1 + x)

x2
(4.4)

where xi = F
ηiM2 . g(x) ∼ 1 for small x [74].

4.3.2 Sfermion masses

The entirely four dimensional limit of the sfermion mass formula when both the hidden

and visible sector are located on the same single lattice site, is displayed in Eqn. (4.13).

For the generalised messenger sector, this four dimensional result can be found in [74]. To

obtain an effective five dimensional behaviour from the lattice, one must require sufficient

lattice sites to suppress large contributions to loop momenta in the diagrams contributing

to sfermion masses. We start with Eqn. (4.12) and when 1
(Na)2

≪ M2, one may then

expand the current correlators in the limit p2

M2 → 0 and find [1]

[3C̃1(p
2/M2) − 4C̃1/2(p

2/M2) + C̃0(p
2/M2)] ≈ − 1

(4π)2
2d

3
x2h(x) +O(p2) (4.5)

which is independent of p2 at this order. The function h(x) is given by

h(x) =
3

2
[
4 + x− 2x2

x4
log(1 + x) +

1

x2
] + (x→ −x), (4.6)

where h(x) for x < 0.8 can be reasonably approximated by h(x) = 1. We find

m2
f̃

=
∑

r

g4
rc2(f ; r)Er (4.7)

where

Er =

N∑

i=1

[
dr(i)

128π4a2
]| F

ηiM2
|2 2

3
h(xi)I (4.8)

and I is an integral that depends on the number of lattice sites

I =

∫ ∞

0
d(ap)(ap)

N−1∏

j=1

1

(ap)2 + 4 sin2 jπ
2N

N−1∏

i=1

1

(ap)2 + 4 sin2 iπ
2N

. (4.9)

The function I behaves like I ∼ c/N4
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N I 1/N4 c

2 0.25 0.0625 4

3 0.029 0.012 2.4

3 0.0082 0.0039 2.1

5 0.0032 0.0016 2

6 0.0015 0.00077 2

7 0.00079 0.00042 1.7

Rescaling g2/N = g2
4d and taking ℓ = Na we find that the sfermion mass scales as

m2
f̃
∼ g4

4d

(Mℓ)2
F 2

M2
(4.10)

which reproduces the results of the Mirabelli-Peskin model [1, 57].

4.3.3 Casimir energy

The Casimir energy of the lattice can be extracted from the vacuum energy by taking the

difference between the lattice propagator and its continuum counterpart. This will cancel

the divergent parts of the momentum integral in the vacuum energy. The final answer will

be an approximate result that approaches the continuum Casimir energy when the number

of lattice sites is infinite. We start with Eqn. (4.16). The sum of C terms is still given by

Eqn. (4.5). We then must solve the UV divergent momentum integral in Eqn. (4.16):

N−1∑

k=0

f(
k

N
) =

∫
d4p

(2π)4
[

N−1∑

k=0

2(ap)2 cos2 kπ
2N

2δk0(ap)2 + 4 sin2 kπ
2N

]. (4.11)

Next we take the difference between the lattice and continuum momentum integral as

N−1∑

k=0

f(
k

N
) −N

∫ ∞

0
dsf(s) =

2

(4π)2ℓ4
S(N). (4.12)

The divergent parts of the lattice and continuum limit of this function will cancel out,

leaving the finite mass dependent parts. Additional steps may be found in the appendix

which follow the procedure of [91]. The renormalized function S(N) is given by

S(N) = −[N4
N−1∑

k=1

cos2(
kπ

N
)(∆(k/N))2 log(∆(k/N)) (4.13)

−N5

∫ ∞

0
ds cos2(

sπ

2
)(∆(s))2 log(∆(s))] (4.14)

where

∆(
k

N
) = (am(

k

N
))2 = 4 sin2 kπ

2N
(4.15)
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In the continuum limit S(N) is

lim
N→∞

S(N) → 3ζ(5). (4.16)

For the Casimir energy, we obtain

ECasimir = −
∑

r

N∑

i=1

g2
r

N

dgdr(i)

(4π)4
2

3ℓ4
| F

ηiM2
|2h(xi)S(N). (4.17)

This result agrees with the Casimir energy found in the Mirabelli-Peskin model [57] when

limN→∞ S(N). The Casimir energy for the periodic case is similarly obtained

4.4 Summary and conclusion

In this chapter we combined the framework of encoding generic hidden sector in terms of

current correlators [43], with the four dimensional construction of supersymmetric extra

dimensions on a lattice [69]. This extends previous lattice constructions of supersymmetry

breaking so that different hidden sectors may be explored. We have demonstrated that the

low energy description of this model matches that of extra dimensional supersymmetry

breaking on an interval [1]. In particular we have shown that when the scale of the lattice

is much smaller than the characteristic scale of the hidden sector 1
(Na)2

<< M2, then for

a perturbative messenger sector sfermion masses are suppressed by an additional factor

1
(NaM)2 relative to pure four dimensional gauge mediation. This suppression arises due to

the suppression of momenta in the outer loop of the two loop diagrams generating sfermion

masses.

It is useful to note that the running gauge coupling for a “flat” lattice has been explored

in [95–97]. Also various related such as an open moose [40] have been shown to have

similar features to that of the AdS/CFT correspondence which is a topic we will return

to in chapter 6.

In the next chapter we will look at a special case of five dimensional gauge mediation

in which there is only 1 massive kk mode of the vector superfield assisting in the media-

tion of the breaking effects. This special case is equivalent to the two lattice site model

mentioned earlier in this chapter. We will find that due to special properties of two loop

feynman diagrams, the leading order scalar soft masses of the two site lattice model may

be analytically determined for all ratios of the lattice spacing a versus M and a new hybrid

regime is uncovered.



Chapter 5

Hybrid Gauge Mediation

In this chapter we would like to examine a particular effective model in which the vector

superfield that mediates supersymmetry breaking has only a massless zero mode and one

Kaluza-Klein mode with mass mv. This model is particularly interesting for two principal

reasons. First the model arises quite naturally as the minimal case of a deconstructed

lattice of chapter 4 and as an effective model of a flat extra dimension as in chapter 2.

Secondly this model not only captures all the essential features of both the gauge and

gaugino mediated limits, it also allows one to interpolate between these limits analytically

and explore a new hybrid limit. This hybrid regime is rather new and we hope it receives

further attention.

To understand this model we will recapitulate some of the key features of general

gauge mediation in five dimensions: In gauge mediated supersymmetry breaking, one may

broadly split models into two classes, those that are gauge mediated and those that are

RG gaugino mediated. Let us clarify further: using the construction of general gauge

mediation found in chapter 2, the soft term for scalars masses at lowest order in α is

dependent on a super-traced set of current correlators

[3C̃1(p
2/M2) − 4C̃1/2(p

2/M2) + C̃0(p
2/M2)] (5.1)

as pictured in figure 1.2. In general, given a perturbative hidden sector, we may expand

this set of current correlators in either of two limits to obtain analytic expressions: the

four dimensional gauge mediated limit M2/p2 ≤ 1 or the screened (five dimensional) limit

p2/M2 < 1 [1–3, 57]. In this second limit the scalar soft masses are rather suppressed

at the high characteristic scale M of the hidden sector. However, due to the gaugino

53
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mass contributions in the renormalisation group equations (RGE’s)1 [98] as in figure 1.3,

scalars develop soft masses at low scales through RG gaugino mediation [63, 64]. We

should of course point out the mechanism by which one discriminates between the two

expansion limits: when a mass scale mv enters into the outer loop (see figure 1.2) of

the leading order sfermion mass diagrams with mv ≪ M , this mass scale suppresses

loop momenta and warrants expanding the current correlators in the screened limit. As

higher dimensional models naturally introduce this mass scale through Kaluza-Klein (kk)

modes, it is customary that the screened limit become synonymous with higher dimensional

mediation of supersymmetry breaking.

It is natural to ask if there is some intermediate type of mediation whereby the leading

order scalar soft masses are still somewhat suppressed at the high scale but not as dras-

tically as in gaugino mediation limit, such that both the leading order contributions and

subleading RG contributions play a significant role: hybrid gauge mediation. The hybrid

regime, when mv ∼M , cannot be accessed by expanding the current correlators in M2/p2

and one must find a new way to evaluate the sfermion diagrams. However for the case of a

minimally truncated kk tower with just one massive kk mode, the leading orders sfermion

diagrams are analytically solvable for all ratios of F , M and mv and one can not only

interpolate between the four dimensional and screened five dimensional limit, but one can

also access the hybrid regime.

The key message of this chapter is that whereas gaugino mediated models typically

give a leading order sfermion mass of

m2
f̃(5d)

∼ m2
f̃(4d)

1

(Mℓ)2
, (5.2)

more generally by changing the ratio of the first kk mass mv = π
ℓ with M one can obtain

analytic formulas whereby

m2
f̃(5d)

∼ m2
f̃(4d)

1

(Mℓ)ρ
(5.3)

where ρ takes real values between 0 and 2.

The hybrid regime has been explored for a (de)construction model [92,94]. It also nat-

urally arises in ISS-like models that exhibit magnetic colour-flavour locking that generate

linking fields which we focused on in chapter 3. Phenomenological scans which implement

hybrid gauge mediation have also already been explored to some degree [99–102] by virtue

1See [58–60] for the four dimensional RG equations.
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of having a nonzero scalar soft mass at a high scale and effective four dimensional RG

equations when mv ∼M . In this chapter we will obtain completely analytic solutions for

the leading two loop scalar soft masses and highlight the hybrid regime. We will do this

predominantly for the five dimensional model of chapter 2 although we also highlight the

usefulness of these results to the (de)construction model as first pointed out in [92,94].

5.1 The minimally truncated model

We saw in chapter 2 that all the kk modes of the vector superfield, in principle, propagate

the supersymmetry breaking effects from the hidden to the visible brane. If the mass scales

of the model are sufficiently separated, we are at liberty to analyse an effective model in

which only the zero mode m0 = 0 and first mode of the kk tower with mass m1 = mv = π
ℓ

of vector superfields are part of the spectrum by placing a cutoff Λ above these scales,

as depicted in figure 5.1. As any finite truncation of kk modes in the vector superfield

may be related in the IR to a finite lattice (de)construction model [3, 69], the results of

this minimal truncation can be related to the minimal (de)construction model explored

in [92–94].

Λ2

E2

M2

(πℓ )
2

M2 M2
∼ (πℓ )

2

(π
ℓ
)2

Λ2 Λ2

Figure 5.1: Pictorial of the relative mass scales for the two state Kaluza Klein tower for

a) gaugino mediation, b) gauge mediation and c) hybrid mediation. Λ is the cutoff of

the effective model, M is the characteristic mass scale of the hidden sector or vev of the

spurion and the first Kaluza Klein mode is mv = π
ℓ where ℓ is the length of the interval.

We emphasise that when the sfermion masses are screened in the gaugino mediated limit,

there are always kk modes below the scale M .
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5.1.1 Gaugino soft masses

We start by highlighting the 4 leading soft gaugino mass contributions which are given by

Lsoft ⊃
g2
5

2
MB1/2(0)(λ

0λ0 + λ1λ0 + λ0λ1 + λ1λ1) + c.c. (5.4)

Due to these soft masses, when computing the RG gaugino mediated contributions (as in

figure 1.3) above the mass scale mv this will require evaluating the RG contributions from

6 diagrams. When running RG equations at energy scales below mv, only the diagram

built from mλλ
0λ0 contribute and the four dimensional RGE’s are sufficient.

5.1.2 Sfermion masses

Supersymmetry breaking effects encoded on the hidden brane are mediated to the visible

brane by both modes
∑1

n=0 Vn(x, y). One may write the brane localised sfermion mass

summations of Eqn. (2.33) as a product. After a Wick rotation one finds2

E = −
∫

d4p

(2π)4
1

p2
(

m2
v

p2 +m2
v

)2[3C̃1(p
2/M2) − 4C̃1/2(p

2/M2) + C̃0(p
2/M2)] (5.5)

with

f(p/m1) =

(
1/(

p2

m2
v

+ 1)

)2

. (5.6)

The form factor is plotted in figure 5.2 and captures the essential screening behaviour

of the all order model plotted in figure 2.2. This result has also been obtained for the

(de)constructed version of this model [93].

5.1.3 Bulk scalar masses

In [1] the positive parity bulk hyperscalar zero mode masses m2
H0

were computed. For the

two state model it is given by

m2
H0

= g4
4D (5.7)

where

D = −
∫

d4p

(2π)4

∑

n

(
p

p2 −m2
n

)2[3C̃1(p
2/M2) − 4C̃1/2(p

2/M2) + C̃0(p
2/M2)]. (5.8)

2We have rescaled the factors of ℓ into the coupling
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Figure 5.2: A plot of the momentum dependent form factor, for the minimal model. When

p/mv → 0 one recovers four dimensional general gauge mediation. When p/mv ≫ 0 one

obtains screening of the leading order scalar soft mass. This model captures the essential

features of the all order kk model.

This can be rewritten as (we Wick rotated and then manipulated)

D = −
∫

d4p

(2π)4
(

1

p2
+

1

p2 +m2
v

− m2
v

[p2 +m2
v]

2
)[3C̃1(p

2/M2) − 4C̃1/2(p
2/M2) + C̃0(p

2/M2)].

(5.9)

We will show in section 5.2 how this soft mass may be analytically determined for a specific

hidden sector and specified currents. In the next section we will show that this mass

formula will determine the soft masses of linking fields in the minimal gaugino mediation

model.

5.1.4 Minimal gaugino mediation: Linking scalar soft masses

Gvis Ghid

L , L̃ Φ, Φ̃MSSM

DSB

Figure 5.3: Minimal gaugino mediation. MSSM matter located at the lattice site Gvis

corresponds to matter on the visible brane in figure 1. Similarly the fields Φ, Φ̃ located

at Ghid represents messengers located on the hidden brane. The lattice linking fields

L and L̃ are bifundamental and antibifundamental respectively and corresponds to bulk

hypermultiplets of figure 1.

The minimally truncated five dimensional model we have been describing so far can

be related, in the IR, to the minimal gaugino mediation model pictured in figure 5.3. This

means that the soft masses written above may be also be used for this lattice model. This

has been shown to be the case in [92–94]. In this section we would like to briefly comment

on this model by showing how the linking scalar soft masses also match that of the positive
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parity hyperscalar mass formula Eqn. (5.8).

The kinetic terms for the bifundamental chiral superfields of the minimal model are

given by

δL =

∫
d2θd2θ̄

(
L†e2gV0−2gV1L+ L̃†e−2gV0+2gV1L̃

)
(5.10)

where for simplicity we have taken g0 = g1 = g. We see that for the minimal model of figure

5.3 the linking fields will each pick up two leading order soft masses, being bifundamental.

The resulting soft mass for m2
LL

†L is given by m2
L =

∑1
k=0m

2
k,L where

m2
0,L=−g4

∫
d4p

(2π)4
p2(〈p2; 0, 1〉)2[3C̃1(p

2/M2) − 4C̃1/2(p
2/M2) + C̃0(p

2/M2)], (5.11)

m2
1,L=−g4

∫
d4p

(2π)4
p2(〈p2; 1, 1〉)2[3C̃1(p

2/M2) − 4C̃1/2(p
2/M2) + C̃0(p

2/M2)]. (5.12)

Adding these contributions, one obtains the hyperscalar mass result Eqn. (5.8) and em-

phasises the similarity between lattice and continuum models. The mass eigenstates are

then given by the full mass matrix including the kk masses and all linking fields of the

same representation.

5.2 Hybrid gauge mediation

So far, we have given quite general soft mass expressions for gauginos, visible brane lo-

calised scalars and bulk positive parity scalars for the minimal model. In this section we

will specify the supersymmetry breaking hidden sector to be a generalised messenger sec-

tor coupled to a supersymmetry breaking spurion. Specifying the hidden sector specifies

the currents of the hidden sector (see appendix D) and we may then use known expres-

sions for these currents. The relevant diagrams are typically two loop diagrams whose

momentum integrals can be found in [1,43,73,74] and whose momenta is typically labelled

as in figure 5.4. It is quite straightforward to shift momenta of these two loop diagrams

and then apply the general expressions for massive two-loop Feynman diagrams, which

are analytically solvable when the Mandelstam variables vanish [73,74,103,104].

5.2.1 Generalised messenger sector

In this section we will quickly remind the reader of the conventions of a general messenger

sector coupled to a spurion [74], whose conventions we first mentioned in chapter 1. We
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Figure 5.4: A figure representing the labelling of momenta in the typical two-loop diagrams

contributing to sfermion masses at leading order. The inner loop has a characteristic mass

scale M and is typically a loop inside the current correlator, when the hidden sector has

a perturbative description. The outer loop has a characteristic mass scale mv. The first

case of labelling momenta is typical for GGM, however the mass scales M and mv do not

mix within each integral on k or p momenta and one must expand current correlators in

a ratio of M2 and p2 to obtain an analytic limit. In the second case, the mass scales mix

in either integral on momenta k and p and one may expand in a ratio of mv/M .

will then give useful mass formulas for this sector and mediation type. We consider sets of

N chiral superfield messengers Φi, Φ̃i in the vector like representation of the lattice gauge

group, coupled to a SUSY breaking spurion X = M + θ2F . The superpotential is

W = Xηi ΦiΦ̃i (5.13)

In principle ηij is a generic matrix which may be diagonalised to its eigenvalues ηi [74].

The messengers will couple to the bulk vector superfield as

δL =

∫
d2θd2θ̄

(
Φ†
ie

2gV aTa
Φi + Φ̃†

ie
−2gV aTa

Φ̃i

)
+

(∫
d2θ W + c.c.

)
(5.14)

We can extract the multiplet of currents from the kinetic terms in the above Lagrangian.

The current correlators can then be computed and their results can be found in [1,43,73].

We will use the result of these current correlators to determine the gaugino massses,

sfermion masses on the visible brane and the (positive parity) bulk hyperscalar soft mass.

5.2.2 Gaugino masses

The current correlator in Eqn. (5.4) may be evaluated using the currents found in [1, 43,

73, 74] for the general messenger sector described above. The zero mode gaugino mass is



5.2. Hybrid gauge mediation 60

found to be

mr
λ0

=
αr
4π

ΛG , ΛG =
N∑

i=1

[
dr(i)F

M
g(xi)] (5.15)

The label r = 1, 2, 3 refers to the gauge groups U(1), SU(2), SU(3), dr(i) is the Dynkin

index of the representation of Φi, Φ̃i and

g(x) =
(1 − x) log(1 − x) + (1 + x) log(1 + x)

x2
(5.16)

where xi = F
ηiM2 . g(x) ∼ 1 for small x [74].

5.2.3 sfermion masses

Starting from equation 5.5 we may use the result of [92], which is given in the appendix

F, for the sfermion masses on the visible brane

m2
f̃

= 2

(
F

M

)2 ∑

r

(
αr
4π

)2c(f̃ , r)
∑

i

dr(i)S(xi, yi) (5.17)

with yi = mv/ηiM , where c(f̃ , r) is the quadratic Casimir of the gauge group r for the

MSSM scalar of representation f̃ . S(x, y) is given in the appendix.

5.2.4 Bulk hyperscalar masses

The positive parity bulk hyperscalar (linking scalar) mass, is given by

m2
h̃

= 2

(
F

M

)2 ∑

r

(
αr
4π

)2c(h̃, r)
∑

i

dr(i)G(xi, yi) (5.18)

where G(x, y) is given in the appendix.

In figure 5.5, 5.6 and 5.7 we compare plots of the functions S(x, y) for sfermion masses

and G(x, y) for hyperscalar masses. The plots may become tachyonic for some regimes

of the parameter space and both plots have similar behaviour with regimes of strong

screening of the masses. Interestingly, these techniques to obtain analytic results may also

be applicable for models with gauge messengers [46,55,105].
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Figure 5.5: On the left is a figure of S(x, y) plotted along the x axis going from bottom to

top are y = 1, 2.5, 5, 10, 50. On the right is a plot of G(x, y) for the same values of y. The

right plot shows that for small values of y, G(x, y) becomes tachyonic as x approaches 1,

far more quickly than S(x, y).
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Figure 5.6: On the left is a plot of S(x, 0.1) and on the right G(x, 0.1) along the x axis.

On the right plot we see the function becoming tachyonic far more quickly than on the

left.

5.3 Subleading contributions to general gauge mediation

The subleading diagram due to the double insertion of the gaugino mass found in 1.3 is

a three loop diagram. For the minimal (flat) two state model one obtains (after Wick

rotation)

δm2
f̃

=
∑

r

c2(f ; r)g6
4d

∫
d4p

(2π)4
m4
v

p4(p2 +m2
v)

2
(MB̃1/2(p

2/M2))2 (5.19)

which carries the same momentum dependent form factor as figure 5.2. Keeping the full

momentum dependence of the mass insertion, this is a three loop contribution and unfor-

tunately cannot be calculated analytically by the same techniques that applied to the two

loop leading order contributions of the previous section. Additionally, there are three loop

contributions to sfermion masses from bulk hyperscalar masses, as has been commented

on before [66]. It would certainly be interesting to apply numerical techniques to these

superficially subleading diagrams (order g6), keeping their full momentum dependence, to

better understand their role in this model.

Very recently a comprehensive examination of the spectrum of the hybrid regime was
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Figure 5.7: On the left is a figure of S(0.05, y) and on the right G(0.05, y). For small y

the functions are screened and scale as ∼ y2 and interpolates through the hybrid regime

to large ∼ y0: the 4d limit.

undertaken [106], with the model of chapter 3 in mind. Reasonable phenomenological

spectra was obtain and in particular, it was commented that the spectrum in the Hybrid

regime and the Gaugino mediated regime have much in common as when the leading

order scalar soft mass contribution is suppressed the subleading contribution compensates

to give an overall similar outcome.

5.4 Summary and conclusion

In this chapter we have outlined a concrete framework in which higher dimensional mod-

els of gauge mediated supersymmetry breaking may obtain a hybrid between gauge and

gaugino mediation. In particular we have shown that the leading order sfermion and bulk

hyperscalar masses, being massive two-loop diagrams with zero external momenta, are an-

alytically solvable for this model which allows for a determination of this mass contribution

in the hybrid regime that M ∼ mv as was first pointed out in [92].

These results help to complete the discussion of chapter 2 as they highlight a smooth

interpolation between gauge and gaugino mediation, with a new hybrid regime of mediation

when mv ∼M .

In the next chapter, we will move to a more exotic topic: we introduce more complexity

by warping the extra dimensional interval. The resulting complexity of the Kaluza Klein

masses and eigenfunctions will mean that we will only be able to make simplifications to

the particular limits of gauge or gaugino mediation and the calculable results of the hybrid

regime will be lost. In fact it is also straightforward to see that as the first kk mode of

a warped vector superfield is warped towards the IR, a simple hybrid model cannot be

constructed. However, we do not think that this should preclude achieving a soft scalar
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mass from a warped model that is only partially screened and behaves like a hybrid model,

just that this type of result can only be computed numerically rather than analytically.

We believe this is an extremely worthwhile direction for future research outside of this

thesis. Other directions for future research is to apply these techniques and their line of

reasoning to models of brane to brane supergravity mediation, in particular because that

model also solves problems with flavour changing neutral currents and may generate less

suppressed soft masses as usually encountered in the full all order kk mode calculations.



Chapter 6

Warped General Gauge Mediation

6.1 Introduction

The framework of general gauge mediation and in particular the decoupling limit αSM → 0

allows for the application of dualities. The reasoning behind this is that one may exchange

strongly coupled, all order, current correlators with their dual perturbative description.

This has allowed for the implement of Seiberg duality to the GGM construction. In this

chapter we would like to extend this construction through the AdS/CFT programme [107].

Our construction will be general such that it is applicable to model various cases in the

literature. Our key findings are generic such that particular models essentially define the

various mass scales as inputs or specify a particular hidden sector to encode into currents

or are variations of the construction outlined in this chapter. In fact there are a large range

of models of dynamical supersymmetry breaking with relation to the AdS/CFT [108–117]

including conformal sequestering [118–120] and models based the duality cascade using

Warped throats [121–125]. Our approach to extracting MSSM soft masses within the

AdS/CFT perspective is rather original in that it focuses on determining the behaviour of

global currents, within the AdS background [2] which perhaps has more significant overlap

with the AdS/QCD literature [38,39,42,126].

We have in mind some strongly coupled hidden sector with gauge group Ghidden with

Ñ colours that breaks global N = 1 supersymmetry and generates a dynamical supersym-

metry breaking scale through

Msusy ∼MP le
−c/g̃2(MPl). (6.1)

Let us further suppose that g̃2Ñ/16π2 ≫ 1 and Ñ large. We may expect that the gauge

64
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coupling of the hidden sector evolves slowly between ΛIR, the scale at which conformal

symmetry is broken and MP l then we may be able to model this approximately conformal

field theory (CFT) with an effective AdS dual description between IR and UV branes of an

extra dimension. Ghidden supplies the background AdS geometry. Whatever theoryGhidden

has at energies below ΛIR is essentially captured on the IR brane, including supersymmetry

breaking, and will be a generic hidden sector with F -term and spurion vev M . The IR

theory may or may not also be strongly coupled. For instance a theory that was in the

conformal window 3
2Nc < Nf < 3NC with large Nc may, after losing flavours along the

flow, at some point move into the magnetic window and admit an IR free magnetic dual

on the IR brane. Similarly the UV theory may have some more complicated structure such

as some Calabi Yau. For our purposes the UV is simply the boundary where fundamental

fields such as the MSSM matter “lives”. In some sense the MSSM matter should be thought

of as entirely outside the AdS dual of the hidden sector, which completely decouples in

the limit that αSM → 0.

Next, let us introduce a global symmetry of the hidden sector such as SU(Nf )×SU(Ñc)

and then weakly gauge that global symmetry and associate it with the standard model or

GUT “parent” gauge group. Through some analogue of “colour-flavour locking” bounds

states or resonances of the approximate CFT will fill a Kaluza-Klein tower of the weakly

gauged global symmetry. As a result, the vector superfields of the standard model gauge

groups will have a full Kaluza-Klein tower and “live” in the bulk of the theory. On

the four dimensional side, this construction fits within four dimensional general gauge

mediation prescription of chapter 1. In the AdS side, we see that a full Kaluza-Klein

tower of a vector superfield will mediate the effects of supersymmetry breaking from the IR

brane up the MSSM fields located on the UV brane. In the four dimensional perspective

there is only a massless 4d vector superfield describing the mediation, however due to

mixing with the resonances as intermediate states in the two point function [127], an

effective extra dimension appears. This effect has a QCD analogue of “vector meson

dominance” [30–32], and should be familiar from the Deconstructed model of chapter 4.

We see that the decoupling limit αSM → 0 survives on either side of the duality. A

slightly more subtle point is that we still have not specified the current correlators on the

IR brane and one may wish to apply a further Seiberg duality to those. In any case we

should expect a perturbative description of supersymmetry breaking can be encoded into

current correlators located on the IR brane, whose effects are mediated by a full Kaluza-
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Klein tower of vector superfields up through the bulk, to generate soft mass terms for the

standard model located on the UV brane.

IR brane

UV brane

Figure 6.1: A portrait of “General gauge mediation” across a warped bulk. Sfermion

masses on the visible (UV) brane are generated by propagating the effects of supersym-

metry breaking on the hidden (IR) brane.

In chapter 3 we showed that a class of N = 1 SQCD SU(Nc) theories in the magnetic

window have a dual IR-free magnetic description which at low energies generates a decon-

structed effective extra dimension. An interesting direction for future research is to see if

one could indeed obtain a deconstructed AdS lattice [40,128,129] similar to the flat lattice

of chapter 3.

Regardless of the particular UV completion or four dimensional dual from which this

model arises, we will simply treat a slice of AdS as an effective description with generic

features and make no further comment on this issue. Within this framework, we are

able to derive general formulas for both gaugino and sfermion masses. We are also able

to accommodate bulk hypermultiplets and again give a general formula for their scalar

masses. A final application of our framework is to calculate the Casimir energy.

To illustrate this framework we apply our general results in terms of current corre-

lators, to the case where the hidden sector has a perturbative description in terms of a

SUSY breaking spurion coupled to messenger fields charged under the standard model

gauge group. Specifying the hidden sector, specifies the currents and we then extract

approximate formulas for the gaugino and sfermion masses of the MSSM, at leading order

in αi.
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Our discussion will focus on the models behaviour with regard to four scales: the AdS

warp factor k; orbifold length ℓ; a SUSY breaking F -term and hidden sector characteristic

mass scale M . Assuming that kℓ ≫ 1, we show that when the F, k2 ≪ M2, the full

Kaluza-Klein tower of the bulk vector multiplet must be considered in the propagation

of supersymmetry breaking to the UV brane, whereas in the limit that F,M2 ≪ k2,

only the zero modes make the dominant contribution to mediation. We would like to

re-emphasise the point that if k ≫ M then the phenonomenology is gauge mediated not

gaugino mediated.

6.1.1 Gauge coupling unification

Some precursory comments are useful. The gauge couplings of the standard model will

receive contributions from MSSM fields, the bulk fields (kk modes) and from the fields

localised on the IR brane that are charged under the standard model. It has been shown

in [128–138], that in certain limits, the contribution from bulk fields is consistent with

logarithmic running of the gauge couplings. That is to say that when evolving the RG

equations from Mz up to k the gauge coupling evolution is logarithmic given by

1

g2
j (Mz)

=
1

g2
j (k)

+
bj

8π2
log(

k

Mz
) (6.2)

One must still compare this with the other scale M of the hidden sector as to whether one

has gaugino mediation or just simply gauge mediation for the soft masses. For instance

if k ≫M we will have unsuppressed scalar masses at leading order, i.e. four dimensional

gauge mediation, and logarithmic running up to E = k. Conversely, if k ≪ M we will

have gaugino mediation and logarithmic running only up to E = k and additional power

law contributions between k and M . These contributions will be of the form

+
bkk

64π2

Λ2

k2
log

5Mkk

4πk
(6.3)

where bkk = 3Nc − Nc = 2Nc for the V+Φ kk mode contributions. To put this another

way, if only the massless zero modes contribute significantly to the renormalisation of the

gauge coupling [131] then it is likely that only the zero modes contribute significantly to

the mediation of supersymmetry breaking and we should expect a gauge mediated not

gaugino mediated spectrum.

Finally, a different and entirely unrelated approach to breaking supersymmetry in

AdS5 models called Scherk-Schwarz [139, 140] or twisted boundary conditions. These do
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not fit within the framework of general gauge mediation and are not gauge mediated in

any ordinary sense.

6.2 Off-shell warped gauge theory

We began in [2] with the AdS5 with the metric given by

ds2 = e−2σηµνdx
µdxν + dy2, (6.4)

in which ηµν = diag(−1, 1, 1, 1), σ = ky and 1/k is the AdS curvature scale with mass

dimension one. From the metric, one can readily read off the fünfbein to be

eaµ(x, y) = e−σ êaµ(x) = e−σδaµ, e5µ = ea5 = 0, e5̂5 = 1 . (6.5)

We are interested in describing physics on an interval of this AdS space given by 0 ≤ y ≤ ℓ

with ℓ = πR. It is helpful to think of the interval as a Z2 quotient of a periodic y

coordinate. This construction, also known as a warped S1/Z2 orbifold, is achieved by

replacing σ = k|y| in the metric (6.4) and allowing y to be periodic with range −ℓ < y ≤ ℓ.

The Z2 identification is given by y ∼ −y and has fixed points at y = 0 and y = ℓ where

we shall locate matter on three-branes known as the UV and IR brane respectively.

To build our GGM framework we shall need an off-shell description of the supersym-

metric gauge theory living on this space. To obtain the off-shell description for the warped

orbifold background one may apply the procedure of “θ-warping” mentioned in [141] and

developed in [142,143]. Using this prescription we deform the the superspace coordinates

by defining ϑ = e−
1
2
σθ and supercovariant derivatives by Dα = e

1
2
σDα. The warped

space action if found by making the replacements (θ,Dα, d
5x) → (ϑ,Dα, d

5x
√−g) in the

superfields. After reexpanding in the original θ coordinates one finds

Swarp =

∫
d5x

1

2
Tr

[∫
d2θ WαWα + h.c.+

e−2σ

g2
5

∫
d4θ

(
e−2g5V∇5e

2g5V
)2

]
, (6.6)

where the superfields have been warped so that they become

V = −θσaθ̄δµaAµ + iθ̄2θe−
3
2
σλ− iθ2θ̄e−

3
2
σλ̄+

1

2
θ̄2θ2e−2σD ,

Φ =
1√
2

(Σ + iA5) +
√

2θe−
1
2
σχ+ θ2e−σF . (6.7)

Expanding in components one finds the kinetic terms for the vector multiplet are given by

∫
d5xTr

[
−1

2
FµνFµν + ie−3σλ̄σµDµλ+

1

2
e−4σD2

]
. (6.8)
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Mass terms arise in the component expansion of the action (6.6) from the term involving

∂5V when the derivative acts on the warp factor. One finds a Dirac mass for the fermions

and upon integrating out the auxiliary D field, a scalar mass given by

mΨ =
1

2
σ′ , mΣ = −4k2 + 2σ′′ . (6.9)

We remark that the Abelian version of this theory is related to action written in [144],

which makes use of a radion superfield.

In what follows we shall expand these fields in terms of their eigen-modes [145] which

can be summarised using the theta-warped superfields by

V =
1√
2ℓ

∑

n

Vn(x)f
(2)
n (y) , Φ =

1√
2ℓ

∑

n

Φn(x)g
(4)
n (y) , (6.10)

where the even and odd modes are given by

f (s)
n (y) =

esσ/2

Nn

[
J1

(
mne

σ

k

)
+ b (mn)Y1

(
mne

σ

k

)]
, (6.11)

g(s)
n (y) =

σ′

k

esσ/2

Nn

[
J0

(
mne

σ

k

)
+ b (mn)Y0

(
mne

σ

k

)]
, (6.12)

and obey orthonormality conditions

1

2ℓ

∫ ℓ

−ℓ
e(2−s)σf (s)

n (y)f (s)
m (y)dy = δnm , (6.13)

with similar for the odd modes. Orthornormality fixes the normalisation which in the

limit mn ≪ k and kℓ≫ 1 is given by

Nm ≈ ekℓ/2√
πℓmn

, (6.14)

and boundary conditions at both branes can be used to fix b(mn) = −J0(mn/k)
Y0(mn/k)

and deduce

the mass spectrum by solving b(mn) = b(mne
kℓ) which yields

mn ≈
(
n− 1

4

)
πke−kℓ . (6.15)

6.2.1 Bulk hypermultiplets

The θ-warping technique can be applied to bulk hypermultiplets. Under the orbifold action

the hypermultiplet splits into two 4D N = 1 chiral superfields, H of even parity and Hc

of odd parity which transform under the gauge group as H → e−ΛH and Hc → HceΛ.

Starting with the flat orbifold action and superfields given in [67] and following the warping

procedure one arrives at warped superfields

H = H1 +
√

2e−
1
2
σθψL + θ2e−σ(F1 +D5H

2 − g5ΣH
2) ,

Hc = H†
2 +

√
2θe−

1
2
σψR + θ2e−σ(−F †2 −D5H

†
1 − g5H

†
1Σ) , (6.16)
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and a warped action

SHwarp =

∫
d5xe−2σ

∫
d4θ[H†e2g5VH +Hce−2g5VHc†]

+

∫
d5xe−3σ

(∫
d2θHc∇5H +

∫
d2θ̄Hc†∇5H

†
)
. (6.17)

It should be clear from the action that the hypermultiplet will also decouple from the

hidden sector in the limit αi → 0. In this way hypermultiplets will also follow the pre-

scription of general gauge mediation. Starting from a massless unwarped hypermultiplet

and applying θ warping, the warped hypermultiplet has a mass generated by passing a ∂5

through an e−1/2σ factor. This corresponds to the conformal limit c = 1/2 for the on-shell

action of [145].1 The positive parity fields in H have eigenfunctions given by Eqn. (6.11),

with α = 1. Similarly the negative parity fields in Hc are determined by Eqn. (6.12) with

α = 0. In this paper we will compute the soft mass of the zero mode scalar of H which is

given by

H(0)(x, y) =
1√
2ℓ
eσH(0)(x) . (6.18)

6.3 Brane localised currents

In this section we will encode a SUSY breaking sector, localised on the IR brane at y = ℓ,

in terms of current correlators.

Since the vector superfield V is of even parity and obeys Neumann type boundary

conditions it can couple to matter charged under the gauge group localised on the boundary

IR brane. In general, we expect that the global current multiplet J should serve as a

source for these interactions however we must take some care to accommodate the effects

of the warping. Starting with the flat space form of these interactions [1] and applying

the θ-warping technique produces boundary interactions of the form

Sint = 2g5

∫
d5xe−2σd4θJ V δ(y − ℓ) (6.19)

where the warped current superfield is given by

J = J + ie−
1
2
σθj − ie−

1
2
σ θ̄j̄ − θσaδµa θ̄jµ

+
1

2
e−

1
2
σθ2θ̄σ̄aδµa∂µj −

1

2
e−

1
2
σ θ̄2θσaδµa∂µj̄ −

1

4
θ2θ̄2�J , (6.20)

1We exclusively consider hypermultiplets at the conformal limit in this paper.
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and V is given as in (6.7). In components these interaction terms read

Sint =

∫
d5xe−4σg5(JD − λj−λ̄j̄ − e2σjµAµ)δ(y − ℓ). (6.21)

The currents appearing in these expressions are not canonical in the sense they are

built out of noncanonically normalised fields due to the warping of the induced metric on

the IR brane. It is helpful to instead work with canonically normalised fields and currents

defined by

e−2σJ = Ĵ , e−
5
2
σjα = ĵα , e−2σjµ = ĵµ , (6.22)

so that the interaction terms are given by

Sint =

∫
d5xg5(e

−2σ ĴD − e−3/2σλĵ−e−3/2σλ̄ˆ̄j − ĵµAµ)δ(y − ℓ) . (6.23)

With these rescalings two-point functions of canonical currents are given by the flat space

result but with mass scales accordingly warped down. In this way we can easily keep track

of powers of the warp factor.

The contribution of the hidden sector can be found by expanding the functional integral

in g5 to O(g2
5) following [43]. Upon inserting the relation for the D = X3 −D5Σ we find

that

δLeff = [ − g2
5e

−3kℓC̃1/2(0)iλσ
µ∂µλ̄− g2

5

1

4
C̃1(0)FµνF

µν

− g2
5e

−3kℓ 1

2
(M̂B̃1/2(0)λλ + M̂B̃1/2(0)λ̄λ̄)

+e−4kℓ[
1

2
g2
5C̃0(0)(X

3X3) +
1

2
g2
5C̃0(0)(D5Σ)(D5Σ) − g2

5C̃0(0)(D5Σ)X3]] . (6.24)

M̂ = e−kℓM is the characteristic mass scale of the hidden brane localised at y = ℓ. In

what follows we shall frequently express our results in terms of the “supertraced” set of

these current correlators

[3C̃1(p
2/M̂2) − 4C̃1/2(p

2/M̂2) + C̃0(p
2/M̂2)] = Ω

(
p2

M̂2

)
. (6.25)

We emphasise that the effect of the induced metric on the IR brane is captured in the

canonical current correlators through the warped mass scale M̂ .

6.4 Soft masses and vacuum energy

In this section we will give general expressions for the gaugino, sfermion and hyperscalar

soft masses and the Casimir energy, in terms of the current correlators located on the

IR brane. In the next section we will explore these general expressions for a generalised

messenger sector in specific limits.
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6.4.1 Gaugino masses

At g2
5 order, we can extract the SUSY breaking contribution to the gaugino masses from

the effective Lagrangian as

Lsoft =
δ(y − ℓ)

2
g2
5e

−3kℓM̂B̃1/2(0)λλ + c.c. (6.26)

This Majorana mass term for the gaugino is localised on the boundary which means that

upon performing a KK decomposition this produces a term mixing all KK modes to each

other given by

Lsoft =
∑

m,n

g2
4

2

1

2
M̂B̃1/2(0)λnλmf

(2)
n (ℓ)f (2)

m (ℓ) + c.c. (6.27)

in which we have expressed the answer in terms of the dimensionless 4D gauge coupling

g2
5 = g2

4ℓ.

In addition to these masses there are also Dirac type Kaluza-Klein masses which mix

the positive parity gaugino modes with the negative parity bulk fermion modes. In general,

one must therefore take into account both to understand the gaugino spectrum. In practice

the easiest way to find the gaugino masses is to include the contribution from Eqn. (6.26)

in the boundary conditions placed on the KK mode expansions as shown in the appendix

of [144], similar to the flat case in [146].

6.4.2 Sfermion masses

The sfermion masses of the MSSM can be determined from the C̃s current correlators

of the SUSY breaking fields on the IR brane and the propagation of this breaking by

the vector multiplets in the bulk, up to the UV brane as shown in figure 6.2. The full

momentum dependence of the current correlators should be taken into account as they

form part of a loop on the scalar propagator. The vertex couplings can all be obtained

from expanding out a canonical Kähler potential for a chiral superfield. To massage the

answers into their final form one makes use of the representations [1, 57]

δ(0) =
1

2ℓ

∑

n

1 , 0 =
∑

n

(−1)n . (6.28)

Judicial use of the later identity allows us to replace factors of m2
n which occur in the

rightmost diagram of figure 6.2 with p2.

The final result may be written by first defining a positive parity bulk field in the AdS



6.4. Soft masses and vacuum energy 73

Key :

Fermion Scalar Gaugino Gauge X3 Σ

Figure 6.2: The graphical description of the contributions of the two-point functions to

the soft sfermion masses. The “blobs” represent current correlators localised on the IR

brane at y = ℓ. The scalar external legs are the sfermions located on the UV brane. The

first diagram represents the current correlator 〈jα j̄ᾱ〉 being mediated by the bulk gaugino

λ from the IR brane to the UV brane at y = 0. The second diagram represents mediation

of 〈jµjν〉 due to the bulk gauge boson and the final diagram represents mediation of

the scalar current correlator 〈JJ〉 due to the negative parity bulk scalar Σ. This is the

complete supertraced combination of diagrams for gauge mediation [1, 43].

background, propagating from y = y to y = y′ [1, 57,147,148]

G̃(y, y′) =
1

2ℓ

∑

n

f
(2)
n (y)f

(2)
n (y′)

p2 +m2
n

. (6.29)

Then the sfermion mass formula is found to be

m2
f̃

=
∑

r

g4
r(5d)c2(f ; r)Er (6.30)

where

Er = −
∫

d4p

(2π)4
G̃(0, ℓ)G̃(0, ℓ)p2Ω(r)

(
p2

M̂2

)
. (6.31)

r = 1, 2, 3, refer to the gauge groups U(1), SU(2), SU(3). c2(f ; r) is the quadratic Casimir

for the representation of sfermion f̃ , the scalar in question.

As was discussed in [1], it is interesting to consider the contributions to these masses

in different regimes of warping k relative to M2, F . Since we have that mKK ≈ k2e−2kl

we can see that in the small or intermediate regimes k2 ≪ F,M2 or F ≤ k2 ≪ M2 the

Kaluza-Klein modes contribute to the mediation of supersymmetry breaking effects across

the bulk whereas for large warping, F,M2 ≪ k2, only the zero modes will contribute

significantly and we will have an effective 4D model with AdS effects.
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If only the zero modes contribute to propagation we may truncate the KK tower.

One may then write the zero mode eigenfunctions in terms of gauge boson zero mode

eigenfunctions. The zero mode gauge boson eigenfunctions are flat and one obtains

Er = −
∫

d4p

(2π)4
1

ℓ2
1

p2
Ω(r)

(
p2

M̂2

)
. (6.32)

Defining g2
(5d)/ℓ = g2

(4d), we recover exactly the four-dimensional GGM answer [43], with

F and M replaced with F̂ and M̂ . This is an effective four-dimensional limit, however as

the current correlators are a function of M̂ , we will still find some suppression due to the

warp factor.

6.4.3 The subleading contribution to sfermion masses

A subleading contribution to the scalar soft mass arises from a double mass insertion of

the gaugino. In the four dimensional limit M ≪ k one finds

δm2
f̃

=
∑

r

c2(f ; r)
g6
4d

2

∫
d4p

(2π)4
1

p4
(M̂B̃1/2(p

2/M2))2. (6.33)

In the regime k ≪M one finds

δm2
f̃

=
g6
5d

16π2ℓ3
(kℓ)3e−kℓ

(
M̂B̃1/2(0)

)2
[3/2 + γ + log Λ/2]. (6.34)

which is hierarchically suppressed by e−kℓ as expected. This diagram may act as a lower

bound on the ratio of gaugino to sfermion masses and when k ≪ M , the bound is given

by
m2
λ

m2
f̃

. (
4π

α
)(kℓ)2ekℓ (6.35)

and it seems we can have an exponential hierarchy between the two soft mass scales in

this limit only.

6.4.4 Hypermultiplet scalar masses

The supersymmetry breaking masses of a bulk hypermultiplet scalar zero mode may be

computed using the general gauge mediation prescription as it decouples from the hidden

sector in the limit αi → 0. The diagrams needed to compute the soft mass are found in

figure 6.3. When computing the mass, the second diagram vanishes due to transversality.

To compute the diagrams, one again takes the current correlators to be brane localised and

do not preserve the incoming and outgoingmn eigenmass. The external hypermultiplet legs

with mass mn = 0 eigenfunctions must be specified when computing the diagrams and the
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Figure 6.3: The graphical description of the contributions of the two point functions to

the hypermultiplet scalar masses. The current correlators (blobs) are located on the IR

brane at y = ℓ. The external hyperscalar zero mode legs are in the bulk and one must

integrate over all possible positions of the external legs.

vertices to the external hyperscalar must be integrated over all of y. The orthornormality

condition Eqn. (6.13) is used in this integration over y. The right column of diagrams may

be collected together by use of Eqn. (6.28). The rectangle on the last diagram signifies

that this diagram is completely localised on the IR brane. The diagram with the symbol

⊗, represents a bulk propagator that couples the positive parity fermion λ, to the negative

parity fermion χ.

We find the zero mode hyperscalar soft mass is given by

Er = −
∫

d4p

(2π)4
1

2ℓ2

∑

n

f
(2)
n (ℓ)f

(2)
n (ℓ)

p2 +m2
n

p2

p2 +m2
n

Ω(r)

(
p2

M̂2

)
. (6.36)

It should be noted that this equation has only a single sum as the hyperscalar vertices do

preserve incoming and outgoing mn, unlike for the branes which do not. The momentum

integral is UV divergent as expected [149, 150]: as we must integrate over all of y for the

sewing points of externals hyperscalar legs, there is no finite separation between the bulk

hyperscalar and the IR brane to suppress large momentum contributions in the loop.

6.4.5 Vacuum energy

The propagation of supersymmetry in the bulk also produces a nonzero vacuum energy.

Each vacuum diagram is generated by forming a closed loop from one end of the current

correlator to the other, with the fields that mediate the effects of those current correlators.
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There are in fact four diagrams: a closed loop with the gauge boson, gaugino, Σ and

X3. The field X3 is non propagating and never leaves the IR brane. The diagram of X3

combines with that of the scalar Σ to generate the contribution from the current correlator

C0. The vacuum energy density is

E =
∑

r

1

2
g2
5dGr

∫
d4p

(2π)4
G̃(ℓ, ℓ)p2Ω(r)

(
p2

M̂2

)
. (6.37)

dG is the dimension of the adjoint representation of the gauge group labeled by r. The

vacuum energy is UV divergent. In the next section we will demonstrate how the Casimir

energy may be extracted from this formula, in the kℓ≫ 1 limit.

6.5 Generalised messenger sector

In this section we give a concrete description of matter content of the IR SUSY breaking

brane following the construction of [74]. We consider two sets of SU(N) vectorlike Chi-

ral superfield messengers φi, φ̃i coupled to a SUSY breaking spurion X = M + θ2e−σF .

Generalisations to arbitrary hidden sectors are just a straightforward application of the

results of [1, 73]. The superpotential, which is localised on the IR brane, is

W = Xηi φiφ̃i. (6.38)

In principle ηij is a generic matrix which may be diagonalised to its eigenvalues ηi [74].

The index i labels the number of messengers from 1 to N . The messengers on the SUSY

breaking brane will couple to the bulk vector superfield as

δL =

∫
d2θd2θ̄e−2σ

(
φ†ie

2g5V aTa
φi + φ̃†ie

−2g5V aTa
φ̃i

)
+

(∫
d2θ e−3σW + c.c.

)
. (6.39)

We can extract the multiplet of currents from the kinetic terms in the above Lagrangian.

It is easiest to work in canonical fields and canonical currents as discussed in section 6.3.

It is also useful to absorb warp factors into the mass scales such that

e−kℓM = M̂ , e−2kℓF = F̂ , e−kℓk = k∗ . (6.40)

6.5.1 Gaugino masses

The gaugino soft mass matrix is given by

Lsoft =
∑

m,n

g2
4

2

1

2
M̂B̃1/2(0)λnλmf

(2)
n (ℓ)f (2)

m (ℓ) + c.c. (6.41)
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It should be clear that there is a mass term for coupling all gaugino modes of the Kaluza-

Klein tower to all other modes. Consider just the zero mode portion of this matrix given

by
1

2
Mλ0λ0λ0 ≡ g2

4

2

1

2
M̂B̃1/2(0)λ0λ0f

(2)
0 (ℓ)f

(2)
0 (ℓ) =

g2
4

2

1

2
M̂B̃1/2(0)λ0λ0 (6.42)

where the equality is due to the fact that the zero mode for the gauge field is flat, f
(2)
0 (y) =

1. This allows us to establish for the minimal messenger model the scale associated with

the gaugino mass

M
(r)
λ0

=
αr
4π

ΛG , ΛG =

N∑

i=1

[e−kℓ
dr(i)F

M
2g(xi)], (6.43)

in which have used the result for M̂B̃1/2(0) obtained in flat space analogue [1] but

with the mass warped accordingly. The label r = 1, 2, 3 refers to the gauge groups

U(1), SU(2), SU(3), da(i) is the Dynkin index of the representation i and

g(x) =
(1 − x) log(1 − x) + (1 + x) log(1 + x)

x2
(6.44)

where xi = F̂
ηiM̂2

= F
ηiM2 and g(x) ∼ 1 for small x [74].

If we wish to consider the full mass matrix we can approximate f
(2)
n>0(ℓ) =

√
2kℓ(−1)n

giving rise to
1

2
Mλn,mλnλm =

g2
4

2
(−1)(n+m)kℓM̂B̃1/2(0)λnλm . (6.45)

From this one can see the soft mass contribution associated with the nonzero modes is a

factor kℓ greater than those of the zero mode alone.

6.5.2 Sfermion masses

The sfermion masses are sensitive to the warping k∗ = ke−kℓ. Due to the complicated

nature of the bulk propagators, we will only comment on the limit when kℓ is large. For the

KK modes to contribute, we require that k is small such that k2 ≪ F,M2 or intermediate

such that F ≤ k2 ≪ M2. We take the exact results of Eqn. (6.31) with Eqn. (6.29). As

demonstrated in Appendix G, we approximate the full KK tower of propagators with the

eigenfunctions and eigenstates of the heavier modes, which are less localised to the IR

brane so will contribute most to the propagation across the bulk. We then complete a

Matsubara summation of the tower of modes. We find the propagator to be

G̃(0, ℓ) ∼ 2ekl/2(−1)n

p sinh(p/k∗)
, (6.46)
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which gives

Er ≃ −
∫

d4p

(2π)4
4ekℓ

sinh2(p/k∗)
Ω(r)

(
p2

M̂2

)
. (6.47)

Physically, the tower of KK modes suppresses large momenta contributions from the two

point functions on the IR brane, which can be seen from the behaviour of sinh2(p/k∗).

In this regime we may expand the current correlators for small momenta as found in [1],

valid when p2

M2 → 0:

Ω(r)

(
p2

M̂2

)
≈ − 1

(4π)2
2dr
3
x2h(x) +O(p2) (6.48)

with

h(x) =
3

2
[
4 + x− 2x2

x4
log(1 + x) +

1

x2
] + (x→ −x). (6.49)

h(x) for x < 0.8 can be reasonably approximated by h(x) = 1 [1]. In this limit, the function

is independent of p2. Finally, the momentum integral is evaluated and the sfermions masses

can then be written as

m2
f̃
∼ 2Cr

f̃

3∑

r

(
αr
4π

)2
N∑

i

4(k2ℓ)2e−3kℓζ(3)dr(i)|
F

ηiM2
|2h(xi). (6.50)

Cr
f̃

is the quadratic Casimir of the f̃ scalar in question, in the gauge group r. The sfermion

scale Λ2
S is

Λ2
S ∼ 2

N∑

i=1

(
ℓk2

|ηiM |

)2 ∣∣∣∣
F

M

∣∣∣∣
2

e−3kℓζ(3)dr(i)h(xi). (6.51)

Next, we may turn to the limit F,M2 ≪ k2. In this limit only the zero modes contribute

significantly to the mediation across the bulk. We again start from Eqn. (6.31) and keep

only the zero modes in the bulk propagators. One can rewrite this in terms of the zero

mode gauge boson eigenfunctions, which are flat [140,144,151]. We arrive at

Er = −
∫

d4p

(2π)4
1

ℓ2
1

p2
[3C̃

(r)
1 (p2/M̂2) − 4C̃

(r)
1/2(p

2/M̂2) + C̃
(r)
0 (p2/M̂2)]. (6.52)

Similarly, one may use the full answer Eqn. (6.31) and expand the current correlators in

the limit p2

M2 → ∞ as was explored in the appendix of [57]. The above equation has been

evaluated before [43,73,74], which we rescale by use of F̂ and M̂ . The result is

m2
f̃

= 2

3∑

r

Cr
f̃
(
αr
4π

)2
N∑

i

e−2kℓdr(i)|
F

M
|2f(xi). (6.53)

f(xi) is given by

f(x) =
1 + x

x2
[log(1 + x) − 2Li2(

x

[1 + x]
) +

1

2
Li2(

2x

[1 + x]
)] + (x→ −x). (6.54)
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For x < 1, f(x) ∼ 1. The additional factor of e−2kℓ arises from the dimensionful ratio

of | F̂
M̂
|2, in the supertrace of C̃ terms. The factors of warping cancel in the ratio Λ2

G/Λ
2
S

in this “4D limit”. These results show that depending on the ratio of k to M , one may

obtain an ordinary “gauge mediated” result or “gaugino mediated” spectrum.

6.5.3 Hyperscalar mass

We now focus on computing the zero mode hyperscalar soft mass. We start with the

exact result found in Eqn. (6.36) and approximate the warped propagator KK mode

eigenfunctions by

f (2)
n (ℓ)f (2)

n (ℓ) ≃ 4(kℓ), (6.55)

to find

m2
H0

=
∑

r

g4
r(5d)c2(f ; r)Dr (6.56)

where, after performing a Matsubara frequency summation,

Dr ∼−
∫

d4p

(2π)4
2(kℓ)

ℓ2k∗
coth(p/k∗) + p/k∗csch2(p/k∗)

2p
Ω(r)

(
p2

M̂2

)
. (6.57)

Dr is UV divergent due to the loop in the hypermultiplet diagrams not always being

spatially separated by the interval. We would like to extract the /Dr, the k∗ dependent

part of Dr. Upon subtracting the UV limit of the integrand, we find

/Dr = −
∫

d4p

(2π)4
k

ℓk∗
[
coth(p/k∗) + (p/k∗)csch2(p/k∗) − 1

p
]Ω(r)

(
p2

M̂2

)
. (6.58)

We use the expansion of current correlators in the limit p2

M2 → 0 found above, to obtain

m2
H̃

∼ 2

3
Cr
f̃

3∑

r

(
αr
4π

)2
N∑

i

4k2(kℓ)e−2kℓζ(3)dr(i)|
F

ηiM2
|2h(xi). (6.59)

This result is less warped than the sfermion soft mass Eqn. (6.51). Now we comment on

the limit of M ≪ k. In this AdS 4D limit one obtains the same result as for the sfermion

masses Eqn. (6.53).

6.5.4 Vacuum energy

The vacuum energy can be computed starting from Eqn. (6.37). The vacuum energy is

UV divergent. To obtain the finite part, one may extract the UV limit of the momentum

integrand as was carried out for the hyperscalar masses above, or one may use a contour

trick in the matsubara summation, outlined in [57]. Either way leads to the same answer.
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For definiteness we use the contour trick and obtain the Casimir energy in the limit of

k ≪M ,

ECasimir ∼
∑

r

g2
5dGr

∫
d4p

(2π)4
kℓe2kℓp

e2p/k∗ − 1
Ω(r)

(
p2

M̂2

)
. (6.60)

Evaluating this for the case of minimal messengers, we find

ECasimir ∼ −1

2

∑

r

N∑

i

g2
4d(r)dGrdr(i)ζ(5)

128π4
(kℓ)k4e−4kℓ

∣∣∣∣
F

ηiM2

∣∣∣∣
2

h(xi). (6.61)

The warped factor e−4kℓ dominate this result as kℓ≫ 1 and we find effectively zero Casimir

energy in this regime. In the 4D AdS limit k ≫M , we find

ECasimir = −1

2

∑

i

∑

r

4g2
4d(r)

(4π)4
dgrdr(i)|ηiF |2e−4kℓ log(

k

ηiM
) (6.62)

which is just as suppressed by the warp factor e−4kℓ. This negative contribution to the

Casimir energy is solely from F term breaking of supersymmetry. It would be interesting

to explore the contributions from D term breaking as they have positively signed contri-

butions to the Casimir energy [57]. Further, one may include supergravity contributions

and explore minimising the total vacuum energy.

6.6 Discussion

General gauge mediation is a powerful model independent framework for gauge mediated

supersymmetry breaking. In this chapter we have shown how the GGM approach can be

applied to five-dimensional warped models.

One must take great care in these warped models, with regard to the ratio k/M .

When k/M ≫ 1 only the zero mode of the vector superfields in the bulk will significantly

contribute to the mediation of supersymmetry breaking effects and one will have gauge

mediation. We find a natural geometric interpretation of the soft terms being hierarchi-

cally small as all soft mass scales arise with at least one factor of e−kℓ. The warp factors

cancel in the ratio Λ2
G/Λ

2
S and thus the model behaves like a typical gauge mediated sce-

nario. This limit closely corresponds to logarithmic running of the standard model gauge

coupling up to k, as only the zero mode significantly contributes. These statements ap-

pear more obviously in the framework of this chapter as both running gauge couplings and

susy breaking soft terms are types of renormalisation. These results somewhat challenge

the common lore, whereby gaugino mediation was assumed: we have shown that gauge

mediation appears to be far more likely in this setup, than gaugino mediation.
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Next when k/M ≪ 1, the heavy kk modes that are more uniformly distributed across

the bulk will also contribute to the mediation and a gaugino mediated limit will be ob-

tained. Furthermore if one implements gaugino mediation (k ≪ M) then one may only

use logarithmic running from Mz to k and then important power law contributions from

the heavy kk modes will be introduced between k and M . In this limit we still expect

ΛG to remain of the same order, Λ2
S acquires a suppression by both a dimensionless ratio,

as happens in the non-warped case, and an additional warp factor e−kℓ. In this way it is

feasible to obtain not only a hierarchy between SUSY breaking and Planck scales but also

between different soft mass scales. An interesting question is what happens when k ∼M?

This regime cannot be computed analytically but we may speculate that it will behave

much more similarly to the hybrid mediation of the previous chapter. We briefly com-

ment on supergravity calculations in the bulk. Generally these corrections will be more

suppressed than the gauge mediation contributions as long as there is some difference in

scales between M and Mplanck.

We believe that this framework can help to make some useful progress in exploring

the phenomenology of these models [152] in a rigorous way and help to extend the use

of certain dualities to increase our understanding of strongly coupled hidden sectors. We

hope that this work may be of some assistance to unlocking evidence of supersymmetry

and extra dimensions at the LHC.



Chapter 7

Conclusion and Outlook

This thesis has emphasised the theoretical construction of higher dimensional models of

the mediation of supersymmetry breaking. These models are effective descriptions of

an intermediate regime of energy, whose ultimate completion may be string theory. We

have also argued that even entirely four dimensional models may appear to have higher

dimensional descriptions, due to the way strongly coupled gauge groups such as QCD,

generate composite vector mesons. In fact we strongly believe that the analogous effect of

vector meson dominance found in QCD, will play a role in the mediation of supersymmetry

breaking effects from the strongly coupled hidden sector. The generic signature of which

are suppressed scalar mass soft terms, before renormalisation group evolution. We hope

that more emphasise on this prediction is made in future work and is hopefully borne out

by future experiments.

Discovering broken supersymmetry at the Large Hadron Collider will open up the

possibility to explore a whole new sector of matter and interactions. It is quite possible

this hidden sector that breaks supersymmetry will include a strongly coupled gauge group

and may admit a low energy effective description. If this is the case, understanding this

sector will become not just a topic for the theorist but will also become a task for the

experimentalist. From this perspective it will become more obvious that the techniques

applied to QCD physics of pions and mesons will become more and more important in

the understanding of the hidden sector. With this in mind our outlook is to apply the

tools and knowledge of QCD, such as form factors, spectral sum rules, operator product

expansions and comparision with experimentally measurable properties to the models we

have outlined in this thesis. Just as mesons and baryons are made of fundamental quarks,

we think it important to develop tools to extract the underlying fundamental degrees of
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freedom from the composite degrees of freedom we are likely to observe. Vector mesons

and mesinos of the hidden sector as Kaluza-Klein modes of the standard model gauge

and gaugino fields would in this case play an important role as a window into the hidden

sector. Finally, refinements of these models will also become important. The simplest

two site model of an extra dimension in chapter 5 whilst easiest to extract results from is

probably too simple. Models based on an AdS metric as appear in chapter 6 add further

complication, but it is likely that the model that best fits future experimental results will

be more complicated than this. We imagine that an AdS profile may give the leading order

effects, which must be supplemented by a smoother transition of the metric nearer to the

fixed points at each end of the interval, for example. Another direction in this respect is

to consider how and in what ways the tools of Seiberg Duality in giving an IR description

of the hidden sector overlap with tools from AdS/CFT to give an effective description

of a strongly coupled system. Perhaps this overlap may aid in making more quantative

predictions about supersymmetry breaking and also strongly coupled theories in general.

7.1 Summary of key results

7.1.1 Gaugino masses

Lightest gaugino soft mass in terms of the current correlator is given by

Model Gaugino Mass

4d mλ = g2MB̃1/2(0)

5d mλ =
g25d
ℓ MB̃1/2(0)

N-site lattice mλ = g2

NMB̃1/2(0)

Warped mλ =
g25d
ℓ M̂B̃1/2(0)

For the particular case where the hidden sector is described by a set of N chiral super-

field messengers coupled to a supersymmetry breaking spurion X = M + θ2F

W = XηiΦiΦ̃i (7.1)

The lightest gaugino mass is given by

mr
λ0

=
αr
4π

ΛG , ΛG =

N∑

i=1

[
dr(i)F

M
g(xi)] (7.2)

The label r = 1, 2, 3 refers to the gauge groups U(1), SU(2), SU(3), dr(i) is the Dynkin

index of the representation of Φi, Φ̃i and

g(x) =
(1 − x) log(1 − x) + (1 + x) log(1 + x)

x2
(7.3)
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where xi = F
ηiM2 . g(x) ∼ 1 for small x [74]. For the warped case one must substitute

F̂ = e−2kℓF and M̂ = e−kℓM .

7.1.2 Sfermion masses at leading order

The brane localised sfermion mass formulas at leading order are given by

m2
f̃

=
∑

r

g4c2(f ; r)Er (7.4)

where we have

• 4d: Er = −
∫ d4p

(2π)4
1
p2

Ωr( p
2

M2 )

• 5d: Er = −
∫ d4p

(2π)4
∑

n,n̂
(−1)n+n̂

p2+p25

p2

p2+p̂25
Ωr( p

2

M2 )

• N-site lattice: Er = −
∫ d4p

(2π)4
p2(〈p2; 0, N − 1〉)2Ωr( p

2

M2 )

• 2-site lattice: Er = −
∫ d4p

(2π)4
1
p2

[
m2

v
p2+m2

v

]2
Ωr( p

2

M2 )

• Warped: Er = −
∫ d4p

(2π)4
p2G̃(0, ℓ)G̃(0, ℓ)Ωr( p

2

M̂2
)

Ωr( p
2

M̂2
) is the super-traced sum of current correlators defined in section 2.1. The prop-

agator 〈p2; 0, N − 1〉 is defined in section 4.1 and G̃(y, y′) in section 6.4. C2(f ; r) is the

quadratic Casimir of the sfermion f̃ in question, in the gauge group r.

For the particular case where the hidden sector is described by a set of N chiral super-

field messengers mentioned above the mass formula at leading order are given by

m2
f̃

= 2
3∑

r=1

C2(f ; r)(
αr
4π

)2Λ2
S (7.5)

• 4d: Λ2
S = | FM |2 ∑N

i=1 dr(i)f(xi)

• 5d (1/ℓ < M) : Λ2
S = | FM |2 ∑N

i=1 |
ζ(3)
ηiMℓ |2dr(i)h(xi)

• N-site lattice (1/(Na) < M): Λ2
S =

∑N
i=1 | F

ηiM2a
|2dr(i) 1

128π4
2
3h(xi)I

• 2-site lattice: Λ2
S = | FM |2 ∑N

i=1 |
dr(i)
ηiMℓ |ρ , 0 ≤ ρ ≤ 2.

• Warped 4d (k ≫M): Λ2
S = e−2kℓ| FM |2 ∑N

i=1 dr(i)f(xi)

• Warped 5d (k ≪M): Λ2
S ∼ e−3kℓ| FM |2 ∑N

i=1(
2k2ℓ
|ηiM |)

2dr(i)h(xi).

where in the above h(xi) and f(xi) may be found in section 2.3, a is a lattice spacing and

I may be found in section 4.2.2.
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7.1.3 Sfermion masses at subleading order

There are also subleading contributions in αr which are sometimes of the same scale as

the leading order contributions. These contributions arise as a double mass insertion of

the gaugino mass and are given by

• 4d: δm2
f̃

=
∑

r c2(f ; r)g
6

2

∫ d4p
(2π)4

1
p4

(MB̃1/2(p
2/M2))2

• 5d: δm2
f̃

=
∑

r c2(f ; r)g
6

2

∫ d4p
(2π)4

p2
∑

n,n̂
(−1)n+n̂

p2+p25

MB̃1/2(p2/M2)

p2+p̂25

MB̃1/2(p2/M2)

p2+ˆ̂p25

• N-site: δm2
f̃

=
P

r c2(f ;r)g6

2

∫ d4p
(2π)4

p2 〈p2; 0, N−1〉2 〈p2;N−1, N−1〉 (MB̃1/2(p
2/M2))2

• 2-site lattice: δm2
f̃

=
∑

r c2(f ; r)g
6

2

∫ d4p
(2π)4

m4
v

p4(p2+m2
v)2

(MB̃1/2(p
2/M2))2

• Warped: δm2
f̃

=
∑

r c2(f ; r)g
6

2

∫ d4p
(2π)4

p2(G̃(0, ℓ))2G̃(ℓ, ℓ)(MB̃1/2(p
2/M2))2

For the the particular case where the hidden sector is described by a set of N chiral

superfield messengers mentioned above, this subleading contribution may be estimated to

be

m2
f̃

= 2
3∑

r=1

C2(f ; r)(
αr
4π

)3Λ2
G (7.6)

• 4d: Λ2
G = |∑N

i=1[
dr(i)F
M g(xi)]|2

• 5d (1/ℓ < M) : Λ2
G = |∑N

i=1[
dr(i)F
M g(xi)]|2

• Warped 5d (k ≪M): Λ2
G ∼ (kl)3e−3kℓ|∑N

i=1[
dr(i)F
M g(xi)]|2.



Appendix A

Notation and Conventions

This appendix outlines the notation and conventions of 4d N = 1. Useful references

are [58,153–158].

A.1 Poincaré group and its Algebra

The four dimensional metric1 is given by

ηµν = ηµν = diag(−1, 1, 1, 1) (A.1.1)

The isometries of this spacetime are the Lorentz transformations and translations:

xµ 7→ x′µ = Λµν︸︷︷︸
Lorentz

xν + aµ︸︷︷︸
translation

(A.1.2)

whereby Λµν = ∂x′µ

∂xν . These coordinate transformations leave the metric invariant and

hence the Lorentz invariant length element ds2 = ηµνdxµdxν . In general det(Λ) = ±1 and

+1 defines the proper orientation. Furthermore, the orthocronous transformations have

Λ00 ≥ 1. The proper orthocronous subgroup of the Lorentz group is often referred to as

SO(3, 1)↑+ and the semi-direct2 product of SO(3, 1)↑+ and translations form the Poincaré

group: rotations, boosts and translations. These continous global transformations of

1We have chosen the mostly plus signature such that the sign of the determinant does not change when

extending by additional dimensions.
2The Lorentz transformation and translations do not commute.
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spacetime coordinates are generated by a Lie Algebra:

[Pµ , P ν ] = 0 (A.1.3)

[Mµν , P σ] = i (Pµ ηνσ − P ν ηµσ)

[Mµν , Mρσ] = i (Mµσ ηνρ + Mνρ ηµσ − Mµρ ηνσ − Mνσ ηµρ)

All these generators are bosonic. We must find representations of the algebra which

will act on a relevant vector space, to generate these transformations. For pure scalar

representations of the group, the algebra is trivially satisfied and exp(0) = 1. For four

vectors xµ, one may choose to satisfy the algebra with

(P ρ)µν = i
∂

∂xρ
δµν , (Mρσ)µν = i(ηρµδσν − ησµδρν) (A.1.4)

Which give the finite transformations

T µν = exp(−iaρPρδµν ), Λµν = exp(
1

2
ωρσM

ρσ) (A.1.5)

on vector representations of the Poincaré group. aρ and ωρσ are infinitesimal group param-

eters that determine the type of transformation being carried out in terms of the spacetime

coordinates. For scalar fields the transformation is φ′(xµ) → φ(Λ−1xµ) = Λ−1φ(xµ), which

may be written as

Λ = exp(
1

2
ωρσ(M

ρσ)µνxµ∂ν) (A.1.6)

such that Lµν = i(Mµν)ρσxρ∂σ = i(xµ∂ν −xν∂µ). If the vector space is a four component

spinor field ψA, there is a representation of Mµν which satisfies the Poincaré algebra

Mµν = −Lµν + Σµν (A.1.7)

where

Σµν ≡ i

4
[γµ, γν ]. (A.1.8)

These gamma matrices satisfy the Dirac algebra

{γµ, γν} = −2ηµνI. (A.1.9)

The Weyl representation of the Gamma matrices is

γµ =


 0 σµαα̇

σ̄µα̇α 0


 , and γ5 =


 −I 0

0 I


 , (A.1.10)
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where σµαα̇ = (1, ~σ) and σ̄µα̇α = (1,−~σ). α, α̇ are spinor indices of SL(2, C). The Pauli

spin matrices, ~σ, are given by

σ1 =


 0 1

1 0


 , σ2 =


 0 −i

i 0


 , σ3 =


 1 0

0 −1


 . (A.1.11)

In the Weyl representation of the Gamma matrices, the Lorentz generator for a Dirac

spinor may be decomposed

Σµν =


 (σµν) βα 0

0 (σ̄µν)α̇
β̇


 =

i

4


 σµσ̄ν − σν σ̄µ 0

0 σ̄µσν − σ̄νσµ


 (A.1.12)

Where Σµν
L = (σµν) βα is a representation of the generator that acts on left handed Weyl

spinors and similarly Σµν
R = −(σ̄µν)α̇

β̇
acts on the right handed Weyl spinors. As we can

decompose the Dirac spinor into smaller representations that each independently transform

under the group SL(2, C) (complexified SU(2)) we are at liberty to define a two component

notation. The two component spinor transforms as

ξ′α = N β
α ξβ. (A.1.13)

We define

ǫαβ =


 0 −1

1 0


 ǫαβ =


 0 1

−1 0


 . (A.1.14)

These can be used to lift and lower indices without introducing a change of sign. The

complex conjugate representation is given by ξ̄α̇ = (ξα)∗ or equivalently ξ̄α̇ = (ξα)†. A

typical four component spinor in a Weyl basis is

ψ =

(
λiα
χ̄iα̇

)
(A.1.15)

where the operation of Staring lifts/lowers and dots/undots:

(ψ)∗ =

(
λ̄α̇

χα

)
(A.1.16)

The Dagger operation is

(ψ)† = (λ̄α̇, χ
α) (A.1.17)

Dirac conjugate is

ψ̄ = ψ†γ0 = (λ̄α̇, χ
iα)


 0 1

1 0


 = (χα, λ̄α̇) (A.1.18)
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A.2 The Super-Poincaré Algebra

We have found representations of the Lorentz group which have half integer spin and have

further decomposed these representations into Weyl spinors, which also have half-integral

spin. However all our representations of the Poincaré algebra have integral spin. It is

natural to ask if one may extend the algebra such that some representations of the algebra

itself have half-integral spin. This is called the super-Poincaré algebra. The algebra

may be written to include either four or two component spinors as generators. These

generators generate an infinitesimal symmetry of an unphysical superspacetime. In two

component notation, the group parameters may be labeled ǫ and ǭ and are fermionic.

If these are constant parameters then it is a global symmetry, and when ǫ(xµ) it is a

local superspace. For global N = 1 supersymmetry in two component notation in four

dimensions, the algebra is given by

[Pµ , P ν ] = 0 (A.2.19)

[Mµν , P σ] = i (Pµ ηνσ − P ν ηµσ)

[Mµν , Mρσ] = i (Mµσ ηνρ + Mνρ ηµσ − Mµρ ηνσ − Mνσ ηµρ)

[Qα , M
µν ] = (σµν) βα Qβ

[Q̄α̇ , Mµν ] = (σ̄µν)α̇
β̇
Q̄β̇

[Qα , Pµ] = 0

[Q̄α̇ , Pµ] = 0

{Qα, Qβ} = 0

{Qα, Q̄α̇} = 2σµαα̇Pµ

There is also a global internal U(1)R symmetry with parameter t,

[Qα, R] = Qα (A.2.20)

[Q̄α̇, R] = −Q̄α̇

The Supercharges are defined by

Qα = ∂α + iσµαα̇θ̄
α̇∂µ , Q̄α̇ = −∂α̇ − iθασµαα̇θ̄

α̇∂µ (A.2.21)

where we use the up/down and down/up system

θ2 = θαθα , θ̄2 = θ̄α̇θ̄
α̇. (A.2.22)
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It is useful to define the y-space when defining constraint conditions on superfields

yµ = xµ − iθασµαα̇θ̄
α̇ , ȳµ = xµ + iθασµαα̇θ̄

α̇. (A.2.23)

The superspace measure is given by
∫
d8z =

∫
d4xd2θd2θ̄. The supercovariant derivatives

that commute with both partial derivatives and with supercharges are given by

Dα = ∂α − iσµαα̇θ̄
α̇∂µ , D̄α̇ = −∂α̇ + iθασµαα̇θ̄

α̇∂µ, (A.2.24)

which obey the anticommutator

{Dα, D̄α̇} = 2σµαα̇Pµ. (A.2.25)

An infinitesimal supersymmetry transformation is then given by

(xµ, θ, θ̄) → (xµ − iθσµǭ+ iǫσµθ̄, θ + ǫ, θ̄ + ǭ) (A.2.26)

Acting on a function this gives F → F + δǫF such that

δǫF (x, θ, θ̄) = i(ǫQ+ ǭQ̄)F (x, θ, θ̄) (A.2.27)

A.3 Off-Shell Superfields

Four dimensional N = 1 superfields are naturally defined in superspace through the use

of superspace constraints. The left handed chiral superfield, in y coordinates, obeys the

constraint

D̄α̇Φ(y) = 0 (A.3.28)

which implies at most a constant in θ̄ i.e.

Φ(y) = φ(y) +
√

2θψ(y) + θ2F (y) (A.3.29)

Use of Taylor series and a shift to x coordinates readily gives

Φ(x) = φ(x) − iθσµθ̄∂µφ(x) − 1

4
θ2θ̄2∂2φ(x) +

√
2θψ(x) +

i√
2
θ2∂µψ(x)σµθ̄ + θ2F (x).

(A.3.30)

The super symmetry transformations are

δǫφ =
√

2ǫψ, (A.3.31)

δǫψ =
√

2ǫF −
√

2i(σµǭ∂µφ), (A.3.32)

δǫF = i∂µ(
√

2ψσµǭ). (A.3.33)
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A right handed Chiral superfield in ȳ is similarly defined by

DαΦ†(y†) = 0. (A.3.34)

A vector superfield is defined as a real superfield

V = V̄ (A.3.35)

with a gauge transformation

V → V + i(Λ − Λ̄) (A.3.36)

where Λ is a chiral superfield. This allows us to fix to Wess-Zumino gauge

V = −(θσµθ̄)Aµ + iθ2θ̄λ̄− iθ̄2λ+
1

2
θ2θ̄2D. (A.3.37)

The Gauge invariant information may be gather into a spinorial super field strength

Wα = −1

4
D̄2DαV (A.3.38)

which is a left handed chiral superfield with

D̄α̇Wα = 0, DαWα = D̄α̇W̄
α̇ (A.3.39)

Wα(y) = −iλα(y) + θβ(δ
β
αD(y) − i(σµν)βαFµν(y) + θ2σµαα̇∂µλ̄

α̇(y). (A.3.40)

The global symmetry current superfield is defined by the linear constraint,

D2J = D̄2J = 0 (A.3.41)

A real superfield fixed by these constained is a real linear multiplet which in x is

J a = Ja + iθja − iθ̄j̄a − θσµθ̄jaµ +
1

2
θθθ̄σ̄µ∂µj

a − 1

2
θ̄θ̄θσµ∂µj̄

a − 1

4
θθθ̄θ̄2Ja (A.3.42)

Noether theorem guarantees that a continuous global symmetry gives rise to a conserved

current

∂µjµ = 0, Q =

∫
d3xj0 (A.3.43)

With conserved charge Q. The charge commutes with supersymmetry [Qα, Q] = 0 such

that the current algebra may be defined up to Schwinger terms

[Qα, jµ] = −2i(σµν)
β
α∂

νjβ . (A.3.44)

A.3.1 The Minimal Supersymmetric Standard Model

It is sometimes common to label the transpose conjugates of right handed fields (U,D,E)

with a (¯). The (˜) represents superpartners to the standard model fields.
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Names LHχSF Bosons Fermions SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6 )

(3 Generations) U ũ∗R u†R ( 3, 1, −2
3)

D d̃∗R d†R ( 3, 1, 1
3)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2)

(3 Generations) E ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2)

Hd (H0
d H−

d ) (H̃0
d H̃−

d ) ( 1, 2 , −1
2)

Names VSF Bosons Fermions SU(3)C , SU(2)L, U(1)Y

Gauge,Gauginos G Gaµ G̃a ( 8, 1, 0)

(Gauge Fields) W W 3
µ , W

±
µ W̃ 3

µ , W̃
±
µ ( 1, 3, 0)

B Bµ B̃ ( 1, 1, 0)

Table A.1: Left handed Chiral superfields and Vector superfields of the MSSM and their

particle content.



Appendix B

Non-Abelian Bulk Action

This appendix reviews the N = 1 5D Non-Abelian bulk action for super-Yang-Mills. This

corresponds to N = 2 in the 4D perspective. We compactify on an orbifold, S1/Z2, such

that super-Yang-Mills becomes a N = 1 positive parity vector multiplet and negative

parity chiral multiplet. This review is closely based on [57,67]. The θ-warping technique

of chapter 6 naturally extends these results to a slice of AdS, which may also be found in

the appendix of [152].

B.1 The Non-Abelian bulk action

Starting with the off-shell N = 1 pure super-Yang-Mills in components

SSYM5D =

∫
d5x Tr

[
−1

2
(FMN )2 − (DMΣ)2 − iλ̄iγ

MDMλ
i + (Xa)2 + g5 λ̄i[Σ, λ

i]

]
.

(B.1.1)

M,N run over 0, 1, 2, 3, 4, while µ, ν run over 0, 1, 2, 3. Our conventions on the gauge

group generators and the metric are Tr(TATB) = 1
2δ

AB and ηMN = diag(−1, 1, 1, 1, 1).

The coupling 1/g2
5 has been rescaled inside the covariant derivative, DM = ∂M + ig5AM ,

where AM is a standard gauge vector field and FMN its field strength. The other fields are

a real scalar Σ, an SU(2)R triplet of real auxiliary fields Xa, a = 1, 2, 3 and a symplectic

Majorana spinor λi with i = 1, 2 which form an SU(2)R doublet. The reality condition is

λi = ǫijCλ̄Tj (B.1.2)
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where ǫ12 = 1 and C is the 5d charge conjugation matrix CγMC−1 = (γM )T . An explicit

realisation of the Clifford algebra {γM , γN} = −2ηMN is

γM =







0 σµαα̇

σ̄µα̇α 0


 ,




−i 0

0 i





 , and C =




−ǫαβ 0

0 ǫα̇β̇


 , (B.1.3)

where σµαα̇ = (1, ~σ) and σ̄µα̇α = (1,−~σ). α, α̇ are spinor indices of SL(2, C). For the

SU(2)R indices we define

ǫij =




0 −1

1 0


 ǫij =




0 1

−1 0


 (B.1.4)

The superalgebra is given by

{Qi, Q̄j} = 2γMPM δ
i,j (B.1.5)

which are also symplectic Majorana.

This action is supersymmetric under the susy transformations

δǫA
M = iǭiγ

Mλi (B.1.6)

δǫΣ = iǭiλ
i (B.1.7)

δǫλ
i = (γMNFMN − γMDMΣ)ǫi − i(Xaσa)ijǫ

j (B.1.8)

δǫX
a = ǭi(σ

a)ijγ
MDMλ

j − ig5[Σ, ǭi(σ
a)ijλ

j] (B.1.9)

with γMN = 1
4 [γM , γN ]. The symplectic Majorana spinor supersymmetry parameter is

ǭi = ǫ†iγ
0. To clarify notation we temporarily display all labels, writing the Dirac spinor

in two component form ψi T = (ψLiα , ψ̄
Rα̇i) and ψ̄i = (ψRαi , ψ̄Lα̇i). The bar on the two

component spinor denotes the complex conjugate representation of SL(2, C). In particular,

the reality condition (B.1.2) implies that

λ1 =




λLα

λ̄α̇R


 , λ2 =




λRα

−λ̄α̇L


 , (λ̄1)

T =




λαR

λ̄Lα̇


 , (λ̄2)

T =




−λαL

λ̄Rα̇


 ,

(B.1.10)

so the SU(2)R index on a two component spinor is a redundant label.

Next, using an orbifold S1/Z2 the boundaries will preserve only half of the N = 2

symmetries. We choose to preserve ǫL and set ǫR = 0. The conjugate representations are
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constrained by the reality condition Eqn. (B.1.2). The susy transformations are

δǫLA
µ = iǭLσ̄

µλL + iǫLσ
µλ̄L (B.1.11)

δǫLA
5 = −ǭLλ̄R − ǫLλR (B.1.12)

δǫLΣ = iǭLλ̄R − iǫLλR (B.1.13)

δǫLλL = σµνFµνǫL − iD5ΣǫL + iX3ǫL (B.1.14)

δǫLλR = iσµF5µǭL − σµDµΣǭL + i(X1 + iX2)ǫL (B.1.15)

δǫL(X1 + iX2) = 2ǭLσ̄
µDµλR − 2iǭLD5λ̄L + ig5[Σ, 2ǭLλ̄L] (B.1.16)

δǫLX
3 = ǭLσ̄

µDµλL + iǭLD5λ̄R − ǫLσ
µDµλ̄L − iǫLD5λR

+ig5[Σ, (ǭLλ̄R + ǫLλR)] , (B.1.17)

where σµν = 1
4(σµσ̄ν−σνσ̄µ). We have a parity operator P of full action Pφ(y) = Pφ(−y)

and define PψL = +ψL PψR = −ψR for all fermionic fields and susy parameters1. One

can group the susy variations under the parity assignment and it becomes clear that the

even parity susy variations are those of an off-shell 4d vector multiplet V (x5). Similarly

the susy variations of odd parity form a chiral superfield Φ(x5). We may therefore write

a 5d N = 1 vector multiplet as a 4d vector multiplet and a chiral superfield:

V = − θσµθ̄Aµ + iθ̄2θλ− iθ2θ̄λ̄+
1

2
θ̄2θ2D (B.1.18)

Φ =
1√
2
(Σ + iA5) +

√
2θχ+ θ2F , (B.1.19)

where the identifications between 5d and 4d fields are

D = (X3 −D5Σ) F = (X1 + iX2) , (B.1.20)

and we used λ and χ to indicate λL and −i
√

2λR respectively. The Non-Abelian bulk

action in N = 1 4D formalism is

SSYM5 =

∫
d5x

{
1

2
Tr

[∫
d2θWαWα +

∫
d2θ̄W̄α̇W̄

α̇

]
+

1

2g2
5

∫
d4θTr

[
e−2g5V∇5e

2g5V
]2

}
.

(B.1.21)

∇5 is a “covariant” derivative with the respect to the field Φ [67]:

∇5e
2g5V = ∂5e

2g5V − g5Φ
†e2g5V − g5e

2g5V Φ. (B.1.22)

1The assignment P∂5 = −∂5 is also required.
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Let us now focus on 5d hypermultiplets. The bulk supersymmetric action is

SH5D =

∫
d5x[−(DMH)†i (D

MH i) − iψ̄γMDMψ + F †iFi − g5ψ̄Σψ + g5H
†
i (σ

aXa)ijH
j

+g2
5H

†
iΣ

2H i + ig5
√

2ψ̄λiǫijH
j − i

√
2g5H

†
i ǫ
ij λ̄jψ ]. (B.1.23)

Hi are an SU(2)R doublet of scalars. ψ is a Dirac fermion and Fi are a doublet of

scalars. With our conventions, the dimensions of (Hi, ψ, Fi) are (3
2 , 2,

5
2). In general the

hypermultiplet matter will be in a representation of the gauge group with Dynkin index

defined by dδab = Tr[T aT b]. The action is supersymmetric under the susy transformations

δǫH
i = −

√
2ǫij ǭjψ (B.1.24)

δǫψ = ig5
√

2γMDMH
iǫijǫ

j − g5
√

2ΣH iǫijǫ
j +

√
2Fiǫ

i (B.1.25)

δǫFi = i
√

2ǭiγ
MDMψ + g5

√
2ǭiΣψ − 2ig5 ǭiλ

jǫjkH
k . (B.1.26)

To obtain the N = 1 sets due to the boundaries preserving only half the supersymmetry,

we again choose to preserve ǫL and set ǫR = 0. The susy variations are

δǫLH
1 =

√
2ǫLψL (B.1.27)

δǫLH
2 =

√
2ǭLψ̄R (B.1.28)

δǫLψLα = ig5
√

2σµ
αβ̇
DµH

2ǭLβ̇ + g5
√

2D5H
2ǫLα − g5

√
2ΣH2ǫLα +

√
2F1ǫ

L
α (B.1.29)

δǫLψ̄
Rα̇ = ig5

√
2σ̄µα̇βDµH

2ǫLβ − g5
√

2D5H
1ǭLα̇ − g5

√
2ΣH1ǭLα̇ −

√
2F2ǭ

Lα̇ (B.1.30)

δǫLF1 = i
√

2ǭLα̇σ̄
µα̇βDµψLβ −

√
2ǭLα̇D5ψ̄

Rα̇ + g5
√

2ǭLα̇Σψ̄Rα̇ − 2ig5 ǭ
Lj
α̇ λ̄

Rα̇jǫjkH
k

(B.1.31)

δǫLF2 = −i
√

2ǫLασµαβDµψ̄
Rβ̇ −

√
2ǫLαD5ψ

L
α − g5

√
2ǫLαΣψLα + 2ig5ǫ

LαλLαjǫjkH
k .

(B.1.32)

In the 4d superfield formulation, we again use the parity of the PψL = +ψL and PψR =

−ψR to group the susy transformations into a positive and negative parity chiral super-

fields, PH = +H and PHc = −Hc:

H = H1 +
√

2θψL + θ2(F1 +D5H2 − g5ΣH2) (B.1.33)

Hc = H†
2 +

√
2θψR + θ2(−F †

2 −D5H
†
1 − g5H

†
1Σ) . (B.1.34)

The gauge transformations are H → e−ΛH and Hc → HceΛ. The N = 1 action in 4d

language is

SH5d =

∫
d5x(

∫
d4θ[H†e2g5VH +Hce−2g5VHc†] +

∫
d2θHc∇5H +

∫
d2θ̄Hc†∇5H

†) .

(B.1.35)
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These results have a natural extension using the techniques of θ-warping discussed in

chapter 6.



Appendix C

Deriving The Bulk Propagators

In this section we outline some steps in determining the bulk propagator in a R
1,3×S1/Z2

background.

C.1 The bulk propagator

We start with a single field in five dimensions whose Fourier transform is

φ(x) =

∫
d5xeip.xφ̃(p) (C.1.1)

To go to R
1,3×S1/Z2 we use the full action of parity operator 1

2(1+P) which is a projector,

whereby

Pφ(xµ, x5) = pφ(xµ,−x5) = ±φ(xµ,−x5) (C.1.2)

so that we arrive at

1

2
(1 + P)

∫
d5xeip.x =

∫
d4xdy5

1

2
(1 + P)eip.x+ix5.y5 =

∫
d4xdy5e

ip.x1

2
(eix5.y5 + pe−ix5.y5).

(C.1.3)

Taking the two point function of the scalar field one arrives at the bulk scalar propagator

〈φ(x, x5)φ(y, y5)〉 =

∫

p5

i

p2 − (p5)2
e−ip·(x−y)(eip

5(x5−y5) + Peip
5(x5+y5)) , (C.1.4)

∫

p5
=

∫
d4p

(2π)4
1

2ℓ

∑

p5

, (C.1.5)

The bulk propagator can then similarly be written in terms of the wave functions as (for

a negative parity field)

P (q2, a, b) =
∑

m,n

φ∗n(a)φm(b)
δmn

q2 + p2
n

=
2

L

∑

n

sin

(−πna
L

)
sin

(
πnb

L

)
1

q2 + p2
n

. (C.1.6)
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Here pn = nπ
L , and one can convert the sum to an integral using ∆n = dp L/π .

One may ask how we arrived at the masses of the kk modes in the propagator. Well

lets look at the fermions. We start with the term

∫
d5xΨ̄γµ∂µΨ (C.1.7)

This is a Dirac four spinor (in 5D it is actually symplectic Majorana as it cannot be Dirac

and there is also an SU(2)R index but lets ignore this for now). We then write this as
∫
d4xdy5 and apply orbifold boundary conditions that are like an infinite potential well but

with periodic boundary conditions such that some fields reflect off the wall. The resulting

action when expanded is

∑

n

λ̄nσ
µ∂µλn +

∑

n

ψ̄nσ
µ∂µψn +

∑

n

λn∂5ψn +
∑

n

λ̄n∂5ψ̄n (C.1.8)

Notice these terms are all the same order in g. So to obtain the correct massive propagators

we must construct a geometric sum of diagrams. We will do this separately for each n so

there is an overall
∑

n outside which we ignore.

So a massless tower of propagators with even parity will have the form

P (q2, a, b) =
∑

m,n

φ∗n(a)φm(b)
δmn
q2

=
2

L

∑

n

cos

(−πna
L

)
cos

(
πnb

L

)
1

q2
. (C.1.9)

+ + . . .

Figure C.1: Infinite sum of M-insertions.

Now imagine a massless propagor with one mass insertion and then another massless

propagator i.e. an odd number of mass insertions. Between each mass instertion are

propagators that alternate between the λ and the χ fermions, as in figure C.1

/k

k2
M

/k

k2
+

/k

k2
M

/k

k2
M

/k

k2
M

/k

k2
+ ..... =

/k

k2

∞∑

i=0

(M
/k

k2
)2i+1 (C.1.10)

where we want to interpret the M = p5 and (/k)2 = k2.

/k

k2

∞∑

i=0

(M
/k

k2
)2i+1 =

M

k2

∞∑

i=0

(
M2

k2
)i =

M

k2

1

1 − M2

k2

=
M

k2 −M2
(C.1.11)

In the even number of mass insertions we have

/k

k2

∞∑

i=0

(M
/k

k2
)2i =

/k

k2

∞∑

i=0

(
M

k2
)i =

/k

k2 −M2
. (C.1.12)
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Additionally one may need to keep track that at each sewing point we have to do an

integral ∫
dy5 cos(k5y5)∂5 sin(k5y5) (C.1.13)

So there is also a geometric sum of these. Collecting these ingredients one arrives at the

above propagator. For the particular case that one propagates from x5 = 0 to y5 = ℓ, we

may write

〈φ(x, 0)φ(y, ℓ)〉 =

∫

p5

i

p2 + (p5)2
e−ip·(x−y)(e−ip

5(ℓ) + Peip
5(ℓ))

∫

p5

i2(−1)n

p2 + (p5)2
. (C.1.14)

with a Wick rotation implied.

C.2 The Contour Trick

The Matsubara Frequency summation can be applied to the kk propagators. We will

apply it to the integrand

S =
∑

n

h(k5) =
1

2ℓ

∑

n

(−1)n
1

k2 + (k5)2
(C.2.15)

We would like to remove the sum on k5 and carry out an integration on only the k2

momenta. To do this we exchange the sum of p5 for a complex auxiliary function g(ik5),

that has poles at these point so that when we take the sum of residues, the residues

are located at the points where the sum would have been. The sum is then a sum of

residues found by integrating the product of g(ik5)h(k5) along an appropriate closed path.

Typically we will choose

g(z) =
β

e(βz) − 1
or

β

2
Coth(βz/2) (C.2.16)

where we have β = 2ℓ. The manipulations are

S =
∑

n

h(k5) =
1

2ℓ

∑

n

(−1)n
2

k2 + (k5)2
=

∑

n

1

2ℓ

2eik5ℓ

k2 + (k5)2
(C.2.17)

We apply the residue theorem

∮
dk5

2π
g(z)h(z) =

∮
dk5

2π

1

2ℓ

2ℓ

ei2k5ℓ − 1

2eik5ℓ

k2 + (k5)2
=

∑

n

Res[g(z)h(iz)]|z=ik5 (C.2.18)

where k5 = nπ
ℓ . So we construct

∮
dk5

2π
g(z)h(z) =

∮
dk5

2π

1

2ℓ

2ℓ

ei2k5ℓ − 1

2eik5ℓ

k2 + (k5)2
(C.2.19)
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Now it is clear that there are poles along the complex z axis, there are also two simple

poles when k5 = ±ik We trap these two poles in our contour and exclude the rest, by use

of an infinite circle, with two hoops on the simple poles. Evaluating the residues at these

two poles we find

S =
1

kSinhkℓ
(C.2.20)

We can now carry out an integration on the k2 momenta. This can be applied to each of

the bulk propagators. If we had taken x5 = y5 = 0 we would have

S =
∑

n

h(k5) =
1

2ℓ

∑

n

1

k2 + (k5)2
=

1

kTanhkℓ
(C.2.21)

The final one, of a positive parity scalar propagating from a brane to the bulk we start

with

〈φ(x, x5)φ(y, y5)〉 =

∫

p5

i

p2 − (p5)2
e−ip·(x−y)(eip

5(x5−y5) + eip
5(x5+y5)) , (C.2.22)

and take x5 = 0 and y5 as a variable. We finally get, using the contour trick

1

2ℓ

∞∑

p5=−∞

(−1)neip5.y5

p2 + p2
5

=
Cosh(p|y| − ℓ)

2p sinh(pℓ)
(C.2.23)

where one can move the sum on p5 or n with no cost in the measure.



Appendix D

Generalised messenger sector in

5D with an orbifold

This section extends the results of [73] to the case of bulk propagation in 5D with an

orbifold. We keep as close as possible to the notation of [73].

D.1 Messenger sector currents and correlators

We consider a messenger sector φi, φ̃i coupled to a SUSY breaking spurion X:

W = M(X)ij φiφ̃j = (m+Xλ)ij φiφ̃j (D.1.1)

m and λ are generic matrices. The messengers are in a representation of the gauge group

with a Dynkin index d, defined by dδab = Tr[T aT b]. The fundamental messengers on the

SUSY breaking brane will couple to the bulk vector superfield as

δL =

∫
d2θd2θ̄

(
φ†ie

2gV aTa
φi + φ̃†ie

−2gV aTa
φ̃i

)
+

(∫
d2θ W + c.c.

)
(D.1.2)

We can extract the multiplet of currents from the kinetic terms in the above Lagrangian.

We find

J a = Ja + iθja − iθ̄j̄a − θσµθ̄jaµ +
1

2
θθθ̄σ̄µ∂µj

a − 1

2
θ̄θ̄θσµ∂µj̄

a − 1

4
θθθ̄θ̄2Ja (D.1.3)

where

Ja = φ†iT
aφi − φ̃†iT

aφ̃i (D.1.4)

ja = −i
√

2
(
φ†iT

aψi − φ̃†iT
aψ̃i

)

j̄a = i
√

2
(
ψ̄iT

aφi − ¯̃
ψiT

aφ̃i

)

jaµ =
(
ψiσµT

aψ̄i − ψ̃iσµT
a ¯̃
ψi

)
− i

(
φ†iT

a∂µφi − ∂µφ
†
iT

aφi − φ̃†iT
a∂µφ̃i + ∂µφ̃

†
iT

aφ̃i

)
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(repeated indices are summed)

C̃0 =
∑

k,n

2dknBkn

∫
d4q

(2π)4
1

(q2 + (m+
k )2)((p + q)2 + (m−

n )2)
(D.1.5)

C̃1/2 = −
∑

k,n

2dkn
p2

∑

±
A±
kn

∫
d4q

(2π)4
p · q

((p+ q)2 + (m±
k )2)(q2 + (m0

n)
2)

(D.1.6)

C̃1 = −
∑

k,n

2dkn
3p2

∫
d4q

(2π)4
δkn

4q · (p+ q) + 8(m0
k)

2

(q2 + (m0
k)

2)((p + q)2 + (m0
k)

2)
(D.1.7)

+
∑

±

(
(p+ q) · (p+ 2q)

(q2 + (m±
k )2)((p + q)2 + (m±

k )2)
− 4

q2 + (m±
k )2

)

MB̃1/2 =
∑

k,n

2dkn
∑

±
∓A±

kn

∫
d4q

(2π)4
m0
n

(q2 + (m±
k )2)((p + q)2 + (m0

n)
2)

(D.1.8)

The C̃a may be written as

C̃0 =
∑

k,n

2dknB
+
knG1(m

+
k ,m

−
n ) (D.1.9)

−4C̃1/2 = −
∑

k,n

4dkn
∑

±
A±
kn

[
(G0(m

±
k ) −G0(m

0
n)) +G1(m

±
k ,m

0
n) (D.1.10)

+((m±
k )2 − (m0

n)
2)

1

p2
G1(m

±
k ,m

0
n)

]

3C̃1 =
∑

k,n

dknδkn
∑

±

[
4(G0(m

±
k ) −G0(m

0
k)) +G1(m

±
k ,m

±
k ) (D.1.11)

+2G1(m
0
k,m

0
k) + 4(m±

k )2
1

p2
G1(m

±
k ,m

±
k ) − 4(m0

k)
2 1

p2
G1(m

0
k,m

0
k)

]

All the terms proportional to G0 in (D.1.10) vanish due to the messenger supertrace

formula. The G functions are

G0(m) =

∫
d4p

(2π)4
1

p2 +m2
(D.1.12)

G1(m1,m2) =

∫
d4q

(2π)4
1

(q2 +m2
1)((p + q)2 +m2

2)
(D.1.13)

We want to evaluate these G Eqn. (D.1.13) functions to write them as the function b

defined below. We will need to multiply by g4
4

g2
4

∫
ddq

(2π)d
1

q2 +m2
1

1

(p + q)2 +m2
2

= g2
4

∫
ddq

(2π)d

∫ ∞

0
dt1dt2e

−t1(q2+m2
1)−t2(p+q)2−t2m2

2

(D.1.14)

Using dimensional regularisation d = 4 − 2ǫ and T = t1 + t2

= g2
4µ

2ǫ
∫ d4−2ǫq

(2π)4−2ǫ

∫ ∞
0 dt1dt2e

−t1(q2+m2
1)−t2(p+q)2−t2m2

2 (D.1.15)

= g2
4µ

2ǫ
∫ d4−2ǫq

(2π)4−2ǫ

∫ ∞
0 dt1dt2e

−T (q± pt2
T

)2±p2 t22
T
−t2p2−t1m2

1−t2m2
2 (D.1.16)
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The integral on momentum can be carried out by changing to p′ in the exponent and then

dDp = dDp′. We will keep the minus sign in the exponent. We use the identity

∫
d4−2ǫq

(2π)4−2ǫ
e−tq

2
=

1

(4π)2−ǫ
T ǫ−2 (D.1.17)

to rewrite the equation as (x = t1/T (1 − x) = t2/T ),

g2
4µ

2ǫ
∫ ∞
0 dT

∫ 1
0 dxT

1
(4π)2−ǫ T

ǫ−2e−p
2Tx(1−x)−xm2

1T−(1−x)m2
2T (D.1.18)

=
g24µ

2ǫ

(4π)2−ǫ Γ(ǫ)
∫ 1
0 dx[p

2x(1 − x) + xm2
1 + (1 − x)m2

2]
−ǫ (D.1.19)

One takes the exponential log of everything then expand as a Taylor series. One finds

g2
4

(4π)2
{1

ǫ
− ln 4π− γ + lnµ2 −

∫ 1

0
dx ln[p2x(1− x) + xm2

1 + (1− x)m2
2]}+O(ǫ2) (D.1.20)

We then define the function b(k2,m2
1,m

2
2) by

G1(m1,m2) =

∫
d4q

(2π)4
1

q2 +m2
1

1

(p+ q)2 +m2
2

=
1

(4π)2
{1

ǫ
− γ − b(p2,m2

1,m
2
2) + O(ǫ)

}

(D.1.21)

for d = 4 − ǫ. We can write b more explicitly as

b(p2,m2
1,m

2
2) =

∫ 1

0
dx log

(
x(1 − x)p2 + xm2

1 + (1 − x)m2
2

)
(D.1.22)

= A log

[
(A+B1)(A+B2)

(A−B1)(A−B2)

]
+B2 logm2

1 +B1 logm2
2 − 2 ,

where

A =

[
p4 + 2p2(m2

1 +m2
2) + (m2

1 −m2
2)

2

4p4

]1/2

(D.1.23)

and

B1 =
p2 +m2

1 −m2
2

2p2
, B2 =

p2 +m2
2 −m2

1

2p2
. (D.1.24)

As the divergent terms will cancel we can ignore the Euler γ term and ǫ and focus on the

b functions. We can rewrite the integral as

G1(m1,m2) = − 1

(4π)2
b(p2,m2

1,m
2
2) + g(ǫ, γ) (D.1.25)

Where we can safely ignore the functions g(ǫ, γ) as they will cancel. Putting this together

we can write

[3C̃1 − 4C̃1/2 + C̃0] = Ω (D.1.26)
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where

Ω = −[
∑

k,n

2dknB
+
knb(p

2,m+2
k ,m−2

n )]

+
∑

k,n

4dkn
∑

±
A±
kn[b(p

2,m±2
k ,m02

n ) +
1

p2
((m±

k )2 − (m0
n)

2)b(p2,m±2
k ,m02

n )]

−
∑

k,n

dknδkn
∑

±
[b(p2,m±2

k ,m±2
k ) + 2b(p2,m02

k ,m
02
k ) (D.1.27)

+4
1

p2
(m±

k )2b(p2,m±2
k ,m±2

k ) − 4
1

p2
(m0

k)
2b(p2,m02

k ,m
02
k )]

We may construct a dictionary of

[3C̃
(r)
1 (p2/M2) − 4C̃

(r)
1/2(p

2/M2) + C̃
(r)
0 (p2/M2)] =

1

(4π)2
Ξ (D.1.28)

expressions depending on the hidden sector, such that they may be used both in 4d and

various 5d models. The factors of two and π on the right hand side can simply be taken

out to convert g2 → α when going from Eqn. (2.35) to Eqn. (2.6) We now need to find

limits of the b function, which we outline in the next subsection.

The Majorana gaugino mass matrix couples every Kaluza-Klein mode to every other

mode with the same coefficient. Each entry can be determined by use of the b function

and is given as

Meg = g2MB̃1/2(0) =
αr
4π

ΛG , ΛG = 2

N∑

k,n=1

∑

±
± dkn A

±
kn m

0
n

(m±
k )2 log((m±

k )2/(m0
n)

2)

(m±
k )2 − (m0

n)
2

.

(D.1.29)

k, n are messenger indices running from 1 to N , the number of messengers, while dkn is

nonzero and equal to dk or dn only if φn and φ̃k are in the same representation. To find

the mass eigenstates, one must include the Dirac masses resulting from the Kaluza-Klein

tower.

D.1.1 Expansions of b

We may expand Eqn. (D.1.23) under different limits to get practical expressions which

one may then substitute into Eqn. (D.1.28). In the large ℓ limit the integral over p

in Eqn. (2.35) receives a sizeable contribution only from the region of small momenta

(p < 1/ℓ), while the remaining part of the region of integration is exponentially suppressed.

So we can expand the function b in Eqn. (D.1.23), which is the building block for the full
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integrand (D.1.28), for small momenta. In the regime 1/ℓ2 ≪ F,M2, this expansion gives

b(p2,m2
1,m

2
2) ≈ −1 +

m2
1 logm2

1 −m2
2 logm2

2

m2
1 −m2

2

+
p2

2(m2
1 −m2

2)
3
[m4

1 −m4
2 − 2m2

1m
2
2 log

m2
1

m2
2

] .

(D.1.30)

Even if it is not immediately obvious, there are no poles in this equation Eqn. (D.1.30)

when F → 0 (i.e. m1 → m2). Using this limit we can obtain the expression for when both

masses are equal:

b(p2,m2,m2) ≈ logm2 +
p2

6m2
+O(

p4

m4
), (D.1.31)

which shows that there are no discontinuities when F changes from F ≫ 1/ℓ2 to F ≤ 1/ℓ2.

D.1.2 Minimal GMSB

When the superpotential is of the form

W = XΦiΦ̄i (D.1.32)

where X = M+θ2F , then the model only has three masses: (M2,M2
+ = M2(1+x),M2

− =

M2(1−x)). The limit of small ℓ, with flat space, the 5d model will return to the 4d result:

Ξ ≈ −d4M4

p4
[x2 log(

p2

M2
) + (x2 + 3x+ 2) log(1 + x)− x2 + (x→ −x)] +O(p−6). (D.1.33)

The intermediate limit F ≤ 1/ℓ2 ≪M2 may be found by expanding the large ℓ limit and

taking the first order in x = F/M2we find

Ξ ≈ −d 2F 2

3M4
(D.1.34)

In the large ℓ limit where 1/ℓ2 ≪ F,M2 we find

Ξ ≈ −d[4 + x− 2x2

x2
log(1 + x) + 1 + (x→ −x)] +O(p4), (D.1.35)

In agreement with [57]. In this limit we may also make the identification

3

2
Ξ = −dx2h(x) (D.1.36)

Where h(x) is defined in section 4.12
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D.1.3 Generalised Messenger Sector

When the superpotential of the hidden sector is

W = M(X)ij φiφ̃j = (m+Xλ)ij φiφ̃j (D.1.37)

We have three cases. The limit of small ℓ, with flat space, the 5d model will return to the

4d result [73]. In the large ℓ limit such that 1/ℓ2 ≪ F,M2, we can use Eqn. (D.1.30) and

Eqn. (D.1.31) and
∑

nAnn =
∑

nAkn = 1 and B+
kn = B−

nk to obtain Eqn. (2.7).



Appendix E

Regularising and renormalising the

Casimir energy in Deconstruction

E.1 The Casimir energy from Deconstruction

The integral we need to extract the finite part from is

N−1∑

k=0

f(
k

N
) =

∫
d4p

(2π)4
[

N−1∑

k=0

2(ap)2 cos2 kπ
2N

2δk0(ap)2 + 4 sin2 kπ
2N

]. (E.1.1)

We follow the steps outlined in [91]. This integral is UV divergent. We would like to

extract from it the lattice dependent finite part that determines Casimir energy. We will

subtract from it the continuum limit of this function1:

N

∫ ∞

0
dsf(s) = N

∫ ∞

0
ds

∫
d4p

(2π)4
[

2(ap)2 cos2 sπ
2

2δs0(ap)2 + 4 sin2 sπ
2

] (E.1.2)

Using ∫
d4y

(2π)4
y2

(y2 + ∆)α
=

1

(4π)d/2
d

2

Γ(α− d/2 − 1)

Γ(α)
(∆)1+d/2−α, (E.1.3)

we set α = 1 and use d = 4 − 2ǫ to obtain

2N

a4

∫ ∞

0
ds cos2(

sπ

2
)

∆2

(4π)2
(2 − ǫ)Γ(ǫ− 2)e−ǫ log(4π)−ǫ log(∆). (E.1.4)

We may use

Γ(ǫ− 2) =
1

2ǫ
+ (

3

4
− γ

2
) +O(ǫ) (E.1.5)

1There is a subtlety here associated with the difference in normalisation of the zero mode with respect

to the rest of the Kaluza Klein tower. As a result the s = 0 overcounts the zero mode piece. However as

the zero modes are massless they will actually contribute nothing to the regularised answer and mat be

ignored.
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to give

N

∫ ∞

0
dsf(s) =

2N

a4

∫ ∞

0
ds cos2(

sπ

2
)

∆2

(4π)2
[
1

ǫ
+ (1− γ)− log(4π)− log(∆) +O(ǫ)] (E.1.6)

Defining
N−1∑

k=0

f(
k

N
) −N

∫ ∞

0
dsf(s) =

2

(4π)2ℓ4
S(N) (E.1.7)

S(N) = −[N4
N−1∑

k=1

cos2(
kπ

N
)(∆(k/N))2 log(∆(k/N)) (E.1.8)

−N5

∫ ∞

0
ds cos2(

sπ

2
)(∆(s))2 log(∆(s))] (E.1.9)

where

∆(s) = (am(s))2 = 4 sin2 sπ

2
(E.1.10)

In the limit that N → ∞ , the mass eigenstates will return to that of a contiuum S1/Z2

namely mk = nπ
ℓ . We use the Abel-Plana formula [91,159]

N−1∑

k=0

f(
k

N
) −N

∫ ∞

0
dsf(s) =

1

2
f(0) + i

∫ ∞

0
dn
f(+in) − f(−in)

exp(2πn) − 1
(E.1.11)

to extract the continuum limit of the Casimir energy:

lim
N→∞

S(N) →
∫

d4y

(4π)2
y

ey − 1
= 3ζ(5). (E.1.12)



Appendix F

Evaluation of the hyperscalar soft

mass integrals

In this appendix we will evaluate some integrals relating to the leading order bulk hy-

perscalar soft mass with a generalised messenger sector of section 4.3. This is a different

calculation to the computation of the brane localised scalar soft mass found in [92], how-

ever the techniques are the same and we will use and review those techniques here. The

original and more complete references are [73,74,103,104].

F.1 Analytic evaluation of the scalars masses at two loops

First we define the notation

〈m11, . . . ,m1n1 |m21, . . . ,m2n2 |m31, . . . ,m3n3〉 (F.1.1)

=

∫
ddk

πd/2
ddq

πd/2

n1∏

i=1

n2∏

j=1

n3∏

l=1

1

k2 +m2
1i

1

q2 +m2
2j

1

(k − q)2 +m2
3l

.

The hyperscalar soft mass for the minimal model is given by Eqn. (5.9) and is a sum of

three terms. The first term is the four dimensional soft mass result given by taking y → ∞
in S(x, y), which gives

S(x,∞) =
s0
2x2

(F.1.2)

with s0 defined below. The second term is

(+g4/(4π)d) (−〈m+|m+|mv〉 − 〈m−|m−|mv〉 (F.1.3)

−4〈mf |mf |mv〉 − 2〈m+|m−|mv〉 + 4〈m+|mf |mv〉
110
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+4〈m−|mf |mv〉 − 4m2
+〈m+|m+|0,mv〉

−4m2
−〈m−|m−|0,mv〉 + 8m2

f 〈mf |mf |0,mv〉

+4(m2
+ −m2

f )〈m+|mf |0,mv〉 + 4(m2
− −m2

f )〈m−|mf |0,mv〉
)
.

This result is obtained by removing one massless and one mv entry in each term in [92].

Using the regulator mǫ for the massless propagator and starting from this result, one

applies partial fractions

1

[(p+ k)2 −m2
1][(p + k)2 −m2

2]
=

1

m2
1 −m2

2

[
1

(p + k)2 −m2
1

− 1

(p+ k)2 −m2
2

]
(F.1.4)

to the last 5 terms such that all integrals are of the same form. The third term is given

by evaluating

(−m2
vg

4/(4π)d) (−〈m+|m+|mv,mv〉 − 〈m−|m−|mv,mv〉 (F.1.5)

−4〈mf |mf |mv,mv〉 − 2〈m+|m−|mv,mv〉 + 4〈m+|mf |mv,mv〉

+4〈m−|mf |mv,mv〉 − 4m2
+〈m+|m+|0,mv,mv〉

−4m2
−〈m−|m−|0,mv ,mv〉 + 8m2

f 〈mf |mf |0,mv ,mv〉

+4(m2
+ −m2

f )〈m+|mf |0,mv ,mv〉 + 4(m2
− −m2

f )〈m−|mf |0,mv,mv〉
)
.

This result is obtained by removing a massless entry in each term in [92]. The symbolic

manipulations are straightforward applications Mathematica by repeated use of “Rules”.

We apply

〈ma|mb|0,mv ,mv〉 =
〈ma|mb|0〉 − 〈ma|mb|mv〉

m4
v

− 〈ma|mb|mv,mv〉
m2
v

, (F.1.6)

and then apply (d = 4 − 2ǫ),

〈m0|m1|m2〉 =
1

−1 + 2ǫ

(
m2

0〈m0,m0|m1|m2〉 (F.1.7)

+m2
1〈m1,m1|m0|m2〉 +m2

2〈m2,m2|m0|m1〉
)
.

This reduces to just the first two terms on the right hand side when m2 = mǫ = 0. One

may also use

〈m0|m1|m2,m2〉 = 〈m2,m2|m0|m1〉. (F.1.8)

All the terms are now expressed in terms of the basic object

〈m0,m0|m1|m2〉 =
1

2ǫ2
+

1/2 − γ − logm2
0

ǫ
(F.1.9)



F.1. Analytic evaluation of the scalars masses at two loops 112

+γ2 − γ +
π2

12
+ (2γ − 1) logm2

0 + log2m2
0 −

1

2
+ h(a, b) . (F.1.10)

The function h is given by the integral [104]:

h(a, b) =

∫ 1

0
dx

(
1 + Li2(1 − µ2) − µ2

1 − µ2
log µ2

)
(F.1.11)

The dilogarithm is defined as Li2(x) = −
∫ 1
0
dt
t log(1 − xt) with

µ2 =
ax+ b(1 − x)

x(1 − x)
, a = m2

1/m
2
0 , b = m2

2/m
2
0. (F.1.12)

It is useful to first evaluate the terms with massless propagators, whereby the function h

simplifies to h(0, b) = 1 + Li2(1 − b) and has a symmetry h(b, 0)=h(0, b). Then for the

terms with entirely massive propagators, the analytic expression for h is used to obtain

the plots:

h(a, b) = 1 − log a log b

2
− a+ b− 1√

∆

(
Li2

(
−u2

v1

)
+ Li2

(
− v2
u1

)
(F.1.13)

+
1

4
log2 u2

v1
+

1

4
log2 v2

u1
+

1

4
log2 u1

v1
− 1

4
log2 u2

v2
+
π2

6

)
, (F.1.14)

where

∆ = 1 − 2(a+ b) + (a− b)2 , u1,2 =
1 + b− a±

√
∆

2
, (F.1.15)

v1,2 =
1 − b+ a±

√
∆

2
. (F.1.16)

The final result is that

m2
h̃

= 4(
α

4π
)2(

F

M
)2G(x, y) (F.1.17)

where

G(x, y) =
1

2x2
(s0 +

t1 + t2
y2

+ t3 + y2t4) + (x→ −x) (F.1.18)

s0 = 2(1 + x)

(
log(1 + x) − 2Li2

(
x

1 + x

)
+

1

2
Li2

(
2x

1 + x

))
, (F.1.19)

t1 = −4x2 − 2x(1 + x) log(1 + x) − x2Li2
(
x2

)

t2 = −8h
(
1, y2

)
+ 8(1 + x)2h

(
1, y2

1+x

)

−4xh
(
1 + x, y2

)
− 4x(1 + x)h

(
1

1+x ,
y2

1+x

)

t3 = 2h
(
1, y2

)
+ (1 + x)h

(
1, y2

1+x

)
− 2h

(
1 + x, y2

)
+ (1 + x)h

(
1−x
1+x ,

y2

1+x

)

−2h
(

1
y2
, 1
y2

)
− 2(1 + x)h

(
1

1+x ,
y2

1+x

)
+ 2(1 + x)h

(
1+x
y2
, 1+x
y2

)
− 2xh

(
1+x
y2
, 1
y2

)
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t4 = 2h

(
1

y2
,

1

y2

)
− 4h

(
1 + x

y2
,

1

y2

)
+ h

(
1 + x

y2
,
1 + x

y2

)
+ h

(
1 + x

y2
,
1 − x

y2

)
.

As a consistency check we also computed the result of [92] after applying further rules

presented in that paper, which gives an analytic expression for s(x, y):

s(x, y) =
1

2x2

(
s0 +

s1 + s2
y2

+ s3 + s4 + s5

)
+ (x→ −x) , (F.1.20)

where

s0 = 2(1 + x)

(
log(1 + x) − 2Li2

(
x

1 + x

)
+

1

2
Li2

(
2x

1 + x

))
, (F.1.21)

s1 = −4x2 − 2x(1 + x) log2(1 + x) − x2 Li2(x
2) ,

s2 = 8 (1 + x)2 h

(
y2

1 + x
, 1

)
− 4x (1 + x)h

(
y2

1 + x
,

1

1 + x

)

−4xh
(
y2, 1 + x

)
− 8h

(
y2, 1

)
,

s3 = −2h

(
1

y2
,

1

y2

)
− 2xh

(
1 + x

y2
,

1

y2

)
+ 2(1 + x)h

(
1 + x

y2
,
1 + x

y2

)
,

s4 = (1 + x)

(
2h

(
y2

1 + x
,

1

1 + x

)
− h

(
y2

1 + x
, 1

)
− h

(
y2

1 + x
,
1 − x

1 + x

))
,

s5 = 2h
(
y2, 1 + x

)
− 2h

(
y2, 1

)
.



Appendix G

Limits on the bulk propagator

In chapter 6 we used certain approximations of the bulk wavefunctions and masses of the

Kaluza-Klein modes to sum up the effects of the KK tower. In this appendix we flesh out

the details of those approximations.

G.1 Limits on the bulk propagator in AdS

In principle, all Kaluza-Klein modes may propagate supersymmetry breaking across the

interval. To discern which modes contribute most, it is important to determine the limiting

behaviour of the bulk eigenfunctions, as they change with mass eigenstates mn [147]. This

may also be carried out in Poincaré co-ordinates, with similar results. First we focus on

the positive parity eigenfunctions

f (2)
n (y) =

eσ

Nn

[
J1

(
mne

σ

k

)
+ b(mn)Y1

(
mne

σ

k

)]
. (G.1.1)

Let us first evaluate the function at y = ℓ in the mass regime mn ≫ k and take x =

mne
σ/k. In this regime mn ≃ nπk∗ with very large n. Using the identities valid for large

x,

J1(x) ≃
(

2

πx

)1/2

cos(x− 3π/4) =

(
2

πx

)1/2

sin(x− π/4) (G.1.2)

Y1(x)) ≃
(

2

πx

)1/2

sin(x− 3π/4) = −
(

2

πx

)1/2

cos(x− π/4) (G.1.3)

and taking b(mn) ∼ 1 one obtains

f (2)
n (ℓ) ≃ − e

kℓ

Nn

(
2k

πmnekℓ

)1/2 √
2(−1)n. (G.1.4)
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Next we may look at y = 0 in the same mass regime mn >> k, where now x = mn/k.

Similar manipulations result in

f (2)
n (0) ≃ − 1

Nn

(
2k

πmn

)1/2 √
2 cos(mn/k). (G.1.5)

Taking cos(mn/k) to be order 1 we may define the eigenfunction from the IR brane to UV

brane as

f (2)
n (0)f (2)

n (ℓ) ≃ 2

Nn

(
2k

πmn

)1/2 ekℓ

Nn

(
2k

πmnekℓ

)1/2

(−1)n (G.1.6)

with

Nn ≃ 1√
mne−kℓπℓ

. (G.1.7)

Some simplifications finally result in

f (2)
n (0)f (2)

n (ℓ) ≃ 4(kℓ)(−1)ne−kℓ/2. (G.1.8)

An eigenfunction for the derivative of the negative parity fields can be computed similarly,

∂5g
(4)
n (0)∂5g

(4)
n (ℓ) ≃ f (2)

n (0)f (2)
n (ℓ)m2

n ≃ 4m2
n(kℓ)(−1)ne3kℓ/2. (G.1.9)

Now we turn to the regime mn ≪ k. These states are highly localise at the IR brane and

cannot propagate significantly across the bulk. To see this, we evaluate f
(2)
n (y) at y = 0

f (2)
n (0) ≃ x

2Nm
≃ 0, (G.1.10)

where x = mn/k ≪ 1, for which we used

J1(x) ≃ x/2 , Y1(x) ≃ − 2

πx
. (G.1.11)

This is exponentially suppressed and we see that there is very little probability to be

located near the UV brane for mn ≪ k. Conversely, at y=ℓ we use the mass spectrum

mn ≃ (n− 1/4)πk∗ and find

f (2)
n (ℓ) ≃ −e

kℓ/2

Nn

(
2k

mnπ

)1/2

. (G.1.12)

This demonstrates that the light modes are significantly localised to the IR brane not to

propagate supersymmetry breaking effects across the interval.
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G.2 Matsubara frequency summation

An accurate determination of the full summation of propagators of the Kaluza-Klein tower

should be done numerically. We make a simplifying assumption that we may carry out

a Matsubara frequency summation of the KK modes [2], by approximating the whole

KK tower with the states of mn ≫ k, which have masses mn ≃ nπk∗. The resulting

summations give
k∗

2

∑

mn

(−1)n

p2 +m2
n

∼ 1

2

1

p sinh(p/k∗)
(G.2.13)

and
k∗

2

∑

mn

1

p2 +m2
n

∼ 1

2

1

p tanh(p/k∗)
(G.2.14)

such that
∑

n

k∗

2ℓk∗
f (2)(0)f (2)(ℓ)

p2 +m2
n

∼ 2ekℓ/2

p sinh(p/k∗)
. (G.2.15)

Similarly, using a contour pulling argument detailed in [57], we may convert

k∗

2

∑

mn

1

p2 +m2
n

∼ 1

p

1

e2p/k
∗ − 1

+

∫ ∞

−∞

dp5

(2π)
. (G.2.16)

The second term is independent of k∗ and is divergent. The first term is the finite part that

is relevant for computing the Casimir energy. To summarise these results, we emphasise

that as most kk states are localised towards the IR brane for mn ≪ k, only the zero

modes significantly contribute to both the running gauge coupling and to gauge mediated

supersymmetry breaking. Only if k ≪M , where M is the characteristic mass scale of the

hidden sector, will the most heavy kk modes, where mn ≫ k start to contribute to cause

the gaugino mediated limit.
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