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EXTENDED ABSTRACT

This thesis consists of two main parts. The �rst part deals with

an analysis of realized volatility and its relationship with market mi-

crostructure problem. The second part of the thesis presents a time

trend analysis in a panel data framework, with a semiparametric ap-

proach.

Chapter 1 introduces the topics that I embark upon the thesis. In

particular, I motivate the interest in realized volatility and market mi-

crostructure problem in the �rst part of the thesis, with a factor model

approach. Then, in the second part, the motivation is on the estimation

of time varying coe¢ cient trend functions in a panel data case, using

nonparametric estimation methods.

Chapter 2 proposes a literature review on realized volatility and

factor models, while focusing on the seminal papers and models that the

theoretical literature suggests and also provides the empirical evidence

observed in �nancial markets.

Chapter 3 develops a theoretical model to forecast the realized

volatility consistently and e¢ ciently for large dimensional datasets and

also addresses the solution for noise problem coming out of volatility

estimation in the presence of market microstructure e¤ects.

Chapter 4 provides the empirical analysis and results on a sample

of S&P 500 stocks following the methodology and models suggested in

Chapter 3.

Chapter 5 focuses on developing a semiparametric panel model to

explain the time trend function. Pro�le likelihood estimators (PLE)

are proposed and their statistical properties are studied. We apply our
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methods to the UK regional temperatures. Finally, forecasting based

on the proposed model is studied.

Chapter 6 concludes, summarizing the main results and contribu-

tions of the thesis.
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Chapter 1

Introduction

1.1 Motivation

The burgeoning literature in economics and �nance is engaged in a vari-

able of interest that is unobservable and not surprisingly regarded as ex

post. In every aspect; it is becoming even more vital to know the unob-

servable correlation structures present in many �nancial applications.

The most important example of such a problem is the concept of volatil-

ity which has always been in the centre stage of the academic researches

and enduring publications and also in �nancial decision-making. So

far, most of the queries have regarded volatility as an unobservable,

or latent, variable and therefore modelling limitations led to ARCH

and GARCH developments and stochastic volatility models. Lately,

an alternative approach has been derived as an observable proxy for

the latent volatility. With the introduction of a new and complemen-

tary volatility measure, this proxy has been labeled as Realized Volatil-

ity, termed by Andersen, Bollerslev, Diebold and Labys (2001) (so on

ABDL), where they used improved measures of ex post volatility con-
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structed from high frequency data. Rooted in the theoretical results

of Barndor¤-Nielsen and Shephard (2002), ABDL (2003) and Meddahi

(2002) and several recent studies have documented the properties of the

realized volatility to search for an adequate framework for the estima-

tion and prediction of the conditional or stochastic variance of �nancial

asset returns with the ability of high frequency data.

The contribution of the �rst part of this thesis is to provide an

analysis and solution for the following: "how to model and forecast

the realized volatility consistently and e¢ ciently, in the presence of er-

ror or noise, as in the form of market microstructure problem". The

main objective is to incorporate the information contained in these high

frequency statistical measurements and also have a better understand-

ing of the relationship between realized volatility and the market mi-

crostructure noise, which is regarded as a micro friction on the market

but undeniably a macro consequence. Hence, �nding a way to control

for the market microstructure noise that is prevalent at high frequency

has become a key issue.

On the other hand, there is another important question: How to

extract information in data sets with many variables but keep model

parsimonious? There is one answer; factor methods, which are an at-

tractive way of modeling when the number of variables is large. Also,

factor model presents the idea that the �uctuations and comovements

of a large number of economic and �nancial variables are produced

by a handful of observable or unobservable factors, which are driven

by common structural shocks. We aim to extend the current analytic

methods to the construction and assessment of volatility forecasts for

continuous-time volatility models to the empirically important case of

market microstructure noise via factors discussed by Bai, Ng (2002,

2004 and 2006) and principal component methodology of Stock and
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Watson (2002). These factors capture the market microstructure prob-

lem when applied to a large dimension of individual return series in a

stock market.

As far as my knowledge, the link between realized volatility and mar-

ket microstructure e¤ects by incorporating the factor models has not

yet been investigated, while an unifying analysis could bring new light

on the understanding of both phenomena. This dissertation, therefore,

intends to �ll this gap and to provide new insights on realized volatility

forecasting.

In the last part of this thesis, we are rather interested in trend

analysis. There exists a rich literature on econometric modeling of de-

terministic features of time series and also panel data that deal with

polynomial or linear trends. However, the parametric panel data mod-

els may be misspeci�ed and hence estimators obtained from misspeci-

�ed models are often inconsistent. Phillips (2001) provides a review on

the existing progress and future directions about modeling time series

with trends. In the meantime, some other nonparametric and semi-

parametric models are also developed to deal with time series with a

trend function. Recent literature focuses on estimating time varying co-

e¢ cient trend functions using nonparametric estimation methods due

to the limitation of parametric trend functions. Still, a few works has

been done in the panel data case. The recent work by Robinson (2011)

is among the �rst to introduce a trending time varying model for the

panel data case where spatial or other cross-sectional dependence are

incorporated. The contribution of Chapter 5 is to outline a methodol-

ogy for developing a semiparametric panel model to explain the trend

in UK temperatures and other weather outcomes over the last century.
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1.2 Outline of the Thesis

The thesis is organized in 6 chapters. Chapter 1 includes the introduc-

tion and motivation. The primary focus in Chapter 2 is to overview the

burgeoning literature, to discuss the issues of modeling and forecasting

volatilities in a realized volatility sense and to present the strengths

and restrictions of the various approaches that are available in the lit-

erature. In addition, the most important seminal papers and practical

applications are presented. At last, special attention is given to the

papers which either disregard or try to deal with the issue of mar-

ket microstructure problem. Hence, the main question in the litera-

ture is more focused towards whether one can get reliable inferences of

RV regarding the true underlying latent volatility without denying the

presence of market microstructure noise. The results of this chapter

motivate the next; Chapter 3, namely the analysis of the relationship

between realized volatility and market microstructure noise.

In Chapter 3, we propose a novel way of conducting realized volatil-

ity, where integrated volatility takes a linear factor structure, facili-

tating the estimation of volatility factors while getting rid of the noise.

These factors capture the market microstructure problem when applied

to a large dimension of individual return series in a stock market. This

kind of an approach in modeling of realized volatility (RV) can be re-

garded as a novel way from many perspectives. First, it facilitates the

use of the RV and Jumps, which is di¤erent from the previous multi-

variate factor stochastic volatility models because it is a nonparametric

approach and incorporates �nite jumps. Second, the model enables

high dimensional volatility models that are easily estimable due to the

simple factor structure. At last, the model does not require the esti-

mation of mean speci�cation.
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In Chapter 4, we provide an empirical application to high-frequency

data from the S&P 500 index complements the analysis. The conclu-

sions from the empirical application con�rm the main �ndings of the

suggested theoretical model. Even though there is a di¢ culty in com-

parison with other existent models in the literature due to the new

features mentioned, we still do forecast comparison. The work sum-

marized in Chapters 3 and 4, has been presented by myself at the

Computational Economics and Finance (December, 2010) in London.

In Chapter 5, we focus on estimating time trend functions in a panel

data case, using nonparametric estimation methods due to the limita-

tion of parametric trend functions. To shed more light on the trend

analysis, we propose a semiparametric panel data model; in which there

is a common trend component that is allowed to evolve in a nonpara-

metric way to deal with the modeling of climate change in the United

Kingdom. We also allow for a deterministic seasonal component in tem-

perature, since we are working with monthly data and use a model with

a dummy variable in the parametric component while allowing for the

time trend function to be nonparametrically estimated. We show the

nonparametric trend in comparison with a more standard parametric

approach. In both cases we observe that there is an upward trend over

the last twenty years that is statistically signi�cant. The work summa-

rized in this chapter has been presented by me at the �Forecasting in

Rio, Rio 2008�, at the 2010 International Symposium on Econometric

Theory and Applications, SETA 2010 and also at the 16th International

Conference on Panel Data, Amsterdam. Also, this chapter is published

at the Journal of Econometrics, Volume 164, Issue 1, 1 September 2011,

Pages 92-115, ISSN 0304-4076.

Chapter 6 draws the conclusion of the thesis.
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Chapter 2

The Literature Review on

Realized Volatility

2.1 Introduction

The contribution of this chapter is twofold. First, we begin with the re-

lated literature on volatility, followed by the concept of realized volatil-

ity, and then continue with the issues of jumps and market microstruc-

ture. Second, we analyze the main theoretical and empirical literature

on realized volatility.

2.2 Related Literature

The concept of volatility, together with the issue of analyzing, modeling

and forecasting it under di¤erent scenarios and assumptions, have al-

ways been in the centre stage of the academic researches and enduring

publications over the last two decades. It is a key input for the eval-

16



uation of �nancial risk, asset allocation and portfolio selection, all of

which depend heavily on a correct modeling of the underlying. The ever

growing need to understand the rationale behind this term was born as

a result of the frequent changes and resultant rapid growth structures

in �nancial markets. In that sense the term �volatility�can be regarded

as a crucial task in �nancial markets. Hence, the insight has spurred

vast amount of attraction in �nancial econometrics and mathematical

�nance.

There exist numerous survey papers, reviewed research articles and

empirical investigations for the parametric and nonparametric analy-

sis of volatility. In the literature, most of the queries have regarded

volatility as an unobservable, or latent, variable and therefore mod-

eling limitations led to ARCH and GARCH developments1, stochas-

tic volatility and markov switching models. However, as observed by

Bollerslev (1987), Carnero, Peña, and Ruiz (2004) and Malmsten and

Teräsvirta (2004), most of the latent volatility models failed to describe

satisfactorily several stylized facts that have been monitored in �nan-

cial time series. The forecasting performance of these models is not

satisfactory and the latent character of the volatility poses a signi�cant

problem. Besides, speci�c distributional properties and the knowledge

of the parametric form of the volatility dynamics fail to capture inter-

daily movements and the information content behind it.

Since the �eld of high-frequency �nance has evolved rapidly, not

only the frequency of data used in empirical econometrics became one

measure of progress, but also the wide availability of high frequency

data for many �nancial instruments created the potential of revolu-

tionizing the way volatility is modeled. Evidently, this improvement

1Look for a further analysis at Bollerslev, Engle and Nelson (1994).
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in estimation naturally leads to gains in volatility forecasting. As a

consequence, an alternative approach has been derived as an observ-

able proxy for the latent volatility and it has been labeled as realized

volatility (RV), termed by Andersen, Bollerslev, Diebold and Labys

(2001) (so on ABDL).

The popular nonparametric method, RV, is constructed from the

summation of high-frequency intradaily squared returns (ABDL (2003),

Barndor¤-Nielsen and Shephard (2002)). Unfortunately, reliable infer-

ences of RV regarding the true underlying latent volatility can not be

derived due to very noisy nature of the data which is a severe threat

for the idealized assumption because these nonparametric measures are

shown to be extremely sensitive to market microstructure noise inherent

in the observed asset prices. In an ideal world, increasing the sampling

frequency would subjectively generate more precise estimates of volatil-

ity hence daily volatility becomes almost observable. However, ideal

circumstances may not be present in reality because of the presence of

noise that leads to a bias variance trade-o¤; RV estimates calculated on

the basis of low sampling frequencies are expected to be less biased but

noisier, whereas higher sampling frequency will lead larger RV, indicat-

ing the highly possible presence of the microstructure noise, evidenced

and analyzed by Aït-Sahalia et al.(2005), Zhang et al.(2005), Zhang

(2006a), Bandi and Russell (2005a).

The outline of the chapter is as follows. Section 3 provides some

preliminaries such as the de�nition and measurement of volatility, in-

cluding integrated, stochastic and realized volatilities. Also, this sec-

tion gives brief analysis about the distribution of the realized volatility,

explains the theory of quadratic variation. Section 4 deals with the

jumps. Section 5 draws attention to market microstructure e¤ects.

Section 6 introduces the selection of frequency and sparse sampling,
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together with the two-scaled realized volatility. Sections 7 and 8 are

the core sections of this paper; section 7 reviews and discusses research

papers about realized volatility models based on various assumptions

and mainly univariate cases only; section 8 reviews research papers on

multivariate bases. Section 9 provides the relation between long mem-

ory and volatility, speci�cally at realized volatility models. At last,

section 10 summarizes and concludes.

2.3 Volatility De�nition andMeasurement

In the literature, much ink has been spent on the possible de�nitions of

the term volatility; however there seems to be no precise de�nition to

meet all circumstances. In general, the term volatility means a period

of associated high variability and increasing variance in the history

of a time series. Also, volatility can be regarded as a measure of the

uncertainty of an investment and hence when volatility is interpreted as

uncertainty, then it becomes a key input to many investment decisions

and portfolio creations. Therefore, the phenomenon is mostly related

in the analysis of economic and �nancial time series, where they are

often characterized as having sporadic periods of relative serenity and

also relative high variability.

As mentioned by Poon and Granger (2003), volatility is not the same

as risk. The authors state that there is an incomplete appreciation of

the di¤erences between volatility, standard deviation and risk. So, it is

worthwhile to brie�y explain the basic de�nitions here.

In �nance, volatility is often used to refer to standard deviation, �

or variance, �2 computed from a set of observations as2

2Poon and Granger (2003).
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�2 =
1

N � 1

NX
t=1

(Rt �R)2 (2.1)

where R is the mean return.

Volatility is often calculated as the sample standard deviation, which

is the square root of 2:1. Figlewski (1997) notes that the statistical

properties of sample mean make it a very inaccurate estimate of the

true mean, especially for small samples, so taking deviations around

zero instead of the sample mean as in 2:1 typically increases volatility

forecast accuracy. Pool and Granger (2003) reveal that while 2:1 is an

unbiased estimate of �2, the square root of b�2 is a biased estimate of �
due to Jensen inequality3. On the other hand, Ding, Granger, and En-

gle (1993) suggest measuring volatility directly from absolute returns4.

Poon and Granger (2003) regarded � as a scale parameter that multi-

plies or reduces the size of the �uctuations generated by the standard

wiener process in the continuous time setting. They conclude that, us-

ing � as a risk measure would be meaningless unless it is attached a

distribution or pricing dynamics and when � is used to measure uncer-

tainty, the users implicitly have in their mind a normal distribution for

the returns distribution.

In order to understand the continues time analogue of the 2:1, Poon

and Granger (2003) assume that the instantaneous returns are gener-

ated by the continuous time martingale,

3See Fleming (1998, footnote 10.) Cox and Rubinstein (1985) explain how this
bias can be corrected assuming a normal distribution.

4Davidian and Carroll (1987) show absolute returns volatility speci�cation is
more robust against asymmetry and non-normality. There is some empirical ev-
idence that deviations or absolute returns based models produce better volatility
forecasts than models based on squared returns but the majority of time series
volatility models are squared returns models (Poon and Granger (2003)).
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dpt = �tdWp;t (2.2)

where pt denotes the instantaneous logarithm of the price, dWp;t indicates

a standard Brownian motion (wiener process) and �t is a stochastic

process independent of dWp;t.

On the other hand, according to the fundamental theorem of asset

pricing (Delbaen and Schachermayer (1994)), the price process should

follow a semimartingale process. In this model, integrated variance

(aka integrated volatility) is a natural measure of variability of the price

path (ABDL (2001)). Logically, the object of interest is the amount

of variation accumulated in a time interval �; such as a day, week,

month or a year. So, a counter for the time intervals of interest will be

m = 1; 2; ::, then the actual volatility will be as follows (see Barndor¤-

Nielsen and Shephard (2002)):

�2n =

m�Z
(m�1)�

�2tdt (2.3)

Hence, the actual volatility, which is scaled in �; re�ects the market

risk structure, the key element in pricing and portfolio allocation. So,

the conditional variance for the one-period returns, rt+1 = pt+1 � pt is
1R
0

�2t+�d� , which is also known as the integrated volatility over the pe-

riod t to t + 1. For instance, for the econometrician this is an object

to be estimated, see also Andersen and Bollerslev (1998a) and in pric-

ing options this is the relevant volatility measure, see Hull and White

(1987).

Accordingly, actual volatility is related to the integrated volatility

as in the following:
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IV (t) =

tZ
0

�2sds (2.4)

Researchers regarded integrated volatility as an ex ante measure of

perceived price risk of an asset. It is worth to mentioning that the

mathematical �nance literature would denote �t as �volatility�and �2t
as �variance� (Nelson and Foster (1994)). While pt can be observed

at time t, �t is an unobservable, or latent, variable that scales the

stochastic process dWp;t continuously through time. In other words,

latent volatility associated with day t is the integral of the instantaneous

variances over the day,

b�2t = t+1Z
t

�2(w)dw (2.5)

where 2:5 is an ex post measure of the observed, latent volatility asso-

ciated with day t. Merton (1980) showed that the integrated volatility

of a Brownian motion can be approximated to an arbitrary precision

using the sum of the intraday squared returns.

Most modern �nance theory is based on semimartingale theory

(Barndor¤-Nielsen Shephard (2001b)). The authors give a brief de�n-

ition of semimartingales by assuming that y�(t) is a stochastic process

and that for ease of exposition y�(0) = 0 is assumed to be true. Then,

y�(t) is said to be a semimartingale if it is decomposable as

y�(t) = �(t) +m(t) (2.6)

�(0) = m(0) = 0 (2.7)
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where �(t); a drift term, is a process with locally bounded variation

paths (i.e. of bounded variation5) on any �nite subinterval of [0;1)
and m(t) is a local martingale. Then, the authors assume that y�(t) is

said to be a general semimartingale. The QV [y�] of y� is de�ned by:

[y�](t) = y�
2

(t)� 2
tZ
0

y�(s�)dy�(s) (2.8)

From an econometric view point,

y�(t) = p lim
m�1X
j=0

fy�(sj+1)� y�(sj)g2 (2.9)

where 0 = s0 < s1 < s2 < : : : < sM = t and the limit is for the

mesh size

max jsj � sj�1j ! 0
1�j�m

(2.10)

as m!1 .

In other words, quadratic variation, which is also regarded as no-

tional volatility in the terminology of Andersen, Bollerslev and Diebold

(2004)) process of pt, and denoted by [p] (t) ; is de�ned by:

[p] (t) � p2 (t)� 2
tZ
0

p(s�)dp(s) (2.11)

or equivalently

5If the real-valued function f on [a, b] is such that, sup
K

P
jf(xi)� f(xi�1)j � 1,

where the supremum is taken over all subdivisions K of [a,b] then the function is of
bounded variation.
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[p] (t) � p lim
mX
j=1

(p(sj)� p(sj�1))2 (2.12)

where 0 = s0 < s1 < : : : < sM = t and the limit is taken for

maxj jsj � sj�1j ! 0 as m ! 1 (Christensen and Nielsen (2005)).

QV is important since it can be regarded as the dominant determinant

of the return covariance matrix, especially for shorter horizons. ABDL

(2003) conclude that the quadratic variation is the critical ingredient in

volatility measurement and forecasting and as the quadratic variation

represents the actual variability of the return innovations.

Following Poon (2005), if we letm be the sampling frequency within

each period t, i.e. there are m continuously compounded returns be-

tween t� 1 and t:

rm;t+1=m � pt+1=m � pt (2.13)

rm;t+2=m � pt+2=m � pt+1=m (2.14)

RVt+1 �
X

j=1;:::;m

r2m;t+j=m (2.15)

Following the theory of quadratic variation (Kwatzas and Shreve

(1988)), if the discretely sampled returns are serially uncorrelated and

the sample path for �t is continuous, then

p lim
m!1

0@ t+1Z
t

�2sds�
X

j=1;:::;m

r2m;t+j=m

1A = 0 (2.16)

Hence, time t volatility is theoretically observable from the sample
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path of the return process so long as the sampling process is frequent

enough (Poon and Granger (2003)). An alternative approach is to set

up a model containing an unobserved variance component, the loga-

rithm of which is modeled directly as a linear stochastic process, such

as an autoregression. Models of this kind are called stochastic volatility

models or stochastic variance (SV) model (Harvey, Ruiz and Shephard

(1994)). At this point, it becomes crucial to give basic but necessary

explanations and also de�nitions of various volatility models including

stochastic and realized volatility ones.

2.3.1 Stochastic Volatility

The stochastic volatility (SV) model was introduced by Tauchen and

Pitts (1983) and Taylor (1982) as a way to describe the time-varying

volatility of asset returns. Neil Sheppard (2006) de�nes the SV as being

the main concept in the �elds of �nancial economics and mathematical

�nance to deal with the endemic time-varying volatility and codepen-

dency found in �nancial markets. In that sense, stochastic volatility

models require the investors to forecast not just a single volatility pa-

rameter but the entire joint probability distribution for asset returns

and changes in volatility and also the market price of volatility risk.

The stochastic volatility models di¤er from the ARCH class of mod-

els in that the information set underlying the conditional expectations

(�rst two conditional return moments), that is not directly measurable

with respect to the time observable �ltration (Andersen, Bollerslev and

Diebold (2004)). This is typically the result of the inclusion of two

separate stochastic innovations - one innovation term relating the con-

ditional mean of the process to the actually observed return, a sec-

ond innovation relating the latent volatility process to its conditional
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mean. This type of formulation is typically motivated by the Mixture-

of-Distributions Hypothesis (MDH) and the idea of a latent information

arrival process. The MDH was originally put forth by Clark (1973) as a

way of conceptualizing the distributional characteristics of speculative

returns, and the basic hypothesis has subsequently been extended and

analyzed empirically by Epps and Epps (1976), Taylor (1982), Tauchen

and Pitts (1983), Andersen (1996), Andersen and Bollerslev (1997),

Ané and Geman (2000), among many others, to allow for more realis-

tic temporal dependencies in the underlying latent information arrival

process (Andersen, Bollerslev and Diebold (2004)). The MDH is be-

yond the scope of this literature review.

Accordingly, SV models specify volatility as a separate random

process unlike ARCH-type models. Due to this extra randomness, there

are certain advantages in the SV models over the ARCH-type models

for modeling the dynamics of asset returns (Kim, Shephard, and Chib,

1998). Hence, volatility at stochastic volatility modeling is subject to

a source of innovations that may or may not be related to those that

drive returns (Poon and Granger (2003)).

In the stochastic volatility model for log-prices of stocks and for

log-exchange rates, a basic Brownian motion is generalized to allow

the volatility term to vary over time. (Barndor¤ - Nielsen and Shep-

hard (2002)). Then the log-price y�(t) as the solution to the stochastic

di¤erential equation is de�ned as

dy�(t) =
�
�+ ��2(t)

	
dt+ �(t)dw(t) (2.17)

where �2(t), the instantaneous or spot volatility, is assumed (almost

surely) to have locally square integrable sample paths, while being sta-

tionary and stochastically independent of the standard Brownian mo-
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tion w(t). Barndor¤ - Nielsen and Shephard (2002) label � the drift

and � the risk premium. The stochastic volatility literature contains

numerous variations on the generic model 2:17.

As mentioned by Poon and Granger (2003), Alizadeh, Brandt and

Diebold (2002), modelling volatility as a stochastic variable immedi-

ately leads to fat tail distributions for returns. Autoregressive term in

the volatility process introduces persistence, and correlation between

the two innovative terms in the volatility process and the return process

produces volatility asymmetry (Hull and White (1987, 1988)).

Although SV models are attractive because they are based on solid

theoretical foundations, their estimation has proved quite di¢ cult given

that the volatility noise term makes the SV model a lot more �exible,

but as a result the SV model has no closed form. Hence SV model can-

not be estimated directly by maximum likelihood. A variety of methods

have been proposed to overcome these di¢ culties, including for example

generalized method of moments (Melino and Turnbull (1990)), Sorensen

(2000)), quasi likelihood (Harvey, Ruiz and Shephard (1994)), method

of moments (Gallant, Hshie and Tauchen (1997)), simulated maxi-

mum likelihood (Danielson (1994), Sandmann and Koopman (1998),

Liesenfeld and Jung (2000)) and e¢ cient importance sampling method

(Liesenfeld and Richard (2003)). The quasi-maximum likelihood esti-

mation (QMLE) approach of Harvey, Ruiz, and Shephard (1994), which

initially seemed appealing because of its simplicity, turns out to be inef-

�cient for the case where volatility proxies are non-Gaussian (Andersen

and Sorensen (1997)).

The problem is that standard volatility proxies such as log absolute

or squared returns are contaminated by highly non-Gaussian measure-

ment error (e.g., Andersen and Sorensen (1997)), which produces highly

ine¢ cient Gaussian quasi-maximum likelihood estimators and similarly
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ine¢ cient inferences about latent volatility. Therefore, the literature

turned toward alternative estimators of SV.

2.3.2 Realized Volatility

The term realized volatility has been used in Fung and Hsieh (1991),

and Andersen and Bollerslev (1998), to mean the sum of high fre-

quency intraday squared returns at short intervals such as �fteen- or

�ve- minutes. In that sense, realized volatility can be regarded as a

consistent estimate of integrated volatility and also a jump component

for a broad class of continuous time models. A theoretical motivation

for using the sum of high-frequency squared returns to compute the

measure of volatility at lower frequencies is provided by Merton (1980).

Merton (1980) noted that the variance over a �xed interval can be esti-

mated arbitrarily as the sum of squared realizations, provided the data

are available at a su¢ ciently high sampling frequency.

Now, consider a log-price process, pt, driven by a standard Wiener

process with a constant mean and variance,

dpt = �dt+ �dWt (2.18)

where the coe¢ cients are normalized such that the return during one

day is the di¤erence between p at two consecutive integers.

The standard de�nition (for an equally spaced returns series) of the

realized volatility over a time interval of one day is:

RV
(d)
t =

 
M�1X
j=0

r2t�j�

!1=2
(2.19)

where � = 1d
M
and rt�j� = p(t� j�)� p(t� (j +1)�) de�nes con-

28



tinuously compounded � frequency returns; intraday returns sampled

at time interval �:

Realized variance is constructed by frequently sampling pt through-

out the trading day. When the prices on day t were sampled on a

regular grid of m+1 points, 0; 1; :::;m and let pi;t denote the ith obser-

vation of the log price, then m� sample realized variance is de�ned as
follows:

RV
(m)
t =

mX
i=1

(pi;t � pi�1;t )2 =
mX
i=1

r2i;t (2.20)

While the price process is standard Brownian motion, each return

is an i.i.d normal with mean �=m and variance �2=m, so a volatility of

�=
p
m. First two moments are;

E
h
RV

(m)
t

i
= E

"
mX
i=1

r2i;t

#
(2.21)

= E

"
mX
i=1

�2

m2
+ 2

��

m
3
2

�i;t +
�2

m
�2i;t

#

= E

"
mX
i=1

�2

m2

#
+ E

"
mX
i=1

2
��

m
3
2

�i;t

#
+ E

"
mX
i=1

�2

m
�2i;t

#

=
�2

m
+
�2

m
m

=
�2

m
+ �2

The expected value is nearly �2 as m ! 1;and limm ! 1
E
h
RV

(m)
t

i
= �2. The second moment is;
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V
h
RV

(m)
t

i
= V

"
mX
i=1

�2

m2
+ 2

��

m
3
2

�i;t +
�2

m
�2i;t

#
(2.22)

= V

"
mX
i=1

�2

m2

#
+ V

"
mX
i=1

2
��

m
3
2

�i;t

#
+ V

"
mX
i=1

�2

m
�2i;t

#

+2Cov

"
mX
i=1

�2

m2
;

mX
i=1

2
��

m
3
2

�i;t

#

+2Cov

"
mX
i=1

�2

m2
;

mX
i=1

�2

m
�2i;t

#

+2Cov

"
mX
i=1

2
��

m
3
2

�i;t;
mX
i=1

�2

m
�2i;t

#

where �2

m2 is a constant and since �i;t are i.i.d standard normal, with a

skewness of 0, then

Cov

"
mX
i=1

2
��

m
3
2

�i;t;
mX
i=1

�2

m
�2i;t

#
= 0 (2.23)

V

"
mX
i=1

�2

m2

#
= Cov

"
mX
i=1

�2

m2
;
mX
i=1

2
��

m
3
2

�i;t

#

= Cov

"
mX
i=1

�2

m2
;
mX
i=1

�2

m
�2i;t

#

Then,

V
h
RV

(m)
t

i
= 4

�2�2

m2
+ 2

�4

m
(2.24)

Hence, the variance is decreasing as m!1.
In the more realistic case of a price process with time-varying drift

and stochastic volatility,
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dpt = �tdt+ �tdWt (2.25)

lim
m!1

RV
(m)
t

p�!
t+1Z
t

�2sds (2.26)

As argued by Andersen and Bollerslev (1998), ABDL (2001) and

Barndor¤-Nielsen and Shephard (2002), RV (m)t in 2:20 is by de�nition

a consistent (in probability and uniformly in t) estimator of the in-

crement to the quadratic variation process 2:34, using 2:12. However,

the consistency result does not require that the observations are evenly

spaced, only that the maximum distance between observations goes to

zero in the limit. Thus, with the inclusion of jumps into the process,

as m!1,

lim
m!1

RV
(m)
t

p�!
t+1Z
t

�2sds+

q(t)X
s=q(t�1)

�2s (2.27)

where �2s measures the contribution of jumps to the total variation. At

this point, it is crucial to explain the jump component in RV, which is

highly robust to the presence of jumps, but before that the distribution

of RV should be brie�y mentioned.

The Distribution of Realized Volatility

As mentioned by McAleer and Medeiros (2006a), although the inte-

grated volatility is not directly observable, the theory of quadratic

variation, as discussed by Protter (2004), the corresponding realized

volatility de�ned by the summation of the intra-period squared returns

converges uniformly in probability to integrated volatility when there

is no microstructure noise. So,
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RVt
p�! IVt (2.28)

From the results in Jacod and Protter (1998), Barndor¤-Nielsen

and Shephard (2002) derived the asymptotic distribution of the realized

volatility as

n
1=2
t

1p
2IQt

(RVt � IVt)
d�! N(0; 1) (2.29)

where the integrated quarticity, IQt, is de�ned as

IQt =

1Z
0

�4(t+ � � 1)d� (2.30)

Bandi and Russell (2005a) gave an alternative proof of the above

result. Furthermore, under the assumption of no microstructure noise,

Barndor¤-Nielsen and Shephard (2002) showed that the integrated quar-

ticity is consistently estimated by the realized quarticity, which is de-

�ned as

RQt =
nt
3

ntX
i=0

r4t;i (2.31)

and

n
1=2
t

1q
2
3
RQt

(RVt � IVt)
d�! N(0; 1) (2.32)

Barndor¤-Nielsen and Shephard (2005a), Meddahi (2002), Gonçalves

and Meddahi (2005) and Nielsen and Frederiksen (2005) studied the

�nite sample behavior of the limit theory given in 2:29. The main con-
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clusion is that although (2:29) is poorly sized, it performs quite well.

In addition, Gonçalves and Meddahi (2005) analyzed how the boot-

strap may improve the limiting theory in (2:29), where the authors

concluded that it is possible to design bootstraps which provide signif-

icant improvements over the theory. They also showed that the usual

Edgeworth expansions, which justify the order improvement associated

with the bootstrap, are not reliable guides to the �nite sample behavior

of the statistics. However, in cases where the computational burden im-

posed by the bootstrap is high, Gonçalves and Meddahi (2006) showed

that using Edgeworth expansions is superior to using the limiting the-

ory in (2:29).

2.4 Jumps

A number of authors developed models to deal with the jumps in �nance

related matters. Jumps are de�ned as discreteness in price processes

which have very di¤erent time series properties than the continuous

component of realized volatility. It is known that jumps can have a

deteriorating e¤ect on the estimates of volatility. Hence, accounting for

jumps allows improved forecasting of realized volatility. The literature

is rich in models which range from developing tests to detect jumps

present in high frequency data to removing and �ltering them.

At the highest sampling frequencies, there is compelling evidence

of the existence of jumps in asset price processes. Speci�cally, the

arrival of important news such as macroeconomic announcements (at

the aggregate level) or earnings reports (at the �rm level) typically

induce a discrete jump associated with an immediate revaluation of

the asset; see, e.g., Andersen and Bollerslev (1998b) and Andersen,

Bollerslev, Diebold and Vega (2002) for direct parametric modeling of
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such jumps or Johannes (2000) for nonparametric speci�cation tests for

the existence of jumps (Andersen, Bollerslev and Diebold (2004)).

In particular, the logarithm of the asset price within the active part

of the trading day is assumed to evolve in continuous time as a standard

jump-di¤usion process:

dpt = �tdt+ �tdWt + �tdqt (2.33)

where �t denotes the drift term with a continuous and locally bounded

variation, �t is strictly positive spot volatility process andWt is a stan-

dard Brownian motion. �tdqt refers to the pure jump part, for counting

process, qt, dqt = 1 indicates that there is a jump at time t and 0 oth-

erwise, �t is the size of the jump. Finally, when a jump occurs, �t de-

notes the corresponding jump size. Direct modeling of price processes

via jump di¤usion models such as 2:33 is standard in the �nancial asset

pricing literature.

In the literature, the direct estimation of 2:33 has been considered by

Andersen, Bollerslev, Diebold and Vega (2005) for information arrivals,

also by Andersen et al. (2002), Chernov et al. (2003), Eraker et al.

(2003), Eraker (2004), Aït-Sahalia (2004), and Johannes (2004). In all

of these studies, jumps are found to be an integral part of the price

process which point towards the importance of incorporating jumps in

the estimation of the parameters of the price process (Christensen and

Nielsen (2005)).

Likewise, much evidence from the implied volatility literature points

towards the importance of incorporating discrete jump probabilities

into the analysis of the return dynamics. In the same way that the

Brownian motion constitutes the basic building block of continuous

time martingales, the standard Poisson jump process serves as the ba-

34



sic building block for pure (compensated) jump martingales. Thus,

one may accommodate the relevant jump features in an arbitrage-

free continuous-time logarithmic price process by adding a Poisson

jump component with appropriate time variation in the jump inten-

sity and/or the jump distribution (Andersen, Bollerslev and Diebold

(2004)).

As mentioned by Christensen and Nielsen (2005), under some very

general regularity conditions, which allow the instantaneous volatility

process to exhibit many irregularities such as jumps, it is well known

that the quadratic variation process for the model 2:33 is de�ned as

the sum of integrated volatility and that have occurred through time t,

which is discussed by ABDL (2001, 2003) and is given by:

[p]t = �
2
t +

qtX
s=0

�2s (2.34)

In the absence of jumps, or qt = 0, the summation vanishes and

the quadratic variation simply equals the integrated volatility of the

continuous sample path component as highlighted by Hull and White

(1987). However, researchers have found that the presence of jumps

in volatility, which result in discontinuous sample paths, can reduce

the predictability of quadratic variation estimates (Bauer and Vorkink

(2006)).

On the other hand, nonparametric approaches also exist instead of

directly modeling 2:33, such as Barndor¤-Nielsen and Shephard (2003,

2004a, 2004b), Andersen, Bollerslev and Diebold (2004). In a series

of papers, Barndor¤-Nielsen and Shephard (2003, 2004a, 2004b) show

that separate nonparametric identi�cation of the two components in

2:34, the continuous sample path and jump components, is possible

using what is termed Bi-power variation measure.
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In order to disentangle the continuous and the jump components of

realized volatility, integrated volatility has to be consistently estimated

even in the presence of jumps in the process, which is done using the

asymptotic results of Barndor¤-Nielsen and Shephard (2004b).

Barndor¤-Nielsen and Shephard (2004a, 2006) propose Realized Bi-

power Variation (RBV), or simply Bi-power variation (BPV), de�ned

as the sum of the product of adjacent absolute intraday returns stan-

dardized by a constant to consistently estimate the integrated volatility.

rt+j�;� = p(t+ j=m)� p(t+ (j � 1)=m); j = 1; 2; ::::m (2.35)

where m refers to the number of intraday equally spaced return obser-

vations over the trading day t, depending on the sampling frequency.

As such, the daily return of the active part of the trading day equals

rt =
mP
j=1

rt;j.

RVt+1(�) �
mX
j=1

r2t+j�;� (2.36)

RBVt+1(�) � ��21
�

m

m� 2

� mX
j=3

jrt+j�;�j
��rt+(j�2)�;��� p�!

t+1Z
t

�2sds = �
2
t

(2.37)

where �1 �
p
2=� ' 0:79899 is the expected absolute value of a stan-

dard normal random variable. More importantly, relative to the original

measure considered in Barndor¤-Nielsen and Shephard (2004b), the bi-

power variation measure de�ned above involves an additional lagging

strategy (Huang and Tauchen (2005)). In other words, BPV has been

used to separate the continuous and the jump components of RV (ABD

(2005)). In that sense, the jump component can be consistently esti-
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mated by the di¤erence between the RV and BPV. Ghysels, Santa-Clara

and Valkanov (2004b) �nd that bi-power variation is a good predictor

of aggregate market volatility (Bauer and Vorkink (2006)). Barndor¤-

Nielsen and Shephard (2005a) extend univariate bi-power variation to

the multivariate case, named bi-power covariation, which is beyond the

scope of this literature review.

This kind of methodology follows that the jump component of the

quadratic variation process can be estimated consistently as:

RVt �RBVt
p�!

qtX
s=0

�2s (2.38)

However, two issues immediately arise in relation to the estimation

of the jump component by the di¤erence between realized volatility and

bi-power variation. First, it is desirable in applications to ensure non-

negativity of the estimate of the jump component, and this can be done

simply by imposing a non-negativity truncation onRVt�RBVt; but this
procedure often leads to theoretically incorrect negative measures of

jumps. In other words, because a �nite sample estimate of the squared

jump process might be negative in Equation 2:38, the literature prefers

to truncate the measurement at zero

Jt = max [RVt �RBVt; 0] (2.39)

Secondly, RVt�RBVt can be positive due to sampling variation even
if there is no jump during period t, and thus one needs the notion of a

"signi�cant jump" (Christensen and Nielsen (2005)). Hence, one might

wish to select only statistically signi�cant jumps, to consider very small

jumps to be part of the continuous sample path rather than genuine

discontinuities as mentioned by Barndor¤-Nielsen and Shephard (2004,

2005a).
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At last, the probability limit of realized BPV is robust to �nite

activity jumps. Hence, there is a natural question to ask: First, is

the CLT also robust to jumps? Second, is the probability limit also

una¤ected by in�nite activity jumps, that are jump processes with an

in�nite number of jumps in any �nite period of time. Both issues are

studied by Barndor¤-Nielsen, Shephard, and Winkel (2006) in the case

where the jumps are of L
;
evy type, while Woerner (2004) looks at the

probability limit for more general jump processes. Barndor¤-Nielsen,

Shephard, and Winkel (2004) �nd that the CLT for BPV is a¤ected by

�nite activity jumps ( Barndor¤-Nielsen and Shephard (2005b)).

Christensen and Nielsen (2005) obtain a feasible test for jumps by

identifying extreme (positive) values of Zt with a signi�cant jump dur-

ing time period t. In particular, they de�ne the jump component of

realized volatility as in the following way:

Jt = IfZt>�1��g (RVt �RBVt) ; t = 1; : : : ; T (2.40)

where IfZt>�1��g is the indicator function and �1�� is the 100(1��)%
point of the standard normal distribution with the chosen signi�cance

level of �: The estimator of the continuous component of quadratic

variation is de�ned as:

Ct = RVt � Jt; t = 1; : : : ; T (2.41)

which is chosen to ensure that the estimators of the jump and continu-

ous sample path components add up to realized volatility, otherwise we

could have just used the realized bi-power variation de�ned in 2:37. In

other words, the period t continuous component of realized volatility is

equal to realized volatility if there is no jump in month t and equal to

realized bi-power variation if there is a jump in period t:
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Ct = IfZt��1��gRVt + IfZt>�1��gRBVt; t = 1; : : : ; T (2.42)

Andersen, Bollerslev and Diebold (2007) seek to further advance the

nonparametric realized volatility approach through the development

of a practical non-parametric procedure for separately measuring the

continuous sample path variation and the discontinuous jump part of

the quadratic variation process. Their approach builds directly on the

theoretical results in Barndor¤-Nielsen and Shephard (2004a, 2005b).

Similar to Andersen, Bollerslev and Diebold (2007), Huang and

Tauchen (2005) study �nancial datasets using multipower variations,

in order to assess the proportion of quadratic variation attributable to

jumps. Also, Lee and Mykland (2008) and Andersen, Bollerslev and

Dobrev (2007) introduce two almost similar tests to detect jump arrival

times up to the intra-day level.

Bollerslev, Law and Tauchen (2008) examine the relationship be-

tween jumps in individual stocks and jumps in an aggregate market

index. The authors test for price discontinuities, or jumps, in a panel

of high-frequency intraday stock returns and an equiweighted index con-

structed from the same returns. In other words, the authors develop a

test for cojumps that explicitly utilizes the cross covariance structure

in the returns to more e¤ectively identify the non-diversi�able jumps.

Fan and Wang (2007) develop wavelet methods to estimate jump

locations and jump sizes from a jump-di¤usion process that is discretely

observed with market microstructure noise. Jiang and Oomen (2008)

construct a test motivated by the hedging error of a variance swap

replication strategy. Alternatively, Oomen (2006) proposes a pure jump

process for the high frequency prices, which allows for the analysis of the
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various sampling schemes including, calendar time, business time, and

transaction time sampling. Accordingly, the price process is formed by

an e¢ cient martingale component, where Oomen (2006) describes it as

a compound Poisson process plus the market microstructure noise with

an MA(q) structure. McAleer and Medeiros (2006a) de�nes Oomen�s

(2006) model as the asset price, which is modelled as the accumula-

tion of a �nite number of jumps, each of which represents a transaction

return, with the Poisson process counting the number of transactions.

Hence, in order to minimize the mean squared error, which is in�u-

enced by the number of trades and the noise level, an optimal sampling

frequency is derived. Oomen (2006) demonstrates that the realized

variance is a biased estimator of the jump analogue of the integrated

variance when microstructure noise is present, which is the same case of

the di¤usion-based models. However, as distinct from previous results,

Oomen (2006) proves that the bias does not diverge to in�nity as the

sample frequency increases. Hence, the author�s main conclusion is that

transaction time sampling is generally superior to the common practice

of calendar time sampling, as the former leads to a lower mean squared

error of the realized variance, especially when the trading intensity pat-

tern is volatile. On the other hand, Gri¢ n and Oomen (2008) introduce

a model for transaction patterns in order to distinguish the e¤ects of

tick time and transaction time sampling.

McAleer and Medeiros (2006a) summarize the main �ndings of the

Gri¢ n and Oomen�s (2008) as follows:

(i) tick time sampling is equivalent to transaction time sampling

for high levels of microstructure noise, and is superior for low levels of

microstructure noise;

(ii) when the �rst-order bias corrected estimator of Zhou (1996)

and Hansen and Lunde (2006b) is considered, transaction time sampling
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is always preferred.

There are also alternative methods for identifying the jumps; includ-

ing the works of Mancini (2001), Mancini (2004) and Mancini (2003)

who uses truncation to develop robust estimators in the presence of �-

nite activity jumps. Aït-Sahalia and Jacod (2010) propose a test based

on truncated power variations computed at di¤erent sampling frequen-

cies.

Several recent studies concerned with the direct estimation of con-

tinuous time stochastic volatility models have highlighted the impor-

tance of explicitly incorporating jumps in the price process6. Given that

our primary purpose is to forecast realized volatility, we adjust our se-

ries to extract statistically signi�cant jumps. Accordingly, in Chapter

3, we prefer to adopt one model from the numerous jump detection

methods to �lter the jump component.

2.5 (Un)Avoidable Problem: Microstruc-

ture Noise

In the literature, much ink has been spent on the market microstructure

noise and since then market microstructure research has become one of

the most rapidly growing areas of �nancial economics. O�Hara (1995)

de�nes market microstructure as the study of the process and outcomes

of exchanging assets under a speci�c set of rules, while much of eco-

nomics abstracts from the mechanics of trading, microstructure theory

focuses on how speci�c trading mechanisms a¤ect the price formation

6See, among others, Andersen, Benzoni and Lund (2002), Eraker, Johannes and
Polson (2003), Eraker (2004), Johannes (2004), and Johannes, Kumar and Polson
(1999).
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process.

With a loose de�nition, market microstructure analysis examines

the manner in which the process by which securities are traded af-

fects prices, volumes and trader behavior. Besides, this noise has many

sources, including irregular spaced trading and the discreteness of the

price (see Harris (1990, 1991)), and properties of the trading mecha-

nism, as in Black (1976) and Amihud and Mendelson (1987)).

To this extent, we prefer to follow the de�nition mentioned by An-

dersen, Bollerslev and Meddahi (2005), where the market prices are

invariably quoted on a discrete price grid, there is a gap between buy-

ing and selling prices or quotes, i.e., a bid-ask spread, and di¤erent

prices may be quoted by di¤erent market makers simultaneously due

to heterogeneous beliefs, information and inventory positions. Conse-

quently, any observed intraday price does not correspond to a unique

market price at a precise point in time but instead represents the under-

lying ideal theoretical price on founded by an error term re�ecting the

impact of market microstructure frictions, or simply "noise". The con-

sistency of the realized volatility depends on the idea of an ever increas-

ing number of �ner sampled high-frequency returns and an important

characteristic of high-frequency data is the presence of microstructure

e¤ects (Bai and Russell (2001), Andreou and Ghysels (2002)). Be-

sides, the consistency of this estimator is also built on the notion that

prices are observed in continuous time and without any measurement

error. However, the most pronounced problem about realized volatility

is that observed prices are contaminated by the market microstructure

because in practice the sampling frequency is inevitably limited by the

transaction frequency and also the actual quotation.

Proposed adjustments to realized volatility estimation include �l-

tering (Ebens (1999), Andersen, Bollerslev, Diebold and Ebens (2001)
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and Bandi and Russell (2005)), subsampling (Zhang, Mykland and

Aït-Sahalia (2005), hereafter ZMA (2005)), correcting for overnight

price changes (Hansen and Lunde (2004)), and using kernel estimators

(Hansen and Lunde (2006b)) and Barndor¤-Nielsen, Hansen, Lunde

and Shephard (2008) to control or remove the bias. These papers have

focused on models where observed prices are contaminated with inde-

pendent (from the price process) additive noise.

Market microstructure e¤ects induce a bias in the realized volatility

measure, which can directly be illustrated in the following discrete-time

setup. Consider a grid of observation times �t = f� 0; :::; �ntg. Using
similar notation as in ZMA (2005), set pt;i � p(t + � i). Suppose that

the logarithmic prices are observed with noise, that is:

pt;i = p
�
t;i + �t;i (2.43)

where p�t;i is the latent e¢ cient price process and �t;i is the microstruc-

ture noise. It follows that,

rt;i = r
�
t;i + �t;i � �t;i�1 = r�t;i + vt;i (2.44)

where r�t;i = p
�
t;i�p�t;i�1 is the e¢ cient return. It is clear that rt;i is an

autocorrelated process, so RVt will be a biased estimator of the latent

true volatility. Hence, microstructure e¤ects create misleading predic-

tions of the volatility due to severe bias problems. ZMA (2005), Bandi

and Russell (2005a, 2006b) and Hansen and Lunde (2006b), among

others, have discussed various solutions to the inconsistency problem.

McAleer and Medeiros (2006a) summarize the following assump-

tions regarding the noise structure:

Assumptions 1 (noise structure):
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1. The microstructure noise, �t;i, has zero mean and is a covariance

stationary stochastic process.

2. The variance of vt;i = �t;i � �t;i�1 is O(1).

Under Assumption 1, Bandi and Russell (2005a) showed thatRVt
a:s�!

1, as nt !1.
Furthermore, consider the following assumption:

Assumptions 2 (iid noise structure):

1. The microstructure noise, �t;i, has zero mean and is an indepen-

dent and identically distributed random variable.

2. The noise is independent of the price process.

3. The variance of vt;i = �t;i � �t;i�1 is O(1).

Under Assumption 2, it was shown in ZMA (2005) that

n
�1=2
t

�
RVt � IVt � 2ntE(�2t;i)

� d�! 2
�
E(�4t;i)

�1=2
N(0; 1) (2.45)

In practical applications, even sampling at the highest available fre-

quency, the number of intraday observations is �nite and the price

records are discrete. This introduces a bias due to discretization, such

that

RVt
d� IVt + 2ntE(�2t;i) +

244ntE(�4t;i) + 2

nt

1Z
0

�4tdt

351=2N(0; 1) (2.46)

where �
d��means that, when multiplied by a suitable factor, the con-

vergence is in distribution. Recently, Zhang (2006a) and Aït-Sahalia,
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Mykland and Zhang (2006), hereafter AMZ (2006), considered the case

when the noise is not IID, such that Assumption 2 is modi�ed as follows:

Assumptions 3 (dependent noise structure):

1. The microstructure noise, �t;i, has zero mean, stationary and

strong mixing stochastic process, with the mixing coe¢ cients de-

caying exponentially. In addition, E [(�t;i)4+�] < 1, for some
� > 0:

2. The noise is independent of the price process.

3. The variance of vt;i = �t;i � �t;i�1 is O(1).

Under Assumption 3, Zhang (2006a) and AMZ (2006) showed that

RVt
d� IVt + 2ntE(�

2
t;i)| {z }

Bias due to noise

+

266664 4nt
| {z }
due to noise

+
2

n
(sparse)
t

1Z
0

�4tdt| {z }
due to discretion

377775
1=2

| {z }
Total Variance

N(0; 1)

(2.47)

where


 = V
�
(�t;1 � �t;0)2

�
+ 2

1X
i=1

Cov
�
(�t;1 � �t;0)2; (�t;i+1 � �t;i)2

�
(2.48)

The most important fact about the last result is that, for large nt, the

realized variance 2:20 may have no connection to the true returns. On

the contrary, RVt diverges to in�nity linearly in nt. In addition, Bandi
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and Russell (2005a) and ZMA (2005) showed that, scaled by (2nt)�1,

the realized variance estimates the variance of the microstructure noise

consistently, such that:

1

2nt
RVt

p�! E(�2t;i) (2.49)

Therefore, using data at the highest available frequency to measure

volatility is not necessarily the best approach since the measure may

be contaminated by microstructure e¤ects. Hence, the problem of mea-

surement error should be carefully examined and addressed in order to

avoid highly possible misleading forecast errors. The solution adopted

in the literature is to consider intra-daily returns over an intermediate

frequency. As advocated in Andersen, Bollerslev, Diebold and Ebens

(2001), hereafter ABDE (2001), and ABDL (2000a, 2001, 2003), one

possible solution to the microstructure bias is to sample the returns at

arbitrarily selected lower frequencies, such as every 5 or 15 minutes, in-

stead of at every tick, where the procedure is named as sparse sampling.

However, ZMA (2005) showed that this is not an adequate solution to

the microstructure problem.

McAleer and Medeiros (2006a) de�ned a new grid �(sparse)t , with

n
(sparse)
t sparsely equidistant sampled observation times. Hence, �(sparse)t

is a subgrid of �t. Accordingly,

RV
(sparse)
t =

n
(sparse)
tX
i=1

r2t;i (2.50)

Based on the results of Rootzen (1980), Jacod and Protter (1998),

Barndor¤-Nielsen and Shephard (2002), andMykland and Zhang (2006),

ZMA (2005), Zhang (2006a) and AMZ (2006) showed that the bias due
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to noise is given by 2n(sparse)t E(�2t;i) and that under Assumptions 2 and 3:

RV
(sparse)
t

d� IVt+2n(sparse)t E(�2t;i)| {z }
Bias due to noise

+

26666644n(sparse)t E(�4t;i)| {z }
due to noise

+
1

n
(sparse)
t

1Z
0

�4tdt| {z }
due to discretion

3777775
1=2

| {z }
Total Variance

N(0; 1)

(2.51)

Although the bias is reduced when n(sparse)t < nt, the variance is

increased due to discretization, so there is a trade-o¤ between bias and

variance when choosing the sampling frequency and this is the reason

that returns are typically sampled at a moderate frequency, such as

5-minute sampling. Even though choosing the sampling frequency on

the basis of the �nite sample mean-squared-error is optimal in the case

of realized variance, alternative estimators have been proposed that

have the potential, when appropriately implemented, to outperform the

classical realized variance estimator (McAleer and Medeiros (2006a)).

Also, Andersen, Bollerslev and Meddahi (2005) mentioned that market

microstructure frictions in e¤ect put a limit on the number of return

observation per unit time interval that may be used in the computation

of the realized volatility measures. Hence, the realized volatility will

necessarily be subject to a �nite-sample measurement error vis-à-vis

the true (latent) integrated volatility.

2.6 Selection of Frequency

In practice, prices are observed at discrete and irregularly spaced in-

tervals. In this sense, there are many ways in which one can sam-

ple the data. Suppose that in a given day t, partition the interval
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[0; 1] in nt subintervals and de�ne the grid of observation times as

�t = f� 0; :::; �ntg ; where 0 = � 0 < � 1 < : : : < �nt = 1: The length

of the ith subinterval is given by �i;nt = � i � � i�1 . It is assumed that
the length of each subinterval shrinks to zero as the number of intraday

observations increases.

As mentioned by McAleer and Medeiros (2006a), there are several

sampling schemes that can be used, as follows:

(i) The most widely used sampling scheme is calendar time sam-

pling (CTS), where the intervals are equidistant in calendar time, that

is �i;nt =
1
nt
for all i: For example, the prices may be sampled every 5 or

15 minutes. As the intraday data are irregularly spaced, in most cases

calendar time sampled data must be constructed arti�cially (Ander-

sen and Bollerslev (1997), and Dacorogna, Gençay, Müller, Olsen and

Pictet (2001)). Hansen and Lunde (2006b) showed that the previous

tick method is a sensible way to sample prices in calendar time.

For example, during a �ve-minute interval, one may observe several

prices, in which case the previous tick method takes the �rst observation

as the sampled price.

(ii) Another sampling alternative is transaction time sampling (TrTS),

where prices are recorded every mth transaction.

(iii) The third sampling scheme is known as business time sampling

(BTS), where the sampling times are chosen such that IVi;t = IVt
nt

(iv) The last sampling alternative is called tick time sampling (TkTS),

where prices are recorded at every price change.

An important di¤erence among these distinct sampling schemes is

that the observation times in BTS are latent, whereas in CTS, TrTS,

and TkTs they are observed.

On the other hand, the theory of quadratic variation suggests the

desirability of sampling at very high frequencies, striving to match
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the ideal of continuously observed frictionless process. On the other

hand, the reality of market microstructure suggests not sampling too

frequently. Hence, a good choice of sampling frequency must balance

two competing factors (ABDL (2001)).

Bandi and Russell (2005a, 2006b) and ZMA (2005) proposed a

method of selecting the optimal sampling frequency based on the mini-

mization of the mean squared error (MSE) under Assumption 2. How-

ever, although Bandi and Russell (2005a, 2006b) considered equidistant

sampling intervals, ZMA (2005) provided a more general formula for ir-

regularly spaced data. On the other hand, Bandi and Russell (2005a)

also considered optimal sampling with dependent noise, optimal sam-

pling with bias-corrected realized variance estimates, and optimal sam-

pling with pre-�ltered data.

As discussed previously, E(�2t;i) may be consistently estimated by
1
2nt
RVt. Consistent estimation notwithstanding, an important point

that must be emphasized is that the integrated quarticity is not known,

and hence must be estimated. However, the realized quarticity is not

consistent in the presence of microstructure noise. Bandi and Russell

(2005a, 2006b) adopted the solution of computing RV using a sparse

set of observations, namely one that is sampled every 15 minutes. The

authors showed through simulation that such sparse sampling did not

seem to have a harmful e¤ect on the selection of the optimal frequency

(McAleer and Medeiros (2006a)).

Alternatively, ZMA (2005) and AMZ (2006) proposed a subsampling

method in order to estimate the integrated variance consistently in the

presence of microstructure noise with IID features, under Assumption

2. Besides, to be able to take into account possibly dependent noise,

Zhang (2006a) and AMZ (2006) proposed an alternative estimator that

is also based on the two time scales idea, where the results are derived
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under Assumption 3 (non-IID noise).

Consistently estimating the quadratic variation under the presence

of microstructure noise is, in a sense, similar to the well known au-

tocorrelation corrections that are frequently used in the time series

literature to estimate the long run variances and covariances of sta-

tionary stochastic processes (see, for example, Newey and West (1987)

and Andrews (1991)) (McAleer and Medeiros (2006a)). Consequently,

it is natural to adapt similar techniques for the present case. In that

sense, Zhou (1996) was the �rst to consider the use of kernel meth-

ods to deal with the problem of microstructure noise in high frequency

data. Similarly, Hansen and Lunde (2004, 2006b) considered a simple

kernel-based estimator by examining the properties of Zhou�s estima-

tor. The authors showed that, although unbiased under Assumption 2,

the estimator is not consistent. However, Hansen and Lunde (2006b)

advocated that, while inconsistent, Zhou�s kernel method is able to un-

cover several properties of the microstructure noise, and they concluded

that the noise is correlated with the e¢ cient price, time dependent and

has properties that have changed substantially over time.

Likewise, Barndor¤-Nielsen, Hansen, Lunde and Shephard (2004)

proposed the �at-top kernel-based estimator, where the authors made

several contributions to the literature by proving that the statement

that all kernel based RV estimators were inconsistent is wrong and pro-

posed several consistent kernel-based estimators, also designing a kernel

that has a smaller variance than the multiscale estimator, proposing an

estimator for data with endogenously spaced observations, such as that

in databases on transactions and considering the case where the mi-

crostructure noise is endogenous.

Lately, Large (2006) proposed an estimator of quadratic variation

which controls for microstructure e¤ects when the best quotes change
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by jumping the minimum price tick. The estimator compares the num-

ber of alternations, where quotes jump back to their previous price,

with the number of other jumps. If the alternations are uncorrelated,

the estimator is consistent in a limit theory where jumps are very fre-

quent and small (McAleer and Medeiros (2006a)).

2.6.1 Two-Scaled Realized Volatility

As mentioned byMcAleer andMedeiros (2006a) , ZMA (2005) proposed

a subsampling method in order to estimate the integrated variance

consistently in the presence of microstructure noise. The main idea

is to explore the fact that, for example, ten-minute returns starting

at 9 : 30 could be measured using the intervals 9 : 30-9 : 40; 9 : 40-

9 : 50; : : : ; 9 : 31-9 : 41; 9 : 41-9 : 51, and so on. Formally, suppose that

the full grid �t = f� 0; :::; �ntg is partitioned into K non-overlapping

subgrids, �kt ; k = 1; : : : ; K such that

�t = [Kk=1�kt ;where �kt \ �
j
t = � when k 6= j (2.52)

Set n(k)t as the number of observations in each subgrid, and de�ne

the RV for grid k as:

RV
(k)
t =

n
(k)
tX
i=1

r2t;i (2.53)

Accordingly, the proposal of ZMA (2005) is to use the following esti-

mator for the daily RV and de�ne the Two Time Scales Estimator of

the integrated variance:

RV
(ZMA)
t =

1

K

KX
k=1

RV
(k)
t � nt

nt
RV

(all)
t (2.54)
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where nt is the number of observations in the full grid, and

nt =
1

K

KX
k=1

n
(k)
t =

nt �K + 1

K
(2.55)

ZMA (2005) showed that, under Assumption 2,

n
�1=6
t

h
RV

(ZMA)
t � IVt

i
d�! 2

2648c�2E �(�2t;i)�2| {z }
due to noise

+ c
4

3
IQt| {z }

due to discretization

375
1=2

| {z }
Total Variance

N(0; 1)

(2.56)

where, in the case of equidistant observations

c =

(
1

12E
�
(�2t;i)

�2 IQt
)�1=3

(2.57)

In particular, if the market microstructure noise is IID, then the twoscale

realized volatility (TSRV) estimator is consistent and unbiased.

2.7 Realized VolatilityModels Under Var-

ious Assumptions

In their seminal paper �Distribution of Realized Exchange Rate Volatil-

ity�, ABDL (2001) construct model-free estimates of daily exchange

rate volatility and correlation using high-frequency data on Deutschemark

and Yen against Dollar, with continuously recorded 5-min returns on

the bilateral spot exchange rates that cover an entire decade. The au-

thors model the underlying price process in continuous time, where they

�rst introduce the relevant concepts, then they show how the volatility
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measures may be approximated using high-frequency data, and at last

they illustrate the concrete implications of the concepts for standard

Itô and mixed jump-di¤usion processes.

Foremost, the authors provide rigorous theoretical underpinnings for

the volatility measures for the general case of a special semi-martingale.

The authors permit high-frequency sampling without contamination by

microstructure e¤ects, with a sampling frequency of 288 times per day

(or 5 min returns), where they claim that the frequency is high enough

such that the daily realized volatilities are free of measurement error,

and also low enough such that microstructure biases are not a major

concern.

However, the important implicit feature of their work is that al-

though the microstructure noise problem is thought to be solved by

employing 5-minute returns, instead of simply focusing on the volatil-

ity dynamics of recorded asset returns, as mentioned later by Bandi and

Russell (2006), one can and should also aim at identifying separately the

volatility of the e¢ cient return component and the variance of the mi-

crostructure contaminations by exploiting the information potential of

high-frequency stock return data, where ABDL (2001) realized this fact,

albeit not formally dealt with. The main �ndings of ABDL (2001) can

be summarized as follows: First, although raw returns are clearly lep-

tokurtic, returns standardized by realized volatilities are approximately

Gaussian. Second, the distributions of realized daily variances, stan-

dard deviations and covariances are skewed to the right and leptokurtic,

but that the distributions of logarithmic standard deviations and cor-

relations are approximately Gaussian. Third, the long-run dynamics of

realized logarithmic volatilities are well approximated by a fractionally-

integrated long-memory process. Last, volatility movements are highly

correlated across the two exchange rates and the correlation between
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exchange rates increases with the volatility. They conclude that their

�ndings suggest a multivariate linear Gaussian long-memory model,

which can be appropriate for daily realized logarithmic standard devi-

ations and correlations.

On the other hand, in their seminal paper of �Modeling and Fore-

casting Realized Volatility�ABDL (2003) propose another framework

for volatility forecasting and conditional return fractile, a vector autore-

gressive model with long distributed lags was built on realized volatil-

ity of three exchange rates, which they call the VAR-RV model, with

two key properties. First, their framework exploits the information in

intraday return data, without having to explicitly model the intraday

data, producing signi�cant improvements in predictive performance rel-

ative to standard procedures that rely on daily data alone. Second, it

achieves a simplicity and ease of implementation that holds promise for

high-dimensional return volatility modeling. Accordingly, the authors

proceed by focusing on an empirical measure of daily return variability,

by treating volatility as observed rather than latent, their approach fa-

cilitates modeling and forecasting using simple methods based directly

on observable variable.

Akin to ABDL (2001), the authors illustrate the ideas using the

highly liquid U.S. dollar ($), Deutschemark (DM), and Japanese Yen

(=Y) spot exchange rate markets. The sample consists of nearly thir-

teen years of continuously recorded spot quotations from 1986 through

1999, in the period where the Dollar, Deutschemark, and Yen con-

stituted the main axes of the international �nancial system and thus

spanned the majority of the systematic currency risk faced by large

institutional investors and international corporations. However, apart

from the earlier work of ABDL (2001), the authors break the sample

into a ten-year "in-sample" estimation period, and a subsequent two-
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and-a-half-year "out-of-sample" forecasting period. The main results

of ABDL (2000a, 2001) form the foundation on which the empirical

analysis of ABDL (2003) is built and the authors proceed to estimate

and evaluate a multivariate model for the logarithmic realized volatili-

ties, via employing fractionally-integrated Gaussian vector autoregres-

sion (VAR). Thus, the long-memory Gaussian VAR model, where they

name VAR-RV, for the realized logarithmic volatilities can be de�ned

as follows:

�(L)(1� l)d(yt � �) = �t (2.58)

where �t is a vector white noise process. The authors compare the

VAR-RV forecasts to the obtained from a �fth-order VAR for the long-

memory �ltered daily logarithmic absolute returns (VAR-ABS), which

is an interesting comparison as the model structures are identical in

all respects except for the volatility proxy: one exercises daily real-

ized volatility, while the other uses daily absolute returns. Then, the

authors compare the VAR-RV forecasts to those obtained from �fth-

order univariate autoregressions for the long-memory �ltered daily real-

ized volatilities (AR-RV). Also, they compare the VAR-RV forecasts to

those generated by the most widespread procedure in academic appli-

cations, the GARCH model of Engle (1982) and Bollerslev (1986), with

GARCH(1,1), where the model estimates on the 2,449 daily in-sample

returns from December 1, 1996, through December 1,1996. Moreover,

VAR-RV is compared Morgan�s (1997) RiskMetrics and a variant of the

GARCH model that incorporates long memory, the daily FIEGARCH

(1, d, 0) model of Bollerslev and Mikkelsen (1996), which is a variant of

the FIGARCH model of Baillie, Bollerslev, and Mikkelsen (1996). The
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conclusion of their analysis is that the VAR-RV model has a higher

R2 than the alternative forecasting methods. Hence, the authors ask

an important question �Why does the VAR-RV produce superior fore-

casts?�

Subsequently, ABDL (2003) replies this question in a simple man-

ner. With their own words: �There is a more direct reason for the

superior performance of the VAR-RV forecasts, however. The essence

of forecasting is quanti�cation of the mapping from the past and present

into the future. Hence, quite generally, superior estimates of present

conditions translate into superior forecasts of the future. Realized

volatility excels in this dimension: it provides a relatively precise and

quickly-adapting estimate of current volatility, because it exploits valu-

able intraday information.�Also, they mention that the standard mod-

els based on daily data such as GARCH and RiskMetrics rely only on

long and slowly decaying weighted moving averages of past squared

returns and therefore these kinds of models adapt only gradually to

volatility movements. Proving by a graphical analysis, they conclude

that although the GARCH forecasts appear to track the low-frequency

variation adequately, matching the broad temporal movements in the

volatilities, the forecasts trace much less well at higher frequencies.

Furthermore, even if the authors are aware of the fact that the real-

ized volatility is subject to measurement error, the authors believe that

it is desirable that �tted and forecasted realized volatilities should in-

volve smoothing, to reduce the e¤ects of the error, where their approach

also involves smoothing, with both the �tted and forecasted volatil-

ities become smoothed functions of the history of the daily realized

volatilities. The work of Andreou and Ghysels (2002) also recommend

smoothing but in a nonparametric fashion, whereas Barndor¤-Nielsen

and Shephard (2002) work with a speci�c stochastic volatility model,
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which allows the authors to quantify the distribution of the measure-

ment error in the realized volatility proxy, and then to �t and forecast

the corresponding latent integrated volatility (or quadratic variation)

using an optimal nonlinear smoother and �lter based on a state-space

representation of the model. Hence, both the �tted and forecasted

volatilities turn into ultimately smoothed functions of the history of

the daily realized volatilities.

As mentioned in section 3, about the theory of quadratic variation, it

is well identi�ed fact that RV converges in probability to QV asm!1
for all semimartingales, although lacking a theory of measurement error.

However, the unknown rate of convergence of RV to QV led Barndor¤-

Nielsen and Shephard (2001b) to do search in this area, where the au-

thors show that, in the absence of jumps and leverage e¤ects, RV con-

verges to the QV at rate
p
m and satis�es the mixed Gaussian asymp-

totic distribution theory, subsequently marginally heavier tailed than

Gaussian. Continuing to their earlier works, Barndor¤-Nielsen and

Shephard (2002) provide two important theoretical results by bring-

ing the gap between realized and actual volatility, via discussions of

the properties of RV. The authors give in a general setting a Central

Limit Theorem of the convergence of the realized volatility to the in-

tegrated volatility when the length of the intra-daily returns tends to

zero. Thus, they provide the speed of convergence and the asymptotic

variance of the noise term, where the variance is stochastic, even in the

limit. In the second more speci�c result, they characterize the mean

and variance of the noise when the underlying instantaneous variance

process is a linear combination of stationary covariance and autore-

gressive processes as the positive Levy processes of Barndor¤-Nielsen

and Shephard (2001a). In both studies, the authors ruled out leverage
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e¤ects7 and assumed a driftless model in the second case.

Another crucial research in the literature of RV belongs to Meddahi

(2002), from continuous time perspective with a theoretical point of

view and extended results of Barndor¤-Nielsen and Shephard (2002).

The author�s objective is to provide both qualitative and quantitative

measures of the precision of measuring integrated volatility by the re-

alized volatility for a given frequency by assuming that the underlying

data generating process is in continuous time, with continuous sample-

path model. Meddahi (2002) also drives the properties of the di¤erence

between integrated volatility and the realized volatility computed with

intra-day data returns for a given frequency. Correspondingly, the ran-

dom variable de�ned as the realized volatility minus the integrated

volatility is denoted the noise.

Meddahi (2002) starts by characterizing this noise term in a general

setting. He says that the form of the noise allows giving three of its

qualitative characteristics. First, the unconditional mean of the noise is

non-zero if and only if the drift of the di¤usion characterizing the asset

returns is non-zero. Second, the noise is heteroscedastic. Moreover,

its conditional variance is correlated with the integrated and realized

volatilities. Third, the noise is correlated with the integrated volatility

if and only if there is a leverage e¤ect or the drift depends on the

instantaneous volatility. In order to quantify these three characteristics,

7Leverage e¤ect, or the existence of an asymmetric return-volatility relation,
arises from a correlation between the return innovations, measured as deviations
from the conditional mean, and the innovations to the volatility process. In other
words, the leverage e¤ect is separate from a contemporaneous correlation between
the return innovations and the instantaneous mean return (ABDL (2003)). Leverage
refers to the negative correlation between the current return and future volatility,
therefore leverage denotes asymmetry, but not all asymmetric e¤ects display lever-
age (Asai, McAleer and Yu (2006)). (Simply, leverage e¤ect can be present as the
price of a stock falls, its debt-to-equity ratio rises, increasing the volatility of returns
to equity holders.)
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he considers a speci�c class of continuous-time models. He assumes that

the underlying continuous-time process is an Eigenfunction Stochastic

Volatility (ESV) model8, which derives explicitly the mean and the

variance of the noise and its correlation with integrated volatility, as

presented in Meddahi (2002). This class contains most of the popular

SV models; in particular, the log-normal model of Hull and White

(1987), the square-root and a¢ ne models of Heston (1993) and Du¢ e,

Pan and Singleton (2000) respectively, and the GARCH di¤usion model

of Nelson (1990) (Meddahi (2002)).

The main �ndings of Meddahi (2002) are threefold. First, under

the leverage e¤ect or time varying drift, the mean of the noise is non-

zero but negligible compared to the mean of the integrated volatility.

Second, the noise is heteroscedastic and its standard deviation is not

negligible with respect to the mean and the standard deviation of the in-

tegrated volatility even if one considers returns at �ve-minute intervals.

Third, the correlation of the noise with integrated volatility is non-zero

but very small. Hence, the theoretical results complement those of

Barndor¤-Nielsen and Shephard (2002), and also Meddahi (2002) has

extended the results of Barndor¤-Nielsen and Shephard (2002) to the

case where the underlying di¤usion process governing the volatility is

general and where there is both leverage e¤ect and drift. Although

Meddahi (2002) ignores the microstructure e¤ects, an alternative ap-

proach is assumed where one of the factors is a continuous-time Markov

chain since such processes also admit eigenfunctions decomposition.

Meddahi (2002) also denoted that combining the realized volatility

with the constant or some other variables reduces the noise. In par-

ticular, he mentions that the results would be better if one considers

8For further concerns, ESV model is analyzed in Meddahi (2002).
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the linear regression of the integrated volatility on the constant and

the realized volatility. Meddahi (2002) concludes with two extensions

which are under investigation. The �rst incorporates jumps in the price

or its volatility. Assuming the characteristics of the jumps, i.e. their

intensity and sizes, are functions of the same state variable which is

exactly what happens in the a¢ ne models with jumps of Du¢ e, Pan

and Singleton (2000). The second extension is related to the realized

power variations considered by Barndor¤-Nielsen and Shephard (2003).

Overall, the bottom line is that realized volatility approximates ex-

post realizations of quadratic well, but there are invariably some dis-

cretization error and microstructure frictions that induce a measure-

ment error in the computed realized return variation measures (Ander-

sen, Frederiksen and Staal (2007)).

2.8 Realized VolatilityModels in Relation

to Factor Analysis

2.8.1 Multivariate Models

Lately, there has been growing empirical and theoretical interest in

extending the results for the univariate processes to a multivariate

framework. Not only multivariate volatility has many important ap-

plications in �nance, including asset allocation and risk management

but also there are both economic and econometric reasons why multi-

variate volatility models are important. First, it becomes more vital to

know the correlation structures present in many �nancial applications,

such as asset pricing, optimal portfolio risk management, and asset

allocation, so that multivariate volatility models are very useful tools
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for making �nancial decisions. Moreover, as �nancial volatility moves

together across di¤erent assets and markets, modeling volatility in a

multivariate framework can lead to greater statistical e¢ ciency (Asai,

McAleer and Yu (2006)). In that sense, it would be an interesting re-

search to analyze multivariate realized volatilities of the distributions

of stock returns in the lights of long memory analysis. While most

research papers have focused on estimates of the volatility of a sin-

gle asset, it would be motivating to see whether a better estimator of

the entire conditional covariance matrix could be created in this way9.

An assessment of �nancial market stability and contagion depends on

measuring the time-varying variances and covariances that make up the

matrix10.

However, estimating multivariate volatility is not straightforward

because of two major di¢ culties. The �rst di¢ culty is related with the

curse of dimensionality problem since for k assets, there are k(k+1)=2

volatility and cross-correlation series. In addition, the commonly used

volatility models often have many parameters, making them imprac-

tical for real application. As also mentioned previously, the second

di¢ culty is related with the conditional covariance matrix which must

be positive de�nite for all time points and hence not easy to maintain

when the dimension is high. As ABDL (2003) state; the issue frequently

encountered in multivariate volatility modeling is that constraints must

be imposed to guarantee positive de�niteness of estimated covariance

matrices. Even for relatively low-dimensional cases such as three or four

assets, imposition and veri�cation of conditions that guarantee positive

9A covariance matrix is a mathematical concept that measures how several asset
prices move together over time. It is composed of the variances of the individual
assets and the covariances between them.
10Bauer G.H. 2006, �Using High-Frequency Data to Model Volatility Dynamics�,

Bank of Canada
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de�niteness can be challenging; see, for example, the treatment of mul-

tivariate GARCH processes in Engle and Kroner (1995). In order to

overcome this problem, ABDL (2003) propose that when the columns

of the returns are linearly independent, then the realized covariance

matrix becomes positive de�nite.

On the other hand, by applying new model of the realized covariance

matrix, Bauer and Vorkink (2006) state that their estimated matrix is

positive de�nite by construction and does not require any parameter

restrictions to be imposed since by treating covariance matrix not as

latent, but as observed, they imply that very accurate estimates of the

factors driving the conditional covariances can be found. The approach

can thus be viewed as a multivariate version of standard stochastic

variance models where the variance is an exponential function of the

factors and the associated parameters. However, it is important to

explain the employed model in order to provide the rationale behind

their reasoning.

This section reviews the seminal multivariate realized volatility pa-

pers, some of which are related with employing the factor structures.

There are six leading papers.

In their seminal paper �Modelling and Forecasting Multivariate Re-

alized Volatility�, Chiriac and Voev (2011) propose a methodology for

modelling time series of realized covariance matrices in order to fore-

cast multivariate risks. The authors describe a three step procedure

as follows: Start by decomposing he series of covariance matrices into

their Cholesky factors. Then, forecast the Cholesky series with a well

de�ned time series. At last, reconstruct the matrix forecast.

After de�ning the steps, the �rst and the main question becomes

how to ensure the positivity of the matrix forecast, which is actually

assured by the squared Cholesky factors. Hence, the necessity of im-
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posing parameter restrictions is ruled out and so this method can be

considered as a di¤erent approach from any other methods in the lit-

erature. Besides, instead of aiming good sample �t, the authors are

more interested in out-of sample forecasting and so they favour very

moderately parameterized models. In fact, their chosen speci�cation

has only three dynamic parameters regardless of the dimension of the

covariance matrix, which are an AR, an MA and a parameter for the

degree of fractional integration motivated by the strong persistence of

the series. Hence, their model can be seen as an application and ex-

tension of the multivariate ARFIMA model of Sowell (1989), where the

authors estimate via employing conditional maximum likelihood (ML)

based on the work of Beran (1995). Another important fact is that the

authors prefer the conditional approach over the exact ML methods,

proposed in the univariate case by Sowell (1992) and An and Bloom-

�eld (1993), because the exact ML approach requires the inversion of

a Tn� Tn matrix, where T is the sample size, and n is the dimension
of the process, which makes the inversion di¢ cult in multivariate case.

However, there is a complication of the new approach they use which

is regarded as a minor complication in their paper; in fact it is the

di¢ culty of interpreting the model coe¢ cients. In order to overcome

the interpretation problem, the authors suggest deriving the functional

form of the marginal e¤ects such as impulse responses which reveal

the dynamic linkages among the variance and covariance series. For a

risk-averse investor with the optimal portfolio selection problem, the

authors suggest three choices, including their vector ARFIMA model,

a DCC (Engle (2002)) forecast and a BEKK (Engle and Kroner (1995))

forecast, via comparing the ex-post realized performance of the three

sets of portfolio returns, by means of the Sharpe Ratios. At this point,

the shortcomings of employing Sharpe Ratios should be evaluated care-
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fully since Sharpe ratio is only su¢ cient if the investor has a quadratic

utility and/or if the return distribution is fully described by its �rst

two moments like a normal distribution.

The authors start their model by de�ning the daily log returns as rt

as rt = E (rtjFt�1)+ �t, where Ft�1 is the information set consisting of
all the relevant information up to and including t� 1. The error term
is de�ned as:

�t = H
1=2
t zt (2.59)

where Ht is a positive de�nite matrix of dimension n � n, H1=2
t is its

Cholesky decomposition and zt is an n � 1 vector assumed to be i.i.d.
The covariance matrix of returns is given by:

V (rtjFt�1) = V (�tjFt�1) = Ht (2.60)

Barndor¤-Nielsen and Shephard (2004) and Andersen, Bollerslev,

Diebold, and Ebens (2001) propose the realized covariance matrix Yt

as a consistent estimator of Ht. The Cholesky decomposition of the

matrix Yt is given by the upper triangular matrix Pt, as P
0
tPt = Yt,

where the matrix Yt is symmetric and positive de�nite by construction,

the elements of the matrix Pt are all real (Golub and Van Loan (1996)).

Xt = vech(Pt) is de�ned as the vector obtained by stacking the

upper triangular components of the matrix Pt in a vector and the di-

mension of Xt ism�1, wherem = n(n+1)=2. Chiriac and Voev (2011)

model the dynamics of the vectorXt by using the Vector Autoregressive

Fractionally Integrated Moving Average (VARFIMA (p; d; q )) model

de�ned as follows:

�(L)D(L) [Xt �BZt] = �(L)"t (2.61)
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where D(L) = diagf(1�L)d1 ; : : : ; (1�L)dmgand d1; : : : ; dm are the de-
grees of fractional integration of each of them elements of the vectorXt.

Also, the authors assume �(L) and �(L) lie outside the unit circle and

the whole vector process Xt is stationary if di < 0:5 for i = 1; :::::;m.

Besides, the authors assume normally distributed error terms which

give rise to Gaussianity assumption. The positive de�niteness condition

for the covariance matrix based on the forecasted Cholesky factors does

not impose positivity restrictions on the elements of the predictedXt+s,

for some m > 0. Any (invertible) upper triangular matrix constructed

from the elements of the forecast ofXt+s provides a positive de�nite ma-

trix of predicted covariances. By using the reverse transformation from

Xt to Yt as in the following equation, the authors assure the positive

de�niteness and symmetry of the covariance matrix without imposing

any restrictions on the parameters in the model for Xt.

Yt = upmat((expand(Xt))
0
upmat((expand(Xt)) (2.62)

where the expand denotes the inverse of the vech operator and the

upmat creates an upper triangular matrix.

However, in terms of estimation, there can a problem with the para-

meters of the unrestricted VARFIMA models which are not identi�ed

and results from the non-uniqueness of VARMA models, discussed at

Lutkepohl (2005) and the authors consider only �nal equations form

and so they restrict the AR polynomial to be a scalar polynomial and

also they reduce the number of parameters to be estimated as follows:

The n-dimensional VARMA (p,q) representation �(L)Yt = �(L)"t

is de�ned as to be in �nal equations form if �0 = In and �(L)t =

1� �1L� :::� �pLp is a scalar operator with �p 6= 0.
The authors present the theory of forecasting with the VARFIMA
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model. They neglect the term in the VARFIMA equation and the

fractionally di¤erenced series follows a stationary VARMA process. The

authors obtain forecasting formulas through its in�nite Vector Moving

Average (VMA(1)) representation (Lutkepohl (2005), pp. 432-434).
The fractionally di¤erenced series (1� L)djXj;t is given as follows:

(1� L)djXj;t =

1X
h=0

�j;hXj;t�h = Xj;t +

1X
h=1

�j;hXj;t�h (2.63)

Then, one can rewrite equation 2:61 as;

�(L)�(L)Xt = �(L)"t (2.64)

VMA(1) representation is as follows;

Xt = �(L)
�1�(L)�1�(L)"t =

1X
h=0

	s+i"t�i (2.65)

The optimal predictor ofXt in terms of the representation VMA(1)
is given as;

Et (Xt+s) =
1X
i=s

	i"t+s�i =
1X
h=0

	s+i"t�i (2.66)

where the resulting forecast is unbiased with the normally distributed

forecast errors. Then, after forecasted Xt+s, the authors construct the

forecast of the daily volatility matrix Yt+s by applying the transforma-

tion in equation 2:62.

As a brief aside, Chiriac and Voev (2011) are actually forecasting

the series Yt, while the aim is to forecast Ht. However, the problem is

that Ht is unobservable, implying that the quality of the forecast does
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not fully depend on the dynamic speci�cation of Yt but also on the

quality of the realized covariance estimator. Hence, it is well beyond

the scope of this paper to address the latter issue; the search for better

and better multivariate volatility measures using high frequency data,

rather the authors use an estimator which they claim to be reliable and

much more precise than any estimator based on daily data.

In the empirical application section, the authors present results from

estimating and forecasting the VARFIMAmodel using historical return

data for 6 highly liquid stocks traded at the New York Stock Exchange

(NYSE), where the data consists of tick-by-tick bid and ask quotes from

the NYSE Trade and Quotations (TAQ) database sampled from 9:45

until 16:00 over the period January 1, 2001 to June 30, 2006 (1381 trad-

ing days) and they �lter out the quotes recorded in the �rst 15 minutes

in order to eliminate the opening auction e¤ect on the price process. In

order to obtain a regularly spaced sequence of midquotes, they use the

previous tick interpolation method, described in Dacorogna, Gençay,

Müller, Olsen, and Pictet (2001). The mid-quotes are thus sampled

at the 5-minute and daily frequency, from which 5-minute and daily

log returns are computed. Thus, the authors obtain 75 intraday ob-

servations which are used to compute the realized variance-covariance

matrices for each day.

For each, the authors construct series of daily realized covariance

matrices,Yt, from with 5-minute returns as follows:

Yt =

MX
j=1

rj;tr
0

j;t (2.67)

where M = 75 and rj;t is the vector of 5-minute returns. By construc-

tion, the realized covariance matrices are symmetric and for n < M ,
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they are positive de�nite, almost surely.

The authors disregard a lot of data by sampling sparsely; they re-

�ne the estimator by considering subsamples. However, the resulting

subsampled realized covariance is much more robust to noise and non-

synchronicity than the simple 5-minute based one. As the main aim

is to get the covariance matrix of the whole day (close-to-close), and

estimates only its open-to-close portion, they use the scaling method

introduced by Hansen and Lunde (2005b) adapted to the multivari-

ate case: where they scale each (co)variance estimate corresponding

to the trading period by an average scaling factor, which incorporates

the overnight information over all series, which preserves the positive-

de�niteness of the resulting covariance matrix.

For the estimation, they use a multivariate extension of the con-

ditional maximum likelihood approach of Beran (1995). However, in

their empirical paper, the authors focus mainly on evaluating the out-

of-sample performance rather than on in-sample �t of the model, which

can be considered as a proper decision since in-sample evaluation meth-

ods are in general limited, less relevant for practical purposes and cum-

bersome when applied to highly dimensional models (Bauwens, Lau-

rent, and Rombouts (2006)). Hence, the out-of-sample assessment of

covariance models is of key importance for the evaluation of precisely

predicting �nancial risks.

As already documented by Andersen, Bollerslev, Diebold, and Ebens

(2001), both realized variance and covariance distributions are extremely

right skewed and leptokurtic. All in all, the main feature of Chiriac

and Voev (2011)�s speci�cation is the decomposition of the realized

covariance matrices into their Cholesky factors. The dynamics of the

elements of the Cholesky decompositions are modelled with a multivari-

ate vector fractionally integrated ARMA (VARFIMA) model without
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imposing restrictions on the admissible parameter space. However, in

order to fully realize the potential of their methodology as well as to

further test the performance of the model, it will be worthwhile to in-

crease the number of assets under consideration as well as to test the

model on di¤erent time periods.

In their in�uential paper �Forecasting Multivariate Realized Stock

Market Volatility�, Bauer and Vorkink (2010) present a new matrix-

logarithm model of the realized covariance matrix of stock returns.

Their model uses latent factors which are functions of lagged volatil-

ity, lagged returns and other forecasting variables. The authors use

high-frequency data to construct estimates of the weekly variances and

covariances of �ve size-sorted stock portfolios and �nd that two factors

are su¢ cient to capture most of the dynamics. Thus, they treat their

conditional covariance matrix not as latent, but observed which im-

plies that very accurate estimates of the factors driving the conditional

covariances can be found. Then, they transform the realized covari-

ance matrix using the matrix logarithm function to yield a series of

transformed volatilities which they term the log-space volatilities. The

matrix logarithm is a non-linear function of all of the elements of the

covariance matrix and thus the log-space volatilities do not correspond

one to one with their counterparts in the realized covariance matrix.

However, authors claim that it is easy to model the time variation of

the log-space volatilities and avoid the typical problems that plague

existing estimators of the latent volatility matrix.

A factor model is used to model the dynamics of the log-space

volatility matrix. The factors are functions of past volatilities and vari-

ables that can help forecast future volatility. Any linear or non-linear

transformation of the variables is possible. The model is estimated

by Generalized Method of Moments (GMM) yielding a series of �tted
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values and then the authors transform these �tted values using the ma-

trix exponential function to obtain forecasts of the realized covariance

matrix.

The authors use the matrix exponential and matrix logarithm func-

tions to model the time-varying covariance matrix and the matrix expo-

nential function performs a power series expansion on a square matrix

A:

V = expm(A) =
1X
n=0

1

n!
An (2.68)

One of the most important properties of the matrix exponential

function is that if A is real and symmetric, then V is a real and positive

de�nite matrix (Chiu, Leonard and Tsui (1996)). Similarly, the matrix

logarithm function is the inverse of the matrix exponential function and

taking the matrix logarithm of a real, positive de�nite matrix V results

in a real, symmetric matrix A as follows;

A = logm(V ) (2.69)

The matrix logarithm and matrix exponential functions are used in

the three-step procedure to obtain forecasts of the conditional covari-

ance matrix of stock returns. In the �rst step, at each time t, the au-

thors use high-frequency (quote-by-quote) data to construct the P �P
realized conditional covariance matrix Vt, where the matrix is positive

de�nite by construction. Applying the matrix logarithm function yields

a real, symmetric P � P matrix At as follows;

At = logm(Vt) (2.70)

Bauer and Vorkink (2010) term the elements of At as the �log-space

volatilities�, but it is worthwhile to note that the elements of At do not
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correspond one-to-one with the elements of Vt such as the (1, 1) element

of At is not the log volatility of the �rst portfolio. In the second step,

the authors model the dynamics of the At matrix, where they follow

the approach of Chiu, Leonard and Tsui (1996) and apply the vech

operator to the matrix At which stacks the elements on and below the

diagonal of At to obtain the p � 1 vector at where p = 1=2P (P + 1),
without any loss of information.

at = vech(At) (2.71)

The at vector forms the basis of all subsequent models and the au-

thors present a factor model for the at processes, which has a much

smaller number of parameters to be estimated and allows other vari-

ables to forecast volatility. In the third step, they transform the �tted

values in the log-volatility space into �tted values in the actual volatil-

ity space. The authors use the inverse of the vech function to form a

P � P symmetric matrix A�t of the �tted values at each time t from

the vector a�t . Applying the matrix exponential function yields the ma-

trix V �t , which is the �estimate of the conditional covariance matrix�

at time t.

V �t = expm(A
�
t ) (2.72)

By using several di¤erent groups of variables of Xt, the authors

try to forecast the conditional covariances and denote the augmented

matrix of the forecasting variables as Zt = (at; Xt) , where Zt di¤ers

depending on the chosen information set. The authors approach to

modeling variation in the log-space transformation of the conditional

covariance matrix is then;
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at = 
0 + 
1Zt�1 + "t (2.73)

The authors suggest adopting a factor approach to reduce the di-

mensionality of 
1, where in the previous studies the covariance matrix

of latent volatility was described by a relatively small number of factors,

such as Diebold and Nerlove (1989) propose a factor ARCH model of

the cross section of exchange rate changes, Engle and Lee (1999) sug-

gest that two factors are necessary to capture the dynamics of stock

return volatility and Gallant, Hsu and Tauchen (1999) estimate a two

factor model of volatility using the daily range to capture volatility

dynamics.

Similarly, the authors employ two techniques to obtain a more par-

simonious structure. First of all, they adopt a latent factor approach

where the factors that drive the time-varying volatility are not speci�ed

directly, rather, it is assumed that the forecasting variables are likely

related to the true, but unknown, volatility factors. The second dimen-

sion reduction technique is to reduce the number of variables in Zt�1.

The authors state that using latent factors has three main advantages

over existing methods of modeling covariance matrixes. First, it allows

a combination of both lagged volatility measures and other variables

that have been used to forecast volatility in a parsimonious manner.

Previous models require each variable to be a separate factor, while the

large number of variables may help forecast the covariance matrix; it is

unlikely that each variable represents a speci�c volatility factor, where

Chan, Karceski and Lakonishok (1999) �nd little di¤erence between

the forecasting ability of models with 3 and 10 factors. A second ad-

vantage is that it completely avoids using expected returns in modeling

the volatility matrix. Aggregating squared return data over high fre-
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quencies means that expected return variation can be ignored. Thus,

there is no need to rely on expected returns to obtain the loadings on

the factors as in Chan, Karceski and Lakonishok (1999). The third and

the last advantage is parsimony, where the number of parameters in

the simple GARCH type model is reduced from 240 to 47, which helps

in estimating and interpreting the model in-sample and should help in

out-of-sample forecasting.

The authors estimate their factor model of volatility by GMM. The

Newey-West (1987) form of the optimal weighting matrix is used to cap-

ture any autocorrelation of heteroskedasticity in the residuals, where

the authors sample weekly volatility on a daily basis and induce an

MA(4) structure into the error terms in 2:73. and hence they use 5

lags in the Newey-West standard errors to account for this autocorre-

lation in all subsequent results. In its present form, equation 2:73 is

unidenti�ed due to the �� combination and authors impose the stan-

dard identi�cation that the �rst K rows of the matrix � are equal to an

identity matrix. The cross-equation restrictions of the model 
1 = ��

can then be tested using the standard Chi-squared test statistic from

a GMM system.

However, the model has a potential errors-in-variables problem as

the realized covariance matrix Vt is constructed with error, which may

result in biased estimates of the coe¢ cients when the principal com-

ponents of this matrix as regressors are used. Likewise, Ghysels and

Jacquier (2005) have noted a similar problem with the estimates of

time-varying beta coe¢ cients for portfolio selection and the authors

advocate using lagged values of the betas in an instrumental variables

regression to overcome the biases, which is also followed by Bauer and

Vorkink (2010) and they use the twice lagged values of the principal

components in the GMM instrument set.
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When it comes to the application part, the authors construct the

realized covariance matrixes from two data sets: the Institute for the

Study of Securities Markets� (ISSM) database and the Trades and

Quotes (TAQ) database. Both data sets contain continuously recorded

information on stock quotes and trades for securities listed on the New

York Stock Exchange (NYSE), American Stock Exchange (AMEX),

and National Association of Security Dealers Automated Quotation

System (NASDAQ). The ISSM database provides quotes from Janu-

ary 1988 to December 1992 while the TAQ database provides quotes

from January 1993 to December 2002. Realized covariances for a given

day are constructed by summing high-frequency returns where they

use high-frequency portfolio returns to calculate a total of 3,781 daily

realized covariance matrixes. Value-weighted portfolio returns are cre-

ated by assigning stocks to one of �ve size portfolios based on the prior

month�s ending price and shares outstanding and they only use the

CRSP database to obtain shares outstanding and prior month ending

prices.

There is a well-known trade-o¤ between interval length and mi-

crostructure e¤ects exist in high-frequency stock returns (Campbell, Lo

andMacKinlay (1997)). Hence, in order to deal with the microstructure

noise, the authors prefer to use 20 minutes as the high-frequency re-

turn interval where their choice of 20 minute return intervals is based on

rule-of-thumb suggestions by Anderson, Bollerslev, Diebold and Ebens

(2001) of mitigating this trade-o¤ for highly liquid securities. They con-

struct the measure of realized covariance matrixes akin to Hansen and

Lunde (2004), where the authors suggest an extension to the usual con-

struction of realized volatility whose intuition is based on the Newey-

West (1987) variance estimator. The authors construct the stocks by

labeling their sizes such as the largest stocks are labeled portfolio 1
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while the smallest are labeled 5. The elements are labeled by their po-

sition in the matrix. Thus the (1, 3) element is the covariance of the

returns on the largest quantile with those on the mid-quantile. The

diagonal elements show that weekly volatility increases as the sizes of

the �rms decrease.

All of the variance and covariance measures are skewed to the right

as the means are above the medians. Volatility is quite volatile: the

standard deviation of the realized variances and covariances are much

larger than their mean values. The data are persistent as the auto-

regressive coe¢ cients are above 0.9. The volatility series are not near

normally distributed and the data are quite skewed and there is a great

deal of kurtosis. Hence, normality is rejected for all elements of the

realized covariance matrix.

When considering the log-space volatilities, taking the matrix loga-

rithm of the data changes its properties along several dimensions. First,

while the mean and median values of the series change, there is no longer

a large degree of skewness, indeed, many of the skewness coe¢ cients are

now close to 0. While the series are still volatile, the kurtosis statistics

are close to 3 indicating that there is no excess kurtosis relative to the

normal distribution. In fact, several of the Jarque-Bera statistics do

not reject the null of normally distributed data.

Besides, the authors employ four alternative sets of forecasting vari-

ables to be tested. First model corresponds to the multivariate GARCH

and stochastic volatility literatures where volatility is modeled as a

function of past volatility. The second model incorporates the asym-

metric response of volatility to past shocks since quite a number of

authors have shown that past negative returns cause higher future eq-

uity market volatility (Black (1976), Pagan and Schwert (1990), Engle

and Ng (1993)). The third model uses those variables which have been
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shown to forecast stock returns, which include a risk-free interest rate,

the dividend yield, the credit spread and the slope of the term structure.

The fourth model uses all of the variables from the other models.

The alternative sets of forecasting variables produce results that

are roughly similar according to standard unconditional tests. How-

ever, there are di¤erences between the �tted values from the alternative

models and they evaluate these di¤erences using minimum variance and

minimum tracking error portfolios.

In their paper �Forecasting the Volatility of Australian Stock Re-

turns: Do Common Factors Help?�, Anderson and Vahid (2007) de-

velop univariate and multivariate forecasting models for realized volatil-

ity in Australian stocks and they consider multivariate models with

common features or common factors where they suggest estimation pro-

cedures for approximate factor models that are robust to jumps when

the cross-sectional dimension is not very large.

The authors develop a pure variance model for the returns of twenty

one highly traded Australian stocks. The main aim of the paper is to

investigate whether a parsimonious multivariate model can do better

than simple univariate models with respect to forecasting the realized

volatility of Australian stocks.

The authors argue that the presence of jumps in time series of re-

alized volatilities can distort inference relating to common factors and

hence they outline modi�cations to model selection criteria that are

likely to be more robust to jumps. They also claim that since jumps are

unpredictable, there is little to be gained by including them in forecast-

ing models, therefore they suggest using realized "bi-power variation"

(i.e. realized volatility minus the jumps) instead of realized volatility

for developing forecasting models and explore the properties of bi-power

variation of the returns of Australian stocks.
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They base the analysis on price data for stocks traded on the Aus-

tralian Stock Exchange (ASX). The data records the last price observed

during every �ve minute interval within each working day for six years

starting on January 1st 1996, but they work with �fteen minute returns

and restrict the attention to just twenty one frequently traded stocks

because they reason that there are too many �ve minute intervals in

which there are no trades and hence no recorded price. Given that the

ASX is open for six hours in a normal working day, there are 120 �f-

teen minute time intervals in a �ve day week so that most of the weekly

measures of realized variance are based on 120 raw data points.

Their report summary of statistics for weekly stocks indicates that

there is no evidence of ARCH in the weekly returns for most (14 out

of 21) companies. On the other hand, there is mixed evidence of pre-

dictability in volatility, with no evidence of predictability being found

in 7 out of the 21 cases. However, these are only initial results which

suggest a very limited scope for pooling this data set to improve the

forecastability of conditional variances, but after contrasting this evi-

dence with the forecastability of �ltered realized variance their interpre-

tation is that signi�cant idiosyncratic jumps in the volatilities of stock

prices of Australian companies are responsible for giving the impression

that conditional variances are constant or very dissimilar across di¤er-

ent stocks. The jumps are large and are therefore very in�uential when

one is estimating parameters, but they are also quite unpredictable and

hence as authors mention they generate the impression that volatilities

are unpredictable.

The authors are motivated by the factor literature in �nance, origi-

nating in the work of Chamberlain and Rothschild (1983) and the model

is given as:

Yt = AFt + ut (2.74)
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where the Yt are assumed to have mean zero for simplicity, the vector

Ft contains r common factors, and ut contains N idiosyncratic factors

that are independent of Ft. Chamberlain and Rothschild (1983) show

that as N !1 the information in the data about the common factors

will be of order N , while the information about idiosyncratic factors

will remain �nite.

Bai and Ng (2002) use these results to develop four consistent model

selection criteria for choosing the number of factors in approximate

factor models and they use the principal component estimator of factors

and factor loadings, which minimizes the sum of squared errors, and

they also motivate Anderson and Vahid (2007) to apply these criteria

to the square root of their realized variance measures.

The observation that these model selection criteria select a large

number of common factors relative toN whenN is small has been noted

in the simulation study of Bai and Ng (2002) and in the empirical study

of Engle and Marcucci (2006). However, Anderson and Vahid (2007)

prefer to argue that the relatively large number of common factors

chosen in real data sets can be caused by large idiosyncratic jumps in

asset prices. Besides, they claim that by purging these jumps and other

jumps, and by also considering alternative estimators that are more

robust to jumps, one can get better estimators for common factors.

Many researchers have noted that models of asset returns that in-

corporate jumps �t the data better than models that don�t allow for

jumps (Andersen et al, 2003). Standard "jump" models are based on

the assumption that the logarithm of an asset price follows a continuous

time jump di¤usion process.

Anderson and Vahid (2007) explore two ways of removing the in�u-

ence of jumps on their analysis. Their �rst approach treats the jumps

as a kind of measurement error and uses instrumental variable meth-
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ods to alleviate their e¤ects. Their second approach uses a consistent

estimate of bi-power variation. They estimate the volatilities of weekly

returns from �fteen minute returns. Then the authors ask the crucial

question, whether these factors help in forecasting log-volatilities and

their answer is yes. The authors claim that bi-power variation (BV) is

the only forecastable component of realized variance and hence they in-

vestigate the multivariate modeling of the natural logarithm of the BV

series and use the term �log volatility�. They focus on �nding good fore-

casting models for the log-volatility of Australian stock returns. For the

univariate models, they estimate univariate ARMA models, single ex-

ponential smoothing models and a pooled model for all 21 log-volatility

series. Then, the authors report the forecasting performance of several

multivariate models.

The �rst one is a one factor model that takes the simple average of

the 21 log volatility series as the estimate of common factor and they

claim that if there is only one common factor, this provides a consistent

estimate of the common factor. Then, they add lags of this variable

as regressors and allow for ARMA errors. Most �nal models resemble

the univariate models with the market variable included as a regressor,

where they name this type of models as EqW (equally weighted) model.

The second model selection criteria choose only one factor and this

analysis also provides a leading indicator for the common factor. An-

derson and Vahid (2007) take this leading indicator and use it as a

regressor in the equation for each log-volatility and call the resulting

models IVLI (instrumental variable-leading indicator) models, where

the authors claim that the model is a good indicator for the market

factor. Besides, they show that in samples with small N and with se-

ries characterized by many, these selection criteria often do not work

because principal components tend to �t the idiosyncratic noise rather
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than the signal of the common factors. In other words, in order to deal

with this problem the authors suggest an instrumental variable-leading

indicator approach to estimate the factors where principal components

are extracted from the covariance matrix of the linear orthogonal pro-

jections of the realized volatilities onto their most recent past. In such

framework, the idiosyncrasies are, on average, uncorrelated with the

instruments as N diverges, while the instruments are, on average, cor-

related with the common factors.

The �nal model is the model that assumes the variables can be ade-

quately modeled by a VAR, and uses model selection criteria to choose

number of lags and rank of the VAR, where the procedure chooses one

lag and rank of two. These models are named as canonical correlation

models.

The authors conclude that, the out of sample performance of the

multivariate models outperform the univariate models in almost every

case. When comparing multivariate models with each other, the only

remarkable result is how well the simple average factor model performs.

This model, under the heading of �EqW�performs best for 13 out of the

21 series, and performs second best in another four models. Obviously,

an equally weighted estimate is a consistent estimator of the common

factor when there is only one common factor in the model. Its strong

performance in out of sample forecasting suggests that there is only

one common factor in the Australian stocks. When comparing factor

models, at the 5% level of signi�cance, the EqW model encompasses

the instrumental variable leading indicator (IVLI) model in forecasting

four of the log-volatilities and is never encompassed by it. The EqW

forecasts only encompass the canonical correlation forecasts twice and

are themselves encompassed only once. The (IVLI) and the (CC) fore-

casts appear to be equivalent in all twenty one cases.
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Anderson and Vahid (2007) argue that the principle component

procedures that are typically used for factor analysis in approximate

factor models can be misled by large outliers and hence they propose

a procedure that is based on principal component analysis of the lin-

ear projection of variables on their past. Their results show that an

equally weighted average of all log-volatilities can improve forecasts of

log-volatility more than principal component or canonical correlation

estimates of common factors. The authors�forecast analysis shows that

multivariate models outperform univariate models, but that there is lit-

tle di¤erence between simple and sophisticated factor models.

In his in�uential paper �Are Common Factors Useful in Forecast-

ing International Stock Market Realized Variances?�Marcucci (2008)

studies the volatility processes of 33 international stock markets as

measured by the weekly realized volatilities computed using the daily

MSCI indices. His focus is on predicting each country�s volatility and

the main goal is to assess whether the use of common variance factors

which help in forecasting each country�s volatility.

Marcucci (2008) restricts the attention to multivariate factor models

where the factors can be interpreted as leading indicators, thus sum-

marizing all the relevant information in both regional and world stock

markets.

The author�s goal is twofold. First, the author tests for the possible

presence of either a common world ARCH factor or a few common

regional ARCH factors by comparing a number of countries that is

larger than that of Engle and Susmel (1993). The author mentions

that this represents a preliminary but necessary step to understand

the features of the volatility processes of international markets and it

is important to interpret the factors used in the following forecasting

exercise.
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Second, the author compares di¤erent models to predict the weekly

realized volatility of our set of international stock market returns. Be-

sides, the author considers pure variance models by directly modeling

the weekly realized variances both with standard univariate time se-

ries techniques and with factor models, treating volatility as if it were

observed rather than latent (Andersen et al. (2003)) approach.

On the other side, the author compares the forecasting performances

of univariate and multivariate volatility models based on returns sam-

pled at a lower frequency. In particular, the author is interested in the

forecasting performances of factor models, where the variance factors

summarize all the information contained in a portfolio of volatilities.

Marcucci (2008) also allows for some idiosyncratic residual correlation

in his models of the realized variances, thus modeling time-varying

volatility also in the idiosyncratic factors.

As also mentioned by the author, his approach is in the same spirit

of Stock and Watson (1998, 1999, 2002) who use principal components

in a macroeconomic context to summarize the information contained in

a very large number of covariates in a few di¤usion indices to be then

used for forecasting purposes.

The author follows the idea of Engle and Marcucci (2006) and as-

sumes the following approximate factor structure for the portfolio of

realized volatilities;

Yt = �Ft + ut (2.75)

As mentioned previously, the approximate factor models were �rst

introduced by Chamberlain and Rothschild (1983) who show that N !
1 as the information in the data about the common factors will be of

order N , while the information about idiosyncratic factors will remain

�nite. Actually, this approach induces an immediate visual method to
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determine the number of variance factors by examining the behavior

of the largest eigenvalues as N ! 1, where the intuition behind this
model is apparent that as the number of cross-sections grows large,

eigenvector analysis is asymptotically equivalent to factor analysis. In

other words, each cross-section provides additional information only

about the pervasive factors Ft and local information about the idiosyn-

crasies ut. Also, as the number of cross-sections increases, the propor-

tion of total variation explained by the non-pervasive sources of risk

must approach zero. Thus, as N ! 1, the information in the data
about the common factors will be of order N , whereas the information

on the idiosyncrasies will remain �nite.

Hence, Bai and Ng (2002) suggest using the method of principal

components to consistently estimate both factors and factor loadings.

In their assumptions, Bai and Ng (2002) allow for time series and cross-

section dependence, along with heteroskedasticity. In addition, they

allow for a weak dependence between the factors and the idiosyncrasies,

where the principal components estimators are consistent for the space

spanned by the factors and not for the factors themselves. Marcucci

(2008) mentions that the lack of identi�cation does not constitute a

problem when the researcher is interested in forecasting and in fact he

says that the researcher has to take the identi�cation issue into account

only if he or she wants to give a structural interpretation to the factors.

In contrast to Andersen and Vahid (2007), Marcucci (2008) claims

that if one is interested in forecasting, he or she should focus not only on

the contemporaneous movements that are captured by principal com-

ponents analysis - but also on movements at most leads and lags, be-

cause these might result more helpful in capturing the dynamics of the

series. Therefore, Marcucci (2008) believes that canonical correlation

analysis can still be useful in identifying the variance factors. In this
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case, to be able to determine the number of variance factors the au-

thor suggests using the common features tests, even though Engle and

Marcucci (2006) show that non-normality and heteroskedasticity may

weaken tests based upon canonical correlations. Hence, the author

suggests that the only way to determine the number of factors is by

comparing the �t of models with a di¤erent number of factors.

The author considers a general form of forecasting equation for one-

step-ahead forecasts of each country�s realized variance and estimates a

set of factor models for realized variances and then uses the estimates of

the common factors in two ways. In the �rst, once the variance factor

is computed, the author employs ARMA models to its time series and

the �tted model gives the variance factor forecasts. In the second, the

author interprets the common variance factors as leading indicators

and plugs them in directly into the forecasting equation, without any

further modeling. In both cases the author models the idiosyncrasies as

ARMA to take into account possible residual correlation, by allowing

the idiosyncrasies to be modeled as GARCH-like processes.

In the paper, the data consist of time series of daily and weekly stock

market indices, in local currency of the major countries in the world.

The author explains the reason behind choosing the local currencies to

be able to avoid accounting for exchange rates behavior and hence to

get rid of the extra noise due to the exchange rate movements. The

sample period starts January 6, 1993 to April 29, 2005 and for each

country, there is a total of 3216 daily price indices and 643 weekly price

indices, where the daily and weekly continuous returns are calculated

as the log di¤erences of the corresponding contiguous price indices.

Besides, the daily returns indicate strong evidence of ARCH e¤ects,

both from the Ljung-Box test on the standardized squares and the

ARCH LM test until the 15-th lag. Within each region, the author
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notices some di¤erent features of the data such as all the Asian markets

show positive skewness along with the Latin American ones, whereas

Europe is characterized by a negative skewness.

When one examines the summary of statistics, the unconditional

distribution of the returns is clearly non-normal for all the stock mar-

kets with a kurtosis signi�cantly higher than 3 and a Jarque-Bera test

signi�cant at any reasonable level.

Also, the author questions the correlation and concludes that inter-

national stock markets are highly correlated not only within the same

region but also between di¤erent areas. For example, the levels are

highly positively correlated within the three macro regions such as Eu-

rope, America and Asia with almost all the correlations greater than

0.40. Actually, this is very important because the results suggest the

existence of common regional factors along with a world common factor

that links international stock markets.

On the other hand, the author is mainly interested in the possible

presence of a common ARCH factor that drives the world volatility

process. Previous analysis has shown that all international stock re-

turns have strong ARCH e¤ects and it could be useful knowing if there

is either a regional common ARCH factor (Engle and Susmel (1993))

or a world common factor. Given the previous results on the correla-

tions among squared returns, the author believes that there are groups

of countries within the same region with a similar volatility behavior.

However, in the former there are not any ARCH e¤ects when Bel-

gium, Sweden, Denmark, Finland, France and Ireland combined, while

in the latter Australia, Japan, Korea and New Zealand display no het-

eroskedasticity when combined. Beyond these countries, the author

�nds a few other portfolios where Japan, Brazil, Austria, Australia,

Greece and Finland, combined do not have ARCH.
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As Engle and Susmel (1993) point out, the common ARCH test is

based on a model with only one ARCH factor plus a constant idiosyn-

cratic noise variance. The presence of additional factors, as documented

by King et al. (1994) or Engle and Marcucci (2006) along with a time-

varying idiosyncratic variance could make the common ARCH factor

test unable to correctly select no ARCH portfolios even if present.

Two results emerge from the empirical application. First, as in En-

gle and Susmel (1993), there is no evidence of a common world ARCH

factor but only of some regional ARCH factors. Second, with the factor

models, where the common variance factors are given by the equally

weighted portfolios of single regions or time-zones, the author �nds that

they tend to outperform all the other factor models. In particular, the

author mentions that models adopting regional factors tend to be su-

perior (in a mean squared error sense) to those with a global factor and

to those with statistical factors, which is in line with previous research

in the �nancial econometrics literature such as Anderson and Vahid

(2007).

Moreover, the author also claims that models that use the variance

factors obtained from the canonical varieties tend to fare better than

the others that utilize di¤erent multivariate techniques, thus con�rming

the predictive power of canonical correlation analysis.

As also mentioned by Marcucci (2008), when dealing with factor

models, it becomes crucial to correctly select the number of factors.

As shown by Brown (1989), using the eigenstructure of the covariance

matrix of the returns might su¤er of small-sample bias. A more formal

treatment of this problem has been recently made by Bai and Ng (2002)

who propose a set of selection criteria that asymptotically (when both

the cross-section dimension N and the time series dimension T diverge)

select the right number of factors.
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Assuming an approximate factor model for the realized variances,

the author employs this criterion of Bai and Ng (2002) to obtain the

right number of factors. Indeed, the author always �nds evidence of

one variance factor, with both measures of the realized variances and

with their log-transformations. Using the out-of-sample multivariate

realized variance comparison; the author concludes that factor models

that utilize equally weighted regional portfolios outperform all the other

models in terms of RMSE. Also, forecasting results shows that those

models where the factors are built from canonical correlation analysis

produce better forecasts than those based on other multivariate statis-

tical techniques such as principal components. This con�rms the pre-

dictive features of canonical correlations analysis. The author mentions

that the model with an equally weighted world factor does not produce

the best forecast, thus supporting the hypothesis that regional factors

are more important and adds that further research is however needed

to formally exploit the predictive power of canonical correlations.

In this paper, Marcucci (2008) compares standard univariate time

series models and multivariate factor models in terms of their ability

to forecast the weekly realized variances of 33 international stock ex-

changes. The paper deals with the issue of forecasting international

stock market volatility from three di¤erent perspectives. First, the

author estimates univariate volatility models for the weekly realized

volatilities, taking into account their serial correlation properties. Sec-

ond, the author builds multivariate forecasting models in the same spirit

of the di¤usion index forecasting literature, which is done by assuming

an approximate factor structure for the whole set of international stock

market realized variances. Third, the author tries to forecast volatility

from more traditional models of returns sampled at a lower frequency.

As a result, Marcucci (2008) states that common variance factors cap-

87



ture the co-movements across stock markets and from the forecasting

exercise the author concludes that factor models that utilize equally

weighted regional portfolios outperform all the other models in terms

of RMSE.

2.9 Long Memory in Volatility

Volatility forecasts based on models that use the long memory (LM)

characteristics of volatility appear rather late in the literature. These

forecast based models include ABDL (2003), Zumbach (2002) and the

papers that compare LM forecasts with option implied volatility, Li

(2002), Martens and Zein (2002).

An earlier paper by Hwang and Satchell (1998) uses LM models to

forecast Black-Scholes implied volatility of equity option. Other exam-

ples of LM models include the FIGARCH in Baillie, Bollerslev, and

Mikkelsen (1996) and FIEGARCH in Bollerslev and Mikkelsen (1996).

In ABDL (2003) a vector autoregressive model with long distributed

lags was built on realized volatility of three exchange rates, which they

called the VAR-RV model. In Zumbach (2002) the weights apply to

time series of realized volatility following a power law, which he called

the LM-ARCH model.

An extensive literature has documented strong empirical evidence of

long range dependence in return volatility. For instance, Ding, Granger

and Engle (1993), Baillie, Bollerslev and Mikkelsen (1996), Comte and

Renault (1998), Diebold, Hahn and Tsay (1999), ABDL (2001, 2003),

Wright (2002), Hurvich and Ray (2003) and Arteche (2004) represent

good source of long range dependence studies. From a theoretical per-

spective, Comte and Renault (1998) established a link between the
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long memory in integrated, realized and implied volatility. On the

other hand, using volatility measures based on high frequency data,

Andersen, Frederiksen and Staal (2007) found that forecasts based on

long memory time-series models of historical realized volatility provide

unbiased estimates of future realized volatility.

There is an increasing quantity of evidence suggesting the existence

of long memory in macroeconomic and �nancial series; e.g. see Diebold

and Rudebusch (1989), Baillie and Bollerslev (1994), Gil-Alana and

Robinson (1997), Chambers (1998), Cavaliere (2001), Abadir and Tal-

main (2002). More recently, Lieberman and Phillips (2006) provide

some analytical explanations to explain the long range dependence be-

havior that has been observed in realized volatilities. The authors show

that long memory may arise from the accumulation of realized volatil-

ity and they discussed how to re�ne the statistical inference regarding

the parameter d in ARFIMA (p,n,q) models (McAleer and Medeiros

(2006a)).

In addition, recent academic works conclude that log-transformed

realized volatility exhibits long-memory features which indicate that

the correlogram dies out more slowly than exponentially. In order to

model these properties and provide volatility forecasts, ABDL (2003)

adopt the class of autoregressive fractionally integrated moving average

(ARFIMA) processes, introduced into econometrics by Granger and

Joyeux (1980) and Hosking (1981). In particular, the n�th di¤erence of

each series is a stationary and invertible ARMA process where n may

be any real number such that �1=2<n<1=2 to ensure stationarity and
invertibility. More precisely, �t is an ARFIMA (p, n, q) process if

�(L)(1� L)d(�t � �) = �(L)vt (2.76)
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So, the parameter d determines the memory of the process. If d >

0, then the process is said to possess long memory as the autocorre-

lation die out at a slow hyperbolic rate and thus fail to be absolutely

summable, in contrast to the much faster exponential rate in the weak

dependence case (d = 0) (Andersen, Frederiksen and Staal (2007)). Ac-

cordingly, a shock in the volatility series seems to have very �long mem-

ory�and impact on future volatility over a long horizon. The Integrated

GARCH (IGARCH) model of Engle and Bollerslev (1986) captures this

e¤ect but a shock in this model impacts upon future volatility over an

in�nite horizon, and the unconditional variance does not exist for this

model. This gives rise to FIGARCH (p, n, q) in Baillie, Bollerslev, and

Mikkelsen (1996).

2.10 Conclusion

Successful evaluation of the risks via analyzing and interpreting the

dynamics of the returns is crucial in a sense that accurate forecasts

of the future volatility are born onto these evaluations. To sum, as

ABDL (2001) state that �the mechanics are simple [...] but the theory

is deep�11 and the focus of volatility modeling continues to be decid-

edly very low-dimensional, if not universally univariate. Many multi-

variate ARCH and stochastic volatility models for time-varying return

volatilities and conditional distributions have been proposed (see, for

example, the surveys by Bollerslev, Engle, and Nelson (1994) and Ghy-

sels, Harvey, and Renault (1996)), but those models generally su¤er

from a curse-of-dimensionality problem that severely constrains their

11Andersen, T. G., Bollerslev, T., Diebold, F.X, and Labys, P. (2001), �The Dis-
tribution of Realized Exchange Rate Volatility�, Journal of the American Statistical
Association 96, 42-55.
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practical application. Consequently, it is rare to see substantive ap-

plications of those multivariate models dealing with more than a few

assets simultaneously.

As �nancial volatility moves together across di¤erent assets and

markets, modeling volatility in a multivariate framework can lead to

greater statistical e¢ ciency. However, as mentioned in section 5, one

should consider the problem of microstructure noise and measurement

error very carefully and address the issue in order to avoid highly pos-

sible misleading forecast errors.

The consistency of the realized volatility depends on the idea of

an ever increasing number of �ner sampled high-frequency returns and

an important characteristic of high-frequency data is the presence of

microstructure e¤ects (Bai et al. 2001; Andreou and Ghysels (2002)).

Besides, it is very well known fact that market microstructure noise has

many sources, including irregular spaced trading and the discreteness

of the price (see Harris (1990, 1991)), and properties of the trading

mechanism, as in Black (1976) and Amihud and Mendelson (1987).

Following the literature, where the solution adopted to overcome the

microstructure noise is to consider intra-daily returns over an intermedi-

ate frequency, we will also carry out sampling the returns at arbitrarily

selected lower frequencies, as every 5 minutes.

In that sense, in the next chapter, we would like to suggest a link

between realized volatility and market microstructure e¤ects by incor-

porating the factor models. We believe that these factors capture the

market microstructure problem when applied to a large dimension of

individual return series in a stock market.

At last, we believe that better understanding of realized volatility

both in historical and implied terms will help to improve time series

methods further where an important avenue for future research lies
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in combining time-series forecasts with the factors in order to use the

information. Besides, in the near future, we believe that multivariate

realized volatility processes alone will require an extensive review as

the challenge for new models and estimators.
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Chapter 3

A Factor Approach to

Realized Volatility

Forecasting and Market

Microstructure Noise

3.1 Introduction

As also mentioned in the second chapter, there is an upsurge interest in

econometrics research on volatility modeling; a key input for the eval-

uation of �nancial risk, asset allocation and portfolio selection, all of

which depend heavily on a correct modeling of the underlying. Hence,

the insight has spurred vast amount of attraction in �nancial economet-

rics and mathematical �nance. However, the forecasting performance of

these models is not satisfactory and the latent character of the volatility

poses a signi�cant problem. Besides, speci�c distributional properties

and the knowledge of the parametric form of the volatility dynamics fail
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to capture interdaily movements and the information content behind it.

So, most of these queries have regarded volatility as an unobservable,

or latent, variable.

Since the �eld of high-frequency �nance has evolved rapidly, not

only the frequency of data used in empirical econometrics became one

measure of progress, but also the wide availability of high frequency

data for many �nancial instruments created the potential of revolu-

tionizing the way volatility is modeled. Evidently, this improvement

in estimation naturally leads to gains in volatility forecasting. As a

consequence, an alternative approach has been derived as an observ-

able proxy for the latent volatility and it has been labeled as realized

volatility (RV), termed by Andersen, Bollerslev, Diebold and Labys

(2001) (so on ABDL). The popular nonparametric method, RV, is con-

structed from the summation of high-frequency intradaily squared re-

turns (ABDL (2003), Barndor¤-Nielsen and Shephard (2002)).

Theoretical justi�cations of the nonparametric methods are based

on the idealized assumption that observed high frequency data are true

underlying asset returns (Fan and Wang (2007)). Rooted in the theo-

retical results of Barndor¤-Nielsen and Shephard (2002), ABDL (2003)

and Meddahi (2002) and several recent studies have documented the

properties of the realized volatility to search for an adequate frame-

work for the estimation and prediction of the conditional or stochastic

variance of �nancial asset returns with the ability of high frequency

data.

Unfortunately, reliable inferences of RV and RBPV regarding the

true underlying latent volatility can not be derived due to very noisy

nature of the data which is a severe threat for the idealized assumption

because these nonparametric measures are shown to be extremely sen-

sitive to the market microstructure noise inherent in the observed asset
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prices. In an ideal world, increasing the sampling frequency would

subjectively generate more precise estimates of volatility hence daily

volatility becomes almost observable. However, ideal circumstances

may not be present in reality because of the presence of noise that

leads to a bias variance trade-o¤; RV estimates calculated on the basis

of low sampling frequencies are expected to be less biased but noisier,

whereas higher sampling frequency will lead larger RV, indicating the

highly possible presence of the microstructure noise, evidenced and an-

alyzed by AMZ (2005), ZMA (2005), Zhang (2004), Bandi and Russell

(2005).

The aim of this chapter is to o¤er a new perspective on forecast-

ing realized volatility. In other words, in this chapter, our motivation

is based on �nding an answer to a major question; "how to model and

forecast the realized volatility consistently and e¢ ciently, in the presence

of error or noise, as in the form of market microstructure problem".

As we have seen in the previous chapter, �nding a way to control for

the market microstructure noise that is prevalent at high frequency has

become a key issue. The main objective in this paper is to incorporate

the information contained in these high frequency statistical measure-

ments and also have a better understanding of the relationship between

the market microstructure noise, which is regarded as a micro friction

on the market but undeniably a macro consequence.

Our paper aims to extend the current analytic methods to the

construction and assessment of volatility forecasts for continuous-time

volatility models to the empirically important case of market microstruc-

ture noise via factors discussed by Bai, Ng (2002, 2004 and 2006) and

principal component methodology of Stock and Watson (2002a). As

Bernanke and Boivin (2003) argue expressively, central banks monitor

and analyze literally thousands of data from various sources. Since cen-
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tral banks pay the costs of analyzing a wide range data to improve their

decisions, econometric models should considerably take into account

the marginal bene�ts that increasing information brings in forecasting.

The question is: How to extract information in data sets with many

variables but keep model parsimonious? There is one answer; factor

methods, which are an attractive way of modelling when the number

of variables is large. Also, factor model presents the idea that the �uc-

tuations and comovements of a large number of economic and �nancial

variables are produced by a handful of observable or unobservable fac-

tors, which are driven by common structural shocks.

The main contribution of this chapter is twofold. We �rst ana-

lyze the literature on factor models. Factor analysis is a very popu-

lar dimension reduction technique used in many disciplines including

econometrics, statistics, signal processing and psychometrics. Factor

models allow summarizing the bulk of the information contained in

large datasets by means of few latent variables, the factors, which are

pervasive and common to all observed variables. Besides, factors not

only detect structure in the relationship between variables, but also

describe the variability among them.

Second, we develop a model and propose a novel way of conduct-

ing realized volatility, where integrated volatility takes a linear factor

structure, facilitating the estimation of volatility factors while getting

rid of the noise. These factors capture the market microstructure prob-

lem when applied to a large dimension of individual return series in a

stock market.

The structure of the rest of this chapter is as follows; we start with

the introduction in section 1. Then, section 2 introduces factor mod-

els and related methods together with the notation and preliminaries.

Then, in section 3, estimation of common factors and principal compo-
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nent analysis are discussed. Section 4 is devoted to estimating the num-

ber of factors. Section 5 describes the methodology chosen to remove

the jumps, which is followed by the e¤ects of market microstructure

on realized volatility in Section 6. Section 7 is the core section of this

paper; section 7 introduces the theoretical framework and the method-

ology while establishing the factor model approach in RV modeling. At

last, Section 8 concludes.

3.2 Models and Methodology

3.2.1 Introduction

High-dimensional time series data are often encountered in many �elds

including economics, �nance and environmental studies. Especially in

�nance, it is crucial to understand the dynamics of the returns of large

number of assets which is the key for asset pricing, portfolio allocation,

and risk management. In that sense, factor models for high-dimensional

time series have been featured noticeably in literature in econometrics

and �nance (Lam and Yao (2011)). In analyzing economic and �nancial

phenomena, most econometric factor models seek to identify the com-

mon factors that a¤ect the dynamics of most original component series.

Hence, it is meaningful in practice to separate these common factors

from the so-called idiosyncratic noise components: each idiosyncratic

noise component may at most a¤ect the dynamics of a few original

time series. On the other hand, an idiosyncratic noise series may well

exhibit serial correlations and may be a time series itself (Lam and Yao

(2011)). Unfortunately, this leads to di¢ culties in both model identi-

�cation and inference. In fact the rigorous de�nition of the common

factors and the idiosyncratic noise can only be established asymptoti-

97



cally when the dimension of time series tends to in�nity as mentioned

by Chamberlain and Rothschild (1983).

The idea that variations in a large number of economic variables can

be modeled by a small number of reference variables is appealing and is

used in many economic analyses (Bai and Ng (2002)). High-dimensional

factor models have recently attracted an increasing amount of attention

from researches in macroeconomics and �nance. The factors extracted

from hundreds of macroeconomic and �nancial variables observed for a

period of several decades have been used for macroeconomic forecasting,

monetary policy and business cycle analysis, arbitrage pricing theory

tests, and portfolio performance evaluation (see, for example, Stock

and Watson (2005), Bernanke, Boivin, and Eliasz (2004), Forni and

Reichlin (1998), and Connor and Korajczyk (1988)) (Onatski (2006)).

For example, asset returns are often modeled as a function of a small

number of factors. Stock andWatson (1989) used one reference variable

to model the comovements of four main macroeconomic aggregates.

Cross-country variations are also found to have common components;

see Gregory and Head (1999) and Forni, Hallin, Lippi, and Reichlin

(2000).

Stock and Watson (1999) showed that the forecast error of a large

number of macroeconomic variables can be reduced by including di¤u-

sion indexes, or factors, in structural as well as nonstructural forecasting

models. In demand analysis, Engel curves can be expressed in terms

of a �nite number of factors. Lewbel (1991) showed that if a demand

system has one common factor, budget shares should be independent

of the level of income. In such a case, the number of factors is an object

of economic interest since if more than one factor is found, homothetic

preferences can be rejected.

At last, factor analysis also provides a convenient way to study the
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aggregate implications of microeconomic behavior, as shown in Forni

and Lippi (1997) (Bai and Ng (2002)).

3.2.2 Factor Models

Time series factor models have been constantly featured in economet-

rics literature. They are used to model di¤erent economic and �nancial

phenomena, including, among others, asset pricing (Ross (1976)) and

allocation (Pesaran and Za¤aroni (2008)), yield curves (Chib and Erga-

shev (2009)), macroeconomic behavior such as sector-e¤ect or regional

e¤ect from disaggregated data (Quah and Sargent (1993), Forni and Re-

ichlin (1998)), macroeconomic forecasting (Stock and Watson (1998),

(2002)), capital accumulation and growth (Chudik and Pesaran (2009))

and consumer theory (Bai (2003)) (Lam and Yao (2011)).

As mentioned by Lam and Yao (2011), among di¤erent factor mod-

els in econometric literature, one predominate feature is to represent a

p� 1 time series yt as the sum of two unobservable parts:

yt = ft + "t (3.1)

where ft is a factor term driven by r common factors with r smaller

or much smaller than p, and "t is an idiosyncratic term which con-

sists of p idiosyncratic components. Since "t is not necessarily a white

noise, both the identi�cation and the inference for decomposition 3:1

is inevitably challenging. In fact ft and "t are only asymptotically

identi�able when p, i.e. the number of components yt, tends to 1;
(Chamberlain and Rothschild (1983)).

Accordingly, as a prototype, let Xit be the observed data for the ith

cross-section unit at time t, for i = 1; :::; N , and t = 1; :::; T . Consider

the following model:
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Xit = �
0

iFt + eit (3.2)

where Ft is a vector of common factors, �i is a vector of factor load-

ings associated with Ft, and eit is the idiosyncratic component of Xit.

The product �
0

iFt is called the common component of Xit. Besides, the

factors, their loadings, as well as the idiosyncratic errors are not observ-

able. The most important beauty of the factor models is that it allows

for dimension reduction which is a very useful statistical tool in our

framework. Many economic analyses �t naturally into the framework

given by 3:2.

There are numerous studies on factor models. First and most fa-

mous one is based on arbitrage pricing theory. In the �nance literature,

the arbitrage pricing theory (APT) of Ross (1976) assumes that a small

number of factors can be used to explain a large number of asset re-

turns. In this case, Xit represents the return of asset i at time t, Ft

represents the vector of factor returns, and eit is the idiosyncratic com-

ponent of returns. There is also evidence against the adequacy of a

single factor in explaining asset returns, even though analytical conve-

nience makes it appealing to assume one factor. The shifting interest

towards use of multifactor models inevitably calls for a formal proce-

dure to determine the number of factors. The analysis to follow allows

the number of factors to be determined even when N and T are both

large, which is especially suited for �nancial applications when data are

widely available for a large number of assets over an increasingly long

span. Once the number of factors is determined, the factor returns Ft

can also be consistently estimated (up to an invertible transformation)

(Bai and Ng (2002)).

In their seminal work, Stock and Watson (1998, 1999) consider fore-
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casting in�ation with di¤usion indices aka factors constructed from a

large number of macroeconomic series. The underlying premise is that

these series may be driven by a small number of unobservable factors

(Bai and Ng (2002)). Consider the forecasting equation for a scalar

series:

yt+1 = �
0
Ft + �

0
Wt + �t (3.3)

The variables Wt and Xit, i = 1; :::; N are observable whereas Ft

is not. Suppose Xit bears relation with Ft as in 3:2. Bai and Ng

(2002) interpret 3:2 as the reduced-form representation of Xit in terms

of the unobservable factors. Hence, they �rst estimate Ft from 3:2 and

denote it by bFt: Then, the authors regress yt on bFt�1 andWt�1 in order

to obtain the coe¢ cients b� and b�, from which a forecast

yT+1jT = b�0cFT + b� 0WT (3.4)

Stock and Watson (1998, 1999) show that this approach of fore-

casting outperforms many competing forecasting methods. However,

the dimension of F in Stock and Watson (1998, 1999) was determined

using a criterion that minimizes the mean squared forecast errors of

y. Unfortunately, this may not be the same as the number of factors

underlying Xit.

3.2.3 Notation and Preliminaries

De�ne F 0t ; �
0
i and r denote the true common factors, the factor loadings,

and the true number of factors, respectively, with the assumption that
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r does not depend on N and T . So, at a given date t;

Xt|{z}
N�1

= �0|{z}
N�r

F 0t|{z}
r�1

+ et|{z}
N�1

(3.5)

Xt = (X1t; X2t; ::::; XNt)
0
and �0 = (�01; �

0
2; :::::; �

0
N)

0
and et = (e1t; e2t; :::::; eNt).

Chamberlain and Rothschild (1983) show that as the r largest eigen-

values of T�1
PT

t=1XtX
0
t will go to in�nity as N and T ! 1 , while

the (r+1)th eigenvalue remains bounded. Also, the information in the

data about the common factors will be of order N , while the informa-

tion about idiosyncratic factors will remain �nite.

The main objective of Bai and Ng (2002) is to determine the true

number of factors, r. In classical factor analysis (e.g., Anderson (1984)),

N is assumed �xed, the factors are independent of the errors et, and

the covariance of et is diagonal. Normalizing the covariance matrix

of Ft to be an identity matrix, then � = �0�0
0
+ 
, where � and 


are the covariance matrices of Xt and et, respectively. Under these

assumptions, a root-T consistent and asymptotically normal estimator

of �, as the sample covariance matrix b�= (1=T ) PT
t=1(X � X)(Xt �

X)
0
can be obtained.

The essentials of classical factor analysis carry over to the case of

large N but �xed T since the N � N problem can be turned into a

T � T problem, as noted by Connor and Korajczyk (1993) and others.
Bai and Ng (2002) develop asymptotic results for consistent estimation

of the number of factors when N and T !1:
For the panel of dataX = (X1; X2; : : : ; XN) ; with e = (e1; : : : ; eN) :

Xt|{z}
TxN

= F 0|{z}
Txr

�0
0|{z}

rxN

+ e|{z}
TxN

(3.6)

Let tr(A) denote the trace of A. The norm of the matrix A is then
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kAk =
�
tr(A

0
A)
�1=2

. The following assumptions are made in Bai and

Ng (2002):

Assumptions 1:

1. Factors: E kF 0t k <1; and T�1
PT

t=1 F
0
t F

00
t

p�! �F ; as T !1,
for some r � r positive de�nite matrix �F :

2. Factor Loadings: k�ik � � < 1; and


�o0�o=N �D

 ! 0; as

N !1; for some r � r positive de�nite matrix D:

3. Weak Dependence between Factors and Idiosyncratic Errors:

E

�
1
N

NP
i=1




 1p
T

PN
t=1 F

0
t eit




2� �M ;
4. Time and Cross-Section Dependence and Heteroskedasticity: There

exists a positive constant M <1, such that for all N and T .

i ) E(eit) = 0; E jeitj8 �M ;

ii) E(e
0
set=N) = E(N�1PN

i=1 eiseit) = 
N(s; t); j
N(s; s)j � M

for all s, and T�1
PT

s=1

PT
t=1 j
N(s; t)j �M ;

iii )E(eitejt) = � ij;t with j� ij;tj � j� ijj for some � ij and for all t; in
addition N�1PN

i=1

PN
j=1 j� ijj �M ;

iv )E(eitejs) = � ij;ts and (NT )
�1PN

i=1

PN
j=1

PT
t=1

PT
s=1 j� ij;tsj �

M ;

v )For every (t; s); E
���N�1=2PN

i=1 [eiseit � E(eiseit)]
���4 �M ;

Assumption 1 is standard for factor models. Assumption 2 ensures

that each factor has a nontrivial contribution to the variance of Xt. Bai

and Ng (2002) only consider nonrandom factor loadings for simplicity.

Their results still hold when the �i are random, provided they are in-

dependent of the factors and idiosyncratic errors, and E k�ik4 � M:

When the factors and idiosyncratic errors are independent, which is

a standard assumption for conventional factor models, Assumption 3
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is implied by Assumptions 1 and 4. Assumption 4 allows for limited

time-series and cross-section dependence in the idiosyncratic compo-

nent. Heteroskedasticity in both the time and cross-section dimensions

is also allowed.

At this point, it is crucial to point out the three main classi�cations

of factor models in the literature.

Strict Factor Model

In traditional factor analysis ((Sargent and Sims (1977) and (Geweke

(1977)), it is assumed that there is no cross-correlation among the idio-

syncratic components at any lead and lag. This assumption allows for

identi�cation of common and idiosyncratic components but represents

a strong restriction. Chamberlain and Rothschild (1983) and Cham-

berlain (1983) propose an approximate static factor model in which the

factor term is of the form ft = Axt, where xt is an r� 1 factor process.
Since no lagged values of xt is involved explicitly, xt is coined as a static

factor.

Hence, the allowance for some correlation in the idiosyncratic com-

ponents sets up the model to have an approximate factor structure. It

is more general than a strict factor model, which assumes eit is uncorre-

lated across i, the framework in which the APT theory of Ross (1976)

is based.

Approximate Factor Model

When idiosyncratic noise is allowed to be mildly cross-correlated, then

3:2 is regarded as an approximate factor model. In other words, an ap-

proximate factor model exists where serial dependence and heteroskedas-

ticity of et, and for weak dependence between factors and idiosyncratic
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series are allowed. Bai and Ng (2002) consider an approximate factor

model while allowing weak-form serial (and cross-sectional) dependence

in the idiosyncratic component as long as cross section and time series

dimension; N and T are large. This is because dependence due to

the factor structure asymptotically dominates any weak dependence in

the idiosyncratic component, and hence well designed criteria (Bai and

Ng (2002)) can eventually detect strong dependence due to the factor

structure as both N and T grow.

Dynamic Factor Model

The dynamic-factor model was proposed by Sargent and Sims (1977)

and Geweke (1977). It assumes that in the decomposition 3:1 each

component of ft is a sum of r uncorrelated moving average processes

driven, respectively, by r common factors. Furthermore it requires that

ft and "t are uncorrelated with each other, and all the idiosyncratic

components (i.e. the components of "t) are also uncorrelated.

Forni, Hallin, Lippi and Reichlin (2005) call their model as general-

ized dynamic factor model. Their model encompasses as a special case

the �approximate factor model�of Chamberlain (1983) and Chamber-

lain and Rothschild (1983), which allows for correlated idiosyncratic

components, but is static. Also, it generalizes the factor model of Sar-

gent and Sims (1977) and Geweke (1977), which is dynamic, but has

orthogonal idiosyncratic components. This approach deals with large

panels of time series, i.e. when the number of variables becomes large

compared to the number of observations. Each time series is repre-

sented as the sum of two components: the common component and the

idiosyncratic component.

Since the idiosyncratic components are correlated, the model cannot

be estimated on the basis of traditional methods. The authors propose
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a method, yielding consistent estimates of the components as both the

cross-section and the time dimensions go to in�nity at some rate. The

common components are computed as the projections of the observa-

tions onto the leads and lags of the dynamic principal components of

the observations and the idiosyncratic components are derived as the

orthogonal residuals. The method is applied to a panel including sev-

eral macroeconomic indicators for each of the EURO countries, in order

to obtain an index describing the state of the economy in the EURO

area. The European coincident indicator is de�ned as the common

component of the European GDP.

The generalized dynamic factor model exploits the dynamic covari-

ance structure of the data, i.e. the relation between di¤erent variables

at di¤erent points in time. This makes an important di¤erence to the

forecasting model proposed by Stock andWatson (2002). Their forecast

is based on a projection onto the space spanned by the static princi-

pal components of the data. Thus, being based on contemporaneous

covariances only, their approach fails to exploit the dynamic relations

between the variables of the panel. Forni, Hallin, Lippi and Reichlin

(2005) work out the theoretical advantage of the dynamic approach

compared to the static one.

3.3 Estimation of Common Factors

3.3.1 Principal Component Analysis

A popular technique for factor extraction is the principal components

method which estimates the factors by the principal eigenvectors of a

sample-covariance type matrix. In other words, it is a way of identifying

patterns in the data, and expressing the data in such a way as to
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highlight their similarities and di¤erences. In that sense, PCA is a

powerful tool for analyzing data because patterns in data can be hard

to �nd in data of high dimension. Also, another advantage of PCA is

that once the patterns are obtained in the data, dimension reduction

can be easily achieved without much loss of information. Hence, PCA

provides a roadmap for how to reduce a complex data set to a lower

dimension in order to reveal the hidden structure that often underlie

it.

The consistency and asymptotic normality of the principal compo-

nents estimator when both N and T go to in�nity have been recently

shown by Bai (2003). Bai and Ng (2002) estimate common factors in

large panels by the method of asymptotic principal components1. By

use of the principal component analysis for factors and factor loadings,

the sum of squared errors is minimized. Stock and Watson (2002b)

study the �nite sample properties of principal component estimator and

show that under rather general assumptions, the factor estimates of an

approximate factor model obtained by using this method are consis-

tent, even if idiosyncratic innovations are serially and cross-sectionally

correlated.

Bai (2003) also shows that the necessary conditions for ensuring

consistency are asymptotic orthogonality and asymptotic homoskedas-

ticity in idiosyncratic innovations. Bai (2003) calls the restrictions

N�1PN
i=1 ui;tui;s ! 0; for t 6= s; and N�1PN

i=1 ui;t ! �2;for all t

as N ! 1; asymptotic normality and asymptotic homoskedasticity,
respectively. To prove his results, Bai makes a strong assumption

equivalent to requiring that the ratio between the kth largest and the

1The method of asymptotic principal components was studied by Connor and
Korajzcyk (1986) and Connor and Korajzcyk (1988) for �xed T . Forni et al. (2000)
and Stock and Watson (1998) considered the method for large T (Bai and Ng
(2002)).
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k + 1th largest eigenvalues of the population covariance matrix of the

data, where k is the number of factors, increase proportionately to n

so that the cumulative e¤ects of the normalized factors on the cross-

sectional units strongly dominate the idiosyncratic in�uences asymp-

totically (Onatski (2006)).

Bai and Ng (2002) consider common factors in large panels by the

method of asymptotic principal components. The number of factors

that can be estimated by this nonparametric method is minfN; Tg,
much larger than permitted by estimation of state space models. Hence,

to be able to determine which factors are statistically important, Bai

and Ng (2002) start with an arbitrary number k(kmax = k < minfN; Tg):
The superscript in �ki and F

k
t signi�es the allowance of k factors in the

estimation. Estimates of �k and F k are obtained by solving the opti-

mization problem:

V (k) = min
�;Fk

(NT )�1
NX
i=1

TX
t=1

(Xit � �k
0

i F
k
t )
2 (3.7)

The optimization problem is subject to the normalization of either

�k
0
�k=N = Ik or F k0F k=T = Ik:Concentrating out �k and using the

normalization that F k0F k=T = Ik; the optimization problem is identi-

cal to maximizing tr
�
F k0
�
XX

0�
F k
�
: The estimated factor matrix, fF k

is equal to the
p
T times eigenvectors corresponding to the k largest

eigenvalues of the T � T realized variance matrix XX 0
and given fF k;e�k0 = (fF k 0fF k)�1fF kX = fF kX=T will be the corresponding factor load-

ings. Hence, the component matrix is estimated by eF e�: (Connor and
Korajczyk (1986, 1988) proved that the common factors from an ap-

proximate factor model can be consistently estimated using PCA.
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3.4 Estimating the Number of Factors

On the other hand, both the theoretical and the empirical validity of

factor models depend on the correct speci�cation of the number of fac-

tors. The precise estimation of the number of common factors is a

corner stone of the factor model literature, and a number of recent

studies have suggested various methods of selecting the number of un-

observed factors ( Connor and Korajczyk (1993), Forni, Hallin, Lippi

and Reichlin (2000); Bai and Ng (2002); Bai (2004); Stock and Watson

(2005); Hallin and Liska (2007); Amengual and Watson (2007); and

Onatski (2006)).

When datasets are large in both the time T and the cross-section N

dimensions, determining the number of common factors is particularly

di¢ cult as traditional information criteria as BIC or AIC, which are

consistent for T diverging but for �nite N , cannot be applied anymore.

In their seminal paper Bai and Ng (2002) develop a formal statistical

procedure that can consistently estimate the number of factors from

observed data. The authors demonstrate that the penalty for over�tting

is a function of both N and T (the cross-section dimension and the time

dimension, respectively) in order to consistently estimate the number

of factors. Consequently the usual AIC and BIC, which are functions

of N or T alone, do not work when both dimensions of the panel are

large. Their theory is developed under the assumption that both N

and T converge to in�nity which gives an empirical relevance because

the time dimension of datasets relevant to factor analysis, although

small relative to the cross-section dimension, is too large to justify the

assumption of a �xed T .

In the literature, there exist a small number of papers that con-

sider the problem of determining the number of factors, but Bai and
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Ng (2002)�s analysis di¤ers from these works in many important ways.

Lewbel (1991) used the rank of a matrix to test for the number of

factors, but the theory assumes either N or T is �xed. Cragg and Don-

ald (1997) considered the use of information criteria when the factors

are functions of a set of observable explanatory variables, but the data

still have a �xed dimension. For large dimensional panels, Connor and

Korajczyk (1993) developed a test for the number of factors in asset re-

turns, but their test is derived under sequential limit asymptotics, i.e.,

N converges to in�nity with a �xed T and then T converges to in�nity.

Furthermore, because their test is based on a comparison of variances

over di¤erent time periods, covariance stationarity and homoskedastic-

ity are not only technical assumptions, but are crucial for the validity

of their test. Even though theory is not available, Forni and Reichlin

(1998) suggested a graphical approach to identify the number of factors

under the assumption that N !1 for �xed T .

Assuming N; T !1 with
p
N=T !1, Stock and Watson (1998)

show that a modi�cation to the BIC can be used to select the num-

ber of factors optimal for forecasting a single series. Their criterion

is restrictive not only because it requires N >> T , but also because

there can be factors that are pervasive for a set of data and yet have

no predictive ability for an individual data series. Thus, their rule may

not be appropriate outside of the forecasting framework. Forni, Hallin,

Lippi, and Reichlin (2000) suggested a multivariate variant of the AIC

but neither the theoretical nor the empirical properties of the criterion

are known (Bai and Ng (2002)).

Bai and Ng (2002) develop four consistent model selection criteria

for choosing the number of factors in approximate factor models; they

use the principal component estimator of factors and factor loadings,
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which minimizes the sum of squared errors. These are;

PC1(k) =
ESS(k)

NT
+ k � ESS(k

max)

NT
� N + T

NT
ln(

NT

N + T
); (3.8)

PC2(k) =
ESS(k)

NT
+ k � ESS(k

max)

NT
� N + T

NT
ln(min fN; Tg);

IC1(k) = ln

�
ESS(k)

NT

�
+ k � N + T

NT
ln(

NT

N + T
);

IC2(k) = ln

�
ESS(k)

NT

�
+ k � N + T

NT
ln(min fN; Tg);

where ESS(k) =
TP
t=1

NP
i=1

(Xt � e�i eFt)2; eFt are the k estimated common
factors, kmax is the largest possible k considered by the researcher.

So the �rst two criteria is about comparing the improvement; i.e. de-

crease in the error sum of squares relative to a benchmark unrestricted

model as k increases, while the last two criteria is based on the per-

centage improvement in the error sum of squares as k increases. From

the application of the selection criteria PC(k) and IC(k) of Bai and

Ng (2002) to the hit, we always �nd evidence of seven variance factor,

which happens with both measures of the realized variances deducted

jumps and with their log-transformations.

3.5 Realized Volatility and Jumps

As mentioned in Chapter 2, a number of authors developed models to

deal with the jumps. The models were ranging from developing tests

to detect jumps present in high frequency data to removing and �l-

tering them. Barndor¤ -Nielsen and Shephard (2006) introduce a test

for jumps based on the di¤erence between the bi-power variation and

the quadratic variation. Andersen, Bollerslev and Diebold (2007) and

Huang and Tauchen (2005) study �nancial datasets using multipower
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variations, in order to assess the proportion of quadratic variation at-

tributable to jumps. Also, Lee and Mykland (2008) and Andersen,

Bollerslev and Dobrev (2007) introduce two almost similar tests to de-

tect jump arrival times up to the intra-day level. Fan and Wang (2007)

develop wavelet methods to estimate jump locations and jump sizes

from a jump-di¤usion process that is discretely observed with market

microstructure noise. Jiang and Oomen (2008) construct a test mo-

tivated by the hedging error of a variance swap replication strategy.

Aït-Sahalia and Jacod (2010) propose a test based on truncated power

variations computed at di¤erent sampling frequencies.

It is known that jumps can have a deteriorating e¤ect on the esti-

mates of volatility and market microstructure noise variance.

From the numerous jump detection methods, we prefer to follow

the steps of Bajgrowicz and Scaillet (2010), and employ the threshold-

ing technique, for each day a test statistic is computed to test the null

hypothesis of no jumps. We also use the adjusted ratio statistic of Barn-

dor¤ -Nielsen and Shephard (2006) as the underlying method to detect

jumps. Besides, the work of Bajgrowicz and Scaillet (2010) can be re-

garded as a contribution to the investigation of the dynamic features of

irregular jump arrivals and their associated market information. The

authors believe their study is a novel in the sense to investigate the

dynamics of jumps quantitatively, by testing the distribution of jumps

arrival times.

3.5.1 Settings and Assumptions

The workhorse model of modern asset pricing theory assumes that X

follows an Itbo semimartingale and the semimartingale assumption rules
out arbitrage opportunities. A semimartingale can be decomposed into
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the sum of a drift, a continuous Brownian-driven part, and a discontin-

uous, or jump, part:

Xt = X0 +

Z t

0

bsds +

Z t

0

�sdWs| {z }
continuous part

+ Jt|{z}
jump part

(3.9)

where W denotes a standard Brownian motion. J is a pure jump

process. Focusing on the �nite activity jumps, the jump part can be

described as follows:

Jt =
NtX
j=1

gj (3.10)

where N is a counting process and gj are nonzero random variables.

Bajgrowicz and Scaillet (2010) ask an important question: What does

detecting jumps mean when, in discretely sampled data, every change

in the price is by nature a discrete jump? The authors claim that the

problem the jump detection literature is addressing is better formulated

by the following question. Given that they observe in discrete data

a change in the asset return of a large magnitude, what does that

tell them about the likelihood that such a change involves a jump, as

opposed to just a large realization of the Brownian part?

3.5.2 Thresholding technique

Recently, numerous jump detection methods have been developed. In

a typical empirical application, the jump tests are applied to detect

the jump days over a sample period. As mentioned by Bajgrowicz and

Scaillet (2010), if we denote the number of days in the study by N , and

the number of observations per day used to compute each individual

test statistic by n, then we can obtain a series of daily statistics which
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can be denoted as (Sn1 ; : : : ; S
n
N). Under the null hypothesis of no jumps,

P

�
sup
t
jSnt j �

p
2 logN

�
! 1 (3.11)

Hence, if there are no jumps present in the data, then the event that

the largest and the smallest of the entries of the vector (Sn1 ; : : : ; S
n
N)

stay within the con�dence interval of
�
�
p
2 logN;

p
2 logN

�
; where the

bound
p
2 logN is the so-called universal threshold for a sample of size

N . As mentioned by Bajgrowicz and Scaillet (2010), when we perform

the tests for many days simultaneously, we are actually conducting a

multiple test, which by nature leads to making a proportion of spurious

detections equal to the signi�cance level of the individual tests. This

kind of an approach can be applied to most existing jump detection

techniques, in the remaining of the paper we prefer use the adjusted

ratio statistic of Barndor¤ -Nielsen and Shephard (2006), which is the

preferred test among various candidates in Huang and Tauchen (2005).

3.5.3 BNS jump detection technique

As also mentioned in Chapter 3, the jump detection method of Barndor¤-

Nielsen and Shephard (2006) is based on the di¤erence between the

realized quadratic variation (RV ) and the realized bi-power variation

(BPV ) of X: On a given time interval, each day the underlying process

X are observed at the discrete times i�n; i = 1; : : : ; n+1: �n = T=n is

the sampling interval, where T is the length of the day and n is large.

Denote the ith intraday observation on day t, as Xt;i�n and the ith

intraday return on day t as �Xt;i � Xt;i�n �Xt;(i�1)�n. Accordingly,

RVt �
nX
i=1

�X2
t;i !

n!1

Z t

t�1
�2sds +

NtX
i>Nt�1

g2i (3.12)

114



BPVt �
nX
i=2

j�Xt;ij j�Xt;i�1j !
n!1

�21

Z t

t�1
�2sds (3.13)

where �1 is a constant. Barndor¤-Nielsen and Shephard (2006) show

that up to a scaling factor, the ratio ��21 BPVt
RVt

�1 converges to a standard
normal random variable under the null hypothesis of no jumps:

Snt �
�
�1=2
np

#max(t�1; QVt=BPV 2t )

�
��21 BPVt
RVt

� 1
�
! N(0; 1) (3.14)

whereQVt is the realized quadpower variation (see Barndor¤-Nielsen

and Shephard (2006) for details).

The main di¤erence between our model speci�cation and Anderson

and Vahid (2007) is that we prefer to remove jumps from our data using

both the thresholding technique and adjusted ratio statistic, whereas

the authors concentrate on building forecasting models only for RBV

and disregard the spurious jumps in that sense.

3.6 The E¤ect of Microstructure Noise on

RV

Market microstructure e¤ects induce a bias in the realized volatility

measure, which can directly be illustrated in the following discrete-

time setup. Consider a grid of observation times �t = f� 0; :::; �ntg.
Using similar notation as in Zhang et al. (2005), set pt;i � p(t + � i).

Suppose that the logarithmic prices are observed with additive error,

that is:

pt;i = p
�
t;i + �t;i (3.15)
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where p�t;i is the latent e¢ cient price process, contaminated by a mean

zero shock, �t;i. The noise process satis�es the following properties:

Assumptions A

1. The microstructure noise has zero mean; E[�t;i] = 0

2. The microstructure noise has a stationary and strong mixing sto-

chastic process, with the mixing coe¢ cients decaying exponen-

tially.

3. In addition, E[(�t;i)
4+�] <1; for some � > 0:

4. The noise is independent of the price process.

5. The variance of vt;i = �t;i � �t;i�1 is O(1):

It follows that ith observed return, rt;i can be decomposed into the

actual unobserved return, r�t;i and independent noise term vt;i :

pt;i � pt;i�1 = (p�t;i + �t;i)� (p�t;i�1 + �t;i�1) (3.16)

pt;i � pt;i�1 = (p�t;i + p
�
t;i�1) + (�t;i � �t;i�1)

rt;i = r
�
t;i + �t;i � �t;i�1 = r�t;i + vt;i (3.17)

where r�t;i = p�t;i � p�t;i�1 is the e¢ cient return and vt;i = �t;i � �t;i�1 is
MA(1) shock. It is clear that rt;i is an autocorrelated process, so RVt

will be a biased estimator of the latent true volatility; resulting RV is
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obviously biased upward.

RV
(m)
t =

mX
i=1

r2i;t (3.18)

=
mX
i=1

�
r�t;i + vt;i

�2
=

mX
i=1

r�2t;i + 2r
�
t;ivt;i + v

2
t;i

'
_

RVt +m�
2

where �2is the variance of vt;i, and
_

RVt is the realized variance computed

using the e¢ cient returns (Sheppard (2006)).

The e¤ect of this noise is clear; sampling too frequently leads to a

substantial positive bias in realized variance (Sheppard (2006)). Hence,

microstructure e¤ects create misleading predictions of the volatility due

to severe bias problems. Epps (1979) originally documented the bias

toward zero using returns on the big four automobile manufacturers,

American Motors, Chrysler, Ford, and General Motors in 1971 and

1972. He documented monotonic increases in the correlation as the

sampling frequency decreased from 10 minutes to 2 days, a phenomenon

subsequently known as the Epps E¤ect in the market microstructure

literature.

Alternative methods have been proposed to solve this bias-variance

trade-o¤ for the above simple noise assumption as well as for more

general noise processes, allowing also for serial dependence in the noise

and/or for dependence between the noise and the true price process,

which is sometimes referred to as endogenous noise. A natural approach

to reduce the market microstructure noise e¤ect is to construct the

realized volatility measure based on pre�ltered high-frequency returns,
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using, e.g., an MA(1) model (Härdle et al. (2008)).

3.7 Theoretical Framework

In the second part of this paper, we let the realized volatility, after

removing jumps, to consist of two additive components: the integrated

volatility and the market microstructure noise variance; where the de-

composition allows us to estimate them separately. Also, if the noise

would not be separated out, the estimated volatility would depend on

the sampling frequency through the noise term, which is a common

problem. We want to �nd out how factor approach assists our model.

In order to accomplish this, we take advantages of the principal com-

ponent analysis as described in the previous section.

We are motivated by the factor literature in �nance. Following

the roots of Bai and Ng (2002), let X = (Xit) be the N � T data

matrix, as the observed data for the ith cross section unit at time t, for

i = 1; :::::; N , and t = 1; ::::; T and e = (eit) be the error matrix of the

same dimension. Accordingly, the following model can be set up as;

X = �F + e (3.19)

where X is assumed to have mean zero for simplicity, Ft is a vector of

common factors, �i is a vector of factor loadings associated with Ft, and

eit is the idiosyncratic component of Xit. The product �
0

iFt is called

the common component of Xit.

In view of the above framework, we propose that the realized volatil-

ity has a simple factor structure and we name such factors in volatility

speci�cation as realized volatility factors compared to the mean factors;

common in the standard factor models for asset returns as in Rothschild
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and Chamberlain (1983). We do not explicitly include noise term in the

price process, neither we discuss about it. Else, we prefer to deal with

it in the RV analysis because in the literature the assumptions on the

price process can be too restrictive such as including an additive noise

term, and hence this kind of an assumption in advance may result in

incorrect results.

So we know the following about realized volatility;

lim
m!1

RV
(m)
t

p�!
t+1Z
t

�2sds+
X
t�1
�J2s (3.20)

Following the procedure suggested in Section 5 on jumps, we employ

the method suggested by Barndor¤-Nielsen and Sheppard (2006), then

get rid of the spurious jump component by employing the thresholding

technique and compute a test statistic for each day to test the null

hypothesis of no jumps. Hence, if jumps are proven to exist, then we

remove it from the RV calculation. Now consider the following model:

Quadratic Variation � Integrated Variance + Jump Component +Noise

RVit � IVit + Jit + eit (3.21)

hit = �
0

ift + uit; (3.22)

t = 1; : : : ; T and i = 1; : : : ; N

where hit, which is the realized volatility, RVit, free from the jump

component of Jit, which is the element in the tth row and ith column

of the data matrix, T � N: ft is a r�dimensional vector of common
factors with t = 1; : : : ; T and �i refer to the ith row of the correspond-

ing matrix of factor loadings. Cit is the set of common components in

realized volatility and have to be determined. Also, uit is the idiosyn-
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cratic component of hit. �i and ft are clearly not jointly identi�ed since

the factors can be pre-multiplied by an invertible r� r matrix without
having to make changes in the model. The most crucial point here is

that r << N , so that substantial dimension reduction can be achieved.

Equation 3:22 can be written as an N�dimension time series with
T observations:

ht = �ft + ut; t = 1; : : : ; T (3.23)

where ht = (h1t; h2t; : : : ; hNt)
0
; � = (�1; : : : ; �N)

0
and ut = (u1t; u2t; : : : ; uNt)

0
.

Alternatively, we can write 3:22 as a T�dimension time series with N
observations:

hi = f�i + ui; i = 1; : : : ; N (3.24)

where hi = (hi1; hi2; : : : ; hiT )
0
; f = (f1; : : : ; fT )

0
and ui = (ui1; ui2; : : : ; uiT )

0
.

Using a matrix notation will give the following:

H = F�
0
+ u (3.25)

where H = (h1; h2; : : : ; hN)
0
is a T � N matrix of the derived realized

volatilities and u = (u1; u2; : : : ; uN)
0
is T � N matrix of idiosyncratic

errors. The matrices � (N � r) and F (T � r) are both unknown. By
combining factor analysis with a nonparametric approach to modeling

volatility, as realized volatility, we avoid relying on potentially restric-

tive parametric structures while at the same time insuring that our

approach e¤ectively summarizes a large amount of information that

could be important for predicting the variance of the stock market.

The model (3:22) is an approximate factor model so as suggested

by Bai and Ng (2003), and can be solved e¢ ciently for the estimated
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factors bft and factor loadings b� using the Asymptotic Principal Com-
ponent Analysis (APCA). Bai and Ng (2002) estimate common factors

in large panels by the method of asymptotic principal components2.

By use of the principal component analysis for factors and factor load-

ings, the sum of squared errors is minimized. Stock andWatson (2002b)

study the �nite sample properties of principal component estimator and

show that under rather general assumptions, the factor estimates of an

approximate factor model obtained by using this method are consistent,

even if idiosyncratic innovations are serially and cross-sectionally corre-

lated. Bai (2003) also shows that the necessary conditions for ensuring

consistency are asymptotic orthogonality and asymptotic homoskedas-

ticity in idiosyncratic innovations.

The number of factors that can be estimated by this nonparametric

method is minfN; Tg, much larger than permitted by estimation of
state space models. Hence, to be able to determine which factors are

statistically important, we start with an arbitrary number r(rmax = r <

minfN; Tg); so the estimates are obtained by solving the optimization
problem;

V (r) = min
�;frr

(NT )�1
NX
i=1

TX
t=1

(hit � �r
0

i f
r
t )
2 (3.26)

where the superscript in �r and f r signi�es the allowance of r factors

in estimation. This is analogous to minimizing the variance of the idio-

syncratic innovations uit. The optimization problem is subject to the

normalization of either �r0�r=N = Ir or f r0f r=T = Ir:Concentrating

out � and using the normalization that f r0f r=T = Ir; the optimization

2The method of asymptotic principal components was studied by Connor and
Korajzcyk (1986) and Connor and Korajzcyk (1988) for �xed T. Forni et al. (2000)
and Stock and Watson (1998) considered the method for large T (Bai and Ng
(2002)).
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problem is identical to maximizing tr
�
f r0
�
hh

0�
f r
�
: The estimated fac-

tor matrix, bf r is equal to the pT times eigenvectors corresponding to
the r largest eigenvalues of the T � T realized variance matrix bhbh0and
given bf r; c�r0 = ( bf r bf r)�1 bf rh = bf rh=T will be the corresponding factor
loadings. Hence, the component matrix is estimated by bfb�0 : Connor
and Korajczyk (1986, 1988) proved that the common factors from an

approximate factor model can be consistently estimated using PCA.

We follow the most conventional multivariate factor stochastic volatil-

ity models assume that the factors capture the variation of nondiagonal

elements in the variance matrix of returns and that the remaining errors

contain idiosyncratic variation only and they are time homogeneous.

When N is small, factor models are often expressed in state space

form where normality is assumed and the parameters are estimated by

maximum likelihood. Because for the cases where the true underlying

process of the common factors has more complicated dynamic natures,

then the state-space approach becomes inadequate especially with large

N; as in our case. If there are r factors, the eigenvectors from the sec-

ond moment matrix of individual returns corresponding to the largest

r eigenvalues are consistent estimators of the true unobserved factors

as the number of observations N increases to in�nity.

Bai and Ng (2002) develop four consistent model selection criteria

for choosing the number of factors in approximate factor models; they

use the principal component estimator of factors and factor loadings,
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which minimizes the sum of squared errors. These are;

PC1(r) =
ESS(r)

NT
+ r � ESS(r

max)

NT
� N + T

NT
ln(

NT

N + T
); (3.27)

PC2(r) =
ESS(r)

NT
+ r � ESS(r

max)

NT
� N + T

NT
ln(min fN; Tg);

IC1(r) = ln

�
ESS(r)

NT

�
+ r � N + T

NT
ln(

NT

N + T
);

IC2(r) = ln

�
ESS(r)

NT

�
+ r � N + T

NT
ln(min fN; Tg);

where ESS(r) =
TP
t=1

NP
i=1

(ht � b� bft)2; bft are the r estimated common fac-
tors, rmax is the largest possible r considered by the researcher.

So the �rst two criteria is about comparing the improvement; i.e. de-

crease in the error sum of squares relative to a benchmark unrestricted

model as r increases, while the last two criteria is based on the per-

centage improvement in the error sum of squares as r increases. From

the application of the selection criteria PC(r) and IC(r) of Bai and

Ng (2002) to the hit, we always �nd evidence of seven variance factor,

which happens with both measures of the realized variances deducted

jumps and with their log-transformations.

We need the following assumptions on the factors ft; the factor

loadings � and the innovations ut to provide consistent estimators. The

following assumptions are used in Bai and Ng (2002) to estimate the

number of factors consistently. Let kAk =
�
tr(A

0
A)
�1=2

denote the

norm of matrix A. Also, let f 0t be the r � 1 vector of true factors
and �0i be the true loadings, with f

0 and �0 being the corresponding

matrices.

Assumptions B

1. For the factor loadings,


�o0�o=N � ��

 ! 0; as N ! 1 for

some r � r positive de�nite matrix �� and k�ik � � <1:
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2. The factors, E kf 0t k
4 � D < 1; and T�1

PT
t=1 f

0
t f

00
t

p�! �f ; as

T !1, for some r� r positive de�nite matrix �f ; with diagonal
elements 0 < �j;j < �i;i for i < j:

3. The innovations, Time and Cross-Section Dependence and Het-

eroskedasticity:

There exists a positive constant M <1; such that for all N and

T :

i) E(uit) = 0; E juitj8 �M ;

ii) E(uitujt) = � ij;t with j� ij;tj � j� ijj for some � ij and for all t,
in addition N�1PN

i=1

PN
j=1 j� ijj �M ;

iii)E(u
0
sut=N) = E(N�1PN

i=1 uisuit) = 
N(s; t); j
N(s; s)j � M

for all s; and T�1
PN

s=1

PN
t=1 j
N(s; t)j �M ;

iv)E(uitujt) = � ij;ts and
PN

i=1

PN�1
j=1

PN
s=1

PN
t=1 j� ij;tsj �M ;

v)For every (t; s); E
���N�1=2PN

i=1 [uisuit � E(uisuit)]
���4 �M:

4. The eigenvalues of the r � r matrix (�f��) are distinct.

Assumption 1B is about the factor loadings and it ensures that

each factor has a nontrivial contribution to the calculation of ht. Even

though we only consider non-random factor loadings for simplicity, our

results still hold when the �i are random, provided they are indepen-

dent of the factors and idiosyncratic errors and E k�ik4 � M . As-

sumption 2B and 3B are standard in factor model literature. Assump-

tion 3B allows for limited time-series and cross-section dependence in

the idiosyncratic component. Heteroskedasticity in both the time and

cross-section dimensions is also allowed. Under stationarity in the time

dimension 
N(s; t) = 
N(s� t): Given Assumption 3Bi, the remaining
assumptions in 3B are easily satis�ed if the uit are independent for all
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i and t. The allowance for some correlation in the idiosyncratic com-

ponents sets up the model to have an approximate factor structure,

which is more general than a strict factor model, where the assump-

tion is assumes uit is uncorrelated across i, the framework in which

the APT theory of Ross (1976) is based. Assumption 4B guarantees a

unique limit for ( bf 0f 0=T ); which appears in limiting distributions but
it is not needed for determining the number of factors. Also, Assump-

tion 4B is not required for studying the limiting distributions of the

estimated common components, because the common components are

identi�able. The matrices �� and �f are de�ned in Assumptions 1

and 2.

This kind of an approach in modeling of realized volatility can be

regarded as a novel way from many perspectives. First, it facilitates the

use of the RV and Jumps, which is di¤erent from the previous multi-

variate factor stochastic volatility models because it is a nonparametric

approach and incorporates �nite jumps. Second, the model enables a

high dimensional volatility model that is easily estimable due to the sim-

ple factor structure. At last, the model does not require the estimation

of mean speci�cation. Even though there is a di¢ culty in comparison

with other existent models in the literature due to the new features

mentioned, we still do a forecast comparison in the next chapter.

3.8 Conclusion

In recent years, there has been an ongoing argument that one can mea-

sure volatility in a nonparametric framework using an empirical mea-

sure of the quadratic variation of the underlying e¢ cient price process,

which is, Realized Volatility. It is documented that RV has several

advantages over the parametric ARCH and SV models. First, RV over-
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comes the well known curse-of-dimensionality problem in the multivari-

ate ARCH or SV models by treating volatility as directly observable.

Second, RV provides a more reliable estimate of integrated volatility

compared to other parametric models. De�nitely, this improvement in

estimation leads to gains in volatility forecasting.

In this paper we extend the current analytic methods to the con-

struction and assessment of realized volatility and its analysis for continuous-

time volatility models to the empirically important case of market mi-

crostructure noise via factors discussed by Bai, Ng (2002, 2004 and

2006) and principal component methodology of Stock andWatson (2002).

The problem is motivated from modeling and analyzing the highly

popular high-frequency �nancial data where the proposed methods pro-

vide comprehensive noise resistant estimators of integrated volatility.

Volatilities of daily returns are estimated, while jumps are isolated and

removed by using the threshold method. Hence, once jumps have been

removed, the model selection criteria provide the number of common

factors. So, in the next chapter; Chapter 4, we question whether these

factors help in deriving consistent volatility forecasts while getting rid

of the market microstructure problem through an application to real

time stock data.
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Chapter 4

Empirical Evidence

4.1 Introduction

This chapter; Chapter 4 is devoted to analyzing the data characteristics

and summing up the empirical, real time application results. So, we

present estimation and forecasting results for the suggested approaches

presented in Chapter 3.

The analysis is carried out on a sample of stocks, the top 30 stocks

sorted according to market capitalizations at S&P500. The data used in

this paper are extracted and compiled from the Trade and Quote (TAQ)

Database provided through the Wharton Research Data Services. The

�nal link we investigate is the relation between RV and HAR mod-

els. Heterogeneous Autoregressive model (HAR) is developed by Corsi

(2009), where the basic idea stems from the so called "Heterogeneous

Market Hypothesis" presented by Müller et al. (1993), which recognize

the presence of heterogeneity in the traders. The Heterogeneous Mar-

ket Hypothesis tries to explain the empirical observation of a strong

positive correlation between volatility and market presence. In fact, in

a homogeneous market framework where all the participants are iden-
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tical, the more agents are presents, the faster the price should converge

to its real market value on which all agents agreed. Thus, the volatility

should be negatively correlated with market presence and activity. On

the contrary in a heterogeneous markets, di¤erent actors are likely to

settle for di¤erent prices and decide to execute their transactions in

di¤erent market situations, hence they create volatility (Corsi (2009)).

Two major models are suggested for the prediction of the realized

volatility: Factor Based Realized Volatility Forecast (FB-RV) and Het-

erogenous Autoregressive Factor Based Forecast (HAR-FF). In a fore-

casting application, we show that the FB-RV model outperforms the

other currently available approaches including HAR-RV, GARCH and

AR models at various prediction horizons, not only in terms of mini-

mizing the RMSE of the forecast, or high R2 of the Mincer-Zarnowitz

regressions, but also in terms of improving the volatility forecasts while

dealing with the noise problem with the help of common factors. We

�rst give the direct comparison based on RMSE, MAE and R2 of the

Mincer-Zarnowitz regressions, and then give the statistical test for hy-

pothesis testing based on Diebold-Mariano test. The empirical results

are in line with the methodology provided in Chapter 3; the FB-RV

model is the dominant forecasting model among others.

The structure of the rest of this chapter is as follows; we start with

describing the descriptive data properties in section 2. Then, section 3

introduces the estimation framework, followed by the forecasting and

evaluation in Section 4, which is the core section of this Chapter. Also,

we provide a similar analysis of a subsample; �rst 15 stocks sorted ac-

cording to market capitalization. We also give analysis on the Diebold-

Mariano test and its results. At last, section 5 summarizes and con-

cludes.
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4.2 Data

Much of the published empirical analysis of RV has been based on

high frequency data from one source. The data used in this paper are

extracted and compiled from the Trade and Quote (TAQ) Database

provided through the Wharton Research Data Services. Thirty stocks

from the S&P500 components are used and to select the stocks, we rank

the 500 component stocks of the S&P500 Index by market capitalization

as of March, 2011.

The sample period covers almost 18,976 data point, starting from

the early days in January, 2010 and ending in March, 2011, our data

records the last price observed during every �ve minute interval within

each working day. Following the literature, we perform the data clean-

ing, which is pursued as in the following way: First, trades before 9:30

AM or after 4:00 PM are removed to deal with the jumps as well as the

days that contain long strings of zero or constant returns (caused by

data feed problems) are also eliminated. Finally, any trade that has a

price increase (decrease) of more than 5% followed by a price decrease

(increase) of more than 5% is removed.

We use the previous-tick interpolation method, described in Da-

corogna, Gencay, Müller, Olsen and Pictet (2001) in order to obtain

a regularly spaced sequence of midquotes, which are thus sampled at

the 5-minute and daily frequency, from which 5-minute and daily log

returns are computed. Thus we obtain for each day a total of 78 in-

traday observations which are used to compute the RV, RBV and also

to detect the possible presence of the jumps in that day. From this

cleaned data we proceed to compute the method which is discussed in

the theoretical section. We report summary statistics for stock returns,

ri;t; in Table 4:4. We observe typical stylized facts such as overkurto-
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sis, fatter tails than the normal distribution and tendency for negative

skewness (across all thirty stocks, the average kurtosis of 5-minute re-

turn series is about 93:2704). There is evidence of ARCH in the daily

returns for most (28 out of 30) companies. Table 4:5 provides the same

set of summary statistics for the squared returns. Such results show

that normality assumption is not appropriate for return variances.

We plot of the RV as a function of sampling time interval in minute.

The horizon axis is the time interval in minute that the data are sampled

from 5-min return on Google, Inc. on January, 2011 to March 30th,

2011 for computing the RV. As it is observed in Figure 4:1, the shorter

the sampling time interval is, the higher the sampling frequency. Also,

RV shoots up as the sampling time interval gets shorter, which highly

suggests the presence of the microstructure noise.

Figure 4-1: RV for Google
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Figures 4:3 and 4:4 represent Density and QQ plots for unstan-

dardized returns; because the points don�t fall into a straight line, we

conclude that the returns are not distributed normally. It can be seen

that normal distribution is not a very good description of the data. This

result is in line with the leptokurtic distributions for standardized high-

frequency returns implicitly assumed in ARCH and stochastic volatility

models. As one would expect, daily returns also show strong evidence
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of ARCH e¤ects, both from the Ljung-Box test on the standardized

squares and the ARCH-LM test until the 15-th lag.

Figures 4:5 plots the squared returns, Realized Volatility, Realized

Bi-power Variation and Jumps, calculated daily for the thirty stocks in

consideration. We remove jumps using the threshold method and then

build factor models for the forecastable component of the volatility.

Hence, we suggest using jump deducted RV for developing forecasting

models and explore the properties of the returns of the stocks in con-

sideration. For estimation, we consider natural logarithm of the prices

while deriving RV and also for the other suggested models.

4.3 Estimation

We can take the following steps in estimating the common factors.

First, compute the 5 minute returns on the stocks of interest, demean

the return series and denote it as yit. Then, transform these returns

by standard logarithm transformation so that it will be the volatility

proxy. Demean the transformed returns (fyit), calculate RVs, detect and
remove jumps and �nally calculate the hit values based on observations

i = 1; : : : ; N . Accordingly, we get the estimate of the residual sum

of squares for the model using the maximum number of factors rmax :

V (r; bf r) = 1
NT

TP
t=1

NP
i�1
(hit � b�pi bf rt )2:

As common factors are unobserved, we can apply the asymptotic

principal component method to extract the r largest eigenvectors from

the T � T realized variance-covariance matrix bhbh0 ;bh = [h1; : : : ; hT ].
We apply Bai and Ng(2002) criteria and in order to be consistent

with the �nance literature, where "volatility" usually refers to the stan-

dard deviation, we take the square root of hi;t series for various values

of rmax.
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Table 4.1: Selection Criteria for Common Factors

r PC1(r) PC2(r) IC1(r) IC2(r)
0 0:27121 0:24239 �1:11126 �1:11378
1 0:21786 0:21799 �1:41726 �1:41280
2 0:13237 0:13263 �1:83125 �1:82233
3 0:09573 0:09612 �2:09549 �2:08212
4 0:07620 0:07672 �2:28944 �2:27161
5 0:06505 0:06570 �2:43786 �2:41558
6 0:05861 0:05938 �2:55356 �2:52682
7 0:05406 0:05496 �2:67718 �2:64599
8 0:57106 0:57106 �0:56026 �0:56026

In practice, the criterias PC1(r) and PC2(r) compare the decrease

in the residual sum of squares with respect to a benchmark unrestricted

model with an increasing r. On the other hand, the criterias IC1(r)

and IC2(r) compare the percentage improvement in the residual sum

of squares as the number of factor increases (Marcucci (2008)). The

advantage of the panel information criteria; IC(r) is that they do not

depend on the choice of the maximum number of factors rmax. The

results for rmax = 7 is obtained from the panel decision criteria.

Figure 4-2: The largest seven eigenvalues of the variance matrix as N
increases
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How can outliers a¤ect principle components? As argued by An-

derson and Vahid (2007), by purging the jumps one can get better
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estimators for common factors, which is already satis�ed in our case as

documented by the following �gure; the plots of seven largest eigenval-

ues asN is increased from 1 to 30. We do not observe a jump component

in the eigenvalues, which is observed by Anderson and Vahid (2007).

The regression results from equation 3:22 gives a good estimate with

an average R2 value of 0.8021 for the 30 stocks in consideration.

Subsampling

We also run our suggested model for a subsample of top 15 stocks sorted

according to their market capitalizations. By the same token, we apply

Bai and Ng�s (2002) method and use the panel information criteria. We

obtain a similar result as in the previous section for the full number of

stocks, hence the result of rmax = 7 is obtained from the following panel

decision criteria. The regression results from equation 3:22 gives a good

estimate with an average R2 value of 0.8565 for the top 15 stocks in

consideration, evidently higher value than the estimation results for the

whole sample.

Table 4.2: Selection Criteria for Common Factors: Subsample

r PC1(r) PC2(r) IC1(r) IC2(r)
0 0:16521 0:16721 �1:83125 �1:82233
1 0:15752 0:15756 �1:67179 �1:66745
2 0:06849 0:06857 �2:35853 �2:34986
3 0:05024 0:05036 �2:53880 �2:52580
4 0:03884 0:03900 �2:69724 �2:67992
5 0:02783 0:02813 �2:87211 �2:84146
6 0:02432 0:02456 �3:15791 �3:13192
7 0:02162 0:02191 �3:35955 �3:32923
8 0:63660 0:63670 �0:45161 �0:43161

In the next section, we provide forecasting results for the subsample,

as well.
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4.4 Forecasting

This section provides a discussion of the potential predictors that could

be used to forecast realized volatility. In particular, we consider K-

step forecasting, i.e. forecasting of ht;t+K based on information up to

time T . We focus on 1-day, 5-days and 10-days horizons. As a nota-

tional convention, the �hatted�variables denote estimated parameters

and quantities, �tilde�for the forecasts. For instance, the forecast of the

conditional variance of the K-day-ahead return rt+K will be denoted

by eht+K = Et [ht+K ], where the conditional expectation is given by the
particular model at hand. The information set at time t will typically

include high-frequency information in the form of history of the process

in each stock.

To begin with, we start by exploiting a model derived by Corsi

(2009). In forecasting future realized volatility, it may be more rele-

vant to place higher weight on recent squared returns than on squared

returns that are more distant in the past, and one way to do so in a par-

simonious fashion is to apply the heterogeneous autoregressive model

of realized volatility proposed (HAR-RV) by Corsi (2009). HAR is a

mixed-frequency hierarchical AR model, where the daily volatility is a

function of lagged daily, weekly and monthly volatility and is inspired

by the Heterogenous Market Hypothesis of Müller, Dacorogna, Dav,

Olsen, Pictet, and Ward (1993) and the asymmetric propagation of

volatility between long and short horizons. The simple but sophisti-

cated model has proven to be very successful in achieving its primary

purpose of modeling the long memory behavior of volatility in a parsi-

monious way. The HAR-RV model has also been found to substantially

outperform several other standard models, such as GARCH, AR, and

ARFIMA models, while demonstrating good out-of sample forecasting
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performance.

4.4.1 HAR Model

In order to sketch the HAR-RV model, the multi-period realized volatil-

ities by the normalized sum of the one-period volatilities can be de�ned

as follows:

RVt;t+h = h
�1 (RVt+1 +RVt+2 + : : :+RVt+h) (4.1)

where RVt;t+1 � RVt+1 is assumed by the de�nition of the daily volatili-
ties. Corsi (2009) considers realized volatility viewed over di¤erent time

horizons longer than one day. The author refers to these normalized

volatility measures for h = 5 and h = 22 as the weekly and monthly

volatilities, respectively. In order to allow direct comparison among

quantities de�ned over various time horizons, these multiperiod volatil-

ities are normalized sums of the one-period realized volatilities (i.e.,

a simple average of the daily quantities). For example, Corsi (2009)

de�nes a weekly realized volatility at time t is given by the average;

RV
(w)
t =

1

5

�
RV

(d)
t +RV

(d)
t�1d + : : :+RV

(d)
t�4d

�
(4.2)

where the aggregation period is interpreted as an upper script. A very

simple time series representation of the proposed cascade model is;

RV
(d)
t+1d = c+ �

(d)RV
(d)
t + �(w)RV

(w)
t + �(m)RV

(m)
t + �t+1d (4.3)

Similarly, the daily HAR-RV model of Corsi (2009) may then be

expressed as;
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RVt+1 = c+ �
(d)RVt + �

(w)RVt�5;t + �
(m)RVt�22;t + �t+1 (4.4)

This HAR-RV forecasting model for the one-day volatilities extends

straightforwardly to models for the realized volatilities over other hori-

zons, RVt;t+h. Also, Corsi (2009) implicitly assumes stationarity in

HAR-RV model.

4.4.2 Factor Based Realized Volatility

Similar to Andersen et al. (2007) and Chung et al. (2008), we de-

�ne the multi-period realized variances by the normalized sum of the

corresponding one-period measures:

ht;t+K = K
�1 (ht;t+1 + ht+1;t+2 + : : :+ ht+K�1;t+K) (4.5)

where ht;t+K refers to the increment in RV from t to t+K; with K =

1; 5; 10; 15 and 20, respectively indicating one-day, weekly, bi-weekly,

tri-weekly and monthly average realized variances. When applying this

to the realized volatility, which is made free from jumps, we denote the

model HAR-RV, following Corsi (2009). Subsequently, the predictor

for hdt;t+K can be constructed as follows,

ehdt;t+K = c+�dhdt�1;t+�whwt�5;t+�bwhbwt�10;t+�twhtwt�15;t+�mhmt�20;t+!dt;t+K
(4.6)

where hdt ; h
w
t ; h

bw
t ; h

tw
t and h

m
t are respectively, daily, weekly, bi-weekly,

tri-weekly and monthly observed realized volatilities, with the horizons

of one day (d), one week (w), bi-week (bw), tri-week (tw) and one month
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(m) are denoted respectively in superscripts.

Considering daily to monthly averages for ht and employing the

analysis suggested in 3:22 disjointedly for every mentioned time fre-

quency, we save the estimated error term for each regression analysis.

Then, we employ a HAR model on the residuals and we name it as

HAR-RES and the predictor for udt;t+K can then be constructed by:

eudt;t+K = c+�dudt�1;t+�wuwt�5;t+�bwubwt�10;t+�twutwt�15;t+�mumt�20;t+"dt;t+K
(4.7)

On the other hand, we also need to forecast the estimated factors

and we prefer to get help from Vector Autoregression Analysis (VAR).

The factors provide a summary of the information in the data set and

can therefore are expected to be crucial for forecasting. Using the esti-

mated factor component, we can build the VAR model in the following

way:

hdi;t+1 = c+ �
0
(L)ft + u

d
i;t+1 (4.8)eft = � + �1ft�1 + : : :+ �pft�p + �t (4.9)

where �(L) is the lag-polynomial, eft is the vector of predictor variables.
In as far as possible, the autoregressive order, p, is chosen so that �t is

serially uncorrelated. The dynamics of this system can be well speci�ed

by a �nite V AR (p) and we use the model selection criteria described

in Vahid and Issler (2002) to choose the lag and rank of the VAR

simultaneously, where we choose a lag and rank of one.

We mainly consider the two following suggested models: Factor

Based Realized Volatility (FB-RV) Forecast and Heterogenous Autore-

gressive Based Factor Forecast (HAR-FF) for the prediction of the re-
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alized volatility and compare the forecast performances with the HAR-

RV model of Corsi (2009) . In the former model, we assume that error

term is i:i:d with zero mean and unit variance. Therefore, a simple

forecast for hdi;t+K ; that ignores the error dynamics built on observa-

tions i = 1; : : : ; N and t � T , can be established by the VAR predicted
factors on the estimators for b�i and bft, derived through the APCA.
Notice that;

hdi;t+K = ci + �
0

ift+K + ui;t+K (4.10)

The conditional expectation given the data will be denoted by ET

as; (under Assumptions A and B)

ETh
d
i;t+K = ci + �

0

ift+K (4.11)

Our FB-RV predictor for hdi;t+K is given by:

ehdi;t+Kjt = bci + b�0iebf t+K (4.12)

When calculating the forecast error, it is implicitly assumed that

hit is the true volatility at time t. It is clear that ehdi;t+Kjt depends on
estimated regressors and to be able to study the behavior of ehdi;t+Kjt and
of the forecast error ei;t+K , we should examine the statistical properties

of the estimated parameters as well as those of the estimated factors.

Accordingly, the forecasting error in FB-RVwill be calculated through

ei;t+K = ehdi;t+K � hdi;t+K :
Theorem 1. Suppose that Assumptions A-B hold. Then, as T ! 1;
the forecasting bias in ehdi;t+K is given by

E�T [
ehdi;t+K � hdi;t+K ] = 0
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and the forecasting error variance in ehdi;t+K is given by
E�T

��ehdi;t+K � ETehdi;t+K�2� = �2i
In the latter model, we use HAR forecasted residual from 4:7, yet

disregarding the i:i:d assumption but still considering VAR forecasted

factors. We name our model as Heterogenous Autoregressive Factor

Based Forecast (HAR-FF) for the prediction of the realized volatility.

Our HAR-FF predictor for hdi;t+K will be given by:

eehdi;t+K = bci + eb�0iebf t+K + eudi;t+K (4.13)

ET
eehdi;t+K = ci + �0ift+K + ETudi;t+K (4.14)

where ET denotes conditional expectation given the data. Under HAR-

RES, ETudi;t+K 6= 0 (although ETui;t+K ! 0 as K ! 1). To forecast
ETui;T+q, we use 4:7 and �t a HAR type time series model, so that we

can use the existing forecasting method to construct a predictor.

It is worth noting that our prediction results are not e¤ected by the

presence of jumps, since we use the realized volatility which is exempt

from jumps, nevertheless jumps have little prediction power. We believe

that the volatility factor ft, which can be considered as a novel measure

of the market wise volatility, can be very useful to improve upon the

forecasting ability and performance of many �nancial models and also

dealing with the market microstructure problem.

At last, we also consider a variation of Corsi (2009)�s model by
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incorporating factors into the regression:

ht+1 = c+ �
dhdt�1;t + �

whwt�5;t + �
bwhbwt�10;t + �

twhtwt�15;t + �
mhmt�20;t + �t+1

(4.15)

We name this model HAR-RV-F, and after several combinations,

the best results are obtained when only daily and weekly factors are

included:

ehdt;t+K = c+ �dhdt�1;t + �
whwt�5;t + �

bwhbwt�10;t (4.16)

+�twhtwt�15;t + �
mhmt�20;t

+b�0ebf (d)t + b�0ebf (w)t + �dt;t+K

We consider in-sample and out-of-sample forecasts. While employ-

ing in-sample forecasts, the forecasts are obtained by �rst estimating

the parameters of the models on the full sample and then performing

a series of static one-step ahead forecasts. For comparison purposes

other models are added including the standard GARCH(1,1), together

with an AR(1) and AR(3) model of the realized volatility. To measure

the statistical precision of the forecasts we employ the RMSE criterion,

which satis�es the conditions in Patton (2009) and also Mean Absolute

Error (MAE). Moreover, following the analysis of Andersen and Boller-

slev (1998), Andersen, Bollerslev, and Diebold (2007), and Aït-Sahalia

and Mancini (2008), Tables 4:7 and 4:8 also report the results of the

R2 of the Mincer-Zarnowitz regressions, where a regression of the ex

post realized volatility on a constant and the various model forecasts
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based on time t� 1 information.

hdt = bo + b1Et�1

h�ehdt�i+ error (4.17)

In order to compare the out-of-sample predictive accuracy of the com-

peting methods, we split the data into two unequal subsamples, where

the �rst time period is used for the initial estimation and the second

period is the hold-back sample used for forecast evaluation: in-sample

t = 1; : : : ; L and out-of-sample t = L
0
+ 1; : : : ; T:

4.4.3 Evaluation

In this subsection, each competing model is �tted to examine the in-

sample and out-of-sample �ts for realized variance within the 30 stocks

from S&P500, while considering multiple prediction horizons, one-day

and �ve day to ten day periods, corresponding to ht;t+K forK = 1; 5; 10.

Following the recent literature on the predicting future volatility,

we consider all the terms in Equation 3:22 using RV as regressor and

then estimate theirs parameters by applying HAR, FB-RV and HAR-

FF regressions. We follow a real time approach as in Stock and Watson

(1999) to be able to evaluate out-of-sample performance. First, we

split the sample in 2=3 and 1=3; 160 and 80 days, respectively, fore-

cast the dependent variables for one period and hence obtain the �rst

forecast error from our sample. Then, we incorporate this period into

our sample, re-estimate the suggested models and so forecast for the

next period. We continue sequential forecasting until the sample is

exhausted.

We �rst give the direct comparison based on RMSE, MAE andR2 of

the Mincer-Zarnowitz regressions, and then provide the statistical test
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for hypothesis testing based on Diebold-Mariano test. In Tables 4:7

and 4:8, we evaluate the forecasting performances on the basis of root

mean square error (RMSE) and mean absolute error (MAE) and R2

of the Mincer-Zarnowitz regressions for in-sample and out-of-sample

forecasting, respectively. We �rst take up in-sample performances of

the competing methods. For comparison purposes, other models are

added: the AR and GARCH models of realized volatility. In order to

use RV in an GARCH model, we can de�ne ert = sign(rt)
p
ht where

sign(rt) takes the value 1 if the return was positive in period t and �1
if it was negative, and so ert is the signed square root of the realized
variance on day t:The following is in sample 1 day ahead forecast for

the proposed models. These forecasts are obtained by �rst estimating

the parameters of the models on the full sample and then performing a

series of static one-step-ahead forecasts. The di¤erence in forecasting

performance between the standard models and the ones using factors

that capture the persistence of the empirical data is evident.

Table 4.3: One-day-ahead In-sample Forecasting Performance

Competing Models RMSE MAE R2

HAR-RV 1:261 0:926 0:545
FB-RV 1:217 0:876 0:802
HAR-FF 1:365 0:925 0:522
HAR-RV-F 1:44 1:060 0:520
GARCH (1,1) 2:123 1:734 0:341
AR (1) 2:954 1:983 0:295
AR (3) 2:860 1:884 0:345

Referring to Table 4:3, the FB-RV speci�cation has the smallest

RMSE and MAE but the largest R2 of the Mincer-Zarnowitz regres-

sion among all models, followed by HAR-FF, HAR-RV, HAR-RV-F,

142



GARCH (1,1), AR (3) and AR(1). This result is also satis�ed with the

log transformed realized volatility values as well.

The in-sample �t measures clearly indicate that FB-RV is the best

predictor in terms of forecasting future realized volatility, and since the

main aim of this study is to examine such volatility forecasting, it is

therefore important to determine whether the FB-RV model maintains

its performance out-of-sample. With a similar approach, we consider

1 day, 5 days and 10 days horizons. Accordingly, we compare forecast

di¤erences using both the absolute value loss function (MAE) and the

quadratic loss function (RMSE) and R2 of the Mincer-Zarnowitz re-

gressions. Out-of-sample forecast results for di¤erent horizons of the

proposed models are shown in table 4:8, for 1, 5 days and 10 days ahead

horizons, respectively. It turns out that, as in the in-sample forecasting

results, the FB-RVmodel steadily outperform the others at all the three

time horizons considered;1 day, 5 days and 10 days at out of sample

analysis (Table 4:8). The results show that for both models and for all

the prediction horizons, the FB-RV model is the dominant forecasting

model among others.

Interestingly, the RMSE result is smaller for the 5- and 10-days

horizon compared to the 1-day horizon for the majority of the models,

which implies that multi-period volatility forecasting is in some sense

more precise than short-term prediction. This is in line with the results

in Ghysels and Wright (2009) for models using daily data. Compara-

tively, the HAR-RV speci�cation shows a good forecasting ability, but

speci�cally at the longer, 10-days horizon, is signi�cantly outperformed

by the FB-RV model.

Very similar results are obtained from the subsampled data. Tables

4:11 and 4:12 provide in sample and out-of-sample forecasting results.

Not surprisingly, FB-RV is the dominant model among others in terms
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of RMSE, MAE and R2 of the Mincer-Zarnowitz regressions. It is

followed by HAR-RV, HAR-FF, HAR-RV-F and GARCH (1,1), AR(3)

and AR (1).

4.4.4 Diebold-Mariano Test

In order to pursue a formal comparison in statistical sense, we propose

Diebold-Mariano test for hypothesis testing. The purpose of this test is

to compare the results of two models and we would like to see whether

the two results are signi�cantly di¤erent or not. The essence of the

test is standard t � test and we will give the brief description of the
test procedure. So, if there exists two forecasts A and B; respectively

as byAt+hjt and byBt+hjt, then using the forecasts, there would be two loss
functions which are de�ned as in the following way: lAt = (yt+h �byAt+hjt)2 and lBt = (yt+h � byBt+hjt)2; where losses do not need to be MSE.
Accordingly, Diebold Mariano is implemented as a t�test that E [�t] =
0; where �t = lAt � lBt ; and H0 : E [�t] = 0; and HA

1 : E [�t] < 0; H
B
1 :

E [�t] > 0: The sign indicates which model is favored. So, reject if

jtj > C� where C� is the critical value for a 2-sided test using a normal
distribution with a size of �: If signi�cant, reject in favor of model A if

test statistic is negative, or reject in favor of model B if test statistic is

positive.

DM =
�q
[V (�)

(4.18)

However, there is one complication: f�tg cannot be assumed to be
uncorrelated, so a more complicated variance estimator is required like

Newey-West covariance estimator. DM test results in Tables 4:9 and

4:10 are in line with the results of Tables 4:7 and 4:8: Both for in and
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out sample forecasts, FB-RV is the leading model in all forecasting

horizons. HAR-FF is also favored when it is compared with HAR-RV,

with a slight exception for the 10 days ahead out-of-sample forecasting.

HAR-RV-F is also favored compared to HAR-RV, an indication of how

factors can help to produce better results. Diebold-Mariano test results

are generally in line with the MAE, RMSE results; FB-RV is performing

signi�cantly better than the others.

Also, for the subsampled data, we obtain very identical results that

were obtained for the whole data and evidently stronger results are

achieved. Tables 4:13 and 4:14 show the DM test results for the subsam-

pled data. Only in 1 day ahead in sample and out of sample analysis,

HAR-RV is favored compared to HAR-FF but in 5-days and 10-days

ahead analysis, the result is just the opposite; HAR-FF is favored com-

pared to HAR-RV, which shows that in longer horizons factors have an

explanatory power that comes into play as in this case.

4.5 Conclusion

This paper investigates multivariate realized volatility estimation for

noisy data and also determines the number of forecastable factors in the

log-volatilities in the returns of 30 S&P500 stocks. Two major mod-

els are suggested for the prediction of the realized volatility: Factor

Based Realized Volatility Forecast (FB-RV) and Heterogenous Autore-

gressive Factor Based Forecast (HAR-FF). In a forecasting application,

we show that the FB-RV model outperforms the other currently avail-

able approaches including HAR-RV, GARCH and ARmodels at various

prediction horizons, not only in terms of minimizing the RMSE of the

forecast, or highR2 of the Mincer-Zarnowitz regressions, or statistically

signi�cant Diebold-Mariano tests, but also in terms of improving the
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volatility forecasts while dealing with the noise problem with the help

of common factors. These results are also approved by the subsampled

data.

In conclusion, the results of the study con�rm the FB-RV model is

the dominant forecasting model among others.

We hope that our study opens up a number of further interesting

research directions in the context of volatility forecasting. Our future

research will involve some extensions; we now believe it would be inter-

esting to analyze number of factors as a function of N or T .
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4.6 Appendix

4.6.1 Proof of Theorems

Proof. Proof of Theorem 1

Since hdi;t+K = ehdi;t+Kjt + ui;t+K : It follows that the forecasting error
is eui;t+K = hdi;t+K � ehdi;t+K = ui;t+K � (bci � ci) � (b�0iebf t+K � �0ift+K) =�ehdi;t+Kjt � hdi;t+K� + ui;t+K : So, under Assumptions A1-5, when ui;t is
normally distributed, eui;t+K is also approximately normal with var(eui;t+K) =
var(ehdi;t+Kjt�hdi;t+K) = �2i +var(ehdi;t+Kjt): In large samples, var(ehdi;t+Kjt)
vanishes at ratemin [N; T ] :Also, under the assumption thatN; T !1
with

p
T=N ! 0, Bai and Ng (2006) show that

i) b� are pT consistent and asymptotically normal, and the

asymptotic variance is such that inference can proceed as though ft is

observed

ii) the estimated ehdi;t+Kjt is min hpN;pTi consistent and as-
ymptotically normal and

iii) the K period forecast error hdi;t+K � ehdi;t+K is dominated in
large samples by the variance of the error term, just as if ft is observed.

Let bV be the r � r matrix consisting of r largest eigenvalues of
hh

0
=(TN) in decreasing order and let H = bV �1( bf 0f=T )(b�0�=N): Let bf

and b� be the least squares estimates from 3:22: By Lemma A.1 of Bai

and Ng (2006) we have that T�1
PT

t�1(
bft�Hft)q0t = Opmin ((k; T )�1),

where qt is either ft or ut; and as long as qt has �nite fourth moments,

nonsingular covariance matrix and
p
T
�1PT

t�1 (qt � E (qt)) satis�es a
central limit theorem. Assumptions A-B are used to satisfy these con-

ditions. Hence, unknown factors can be replaced by the estimated ones

since the restriction
p
T=N ! 0 is a weak one and is satis�ed when

N = cT for c 6= 0, a constant.
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Accordingly, under assumptions A1-5 and B1-4; rearranging and

simplifying produces the result. E�T [h
d
i;t+K�ehdi;t+K ] = 0; E�T ��ehdi;t+K � ETehdi;t+K�2� =

E(u2i;t) = �
2
i :

4.6.2 Graphs

Figure 4-3: Density Plots
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Figure 4-4: QQ Plots
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Figure 4-5: The Squared returns, RV, BPV and Jumps
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4.6.3 Tables

Table 4.4: The Top 30 Stocks in the SP500 Returns According to the Market
Capitalization

Ticker Name Market Capitalization
XOM Exxon Mobil Corp 3.03
AAPL Apple Inc 2.57
MSFT Microsoft Corp 1.82
GE General Electric Co 1.7
PG Procter and Gamble Co 1.67
JNJ Johnson and Johnson 1.65
T AtT Inc 1.65
IBM International Business Mach 1.64
CVX Chevron Corp New 1.55
JPM Jpmorgan Chase Co 1.5
BRKB Berkshire Hathaway Inc Del 1.39
PFE P�zer Inc 1.33
KO Coca Cola Co 1.31
WFC Wells Fargo Co New 1.29
BAC Bank Of America Corporation 1.28
GOOG Google Inc 1.27
CSCO Cisco Sys Inc 1.22
MRK Merck and Co Inc New 1.1
INTC Intel Corp 1.03
WMT Wal Mart Stores Inc 1.03
PEP Pepsico Inc 1.02
ORCL Oracle Corp 1.01
PM Philip Morris Intl Inc 0.98
HPQ Hewlett Packard Co 0.9
VZ Verizon Communications Inc 0.9
C Citigroup Inc 0.89
COP Conocophillips 0.81
SLB Schlumberger Ltd 0.79
ABT Abbott Labs 0.78
MCD Mcdonalds Corp 0.77

* As of March, 2011
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Table 4.6: Summary Statistics of the Squared Daily Stock Returns

Stock Mean Std. dev. Skewness Kurtosis
XOM 0.01668 0.22294 65.90408 8755.45166
AAPL 0.02858 0.31060 57.62184 3885.06669
MSFT 0.02279 0.12785 35.91047 1765.29525
GE 0.03644 0.29967 65.91783 5610.40644
PG 0.01002 0.14425 76.09827 6131.37644
JNJ 0.00981 0.14392 95.13678 6664.90211
T 0.01492 0.08679 50.08182 3427.62396
IBM 0.01325 0.15631 83.51771 8177.96846
CVX 0.01798 0.10962 46.27154 2927.12140
JPM 0.03391 0.14452 32.25893 1617.87111
BRKB 0.01753 0.07894 30.26756 1462.75231
PFE 0.02116 0.13643 68.24101 5708.89421
KO 0.00947 0.05736 61.11640 5171.72892
WFC 0.04328 0.24385 64.84614 6038.73131
BAC 0.04720 0.24550 45.72262 3191.50835
GOOG 0.02756 0.74922 78.93061 9287.38088
CSCO 0.04916 2.31255 68.38742 8416.05889
MRK 0.02147 0.26153 62.25047 4188.25216
INTC 0.02844 0.23876 83.66929 8348.28915
WMT 0.01051 0.13917 76.21198 5800.32062
PEP 0.01020 0.09314 82.79796 7986.24300
ORCL 0.02869 0.38419 84.59055 7810.28142
PM 0.01730 0.12849 59.35624 4382.40051
HPQ 0.03283 0.91874 72.54725 6599.81481
VZ 0.01602 0.09984 38.24933 1991.29163
C 0.05500 0.23723 36.04577 1970.04175
COP 0.02160 0.09014 32.37137 1774.52633
SLB 0.05760 0.50808 36.81048 1638.73161
ABT 0.01463 0.13362 53.50655 3877.89617
MCD 0.01316 0.12472 46.46250 2723.79454

* As of March, 2011
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Table 4.7: In Sample Forecasting Results

1 day ahead
Competing Models RMSE MAE R2

HAR-RV 1:261 0:926 0:545
FB-RV 1:217 0:876 0:802
HAR-FF 1:365 0:925 0:522
HAR-RV-F 1:444 1:060 0:520
GARCH (1,1) 2:123 1:734 0:341
AR (1) 2:954 1:983 0:295
AR (3) 2:860 1:884 0:345

5 days ahead
Competing Models RMSE MAE R2

HAR-RV 1:615 1:248 0:417
FB-RV 1:291 0:942 0:734
HAR-FF 1:676 1:276 0:394
HAR-RV-F 1:749 1:326 0:346
GARCH (1,1) 5:123 3:344 0:123
AR (1) 8:254 6:986 0:102
AR (3) 7:366 5:787 0:127

10 days ahead
Competing Models RMSE MAE R2

HAR-RV 1:632 1:254 0:402
FB-RV 1:256 0:890 0:621
HAR-FF 1:646 1:266 0:393
HAR-RV-F 1:771 1:340 0:340
GARCH (1,1) 7:123 6:785 0:100
AR (1) 12:854 10:778 0:075
AR (3) 11:761 9:890 0:076

* Comparison of the in-sample performances of the
1,5,10 day ahead forecasts of HAR-RV, FB-RV, HAR-FF,

GARCH (1,1), AR (1) and AR(3). Performance measures are the
root mean square error (RMSE), the mean absolute error (MAE), and

the R2 of the Mincer Zarnowitz regressions.
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Table 4.8: Out-of-Sample Forecasting Results

1 day ahead
Competing Models RMSE MAE R2

HAR-RV 1:348 0:998 0:504
FB-RV 1:188 0:865 0:668
HAR-FF 1:226 0:895 0:581
HAR-RV-F 1:410 1:040 0:480
GARCH (1,1) 4:123 2:654 0:185
AR (1) 5:334 4:201 0:142
AR (3) 4:336 3:126 0:138

5 days ahead
Competing Models RMSE MAE R2

HAR-RV 1:683 1:256 0:433
FB-RV 1:250 1:176 0:622
HAR-FF 1:726 1:345 0:420
HAR-RV-F 1:878 1:442 0:410
GARCH (1,1) 6:512 5:224 0:143
AR (1) 8:754 7:216 0:088
AR (3) 7:265 5:927 0:112

10 days ahead
Competing Models RMSE MAE R2

HAR-RV 1:642 1:294 0:474
FB-RV 1:288 1:201 0:598
HAR-FF 1:771 1:456 0:391
HAR-RV-F 1:571 1:240 0:423
GARCH (1,1) 8:723 7:295 0:078
AR (1) 13:430 12:358 0:052
AR (3) 11:321 10:432 0:071

* Comparison of the out-sample performances of the
1,5,10 day ahead forecasts of HAR-RV, FB-RV, HAR-FF,

GARCH (1,1), AR (1) and AR(3). Performance measures are the
root mean square error (RMSE), the mean absolute error (MAE), and

the R2 of the Mincer Zarnowitz regressions.
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Table 4.9: Diebold-Mariano Test: In-sample

In Sample Forecasting
1 day ahead

Competing Models test statistic p-value
FB-RV� vs HAR-RV �3:5434 0
FB-RV� vs HAR-FF �6:9693 0
FB-RV� vs HAR-RV-F �2:5042 0
HAR-RV vs HAR-FF� 5:6875 0
HAR-FF� vs HAR-RV-F �7:5042 0
HAR-RV vs HAR-RV-F� 3:2021 0

5 days ahead
Competing Models test statistic p-value
FB-RV� vs HAR-RV �4:6145 0
FB-RV� vs HAR-FF �6:1706 0
FB-RV� vs HAR-RV-F �4:7829 0
HAR-RV vs HAR-FF� 4:9103 0
HAR-FF� vs HAR-RV-F �5:1142 0
HAR-RV vs HAR-RV-F� 4:2822 0

10 days ahead
Competing Models test statistic p-value
FB-RV� vs HAR-RV �4:2925 0
FB-RV� vs HAR-FF �7:6927 0
FB-RV� vs HAR-RV-F �4:4284 0
HAR-RV vs HAR-FF� 2:1817 0:0120
HAR-FF� vs HAR-RV-F �6:6042 0
HAR-RV vs HAR-RV-F� 5:1203 0

The � sign indicates which model is favored.
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Table 4.10: Diebold-Mariano Test:Out-of-sample

Out-of-Sample Forecasting
1 day ahead

Competing Models test statistic p-value
FB-RV� vs HAR-RV �4:2434 0
FB-RV� vs HAR-FF �3:8692 0
FB-RV� vs HAR-RV-F �3:0342 0
HAR-RV vs HAR-FF� 2:1875 0:0030
HAR-FF� vs HAR-RV-F �4:7541 0
HAR-RV vs HAR-RV-F� 5:2120 0

5 days ahead
Competing Models test statistic p-value
FB-RV� vs HAR-RV �5:5445 0
FB-RV� vs HAR-FF �4:1006 0
FB-RV� vs HAR-RV-F �4:5424 0
HAR-RV vs HAR-FF� 4:9375 0
HAR-FF� vs HAR-RV-F �6:1442 0
HAR-RV vs HAR-RV-F� 6:2321 0

10 days ahead
Competing Models test statistic p-value
FB-RV� vs HAR-RV �6:9205 0
FB-RV� vs HAR-FF �5:6207 0
FB-RV� vs HAR-RV-F �5:4110 0
HAR-RV� vs HAR-FF �2:1807 0
HAR-FF� vs HAR-RV-F �8:2142 0
HAR-RV vs HAR-RV-F� 6:9881 0

The � sign indicates which model is favored.
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Table 4.11: In Sample Forecasting Results (Subsampling)

1 day ahead
Competing Models RMSE MAE R2

HAR-RV 1:256 0:917 0:556
FB-RV 1:210 0:821 0:875
HAR-FF 1:364 0:989 0:482
HAR-RV-F 1:232 1:023 0:535
GARCH (1,1) 2:131 1:724 0:321
AR (1) 2:959 1:989 0:252
AR (3) 2:862 1:894 0:315

5 days ahead
Competing Models RMSE MAE R2

HAR-RV 1:627 1:245 0:411
FB-RV 1:133 0:913 0:772
HAR-FF 1:526 1:189 0:399
HAR-RV-F 1:747 1:322 0:451
TSRV 1:701 1:299 0:381
GARCH (1,1) 5:130 3:344 0:113
AR (1) 8:241 6:236 0:112
AR (3) 7:395 5:117 0:107

10 days ahead
Competing Models RMSE MAE R2

HAR-RV 1:645 1:257 0:399
FB-RV 1:314 0:920 0:669
HAR-FF 1:696 1:302 0:376
HAR-RV-F 1:770 1:324 0:410
GARCH (1,1) 7:131 6:815 0:090
AR (1) 12:867 10:876 0:085
AR (3) 11:782 9:971 0:081

* Comparison of the in-sample performances of the
1,5,10 day ahead forecasts of HAR-RV, FB-RV, HAR-FF,

GARCH (1,1), AR (1) and AR(3). Performance measures are the
root mean square error (RMSE), the mean absolute error (MAE), and

the R2 of the Mincer Zarnowitz regressions.
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Table 4.12: Out-of-Sample Forecasting Results (Subsampling)

1 day ahead
Competing Models RMSE MAE R2

HAR-RV 1:546 1:483 0:395
FB-RV 1:188 0:865 0:668
HAR-FF 1:226 0:895 0:581
HAR-RV-F 1:410 1:040 0:480
GARCH (1,1) 4:213 2:652 0:176
AR (1) 5:321 4:101 0:140
AR (3) 4:376 3:161 0:128

5 days ahead
Competing Models RMSE MAE R2

HAR-RV 1:721 1:361 0:403
FB-RV 1:202 1:116 0:630
HAR-FF 1:676 1:311 0:425
HAR-RV-F 1:978 1:542 0:352
GARCH (1,1) 6:621 5:245 0:141
AR (1) 8:755 7:241 0:087
AR (3) 7:263 5:971 0:110

10 days ahead
Competing Models RMSE MAE R2

HAR-RV 1:645 1:274 0:415
FB-RV 1:278 1:213 0:582
HAR-FF 1:581 1:161 0:482
HAR-RV-F 1:592 1:234 0:413
GARCH (1,1) 8:123 7:215 0:079
AR (1) 14:401 13:152 0:047
AR (3) 12:281 11:127 0:065

* Comparison of the out-sample performances of the
1,5,10 day ahead forecasts of HAR-RV, FB-RV, HAR-FF,

GARCH (1,1), AR (1) and AR(3). Performance measures are the
root mean square error (RMSE), the mean absolute error (MAE), and

the R2 of the Mincer Zarnowitz regressions.
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Table 4.13: Diebold-Mariano Test (Subsampling): In-sample

In Sample Forecasting
1 day ahead

Competing Models test statistic p-value
FB-RV vs HAR-RV� 2:1341 0
FB-RV� vs HAR-FF �1:9993 0:0012
FB-RV� vs HAR-RV-F �3:1517 0
HAR-RV� vs HAR-FF �2:0112 0
HAR-FF� vs HAR-RV-F �2:0302 0
HAR-RV vs HAR-RV-F� 3:2021 0

5 days ahead
Competing Models test statistic p-value
FB-RV� vs HAR-RV �5:4719 0
FB-RV� vs HAR-FF �4:7293 0
FB-RV� vs HAR-RV-F �5:6236 0
HAR-RV vs HAR-FF� 2:2097 0
HAR-FF� vs HAR-RV-F �3:4211 0
HAR-RV vs HAR-RV-F� 2:1122 0

10 days ahead
Competing Models test statistic p-value
FB-RV� vs HAR-RV �3:5190 0
FB-RV� vs HAR-FF �3:2471 0
FB-RV� vs HAR-RV-F �3:3708 0
HAR-RV vs HAR-FF� 3:0012 0:0010
HAR-FF� vs HAR-RV-F �3:6221 0
HAR-RV vs HAR-RV-F� 3:1513 0

The � sign indicates which model is favored.
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Table 4.14: Diebold-Mariano Test (Subsampling): Out-of-sample

Out-of-Sample Forecasting
1 day ahead

Competing Models test statistic p-value
FB-RV� vs HAR-RV �2:0401 0
FB-RV� vs HAR-FF �2:1302 0:0011
FB-RV� vs HAR-RV-F �2:5711 0
HAR-RV� vs HAR-FF �2:3152 0
HAR-FF� vs HAR-RV-F �1:9902 0
HAR-RV vs HAR-RV-F� 2:9621 0

5 days ahead
Competing Models test statistic p-value
FB-RV� vs HAR-RV �3:2191 0
FB-RV� vs HAR-FF �2:3932 0
FB-RV� vs HAR-RV-F �4:3612 0
HAR-RV vs HAR-FF� 3:1171 0
HAR-FF� vs HAR-RV-F �3:4571 0
HAR-RV vs HAR-RV-F� 3:1312 0

10 days ahead
Competing Models test statistic p-value
FB-RV� vs HAR-RV �4:1905 0
FB-RV� vs HAR-FF �3:2112 0
FB-RV� vs HAR-RV-F �2:3028 0
HAR-RV vs HAR-FF� 3:1502 0:0001
HAR-FF� vs HAR-RV-F �4:2143 0
HAR-RV vs HAR-RV-F� 2:1530 0

The � sign indicates which model is favored.

163



Chapter 5

A Semiparametric Panel

Model for Unbalanced Data

with Application to Climate

Change in the United

Kingdom

5.1 Introduction

The partially linear regression model was introduced in Engle, Granger,

Rice and Weiss (1986),

y = �TX + �(Z) + " (5.1)

where �(:) is an unknown scalar function and " is a zero mean error

orthogonal to both X and �(:): This model embodies a compromise be-
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tween employing a general nonparametric speci�cation g(X;Z); which,

if the conditioning variables are high dimensional, would lead to serious

loss of precision, and a fully parametric speci�cation which may result

in badly biased estimators and inconsistent hypothesis tests. The im-

plicit asymmetry between the e¤ects of X and Z may be attractive

when X consists of dummy or categorical variables, as in Stock (1989,

1991). This speci�cation arises in various sample selection models, see

Ahn and Powell (1993), Newey, Powell, and Walker (1990), and Lee,

Rosenzweig and Pitt (1992). It is also the basis of a general speci�ca-

tion test for functional form introduced in Delgado and Stengos (1994).

The model has been used in a number of applications. We will use a

panel data version of this model to model climate change.

The issue of global warming has received a great deal of attention

recently. This paper is concerned with developing a semiparametric

model to describe the trend in UK regional temperatures and other

weather outcomes over the last century. The data we work with con-

ditions the analysis we propose. We work with the monthly averaged

maximum and minimum temperatures observed at the twenty six Me-

teorological O¢ ce stations. The data is an unbalanced panel. We

propose a semiparametric partial linear panel model in which there is a

common trend component that is allowed to evolve in a nonparametric

way. This permits the most general possible pattern for the evolution

of a common secular change in temperature. We also allow for a de-

terministic seasonal component in temperature, since we are working

with monthly data. Gao and Hawthorne (2006) used a univariate par-

tially linear model to explain annual global temperature in terms of

a nonparametric time trend and a covariate the southern oscillation

index (SOI). They applied existing theory to deduce the properties of

their estimators and developed a new adaptive test of the shape of the
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trend function. See Campbell and Diebold (2005) for some alternative

analysis of multivariate climate time series data. Peteiro-Lopez and

Gonzalez-Manteiga (2006) worked with a multivariate model with cross-

sectionally correlated errors and di¤erent trends for each series. They

establish distribution theory for the parametric components and derive

the bias and variance of the nonparametric components. Their setting

is similar to ours except that we impose a common trend structure.

Furthermore, the covariates in our parametric part are also common

and deterministic, as they represent seasonality. Most importantly we

allow for unbalanced dataset, which is important in applications. This

di¤erence has important implications for e¢ cient estimation. The as-

ymptotic framework we work with allows a non-trivial fraction of the

data to be missing. We propose to use a pro�le likelihood method,

which in the unbalanced case is di¤erent from the sequential two-step

squares method proposed by Robinson (1998) in the univariate case

and employed by Peteiro-Lopez and Gonzalez-Manteiga (2006) in the

multivariate case. This method is fully e¢ cient in the Gaussian case

as established in Severini and Wong (1992). Finally, we allow for het-

eroskedasticity and serial correlation in the error terms.

We apply our methods to the UK dataset. We show the nonpara-

metric trend in comparison with a more standard parametric approach.

In both cases there is an upward trend over the last twenty years that is

statistically signi�cant. We compare our results with those obtained by

Gao and Hawthorne (2006). We also use our model to forecast future

temperature.
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5.2 Model and Data

The subject that we are interested are monthly temperatures fyitg,
where i signi�es di¤erent stations and t is the corresponding time when

the temperature is recorded, t = 1; : : : ; T and i = 1; : : : ; n. In practice,

there may be missing data in the sense that some stations began keeping

records before other stations. In our application, Oxford started in

1857, while Cardi¤Bute Park only began in 1977. So we suppose that

station i starts at time ti; i = 1; : : : ; n, thus records for station i are

only available from time ti to T . Order the stations by their starting

point so that t1 � t2 � � � � � tn < T: The complete record occurs after
tn: At any point in time there are nt stations available with nt varying

from one to n: The most general model we consider is of the following

form

yit = �i + �
>
i Dt + 


>
i Xit + gi(t=T ) + "it;

where i = 1; : : : ; n and t = ti; : : : ; T: Here, Dt 2 Rd is a vector of
seasonal dummy variables, Xit are a vector of observed covariates, and

the error terms "it satisfy E("itjXit) = 0 a.s.. The functions gi(�) are
unknown but smooth. These represent the trend in temperatures at

location i: We shall further assume that gi(�) = g(�); so that there is a
single common trend, which imposes a standard way of thinking about

climate change. For simplicity we also dispense with the additional co-

variates X (in our application we are concerned with documenting the

temperature record rather than assigning changes to particular causes):

The parameter vector � = (�1; : : : ; �n; �
>
1 ; : : : �

>
n )
> is unknown and de-

scribes the seasonal and level e¤ects for the di¤erent locations. The

model is not identi�ed as it stands, since one can add a constant to

each �i and subtract the same constant from g(�): For identi�cation we
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suppose that
Pn

i=1 �i = 0; in which case the function g(:) represents the

common level of average temperature relative to average seasonal varia-

tion. According to Wikipedia (2009): "Climate change is any long-term

signi�cant change in the �average weather" of a region or the earth as

a whole. Average weather may include average temperature, precipita-

tion and wind patterns." Our model directly permits the measuring of

this average weather trend through the function g(�):
In doing the asymptotics we suppose that T !1 but n is �xed (in

fact n = 26 in our application):

In conclusion the model we adopt for the application is as follows

yit = �i + �
>
i Dt + g(t=T ) + "it, (5.2)

where the error term may be heteroskedastic across i and serially cor-

related over time. Let �>i = (�i1; : : : ; �id): We can write the model

as

y = A�+
dX
j=1

Cj�j +Bg + "; (5.3)

where y; " is the nT � 1 data,error vector with zeros in place of miss-
ing observations, while � 2 Rn; g = (g(1=T ); : : : ; g(1))> 2 RT , and
�j = (�1j; : : : ; �nj) 2 Rn. In this case, A;B are matrices of conformable
dimensions of zeros and ones that re�ect the commonality and missing-

ness as well, see below. The matrices Cj contains the dummy variable

Dj. This representation is di¤erent from equation (2) of Peteiro-Lopez

and Gonzalez-Manteiga (2006); it allows for the "missingness" of data

in some observation units and preserves a simple algebraic structure

that is useful in the sequel.

Suppose n = 2 and T = 3 and for simplicity that d = 0; i.e., no

168



seasonal e¤ect. Then26666666666664

y11

y12

y13

0

y22

y23

37777777777775
=

26666666666664

1 0

1 0

1 0

0 0

0 1

0 1

37777777777775

24 �1
�2

35+

26666666666664

1 0 0

0 1 0

0 0 1

0 0 0

0 1 0

0 0 1

37777777777775

26664
g1

g2

g3

37775+

26666666666664

"11

"12

"13

0

"22

"23

37777777777775
:

5.3 Pro�le Likelihood Estimation

Our model may be estimated using di¤erent nonparametric methods.

We consider in this paper the widely used kernel estimators. Speci�-

cally, we consider the Gaussian pro�le likelihood procedure for the gen-

eral unbalanced case - see additional discussions in Remarks 2 - 3 for

advantages of using pro�le likelihood estimation. This in general leads

to semiparametrically e¢ cient estimators, Severini and Wong (1992).

5.3.1 The Estimator of g

We �rst de�ne the local pro�le likelihood in the local parameter � 2 R:

L(�; t=T ) =
TX
s=1

nsX
i=1

�
yis � �i � �>i Ds � �

�2
Kh((t� s)=T )

=
nX
i=1

TX
s=ti

�
yis � �i � �>i Ds � �

�2
Kh((t� s)=T );

where Is denotes the set of stations available at time s; which is of car-

dinality ns and we assumed the ordering of the stations is consistently

chosen. Here, K is a kernel function and h is a bandwidth so that
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Kh(:) = K(:=h)=h: The �rst derivative with respect to � is given by

@L(�; t=T )
@�

= �2
TX
s=1

X
i2Is

�
yis � �i � �>i Ds � �

�
Kh((t� s)=T );

so that

b� = bg�(t=T ) = T�1
Pn

i=1

PT
s=ti

�
yis � �i � �>i Ds

�
Kh((t� s)=T )

T�1
Pn

i=1

PT
s=ti

Kh((t� s)=T )

=
T�1

PT
s=1Kh((t� s)=T )

Pns
i=1

�
yis � �i � �>i Ds

�
T�1

PT
s=1Kh((t� s)=T )ns

Notice that if we standardize the kernel so that T�1
PT

s=1Kh(u�s=T ) =
1, then, when T is large, mt = m, where mt = T

�1Pn
i=1

PT
s=ti

Kh((s�
t)=T ); for all t with tm=T < t=T < tm+1=T:

5.3.2 The Estimator of �

The global pro�le likelihood in the parameter vector � is given by

L(�; bg�) = nX
j=1

TX
t=ti

�
yjt � �j � �>j Dt � bg�(t=T )�2 :

Wemaximize this subject to the constraint that
nX
i=1

�i = 0; equivalently

�nding the �rst order condition of the Lagrangian L(�; �) = L(�; bg�) +
�

nX
i=1

�i:

The �rst derivatives of L with respect to � are:

@L(�; bg�)
@�i

= 2

nX
j=1

TX
t=tj

b"jt(�)@b"jt(�)
@�i

;
@L(�; bg�)
@�i

= 2

nX
j=1

TX
t=tj

b"jt(�)@b"jt(�)
@�i

;
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where b"jt(�) = yjt � �j � �>j Dt � bg�(t=T ) and
@b"jt(�)
@�i

=

8<: �1� @bg�(t=T )
@�i

if j = i

�@bg�(t=T )
@�i

else

@b"jt(�)
@�i

=

8<: �Dt � @bg�(t=T )
@�i

if j = i

�@bg�(t=T )
@�i

else

for i = 1; : : : ; n; where

@bg�(t=T )
@�i

= � 1

mt

1

T

TX
s=ti

Kh((t�s)=T )!

8<: � 1
mt
; i � mt

0; i > mt

, as T !1.

@bg�(t=T )
@�i

= � 1

mt

1

T

TX
s=ti

Kh((t�s)=T )Ds !

8<: � 1
12mt

i11; i � mt

011; i > mt

, as T !1

do not depend on the unknown parameters. The pro�le likelihood equa-

tions are linear in � and can be solved explicitly to give the constrained

estimators b�:We then de�ne the nonparametric estimator bg(u) = bgb�(u).
5.3.3 In Matrix Notation

We may re-write the vector of b� as
bg� = (bg�(1=T ); : : : ; bg�(1))> = (i>n 
K)

 
y � A��

dX
j=1

Cj�j

!
; (5.4)

where K is the T � T smoother matrix with typical element Kts =

Kh((t� s)=T )=mtT; and mt = T
�1Pn

i=1

PT
s=ti

Kh((s� t)=T ):
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In matrix notation the pro�le likelihood estimator solves

min
�:�>in=1

 
y � A��

dX
j=1

Cj�j �Bbg�
!> 

y � A��
dX
j=1

Cj�j �Bbg�
!

or equivalently, since bg� is linear in y;
min

�:�>in=1

�ey � eX��> �ey � eX�� ;
where � = (�>; �>1 ; : : : ; �

>
d )
> 2 Rn(d+1) and eX = ( eA; eC1; : : : ; eCd) is nT

by n(d + 1); while: ey = My; eA = MA; and eCj = MCj with M =

InT � B(i>n 
K): Ignoring the restriction we can write the above �rst
order conditions in the following matrix form eX> eXb� = eX>ey; except
that eX> eX is singular. De�ne q> = (1; : : : ; 1; 0; : : : ; 0); then the linear

restriction is represented as q>� = 0: Then de�ne the matrix R; which

is a k � (k � 1) matrix, where k = n(d + 1); such that (q; R) is non

singular and R>q = 0; Amemiya (1985, x1.4): In this case, we can take

R =

24 R1 R2

R3 R4

35 ; R1 =

24 In�1

�in�1

35
n�n�1

; R4 = Ind�nd;

where in�1 is the n�1�1 vector of ones, andR2; R3 are matrices of zeros
of conformable dimensions. It follows that for the pro�le likelihood

estimator subject to the linear restriction q>� = 0, we have

b� = R�R> eX> eXR��1R> eX>ey;
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where R> eX> eXR is non-singular.1 Then,
bg = (i>n 
K)

 
y � Ab�� dX

j=1

Cjb�j
!
:

In computing the least squares estimators in our application we make

some additional steps because T is very large, 1858 in fact. We partition

A = (A>1 ; : : : ; A
>
n )
> and B = (B>1 ; : : : ; B

>
n )

>; where Aj and Bj are

T � n matrices and T � T matrices respectively. Then, for example,
MA = A � ((B1K

Pn
j=1Aj)

>; : : : ; (BnK
Pn

j=1Aj)
>)>; where Bj0KAj

is a T � n matrix. In this way one can avoid matrices of dimensions
nT � nT or even nT � T; which are too large to �t into memory.

5.4 Asymptotic Properties

In this section we present the asymptotic properties of the estimators

de�ned above. The following conditions are quite standard in kernel

estimation. For the convenience of asymptotic analysis, we introduce

�-mixing (absolutely regular), which is de�ned as follows. A stationary

process f(�t;Ft);�1 < t < 1g is said to be �-mixing (or, absolutely
regular) if the mixing coe¢ cient �(n) de�ned by

�(n) = E
n
sup

A2F1t+n
jP (Aj F t

�1)� P (A)j
o

1Note that R>1 � = (�1; : : : ; �n�1)
>. We can interpret the above as a reparame-

terizion to � = (�1; : : : ; �n�1; �
>
1 ; : : : �

>
n )

> with �n = �
Pn�1

i=1 �i and then changing
A 7! A� in (5.3) to re�ect the di¤erent structure. For example, in the special case
given above, A� = (1; 1; 1; 0;�1;�1)>: Then compute b� by an unconstrained re-
gression.
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converges to zero as n ! 1. �-mixing includes many linear and
nonlinear time series models as special cases; see Doukhan (1994) for

more discussion on mixing.

Assumptions A.

1. For each i; "it is a stationary �-mixing with mixing decay rate �it
with lim supt b

tmax1�i�n �it <1 for some b > 1,
P1

h=�1E ("it"it+h) =

!2i and s
2
i =

P1
k=�1E ("it"i;t+12k) with 0 < ! � min1�i�n !i �

max1�i�n !i � ! <1.

2. The function g : [0 ; 1 ]!R, is continuously di¤erentiable up to
the order � � p.

3. The kernel K has support [�1; 1] and is symmetric about zero
and satis�es

R
K(u)du = 1. In addition,

R
ujK(u)du = 0; j =

1; : : : ; p � 1; and
R
upK(u)du 6= 0. De�ne �p(K) =

R
upK(u)du

and jjKjj22 =
R
K2(z)dz:

4. The bandwidth satis�es:

(a) As T !1, h! 0, and Th!1, Th2p ! 0

(b) h = cTT�1=2p+1 with 0 < lim inf
T!1

cT � lim sup
T!1

cT <1:

Assumptions A1 is a typical assumption in the time series literature

and ensures that "it is stationary with weak dependence and that ap-

propriate limiting theory can be applied. This condition is useful in our

technical development and, no doubt could be replaced by a range of

similar assumptions. Assumption A2 concerns about the smoothness

of the trend function and ensures a Taylor expansion to appropriate or-

der. Assumption A3 for the kernel function and Assumption A4 for the

bandwidth expansion are quite standard in nonparametric estimation:

in part a, the bandwidth is chosen to ensure root-T asymptotics for
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parametric quantities; in part b, the bandwidth is chosen to be optimal

for estimation of the nonparametric component.

The asymptotics depends on our assumptions about t1 � t2 � � � � �
tn. In the simplest case when t1 � t2 � � � � � tn are �nite numbers,

the asymptotic results are the same as those with complete data - the

di¤erences in the starting dates are asymptotically ignorable, thus the

asymptotic distributions are una¤ected by the di¤erence of starting

dates. We shall assume that ti !1 in such a way that

ti = briT c , where ri 2 (0; 1), (5.5)

for i = 1; : : : ; n; (and rn+1 = 1) in which case the starting time a¤ects

the estimators asymptotically.

To present the main result we need some notation. Let akj =Pn
s=j (rs+1 � rs) =sk, k = 1; 2; 3; 4, �i = (1� ri � 2a1i + a2i), fi =

(n+ 2)a2;i � 2a1;i � na3;i, and �i = (n2a4;i � 4na3;i + 4a2;i), and let


n = diag
h
�1!

2
1; : : : ; �i!

2
i ; : : : ; �n!

2
n

i
,

Sn = diag
h
�1s

2
1; : : : ; �is

2
i ; : : : ; �ns

2
n

i
�n = diag f1; : : : ; 1� ri; : : : ; 1� rng :

In addition, let An be the n � n symmetric matrix whose (i; j)-th ele-
ment is

[An]i;j =

8<: �i
Pi�1

j=1 !
2
j +

Pn
j=i+1 �j!

2
j , i = j

fi
�
!2j + !

2
i

�
+ �i

P
l 6=j;l<i !

2
l +

P
l>i �l!

2
l , j < i

;
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Gn =

26666666664

(a21 � 2a11 +
Pn
l=2 a2l) : : :

�
ia2i � 2a1i +

Pn
l=i+1 a2l

�
: : : (na2;n � 2a1;n)

�
ia2i � 2a1i +

Pn
l=i+1 a2l

� �
ia2i � 2a1i +

Pn
l=i+1 a2l

�
(na2;n � 2a1;n)

(na2;n � 2a1;n) (na2;n � 2a1;n) (na2n � 2a1n)

37777777775
:

Then de�ne the matrices:

Q =

24 �n +Gn (�n +Gn)
 1
12
i11

(�n +Gn)
 1
12
i>11 �n 
 1

12
I11 +Gn 
 1

122
J11

35 ; (5.6)


 =

24 
n + An [
n + An]
 1
12
i>11

[
n + An]
 1
12
i>11 Sn 
 1

12
I11 + An 
 1

122
J11

35 ; (5.7)

where i11 is a 11� 1 vector of ones, and J11 = i11i>11 is a 11� 11 matrix
of ones, and

g� =

24 b

b
 1
12
i11

35 , b = h b1; : : : ; bi; : : : ; bn

i>
,

bi =
1

p!
�p(K)

24 nX
l=1

0@ 1Z
rl

�(s)g(p) (s) ds

1A�
0@ 1Z
ri

g(p) (s) ds

1A35
and �(s) is a weighting function on [0; 1]; �(s) = 1=j, if rj < s < rj+1,

j = 1; 2; : : : ; n: We summarize the limiting distributions as follows.

Theorem 1. Suppose that Assumptions A1 - A4 hold, and assume

that the initial observation condition are given by (5.5). Then, as T !
1;

p
T
�
R>b� �R>� + hp �R>QR��1R>g��) N

�
0;
�
R>QR

��1
R>
R

�
R>QR

��1�
.
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Remark 1. The asymptotic distribution of the pro�le likelihood

estimator is complicated largely due to the unbalanced data structure,

which a¤ects the limiting distributions under our assumptions.

Remark 2. The partial linear model that we study in this paper

may be estimated by other methods - see an early version of this pa-

per ALX(2008) for studies of other methods. Comparing the pro�le

likelihood estimator with the other estimators, the pro�le likelihood

estimator is a joint estimation for the nonparametric and parametric

parts, while the other estimators such as the traditional methods used

in the literature of partial linear regressions are sequential two-step es-

timators. It�s easy to see that the pro�le likelihood estimator has a

smaller bias term than the two step estimator.

Remark 3. Heteroskedasticity across i, weak correlation over t,

and seasonality all a¤ect the limiting results. These e¤ects are re�ected

through !2i and s
2
i in the limits.

If we consider the special case with complete data, all observations

start at t = 1, then ri = 0, i = 1; : : : ; n, rn+1 = 1, and we have

�(s) = 1=n, for 0 < s < 1, j = 1; 2; : : : ; n: Consequently

bi =
1

p!
�p(K)

24 nX
l=1

0@ 1Z
0

�(s)g(p) (s) ds

1A�
0@ 1Z
0

g(p) (s) ds

1A35 = 0:
This cancellation occurs because of the recentering due to the paramet-

ric part of the model.

Thus we have the following simpli�ed asymptotic results for the

pro�le likelihood estimator with complete data. Let

Q = �X �
1

n
��X ; (5.8)
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�X =

24 In
1
12
In 
 i>11

1
12
In 
 i11 1

12
I11n

35 , ��X =
24 Jn

1
12
Jn 
 i11

1
12
Jn 
 i>11 1

122
J11n

35 ;
and 
 is de�ned by the same formula (5.7) with


n = diag
h �
1� 1

n

�2
!21; : : : ;

�
1� 1

n

�2
!2i ; : : : ;

�
1� 1

n

�2
!2n

i
,

Sn = diag
h �
1� 1

n

�2
s21; : : : ;

�
1� 1

n

�2
s2i ; : : : ;

�
1� 1

n

�2
s2n

i
;

and the (i; j)-th element of An is given by

[An]i;j =

8<: 1
n2

P
j 6=i !

2
j , i = j

� 1
n

�
1� 1

n

� �
!2j + !

2
i

�
+ 1

n2

P
l 6=j;i !

2
l , j < i

:

Corollary 1. Suppose that Assumptions A1 - A4 hold, in the case

with complete data, the pro�le likelihood estimator has the following

asymptotic distribution as T !1;

p
T
�
R>b� �R>��) N

�
0;
�
R>QR

��1
R>
R

�
R>QR

��1�
.

If we further assume that "it are iid distributed with mean zero and

variance �2, 
n = Sn =
�
1� 1

n

�2
�2Inwhere In is the n-dimensional

identity matrix, and the (i; j)-th element of An is given by

[An]i;j =

8<: 1
n

�
1� 1

n

�
�2, i = j

� 1
n
�2 j 6= i

:

We next analyze the estimator of the trend function. The asymp-

totic results of this estimator is summarized in Theorem 2 below whose
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proofs are again given in the Appendix.
Theorem 2. Suppose that Assumptions A1 - A4 hold, and assume

that the initial observation condition are given by (5.5). Then, as T !
1;

p
Th [bg(u)� g(u)� hpb(u)] ) N

�
0;
1

m
!2mjjKjj22

�
, for u 2 [rm; rm+1), m = 1; : : : ; n� 1;

p
Th [bg(u)� g(u)� hpb(u)] ) N

�
0;
1

n
!2jjKjj22

�
, for u > rn.

where b(u) = 1
p!
g(p)(u)�p(K); while !

2
m = m

�1Pm
i=1 !

2
i , !

2 = n�1
Pn

i=1 !
2
i .

In the special case with complete data, we have the following special

result.

Corollary 2. Suppose that Assumptions A1 - A4 hold and all

observations start at t = 1. Then, as T !1;

p
Th [bg(u)� g(u)� hpb(u)]) N

�
0;
1

n
!2jjKjj22

�
: (5.9)

Remark 4. It is possible to extend the above results to allow

for cross-sectional dependence as well, since the CLT is coming from

the weak dependence in the large time series dimension. Suppose in-

stead that "t = ("1t; : : : ; "nt)
> = �(t=T )1=2�t; where the vector �t =

(�1t; : : : ; �nt)
> is stationary �-mixing with the same decay rate as in

assumption A1, while �(u) is a symmetric positive de�nite matrix of

smooth functions. Let 	(s) = E�t�
>
t+s and 	1 =

P1
s=�1	(s). Then

the asymptotic variance in (5.9) becomes jjKjj22i>�(u)1=2	1�(u)1=2i=n;
where i = (1; 1; : : : ; 1)>: However, the results for b� are much more com-
plicated in this case.

Remark 5. One can also expect that Theorem 2 continues to hold

in the case where n!1: In this case, the rate of convergence of bg(u) is
of order 1=

p
Tmh; and if u > rn this rate is 1=

p
Tnh: The precise rates

attainable depend on the distribution of the sequence r1; r2; : : : through-
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out [0; 1]: However, the asymptotic distribution is the same regardless

of whether n is large or not. The corresponding results for b� have to be
rethought in this case because the dimensions of this parameter vector

increases.

5.5 Forecasting

In this section we consider forecasting based on the semiparametric

model (5.2). In particular, we consider q-step forecasting, i.e. fore-

casting of yi;T+q based on information upto time T . Our primary in-

terest is to forecast yi;T+q with �nite q, although our analysis allows

for forecasts with q ! 1 under appropriate expansion rate of q. The

common structure in our model allows us to exploit the forecasting

gains entailed by these restrictions (reduction in forecasting variance),

which amount to homogeneity restrictions in a panel-data environment.

These restrictions were found to be helpful in the empirical application

of Hoogstrate, Palm, and Pfann (2000) for GDP forecasts. In a recent

paper, Issler and Lima (2009) have a theoretical explanation of why

these restrictions might work in practice.

Notice that

yi;T+q = �i + �
>
i DT+q + g(1 + q=T ) + "i;T+q:

Therefore, a simple forecast for yi;T+q; that ignores the error dynamics,

can be obtained based on estimators for �i, �i and a predictor of g(1+

q=T ) based on observations i = 1; : : : ; n and t � T . Since estimators

for �i, �i are studied in the previous sections, we study forecasting of

g(1 + q=T ) in this section and construct a predictor of yi;T+q using the

predicted g(1 + q=T ). We are also interested in forecasting the average
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temperature, yT+q =
Pn

i=1 yi;T+q=n, given by

yT+q = �
>
DT+q + g(1 + q=T ) + "t; (5.10)

where �
>
=
Pn

i=1 �i=n; and "T+q =
Pn

i=1 "i;T+q=n:

We �rst consider the simple case when f"itgt are martingale di¤er-
ence sequences. Since forecasting of g(1+q=T ) is the key issue, we note

that

ETyi;T+q = �i + �
>
i DT+q + g(1 + q=T );

where ET denotes conditional expectation given the data.

We make the following assumptions to facilitate forecasting the com-

mon trend.

A1� For each i; "it is a martingale di¤erence sequence, E ("2it) = �
2
i ,

and 0 < � � min1�i�n �i � max1�i�n �i � � <1.

A2�The function g : [0 ; 1 + �]!R, some � > 0; is continuously dif-
ferentiable up to the order � � p.

A5 K is a one-sided kernel satisfying (a) K and K0 are continuous
on [�1; 0]; (b) ��0(K) > 0 and ��0(K)��2(K) � ��1(K)2 > 0, where
��j(K) =

R 0
�1 u

jK(u)du.

A6 The bandwidth h satis�es A4(a) and the bandwidth h1 satis�es

h=h1 ! 0 as T !1.

We construct a local polynomial predictor for g(1 + q=T ). Notice

that g (�) is a smooth function under Assumption A2�; therefore, when
T ! 1, q=T ! 0, by a Taylor expansion of g(�) around u = 1 to the
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� -th order (� = p� 1),

g(1+q=T ) =
�X
k=0

1

k!
g(k)(1)

� q
T

�k
+o
�� q
T

���
=

�X
k=0


k�
� q
T

�k
+o
�� q
T

���
:

As will be more clear later in this section, forecasting at time T is

largely a¤ected by data information close to time T . We let

y
t
= n�1

nX
i=1

(yit � b�i � b�>i Dt) = yt � b�>Dt;

for tn � t � T: Let K (�) be a one-sided kernel whose properties are
de�ned in Assumption A5 above, we consider the following local poly-

nomial estimation at the end point T :

TX
t=1

K
�
T � t
Th1

� 
y
t
�

�X
k=0


k �
�
t� T
T

�k!2
: (5.11)

where h1 is a bandwidth parameter satisfying Assumption A6.

We summarize the asymptotic behavior of the local polynomial es-

timator (5.11) in the following Theorem. Let

B(K) = 1

(� + 1)!
g(�+1)(1)

0BBBBBB@
���+1(K)

���+2(K)

: : :

��2�+1(K)

1CCCCCCA

M(K) =

2666664
��0(K) ��1(K) : : : ��� (K)

��1(K) ��2(K) ���+1(K)

: : : : : : : : :

��� (K) ���+1(K) : : : ��2� (K)

3777775 ; V (K) =
2666664
��0(K) ��1(K) : : : ��� (K)

��1(K) ��2(K) ���+1(K)

: : : : : : : : : �

��� (K) : : : ��2� (K)

3777775 ;

and ��k(K) =
R 0
�1K (u)u

kdu, ��j(K) =
R 0
�1 u

jK2(u)du: Let also Dh =
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diag (1; h; : : : ; h� ) :

Theorem 3. Suppose that Assumptions A1, A2 0, A3, A4, A5, and

A6 hold, as T !1;

p
ThDh

�b
 � 
 � h�+11 M(K)�1B(K)
�
) N

�
0;
1

n
�2M(K)�1V (K)M(K)�1

�
;

where �2 = n�1
Pn

i=1 �
2
i :

The above result indicates that the leading bias e¤ect of local poly-

nomial estimation of (
0; 
1; : : : ; 
� ) is given by h
�+1DhM(K)�1B(K);

and the leading variance e¤ect is given by

!2D�1
h M(K)�1V (K)M(K)�1D�1

h =nTh: The local polynomial predictor

for g(1 + q=T ) is then given by

bg(1 + q=T ) = �X
k=0

b
k � � qT �k ;
and our predictor for yi;T+q is given by

byi;T+q = b�i + b�>i DT+q + bg(1 + q=T ): (5.12)

The forecast for average temperature is just the average forecast, so

byT+q = b�>DT+q + bg(1 + q=T ); (5.13)

where b� = n�1Pn
i=1
b�>i .

The forecasting error is given in the following theorem. Let P� =
(1; (q=Th); : : : ; (q=Th)� )>: Let E�T denotes asymptotic conditional ex-

pectation given the data.

Theorem 4. Suppose that Assumptions A1, A2 0, A3, A4, and A5
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hold, as T !1, the forecasting bias in byi;T+q is given by
E�T [byi;T+q � yi;T+q] = bg = h�+1 �P>� M(K)�1B(K) + o(1)� ,

and the forecasting error variance in byi;T+q is given by
E�T
�
(byi;T+q � ET byi;T+q)2� = �2i+� 1

Tnh

�
P>� M(K)�1V (K)M(K)�1P� + o(1)

��
�2;

where, �2 is de�ned in Theorem 3. For the forecast of average temper-
ature, byT+q, the forecasting bias is the same as that of byi;T+q given by
the above formula, and the forecasting error variance in byT+q is given
by

E�T

��byT+q � E�TbyT+q�2� = 1

n

�
1 +

1

Th

h
P>� M(K)�1V (K)M(K)�1P� + o(1)

i�
�2:

The results of Theorems 3 and 4 indicate that the forecasting error

of byi;T+q is dominated by that of the local polynomial forecaster of bg(1+
q=T ). In particular, for the leading case of forecasting with �nite q, the

bias term is dominated by the �rst term in bg : h�+1B0, where B0 is the

�rst element in the (� + 1)-vector M(K)�1B(K). The forecasting error
variance is dominated by �2i +V0�

2=Tnh; where V0 is the (1,1)-element

of matrixM(K)�1V (K)M(K)�1. Similar result can be obtained for the
average temperature forecaster byT+q. These results also hold for more
general cases as long as q=Th! 0.

If we allow that q ! 1, the order of magnitude of the forecast-
ing error is determined jointly by the bandwidth h and the forecasting

distance q=T . In the case of byi;T+q, if q=Th ! 0, the bias term is

dominated by the �rst term in bg : h�+1B0, and the forecasting er-

ror variance is dominated by �2i + V0�
2=Tnh, where B0 and V0 are
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de�ned in the same way as above. If q=Th ! � 2 (0;1); the lead-
ing bias term is a¤ected by all terms in bg : h�+1�>

�M(K)�1B(K);
where �� = (1; �; : : : ; �� )>. The leading variance terms is giving by:

�2i +�
>
�M(K)�1V (K)M(K)�1���

2=Tnh. If q=Th!1; our theory is
not applicable.

Remark 4. In the general case when f"itgt are weakly dependent,

ETyi;T+q = �i + �
>
i DT+q + g(1 + q=T ) + ET "i;T+q;

where ET denotes conditional expectation given the data. Under our

condition A1, ET "i;T+q 6= 0 (although ET "i;T+q ! 0 as q ! 1). To
forecast ET "i;T+q, we should �t a time series model (say, an ARMA

model as Box and Jenkins) to the error term, and using the existing

forecasting method to construct a predictor. In this case, we may de-

trend and remove the seasonal components from yi;t using our estimatesb�i, b�i, and bg(t=T ), i.e.
b"i;t = yi;t � b�i � b�>i Dt � bg(t=T )

and then �t the estimated stochastic component b"i;t by an appropriate
ARMAmodel to obtain forecast of "i;T+q, say, bET "i;T+q. A predictor for
yi;T+q can then be constructed by bg(1 + q=T ) that we obtained earlier
in this section together with other components, i.e.

eyi;T+q = b�i + b�>i DT+q + bg(1 + q=T ) + bET "i;T+q:
In the AR(1) special case "i;t = �"i;t�1 + �it, where �it is iid, we have

ET "i;T+q = �
q"i;T . More generally, for ARMA process errors one could

use the standard linear forecasting techniques associated with Box and

185



Jenkins. Alternatively, we may ignore the error dynamics and sim-

ple construct forecasts for yi;T+q and yT+q by (5.12) and (5.13). Such

predictors are asymptotically equivalent to predictors that takes into

account the weak correlation in "i;t for long-run forecasting (the case

q !1), but are less e¢ cient for short-run forecasting than predictors
that utilize the correlation property.

5.6 Application

Our dataset contains the average maximum temperature within a month

(TMAX), the average minimum temperature within a month (TMIN),

the di¤erence between the average maximum and minimum tempera-

tures within a month (TRANGE), all measured in degrees Celsius and

also the number of hours of sunshine and the number of millimeters of

rainfall. The primary data source is the met o¢ ce web site for each of

the twenty six stations.2 The �rst observations were taken in 1853 at

Armagh and Oxford so that we have a total of 1858 time series records.

2The data are available at http://www.meto¢ ce.gov.uk/climate/uk/stationdata/

Figure 5-1: Location of Stations
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In the working paper version of this paper we provide the full results

of a univariate parametric analysis based on a quadratic trend. This

shows evidence of seasonality and an upward trend for all stations.

There is also some evidence of serial correlation in the residuals but little

evidence of GARCH e¤ects. The error correlation does not a¤ect the

estimation of the regression coe¢ cients and changes only slightly the

standard errors. Similar results were obtained for both maximum and

minimum temperature. We also report results for the range. These are

somewhat di¤erent. Speci�cally, the trend coe¢ cients are signi�cant in

only nine cases, with seven of those cases having a similar upward trend,

whereas the other two actually have a negative trend in range. Range

has also a signi�cant seasonal e¤ect and a signi�cant autocorrelation

coe¢ cient in most cases. The results for sunshine hours are not so

consistent as for temperature. There are seven stations with signi�cant

trends, six of them with increasing trend. Overall though many other

stations have negative, albeit insigni�cant, trends. With rainfall, the

trend is not signi�cant in any station.

One critique of such a parametric analysis is that the implied trend

is a little unrealistic and poorly estimated. Extrapolating beyond the

sample implies an outrageously high temperature twenty years from

now, which is just not credible. This is why we have advocated a

semiparametric approach.

We next present the results of the semiparametric analysis. In

Tables 5.1 and 5.2 we give the estimated values of � and the associ-

ated standard errors for TMAX and TMIN. The parameter values are

strongly signi�cant and show evidence of geographic variability in the

level of temperature and seasonality. These results are broadly con-

sistent with the individual purely parametric results we gave in the

working paper version.
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In Figures 5.2 and 5.3 we give the estimated nonparametric trend

over the same period. The trend is much more moderate especially at

the end of the period. Our results are somewhat di¤erent from those

obtained in Gao and Hawthorne (2006) for example, since we �nd ev-

idence of trend starting much later. In Figure 5.2 we give the trend

just for the recent period by only considering the balanced subset of

the data. Even though the nonparametric trend indicates some varia-

tion i.e., some downward movements, but generally it climbs upward,

this being more pronounced after 1995. In both cases, balanced and

unbalanced, we can easily claim that there is an upward trend for the

TMAX and TMIN values. These were implemented using a Gaussian

kernel and Silverman�s rule of thumb bandwidth (which in this case

yield h ' 0:05): As we remarked in the text, the estimation of the com-
mon trend is purely local and una¤ected by earlier data. The standard

errors for the nonparametric estimators of TMAX and TMIN over the

shown period are 0.476709, 0.48602 respectively, indicating the level of

signi�cance of the estimated curves.

We next present the result of an out of sample analysis. We compute

the estimated forecast based on local linear smoothing. We report

the absolute error for the p-step forecast, where p = 1; 2; : : : ; 12; so

forecasting out to one year ahead. The forecast errors given in Figure

5.4 appear reasonable and are better than the corresponding parametric

results, which substantially overpredict the temperature in this period.

****Figures and Tables Here***
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5.7 Conclusion

In conclusion, we have developed a semiparametric model we think

is appropriate for modelling the changes in temperatures observed at

a cross section of locations. The model and methods are de�ned for

the important practical case of unbalanced data. The methods we

develop give similar results to a parametric analysis and help to con-

�rm the main �nding of a gradual upward trend in temperature in the

UK, although with somewhat less trend obtained by the nonparametric

method than the parametric one.

5.8 Appendix

5.8.1 Proof of Theorems

Proof of Theorem 1. The �rst order condition (FOC) for � is

@L(�)
@�i

= �
X
j 6=i

TX
t=tj

�
yjt � b�j � b�>j Dt � bg�(t=T )� @bg�(t=T )

@�i

�
TX
t=ti

�
yit � b�i � b�>i Dt � bg�(t=T )��1 + @bg�(t=T )

@�i

�
= 0

@L(�)
@�i

= �
X
j 6=i

TX
t=tj

�
yjt � b�j � b�>j Dt � bg�(t=T )� @bg�(t=T )

@�i

�
TX
t=ti

�
yit � b�i � b�>i Dt � bg�(t=T )��Dt +

@bg�(t=T )
@�i

�
= 0;
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where:

@bg�(t=T )
@�i

= � 1

mt

1

T

TX
s=ti

Kh((t� s)=T )!

8<: � 1
mt
; i � mt

0; i > mt

@bg�(t=T )
@�i

= � 1

mt

1

T

TX
s=ti

Kh((t� s)=T )Ds !

8<: � 1
12mt

i11; i � mt

011; i > mt

:

Thus, for i = 1; : : : ; n;

X
l 6=i

TX
t=tl

0@ylt � b�l � b�>l Dt � 1

mt

1

T

nX
j=1

TX
s=tj

�
yjs � b�j � b�>j Ds�Kh((t� s)=T )

1A @bg�(t=T )
@�i

+

TX
t=ti

0@yit � b�i � b�>i Dt � 1

mt

1

T

nX
j=1

TX
s=tj

�
yjs � b�j � b�>j Ds�Kh((t� s)=T )

1A�1 + @bg�(t=T )
@�i
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= 0,

X
l 6=i

TX
t=tl

0@ylt � b�l � b�>l Dt � 1
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1

T

nX
j=1

TX
s=tj

�
yjs � b�j � b�>j Ds�Kh((t� s)=T )
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TX
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0@yit � b�i � b�>i Dt � 1
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1

T

nX
j=1

TX
s=tj

�
yjs � b�j � b�>j Ds�Kh((t� s)=T )

1A�Dt + @bg�(t=T )
@�i

�
= 0,

Substitute the true model yit = �i + �
>
i Dt + g(t=T ) + "it into the

above FOC, notice that

yit � b�i � b�>i Dt = "it + g(t=T )� (b�i � �i)� �b�>i � �>i �Dt;

thus we have, for i = 1; : : : ; n, the corresponding FOC w.r.t. �i is given
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and the corresponding FOC w.r.t. �i is
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CT;A CT;B

3524 p
T (b�� �)

p
T
�b� � ��

35 =
24 da

dA

35+
24 ea

eA

35 :
Let

CT =

24 CT;a CT;b

CT;A CT;B

35 , dT =
24 da

dA

35 , eT =
24 ea

eA

35 ;
the FOC can be written as:

CT
p
T
�b� � �� = dT + eT : (5.14)

Thus the pro�le likelihood estimator subject to the linear restriction

q>� = 0 satis�es

p
T
�b� � �� = R �R>CTR��1R>dT +R �R>CTR��1R>eT ;

where R is the K � (K � 1) normalized orthogonal complements of q:
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By results of Lemmas 1 and 2, as T !1 :

CT;a )
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c11 : : : c1i : : : c1n

ci1 cii cin

cn1 cni cnn
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�
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= (�n +Gn)


�
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12
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�
;

and
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I11 +Gn 


1
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Thus

CT ! Q =

24 �n +Gn (�n +Gn)
 1
12
i11

(�n +Gn)
 1
12
i>11 �n 
 1

12
I11 +Gn 
 1

122
i>11i11

35 :
By Lemma 3, the bias terms are24 da

dA

35 = �pThp
24 b

b
 1
12
i11

35+ o(pThp);
where:

b =
h
b1; : : : ; bi; : : : ; bn
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1
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�p(K)
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0@ 1Z
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�(s)g(p) (s) ds

1A�
0@ 1Z
ri

w(s)g(p) (s) ds

1A35 ;
where w(s) and �(s) are weighting functions on [0,1] :

�(s) =
1

j
, if rj < s < rj+1, j = 1; 2; : : : ; n:

w(s) = 1� �(s) = 1� 1
j
, if rj < s < rj+1, j = 1; 2; : : : ; n:

By Lemma 4, the stochastic term eT converge in distribution to a

multivariate normal with covariance matrix


 =

24 
11 
12


21 
22

35 =
24 
n + An [
n + An]
 1
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i>11

[
n + An]
 1
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i>11 Sn 
 1

12
I11 + An 
 1
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J11

35 :

Proof of Theorem 2. Consider
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For the �rst stochastic term,
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Again, for each i,
P

tK([u� t=T ] =h)"it is a weighted sum of weakly
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correlated random variables and a CLT applies,
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K([u� t=T ] =h)"it ) !ijjKjj21=22 �i:

The second term is simply a kernel smoothed estimator of g(u),
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For the third and fourth terms,
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the preliminary estimation of � does not a¤ect the �rst order asymp-

totics for this estimator.

Thus for tm=T < u < tm+1=T , m = 1; : : : ; n� 1,

p
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For u > tn=T ,

p
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Proof of Theorems 3 and 4. Notice that when q=T ! 0, as

T !1, under Assumption A20, by a Taylor expansion,
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=

�X
k=0


k�
� q
T

�k
+o
�� q
T

���
:
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TX
t=1

K
�
T � t
Th

��
y
t
� 
>xt

�2
; where 
 =
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By result of ALX(2008),
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Thus
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Notice that

b
k � 
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and our forecaster for g(1 + q=T ) is given by

bg(1 + q=T ) = �X
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b
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Thus, the forecasting error is
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The bias and variance terms are given by
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�
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T
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�
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�
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Th

�X
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� q
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�k
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whose order of magnitude are jointly determined by the bandwidth h

and the forecasting distance q=T . In particular, the prediction error is

given by

yi;T+q�byi;T+q = "i;T+q�(b�i � �i)��b�>i � �>i �DT+q�[bg(1 + q=T )� g(1 + q=T )] ;
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Since the parameter estimates are of smaller error, for any �xed q,

yi;T+q � byi;T+q = "i;T+q � h�+1B0 � 1p
Th
U0 + op

�
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�
:

Thus, the forecasting bias is of orderO(h�+1), with leading term h�+1B0,

and the leading term of forecasting variance is

!2i +
1

Th
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where V0 is the (1,1)-element in the matrix 1
n
!2M(K)�1V (K)M(K)�1.

5.8.2 Lemmas
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Lemma 2. For i 6= j, as T !1:
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where w(s) and �(s) are weighting functions on [0,1] :
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where:
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Proof of Lemma 2. We have
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Finally we analyze the covariance terms:
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Thus the covariance matrix of the stochastic term is
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5.8.4 Graphs

Figure 5-2: Trend by Nonparametric Method: Balanced Case
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Figure 5-3: Trend by Nonparametric Method: Unbalanced Case
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Figure 5-4: Absolute Forecast Errors by Nonparametric Method
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5.8.5 Tables

Table 5.1: Maximum Temperature Nonparametric Results
STATION TIME ALPHA BETAs RSS
Aberp orth 1942-2007 15.1545 -4 .8198 2.4600 -3 .7686 3.4780 -2 .7198 4.4884 -1.6743 5.4908 -1 .0563 6.4845 0.4039 0.0177

(0.4872) (0 .4987) (0 .4875) (0.5051) (0 .4978) (0 .4800) (0 .4975) (0 .4796) (0 .4893) (0 .4900) (0 .4880) (0 .4793)

Armagh 1865-2007 15.3314 5.8443 13.1241 6.8956 14.1421 7.9443 15.1526 8.9534 16.1549 10.0314 17.1486 10.4707 0.1213
(0.4969) (0 .4798) (0 .4792) (0.4928) (0 .4871) (0 .4925) (0 .4889) (0 .4900) (0 .5090) (0 .4920) (0 .4982) (0 .4788)

Bradford 1908-2007 14.2064 -4 .9778 2.3021 -3 .9265 3.3201 -2 .8777 4.3305 -1.8322 5.3329 -1 .0553 6.3266 0.2460 0.0840
(0.4793) (0 .4799) (0 .5464) (0.5566) (0 .5468) (0 .5657) (0 .5610) (0 .5319) (0 .5561) (0 .5316) (0 .5497) (0 .5413)

Braemar 1959-2007 12.4661 6.2878 13.5676 7.3390 14.5856 8.3878 15.5960 9.4333 16.5984 10.4748 17.5921 11.1030 0.0500
(0.5372) (0 .5304) (0 .5553) (0.5319) (0 .5303) (0 .5547) (0 .5453) (0 .5588) (0 .5427) (0 .5494) (0 .5715) (0 .5548)

Cambridge 1959-2007 16.2552 -3 .7045 3.5753 -2 .6532 4.5933 -1 .6045 5.6038 -0.5589 6.6061 0.4826 7.5998 1.4374 0.0004
(0.5566) (0 .5293) (0 .5305) (0.5318) (0 .5412) (0 .5522) (0 .5418) (0 .5611) (0 .5557) (0 .5270) (0 .5515) (0 .5262)

Card i¤ 1977-2007 15.6739 3.0741 10.3539 4.1253 11.3719 5.1741 12.3823 6.2196 13.3847 7.2611 14.3784 8.2978 0.0244
(0.5444) (0 .5364) (0 .5329) (0.5254) (0 .5506) (0 .5268) (0 .5261) (0 .5502) (0 .5405) (0 .5540) (0 .5382) (0 .5449)

Durham 1880-2007 14.4470 3.7297 11.0095 4.7809 12.0275 5.8297 13.0379 6.5113 14.0403 7.6098 15.0340 8.9534 0.0125
(0.5625) (0 .5506) (0 .5520) (0.5249) (0 .5257) (0 .5270) (0 .5450) (0 .5550) (0 .5451) (0 .5641) (0.5590) (0 .5301)

Eastb ourne 1959-2007 15.8710 3.0741 10.3539 4.1253 11.3719 5.1741 12.3823 6.2196 13.3847 7.2611 14.3784 8.2978 0.0020
(0.5545) (0 .5300) (0 .5476) (0.5395) (0 .5359) (0 .5286) (0 .5536) (0 .5298) (0 .5285) (0 .5530) (0.5432) (0 .5568)

G reenw ich 1959-2004 16.1333 -5 .4322 1.8477 -4 .3809 2.8657 -3 .3321 3.8761 -2.2866 4.8785 -1 .2451 5.8722 -0 .5548 0.0085
(0.5408) (0 .5479) (0 .5656) (0.5535) (0 .5546) (0 .5280) (0 .5291) (0 .5299) (0 .5424) (0 .5533) (0.5431) (0 .5626)

Hurn 1957-2007 8.7890 12.5155 19.7954 13.5668 20.8133 14.6155 21.8238 15.6611 22.8261 16.4415 23.8199 17.7393 0.0191
(0.5572) (0 .5284) (0 .5525) (0.5273) (0 .5458) (0 .5376) (0 .5334) (0 .5262) (0 .5522) (0 .5281) (0.5272) (0 .5513)

Lerw ick 1930-2007 6.1471 13.2163 20.4961 14.2675 21.5141 15.3163 22.5246 16.3619 23.5269 17.1254 24.5206 18.4401 0.0296
(0.5417) (0 .5553) (0 .5393) (0.5460) (0 .5634) (0 .5513) (0 .5530) (0 .5256) (0 .5269) (0 .5282) (0.5435) (0 .5536)

Leuchers 1957-2007 6.9764 3.0741 10.3539 4.1253 11.3719 5.1741 12.3823 6.2196 13.3847 7.2611 14.3784 8.2978 0.0401
(0.5433) (0 .5624) (0 .5569) (0.5284) (0 .5527) (0 .5282) (0 .5456) (0 .5378) (0 .5349) (0 .5270) (0.5521) (0 .5279)

Newton R igg 1959-2007 5.2113 3.9111 11.1910 4.9624 12.2090 5.6380 13.2194 7.0567 14.2217 7.7849 15.2155 9.1349 0.0506
(0.5269) (0 .5512) (0 .5415) (0.5550) (0 .5390) (0 .5461) (0 .5643) (0 .5524) (0 .5529) (0 .5270) (0.5277) (0 .5283)

Oxford 1853-2007 4.9145 3.0741 10.3539 4.1253 13.0460 5.1741 12.3823 -1.2794 1.9531 15.2543 14.3784 8.2978 0.0612
(0.5429) (0 .5538) (0 .5438) (0.5634) (0 .5580) (0 .5290) (0 .5532) (0 .5281) (0 .5466) (0 .5381) (0.5340) (0 .5273)

Paisley 1959-2007 3.7738 3.0741 10.3539 4.1253 13.8831 5.1741 12.3823 -9.6978 8.3368 21.5850 14.3784 8.2978 0.0072
(0.5528) (0 .5290) (0 .5278) (0.5520) (0 .5426) (0 .5559) (0 .5399) (0 .5468) (0 .5639) (0 .5516) (0.5538) (0 .5261)

R ingway 1949-2004 5.8577 -6 .3399 0.9399 -5 .2887 14.7201 -4 .2399 2.9683 -3.1853 3.9707 -2 .1529 4.9644 -1 .5097 0.0082
(0.5275) (0 .5289) (0 .5425) (0.5525) (0 .5421) (0 .5612) (0 .5557) (0 .5274) (0 .5518) (0 .5271) (0.5445) (0 .5368)

Ross-on-wye 1930-2007 8.7682 -3 .5391 3.7408 -2 .4878 5.1857 -1 .4390 5.7692 -0.3935 6.7715 0.6480 7.7653 1.4127 0.0113
(0.5342) (0 .5259) (0 .5510) (0.5268) (0 .5259) (0 .5502) (0 .5403) (0 .5539) (0 .5380) (0 .5452) (0.5637) (0 .5517)

Shawbury 1957-2007 10.4095 -14.4370 -7 .1572 -13.3858 5.4648 -12.3370 -5 .1287 -11.2915 -4 .1264 -10.4299 -3 .1327 -9 .1391 0.1033
(0.5520) (0 .5262) (0 .5268) (0.5273) (0 .5433) (0 .5542) (0 .5444) (0 .5636) (0 .5586) (0 .5293) (0.5538) (0 .5284)

She¢ ed 1883-2007 15.8198 6.1523 13.4321 7.2035 5.7438 8.2523 15.4605 9.2978 16.4629 10.3393 17.4566 11.0581 0.0127
(0.5470) (0 .5388) (0 .5343) (0.5277) (0 .5530) (0 .5295) (0 .5278) (0 .5523) (0 .5430) (0 .5562) (0.5405) (0 .5473)

Southampton 1855-2004 12.7800 -3 .9741 3.3057 -2 .9229 6.0228 -1 .8741 5.3341 -1.1075 6.3365 0.2129 7.3302 1.2496 0.0124
(0.5639) (0 .5517) (0 .5543) (0.5261) (0 .5276) (0 .5292) (0 .5418) (0 .5518) (0 .5414) (0 .5606) (0.5549) (0 .5265)

St Mawgan 1957-2007 11.7145 13.6632 20.9431 14.4184 6.3018 15.7632 22.9715 16.5131 23.9738 16.8030 24.9676 18.8870 0.0135
(0.5510) (0 .5260) (0 .5437) (0.5361) (0 .5337) (0 .5252) (0 .5504) (0 .5260) (0 .5252) (0 .5494) (0.5396) (0 .5534)

Stornoway 1873-2007 13.0459 -10.1131 -2 .8333 -9 .0619 6.5808 -8 .0131 -0 .8049 -6.9676 0.1975 -5 .9261 1.1912 -4 .9243 0.0145
(0.5374) (0 .5443) (0 .5634) (0.5513) (0 .5515) (0 .5256) (0 .5260) (0 .5266) (0 .5426) (0 .5532) (0.5433) (0 .5625)

Sutton Bonnington 1959-2007 15.4447 4.6062 11.8860 5.6575 6.8599 6.7062 13.9145 7.7518 14.9168 8.5469 15.9105 6.4822 0.0156
(0.5577) (0 .5286) (0 .5527) (0.5278) (0 .5463) (0 .5380) (0 .5335) (0 .5268) (0 .5518) (0 .5285) (0.5269) (0 .5511)

T iree 1930-2007 25.9146 7.9759 3.9880 9.9699 7.1389 4.8250 12.0626 6.0228 3.0114 3.9880 8.5748 6.8309 0.0166
(0.5417) (0 .5551) (0 .5394) (0.5461) (0 .5631) (0 .5508) (0 .5532) (0 .5253) (0 .5266) (0 .5281) (0.5409) (0 .5517)

Valley 1930-2007 25.8283 8.2550 4.1275 10.3187 7.4179 4.9645 12.4113 6.3018 3.1509 4.1275 8.9236 7.1797 0.0177
(0.5408) (0 .5604) (0 .5546) (0.5261) (0 .5506) (0 .5255) (0 .5436) (0 .5356) (0 .5330) (0 .5250) (0.5500) (0 .5255)

Yeovilton 1964-2007 32.7795 8.5340 4.2670 10.6675 7.6969 5.1741 12.3823 6.5808 3.2904 4.2670 14.3784 8.2978 0.0187
(0.5249) (0 .5493) (0 .5394) (0.5529) (0 .5371) (0 .5438) (0 .5624) (0 .5507) (0 .5512) (0 .5249) (0.5255) (0 .5260)

* The values in the parentheses indicate the standard errors.
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Table 5.2: Minimum Temperature Nonparametric Results
STATION TIME ALPHA BETAs RSS
Aberp orth 1942-2007 2.3700 1.4734 0.2254 5.6285 0.6890 0.2364 2.0505 -0 .3964 0.8742 1.4239 0.5348 0.4685 0.0060

(0.3929) (0 .3956) (0 .3924) (0 .4025) (0 .3999) (0 .3910) (0 .3934) (0 .3915) (0 .3931) (0 .3933) (0.3937) (0 .3900)

Armagh 1865-2007 -12.1000 -0 .3669 0.2042 1.9268 0.0289 -0 .4264 0.5512 -0 .1645 0.0073 0.1473 -0 .0057 -0 .0322 0.0414
(0.3936) (0 .3909) (0 .3905) (0 .3917) (0 .3914) (0 .3907) (0 .3932) (0 .3937) (0 .3966) (0 .3918) (0.3954) (0 .3910)

Bradford 1908-2007 2.4400 -0 .6241 -0 .1922 5.4360 0.6477 0.9084 1.5923 -1 .4851 0.3493 0.8633 1.8578 0.8119 0.0286
(0.3914) (0 .3907) (0 .4418) (0 .4447) (0 .4411) (0 .4531) (0 .4514) (0 .4316) (0 .4433) (0 .4327) (0.4422) (0 .4346)

Braemar 1959-2007 -23.2000 -1 .1384 -0 .7543 2.7556 -1 .8227 -8 .1432 -0 .4675 -4 .3715 -1 .5970 -1 .4042 -6 .1424 -0 .4642 0.0170
(0.4347) (0 .4302) (0 .4432) (0 .4317) (0 .4310) (0 .4443) (0 .4382) (0 .4466) (0 .4373) (0 .4422) (0.4535) (0 .4450)

Cambridge 1959-2007 -10.0000 1.5187 0.1604 3.2441 -0 .2018 -1 .0108 0.5976 -0 .9870 -0 .1347 0.0658 -2 .9559 -0 .1144 0.0001
(0.4446) (0 .4313) (0 .4321) (0 .4311) (0 .4372) (0 .4405) (0 .4366) (0 .4489) (0 .4468) (0 .4273) (0.4390) (0 .4282)

Card i¤ 1977-2007 14.1000 10.1165 2.7597 9.7292 3.0061 2.9027 4.4568 1.5635 2.7471 4.4601 4.2095 1.9633 0.0083
(0.4379) (0 .4303) (0 .4306) (0 .4261) (0 .4389) (0 .4273) (0 .4269) (0 .4399) (0 .4344) (0 .4422) (0.4331) (0 .4382)

Durham 1880-2007 -10.6000 -0 .9650 -0 .0809 2.6062 -0 .2255 -1 .4849 0.6923 -0 .9738 -0 .1399 0.1163 0.5467 -0 .0260 0.0043
(0.4443) (0 .4416) (0 .4402) (0 .4275) (0 .4279) (0 .4269) (0 .4409) (0 .4439) (0 .4400) (0 .4521) (0.4503) (0 .4306)

Eastb ourne 1959-2007 14.1000 1.0138 0.2478 2.6369 -0 .1960 -0 .2964 0.5028 -0 .7961 -0 .1243 0.3758 -2 .6351 -0 .0318 0.0007
(0.4424) (0 .4317) (0 .4411) (0 .4335) (0 .4337) (0 .4290) (0 .4422) (0 .4304) (0 .4298) (0 .4431) (0.4371) (0 .4454)

G reenw ich 1959-2004 2.3300 0.4489 0.0478 2.0135 -0 .3236 -0 .5904 -0 .0544 0.1148 1.0281 -0.8050 -2 .2322 0.4821 0.0029
(0.4361) (0 .4414) (0 .4415) (0 .4441) (0 .4434) (0 .4304) (0 .4311) (0 .4299) (0 .4379) (0 .4411) (0.4372) (0 .4495)

Hurn 1957-2007 0.6770 1.4351 0.5469 3.3147 0.3461 1.3415 1.5557 -0 .8845 -0 .0024 1.2413 -0 .6726 0.5926 0.0065
(0.4474) (0 .4281) (0 .4396) (0 .4290) (0 .4387) (0 .4311) (0 .4310) (0 .4266) (0 .4396) (0 .4280) (0.4276) (0 .4405)

Lerw ick 1930-2007 -0 .3170 -0.6313 -0 .4225 0.0437 -0 .0396 -3 .2641 -0 .3394 -2 .2625 -1 .1694 0.1087 -0 .5898 -0 .4956 0.0101
(0.4351) (0 .4430) (0 .4337) (0 .4391) (0 .4449) (0 .4421) (0 .4409) (0 .4278) (0 .4285) (0 .4277) (0.4399) (0 .4427)

Leuchers 1957-2007 14.1000 -0 .1221 -0 .6054 0.1052 -0 .7358 -2 .4101 0.5969 -3 .4711 -1 .8482 -0 .4097 -2 .0278 -0 .2939 0.0137
(0.4387) (0 .4510) (0 .4490) (0 .4294) (0 .4411) (0 .4304) (0 .4399) (0 .4323) (0 .4327) (0 .4279) (0.4348) (0 .4293)

Newton R igg 1959-2007 -10.7000 1.6483 0.1243 2.5238 -0 .5422 -2 .6037 0.7267 -1 .2317 0.5687 -0.1050 -3 .0580 -0 .1080 0.0173
(0.4287) (0 .4418) (0 .4362) (0 .4442) (0 .4350) (0 .4402) (0 .4468) (0 .4433) (0 .4423) (0 .4296) (0.4301) (0 .4289)

Oxford 1853-2007 11.1000 0.8900 0.2388 4.4482 0.5737 0.7781 1.2236 0.3525 1.0488 0.5365 1.2410 0.4168 0.0209
(0.4386) (0 .4418) (0 .4380) (0 .4503) (0 .4484) (0 .4289) (0 .4404) (0 .4297) (0 .4395) (0 .4318) (0.4315) (0 .4274)

Paisley 1959-2007 13.1000 1.1270 -0 .0092 1.0388 -0 .7462 -2 .0505 0.6267 -1 .4248 0.2422 -0.0785 -2 .2996 -0 .1408 0.0024
(0.4404) (0 .4289) (0 .4283) (0 .4412) (0 .4362) (0 .4438) (0 .4345) (0 .4398) (0 .4454) (0 .4428) (0.4417) (0 .4284)

R ingway 1949-2004 -3 .7600 1.3717 0.1330 3.0629 0.2753 0.0132 0.8333 1.2322 2.1747 -0.1999 -0 .0831 1.0261 0.0028
(0.4291) (0 .4284) (0 .4391) (0 .4354) (0 .4379) (0 .4501) (0 .4481) (0 .4287) (0 .4340) (0 .4296) (0.4391) (0 .4317)

Ross-on-wye 1930-2007 4.7800 3.3694 0.6580 4.5835 0.7623 0.3430 1.1623 -0 .1583 0.7323 1.3839 1.5353 0.6428 0.0038
(0.4321) (0 .4272) (0 .4404) (0 .4286) (0 .4280) (0 .4344) (0 .4356) (0 .4433) (0 .4342) (0 .4330) (0.4395) (0 .4428)

Shawbury 1957-2007 -3 .1400 2.3822 0.4179 3.7905 0.3513 0.5314 1.7280 -1 .1052 0.0875 1.1700 -0 .4155 0.6032 0.0352
(0.4415) (0 .4290) (0 .4294) (0 .4282) (0 .4388) (0 .4421) (0 .4383) (0 .4506) (0 .4487) (0 .4293) (0.4407) (0 .4300)

She¢ ed 1883-2007 1.4000 -3.5342 -0 .7545 3.0605 -0 .5274 -1 .3703 0.1892 -1 .7463 -0 .5579 -0.6915 -1 .1898 -0 .2726 0.0043
(0.4399) (0 .4320) (0 .4318) (0 .4277) (0 .4406) (0 .4291) (0 .4284) (0 .4415) (0 .4366) (0 .4439) (0.4348) (0 .4400)

Southampton 1855-2004 1.1700 0.9202 0.1034 3.2253 0.5978 0.5331 0.8900 0.6020 0.6692 0.1148 1.1430 0.5367 0.0042
(0.4456) (0 .4432) (0 .4419) (0 .4285) (0 .4293) (0 .4285) (0 .4317) (0 .4413) (0 .4307) (0 .4493) (0.4473) (0 .4279)

St Mawgan 1957-2007 -25.3000 2.2557 1.0314 3.6950 0.7932 2.6404 2.1836 0.2021 0.8031 1.8220 0.5734 1.0597 0.0046
(0.4332) (0 .4287) (0 .4383) (0 .4249) (0 .4255) (0 .4266) (0 .4333) (0 .4278) (0 .4273) (0 .4402) (0.4349) (0 .4361)

Stornoway 1873-2007 -4 .0600 -1.1364 -0 .3128 0.5396 -0 .2145 -1 .4758 0.4455 -1 .6589 -0 .6657 -0.2020 -0 .2599 -0 .0102 0.0050
(0.4334) (0 .4387) (0 .4391) (0 .4424) (0 .4344) (0 .4284) (0 .4288) (0 .4275) (0 .4382) (0 .4413) (0.4375) (0 .4499)

Sutton Bonnington 1959-2007 -10.7000 1.9809 0.1297 2.9827 -0 .3925 -1 .5656 0.5088 -1 .2404 -0 .2772 0.0450 -2 .9690 -0 .0229 0.0053
(0.4481) (0 .4285) (0 .4399) (0 .4295) (0 .4392) (0 .4314) (0 .4313) (0 .4270) (0 .4397) (0 .4284) (0.4277) (0 .4407)

T iree 1930-2007 14.0500 1.0180 0.3159 1.7306 0.4153 -0 .3880 0.5462 -0 .4916 0.0478 1.1533 0.7886 0.1933 0.0057
(0.4362) (0 .4431) (0 .4339) (0 .4392) (0 .4451) (0 .4427) (0 .4411) (0 .4279) (0 .4287) (0 .4278) (0.4375) (0 .4345)

Valley 1930-2007 15.0000 2.4432 0.8413 3.8132 0.8073 0.6812 1.2713 0.4618 0.8848 1.8880 1.6453 0.7447 0.0060
(0.4365) (0 .4420) (0 .4399) (0 .4274) (0 .4390) (0 .4280) (0 .4314) (0 .4305) (0 .4310) (0 .4262) (0.4392) (0 .4272)

Yeovilton 1964-2007 15.2000 6.0330 1.9238 8.0683 1.6078 2.8385 3.1332 0.6487 2.6123 3.1542 1.8167 1.6489 0.0064
(0.4269) (0 .4333) (0 .4285) (0 .4355) (0 .4268) (0 .4381) (0 .4445) (0 .4291) (0 .4341) (0 .4279) (0.4281) (0 .4269)

* The values in the parentheses indicate the standard errors.
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Chapter 6

Conclusions

The �rst part of the present thesis consists of the analysis of market

microstructure e¤ects in relation to the forecasting realized volatility

with the help of common factors. We aim to extend the current ana-

lytic methods to the construction and assessment of realized volatility

forecasts for continuous-time volatility models to the empirically im-

portant case of market microstructure noise via factors discussed by

Bai, Ng (2002, 2004 and 2006) and principal component methodology

of Stock and Watson (2002). These factors capture the market mi-

crostructure problem when applied to a large dimension of individual

return series in a stock market.

Chapter 1 includes the introduction and motivation. In Chapter 2,

we overview the burgeoning literature, to discuss the issues of modeling

and forecasting volatilities in a realized volatility sense and to present

the strengths and restrictions of the various approaches that are avail-

able in the literature. In addition, the most important seminal papers

and practical applications are presented. We also observe how market

microstructure is considered for the analysis and the inferences of RV

in the literature.
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In Chapter 3, we propose a novel way of conducting realized volatil-

ity, where integrated volatility takes a linear factor structure, facilitat-

ing the estimation of volatility factors while getting rid of the noise. The

main contribution of this chapter is twofold. We �rst analyze the lit-

erature on factor models. Factor analysis is a very popular dimension

reduction technique used in many disciplines including econometrics,

statistics, signal processing and psychometrics. Factor models allow to

summarize the bulk of the information contained in large datasets by

means of few latent variables, the factors, which are pervasive and com-

mon to all observed variables. Besides, factors not only detect structure

in the relationship between variables, but also describe the variability

among them. Second, we develop a model and propose a novel way of

conducting realized volatility, where integrated volatility takes a linear

factor structure, facilitating the estimation of volatility factors while

getting rid of the noise. These factors capture the market microstruc-

ture problem when applied to a large dimension of individual return

series in a stock market.

In Chapter 4, the analysis is carried out on a sample of stocks, the

top 30 stocks sorted according to market capitalizations at S&P 500.

The data used in this paper are extracted and compiled from the Trade

and Quote (TAQ) Database provided through the Wharton Research

Data Services. Also, forecasting based on the proposed model is stud-

ied. The �nal link we investigate is the relation between RV and HAR

models. Heterogeneous Autoregressive model (HAR) is developed by

Corsi (2009), where the basic idea stems from the so called "Hetero-

geneous Market Hypothesis" presented by Müller et al. (1993), which

recognize the presence of heterogeneity in the traders. The Heteroge-

neous Market Hypothesis try to explain the empirical observation of a

strong positive correlation between volatility and market presence.
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Two major models are suggested for the prediction of the realized

volatility: Factor Based Realized Volatility Forecast (FB-RV) and Het-

erogenous Autoregressive Factor Based Forecast (HAR-FF). In a fore-

casting application, we show that the FB-RV model outperforms the

other currently available approaches including HAR-RV, GARCH and

AR models at various prediction horizons, not only in terms of mini-

mizing the RMSE of the forecast, or high R2 of the Mincer-Zarnowitz

regressions, but also in terms of improving the volatility forecasts while

dealing with the noise problem with the help of common factors. We

�rst give the direct comparison based on RMSE, MAE and R2 of the

Mincer-Zarnowitz regressions, then give the statistical test for hypoth-

esis testing based on Diebold-Mariano test. We also run our suggested

model for a subsample of top 15 stocks sorted according to their mar-

ket capitalizations and while we obtain very alike results, they provide

more powerful analysis compared to the whole sample of 30 stocks. In

conclusion, the results of the study con�rm the FB-RV model is the

dominant forecasting model among others. Our future research will

involve some extensions, we now believe it would be interesting to

analyze number of factors as a function of N or T .

The second part of the present thesis begins in Chapter 5. In Chap-

ter 5, we focus on estimating time trend functions in a panel data case,

using nonparametric estimation methods due to the limitation of para-

metric trend functions. To shed more light on the trend analysis, we

propose a semiparametric panel data model; in which there is a com-

mon trend component that is allowed to evolve in a nonparametric way

to deal with the modeling of climate change in the United Kingdom.

We also allow for a deterministic seasonal component in temperature,

since we are working with monthly data and use a model with a dummy

variable in the parametric component while allowing for the time trend
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function to be nonparametrically estimated. We show the nonparamet-

ric trend in comparison with a more standard parametric approach. In

both cases we observe that there is an upward trend over the last twenty

years that is statistically signi�cant.

In conclusion, we have developed a semiparametric model we think

is appropriate for modelling the changes in temperatures observed at

a cross section of locations. The model and methods are de�ned for

the important practical case of unbalanced data. The methods we

develop give similar results to a parametric analysis and help to con-

�rm the main �nding of a gradual upward trend in temperature in the

UK, although with somewhat less trend obtained by the nonparametric

method than the parametric one.
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