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Abstract 

Staphylococci are opportunistic pathogens responsible for a range of infections. Many 

staphylococcal species are frequently found to be resistant to antibiotics. The 

environment is considered a potential reservoir of genes conferring antibiotic resistance, 

which known as the ‘resistomes’. Monitoring the dissemination of antibiotic resistant 

staphylococci is instrumental to mitigating this global health risk. The overall aim of 

this study was to generate informative data regarding dissemination of antibiotic 

resistance in environmental and public settings. This included looking into the 

distribution, epidemiology characteristic and transfer of oxacillin resistant 

determinant mecA; gaining an insight into genomic features that contribute to 

multiple antibiotic resistance and pathogenicity of one S. epidermidis isolate; and 

understanding the stress responses in mediating oxacillin resistance in S. aureus. 

The use of MALDI-TOF MS allowed identification of staphylococci to species level. 

MALDI-TOF MS data were used for taxonomic analysis of staphylococci, and 

taxonomic data were then combined with isolation sites and antimicrobial susceptibility 

profiles to aid the understanding of dissemination of environmental resistant 

staphylococci.  

The widespread dissemination of antibiotic resistant staphylococci in the environment 

was demonstrated. 12% of staphylococci harboured mecA gene. Community associated 

SCCmec types IV and V were more prevalent than nosocomial associated SCCmec 

types I, II, and III in the environment. 52% of SCCmec were non-typable. In addition, 

14 new environmental S. epidermidis MLST types were reported. 9 antibiotic resistant 

determinants that were responsible for the resistant to 7 antimicrobial classes have been 
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identified in environmental S. epidermidis 118 (G6_2). Proteomic analysis revealed that 

stress responses, including SOS response, stringent response and heat shock response, 

mediate oxacillin resistance in S. aureus. These results demonstrate widespread multiple 

drug resistance in different staphylococcal species isolated from non-healthcare 

environments. This uncontrolled dissemination of multidrug resistant bacteria poses a 

potential public health threats.  
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Chapter 1 Introduction 

1.1 Microbiology of staphylococci 

1.1.1 Morphology 

Staphylococcus spp. are Gram positive cocci, which appear as non-motile, round 

clusters arranged in grape-like formations with diameters ranging from 0.5-1.5 µm 

(Mahon et al., 2014). The Staphylococcus genus is a member of the family 

Staphylococcaceae, which belongs to the order of Bacillales of the class Bacilli, which 

is a part of phylum Firmicutes (Vos et al., 2011). To date, forty-seven species and 23 

sub-species of Staphylococcus spp. have been identified (Becker et al., 2014).   

1.1.2 Biochemical properties 

Based on their ability to produce coagulase, staphylococci species are generally divided 

into two groups:  

1). Coagulase positive, which is almost exclusively represented by S. aureus that can be 

distinguished from other species by its ability to produce coagulase, an enzyme that 

clots the blood plasma. Six species (S. aureus, S. simiae, S. intermedius, S. delphini, S. 

lutrae and S. pseudintermedius) are currently defined as coagulase positive 

staphylococci.  S. aureus is the only human–associated coagulase positive staphylococci 

(Becker et al., 2014). 

2). Coagulase negative, which is represented by a large number of staphylococcal 

species that do not produce the enzyme coagulase. Forty-one species are regarded as 

coagulase negative staphylococci, and 3 species of this group are in fact coagulase 

variable (Taponen et al., 2012, Becker et al., 2014) (Table 1.1).  
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1.1.3 Taxonomy of Staphylococcus spp. 

Recently, Lamers et al., (2012) proposed a refined classification for the Staphylococcus 

genus based on molecular data such as the noncoding 16S rRNA gene and three protein-

encoding genes (dnaJ, rpoB, and tuf). In this four loci based classification species were 

classified into 15 cluster groups, which in turn were categorized into six species groups 

(Auricularis, Hyicus-Intermedius, Epidermidis-Aureus, Saprophyticus, Simulans, and 

Sciuri species groups) based on their phenotypic properties, such as oxidase, novobiocin 

susceptibility and coagulase properties by Becker et al., (2014) (Table 1.1).  
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Table 1. 1 Phenotypic and phylogenetic classification of staphylococci species (Becker et al., 2014) 

Oxidase Novobiocin Coagulase Species group Cluster group Species Sub-species 

Negative Susceptible 

Negative 

Hyicus-intermedius 

Muscae 

S. muscae  

S. microti  

S. rostri  

Positive
1
 

Variable
2
 

Negative
3
 

Hyicus 

S. hyicus
2
  

S. agnetis
2
  

S. chromogenes
3
  

S. felis
3
  

Intermedius 

S. intermedius
1
  

S. delphini
1
  

S. lutrae
1
  

S. pseudintermedius
1
  

S. schleiferi 
ssp. schleiferi

3
 

ssp. coagulans
1
 

Epidermidis-Aureus 

Aureus 
S. aureus 

ssp. aureus
1
 

ssp. anaerobius
1
 

S. simiae
1
  

Negative 

Epidermidis 

S. epidermidis  

S. capitis 
ssp. capitis 

ssp. saccharolyticus 

Warneri 
S. warneri  

S. pasteuri  

Haemolyticus 

S. haemolyticus  

S. devriesei  

S. hominis ssp. hominis 
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Oxidase Novobiocin Coagulase Species group Cluster group Species Sub-species 

Negative 

Susceptible 

Negative 

Epidermidis-Aureus 
Haemolyticus 

 ssp. novobioseticus 

S. jettensis  

S. petrasii 
ssp. croceilyticus 

ssp. petrasii 

Lugdunensis S. lugdunensis  

Auricularis Auricularis S. auricularis  

Simulans Simulans-Carnosus 

S. simulans  

S. carnosus 
ssp. carnosus 

ssp. utilis 

S. condimenti  

S. piscifermentans  

Saprophyticus 

Pettenkoferi-

Massiliensis 

S. pettenkoferi  

S. massiliensis  

Resistant 

Saprophyticus 

S. saprothyticus 
ssp . saprophyticus 

ssp. bovis 

S. equorum 
ssp. equorum 

ssp. linens 

S. gallinarum  

S. succinus 
ssp. succinus 

ssp. casei 

S. xylosus  

Cohnii-Nepalensis 
S. cohnii 

ssp. cohnii 

ssp. urealyticus 

S. nepalensis  

Arlettae-Kloosii 
S. arlettae  

S. kloosii  

Positive Sciuri Sciuri S. sciuri 
ssp. sciuri 

ssp. carnaticus 
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Oxidase Novobiocin Coagulase Species group Cluster group Species Sub-species 

Positive Resistant Negative Sciuri Sciuri 

 ssp. rodentium 

S. fleirettii  

S. lentus  

S. stepanovicii  

S. vitulinus  
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1.1.4 Lab identification 

Staphylococci are Gram-positive cocci, and they occur singly, in pairs or tetrads (Baron, 

1996). S. aureus is round, with a diameter of 0.8-1.0 μm and forms golden yellow 

colonies (Kearns, 2006, Mahon et al., 2014).  Most coagulase negative staphylococci 

(CoNS) are 1.2-1.4 μm in diameter and mostly appear to be non-pigmented and smooth, 

forming unbroken, shiny, opaque colonies (Becker et al., 2014). Identification of 

Staphylococcal species is very important in recognition of an outbreak and in tracking 

resistance trends (Samb-Ba et al., 2014). Phenotypic, genotypic and proteomic 

approaches may all be applied to aid identification of the bacteria to species (Cherkaoui 

et al., 2010).  

In the clinic, S. aureus is an often encountered pathogen in skin and soft-tissue 

infections (Stryjewski & Chambers, 2008) and adhering to medical devices and 

polymeric surfaces (Zmantar et al., 2010). Therefore, there is a need for rapid assays for 

the detection of S. aureus to aid disease diagnosis and clinical hygiene. In parallel with 

morphological and biochemical identification, molecular identification can be used as a 

relatively rapid, reliable and cost-effective assay. However, identification based on 

DNA and RNA detection and quantification is still time consuming and requires 

numerous consecutive steps (Cherkaoui et al., 2010). Alternatively,  matrix-assisted 

laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) can be 

used as a sensitive molecular identification tool, which relies on bacterial proteome 

analysis to determine the species of isolates (Mellmann et al., 2008).  
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1.1.4.1 Conventional identification 

For conventional identification, bacterial species can be determined by phenotypic 

profiles, including Gram-stain results, colony morphologies, growth requirement and 

metabolic activities (Samb-Ba et al., 2014). 

Most of the staphylococci are non-fastidious organisms, and non-selective medium, 

such as nutrient agar, trypticase soy agar, will support their growth (Association et al., 

1912). The culture of most staphylococcal species takes 18 to 24 hours at 35℃ to 37℃ 

to grow (Mahon et al., 2014). In contrast, the growth of small colony variant (SCV) 

takes between 48 and 72 hours at 35℃ to 37℃ (Becker et al., 2014). Growth of 

staphylococci appears as smooth, glistening, entire, opaque and yellow round colonies, 

with a diameter of colonies is 3-6 mm (Mahon et al., 2014). For SCV, the size of the 

colony is 10% of wild-type colonies, and normal growth can be restored under 

favourable conditions (Becker et al., 2014). 

The morphology of staphylococci can be observed by direct microscopic examination, 

and preliminary identification may be achieved by culturing on selective medium. 

Mannitol salt agar (MSA) is a selective medium for staphylococcal species. It contains a 

high concentration of salt (7.5-10% NaCl, w/v), which supports the growth of Gram-

positive bacteria and inhibit the growth of Gram-negative bacteria. The inclusion of 

mannitol and phenol red (pH indicator) in MSA is used to differentiate S. aureus from 

CoNS. Acidification caused by fermentation of mannitol by S. aureus produces yellow 

colonies with yellow zones. In comparison, other staphylococcal species cannot ferment 

mannitol giving small pink colonies with no colour change to the medium (Mahon et al., 

2014). In addition to MSA, Brilliance™ UTI Agar (UTI) is a differential medium for 

the preliminary differentiation of all the main micro-organisms that cause urinary tract 

infections. UTI contains two chromogens, X-Gluc and Red-Gal. X-Gluc is used for 
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identification of enterococci with the presence of β-glucosidase, forming blue 

colonies. Red-Gal is cleaved by the enzyme β-galactosidase produced by E. coli to 

produce pink colonies, and both chromogens can be cleaved by coliform bacteria 

(Enterobacter, Klebsiella) to produce dark blue or purple colonies. In addition, the UTI 

also contains tryptophan, which detects deaminase activity of Proteus, 

Morganella, and Providencia spp., giving brown colonies. In contrast, Staphylococcus 

appears with normal pigmentation on UTI, and water-soluble pigments (pyocyanin and 

pyoverdin) produced by Pseudomonas aeruginosa give blue-green colour on solid agar 

(Mahon et al., 2014, Carricajo et al., 1999). 

In addition to morphology and selective agar identification, the coagulase assay is a 

rapid method for identifying S. aureus. Cell-bound coagulase causes visible 

agglutination of antigen coated latex beads (Mahon et al., 2014). The API
®
 STAPH test 

is a simplified commercial phenotypic identification approach combining a series of 

biochemical tests. After comparing the reads with reference chart, the unknown 

staphylococcal species can be identified (Mahon et al., 2014). Phenotypic tests are a 

significant component of a detailed identification profile; however limitations should be 

recognized. The phenotypic characterizations can be altered based on the culture 

conditions, environmental stresses or gene transfer. Non-accurate identification or 

failure can be caused by common species displaying atypical phenotypes, rare species 

presenting a non-characterized phenotype, and lags in updating the phenotypic database 

(Petti et al., 2005).  

1.1.4.2 16S rRNA gene sequencing 

The 16S rRNA gene is a component of the 30S small subunit of prokaryotic ribosomes 

(Woese & Fox, 1977). The 16S rRNA gene sequencing has been used to study bacterial 

taxonomy since 1970s (Janda & Abbott, 2007), and is a prevalent method in bacterial 
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identification (Clarridge, 2004). The 16S rRNA gene sequencing is used for 

identification as it is: evolutionarily stable; exists in all bacteria; and is informative 

(Janda & Abbott, 2007). The 16S rRNA gene sequencing procedure includes following 

steps: DNA extraction, mixture of PCR components (template DNA, primers, buffer, 

deoxynucleotides), PCR (denaturation, annealing and extension), and subsequent 

sequencing (Mahon et al., 2014). 16S rRNA gene sequencing provides reliable 

identification results, although the preceding steps are time consuming and costly 

(Cherkaoui et al., 2010).  

1.1.4.3 MALDI-TOF MS 

In 1996, a paper detailing the rapid identification of intact microorganisms using 

matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-

TOF MS)  was published in the Nature Biotechnology (Claydon et al., 1996). This 

revolutionary new technique allows automatic, reliable and fast identification without 

prior knowledge of the type of microorganism (Maier et al., 2006). The principle of 

MALDI-TOF MS identification is as followings: the whole cell protein biomarkers are 

analysed by using mass spectrometry (Maier et al., 2006, Ryzhov & Fenselau, 2001), 

and the procedure provides a unique mass spectral fingerprint of microorganism. Then 

the detected mass spectrum pattern is compared with reference patterns in the database 

for identification (Maier et al., 2006). 96 samples can be analysed within one run (Risch 

et al., 2010). 

Sample preparation of MALDI-TOF MS is simple and spectra can be obtained within 

minutes (Maier et al., 2006), and different growth medium compositions have little 

effect in the peak pattern distribution (Maier et al., 2006). Low cost, rapid turnaround 

time and accuracy make MALDI-TOF MS more appealing than conventional and 16S 

rRNA gene sequencing identification (Cherkaoui et al., 2010).  
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1.1.4.3.1 Procedure of MALDI-TOF MS 

MALDI-TOF MS identification is a six-step process. ①  The cellular protein is 

extracted with formic acid and acetonitrile; ② The protein is mixed with a matrix (α-

cyano-4-hydroxycinnamic acid; HCCA);  ③ The matrix together with a sample are 

irradiated by UV light, and subsequently vaporized and ionized; ④ The velocity of 

ionized particles differ according to their mass-to-charge ratio (m/z) values, and lighter 

ions moves faster through the drift space until they reach the detector; ⑤ The detector 

detects the mass of the particles present in the peak; ⑥  Pattern matching of the 

unknown microorganism is accomplished through comparison of the peaks with the 

database. The database is generated with specific peak information by measurement of 

reference bacterial species (Maier et al., 2006, Karas & Krüger, 2003). Bruker biotyper 

3.1 software (Bruker Daltonic, Coventry, UK) is used for analysing mass spectral (Lee 

et al., 2013). The score value generated by biotyper 3.1 (Bruker Daltonic, Coventry, UK) 

is determined by three components: ① the matches of the unknown spectrum with the 

reference spectrum, ② the matches of the reference spectrum against the unknown 

spectrum, ③ the intensities of the matched peaks. Score 0 (no match) to 1.000 (perfect 

match) is firstly generated, and then convert into a log score (0 to 3). The reliability of  

the identification is based on log score also known as score value: high confidence (log 

score ≥ 1.7), and incorrect (log score < 1.7) (Cherkaoui et al., 2010). 

1.1.4.3.2 Reproducibility of MALDI-TOF MS 

Reproducibility refers to the similarity of the replicate spectra of the same strain, and it 

is used to assess reliability and efficacy of the sample preparation process (Majcherczyk 

et al., 2006). Minor differences in MALDI-TOF MS profiles may result in 

misidentification of closely related strains; hence, it is of great important to assess 
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reproducibility of MALDI-TOF MS in identifying bacteria to strain level (Majcherczyk 

et al., 2006).  

Automated data acquisition of MALDI-TOF MS present higher reproducibility than 

manual data acquisition as the automated method is more objective than a human 

operator (Schumaker et al., 2012). Even though few studies applied on the 

reproducibility of MALDI-TOF MS, it is necessary to measure and quantify the 

reproducibility to enable reproducibility located on a proper threshold to make sure the 

reliability of identification at species level (Schumaker et al., 2012).  

1.1.4.4 Taxonomic classification  

16S rRNA gene sequencing can be used for taxonomic classification and phylogenetic 

tree analysis (Takahashi et al., 1999, Grundmann et al., 2002, Zhang et al., 2006, 

Jørgensen et al., 2005). MALDI-TOF MS, as a new powerful tool for rapid and accurate 

identification of wide range microorganisms, has also been demonstrated to be a 

promising tool to taxonomically classify microbial species (Maier et al., 2006).  

1.1.4.4.1 Phylogenetic relationship based on 16S rRNA gene 

Comparison of 16S rRNA gene sequence variation is a classical method in determining 

phylogenetic relationship of bacteria, and it has been widely accepted and used in 

research and reference labs (Weisburg et al., 1991). Phylogenetic trees are important 

because they can be used  to assess evolutionary distance and relationships between 

bacteria (Ludwig & Schleifer, 1994). Maximum likelihood methods and Pearson 

correlation methods are used to build phylogenetic tree (Ludwig & Schleifer, 1994). 

1.1.4.4.2 Taxonomic relationship based upon MALDI-TOF MS profiles  

A family tree, which is similar to 16S rRNA gene sequencing based phylogenetic tree, 

can be built based on MALDI-TOF MS profile. The family tree can be used to elucidate 
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the taxonomic relationships between staphylococcal species (Maier et al., 2006).  Since 

the ribosomal protein has been proven to be stable and abundant in bacteria, the pattern 

of ribosomal protein observed by MALDI-TOF MS can reflect ribosomal DNA 

sequencing (Maier et al., 2006, Hotta et al., 2010). 

1.1.4.4.3 Bionumeric 

BioNumerics 7.5 (Applied Maths, Belgium) was released in 1996, is a platform for the 

management, storage and statistical analysis of all types of biological data, including 

sequences, Pulsed-field gel electrophoresis (PFGE) patterns, and spectra. In addition, 

BioNumerics 7.5 (Applied Maths, Belgium) can build dendrograms for any selected 

experiments， such as sequences and MALDI-TOF MS profile. With a majority of 

similarity and distance coefficients and clustering methods provided by BioNumerics 

7.5 (Applied Maths, Belgium), the most appropriate clustering for all data types and 

clustering purposes can be achieved. BioNumerics 7.5 (Applied Maths, Belgium) can 

handle up to 20000 entries, and provide powerful and efficient interpreting tools, 

including two-way zoom-sliders, swapping and abridging of branches, rerooting of trees, 

displaying data in various modes, and assigning colours or symbols to groups. In 

addition, it can add entries or delete entries from large clustering without affecting other 

entries (http://www.applied-maths.com/).  

1.1.5 Molecular characterization  

Diverse genotypes of S. aureus have been characterized, however, coagulase negative 

staphylococci have not been studied to the same extent (Becker et al., 2014). Different 

molecular and genomic methods, including staphylococcal cassette chromosome mec 

(SCCmec), multi-locus sequence typing (MLST), pulsed-field gel electrophoresis 

(PFGE) and whole genome sequencing (WGS) can be used for accurate identification of 

http://www.applied-maths.com/
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clonal diversity of staphylococcal species (Leonard & Markey, 2008). However, single 

locus DNA-sequencing of the repeat region of the staphylococcal protein A gene (spa) 

analysis can be limited only to S. aureus (Leonard & Markey, 2008).  

1.1.5.1 SCCmec 

Staphylococcal cassette chromosome mec (SCCmec) is an important feature to define 

the clonal diversity in methicillin resistant staphylococci (Becker et al., 2014). The mec 

complex and the ccr complex are two essential components of SCCmec (Ito et al., 2003). 

The mec complex contains the mecA gene that encodes methicillin resistant penicillin 

binding protein 2a, and regulatory gene mecI, mecR1 and IS431 (Ito et al., 2003). The 

second essential region is the ccr complex, composed of two sites specific recombinase 

genes ccrA and ccrB, which are responsible for the mobility of SCCmec (Ito et al., 

2003).  SCCmec types are determined by varied combination of the ccr and the mec 

complex (Ito et al., 2003). 

Until now, the mec complex has been assigned into 6 classes according to their 

structures (Table 1.2) (IWG-SCC, 2009), and 8 ccr types have been assigned (IWG-

SCC, 2009) (Table 1.3). The rest component of SCCmec is a junkyard region, of which 

genes may involve in the non-β-lactam antibiotic resistance and heavy metal resistance 

(Ito et al., 2003). 

 

Table 1. 2 Structure of mec complex (IWG-SCC, 2009) 

mec complex Structure 

Class A  IS431–mecA–mecR1–mecI 

Class B IS431–mecA–mecR1–IS1272 

Class C1 IS431–mecA–mecR1–IS431 (two IS431s were in the same direction) 

Class C2 IS431–mecA–mecR1–IS431(two IS431s were in the opposite direction) 

Class D IS431–mecA–mecR1 

Class E mecALGA251-mecR1LGA251-mecILGA251 
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Table 1. 3 Structure of ccr complex (IWG-SCC, 2009) 

ccr complex ccr gene 

Type 1 A1B1 

Type 2 A2B2 

Type 3 A3B3 

Type4 A4B4 

Type 5 C1 

Type 6 A5B3 

Type 7 A1B6 

Type 8 A1B3 

 

SCCmec has been classified into 11 allotypes based on the combination of mec complex 

and ccr complex, and can be further classified into subtypes according to the differences 

in junkyard region (IWG-SCC, 2009) (Table 1.4). In addition, the diversity of SCCmec 

types are also contributed by lack of mec complex, ccr complex or both ccr and mec 

complex (Katayama et al., 2003, Harrison et al., 2013, Shore & Coleman, 2013).  

Table 1. 4 Currently identified SCCmec types in S.aureus strains 

SCCmec types ccr complex mec complex 

I 1(A1B1) B 

II 2(A2B2) A 

III 3(A3B3) A 

IV 2(A2B2) B 

V 5(C1) C2 

VI 4(A4B4) B 

VII 5(C1) C1 

VIII 4(A4B4) A 

IX 1(A1B1) C2 

X 7(A1B6) C1 

XI 8(A1B3) E 

 

Two SCCmec typing methods have been used: the first is introduced by Zhang et al., 

(2005), and the second one is reported by Kondo et al., (2007). According to Kondo et 

al., (2007), SCCmec types are determined by the combination of the type of ccr 

complex and class of mec complex. With this method, SCCmec type I, II, III, IV, V, VI, 

VIII and IX can be determined.  For Zhang’s method, SCCmec type I, II, III, V and IVa, 

IVb, IVc and IVd can be identified directly from PCR products (Zhang et al., 2005).  
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It is reported that SCCmec type I, II and III are healthcare associated types, and 

SCCmec type II and III are responsible for multiple non-β-lactam antibiotic resistance 

of S. aureus (Rybak & LaPlante, 2005). Meanwhile, SCCmec type IV and V is more 

associated with community isolated S. aureus (Rybak & LaPlante, 2005, Monecke et al., 

2014). 

1.1.5.2 MLST 

Multi-locus sequence typing (MLST) is a highly discriminatory method for genotypic 

typing of staphylococcal species, and is excellent for exploring long-term 

epidemiologically unrelated isolates (Enright et al., 2000). Currently, MLST can be 

used for S. aureus and S. epidermidis typing.  Seven housekeeping genes, chosen for 

MLST, are assigned as distinct alleles, and each allele is a partially conserved ribosomal 

gene.  Seven allele sequences are transferred into allele numbers via the MLST database 

(Enright et al., 2000, Widerström et al., 2012) (http://www.mlst.net/).  Afterwards, a 

sequence type (ST) can be assigned by combination of seven alleles. Identical ST is 

regarded as belonging to same lineage, and non-matching ST is considered to be of 

unknown type. For unknown ST type, a new ST type will be assigned (Strommenger et 

al., 2008). 

1.1.5.3 PFGE 

Pulse-field gel electrophoresis (PFGE) is a powerful epidemiological typing method, 

and is well known to differentiate genetic variation of related isolates (Strommenger et 

al., 2008). PFGE has been applied in clinical microbiology to determine the relatedness 

of bacteria from epidemic incidence (King, 2006). In United States, PFGE has been 

proven to be a discriminating way to monitoring the spread of ORSA (McDougal et al., 

2003). PFGE can provide the fingerprint of the genome, and the fingerprint reflects the 
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differences in composition of genetic background (Sanches et al., 1995). Therefore 

PFGE can differentiate phenotypically closely related bacteria (On & Harrington, 2001).  

PFGE is an umbrella term for the alternating of an electric field in more than one 

direction through a solid matrix to achieve the separation of fragments (Woodford & 

Johnson, 1998). PFGE involves embedding organisms in low gelling temperature 

agarose, lysing the cell in situ, digesting the DNA molecule with a restriction enzyme; 

transferring the prepared low gelling temperature agarose gel into the wells of agarose 

gel (Woodford & Johnson, 1998). Restriction enzyme digested fragments are then 

separated by CHEF Mapper® which changes the direction of current into predetermined 

pattern (Tenover et al., 1995). The restriction enzyme for digestion of S. aureus and 

coagulase negative staphylococci is SmaI, and the numbers of restriction fragments are 

approximately 15-20 pieces. However, the size of fragments is quite different, for S. 

aureus is 10-700 kb, and for coagulase negative staphylococci is 5-400 kb (Tenover et 

al., 1995). Because of varied fragments, S. aureus and coagulase negative staphylococci 

can be differentiated by PFGE patterns. PFGE has been proved to be an accurate tool in 

staphylococcal epidemiological studies; however, for comparison of epidemiologically 

unrelated staphylococci, MLST is more useful (Jørgensen et al., 2005). Therefore, it is 

recommended to combine MLST and PFGE when characterizing bacteria population 

(Jørgensen et al., 2005). 

1.1.5.4 WGS 

More precise epidemiology typing can be achieved by using the whole genome 

sequencing. This analysis for monitoring the outbreak of methicillin-resistant 

Staphylococcus aureus (MRSA) in clinical settings has been widely used (Harris et al., 

2013). Comparative analysis of whole genome sequences can provide an insight into 
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evolution of virulence and antibiotic resistance, transmission and pathogenic diversity 

(Gill et al., 2005, Harris et al., 2013, Zhang et al., 2003).  

1.2 Epidemiology of staphylococci 

1.2.1 Ecological niches of staphylococci  

Diverse microbial populations constitute the human microbiome. Among these, 

staphylococci are known to be associated with the skin and mucous membranes (Baron, 

1996).   

1.2.1.1 S. aureus 

S. aureus is predominantly found in the nasal passage and axillae (Kloos & Bannerman, 

1994). 20% of humans are persistent carriers of S. aureus, whereas 60% are 

intermediate carriers, and the remaining are non-carriers (Kluytmans et al., 1997). S. 

aureus is capable of long term survival outside of the host body, which is an important 

contributing factor to its dissemination in the environment (Spendlove & Fannin, 1983). 

Depending on the texture of the non-host surfaces and colony size, S. aureus can 

survive from days to months (Neely & Maley, 2000).  

1.2.1.2 S. epidermidis 

S. epidermidis is a normal resident of human skin making almost 90% of the total 

human skin microflora (Baron, 1996, Kloos & Bannerman, 1994, Pfaller & Herwaldt, 

1988). In addition to human skin, S. epidermidis is known to be colonized on medical 

devices, and form biofilms. Moreover, S. epidermidis has been found in food and 

animals such as cats, cattle, dogs, goats, gorillas, horses, pigs, and sheep (Becker et al., 

2014) (Table 1.5).  
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1.2.1.3 Other staphylococci 

The main habitat of S. auricularis is external ear of human (Kloos & Schleifer, 1983) 

(Table 1.5). S. capitis is found on the forehead and scalp region of humans, and also 

found in animals such as cats, dogs, horses (Kloos & Schleifer, 1975) (Table 1.5). S. 

caprae is found on skin, anterior nares of human and animals such as goats 

(Vandenesch et al., 1995) (Table 1.5). 

S. hominis and S. haemolyticus are widely distributed in the human body, including 

head, axillae, arms, legs, pubic, and inguinal regions.  In addition, they can also be 

found in milk, fermented food and domestic animals such as cats, dogs, goats, and pigs 

(Palazzo et al., 2008) (Table 1.5).  

S. pettenkoferi and S. lugdunensis mainly colonize the human skin. S. lugdunensis can 

also be found in animals such as cats, and dogs, whereas, the distribution of S. 

pettenkoferi in the environment has not been clarified  (Becker et al., 2014; Trülzsch et 

al., 2007) (Table 1.5). 

S. saprophyticus colonize rectum and genitourinary tract, and it is the second only to E. 

coli in its association with urinary tract infections (UTI) (Becker et al., 2014, Pfaller & 

Herwaldt, 1988). In addition, S. saprophyticus can be isolated from ferment food and 

animals such as cattle, cats, and sheep (Becker et al., 2014) (Table 1.5).  

S. simulans is found on the human skin such as legs, arms heads and in the urethra of 

healthy woman (Otto, 2009). Moreover, it can also be found in animals such as cattle, 

horses and sheep (Becker et al., 2014) (Table 1.5). 
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S. warneri, S. sciuri, and S. cohnii are found on human skin and animals (Pfaller & 

Herwaldt, 1988, Grice & Segre, 2011); meanwhile, S. warneri is also known to colonize 

on fermented foods (Pfaller & Herwaldt, 1988)  (Table 1.5). 

S. equorum, S. pasteuri and S. xylosus are associated with animal and fermented food, 

such as milk, cheese, and sausage (Becker et al., 2014). S. equorum is frequently 

isolated from cattle, goats, horses, and sheep, while S. pasteuri is more associated with 

pigs, and S. xylosus is isolated from cats, clams, goats, horses, insectivores, lower 

primates, rodents, and sheep (Becker et al., 2014) (Table 1.5). 

S. simiae has been isolated from South American squirrel monkeys over a decade ago 

(Pantucek, 2005), and S. arlettae is isolated from animals, such as cattle, goats, pigs, 

poultry, sheep, textile and industrial effluent (Wang et al., 2012) (Table 1.5). 
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Table 1. 5 Colonization site of each staphylococcal species 

Species Colonization sites 

S. arlettae Textile, tannery industrial effluents; Cattle, goats, pigs, poultry, 

sheep 

S. aureus Human nasal passage,  axillae, anterior nares 

S. auricularis Human external ear 
S. capitis Human forehead, scalp; Cats, dogs, horses 

S. caprae Human skin, anterior nares; Goat 

S. cohnii Human skin; Dogs, goats, poultry 

S. epidermidis Human skin, mucous membranes of the nasopharynx; Fermented 

sausages; Cats, cattle, dogs, goats, gorillas, horses, pigs, sheep 

S. equorum  Fermented food; Cattle, goats, horses, sheep 

S. haemolyticus Human skin; Milk, fermented food; Cats, cattle, dogs, horses, goats, 

pigs, sheep 

S. hominis Human skin; Goat milk, fermented food; Cats, dogs, goats, pigs, 

sheep  

S. lugdunensis Human skin; Cats, chinchillas, dogs, goats, guinea pigs 

S. pasteuri Fermented sausage; Pigs 

S. pettenkoferi Human skin 

S. saprophyticus Human skin; Fermented food; Horses, goats, sheep, cats, 

S. sciuri Human skin; Cattle, dolphins 

S. simiae Squirrel monkeys 

S. simulans Human skin; Cattle, horses, sheep 

S. warneri Human skin; Fermented food; Dogs, cats, goats, horses, insectivores, 

monkeys, pigs, prosimians, rodents, sheep 

S. xylosus Human skin; Fermented food; Cats, clams, goats, horses, 

insectivores, lower  primates, rodents, sheep 

 

1.2.2 Hospital associated staphylococci  

S. aureus was defined as a pathogen in 1880, and its virulence was demonstrated in 

1941 (Archer, 1998). The first clinical methicillin-resistant S. aureus (MRSA) infection 

was reported in United Kingdom in 1961. By 1968, MRSA infection cases have been 

described all over the world (Huang et al., 2006). Now, S. aureus is a virulent pathogen 

which is the most common causes of nosocomial infection (Archer, 1998).  

S. aureus is an opportunistic pathogen, which can cause a range of pathologies from 

minor infection such as skin infections to life threatening diseases such as toxic shock 

syndrome (Parsonnet et al., 2005, Stevens et al., 2010). The toxic syndrome is caused by 

superantigenic toxic shock syndrome toxin-1 (TSST-1) and enterotoxin (Foster, 2005b). 
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In addition to this, S. aureus can cause bacteraemia, endocarditis, metastatic infections, 

and sepsis. It has been shown that bacteraemia and endocarditis are associated with use 

of catheters  (Lowy, 1998), while in contrast; metastatic infection and sepsis develop 

more in minor infections (Lowy, 1998). S. aureus also produces enterotoxins (SEs), 

which can cause food poisoning (Le Loir et al., 2003) (Table 1.6).  

Little is known about S. simiae, however, S. simiae and S. aureus may have evolved 

from a common ancestor, and they are then split by increased pathogenicity of S. aureus 

through horizontal gene transfer (Suzuki et al., 2012)  No S. simiae associated infection 

has been reported (Table 1.6). 

In microbiology labs, nosocomial CoNS have been recognized as culture contaminants 

for a long time, and their pathogenic role has only recently been recognized (Becker et 

al., 2014).   

S. epidermidis is the most common causes of neonate infection, which often includes 

bacteraemia, foreign body-related sepsis (catheter infection, prothetic vascular grafts 

infection, cardiac devices infection), shunt-associated infection (cerebrospinal fluid 

infection), endocarditis, urinary infections,  endophthalmitis and surgical site infection 

(Becker et al., 2014; Huebner & Goldmann, 1999). Most of infections occur in 

populations with either exposure to multiple risk factors (drug abuser, hospitalization) 

or with hypo immunity (Lowy, 1998; Vuong & Otto, 2002) (Table 1.6). 

Other CoNS that can cause clinical infections are the followings: S. auricularis, S. 

capitis, S. caprae, S. cohnii, S. equorum, S. haemolyticus, S. hominis, S. lugdunensis, S. 

pasteuri, S. pettenkoferi, S. saprophyticus, S. sciuri, S. simulans, S. warneri, and S. 

xylosus (Becker et al., 2014).  The infections caused by each CoNS species are shown 

below (Table 1.6). 
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S. hominis and S. haemolyticus are less frequently the causes of clinical infections than 

S. aureus and S. epidermdis, but relatively higher than other CoNS species (Becker et al., 

2014). S. hominis is mainly associated with sepsis (Palazzo et al., 2008; Sorlozano et al., 

2009), while S. haemolyticus is known to be a common cause of sepsis in hospital 

(Pereira et al., 2014) (Table 1.6).  

Infections caused by S. capitis have been reported, but are rarer than those caused by S. 

hominis and S. haemolyticus (Becker et al., 2014). S. capitis is the main cause of 

infections in neonate intensive care unit (Gras-Le Guen et al., 2007) (Table 1.6). 

S. saprophyticus is the common causes of urinary tract infection (Kuroda et al., 2005; 

Widerström et al., 2012). Additionally, it can also cause bacteraemia, endocarditis, 

sepsis and neonate infections (Table 1.6). 

S. lugdunensis is associated with variety of human infections, such as endocarditis 

(Vandenesch et al., 1993), osteomyelitis (Murdoch et al., 1996), soft skin, corneal 

infection (Böcher et al., 2009), bacteraemia, and sepsis (Tee et al., 2003) (Table 1.6). 

S. sciuri and S. auricularis are considered to be nosocomial staphylococcal species. S. 

sciuri is the common cause of endocarditis, wound and tissue infection (Stepanović et 

al., 2001). Whereas, S. auricularis has been reported to be implicated in skin, soft tissue 

and neonate infections (Kloos & Schleifer, 1983) (Table 1.6). 

S. pettenkoferi has been firstly recovered from human clinical specimens as a pathogen 

in 2007 (Trülzsch et al., 2007), and more infections that are caused by S. pettenkoferi 

have been reported recently, such as sepsis, osteomyelitis, and bacteraemia (Hashi et al., 

2015; Loiez et al., 2007; Mihaila et al., 2012; Song et al., 2009) (Table 1.6). 
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S. simulans, as an opportunistic pathogens, may cause bone, joint infection, sepsis and 

osteomyelitis (Kloos & Schleifer, 1975; Males et al., 1985; Widerström et al., 2012) and  

sometimes can be recovered from wounds, lesions and abscesses (Otto, 2009) (Table 

1.6). 

S. warneri is known to cause bacteremia, endocarditis and vertebral osteomyelitis, 

(Center et al., 2003), and S. equorum has been reported to be associated with sepsis and 

corneal infection (Pinna et al., 1999) Moreover, S. caprae may cause endocarditis, bone 

infection, urinary infection and sepsis (Ross et al., 2005; Vandenesch et al., 1995) 

(Table 1.6).  

Few S. cohnii, S. xylosus and S. pasteuri associated infections are reported. S. cohnii has 

been first reported to cause bacteremia in a colon cancer patient in 2003 (Basaglia et al., 

2003),  and a more recent report of S. cohnii associated multiple brain abscesses is in 

2005 (Yamashita et al., 2005). S. xylosus associated sepsis is reported in 2012 

(Giordano et al., 2012) (Table 1.6). The pathogenic role of S. pasteuri has not been 

clarified; however, it is reported that S. pasteuri is responsible for causing sepsis in a 

patient (Savini et al., 2009) (Table 1.6).  

S. arlettae is mainly associated with animals, and there is no clinical case reported for 

this strain (Table 1.6). 
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 Table 1. 6 Infections caused by staphylococcal species 

Species Infections  
Sepsis Endocarditis Bacteremia Neonate  Soft tissue  Urinary Bone  Skin  Osteomyelitis Endovasculitis  Joint  Corneal Respiratory  Endophthalmitis 

S. aureus √ √ √  √  √ √  √ √  √  

S. epidermidis  √ √ √ √  √        √ 

S. lugdunensis √ √ √  √    √   √   

S. saprothyticus √ √ √ √  √         

S. caprae √ √    √ √        

S. simulans √      √  √  √    

S. auricularis    √ √   √       

S. pettenkoferi √  √      √      

S. sciuri  √   √   √       

S. warneri √   √  √         

S. capitis  √  √           

S. cohnii √  √            

S. equorum √           √   

S. haemolyticus √              

S. hominis √              

S. pasteuri √              

S. xylosus          √     

S. arlettae               

S. simiae               
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1.2.3 Community associated staphylococci 

The research of community associated staphylococci is focused on methicillin resistant 

S. aureus. Traditionally, MRSA has been considered to be a nosocomial acquired 

pathogen; however, it has emerged as community acquired pathogen. The first 

community-associated MRSA (CA-MRSA) infection in the United States was reported 

in 1980 (Becker et al., 2014). Prevalence of CA-MRSA infection in the United States 

began in the 1990s; followed by reports that patient with CA-MRSA associated 

infections lack risk factors such as hospitalization, nursing home, and immune-

compromised conditions (Huang et al., 2006).   

1.2.4 Environmental staphylococci 

The environmental distribution of microorganisms is mainly in soil and water (natural 

water, drinking water, sewage, wastewater), and most of environmental microorganisms 

are non-pathogenic (Wright, 2010). Antibiotic resistant environmental microorganisms 

are widely distributed due to exposure of antibiotic-producing bacteria in soil, and 

therefore act as the biggest reservoir of antibiotic resistance genes (Cantas et al., 2013; 

Wright, 2010). In addition, human use of antibiotics has also reached the biosphere, and 

thus contributed to the antibiotic resistance of microorganisms (Cantas et al., 2013; 

Wright, 2010). Environmental antibiotic resistant staphylococci have been rarely 

reported, however, animal and food associated staphylococci have been studied, 

including species such as S. arlettae, S. aureus, S. capitis, S. caprae, S. cohnii, S. 

epidermdis, S. equorum, S. haemolyticus, S. hominis, S. lugdunensis, S. pasteuri, S. 

saprophyticus, S. sciuri, S. simiae, S. simulans, S. warneri, and S. xylosus (Becker et al., 

2014) (Table 1.5).  
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1.2.5 Transmission of staphylococci 

The transmission of antibiotic resistant pathogenic staphylococci is the main global 

cause of epidemic outbreaks in both health care facilities and the community 

(Widerström et al., 2012). In a clinical setting, person to person transmission of 

staphylococcal species occurs by exposure to the hands of staphylococci colonized 

health care workers and medical devices such as catheter, implanted ports (Becker et al., 

2014; Lowy, 1998). In the community, the transmission of methicillin-resistant S. 

aureus (MRSA) occurs in crowded places, through personal items such as towels, 

cosmetics, lotion, bedding, nail clipper, toothpaste, headphones, and close human 

contact (Hudson et al., 2013; Johansson et al., 2007; Mollema et al., 2010). The 

transmission of MRSA is observed through household items, pets and public transport 

(Manian, 2003; Rankin et al., 2005; Scott et al., 2008; Simões et al., 2011; Turabelidze 

et al., 2006; Van Duijkeren et al., 2004).  

Pets and livestock can be another reservoir of antibiotic resistance (Ho et al., 2011). 

Several studies demonstrated that MRSA in people is equal to or greater than its 

prevalence in pets (Gandolfi-Decristophoris et al., 2012). The transmission of MRSA 

from human to animals or from animals to human is not well studied; however, MRSA 

are more likely to be isolated from people who have direct contact with animals 

(Gandolfi-Decristophoris et al., 2012). Veterinary staff, pets owners, and farmers are 

high risk group for MRSA carriage although they do not have a  direct contact with 

hospitals (Gandolfi-Decristophoris et al., 2012). The occupation risk for veterinary staff 

is relatively high because of close proximity to MRSA infected pets or livestock (Zhang 

et al., 2011). Without effective cleanliness and isolation practice, they may be under risk 

of MRSA colonization and transmission (Vincze et al., 2014). MRSA colonisation of 

animals and contaminated food products is a potential source of persistent infection of 
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those who handle animals and food, such as pet owners, famers, catering staff  (Furuya 

& Lowy, 2006; Gandolfi-Decristophoris et al., 2012). 

Public transportation associated transmission is quite different from household 

transmission. International travel has greatly accelerated the dissemination of antibiotic 

resistant isolates, including MRSA (Zhou et al., 2014). Individuals who travel from the 

developing world with poorer hygiene standards to economically developed countries 

are more likely to transfer antibiotic resistant isolates (Ostholm-Balkhed et al., 2013). 

Ostholm-Balkhed et al., (2013) reported that individuals in Scandinavian countries who 

have travelled to Asia at least once have 12.5-fold increase in propensity for 

colonization of antibiotic resistant isolates than individuals who have never visited Asia. 

Although well-designed studies are required to systematically evaluate the transmission 

risk in travellers, empirical studies and observations have confirmed that globalisation is 

playing an important role in the spread of antibiotic resistance (Zhou et al., 2014).  

There are several factors that can affect the transmission in hospitals, public places and 

households. Community settings are characterized by transient contact of a diverse 

population, but households involve high-intensity contact between the same individuals, 

so the dynamic of transfer is different (Furuya & Lowy, 2006). Crowding in poor 

hygiene areas  such as slums is one of the factors that increase the risk of transmission, 

and also duration of human colonization may increase the transmission (Hanssen et al., 

2004). Hygiene measures and decolonization of a carrier can efficiently reduce the 

incidence of soft tissue infection caused by the antibiotic resistance bacteria (Furuya & 

Lowy, 2006).  
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1.3 Pathogenicity of staphylococci 

The ability of an organism to cause diseases is defined as pathogenicity (COLOSS, 

2016). The pathogenicity of staphylococci is reflected by human colonization and 

infection  (Lowy, 1998).  

The pathogenicity of S. aureus has been well characterized. The immune system 

protects humans from S. aureus infections in various ways, including physical barriers, 

innate response and acquired responses (Foster, 2005b).  However, S. aureus can 

overwhelm immune defences by colonizing on catheters or medical devices, entering 

the host along with catheter, adhering to host, and obstructing the immune response 

(Foster, 2005b). Several proteins are involved in the abiotic surface attachment of S. 

aureus, including non-covalently linked surface-associated protein (Atl, ClpP) and 

covalently linked surface protein (bap). Proteins involved in the attachment to host also 

include non-covalently linked surface-associated protein (efb, embp) and covalently 

linked surface protein (bap, sdrC, sdrD, sdrE). After adherence to the host surface, S. 

aureus impede the immune response by secreting virulence factors (pvl, hlg), which 

inhibit or kill immune cells. Panton-Valentine leucocidin (pvl) and γ-haemolysin (hlg) 

are leukotoxin, which are toxic to leukocytes (Becker et al., 2014). In addition, S. 

aureus can be internalized by the host cells, and stay as small colony variant in these 

cells. Finally, S. aureus can cause infections by secretion of extracellular enzymes, such 

as proteinase, lipase, and nuclease. These extracellular enzymes will cause cytolytic 

effects of host cells, facilitate the destruction of host tissue and contribute to septic 

shock (Foster, 2005b).  

In comparison with S. aureus, the pathogenicity of S. epidermidis is firstly contributed 

by their ability in colonize on medical devices such as catheters, implanted ports, and 
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form biofilms (Becker et al., 2014; Foster, 2005b).  The genetic control of biofilm 

synthesis is intercellular adhesion gene (ica), which form biofilms by synthesising 

intercellular adhesion factor (Arciola et al., 2001) (Table 1.7). Biofilm formation is 

known to protect S. epidermidis against external adverse factors, and increase the 

pathogenicity (Cramton et al., 1999). Four steps are involved in the formation of 

biofilms, including attachment, formation of multi-layer cell aggregates, maturation and 

dissociation (Cramton et al., 1999). Like S. aureus, S. epidermidis can also penetrate the 

immune system of the host. The proteins that are involved in abiotic and biotic surface 

attachment of S. epidermidis includes: non-covalently linked surface-associated proteins 

(AtlE, ClpP) and covalently linked surface proteins (bap, SdrF, SdrG, SdrH). Moreover, 

covalently linked surface protein encoding gene bap in S. epidermidis is believed to be 

acquired from S. aureus via transfer of a pathogenic island (SaPIbov2) (Otto, 2013). 

Extracellular enzymes of S. epidermidis, such as geh, lipA, favour the bacteria to invade 

host tissue and defence system (Becker et al., 2014). Additionally, S. epidermidis 

produces a less toxic molecule - phenol soluble modulins that serve as immune evasion 

molecule (Foster, 2005b). The function of phenol soluble modulins involves in 

pathogenesis and initiate the host inflammatory response (Liles et al., 2001).  

Many virulence factors facilitate the diseases and increasing pathogenicity of 

staphylococci, including extracellular toxins and surface proteins.  The virulence factors 

in S. aureus have been well characterized; however, less is known about virulence 

factors in CoNS (Becker et al., 2014).  Comparative genomic analysis showed 

numerous virulence factors of S. epidermidis are closely related to S. aureus (Gill et al., 

2005).  
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1.3.1 Extracellular toxins 

Many studies have been used to explore the extracellular toxins of staphylococci, and 

Table 1.7  shows a summary of extracellular toxins found in S. aureus (Gill et al., 2005). 

In addition to the pvl and hlg mentioned above, various virulence factors are identified 

in S. aureus. Enterotoxin and exotoxin are pyrogenic toxin superantigens, which are 

recognized by T-cell receptors, and cause non-specific activation of T cells. High level 

expression of cytokine by T-cells then leads to toxic shock syndrome (Dinges et al., 

2000; Foster, 2005b). Serine proteinase (htrA), esterase (lipA), beta hemolysin (hlb), 

cell wall hydro-lase (lytN), and lytic transglycosylases (isaA) are involved in host tissue 

invasion (Frankel et al., 2011; O’Callaghan et al., 1997; Rigoulay et al., 2004; Stapleton 

et al., 2007; Su et al., 2004) (Table 1.7). Proteinase (ssp) and lipase (lip) are known to 

cause host tissue damage (Stehr et al., 2003; Zarfel et al., 2013) (Table 1.7), while 

Leukotoxin D (lukD) is an immunity cell damage factor (Malachowa et al., 2012) 

(Table 1.7). Thermonuclease (nuc) and staphylococcal protein A (spa) are responsible 

for immunity evasion (Berends et al., 2010) (Table 1.7). Clp protease (Clp) is 

recognized as a stress response protein, which can degrade misfolded protein and 

maintain the normal function of bacteria (Michel et al., 2006) (Table 1.7).  
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Table 1. 7 Extracellular toxins in S. aureus (Gill et al., 2005) 

Extracellular 

toxins 
Examples Functions Reference 

Enterotoxin sea 

Pyrogenic toxin superantigen 

(Massive cytokine release triggered 

toxic shock syndrome) 

Foster, 2005b 

Exotoxin setC 

Pyrogenic toxin superantigen 

(Massive cytokine release triggered 

toxic shock syndrome) 

Dinges et al., 

2000 

Serine protease htrA Host tissue invasion  
Rigoulay et al., 

2004 

Protease ssp 
Host tissue damage (Cleave 

fibrinogen-binding protein) 

Zarfel et al., 

2013 

Lipase lip 

Immunity cell damage (Damage 

surface structures of the immune 

cells) 

Stehr et al., 

2003 

Leukotoxin D lukD 
Immunity cell damage  (Killing of 

neutrophils) 

Malachowa et 

al., 2012 

Esterase lipA 

Host tissue invasion (Extracellular 

lipase,  degrade phospholipids from 

lung surfactants)  

Su et al., 2004 

Beta hemolysin hlb 
Host tissue invasion (Lysing 

mammalian cells) 

O’Callaghan et 

al., 1997 

Thermonuclease nuc 

Immunity evasion (Encodes for a 

thermostable nuclease, promote 

neutrophil extracellular traps 

evasion ) 

Berends et al., 

2010 

Cell wall 

hydrolase 
lytN 

Host tissue invasion (Non-covalent 

surface assocation protein)   

Frankel et al., 

2011 

Clp protease clp 
Stress adaptation (Degrade mis-fold 

protein) Biofilm formation  

Michel et al., 

2006 

Lytic 

transglycosylases 
isaA 

Host tissue invasion (Required for 

normal growth and for successful 

host-pathogen interactions) 

Stapleton et 

al., 2007 

Staphylococcal 

protein A 
spa 

Immunity evasion (Exhibits broad 

binding specificity with other 

proteins, which favours evasion of 

the innate and adaptive immune 

systems) 

Deis et al., 

2014 

Intercellular 

adhesion gene 
ica 

Biofilm synthesis (Synthesis 

polysaccharide intercellular 

adhesin) 

Arciola et al., 

2001 

 

In addition to the virulence genes mentioned above, there are several genes that 

contribute to the increased pathogenicity of staphylococci. Quaternary ammonium 

compounds (QAC) are used in the food industry for low toxic detergent, however, the 
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QAC-resistant genes (qac) were emerged in staphylococci (Heir et al., 1998). copZ_2, 

copA_2 and csoR_1 variants are associated with copper transport,  whose function is 

known to manage cellular copper and adapt to copper stress (Harrison et al., 2000; 

Schelder et al., 2011). Zhu et al., (2013) reported that heavy metal may act as selection 

pressure of antibiotic resistance genes in bacteria. In addition, metal resistance is also 

associated with interspecies gene transfer (Méric et al., 2015).  

The virulence gene, gehD, which mediate the binding of bacteria to human collagen, is 

known to be expressed exclusively by S. epidermidis. In addition, the homology gehC is 

involved in the colonization of S. epidermidis on skin (Vuong & Otto, 2002).  

1.3.2 Surface proteins 

The success of staphylococci as a pathogen is partially due to their various surface 

proteins, which facilitate host cell invasion and residency. As well as host cell invasion, 

surface proteins are involved in several other functions, including adhesion, evasion of 

immune system, and formation of biofilm (Becker et al., 2014).  In addition, surface 

proteins are varied from strain to strain due to the acquisition and loss of certain 

virulence determinants, which further complicates medical treatment (Otto, 2010). 

The surface protein genes found in S. aureus and S. epdiermidis are listed in the Table 

1.8 and the function of most surface proteins are known to adherence to host tissues 

(Table 1.8). 
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Table 1. 8 Surface protein genes found in S. aureus and S. epidermidis 

Gene Functions Sources Reference 

clf a S. aureus Schaffer et al., 2006 

fnb a S. aureus Gill et al., 2005 

sdrC a S. aureus  Gill et al., 2005 

sdrD a S. aureus McCrea et al., 2000 

sdrE a S. aureus Foster et al., 2014 

sdrF a S. epidermidis Foster et al., 2014 

sdrG a S. epidermidis Foster et al., 2014 

sdrH a S. epidermidis Foster et al., 2014 

map a S.aureus Gill et al., 2005 

empbp a S.aureus Gill et al., 2005 

ebh a 
S. aureus 

S. epidermidis 
Gill et al., 2005, Cheng et al., 2014 

ebp a 
S. aureus 

S. epidermidis 
Gill et al., 2005, Downer et al., 2002 

atl a 
S. aureus 

S. epidermidis 
Gill et al., 2005, Wang & Lin, 2008 

sas b 
S. aureus 

S. epidermidis 
Gill et al., 2005, Otto, 2013 

efb a S. aureus Gill et al., 2005 

pls c S. aureus Josefsson et al., 2005  

Note: a: Adherence to host tissue (extracellular matrix, fibrinogen, fibronectin, collagen, 

elastin, endothelial and epithelial cells); b: Binding to heme-iron; c: Methicillin resistant 

surface protein 
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Autolysin (atl) is expressed in S. aureus, and for other CoNS, the homology of atl 

which mediates initial adhesion functions are found in S. epidermidis (atlE), S. caprae 

(atlC), S. saprophyticus (aas), S. lugdunensis (atlL), S. warneri (atlWM) (Becker et al., 

2014). In addition, the homologous of covalently linked surface protein (bap) is also 

found in S. simulans, S. heamolyticus and S. cohnii (Becker et al., 2014). Additionally, 

several surface proteins that are found both in S. aureus and S. epidermidis, including 

cell wall associated fibronectin binding protein (ebh), elastin binding protein (ebp), cell 

wall surface anchor protein (sas) and bifunctional autolysin (atl) (Gill et al., 2005) 

(Table 1.8). Moreover, cell wall surface anchor protein encoding gene sas is known to 

transfer from S. epidermidis to S. aureus via prophage (Otto, 2013).  The serine-

aspartate repeat (sdr) are characterized to be surface proteins (Foster et al., 2014).  sdrC, 

sdrD, sdrE are found uniquely in S. aureus, while sdrF, sdrG, sdrH are exclusively 

expressed by S. epidermidis (Foster et al., 2014; McCrea et al., 2000). pls is believed to 

be the methicillin resistant surface protein (Gill et al., 2005). 

1.3.3 Pathogenicity determination approaches 

The pathogenesis of staphylococci is associated with cell surface proteins, adhesion 

factors and secreted toxins (Ythier et al., 2012). Different approaches have been used to 

study the pathogenicity of staphylococci, including genomics, transcriptomics, and 

proteomics (Ythier et al., 2012).  

1.3.3.1 Whole genome sequencing 

Whole genome sequencing (WGS) reveals genetic relatedness down to the level of the 

single nucleotide, and it offers a feasible method for local, national and international 

monitoring and infection control (Price et al., 2013). For important pathogens, whole 

genome sequencing can provide an insight into the genomic composition that facilitates 

to its increasing pathogenicity (Gill et al., 2005).   
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1.3.3.1.1 Whole genome sequencing technique 

DNA fragments are sequenced by a WGS platform, and then resembled into contigs for 

further analysis (Price et al., 2013). Three generations of sequencing platforms have 

been launched since 1977, and each generation has become more rapid and cost 

effective. The third generation of sequencing allows real time observation of 

construction of  DNA strands, whereas the others are looking at reconstructing DNA 

fragments (Price et al., 2013).   

1.3.3.1.2 Genomic feature of staphylococci 

The circular genome of staphylococci is composed of 2.5 to 2.8 million base pairs, 

including genetic background and genomic islands (Gill et al., 2005; Kuroda et al., 2005; 

Price et al., 2013; Takeuchi et al., 2005). The function of two parts DNA are as 

followings: (1) genetic background are inherited from ancestral bacteria, which contains 

housekeeping genes involved in basic synthetic functions that is essential for the 

survival of bacteria; (2) genetic islands (GI) are acquired by horizontal transfer and 

which encodes virulence or antibiotic resistance genes (Ito et al., 2003). The 

staphylococcal cassette chromosome mec (SCCmec) is one of the GI types which carry 

antibiotic resistance genes (Ito et al., 2003).  

1.3.3.1.3 Whole genome variation 

Genetic variation analysis can be determined by comparison of each genome within a 

population with their reference genome sequence of the species (Arber, 2000). Six types 

of genetic variation are found: (1) loss of one or more bases; (2) gain one or more bases; 

(3) base substitution; (4) rearrangement of multiple segments; (5) copy number 

variation; and (6) DNA segment inversion (Arber, 2000). Loss or gain of bases may 

cause two results. In the first case, deletion /insertion of one or two bases into a protein 

coding region can have profound influence, which can lead to complete malfunction of 
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the protein (frameshift) (Trun & Trempy, 2009). Deletion or insertion of three or 

multiples of three bases will lead to loss or gain one or several amino acids in the 

middle of encoding region (Trun & Trempy, 2009). In this case, the protein function 

may or may not be altered depending on the position and codon type (Trun & Trempy, 

2009). Genomic variation may have huge impact on the organisms and result in 

different phenotypes, such as immune evasion ability changes (Richards et al., 2015), 

antimicrobial susceptibility changes (Chen et al., 2014; Dengler et al., 2013), and 

virulence changes (Sapp et al., 2014). In comparison, the plasmids are much smaller 

than the chromosomes, and encodes proteins that are not essential for survival of 

bacteria; however, many plasmids harbour genes confer adaptive advantages, such as 

antibiotic resistance genes, and virulence genes (Chen et al., 2014; Dengler et al., 2013; 

Sapp et al., 2014). The numbers of varied plasmids that confers different phenotype and 

pathogenicity of staphylococci can also be determined by whole genome sequencing 

(Gill et al., 2005).  

1.3.3.2 Whole proteomic approach 

Another approach towards understanding the pathogenicity of staphylococci uses 

proteomic analysis (Enany et al., 2014).  The advantage of proteomic analysis is that it 

can determine the expression of virulence genes (Enany et al., 2014). Liquid 

chromatography coupled with tandem mass spectrometry (LC-MS/MS) is one of the 

techniques that are applied for staphylococci proteomic analysis (Bernardo et al., 2004).  

1.3.3.2.1 LC-MS/MS 

LC-MS/MS can be used for identification of bacterial proteins, and thus provide an 

insight into protein expression of bacteria (Murray, 1997).  This approach has been 

widely applied for staphylococcal research by exploring the protein expression 
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differences of an isolate cultured under different conditions or between genetically 

closely related species (Murray, 1997).    

LC-MS/MS can show protein expression differences of each individual with similar 

genome composition. Encoding of orthologous proteins, or similar proteins in different 

quantities can lead to different phenotypic characteristics and performance (Murray, 

1997). 

LC-MS/MS is a technique that combines liquid chromatography and mass spectrometry. 

Liquid chromatography (LC) is used to remove impurities from the sample, separate 

component mixtures and ionize samples (Niessen, 2006). One benefit of liquid 

chromatography is the separation of isomers. Isomers are known to have exactly the 

same mass and cannot be differentiated by mass spectra. Additionally, liquid 

chromatography removes the risk of ion suppression, where one compound affects the 

ionization of another compound (Jemal, 2000). The second part, MS/MS is the 

combination of two mass spectrum analysers in single instrument, and the advantages of 

MS/MS are to increase sensitivity. The precursor ions which are transferred by liquid 

chromatography are fragmented by the first MS filters, selected ions are then monitored 

by the second mass analyser (Jemal, 2000). The information produced by the mass 

spectrometer: in the form of a list of peak intensities and mass to charge (m/z) values, 

can be manipulated and compared with genome and protein databases to identify the 

proteins (Murray, 1997). Therefore, with the combination of liquid chromatography and 

MS/MS, all the compounds present in a peak can be identified and the purity of sample 

can be checked (Jemal, 2000).  

1.3.3.2.2 Scaffold software 

The reliability of protein identification is affected by the accuracy and reproducibility of 

LC-MS/MS studies. Searle, (2010) demonstrates that the confidence in protein 
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identification can be increased by using Scaffold, a software tool in bioinformatics, 

which converts the peptide scores produced by various database search engines, into 

probabilities of peptide identification. These results are corroborated and combined with 

the so-called greedy algorithms, a group calculation method developed by Scaffold to 

reduce falsely reported protein identification (Searle, 2010).  

The staphylococcal genomic plasticity contributes to the development of virulence and 

multiple antibiotic resistance in staphylococci (Takeuchi et al., 2005),  which in turn 

increase their pathogenicity and make antibiotic therapy less effective (Otto, 2010; 

Takeuchi et al., 2005).  Complete genome sequencing and proteomic analysis can 

provide an insight into the genomic features and their expression which contribute to the 

increasing pathogenicity in staphylococci (Enany et al., 2014; Gill et al., 2005).  

1.4 Antibiotic resistance  

1.4.1 History of antibiotic resistance   

When Fleming first discovered penicillin, he warned that the abuse of antibiotics may 

lead to the development of antibiotic resistance of microorganisms and contribute to 

their dissemination (Bartlett et al., 2013).  Unfortunately, the public did not heed 

Fleming’s warning and the continuing growth of antibiotic resistance in microorganisms 

has been driven by the massive overuse of antimicrobial agents (Bartlett et al., 2013). 

Penicillin was first introduced in World War II, and soon after introduction, 

penicillinase producing S. aureus has been widely found in hospital environments 

(Chambers, 2001). Currently, the development of new antibiotics has been hampered by 

economic and regulatory barriers, and few new antibiotics have been discovered in last 

decade (Bartlett et al., 2013);  however, antibiotic resistance has been reported all over 

the world, including Africa, America, Asia, Eastern Mediterranean, European, and 
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Pacific region (WHO, 2014). In USA, the prevalence of MRSA increased from 5-10% 

to 50% in hospital isolates in the past two decades (Chambers, 2001). Meanwhile, it is 

shown that up to 40% MRSA infections were acquired in health individuals from the 

community (Chambers, 2001). Unfortunately, the phenomenon is of multiple, not single, 

antibiotic resistance. The first multiple antibiotics resistant microorganism were 

reported in the late 1950s (Levy & Marshall, 2004). In 2007, the number of multidrug-

resistant bacteria infections was 400,000; 25,000 of these were lethal in Europe (Bush et 

al., 2011). 

Bacterial antibiotic resistance has serious health and economic consequences. The 

infection caused by antibiotic resistant staphylococci makes treatment harder, and then 

result in worse clinical outcome, even death (Cosgrove, 2006; Palumbi, 2001). First, the 

side effects of second line (cefixime and colistin) and third line (rifabutin and 

levofloxacin) antibiotics are far more frequent and severe than first line antibiotics 

(penicillin), including dizziness, fever, diarrhoea, renal dysfunction and leukopenia 

(Cosgrove & Carmeli, 2003; Cunha, 2001; Iravani et al., 1988; Levin et al., 1999). 

Second, treatment may be delayed by less effective antimicrobials, and lead to surgical 

procedure to eradicate illness (Harris et al., 1999; Levine et al., 1991). Meanwhile,  the 

cost of antibiotic resistance associated infection is significantly higher than non-

antibiotic resistant related infection, as antibiotic resistance associated infection often 

leads to longer hospitalization, surgical treatment and use of other antibiotics. Thus the 

economic burden on patients, health care facilities and even the whole society is 

increased (Lautenbach et al., 2001; Silver, 2011).  
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1.4.2 Limitation in tackling with antibiotic resistance 

Over 20 new classes of antibiotic agents have been marketed between 1929 and 1970s. 

This was the so-called ‘golden age of antibiotic discovery’ (Laxminarayan et al., 2013). 

Since 1987 just two new classes have been discovered and commercialised 

(Laxminarayan et al., 2013; Silver, 2011). Although 20 new antimicrobial agents have 

been launched since 2010, all of them are analogues of existing classes of antibiotics 

(Butler & Cooper, 2011). In 2015, a promising antibiotic, designated as teixobactin, was 

discovered, and has activity against Gram-positive bacteria only with no detectable 

resistance. However, the development of teixobactin is still in its early stages, its 

clinical efficacy remains to hope for (Ling et al., 2015). Despite the noble endeavours of 

academia and industry, the focus on low-risk synthetic approaches to develop analogues 

of existing classes instead of traditional screening of natural products, and over-reliance 

of genomic approaches has reduced our global antibiotic discovery infrastructure 

(Coates et al., 2011). 

The development and administration of preventive vaccines against infectious diseases 

has reduced the use of antibiotics, however, this is only true in some cases, such as 

Haemophilus influenza, Neisseria meningitides and Streptococcus pneumoniae (Peltola, 

2000; Frasch & Bash, 2003; Kyaw et al., 2006). Vaccine clinical development is a long, 

expensive and high-risk process involving extensive human evaluation of efficacy and 

safety before commercialisation (Curtiss, 2002).  

Trends in the falling efficacy of several antibiotics and the consequential health and 

economic burdens require effective monitoring (Bartlett et al., 2013) The collection of 

antibiotic resistance data is crucial for informing public health authorities, governments, 

policy makers and industry stakeholders to make better  decisions to mitigate this threat 
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and discourage the overuse of antibiotics  (Bartlett et al., 2013). Natural microflora in 

humans will evolutionarily develop resistance to antibiotics after extended exposure to 

antimicrobial selection pressures, giving rise to the emergence of opportunistic bacterial 

‘superbugs’ (Jernberg et al., 2010). These opportunistic bacteria are considered to be a 

major cause of pandemic infections worldwide, and threaten the lives of the most 

vulnerable individuals of society such as children, elderly and immune-compromised 

individuals (Bartlett et al., 2013). All the resistance genes that are present in humans, 

animals and the environment are defined as bacterial resistomes. Moreover, the 

transmissible characteristic of these resistant genetic elements contribute to the 

emergence of antimicrobial resistance in patient, clinical settings and the wider 

environment (Wright, 2007).  

1.4.3 Antibiotic resistance mechanisms 

Staphylococcal infection is a significant cause of morbidity all over the world (Diekema 

et al., 2001), and the presence of antibiotic resistance made staphylococcal infection 

even worse (Diekema et al., 2001).  Antibiotics, also named as antimicrobial agents, are 

used for treatment of staphylococcal infections; however, staphylococci have evolved 

several mechanisms to reduce their susceptibility to antibiotics, such as mutations, and 

acquisition of resistance genes (Livermore, 2003).  

1.4.3.1 Resistance to beta-lactam 

After Fleming’s serendipitous discovery of penicillin, during the ‘penicillin era’ 

between 1940 and 1960, penicillin was widely considered to be a “magic bullet” which 

can kill all Gram-positive bacteria without harming human hosts (Ehrlich & 

Himmelweit, 1956; Gensini et al., 2007). However penicillin resistance was observed in 

a hospital setting, as early as 1942, just two years after the introduction of penicillin for 
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clinical use.  Within two decades, about 80% of both hospital- and community-acquired 

S. aureus isolates were observed to have developed resistance to penicillin  (Appelbaum, 

2007a). Resistant strains expressed penicillinase, a specific type of β-lactamase, shows 

specific activity against penicillin through hydrolysis of the β-lactam ring. Penicillin is 

inactivated and loses its ability to inhibit the synthesis of cell wall (Abraham & Chain, 

1940). Four classes of β-lactamase have now been identified, and they are differentiated 

by nucleotide sequences and crystal structures. However, all of them share several 

highly conserved amino acid sequences, which is responsible for targeting β-lactam 

antibiotics (Appelbaum, 2007a).  

1.4.3.2 Resistance to beta-lactam by expression additional penicillin binding protein 

1960-1978 is the era of natural and synthetic penicillin development, which include 

methicillin, oxacillin, ampicillin and other semisynthetic penicillin, and they can inhibit 

the growth of Gram-negative and Gram-positive bacteria (Medeiros, 1997). The 

bactericidal mechanism of beta-lactam antibiotics are known to bind to penicillin 

binding protein (PBP) to disrupt the synthesis of the peptidoglycan which is essential 

for formation of  the bacterial cell wall (Tomasz et al., 1989).   

Methicillin resistant was reported in S. aureus in the United Kingdom in 1961, just a 

year after it was firstly introduced to clinical use in 1960.   In 1968, MRSA was 

reported all over the world (Huang et al., 2006), Today, MRSA strains are found 

worldwide, and most are multidrug resistant (Appelbaum, 2006). There is a new 

mechanism in methicillin resistant staphylococci, which is markedly different from the 

penicillin resistance mechanism. Methicillin resistant in S. aureus involves an altered 

target site due to an acquired penicillin-binding protein 2a (PBP2a) with low affinity to 

β-lactam antibiotics. Even with the presence of methicillin, penicillin-binding protein 2a 

can still promote synthesis of the bacterial cell wall (Appelbaum, 2007b).  
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Cell wall is essential for survival of bacteria, as it protects microorganisms from 

intracellular and extracellular pressures, enabling normal cellular function and division 

(Typas et al., 2012). Penicillin-binding proteins (PBPs) catalyse the glycan strand 

polymerization and the cross-linking of glycan chains, which is necessary for synthesis 

of cell wall (Tulinski et al., 2012). There are 3 subdivisions of PBPs identified in 

staphylococci: Class A, Class B and Class C.  PBP2 belongs to the class A division 

which is encoded by the pbp2 gene, and PBP2a belongs to class B division encoded by 

the pbp2a gene (Tulinski et al., 2012). pbp2 is located in all staphylococcal species, and 

TPase and TGase domain of PBP2 are known to catalyse the transpeptidation and 

transglycosylation in crosslinking of peptidoglycan (Pinho et al., 2001). In the presence 

of methicillin, the TPase domain of PBP2 will be blocked, and thus inhibits the 

transpeptidation. Methicillin resistant S. aureus additionally acquired a mecA gene, 

which encodes for penicillin binding protein 2a (PBP2a) with a low affinity to β-lactam 

antibiotics (Tulinski et al., 2012). TPase domain of PBP2a involves in transpeptidation, 

and TGase domain of PBP2 is collaborative for transglycosylation in presence of 

methicillin. Therefore, PBP2a and PBP2 maintain normal functions and thus resistant to 

β-lactam antibiotics (Pinho et al., 2001) (Fig 1.1). In addition to mecA, four categories 

of mecA gene homologs (mecA1, mecA2, mecB, mecC) have been reported based on 

their similarity to original mecA gene (Ito et al., 2012). The mecC gene shares less than 

70% similarity with the original mecA gene, and is present in SCCmec type XI 

recovered from human, veterinary and wild sources (Becker et al., 2014). Although the 

mechanism by which the mecC gene mediated oxacillin resistance has not been 

elucidated, it is confirmed that the mecC gene encodes a different type of penicillin 

binding protein 2a (PBP2amecC). This PBP2amecC mediate the high level oxacillin 

resistance of S. aureus (Paterson et al., 2014). The mecA and mecC gene are subject to 
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PCR and used to explore the methicillin resistant determinants (García-Álvarez et al., 

2011; Murakami et al., 1991).  

Methicillin-resistant S. aureus (MRSA) has been represented by mecA gene positive and 

methicillin (oxacillin) resistant; however, the presence of oxacillin susceptible MRSA 

(OS-MRSA) exhibit a new type of MRSA (Hososaka et al., 2007). Although the OS-

MRSA is phenotypically susceptible to oxacillin, it is believed that most OS-MRSA is 

oxacillin hetero-resistance. Therefore the treatment with beta-lactam antibiotics may be 

ineffective (Ikonomidis et al., 2008). 

 

Figure 1. 1 The activity of PBP2 and PBP2a in the crosslinking of the peptidoglycan of 

methicillin-resistant S. aureus. The TPase domain of PBP2a is involved in 

transpeptidation, and the TGase domain of PBP2 is involved in transglycosylation in the 

presence of methicillin (Pinho et al., 2001).  

1.4.3.3 Resistance to aminoglycoside 

The anti-microbial activity of aminoglycoside antibiotics such as kanamycin, 

gentamicin, streptomycin, is based on their ability as protein synthesis inhibitors. 
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Aminoglycoside antibiotics are known to bind to the 30S ribosomal subunit and thus 

inhibit protein synthesis; however, the staphylococcal strains have evolved several 

mechanisms to inhibit aminoglycoside activity (Mingeot-Leclercq et al., 1999; Schmitz, 

1999). Currently, two aminoglycoside resistance mechanisms have been widely 

accepted. The first mechanism involves reduced drug uptake, which is due to membrane 

impermeabilisation (Mingeot-Leclercq et al., 1999). The second is due to 

aminoglycoside-modifying enzymes produced by staphylococci that, inactivate the 

aminoglycosides by covalently attaching key functional groups of antibiotics, thus 

decreasing aminoglycosides ribosomal binding affinity, and resulting in high-level 

resistance (Mingeot-Leclercq et al., 1999; Schmitz, 1999). The aminoglycoside-

modifying enzymes are encoded by acetyltransferase (AAC), adenylyltransferase (ANT) 

or phosphotransferase (APH), and resistant to gentamicin is mediated by a bifunctional 

enzyme displaying AAC and APH activity (Schmitz, 1999). Moreover, AAC-APH gene 

is located on a conjugative plasmid Tn4001, which is widely distributed in S. aureus 

and CoNS; whereas kanamycin and streptomycin resistance are determined by ANT and 

APH (Schmitz, 1999).   

1.4.3.4 Resistance to macrolides 

The antibacterial activity of macrolides is achieved by inhibiting protein synthesis 

(Vester & Douthwaite, 2001). Macrolides are characterized to be the polyketide group 

of compounds, which includes carbomycin and erythromycin (Vester & Douthwaite, 

2001; Weisblum, 1995). Four macrolides resistance mechanisms have been identified. 

Firstly, the presence of macrolide efflux pumps (msr) in staphylococci has contributed 

to the macrolides resistances (Schmitz et al., 2000). In S. aureus, macrolide resistance is 

associated with msrA gene that encodes an ABC-transporter-mediated efflux (Matsuoka 

et al., 2003). Secondly, a mph gene located at downstream of msrA gene has been 
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known to inactivates macrolide antibiotics by encoding a phosphotransferase, and the 

expression of mph gene is associated with presence of msrA gene (Matsuoka et al., 

2003). Thirdly, enzymes (ere) is known to inactivate macrolide by hydrolysing the 

lactone ring nucleus of macrolide (Schmitz et al., 2000). Finally, macrolide resistance in 

staphylococci can be achieved by alteration of macrolide target site – 23S rRNA 

(Weisblum, 1995). A gene named erythromycin ribosome methylation (erm) encodes 

23S rRNA methylase, which is responsible for conformation change of 23S rRNA 

(Schmitz et al., 2000). erm mediated methylation of adenine residue of 23S rRNA 

domain V lead to the reduced affinity to macrolide, and thus confer to macrolide 

resistance (Vester & Douthwaite, 2001; Weisblum, 1995). The erm gene has been 

collected from diverse range of resources, and 30 different kinds of erm have now been 

identified (Weisblum, 1995). 

1.4.3.5 Resistance to phenicols 

Chloramphenicol is categorized to phenicols class, and is a bacteriostatic drug that stops 

bacterial growth by inhibiting protein synthesis. Chloramphenicol prevents protein 

chain elongation by inhibiting the peptidyl transferase activity of the bacterial ribosome 

(Jardetzky, 1963). Chloramphenicol resistance in staphylococci is due to an inducible 

enzyme: chloramphenicol acetyltransferase, which acetylates chloramphenicol, and 

thereby inactivates the chloramphenicol (Shaw et al., 1970).  

1.4.3.6 Resistance to steroid and fosfomycin 

Fusidic acid is a steroid antibiotic derived from the fungus Fusidium coccineum 

(Godtfredsen et al., 1962), which fight against severe Gram-positive infections by 

interfering with the function of the elongation factor G (EFG). EFG is known to transfer 

peptidyl-tRNA from the ribosomal A site to the P site, and then the messenger RNA is 

able to move one codon forward. Meanwhile, GTP is hydrolysed into GDP to provide 
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energy for this process, and EFG dissociates from the ribosome in a complex with GDP. 

EFG is encoded by fusA gene (Martemyanov et al., 2001). Fusidic acid prevents the 

dissociation of EFG from ribosome by binding to EFG on the ribosome, and thus blocks 

the next stage of protein synthesis (Martemyanov et al., 2001). Fusidic acid resistance in 

S. aureus is due to fusA gene mutation associated EFG structure alteration, and the 

altered EFG has low affinity to fusidic acid. Even in the presence of fusidic acid, EFG 

can be dissociated from the ribosome and is able to continue with next step in protein 

synthesis (Martemyanov et al., 2001). Brown & Thomas, (2002) has reported striking 

increase in fusidic acid resistance of clinical S. aureus, and warned about the decreased 

efficacy of fusidic acid in treatment of serious MSSA infections. Fosfomycin is an 

antibiotic that is known to inhibit cell wall synthesis, and fosfomycin resistance is 

mediated by fosA gene. The fosA gene encodes a glutathione S-transferase, which forms 

a covalent bond with fosfomycin, and then inactivates fosfomycin (Bernat et al., 1997). 

1.4.3.7 Resistance to monoxycarbolic acid 

Monoxycarbolic acid is a class of antibiotics, and mupirocin is one of the representative 

antibiotics (Cookson, 1998). Mupirocin was introduced into clinical practice in the UK 

in 1985, and it has been proved to be an extremely effective and successful topical 

antibiotic for treatment of nasal and skin MRSA infections (Cookson, 1998). Mupirocin 

is an analog of isoleucine which competitively binds to isoleucyl tRNA synthetase, and 

thus inhibit protein synthesis (Hodgson et al., 1994); however, resistant strains were 

reported shortly after introduction of the Mupirocin (Cookson, 1998). Different 

mechanisms are involved in low-level resistance and high-level resistance. Ile has been 

known to encode isoleucyl tRNA synthase, which specifically recognize isoleucine and 

transport to ribosome for protein synthesis (Lodish, 2008).  Low-level resistance is due 

to the mutation in a chromosomally encoded Ile, and high-level resistance has been 
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shown to be due to the acquisition of an additional novel gene IleS. Mutation in Ile and 

acquisition of IleS are both lead to reduced affinity of isoleucyle tRNA synthase to 

mupirocin (Cookson, 1998; Hodgson et al., 1994). 

1.4.3.8 Resistance to tetracycline 

Tetracycline is a broad-spectrum polyketide antibiotic produced by the Streptomycetes, 

it is used for the treatment of bacterial infections as it inhibits protein synthesis (Ng et 

al., 2001). There are three mechanisms involved in tetracycline resistance, including: 

using energy-dependent efflux (encoded by tet(K) gene) of tetracycline (Gibbons & Udo, 

2000); alteration of the ribosome to prevent the effective binding of tetracycline; 

enzymatic inactivation of tetracycline (Ng et al., 2001).  

1.4.3.9 Resistance to glycopeptide 

Glycopeptide antibiotics include vancomycin, teicoplanin, ramoplanin and decaplanin. 

Glycopeptides are known to inhibit the growth of bacteria by obstructing cell wall 

synthesis (Hiramatsu, 2001).  For staphylococci, glycopeptide antitiobitcs can bind to 

acyl-D-alanyl-D-alanine in peptidoglycans, and therefore prevent the cross linking 

process of cell wall synthesis (Hiramatsu, 2001). Vancomycin resistance/intermediate S. 

aureus increase cell-wall thickness by producing more peptidoglycan, and thus 

vancomycin are trapped in peptidoglycan layers and cannot access to peptidoglycan 

synthesis sites. However, vancomycin resistance at the genetic level has not been 

clarified yet (Appelbaum, 2007a).  

1.4.4 In vitro susceptibility testing overview 

Antimicrobial susceptibility test is a standard clinical lab procedure, and rational 

selection of antibiotics for treatment is determined by assessing possible antibiotic 

resistance in bacteria (Jorgensen & Ferraro, 2009). In addition, susceptibility test can 
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provide information on decreased susceptibility of bacteria to antibiotics (Mahon et al., 

2014). Nowadays, human, veterinary and agricultural use of antibiotics means that large 

quantities of antibiotics have been continuously released into the environment (Batt et 

al., 2006; Dı́az-Cruz et al., 2003; Kummerer, 2003); however, little is known about the 

dissemination of antibiotic resistant staphylococci in environment.  

1.4.4.1 Overview of commonly used susceptibility testing methods  

Antibiotic susceptibility test is a routine procedure during phenotyping in clinical 

microbiology and microbiology research labs (Jorgensen & Ferraro, 2009). The most 

widely used testing methods in modern clinical lab are the antimicrobial gradient 

method and the disc diffusion method (Jorgensen & Ferraro, 2009).  

The antimicrobial gradient method involves placing a commercial plastic antibiotic 

gradient strip on standardized bacterial suspension covered plates, and MIC is 

determined by inhibited growth point along the strip (Jorgensen & Ferraro, 2009). The 

gradient diffusion method is a simple and time efficient way to determine MIC of tested 

isolates.  Moreover, the gradient diffusion method is consistent with the traditional 

broth dilution method (Jorgensen & Ferraro, 2009).  

The disk diffusion method depends on the formation of a radial gradient around the 

antimicrobial agent. The antimicrobial agent is released from the disc and radially 

diffuses into the agar, giving a concentration gradient. At a specific distance from the 

centre, the concentration of antibiotic is too low to inhibit the growth of the test 

organism, and the inhibition zone is formed. After comparing the diameter of the 

inhibition zone with standard criteria, the susceptibility results are interpreted as 

`susceptible`,` intermediate` or `resistance`(Mahon et al., 2014).   
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1.4.4.2 Overview the standards for interpreting antimicrobial susceptibility results 

With the global increase in microbial resistant to antibiotics, there is a need for 

universally recognized standards to interpret the susceptibility of microorganisms 

(Jorgensen & Ferraro, 2009). There are three globally recognized standards for the 

interpretation of antimicrobial susceptibility test results: British Society of 

Antimicrobial Chemotherapy (BSAC), the Clinical and Laboratory Standards Institute 

method (CLSI) and the European Committee on Antimicrobial Susceptibility Testing 

(EUCAST). The different standards of MIC and zone diameter breakpoints for 

staphylococci are showed in Table 1.9 (Creagh & Lucey, 2007; Howe & Andrews, 2012; 

Testing, 2014; Wikler, 2007). 

Criteria for gentamicin, vancomycin, oxacillin and cefoxitin are different for 

interpreting S. aureus and CoNS, whereas, interpretive critertia for streptomycin and 

cefepime is specific for S. aureus (Creagh & Lucey, 2007; Howe & Andrews, 2012; 

Testing, 2014; Wikler, 2007; Wayne, 2014). Interpretive criteria for penicillin, 

amoxicillin, erythromycin, tetracycline, chloramphenicol, fusidic acid and mupirocin 

are generally for Staphylococcus spp. (Creagh & Lucey, 2007; Howe & Andrews, 2012; 

Testing, 2014;Wayne, 2014). 
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Table 1. 9 Zone Diameter and Minimum Inhibitory Concentration (MIC) Interpretive Standards for Staphylococcus spp.  (Howe & Andrews, 

2012; Testing, 2014; Wayne, 2014; Wikler, 2007) 

 BSAC  CLSI   EUCAST   

 MIC  

breakpoint 

(mg l
-1

) 

Interpretation  

of zone 

Diameters (mm) 

Comment MIC  

breakpoint  

(mg l
-1

) 

Interpretation 

of zone 

diameters (mm) 

Comment MIC   

Breakpoint 

(mg l
-1

) 

Interpretation 

of zone 

diameters (mm) 

Comment 

Antibiotic  

(Disc content ) 

R> I S≤ R≤ I S≥  R> I S≤ R≤ I S≥  R> I S≤ R≤ I S≥  

Aminoglycosides                      

Gentamicin   

(10 µg) 

1 - 1 19 - 20  8 - 4 12 13-

14 

15  1 - 1 18 - 18 S.aureus 

Gentamicin   

(10 µg) 

- - - - - -  - - -  - -  1 - 1 22 - 22 CoNS 

Streptomycin 

(10 µg) 

- - - - - -  - - - 14 - 22 S. aureus - - - - - -  

β-lactams                      

Oxacillin 

(1 µg) 

2 - 1 14 - 15  4 - 2 10 - 13 S. aureus 2 - 0.25 - - -  

Oxacillin 

(1 µg) 

       0.5 - 0.25 17 - 18 CoNS - - - - - -  

Penicillin G 

(1U) 

0.12 - 0.12 24 - 25  0.12 - 0.12 28 - 29 10 U - - - - - -  

Amoxicillin 

(10 µg) 

- - - - - -  4 - 2 19 - 20  - - - - - -  

Note: The criteria in bold is used to interpret the antibiotic susceptibility test results in this study. 

a: Andrews & Testing, 2001; b: Creagh & Lucey, 2007 
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 BSAC  CLSI  EUCAST  

 MIC  

breakpoint 

(mg l
-1

) 

Interpretation  

Of zone 

Diameters (mm) 

Comment MIC  

breakpoint  

(mg l
-1

) 

Interpretation 

of zone 

diameters (mm) 

Comment MIC   

Breakpoint 

(mg l
-1

) 

Interpretation 

of zone 

diameters (mm) 

Comment 

Antibiotic  

(Disc content ) 

R> I S≤ R≤ I S≥  R> I S≤ R≤ I S≥  R> I S≤ R≤ I S≥  

Cefepime  

(30 µg) 

- - - - - -  32  8 14 15-

17 

18 S.aureus  - - - - - -  

Cefoxitin 

(10 µg) 

4   21 - 22 S. aureus 8  4 21  22 S. aureus 

30  µg 

   22  22 S. aureus 

30  µg 

Cefoxitin 

(10 µg) 

4   21 22-

26 

27 CoNS    24  25 CoNS  

30  µg 

   25  25 CoNS 

30  µg 

Glycopeptides                      

Vancomycin 

(5 µg) 

2 - 2 

11
a
 

- 

12
a
 

S. aureus - - 2 - - - S. aureus 2  2 -  - S. aureus 

Vancomycin 

(5 µg) 

4 - 4 - CoNS   4    CoNS 4  4 -  - CoNS 

Macrolides                      

Erythromycin 

(5 µg) 

2 2 1 16 17-

19 

20  8 - 0.5 13 14-

22 

23 15  µg 2  1 18  21 15  µg 

Tetracyclines                      

Tetracycline 

(10 µg) 

2 2 1 19 - 20  16 - 4 14 15-

18 

19 30  µg 2  1 19  22 30  µg 

Phenicols                      

Chloramphenicol 

(30 µg) 

8 - 8 14 - 15 10  µg 32 - 8 12 13-

17 

18  8  8 18  18  

Note: The criteria in bold is used to interpret the antibiotic susceptibility test results in this study.  

a: Andrews & Testing, 2001; b: Creagh & Lucey, 2007 
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Note: The criteria in bold is used to interpret the antibiotic susceptibility test results in this study.  

a: Andrews & Testing, 2001; b: Creagh & Lucey, 2007  

 

 

 BSAC  CLSI  EUCAST 

 MIC  

breakpoint 

(mg l
-1

) 

Interpretation  

of zone 

Diameters (mm) 

Comment MIC  

breakpoint  

(mg l
-1

) 

Interpretation 

of zone 

diameters (mm) 

Comment MIC   

Breakpoint 

(mg l
-1

) 

Interpretation 

of zone 

diameters (mm) 

Comment 

Antibiotic  

(Disc content ) 

R> I S≤ R≤ I S≥  R> I S≤ R≤ I S≥  R> I S≤ R≤ I S≥  

Steroid                      

Fusidic acid 

(10 µg) 

1 - 1 29 - 30  - - - 24 - 32  1  1 24  24  

Monoxycarbolic 

acid 

                     

Mupirocin 

(20 µg) 

256 2-

25

6 

1 6 7-

26 

27  - - 4 - - 19
b
 5  µg 256 - 1 13 - 13 200  µg 
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1.4.4.3 Quality control of susceptibility testing 

S. aureus NCTC6571 is a β-lactamase negative isolate, and susceptible to all the routine 

antibiotics (Table 1.10). The MIC of S. aureus NCTC 6571 to oxacillin is 0.125 mg l
-1 

(Seaman et al., 2004). S. aureus NCTC 6571 is used as a control strain in all lab based 

susceptibility tests, including clinical diagnosis microbiology labs in the UK (Kearns, 

2006). S. aureus NCTC 6571 has been included as a control in all the susceptibility tests 

in this study. 
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Table 1. 10 Antibiotic susceptibility profile of S. aureus NCTC6571 

 

 Antibiotics 

 PEN OX VAN MUP CHL TET ERY GEN FD AMP CEC CRO RIF TEC 

S.aureus 

NCTC6571 
S S S S S S S S S S S S S S 

Note: R, resistant; S, susceptible; PEN, penicillin G; OX, oxacillin; VAN, vancomycin; MUP, mupirocin; CHL, chloramphenicol; TET, 

tetracycline; ERY,erythromycin; GEN, gentamicin; FD, fusidic acid; AMP, ampicillin; CEC, cefaclor; CRO, ceftriaxone; RIF, rifampicin; TEC, 

teicoplanin
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1.5 Resistome 

Much attention has been focused on clinical antibiotic resistant pathogens as they are 

the direct cause of illness; however, the antibiotic resistant microorganisms in the 

environment are also a cause for concern (Blair et al., 2014).  Therefore, attentions 

should be focused not only on pathogenic, but also on non-pathogenic bacteria and 

potential antibiotic resistance genes (Wright, 2007). The development of antibiotic 

resistance in microorganism is a natural evolutionary phenomenon and exposure to 

antibiotic producing microorganisms may contribute to the selection of antibiotic 

resistance genes in environmental microorganisms (Blair et al., 2014).  However, recent 

studies have shown that the mutation rates of microorganism increased when exposed to 

antibiotics, emphasising the role of antibiotics in driving the antibiotic resistance 

evolutionary process (Wright, 2007). In this case, antimicrobial agents from 

antimicrobial producing bacteria in soil habitats, humans, and animal therapeutics, 

sewage, agricultural and veterinary industries made environment a potential reservoir of 

antibiotic resistance genes (Cantas et al., 2013). Therefore, antibiotic resistance genes 

from environmental microorganism comprise a huge proportion of the resistome 

(Wright, 2007). It is necessary to include non-pathogenic microorganisms in antibiotic 

resistance research in order to impede the resistance before it appears in pathogens 

(Cantas et al., 2013). 

1.6 Genomics related to antibiotic resistance  

The presence of antibiotic resistance is determined by two factors: antibiotics and 

antibiotic resistant determinants (Levy & Marshall, 2004). The continuous flow of 

antibiotics from human treatment, veterinary and agricultural industries to the 

environment contribute to the selection of antibiotic resistant bacteria (Levy & Marshall, 
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2004); however, mechanistic details of the evolutionary development of antibiotic 

resistance still need to be clarified (Kemper, 2008; Zhang et al., 2009, Otto, 2013).  

Acquisition of antibiotic-resistance significantly complicates the treatment of bacterial 

infections (Levy & Marshall, 2004), and it is belived that bacteria acquire antibiotic 

resistance via transfer of antibiotic resistant elements or genetic mutations  (Otto, 2013). 

Horizontal transfer of antibiotic resistant determinants is considered to be reason for 

dissemination of resistance in bacteria (Bloemendaal et al., 2010). In addition, 

resistance traits caused by chromosome mutation can be transmitted vertically to 

offspring (Hastings et al., 2004).  

1.6.1 Lateral transfer of antibiotic resistance 

Recently, using different genome sequence approaches, Méric et al., (2015) has shown 

that S. aureus and S. epidermidis share half of the genome with 40% of the core genes 

in S. epidermidis and 24% of the core genes in S. aureus and considerable interspecies 

mobile genetic elements has been shared by both species, such as SCCmec, pathogenic 

islands, plasmids, and transposons. Staphylococcal species that share the same 

environmental niches are in close proximity for genetic exchange, such as conjugation, 

phage transduction, and uptake of naked DNA (Otto, 2013).  

Methicillin resistant in staphylococcal species is due to the mecA gene, which is located 

on a mobile genetic island SCCmec. mecA encodes penicillin binding protein 2a, which 

has low affinity to beta-lactam antibiotics (Mkrtchyan et al., 2013). Methicillin 

susceptible isolates are considered to have acquired mecA genes via horizontal transfer 

of SCCmec elements, and then result in the dissemination of mecA gene between 

staphylococcal species (Bloemendaal et al., 2010). Clinical research showed that 

methicillin resistant S. aureus was formed in vivo by acquiring SCCmec from 
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methicillin resistant S. epidermidis (Bloemendaal et al., 2010). However, replication of 

mecA gene transfer via conjugation between the same two clinical staphylococci in vitro 

is not successful (Bloemendaal et al., 2010). To date, the transfer of SCCmec via 

conjugation and transformation has been seldom reported (Otto, 2013). Although the 

phage mediated SCCmec transfer was observed within S. aureus, the phage mediated 

transfer of SCCmec between different staphylococcal species has not been reported 

(Otto, 2013). For now, the mechanism of SCCmec transfer between staphylococcal 

species is yet to be clarified (Otto, 2013).  To my knowledge, the replication of mecA 

gene transfers with environmental staphylococci in vitro has not yet been investigated. 

1.6.2 Vertical transfer of antibiotic resistance  

In addition to horizontal transfer of antibiotic resistance genes, bacteria inherit 

resistance vertically from their ancestors (Hastings et al., 2004). The resistance traits, 

which can be vertically transferred to their offspring, includes structural changes of the 

antibiotic target which reduces the antibiotic affinity; increasing efflux efficiency to 

remove the antibiotics from the bacteria, and increasing activity of the degradative 

system (Hastings et al., 2004). Efflux pump is one of the significant contributing factors 

for antibiotic resistance (Gupta et al., 2010). Efflux pump are membrane proteins that 

mediate energy dependent transportation of antimicrobial agents out of cell, including 

EmrB/QacA family drug resistance transporters and ATP binding cassette (ABC) 

transportor (Gupta et al., 2010; Solheim et al., 2007).   

Genetic variation can be triggered by stress conditions, and confers adaptive mutations 

traits (Foster, 2005a). Stress environment, such as antibiotics, UV-light, pH, oxidative 

stress, temperature and heavy metals, increase the genetic variation and thus contribute 

selective advantages (Foster, 2005a). Bacterial stress responses can be categorized into 
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the SOS response, the general stress response, heat-shock response and stringent 

response (Foster, 2005a).   

1.6.2.1 SOS response 

The SOS response is triggered when the bacteria are subjected to DNA damage.  LexA 

and RecA genes are involved in regulation of the SOS stress response in E.coli. LexA is 

a repressor of the SOS response, and RecA is promoter of SOS response (Miller et al., 

2004). SOS response is known to be a defence mechanism for bacteria to resist β-lactam 

antibiotics (Miller et al., 2004). The SOS response is known to help bacterial 

propagation by inhibiting cell division during repair of DNA damage (Miller et al., 

2004). In addition, The SOS system regulates a global response which upregulates 

genes involved in DNA repair and cell survival (Maiques et al., 2006).   

1.6.2.2 General stress response 

The RpoS and MutS genes are involved in the general stress response of E. coli, and 

RpoS is known to direct RNA polymerases to their promoters for transcribing proteins 

necessary for cell survival (Guisbert et al., 2008). Mismatch repair is crucial for 

maintaining the integrity of the chromosome, and MutS is the gene that is in charge of 

mismatch repair in eukaryotes. Mismatch repair has been known to have the following 

functions: (1) repair the errors of DNA replication process; (2) intermediate 

recombination process (Kolodner, 1996).   

The upregulation of thioredoxin is a stress response of oxygen damage, and the 

upregulation of thioredoxin is essential to protect cells from oxygen damage (Bore et al., 

2007), whereas, oxygen response has been reported in acid-shock response as indirect 

stress response (Bore et al., 2007).  
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1.6.2.3 Heat shock response 

Heat shock response is triggered by subjecting a cell to a temperature increase, and 

involves upregulation of the transcription of heat shock proteins (HSPs) (Guisbert et al., 

2008; Muthaiyan et al., 2012). HSPs are involved in part of the cell's internal repair 

mechanism and protein folding and stabilization (Guisbert et al., 2008; Muthaiyan et al., 

2012).  For example, GroE (Hsp 60) gene is crucial for maintaining the structure and 

formation of proteins at any temperature (Guisbert et al., 2008), and GroE can also 

protect RNA polymerase holoenzyme from heat inactivation (Ziemienowicz et al., 

1993). DnaJ is Hsp40 chaperone, which has been known to control protein homeostasis 

in the cell (Cuéllar et al., 2013). Moreover, GrpE is another chaperone protein, which 

has been reported to assistant reactivation of heat-inactivated RNA polymerase 

(Ziemienowicz et al., 1993). The heat shock response can also be induced by DNA 

damage (Guisbert et al., 2008; Muthaiyan et al., 2012). 

1.6.2.4 Stringent response 

The stringent response is triggered by nutrient limitation.  In E. coli, the main gene 

involved in stringent response is ppGpp gene. ppGpp gene regulates the expression of 

RNA (Guisbert et al., 2008). Stringent response generally reduces the capability of 

protein synthesis, however, it increases the synthesis of amino acid for protein that is 

lacked (Anderson et al., 2006).  
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1.7 Research Aims 

Staphylococci are opportunistic pathogens responsible for the range of infections, and 

the presence of antibiotic resistance in staphylococci is a potential threat to public health. 

As a result of natural evolutionary process, the environment may act as a reservoir of 

antibiotic resistance genes. The uses of antibiotics are a major pressure for the 

mobilization of antibiotic resistance genes from environment to human pathogens. 

However, little is known about the antibiotic resistance in environmental staphylococci.  

This study aims to: 

1. Determine the dissemination of staphylococci in human related environment, 

and look to the taxonomic correlation of staphylococci isolated from different 

sites;  

2. Assess antibiotic resistance of staphylococci in the environment, and investigate 

the antibiotic susceptibility profile variation of taxonomically closely related 

staphylococci; 

3. Investigate molecular characterization of mecA gene positive staphylococci;  

4. Investigate the genome features that contribute to the antibiotic resistance and 

virulence of one S. epidermidis isolate with high-level oxacillin resistance;  

5. Assess mecA gene transfer with environmental staphylococci in vitro, and 

compare the protein expression differences of S. aureus cultured with and 

without oxacillin supplemented agar.   

The study is composed of 11 chapters, including the chapter 1: the introduction, which 

discusses the research context of this project; chapter 2: outlines the material and 

methods used in experimental procedures; chapter 3, 4, 5, 6, 7, 8 are focused on results; 

chapter 9 includes discussion of the findings; Chapter 10 draws upon the entire thesis 

and gives a brief summary; and chapter 11 indicates the future work. 
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Chapter 2   Materials and Methods   

The presence of antibiotic resistance genes is a natural evolutionary process, and it has 

been suggested that the environment may act as a reservoir of such antibiotic resistance 

genes (Wright, 2007). The development of new antibiotics does not seem assuring to 

solve the increasing threat of antibiotic resistance, as bacteria; in particular, 

staphylococci continue to adapt new strategies for their survival.  Hence, it is necessary 

to generate data on the dissemination of antibiotic-resistant bacteria that would help the 

public health authorities to develop new strategies for infection control (Bartlett et al., 

2013). In this study, different microbiological, molecular, genomic and proteomic 

techniques were used to determine the diversity, dissemination, resistance and virulence 

features of environmental staphylococci.    

2.1 Sample collection 

Bacterial cultures were recovered from multiple sources at various time points during 

2012 to 2014. Sterile swabs were used to sample the surfaces of different general public 

settings and human hands. Human hands sampling was conducted with the general 

public without restriction of age, gender or race and not included healthcare residents. A 

high volume air sampler (Cherwell SAS Super 100) was used to collect air samples 

from one hotel. After collection, the samples were shipped to the lab within 1-3 hours.  

All the samples (except air samples) in this study were collected using COPAN dry 

swabs (Copan Diagnostics Inc., USA), and all collection sites were in London, United 

Kingdom. The period and the sites of sample collection were as follows: ① Oct 2012 

and Apr 2013 - different sites of hotels (DSH); ② Apr 2013 - hotel air samples (HAS); 

③ Apr 2013, July 2013 and July 2014 - human hands (HH); ④ July 2013 - baby care 

facilities (BCF); ⑤  July 2013 - handbags (HB); ⑥  Sep 2013 - different sites of 
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supermarkets (DSS); ⑦ July 2014 - different sites of restaurants (DSR); ⑧ Aug 2014 

and Sep 2014 - different sites of  transportation facilities (DST); ⑨ Nov 2014 - different 

sites of a library (DSL).  HAS were collected using a high volume air sampler 

(Cherwell SAS Super 100). These were collected using filter-based electret capture 

technology. Sterilized air sampler was filled with “contact plate”, and the airflow of 

sample collection was between 200 and 1000 litres per min.  

2.2 Isolation of staphylococci 

In the laboratory, all swabs were suspended in 1 ml sterile 0.9 % saline, and then were 

inoculated onto Nutrient Agar (NA, Oxoid Basingstoke, UK), Mannitol Salt Agar plates 

(MSA, Oxoid Basingstoke, UK) and Brilliance UTI® agar (UTI, Oxoid Basingstoke, 

UK). These were incubated aerobically at 37℃ for 24-72 h. For air samples, the contact 

plates were transferred and incubated at 37℃ for 24-72 h. 

The numbers of colonies on NA were recorded by counting colonies on the whole plate 

as such counting colonies as seen on the half of the plate and then multiplying it by 2 or 

counting the colonies on the quarter of plate and then multiplying by 4 to estimate the 

total number of colonies on each plate. MSA in this study was used for the preliminary 

discrimination of S. aureus (mannitol fermenting) and CoNS (mannitol non-fermenting), 

and also selectively isolate staphylococcal species. The acidic byproduct was produced 

by fermentation of mannitol will cause the phenol red in the MSA to turn yellow; 

otherwise, there is no colour change to the medium.  UTI contains chromogenic 

substrates, which can provide preliminary colorimetric identification of the main 

microorganisms that cause urinary tract infection (Fig 2.1). The determination of 

species is in accordance to manufacturer’s instructions. E.coli: pink/red colony; 

Enterococcus spp.: turquoise/blue-green colony; coliforms: dark blue/purple colony; 
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Proteus, Morganella, Providencia: brown halo colony; Pseudomonas spp.: brown/green 

colony; staphylococci, streptococci: non-pigmented white colony (http://www.oxoid. 

com/pdf/24021_oxoid_clarity_UTI.pdf) (Fig 2.1). 

 

 

Figure 2. 1 Colour of bacteria on the dehydrate Brilliance
TM

 UTI agar.  Image was 

adapted from:http://www.oxoid.com/UK/blue/prod_detail/prod_detail.asp? pr=CM0949. 

 

Multiple morphological colonies were picked from NA, MSA accordingly, and 

resulting pure single colony transferred to a fresh NA plate, incubated 18-24 h. The 

culture was stored in the beads at – 80℃ (Microbank, Fisher Scientific, UK). 

Partial sample collection and isolation was contributed by project students in 2014. 

http://www.oxoid.com/UK/blue/prod_detail/prod_detail.asp?%20pr=CM0949
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2.3 Identification 

2.3.1 MALDI-TOF MS identification 

Traditionally, identification of staphylococcal species has been assessed by testing 

phenotypic characteristics, or 16S rRNA gene sequencing methods (Janda & Abbott et 

al, 2007). A simple, rapid and reliable identification method – matrix-assisted laser 

desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has been 

employed for identification (Maier et al, 2006). This method has been widely available 

for identification of many microorganism species (Seng et al., 2009).  

The preparation of matrix solution and sample preparation was carried out according the 

manufacturer’s instructions (Bruker Daltonics, Coventry, UK).  

Basic organic solvent (OS) was prepared with 50% (v/v) acetonitrile (Sigma-Aldrich, 

UK), and 2.5% (v/v) tri-fluor-acetic-acid (TFA) (Sigma-Aldrich, UK). To make the 

matrix solution, 250 µl OS was added to 2.5 mg α-Cyano-4-hydroxycinnamic acid 

(HCCA) matrix (Bruker Daltonics, Coventry, UK) and vortexed until all the crystals 

were completely dissolved.  

3-5 colonies of overnight culture were added into 300 µl distilled water, and mixed with 

900 µl absolute ethanol. The suspension was centrifuged for 2 min at 13000 g, and the 

supernatant was then completely withdrawn by carefully pipetting. Dried pellets were 

mixed with 25 µl 70% (v/v) formic acid and then with 25 µl pure Acetonitrile (AN). 

The mixture was centrifuged for 2 min at 13000 g. 1 µl supernatant from the previous 

step was spotted on target plate (Bruker Daltonics, Coventry, UK) (Fig 2.2), and 

overlaid with 1 µl of α-Cyano-4-hydroxycinnamic acid (HCCA) matrix (Bruker 

Daltonics, Coventry, UK). 
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 Figure 2. 2 2a: Bruker 96 polished target plate; 2b: Biotyper 3.1 identification sectional 

drawing;   Measured classified green (score value ≥ 2.0): highly probable species 

identification;     Measured, classified yellow (2 ≥ score value ≥ 1.7): probable genus 

identification;    Measured classified red (score value ≤ 1.7): not reliable identification; 

aa  Zeroline spectrum, not classified: no spectrum was detected  (Pictures were taken by 

me).  

 

The spectra were detected by MALDI-TOF MS (Bruker Daltonics, Coventry, UK), and 

the resulting spectra for each isolate was analysed by Biotyper 3.1 software (Bruker 

Daltonic, Coventry, UK). Escherichia coli DH5α was used as a standard for calibration 

and quality control.  

2.3.2 Reproducibility of MALDI-TOF MS 

The definition of reproducibility is the capability of a technology to yield the same 

results when the same sample is tested repeatedly (Trindade et al., 2003).  Isolates 

selected to assess the reproducibility of MALDI-TOF MS were prepared according to 

manufacturer’s instructions (Bruker Daltonics, Coventry, UK) mentioned in 2.3.1, and 

two target plates were used at the same time in this study.  The supernatant of each 

isolate was spotted twice on each target plate to make duplicates, and then covered with 

α-Cyano-4-hydroxycinnamic acid (HCCA) matrix (Bruker Daltonics, Coventry, UK). 

For reproducibility, one target plate was analysed by MALDI-TOF MS (Microflex LT), 

in the meantime, the other target plate was analysed by MALDI-TOF MS (Autoflex). 
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Spectra generated by both MALDI-TOF MS were analysed by Biotyper 3.1 for 

microbial identification.  

2.3.3 16S rRNA gene sequencing identification 

16S rRNA gene PCR and sequencing were also used to identify a small proportion of 

the environmental staphylococcal isolates to confirm the reliability of MALDI-TOF MS 

identification method.  

2.3.3.1 Primers 

The following primers were used for the amplification of the partial 16S rRNA gene 

sequence (Benagli et al., 2011):     

UNI16S RNA-L (nucleotide sequence 5’ -ATTCTTAGAGTTTGATCATGGCTCA- 3’) 

and UNI16SRNA-R (nucleotide sequence 5’ -ATGGTACCGTGTGACGGGCGGTGT 

GTA- 3’), which allows the amplification of a 1400 bp DNA fragment. 

2.3.3.2 PCR reaction system 

All PCR in this study was performed by T100
T
 Thermal cycler (BIO-RAD, UK). 

Template DNA for PCR was prepared by resuspending one loop (10 µl, Thermo 

Scientific
TM

, UK) of bacteria in 100 µl 1×TE buffer (10 mM Tris, 1 mM EDTA). The 

mixture was boiled for 10 min and then centrifuged at 3000 g for 5 min. The 

supernatant was used as DNA template (Hanssen et al., 2004). Alternatively, QIAamp 

DNA extraction kit (Qiagen, Crawley, UK) was used for DNA extraction. 

PCR was prepared according to the protocol used by Benagli et al., (2011). The mixture 

was as followings: 20 units ml
-1

 Phusion
®
 High-Fidelity DNA Polymerase (NEB, UK), 

0.2 mM of each deoxynucleotide triphosphates, 1×Phusion
®
 High-Fidelity Buffer, 
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approximately 10 ng template DNA, 1.5 mM MgCl2 and 0.8 µM of each primer in a 

final volume of 25 µl. 

PCR thermal cycling conditions were 5 min at 95°C for 1 cycle, followed by 35 cycles 

of 30 sec at 94°C, 30 sec at 52°C, 1 min at 72°C, and finalized by extension at 72°C for 

10 min (Benagli et al., 2011).  

2.3.3.3 Gel electrophoresis 

Agarose gel electrophoresis was used to detect all PCR products in the size range of 100 

bp to 10 kbp. Molecular grade agarose (Melford, UK) was dissolved in 1x TAE buffer 

(40 mM Tris base, 40 mM acetic acid, 1 mM EDTA) (Sigma-Aldrich, UK) to make 1.0% 

(w/v) agarose, and then mixed with ethidium bromide to a final concentration of 0.1 mg 

l
-1

 (Fisher Scientific). The solidified gel was then placed in gel electrophoresis buffer (1

×TAE buffer), samples and 2-Log DNA ladder (0.1-10 kbp) (NEB, UK) were loaded 

into the wells, and 120 V was applied across the gel for 1 to 2 hours. Bromophenol 

blue/xylene cyanol dye front was monitored to see the migration of samples. The gel 

was visualized by a UV transilluminator (Syngene, Cambridge, UK) and saved as a jpg 

or TIFF files (Syngene, Cambridge, UK). The same gel electrophoresis system was used 

for mecA gene, mecC gene, SCCmec typing, and MLST detection.  

2.3.3.4 Sequencing 

The PCR products were purified by cycle pure kit (Qiagen, Crawley, UK) or gel 

extraction kit (Qiagen, Crawley, UK), and sequencing was performed commercially by 

Eurofins MWG operon (Eurofins Genomics, i54 Business Park, Valiant Way, 

Wolverhampton, UK). PCR purified products were sent out at concentrations of 50-100 

ng µl
-1

 along with the 10 pmol µl
-1

 corresponding oligonucleotides. Results were 
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usually archived in the Eurofin account within 3 working days. The same sequencing 

system was used in MLST sequencing.   

2.4 Antibiotic susceptibility test 

In this study, the antibiotic susceptibility of staphylococci was measured by disc 

diffusion and antimicrobial gradient methods.  

2.4.1 Disc diffusion test 

Antibiotic susceptibility to 12 antibiotics were tested using standard disk diffusion 

methods as previously described (Mahon et al., 2014). Antibiotic susceptibilities to 

oxacillin (1 µg), vancomycin (5 µg), gentamicin (10 µg),  mupirocin (20 µg), 

amoxicillin (10 µg), erythromycin (5 µg),  tetracycline (10 µg),  streptomycin (10 µg),  

cefepime (30 µg) ,  fusidic acid (10 µg) ,  penicillin G (1 unit)  and chloramphenicol (30 

µg) were tested  (Mast Group, Merseyside, UK). The panel of 12 antibiotics used 

belonged to 8 different classes of antibiotics. These antibiotics were selected as these 

are the most common antibiotics used for profiling of antibiotic susceptibility in 

staphylococci. The amount of antibiotic on the discs is recommended by BSAC and 

CLSI standards (Howe & Andrew, 2012; Creagh & Lucey, 2007).  

Antibiotic susceptibility tests of 120 staphylococcal isolates were carried out by the 

final year project students studying Biomedical Science program in 2014. 

2.4.2 MIC test 

The minimum inhibitory concentration (MIC) to oxacillin was additionally evaluated 

using ‘‘M.I.C. evaluators’’ (Oxoid Ltd., Basingstoke, UK). The antimicrobial gradient 

method towards oxacillin was applied to all mecA gene positive staphylococci. Test 

methods and interpretation were according to manufacturer’s instruction. The MIC strip 

(Oxoid Ltd, Basingstoke, UK) is a plastic strip with an antibiotic gradient from the 
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lowest concentration (0.015 mg l
-1

) at the bottom to the highest concentration (256 mg l
-

1
) at the top. The MIC strips were placed on the surface of pre-inoculated iso-sensitest 

agar plates, and the scale was facing up. After 18-24 h incubation, the lids of petri 

dishes were removed, and the MICs were determined where the growth ellipse 

intersects the MIC strip (Fig 2.3) (Jorgensen & Ferraro, 2009).  

 

Figure 2. 3 Photograph of isosensitest agar plate with a MIC strip (oxacillin) (Picture 

was taken by me) 

2.4.3 Interpretation 

BSAC standards were used to interpret gentamicin, vancomycin, penicillin, 

erythromycin, tetracycline, fusidic acid and mupirocin (Howe & Andrews, 2012). The 

antibiotics (oxacillin, cefepime, streptomycin, chloramphenicol, amoxicillin) that cannot 

be interpreted by BSAC, were interpreted by CLSI standards (Creagh & Lucey, 2007; 

Wayne, 2014). In addition, MIC of oxacillin was interpreted with CLSI standards. 



84 
 

2.5 Molecular characterization of staphylococci   

2.5.1 mecA gene detection 

2.5.1.1 mecA gene determined by polymerase chain reaction 

2.5.1.1.1 Primers 

Two pairs of primers were used for mecA gene exploration, including met1, met2 

(Hanssen et al., 2004) and mA1, mA2 (Kondo et al., 2007) (Table 2.1). 

Table 2. 1 Two sets of primers for mecA gene PCR 

mecA Primers Primer sequence Amplicon size 

(bp) 

Reference 

met1 GGGATCATAGCGTCATTATTC 527 Hanssen et al, 2004 

met2 AACGATTGTGACACGATAGCC   

mA1 TGCTATCCACCCTCAAACAGG 286 Kondo et al, 2007 

mA2 AACGTTGTAACCACCCCAAGA   

 

2.5.1.1.2 PCR reaction system 

For met1 and met2 primers, the PCR was prepared according to Hanssen et al., (2004) 

with minor modification. The PCR were carried out with the standard PCR mixture with 

Phusion
®
 High-Fidelity PCR Master Mix with HF Buffer (NEB, UK), which contains 

20 units ml
-1

 Phusion
®
 High-Fidelity DNA Polymerase, 0.2 mM each dNTP, 1× 

Phusion
®
 High-Fidelity Buffer, approximately 10 ng template DNA and 1.5 mM MgCl2. 

0.8 µM of each primer in a final volume of 25 µl (Hanssen et al., 2004). For mA1 and 

mA2 primers, the PCR preparation was referred to Kondo et al., (2007).  The reaction 

mixtures contained approximately 10 ng templates DNA, 0.1 µM oligo-nucleotide 

primers. 0.2 mM of each deoxynucleotide triphosphates, 3.2 mM MgCl2, Ex Taq buffer, 

and 2.5 U Ex Taq polymerase (Takara Bio Inc., Tokyo. Japan) in a final volume of 25 

µl (Kondo et al., 2007).  
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2.5.1.1.3 PCR cycle  

The PCR program for met1 and met2 primers started with an initial denaturation step at 

94℃ for 5 min followed by 35 cycles of denaturation at 94℃ for 30 s, annealing at 52℃ 

for 30 s, and extension at 72℃ for 1 min, ending with a final extension step at 72℃ for 

10 min and followed by a hold at 4℃ (Hanssen et al., 2004).  For mA primers, the PCR 

program began with an initial denaturation step at 94℃ for 2 min followed by 30 cycles 

of denaturation at 94℃ for 2 min, annealing at 57℃ for 1 min, and extension at 72℃ for 

2 min; and a final elongation step at 72℃ for 2 min (Kondo et al., 2007).  

2.5.1.2 mecA gene determination by Southern blotting 

Southern blotting was performed for several isolates recovered from study to confirm 

the presence of mecA gene. 

2.5.1.2.1 Genomic DNA extraction 

Fresh culture was prepared on nutrient agar (Oxoid Basingstoke, UK) for 24 hours. 

DNA extraction was undertaken using the DNA extraction kit (Qiagen, Crawley, UK) 

according to manufacturer’s instruction. The colonies of 2 to 4 plates were collected for 

one extraction column to obtain a high concentration of DNA. 

2.5.1.2.2 DNA Probe  

mecA gene primers (mA1 and mA2) were used to amplify the DNA probe for Southern 

blotting. The probe was amplified by PCR DIG probe synthesis kit with some minor 

modification (Roche, F. Hoffmann-La Roche Ltd). 50 µl PCR mixture tube contains: 

0.25 µl of each primer, 5 µl 10×PCR buffer with MgCl2, 5 µl 10×PCR DIG probe 

synthesis mix, 0.75 µl enzyme mix, approximately 10 ng template DNA , 3.4 µl MgCl2 

solution. The PCR program was as followings:  denaturation at 94℃ for 5 min, 30 
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cycles of denaturation at 94℃ for 1 min, annealing at 50℃ for 1 min, extension at 72℃ 

for 2 min, and final extension was 72℃ for 10 min. 

2.5.1.2.3 DNA digestion 

The digestion of genomic DNA was carried out with restriction enzyme Cla I (5000U 

ml
-1

) (Biolabs, New England) according to manufacturer’s instruction with minor 

modification. The digestion system contained 2 µg genomic DNA, 5 µl buffer 4, 2 µl 

Cla I (5000 U ml
-1

), BSA 0.5 µl and dH2O 12.5 µl. The digestion was performed at 37℃ 

for 1 hour. 

2.5.1.2.4 Gel electrophoresis 

After running the gel at 100 V for 10 min, the voltage has been reduced to 36 V and left 

for 7 hours. An image of the gel was taken, and band size comparison was visualised by 

placing a ruler parallel to the length of the gel. Clear bands are indicative of complete 

digestion.  

2.5.1.2.5 DNA Transfer 

Firstly, the gel was bathed in depurination solution for 15 min, and then washed by 

dH2O. Secondly, the gel was bathed in the denaturation buffer for 30 min, and washed 

by dH2O. Finally, the gel was bathed in neutralisation buffer for 1 hour, and washed in 

dH2O. 

One layer of Whatman 3 mm paper was placed on the large plastic gel tray, with two 

sides in 20×SSC solution. The paper was soaked by 20×SSC, and a stripette was used to 

roll out any air bubbles. The paper was then topped by one layer of smaller Whatman 3 

mm paper, and again the smaller Whatman 3mm paper was soaked in 20×SSC.  Air 

bubbles in the smaller Whatman 3mm paper were rolled out. The agarose gel containing 

the genomic DNA digests was placed on top, soaked by 20×SSC, and then lined edges 



87 
 

by cling film. A waterproof seal was formed around it, so that all the 20×SSC was 

drawn up through only the gel and membrane. An Amersham Hybond-N Nylon 

membrane (GE Healthcare, UK) was lined up with the gel, and the right corner of the 

nylon membrane was cut for labelling. The nylon membrane was placed on the gel, 

soaked by 20×SSC and air bubbles were rolled out from nylon membrane. The nylon 

membrane was then topped with one gel sized Whatman 3 mm paper, again soaked by 

20×SSC and air bubbles was rolled out from Whatman 3 mm paper. A packet of 

handtowels was piled up on the gel sized Whatman 3 mm paper, and topped by a plastic 

lid and weight. Two hours later, 20×SSC soaking through the gel and membrane into 

the tissue was checked and left overnight.  

2.5.1.2.6 DNA hybridization 

Pre-hybridization solution was warmed up to 68℃ and sonicated fish sperm DNA was 

thawed. The membrane was disassembled, and transferred into the UV crosslinker. 

Membrane DNA-side up was fixed by UV crosslinker, and the membrane was then 

soaked in 25 ml pre-hybridization solution mixed with 0.2 mg ml
-1

 sonicated fish sperm 

DNA, and incubated in a sealed box at 68℃ for 6 hours. The mecA gene probe was 

denatured at 80℃ for 15 min, and 30 µl of the probe was then added into the pre-

hybridization solution to make hybridization solution. The membrane was soaked in 

hybridization solution, and incubated overnight in a sealed the box. The membrane was 

washed in 2×SSC, 0.2% (w/v) SDS solutions at room temperature for 15 min, and then 

washed in 0.2×SSC, 0.2% (w/v) SDS solutions at room temperature for 15 min. 

After hybridization and stringency washes, the membrane was incubated in 100 ml 

blocking solution for 30 min at room temperature, and incubated in 20 ml antibody 

solution (2 µl Anti-Digoxigenin-AP, 20 ml Blocking solution) at room temperature for 

30 min. The membrane was washed twice with 100 ml washing buffer, and then 
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equilibrated in 20 ml detection buffer at room temperature for 2-5 min. Membrane 

DNA-side up was placed on an opened-up plastic bag and 2 ml diluted CSPD 

(Appendix I.3) solution was applied on the top.  The other side of the plastic bag was 

folded over the top of the membrane to make the CSPD solution distributed evenly over 

the membrane surface, and the edges around the membrane were sealed by the plastic 

sealer. The sealed membrane was kept in the cassette to avoid light damage, and 

incubated at 37℃ for 15 min. The membrane was exposed to X-ray film for 10 min, and 

the film was developed. First, the film was bathed in developer solution until the image 

appears, and then rinsed with water. Then, the film was bathed in fixer solution for 30 s, 

and rinsed with water again. Finally, the film was hung up to dry. 

2.5.2 mecC gene detection 

The presence of mecC gene was detected in oxacillin resistant staphylococcal isolates, 

and one pair of primers was used in this study. 

2.5.2.1 Primers 

mecC_Uni_F: GGATCTGGTACAGCATTACAACC, mecC_Uni_R: TGCTTTAAATC 

RATMTTGCCG was used to determine the mecC gene, which gives a 332 bp product 

(García-Álvarez et al., 2011).  

2.5.2.2 PCR reaction system 

The PCR was carried out by method used by García-Álvarez et al., (2011). A 25 μl PCR 

reaction was conducted containing 12.5 µl Phusion
®
 High-Fidelity PCR Master Mix 

with HF Buffer (20 units ml
-1

 Phusion
®
 High-Fidelity DNA Polymerase, 0.2 mM each 

dNTP, 1× Phusion
®
 High-Fidelity Buffer) (NEB, UK), 4 mM MgCl2, 0.15 mM KCl, 15 

mM Tris, 4 μM of each primer, and approximately 10 ng of DNA template.  
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2.5.2.3 Cycling scheme for PCR 

The cycling programme starts with a denaturation step at 94℃ for 4 min, and 32 cycles 

of denaturation for 45 s at 94℃, annealing for 45 s at 60℃, and extension for 45 s at 

72℃, with a final extension step 72℃ for 5 min (García-Álvarez et al., 2011).  

2.5.3 SCCmec typing 

SCCmec is a mobile genetic island with two essential components, mec complex and 

ccr complex (IWG-SCC, 2009). Eleven SCCmec types have been identified to date. 

Typing was based on the combination of mec complex and ccr complex (IWG-SCC, 

2009). SCCmec types I to IX (except VII) were tested in this study. 

2.5.3.1 Primers 

The SCCmec M-PCR typing assay contains 8 pairs of primers including the unique and 

specific primers for SCCmec types and subtypes I, II, III, IVa, IVb, IVc, IVd and V 

(Zhang et al., 2005). Primers for SCCmec types and subtypes were as followings: I 

(Type I-F, Type I-R), II (Type II-F, Type II-R), III (Type III-F, Type III-R), IVa (Type 

IVa-F, Type IVa-R), IVb (Type IVb-F, Type IVb-R), IVc (Type IVc-F, Type IVc-R), 

IVd (Type IVd-F, Type IVd-R) and V (Type V-F, Type V-R) (Table 2.2). 

Another approach used for SCCmec typing was determined by the combination of mec 

complex and ccr complex types. Multiplex PCR was used to determine mec complex: 

class A mec (mI6, mA7), class B mec (IS7, mA7), and class C mec (IS2, mA7). 

Multiplex PCR was also used for ccr complex: type 1 ccr (α1, βc); type 2 ccr (α2, βc); 

and type 3 ccr (α3, βc). Single target PCR was applied to type 4 ccr (α4.2, β4.2) and 

type 5 ccr (γF, γR). These primers and their respective concentrations used in the PCR 

were listed in Table 2.2.  
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The specific concentration of each primer can be explained by the previously described 

protocols (Kondo’s et al., 2007; Zhang et al., 2005), as they were designed for Multiplex 

PCR.



91 
 

Table 2. 2 Primers for SCCmec typing 

primer Oligonucleotide sequence(5’-3’) Concentration 

(µM) 

Amplicon Size  

(bp) 

Specificity Reference 

Type I-F GCTTTAAAGAGTGTCGTTACAGG 0.048 613 SCCmec I Zhang et al., 2005 

Type I-R GTTCTCTCATAGTATGACGTCC 0.048    

Type II-F CGTTGAAGATGATGAAGCG 0.032 398 SCCmec II Zhang et al., 2005 

Type II-R CGAAATCAATGGTTAATGGACC 0.032    

Type III-F CCATATTGTAGTACGATGCG 0.04 280 SCCmec III Zhang et al., 2005 

Type III-R CCTTAGTTGTCGTAACAGATCG 0.04    

Type IVa-F GCCTTATTCGAAGAAACCG 0.104 776 SCCmec IVa Zhang et al., 2005 

Type IVa-R CTACTCTTCTGAAAAGCGTCG 0.104    

Type IVb-F TCTGGAATTACTTCAGCTGC 0.092 493 SCCmec IVb Zhang et al., 2005 

Type IVb-R AAACAATATTGCTCTCCCTC 0.092    

Type IVc-F ACAATATTTGTATTATCGGGAGAGC 0.078 200 SCCmec IVc Zhang et al., 2005 

Type IVc-R TTGGTATGAGGTATTGCTGG 0.078    

Type IVd-F CTCAAAATACGGACCCCAATACA 0.28 881 SCCmec IVd Zhang et al., 2005 

Type IVd-R TGCTCCAGTAATTGCTAAAG 0.28    

Type V-F GAACATTGTTACTTAAATGAGCG 0.06 325 SCCmec V Zhang et al., 2005 

Type V-R TGAAAGTTTGTACCCTTGACACC 0.06    

mI6 CATAACTTCCCATTCTGCAGATG 0.08 1963 Class A mec Kondo et al., 2007 

mA7 ATATACCAAACCCGACAACTACA 0.08    

IS7 ATGCTTAATGATAGCATCCGAATG 0.08 2827 Class B mec Kondo et al., 2007 

mA7 ATATACCAAACCCGACAACTACA 0.08    

IS2 TGAGGTTCAGATATTTCGATGT 0.08 804 Class C mec Kondo et al., 2007 

mA7 ATATACCAAACCCGACAACTACA 0.08    

βc ATTGCCTTGATAATAGCCITCT 0.08 695 Type 1 ccr Kondo et al., 2007 
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primer Oligonucleotide sequence(5’-3’) Concentration 

(µM) 

Amplicon Size  

(bp) 

Specificity Reference 

α1 AACCTATATCATCAATCAGTACGT 0.08    

Βc ATTGCCTTGATAATAGCCITCT 0.08 937 Type 2 ccr Kondo et al., 2007 

α2 TAAAGGCATCAATGCACAAACACT 0.08    

βc ATTGCCTTGATAATAGCCITCT 0.08 1791 Type 3 ccr Kondo et al., 2007 

α3 AGCTCAAAAGCAAGCAATAGAAT 0.08    

α4.2 GTATCAATGCACCAGAACTT 0.08 1287 Type 4 ccr Kondo et al., 2007 

β4.2 TTGCGACTCTCTTGGCGTTT 0.08    

γR CCTTTATAGACTGGATTATTCAAAATAT 0.08 518 Type 5 ccr Kondo et al., 2007 

γF CGTCTATTACAAGATGTTAAGGATAAT 0.08      
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2.5.3.2 PCR reaction system 

For Zhang et al’s method, PCR mixture contains 50 mM KCl, 20 mM Tris-HCl (pH 

8.4), 2.5 mM MgCl2, 0.2 mM of each deoxynucleoside  triphosphate (dATP, dUTP, 

dGTP, and dCTP) (Fisher Scientific UK LTD), various concentration of the respective 

primers (Table 2.2), approximately 10 ng template DNA, 1× Phusion
®
 High-Fidelity 

Buffer and 20 unit ml
-1

 of Phusion
®
 High-Fidelity DNA Polymerase (NEB, UK) (Zhang 

et al., 2005).  

For Kondo et al’s method, the reaction mixture contain 10 ng chromosomal DNA, 0.1 

µM primers, 0.2 mM each dNTP, 3.2 mM MgCl2. 20 unit ml
-1

 of Phusion® High-

Fidelity DNA Polymerase and 1× Phusion
®
 High-Fidelity Buffer (Kondo et al., 2007).  

2.5.3.3 Cycling scheme for PCR 

The amplification for SCCmec types and SCCmec subtypes I, II, III, IVa, IVb, IVc, IVd 

and V was performed in a T100
T
 Thermal cycler (Bio-rad, UK) beginning with an initial 

denaturation step at 94℃ for 5 min followed by 10 cycles of denaturation at 94℃ for 45 

s, annealing at 65℃ for 45 s, and extension at 72℃ for 1.5 min. Another 25 cycles of 

denaturation at 94℃ for 45 s, annealing at 55℃ for 45 s, and extension at 72℃ for 1.5 

min, ending with a final extension step at 72℃ for 10 min and followed by a hold at 4℃ 

(Zhang et al., 2005).  

For mec complex and ccr complex, PCR was run with T100
T
 Thermal cycler (Bio-rad, 

UK) beginning with an initial denaturation step at 94℃ for 2 min followed by 30 cycles 

of denaturation at 94℃ for 2 min, annealing at 57℃ for 1 min, and extension at 72℃ for 

2 min; and a final elongation step at 72℃ for 2 min (Kondo et al., 2007).   
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2.5.4 Multi-locus sequence typing of S. epidermidis 

Multi-locus sequence typing (MLST) determines the relationship of the isolates with 

international reported types using the DNA sequences of housekeeping genes (Thomas 

et al., 2007). In this study, MLST types were assigned to S. epidermidis. 

2.5.4.1 primers 

The primers used for Multi-locus sequence typing (MLST) of S. epidermidis are as 

followings: arcC, aroE, gtr, mutS, pyr, tpi, yqil (Table 2.3). 
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Table 2. 3 Primers for MLST of S. epidermidis 

Gene 

 

Primer Sequence(5’-3’) 

Carbamate Kinase (arcC) arcC F TGTGATGAGCACGCTACCGTTAG 

arcC R TCCAAGTAAACCCATCGGTCTG 

Shikimate dehydrogenase (aroE) aroE F CATTGGATTACCTCTTTGTTCAGC 

aroE R CAAGCGAAATCTGTTGGGG 

ABC transporter (gtr) gtr F CAGCCAATTCTTTTATGACTTTT 

gtr R GTGATTAAAGGTATTGATTTGAAT 

DNA mismatch repair protein (muts) muts F GATATAAGAATAAGGGTTGTGAA 

muts R GTAATCGTCTCAGTTATCATGTT 

Pyrimidine operon regulatory protein (pyrR) pyr F GTTACTAATACTTTTGCTGTGTTT 

pyr R GTAGAATGTAAAGAGACTAAAATGAA 

Triosephosphate isomerase (tpiA)  tpi F ATCCAATTAGACGCTTTAGTAAC 

tpi R TTAATGATGCGCCACCTACA 

Acetyl coenzyme A acetyltransferase (yqiL) yqiL F CACGCATAGTATTAGCTGAAG 

yqiL R CTAATGCCTTCATCTTGAGAAATAA 
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2.5.4.2 PCR reaction system 

PCR was prepared according to the unified scheme of Thomas et al., (2007), 

Wisplinghoff et al., (2003) and Wang et al., (2003). PCR were carried out with the 

standard PCR mixture with Phusion
®
 High-Fidelity PCR Master Mix with HF Buffer 

(NEB, UK), which contains 20 units ml
-1

 Phusion
®
 High-Fidelity DNA Polymerase, 0.2 

mM each dNTP, 1× Phusion
®
 High-Fidelity Buffer, 1.5 mM MgCl2. 0.8 µM of each 

primer and approximately 10 ng template DNA in a final volume of 25 µl. 

2.5.4.3 Cycling scheme for PCR 

PCR involved an initial denaturation of 95°C for 3 min; 34 cycles of denaturation at 

95°C for 30 s, annealing at 50°C for 1 min, and extension at 72°C for 1 min; with a final 

extension of 72°C for 10 min (Thomas et al., 2007; Wang et al., 2003; Wisplinghoff et 

al., 2003).  

2.6 Whole genomic sequence 

2.6.1 Identification of S. epidermidis 118 (G6_2) 

The S. epidermidis 118 (G6_2) was recovered from hotel (DSH) in Oct 2012 in London, 

UK.  

Preliminary identification was achieved by using Matrix-assisted laser desorption/ 

ionization time-of-flight mass spectrometry (Microflex LT, MALDI-TOF MS, Bruker 

Daltonics, Coventry, UK) as described previously (Mkrtchyan et al., 2013).  

Genomic DNA of S. epidermidis 118 (G6_2) was prepared using a QIAamp DNA 

extraction kit (Qiagen, Crawley, UK). 16S rRNA gene sequencing was performed as 

described previously (Okazaki et al., 2009), and amplified PCR products were 
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sequenced by Eurofins MWG operon (Eurofins Genomics, i54 Business Park, Valiant 

Way, Wolverhampton, UK). 

2.6.2 General test of S. epidermidis 118 (G6_2) 

Genomic DNA was extracted with the DNA extraction kit (Qiagen, Crawley, UK). 

mecA gene detection was determined by methods described by Hanssen et al., (2004). 

SCCmec type was carried out by mec and ccr complexes PCR accordingly (Kondo et 

al., 2007).   

The antibiotic susceptibility of S. epidermidis 118 (G6_2) was tested against 13 

antibiotics using disk diffusion methods (Mast Group, Merseyside, UK)， including 

oxacillin (1 µg), vancomycin (5 µg), gentamicin (10 µg),  mupirocin (20 µg), 

amoxicillin (10 µg), erythromycin (5 µg),  tetracycline (10 µg),  streptomycin (10 µg),  

cefepime (30 µg) ,  fusidic acid (10 µg),  penicillin G (1 unit), cefoxitin (10 µg),  and 

chloramphenicol (30 µg). In addition, the minimum inhibitory concentration (MIC) of 

the isolate to oxacillin was determined using ‘‘M.I.C. evaluators’’ (Oxoid Ltd, 

Basingstoke, UK).  

2.6.3 Whole genomic sequence assembly and comparative genomics 

A draft genome sequence of S. epidermidis 118 (G6_2) was produced using HiSeq 2000 

technology.  Genomic DNA was extracted using the MasterPure™ Gram Positive DNA 

Purification Kit (Cambio, Dry Drayton, UK) from overnight cultures grown from single 

colonies in 5 ml of tryptic soy broth overnight at 37℃. Illumina library preparation was 

carried out as described previously (Quail et al., 2008), and genome sequencing using 

Hi-Seq 2000 performed following the manufacturer’s standard protocols (Illumina, 

Little Chesterfield, UK). The whole genome sequence was performed by Dr Gavin K 

Paterson (University of Hull). 
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The raw fastq data was retrieved and quality trimmed using Trimmomatic (version 0.35) 

with default settings, specifying a phred cutoff of Q20.  Read quality was assessed using 

FastQC. The Kraken (version 0.10.5-beta) metagenomic pipeline, KronaTools 

Metagenomics App (version 2.5) was used to assess library purity, that is, it was not a 

mixed sample and validate that the species was S. epidermidis.  De novo assemblies 

were performed using SPAdes Genomic Assembler (version 3.5.0), default PE settings, 

from which only contigs greater than 500 bp in length were taken for further analysis.  

Using the program, Andi (version 0.9.4-beta) the de novo assembled 118 (G6_2) 

genome along with 92 assembled staphylococcal genomes were aligned, clustered and 

visualized using PHYLIP and FigTree.  Annotations were performed using the pipeline 

Prokka (version 1.11).  The resultant annotated genome was used for all subsequent 

comparative genomic studies; including BLAST based genome comparisons visualized 

using the Blast Ring Image Generator (version 0.95) and Mauve (version snapshot 

2015-02-13).  The Presence/absence of genes was assessed using the Roary pipeline 

(version 3.4.2).  BlastP was used to identify potential virulence factors, as defined by 

the VFDB (http://www.mgc.ac.cn/VFs/) and PHI-base (http://www.phi-base.org/ 

about.php), whereby a cut off of ≥ 50% sequence identity over ≥ 50% of the total 

alignment percentage ( = (alignment length/query length)*100) to help determine 

sequence homology.  

2.6.4 Reference strains 

Reference strains for comparative genomic analysis include methicillin resistant S. 

aureus N315 (ASM964v1), biofilm forming S. epidermidis RP62a (ASM1192v1), and 

non-biofilm forming S. epidermidis ATCC12228 (ASM764v1). 

http://www.phi-base.org/
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2.6.5 Nucleotide sequence accession numbers  

Reads for S. epidermidis 118 (G6_2) was stored in European Bioinformatics Institute 

(EMBL-EBI). 

2.6.6 Antibiotic resistance gene determination 

The whole genomic sequences were uploaded to the ResFinder 2.1, which is one of the 

services provided by Center for Genomic Epidemiology (https://cge.cbs.dtu.dk 

/services/ResFinder/). The resistance genes were displayed on the website, with 

similarity to reference genes, and location sites in the genome.  

2.7 mecA gene transfer via broth mating experiment 

In order to find out the possibility of mecA gene transfer from environmental CoNS to S. 

aureus in vitro, mating experiment was performed.  

2.7.1 Cell stock 

The microorganisms used in mating experiment were listed in Table 2.4. 

Table 2. 4 Organisms used in mating experiment 

Organism name Source 

S. aureus NCTC 6571 Oxford University 

S. hominis 399 Environmental culture collection  

  

2.7.2 Mating experiment 

Broth mating experiments were performed in triplicate using mecA gene positive S. 

hominis 399 as donor and mecA gene negative S aureus NCTC 6571 as a recipient. For 

conjugation, 1 ml of overnight culture of donor and 2 ml of the recipient were mixed 

and inoculated in 5 ml NB (Oxoid Ltd, Basingstoke, UK) and incubate for 18 h at 37℃ 

with gentle shaking. After incubation, 100 µl of the culture were spread on a MSA 

(Oxoid Ltd, Basingstoke, UK) supplemented with the selective agent oxacillin (4 mg l
-1

) 
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(Oxoid Ltd, Basingstoke, UK) and incubated at 37℃. The growth of colonies was 

detected after 24-48 h.  

2.7.3 Prolex
TM

 staph XTRA latex tests 

The transconjugants were then identified by Prolex
TM

 Staph XTRA Latex system 

(Prolab Diagnostics, Neston, South Wirral, UK) following the manufacturer’s 

instruction. 

One drop of the Prolex™ Staph XTRA Latex Reagent was dispensed on the test card, 

mixed with several colonies, and the agglutination/non-agglutination can be observed in 

20 sec. A negative control was tested at the same time. 

For positive results, a high level of agglutination can be observed within 20 sec; and no 

visible agglutination is indicative of negative results. 

2.7.4 MIC oxacillin tests 

The minimum inhibitory concentration (MIC) to oxacillin were evaluated using ‘‘M.I.C. 

evaluators’’ (Oxoid Ltd., Basingstoke, UK). Antimicrobial gradient method towards 

oxacillin was applied to transconjugant and recipient. Test methods and interpretation 

were undertaken according to manufacturer’s instruction. Iso-sensitest agar overlaid 

with fresh culture was prepared for testing. MIC strips contain oxacillin was put on the 

surface of agar plates. After overnight incubation, the results were interpreted by the 

ellipse of inhibition area from the upper side of the plate.  

2.7.5 Pulse-field gel electrophoresis  

In addition to 16S rRNA gene sequencing of transconjugant, the pulse-field gel 

electrophoresis (PFGE) was applied to determine the genetic pattern of donor, recipient 

and transconjugant.  
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2.7.5.1 Preparation of genomic DNA digestion samples 

The bacteria were pelleted and washed in PBS, before being re-suspended in 1% Low 

Melting Point Agarose (BioRad, UK) in buffer (10 mM Tris pH 8.0, 1 M NaCl) at a 

density of 10
8
 cells per ml held at 42°C, prior to being dispensed into a mould (BioRad, 

UK) to form suitable DNA blocks. These were allowed to set on ice for 30 minutes 

before being transferred into a digestion buffer consisting of 3% (w/v) sarkosyl, 0.5 M 

EDTA and 100 µg ml
-1

 of proteinase K. Samples were incubated at 56°C for 24 hours 

before being stored at 4°C until use. DNA blocks were loaded onto a 1% (w/v) agarose 

gel and sealed using 1% (w/v) Low melting point agarose before being loaded onto the 

CHEF Mapper II system (BioRad, UK). 

2.7.5.2 PFGE program 

A phage λ ladder (48.5 kb-1,000 kb) was used as a marker. To separate chromosomal 

DNA from 200 kbp to 2.2 Mbp, a 1% (w/v) agarose gel was run in 0.5 × TBE at 12°C, 

at a gradient of 6 V cm
-1

 with the angle of 120 degree in a linear fashion for a total of 30 

hours.  

2.7.5.3 Gel screening 

Following the electrophoresis, the gel was removed and stained a solution 1 mg ml
-1

 

ethidium bromide in 1 × TAE electrophoresis buffer for 30 minutes before visualizing 

on a UV transilluminator (Syngene, Cambridge, UK).  

The PFGE was performed by Dr Bruno Pichon (Public Health England, London, UK). 

2.8 Proteomic analysis  

Recepient and transconjugant were selected to do comparative proteomic analysis with 

LC-MS/MS, and the method follows the research procedure of Applied and Functional 

Genomics department, Public Health England. 
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2.8.1 Protein extraction 

The cell lysate was produced by using the ‘glass beads’ method (Dekio et al., 2013). A 

full loop of fresh culture was collected and then transferred into a 2 ml vial with 150 µl 

lysis buffer (0.5 M sucrose, 20 mM maleic acid, pH 6.5, 20 mM MgCl2, 6 mg ml
-1

 

lysozyme, and 1 mM PMSF). After mixed thoroughly, 1 g glass beads (Sigma-Aldrich, 

UK) were added to the mixture. The highest setting of the vortex mixer was used, and 

the suspension was vortex mixed 3 - 5 times for 1 min. Each time the cells were kept on 

ice for 1 minute between vortex mixes.  

After mixing, the cells were pelleted by centrifugation at 21000 g for 20 min. The 

supernatant were transferred into 1.5 ml eppendorf tubes, and kept at -20℃ until further 

use. 

2.8.2 Protein concentration 

Protein concentration was determined by Bradford assay (Bio-Rad, USA). BSA was 

used as standard, and the protein standard curve was obtained from seven concentration 

of BSA (0.05 mg ml
-1

, 0.1 mg ml
-1

, 0.2 mg ml
-1

, 0.4 mg ml
-1

, 0.6 mg ml
-1

, 0.8 mg ml
-1

 

and 1 mg ml
-1

). Each sample was diluted 10 times, and 20 µl of cell lysate was mixed 

with 180 µl Bradford reagent (Sigma-Aldrich, UK). The absorbance at 595 nm of each 

protein sample was detected as duplicates in a 96 well plates using the FLUOstar 

Omega Microplate Reader (BMG LABTECH, Offenburg, Germany). The concentration 

was calculated using the FLUOstar Omega evaluation software (BMG LABTECH, 

Offenburg, Germany). Pre-set Bradford templates can be used to do the calculations.  
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2.8.3 One-dimensional SDS-PAGE  

10 μg protein of each sample was loaded on a 10% (w/v) Bis–Tris gel (Invitrogen, UK), 

and protein was separated at a voltage of 180 V for 30 min using MES running buffer 

(Invitrogen, UK) in accordance with the manufacturer’s instructions. 

2.8.4 In-gel tryptic digestion of protein for LC-MS/MS 

The gel was stained by colloidal Coomassie (Sigma-Aldrich, UK). Each gel lane was 

cut into 12 pieces and bands were placed in wells in a 96 well plate accordingly. The 

stain was washed by 50% (v/v) methanol (Fisher Scientific, UK) for 2 ×20 min, and 

then left in 50% (v/v) methanol overnight for thorough de-staining. Dehydration was 

achieved by soaking in 100% (v/v) acetonitrile (Fisher Scientific, UK) for 10 min and 

dried for 5 min, 10 mM DTT (GE Healthcare, UK) was used for reduction, and 55 mM 

iodoacetamide was added for alkylation. Dehydrated gels were incubated with10 ng μl
-1

 

porcine trypsin (modified sequencing grade; Promega, USA) for 16 h at 37°C, and 

peptides were extracted by addition of 2% (v/v) acetonitrile (Fisher Scientific, UK) and 

0.1% (v/v) trifluoroacetic acid (TFA) (Sigma-Aldrich, UK) for 1 h. After centrifugation, 

the supernatant were collected and stored at −80°C for further use.  

2.8.5 LC-MS/MS analysis of tryptic peptides 

2.8.5.1 EASY-nLC 

The proteolytic digests of the protein extracts were further separated by a split-free 

EASY-nLC 1000 liquid chromatograph system (Thermo Scientific, UK) and analysed 

by Thermo LTQ Orbitrap Classic mass spectrometers (Thermo Electron, Bremen, 

Germany). Peptide mixtures were initially trapped and desalted on a reversed phase trap 

column (C18, 300 µm i.d. × 3 mm, Thermo Scientific., UK) and further separated on an 

analytical reversed-phase (RP) nano column (C18, 3 µm particle size, 75 µm i.d. × 15 

cm, Thermo Scientific., UK). Separation were achieved using a 38-minute linear 
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gradient of 4 to 45% solvent B (99.9% CH3CN/0.1% formic acid, v/v) versus solvent A 

(99.9% H2O/0.1% formic acid, v/v), then to 90% B and held at 90% B for an additional 

9 mins, at a flow rate of 300 nl min
-1

.  

2.8.5.2 LTQ Orbitrap  

MS/MS experiments were performed on the Thermo Finnigan Orbitrap Classic mass 

spectrometer (Thermo Electron, Bremen, Germany) equipped with a nanospray 

ionization source and a Stainless Steel Emitters (length 105 mm, with sleeve O.D. 360 

µm).  The mass spectrometer was operated in positive mode. Helium was used as 

collision gas but no sheath and auxiliary gas were applied. Full MS scans were acquired 

in the Orbitrap mass analyzer over the m/z 350–2000 range with resolution 60,000 (m/z 

400). The target value was 5.00E+05. The twenty most intense peaks with charge state 

≥ 2 were selected for sequencing and fragmented in the ion trap with normalized 

collision energy of 35%, activation q = 0.25, activation time of 10 ms, and one 

microscan. The target value was 1.00E+04. The ion selection threshold was 500 counts, 

and the maximum allowed ion accumulation times were 500 ms for full scans and 100 

ms for collision-induced dissociation (CID). Tandem MS (MS/MS) data was acquired 

in ‘data-dependent’ mode. The six most abundant peptide precursor ions detected in the 

preceding survey scan were dynamically selected and subjected for CID in the linear ion 

trap to generate MS/MS spectra. Samples were analysed as biological triplicates.  

2.8.5.3 Searching database 

Peptide identification was performed using Proteome Discoverer (version 1.4.1; Thermo 

Scientific) against staphylococcal database downloaded from Uniprot. The workflow 

consisting of the following nodes (and respective parameters): Spectrum Selector for 

spectra pre-processing (precursor mass range: 350–5000 Da; S/N Threshold: 1.5), 

Sequest-HT as search engine (Protein Database: see below; Enzyme: Trypsin; Max. 
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missed cleavage sites: 2; Peptide length range 6–144 amino acids; Max. Delta Cn: 0.05; 

Precursor mass tolerance of 10.0 ppm; Fragment mass tolerance of 0.60 Da; Static 

modification: cysteine carbamidomethylation; Dynamic modification: methionine 

oxidation), and percolator for peptide validation (FDR<1 % based on peptide q-value).  

EASY-nLC, LTQ Orbitrap, and searching database were performed by Dr Min Fang 

(Public Health England, London, UK).  

2.9 Bioinformatic analysis 

 

2.9.1 mecA and mecC gene 

mecA and mecC gene PCR product in the gel were analysed by Syngene software 

(Syngene, Cambridge, UK), and band matching was performed by position to determine 

the size of PCR product.  

2.9.2 SCCmec typing  

PCR products of SCCmec typing were also analysed by band matching tool to confirm 

the size (Syngene, Cambridge, UK).  

According to Zhang’s SCCmec typing method, SCCmec type I to V was determined by 

the size of PCR products directly (Zhang et al., 2005).  

SCCmec typing method introduced by Kondo et al., (2007) was based on the 

combination of ccr complex and mec complex. The types were determined using the 

guidelines proposed by the International Working Group on the Staphylococcal Cassette 

Chromosome elements (IWG-SCC, 2009) (http://www.sccmec.org/Pages/SCC_Classi-

ficationEN.html). 

2.9.3 BioNumerics analysis 

In this study, BioNumerics
 
7.5 (Applied Maths, Belgium) was employed to analyse 

MALDI-TOF MS data of staphylococcal species. In order to improve the quality and 

http://www.sccmec.org/Pages/SCC_Classi-ficationEN.html
http://www.sccmec.org/Pages/SCC_Classi-ficationEN.html


106 
 

reliability of cluster analysis, isolates of each site with high quality spectra were chosen 

to do cluster analysis.   

2.9.3.1 Taxonomic analysis of selected staphylococci 

MALDI-TOF MS raw data were imported into BioNumerics
 
7.5 (Applied Maths, 

Belgium) software. The dendrogram tree was built by clicking ‘Clustering>Calculate> 

Advance cluster analysis’ in the comparison window. Topscore UPGMA was chosen to 

build a standard dendrogram tree, and the radial tree was generated by click 

‘Edit>Remove root’. 

Three-dimensional (3D) scatter plots were built by clicking ‘Clustering>Calculate> 

Cluster analysis (similarity matrix)', and comparison setting was based on ‘pearson 

correlation>UPGMA method'. A standard dendrogram tree was built, and 3D image was 

generated by click ‘Multi-dimensional scaling>Use metric algorithm'. 

2.9.3.2 Taxonomic analysis of staphylococci based on isolation sites 

MALDI-TOF mass spectrometry of isolates recovered from different sites were 

taxonomically analysed by BioNumerics
 

7.5 (Applied Maths, Belgium) software 

package. In order to differentiate each sample collection site, different colours were 

used, each of which indicates a specific site. The dendrogram tree and 3D images were 

built based on UPGMA method according to the BioNumerics 7.5 manual (Applied 

Math, Belgium).   

2.9.3.3 Taxonomic analysis of staphylococci based on Antibiotic susceptibility  

All selected isolates were additionally grouped based on their antibiotic susceptibility 

profiles. In these groups, red colour was selected to demonstrate the presence of 

multiple resistant (resistance to two or more antibiotics) staphylococci and green colour 

was selected for susceptible staphylococci isolates.   
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2.9.4 Multi-locus sequence typing   

Each housekeeping gene locus sequence was uploaded into the MLST database 

(http://www.mlst.net/) to obtain a single locus type. All 7 single locus types were then 

combined to query for the match in the database (http://www.mlst.net/).  New MLST 

types are required be sent to the S. epidermidis curator Dr Maria Miragaia via email 

(miragaia@itqb.unl.pt) for their assigning.  
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Chapter 3 Isolation, purification of environmental Staphylococci 

Staphylococci on human skin, have been responsible for wide range of infections: from 

minor skin infection to life threatening toxic shock syndrome (Monecke et al., 2011). 

Various virulence factors and antibiotic resistance genes contribute to increased 

pathogenicity of staphylococci (Oliveira & Tomasz, 2002). Determination and 

clarification of the virulence factors and antibiotic resistance require collection of 

staphylococcal isolates from clinical environment (Oliveira & Tomasz, 2002). Since 

environmental staphylococci acts as a reservoir of antibiotic resistant determinants for 

clinical pathogens (Blair et al., 2014), it would be necessary to assess dissemination of 

antibiotic resistant environmental staphylococci. A large quantity of staphylococci 

recovered from hands and 8 inanimate sites were included in this study. 

3.1 Sample collection  

Permission was first granted to gain access and sample inanimate sites and hands of 

anonymous volunteers all over the London, United Kingdom.  The findings for each site 

were given to each manager/owner for their permission.  The sample collection detailed 

in Table 3.1, consists of the followings: ① 65 samples were collected from the baby 

care facilities (BCF); ② 188 swabs collected from different sites of four hotels (DSH); 

③ 20 samples were collected from different sites of one public library (DSL); ④ 36 

samples were collected from different sites of three restaurants (DSR); ⑤ a total of 37 

samples were collected from different sites of five supermarkets (DSS); ⑥ 54 swabs 

were collected from different sites of transportation facilities (DST); ⑦ 12 hotel air 

samples (HAS) were collected from 12  hotel rooms; ⑧ 43 samples were isolated from 
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anonymous volunteers’ handbags (HB); ⑨ 124 swabs were sampled from the hands of 

randomly selected anonymous volunteers (HH)  (Table 3.1). 

In addition, sampling sites of eight inanimate sites and human hands were as followings: 

① BCF include dummies, soft play, mother’s change bags, child car seats and nappy 

changing area; ② DSH includes TV remote controls, mattresses, pillows, duvets, tables, 

basin surface, lift buttons, hand dryers, water taps, paper dispensers, toilet rims, toilet 

floor, toilet handles, wardrobe handles, bedside lights, keyboards and room carpet floor; 

③ DSL were sampled from books; ④ DSR include knife handles and fork handles; ⑤ 

DSS include shelves and trolley handles; ⑥ DST include seats, hand rail of buses, 

pelican crossing buttons on Mile End road, between Queen Mary University of London 

and Royal London hospital; ⑦ HAS were sampled from hotel room air; ⑧ HB includes 

anonymous volunteers’ handbags; ⑨  HH include anonymous volunteers’ hands in 

London area (Table 3.1).  All specimens were transferred to the laboratory within 1-3 

hrs, of the samples being taken.  
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Table 3. 1 Samples collected from hands and hands related inanimate sites 

Sites Specific sites No of swabs No of isolates 

BCF 

Dummies 

65 77 

Soft play 

Mother’s change bags 

Child car seats 

Nappy changing area 

DSH 

TV remote control 

188 282 

Mattresses 

Pillows 

Duvets 

Tables 

Basin surface 

Lift buttons 

Hand dryers 

Water taps 

Paper dispensers 

Toilet rims 

Toilet floor 

Toilet handles 

Wardrobe handles 

Bedside lights 

Keyboards 

Room carpet floor 

DSL Books 20 50 

DSR 
Knife handles 

36 152 
Fork handles 

DSS 
Shelves 

37 176 
Trolley handles 

DST 

Pelican crossing buttons 

54 113 Seats 

Hand rails 

HAS Inside of hotel rooms 12 30 

HB Handbags 43 64 

HH Hands 124 287 

Note: BCF- baby care facilities; DSH- different sites of hotels; DSL- different sites of a 

library; DSR- different sites of restaurants. DSS- different sites of supermarkets; DST-

different sites of transportation facilities; HAS- hotel air samples; HB- handbags; HH- 

human hands. 

 

3.2 Isolation  

After sample collection, a total of 579 samples were plated onto NA (Oxoid Ltd, 

Basingstoke, UK), MSA (Oxoid Ltd, Basingstoke, UK) and UTI (Oxoid Ltd, 
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Basingstoke, UK) plates accordingly. The numbers of isolates recovered from each site 

were as follows: BCF: 77 isolates; DSH: 282 isolates; DSL: 50 isolates; DSR: 152 

isolates; DSS: 176 isolates; DST: 113 isolates; HAS: 30 isolates; HB: 64 isolates; HH: 

287 isolates (Table 3.1). 

The numbers of colonies on NA ranged from none to uncountable. No uncountable 

results were found in following sites: DSL, DSR, DSS, DST, HAS, HB and HH. 

However, 40% of DSH samples had uncountable numbers of colonies, and followed by 

BCF samples (11%). 

Mannitol fermented and not-fermented colonies were recovered from all nine sites: BCF, 

DSH, DSL, DSR, DSS, DST, HAS, HB and HH. The species found at each site 

differentiated by UTI (Oxoid Ltd, Basingstoke, UK) were as follows: BCF: 

Enterococcus spp., E.coli, Proteus, Pseudomonas spp. staphylococci; DSH: 

Enterococcus spp., E.coli, Proteus, Pseudomonas spp., staphylococci; DSL: E.coli, 

staphylococci; DSR: Enterococcus spp., E.coli, Pseudomonas spp., staphylococci; DSS: 

Enterococcus spp., E.coli, Pseudomonas spp., staphylococci; DST: Enterococcus spp., 

E.coli, staphylococci; HAS: E.coli, staphylococci; HB: E.coli, staphylococci; HH: 

Enterococcus spp., E.coli, Pseudomonas spp., staphylococci (Fig 3.1).  

 

 

Figure 3. 1 Colonies on NA (A), MSA (B) and UTI (C) plates 
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3.3 Purification 

Following the isolation process, a total of 1231 isolates were purified, including 77 

isolates from BCF, 282 from DSH, 50 from DSL, 152 from DSR, 176 from DSS, 113 

from DST, and 30 from HAS, 64 from HB, 287 from HH (Table 3.1). 79 out of 1231 

isolates were eliminated from further investigation as their morphological 

characteristics were not consistent with staphylococci.   

3.4 Chapter summary 

The isolation of environmental bacteria included: 

1. Nine sampling sites:  BCF, DSH, DSL, DSR, DSS, DST, HAS, HB, HH were 

included in this study; 

2. A total of 1231 isolates recovered from human hands and inanimate sites. 

Determination the dissemination of antibiotic resistance requires the collection of 

staphylococcal isolates. This chapter introduced the collection and isolation of bacteria 

from human hands and 8 human-related inanimate sites using microbiology techniques. 

Baby care facilities and handbags are personal items, while hotels, hotel air, library, 

restaurants, supermarkets and transportation facilities are public settings. The 

importance of the predominant staphylococcal species of each site will be discussed in 

the discussion chapter. Evaluation of the sampling sites as reservoirs for antibiotic-

resistant staphylococcal isolates will also be discussed in the discussion chapter.  
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Chapter 4 Identification of environmental staphylococci 

The importance of rapid and accurate identification of microorganism has been well 

characterized (Valentine et al., 2005; Yao et al., 2002).  MALDI-TOF MS has been 

proven to be a reliable and efficient tool for identification of clinical staphylococci (Van 

Veen et al., 2010).  In our study, it was necessary to identify a large number of 

staphylococci, and MALDI-TOF MS was employed to determine these isolates. The 

reproducibility of MALDI-TOF MS was assessed in this study. In addition, classical 

16S rRNA gene sequencing was employed to evaluate the efficacy of MALDI-TOF MS 

in identifying environmental staphylococci.  

The spread of staphylococci from person to person are mainly via hands, and hands that 

frequently touch inanimate sites can be important bacterial reservoirs for transmission 

(Johansson et al., 2007; Mollema et al., 2010). However, little is known about the 

connection of staphylococci isolated from different sites. Here, I reported taxonomic 

analysis based on MALDI-TOF MS profile. A total of 411 staphylococci recovered 

from BCF, DSL, DSH, DSR, DSS, DST, HAS, HB, HH were selected to analyse the 

possible taxonomic relationship. In addition, the taxonomic relationship of each species 

was described separately.    

4.1 Bacterial identification by MALDI-TOF MS 

To determine the species of purified isolates, a total of 1152 isolates representing each 

of the collection sites were identified by MALDI-TOF MS. The control identification 

index of the MALDI-TOF MS, Biotyper 3.1 score values were 2.314 to 2.422 (with a 

mean of 2.371 ± 0.044 S.D) for Escherichia coli DH5α. Of the 1152 monomicrobial 

bacterial cultures, 991 (86%) produced acceptable identification scores of ≥ 1.7 using 

the MALDI-TOF MS - Biotyper 3.1 identification system. This included 844 (85%) 
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cultures with high confidence scores of ≥ 2.0 and 147 (15%) cultures with intermediate 

confidence scores of 1.70 to 1.99. Of 991 monomicrobial cultures, 971 (98%) contained 

Gram-positive organisms, 19 (2%) contained Gram-negative organisms, and one fungus. 

Within 991 monomicrobial cultures, 67 species were identified in this study, which, 

except for one fungus, consisted of 9 Gram-negative species, and 57 Gram-positive 

species (Fig 4.1). 

Gram-positive bacteria: the distribution of confidence scores within the 971 Gram-

positive cultures, 14% intermediate (1.7 to 1.99), and 86% high (2.0 to 3.0) (Table 4.1). 

718 out of the 971 Gram-positive cultures were identified to be staphylococci, of which 

618 produced high confidence scores of ≥ 2.0, at meantime, and 100 produced 

intermediate confidence scores (Table 4.1). Despite the diversity of Gram-positive 

species, most of these isolates were identified to be staphylococci. There were 19 

staphylococcal species that were identified in this study:  S. arlettae, S. auricularis, S. 

aureus, S. capitis, S. caprae, S. cohnii, S. epidermidis, S. equorum, S. haemolyticus, S. 

hominis, S. lugdunensis, S. pasteuri, S. pettenkoferi, S. saprophyticus, S. sciuri, S. 

simiae, S. simulans, S. warneri, and S. xylosus, which makes one third of all Gram-

positive species. (Table 4.1) 

Gram-negative bacteria:  11 of 19 (58%) Gram-negative cultures generated high 

confidence scores and 8 (42%) generated intermediate confidence scores (Table 4.1). 
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Table 4. 1 MALDI-TOF MS identification of environmental isolates 

Organism No of isolates Division 
MALDI-TOF MS score 

1.7-1.99
b
 ≥2.0

b
 

Staphylococcus epidermidis 198 G+ 28 170 

Staphylococcus hominis 173 G+ 19 154 

Staphylococcus haemolyticus 79    G+ 11 68 

Staphylococcus capitis 79 G+ 9 70 

Staphylococcus warneri 68 G+ 11 57 

Staphylococcus pasteuri 34    G+ 2 32 

Staphylococcus saprophyticus 20     G+ 5 15 

Staphylococcus cohnii 14 G+ 3 11 

Staphylococcus aureus 12     G+ 0 12 

Staphylococcus simiae 10     G+ 5 5 

Staphylococcus sciuri 6       G+ 1 5 

Staphylococcus pettenkoferi 5       G+ 3 2 

Staphylococcus lugdunensis 5 G+ 0 5 

Staphylococcus equorum 3      G+ 1 2 

Staphylococcus caprae 2       G+ 0 2 

Staphylococcus xylosus 2       G+ 1 1 

Staphylococcus auricularis 2       G+ 0 2 

Staphylococcus simulans 1 G+ 0 1 

Staphylococcus arlettae 1 G+ 0 1 

Staphylococcus sp 4 G+ 1 3 

Acinetobacter lwoffii 4 G- 1 3 

Acinetobacter sp 1 G- 1 0 

Aerococcus viridans 5 G+ 2 3 

Alcaligenes faecalis 2 G- 1 1 

Bacillus altitudinis 1 G+ 1 0 

Bacillus cereus 4 G+ 3 1 

Bacillus cohnii 1 G+ 0 1 

Bacillus flexus 1 G+ 0 1 

Bacillus licheniformis 5 G+ 2 3 

Bacillus megaterium 2 G+ 1 1 

Bacillus oshimensis 1 G+ 1 0 

Bacillus pumilus 2 G+ 1 1 

Bacillus subtilis 5 G+ 3 2 

Bacillus thuringiensis 1 G+ 0 1 

Bacillus weihenstephanensis 1 G+ 1 0 

Brevibacterium casei 5 G+ 2 3 

Candida parapsilosis 1 F
a
 0 1 

Corynebacterium afermentans 3 G+ 2 1 

Corynebacterium amycolatum 1 G+ 1 0 

Corynebacterium aurimucosum 7 G+ 0 7 

Corynebacterium falsenii 1 G+ 0 1 

Corynebacterium minutissimum 2 G+ 0 2 

Corynebacterium 

pseudodiphtheriticum 

1 G+ 1 0 

Corynebacterium striatum 1 G+ 0 1 

Dermacoccus nishinomiyaensis 3 G+ 1 2 

Dietzia cinnamea 1 G+ 0 1 

Enterobacter cloacae 1 G- 0 1 

Note: a: F: fungus; b: The match of MALDI-TOF MS identification at the species level with a 

score value ≥2.0 and at a genus level with a score value 1.7-1.99. 
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Organism No of isolates Division 
MALDI-TOF MS score 

1.7-1.99
b
 ≥2.0

b
 

Kocuria carniphila 7 G+ 1 6 

Kocuria kristinae 13 G+ 1 12 

Kocuria marina 3 G+ 2 1 

Kocuria palustris 13 G+ 2 11 

Kocuria rhizophila 9 G+ 2 7 

Kocuria rosea 2 G+ 0 2 

Kocuria sedentarius 2 G+ 1 1 

Kytococcus schroeteri 3 G+ 0 3 

Kytococcus sedentarius 3 G+ 2 1 

Micrococcus luteus 138 G+ 4 134 

Micrococcus lylae 1 G+ 0 1 

Micrococcus terreus 1 G+ 1 0 

Moraxella_sg_Moraxella osloensis 2 G- 1 1 

Nesterenkonia lacusekhoensis 1 G+ 0 1 

Pantoea agglomerans 2 G- 2 0 

Proteus mirabilis 5 G- 1 4 

Pseudomonas luteola 1 G- 0 1 

Pseudomonas oryzihabitans 1 G- 1 0 

Rothia amarae 1 G+ 0 1 

Rothia dentocariosa 2 G+ 1 1 

Total no. of isolates 991  147 844 

% genus    15 - 

% species    - 85 

Note: a: F: fungus;b: The match of MALDI-TOF MS identification at the species level 

with a score value ≥2.0 and at a genus level with a score value 1.7-1.99. 
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Figure 4. 1  MALDI-TOF MS identification of environmental isolates 

BCF: baby care facilities; DSH: different sites of hotels; DSL: different sites of a library; 

DSR: different sites of restaurants; DSS: different sites of supermarkets; DST: different 

sites of transportation facilities; HAS: hotel air samples; HB: handbags; HH: human-

hands.   
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4.2 Reproducibility of MALDI-TOF MS 

MALDI-TOF MS reproducibility was assessed for environmental isolates. 

Reproducibility of MALDI-TOF MS identification was determined for 1-3 isolates of 

18 species: S. aureus, S. auricularis, S. capitis, S. caprae, S. cohnii, S. epidermidis, S. 

equorum, S. haemolyticus, S.hominis, S. lugdunensis, S. pasteuri, S. pettenkoferi, S. 

saprophyticus, S. sciuri, S. simiae, S. simulans, S. warneri, and S. xylosus, and the 

results were shown in Table 4.2. Duplicates of thirty-four selected isolates were 

analysed by two different modes of MALDI-TOF MS. 

Table 4. 2  Reproducibility of MALDI-TOF MS identification 

ID Bruker Microflex LT Score value Bruker Autoflex Score 

value 

12 S. aureus 2.37 S. aureus 2.264 

12 S. aureus 2.442 S. aureus 2.28 

13 S. aureus 2.402 S. aureus 2.315 

13 S. aureus 2.429 S. aureus 2.335 

15 S. auricularis 2.014 S. auricularis 1.831 

15 S. auricularis 1.914 S. auricularis 1.857 

52 S. capitis 2.235 S. capitis 2.275 

52 S. capitis 2.011 S. capitis 2.177 

53 S. capitis 1.926 S. capitis 1.994 

53 S. capitis 1.888 S. capitis 1.985 

95 S. caprae 2.015 S. caprae 1.84 

95 S. caprae 2.149 S. caprae 1.983 

96 S. caprae 1.986 S. caprae 1.821 

96 S. caprae 1.898 S. capitis 1.8 

107 S. cohnii 2.161 S. cohnii 2.049 

107 S. cohnii 2.177 S. cohnii 2.165 

122 S. epidermidis 2.215 S. epidermidis 2.216 

122 S. epidermidis 2.15 S. epidermidis 2.154 

134 S. epidermidis 2.299 S. epidermidis 2.135 

134 S. epidermidis 2.166 S. epidermidis 2.098 

135 S. epidermidis 2.11 S. epidermidis 2.246 

135 S. epidermidis 2.125 S. epidermidis 2.235 

310 S. equorum 1.8 S. equorum 1.998 

310 S. equorum 1.76 S. equorum 1.886 

311 S. equorum 2.041 S. equorum 1.86 

311 S. equorum 2.165 S. equorum 1.959 

377 S. haemolyticus 2.242 S. haemolyticus 2.016 

377 S. haemolyticus 2.114 S. haemolyticus 2.04 

384 S. haemolyticus 1.842 S. haemolyticus 1.746 

384 S. haemolyticus 1.744 S. haemolyticus 1.784 

385 S. haemolyticus 2.189 S. haemolyticus 2.102 

Note: Isolate in bold suggests inconsistent identification. 
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ID Bruker Microflex LT Score value Bruker Autoflex Score 

value 

385 S. haemolyticus 2.329 S. haemolyticus 2.043 

400 S. hominis 2.504 S. hominis 2.529 

400 S. hominis 2.137 S. hominis 2.22 

402 S. hominis 2.325 S. hominis 2.12 

402 S. hominis 2.251 S. hominis 2.045 

564 S. lugdunensis 2.29 S. lugdunensis 2.183 

564 S. lugdunensis 2.377 S. lugdunensis 2.332 

567 S. lugdunensis 2.203 S. lugdunensis 2.061 

567 S. lugdunensis 2.284 S. lugdunensis 2.282 

579 S. pasteuri 2.055 S. pasteuri 2.054 

579 S. pasteuri 1.981 S. pasteuri 2.049 

597 S. pasteuri 2.238 S. pasteuri 2.069 

597 S. pasteuri 2.127 S. pasteuri 2.087 

607 S. pettenkoferi 2.01 S. pettenkoferi 1.935 

607 S. pettenkoferi 1.929 S. pettenkoferi 2.009 

608 S. saprophyticus 1.726 S. saprophyticus 1.763 

608 S. saprophyticus 1.735 S. cohnii 1.801 

   S. saprophyticus 1.726 

609 S. saprophyticus 1.769 S. saprophyticus 1.984 

609 S. saprophyticus 2.018 S. saprophyticus 1.94 

632 S. sciuri 2.089 S. sciuri 2.028 

632 S. sciuri 2.092 S. sciuri 2.03 

632 S. sciuri 1.97 S. sciuri 1.957 

632 S. sciuri 1.973 S. sciuri 2.005 

636 S. simiae 1.845 S. simiae 1.825 

636 S. simiae 1.996 S. simiae 1.922 

638 S. simiae 2.021 S. simiae 1.844 

638 S. simiae 1.93 S. simiae 1.942 

644 S. simulans 1.837 S. simulans 1.826 

644 S. simulans 1.949 S. simulans 1.84 

654 S. warneri 2.391 S. warneri 2.209 

654 S. warneri 2.48 S. warneri 2.112 

686 S. warneri 2.249 S. warneri 2.26 

686 S. warneri 2.455 S. warneri 2.134 

704 S. warneri 1.977 S. warneri 2.175 

704 S. warneri 1.996 S. warneri 2.163 

713 S. xylosus 1.808 S. xylosus 1.997 

713 S. xylosus 1.865 S. xylosus 2.1 

Note: Isolate in bold suggests inconsistent identification. 

A total of 68 targets were detected by two different modes of MALDI-TOF MS 

accordingly, and only one target (1.5%) showed an inconsistent result; however, the 

second match was found to be S. saprothyticus. This demonstrates the precision and 

relibility of the MALDI-TOF MS identification method. The scores generated by both 

MALDI-TOF MS were close to each other, although minor fluctuations were observed. 
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The fluctuation was between 0.001 and 0.368: thirty-six (53%) targets with score 

difference below 0.1, twenty three (34%) between 0.1 and 0.2, seven (10%) between 0.2 

and 0.3, and 2 (3%) above 0.3.   

Sixty-seven typing results could be confirmed, thus leading to an inter-laboratory 

reproducibility of 98.5%.  

4.3 16S rRNA gene sequencing 

To assess the reliability of MALDI-TOF MS identification, 60 isolates of 17 

staphylococcal species, including S. auricularis, S. capitis, S. caprae, S. cohnii, S. 

epidermidis, S. equorum, S. haemolyticus, S. hominis, S. lugdunensis, S. pasteuri, S. 

pettenkoferi, S. saprophyticus, S. sciuri, S. simiae, S. simulans, S. warneri, and S. 

xylosus, were evaluated by 16S rRNA gene sequencing to compare with the results 

obtained by MALDI-TOF MS identification.  Selected isolates were identified by 

MALDI-TOF MS, and 55 (92%) isolates were consistent with the results of 16S rRNA 

measurement. Five misidentified isolates were identified to be staphylococci, but 

different species. 

Thirteen isolates were identified with score values ranging from 2.300 to 3.000 by 

MALDI-TOF MS, and 13 (100%) were consistent with 16S rRNA identification 

methods.  Thirty-eight isolates were identified with score values ranging from 2.000 to 

2.299, and 33 (87%) were concordant with 16S rRNA identification results. Nine 

isolates with score values ranging from 1.700 to 1.999 were 100% concordant to species 

with 16S rRNA method. 

5 staphylococci strains, including 327, 331, 338, 409, 614, were determined different 

species by 16S rRNA gene sequencing, all of which produced confidence scores 

ranging from 2.000 to 2.299. Two of them were misidentified; the first (strain 338) was 
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identified as S. aureus using 16S rRNA and as S. haemolyticus using the MALDI-TOF 

MS. The other (strain 409) was identified as S. equorum according to 16S rRNA and as 

S. hominis using the MALDI-TOF MS. For the rest of 3 isolates (strain 327, 331, 614), 

16S rRNA indicated possible identification as same as MALDI-TOF MS did, but not as 

the primary match. (Table 4.3)  In general, 16S rRNA results support the MALDI-TOF 

MS identification. Discordant results were found in 5 isolates at the species level, and 

no discordant result was found at the genus level. In addition, the data obtained from 

MALDI–TOF MS method were consistent with the results of 16S rRNA measurement 

for 92% at the species level and 100% at genus level. Even for 9 isolates identified with 

score value range from 1.700 to 1.999, the 100% consistence was confirmed at the 

species level. With regard to turnaround time, it took only 2.5 min to obtain the results 

with MALDI-TOF MS in this study, which was more efficient than 16S rRNA PCR 

methods to yield the same results (Table 4.3). 

Table 4. 3  Identification results obtained by MALDI–TOF MS in comparison to those 

obtained by partial 16S rRNA gene sequence-based species identification 

ID MALDI-TOF MS  16S rRNA 

Species Score value  Species 

15 S. aurialuaris 2.342 S. auricularis (T); ATCC 33753; D83358 

52 S. capitis 1.821 S. capitis (T); L37599 

 

95 S. caprae 2.318 S. caprae (T); ATCC 35538; AB009935 

 

96 S. caprae 2.223 S. caprae (T); ATCC 35538; AB009935 

 

99 S. cohnii 1.734 S. cohnii (T); ATCC 29974; D83361 

 

106 S. cohnii 2.114 S. cohnii (T); ATCC 29974; D83361 

 

107 S. cohnii 2.292 S. cohnii (T); ATCC 29974; D83361 

 

120 S. epidermidis 2.094 S. epidermidis (T); ATCC 14990; D83363 

 

122 S. epidermidis 2.293 S. epidermidis (T); ATCC 14990; D83363 
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ID MALDI-TOF MS 16S rRNA 

 Species Score value Species 

310 S. equorum 1.846 S. equorum (T); RP29; AF527483 

311 

 

S. equorum 2.005 S. equorum (T); ATCC 43958; AB009939 

317 S. haemolyticus 2.016 S. haemolyticus (T); CCM2737; X66100 

 

318 S. haemolyticus 2.163 S. haemolyticus (T); CCM2737; X66100 

 

321 S. haemolyticus 2.257 S. haemolyticus (T); CCM2737; X66100 

 

322 S. haemolyticus 2.300 S. haemolyticus (T); CCM2737; X66100 

 

323 S. haemolyticus 2.279 S. haemolyticus (T); CCM2737; X66100 

 

325 S. haemolyticus 2.353 S. haemolyticus (T); CCM2737; X66100 

 

327 S. haemolyticus 2.150 

S. saprophyticus (T); ATCC 15305; 

AP008934 

 

S. haemolyticus (T); CCM2737; X66100 

 

328 S. haemolyticus 2.251 S. haemolyticus (T); CCM2737; X66100 

 

329 S. haemolyticus 2.239 S. haemolyticus (T); CCM2737; X66100 

 

330 S. haemolyticus 2.124 

 

S. haemolyticus (T);  CCM2737; X66100 

331 S. haemolyticus 2.179 

S. aureus (T); ATCC 12600; L36472 

 

S. haemolyticus (T); CCM2737; X66100 

 

334 S. haemolyticus 1.905 S. haemolyticus (T); CCM2737; X66100 

 

335 S. haemolyticus 1.895 S. haemolyticus (T); CCM2737; X66100 

 

336 S. haemolyticus 2.251 S. haemolyticus (T); CCM2737; X66100 

 

337 S. haemolyticus 2.377 S. haemolyticus (T); CCM2737; X66100 

 

338 S. haemolyticus 2.078 S. aureus (T); ATCC 12600; L36472 

 

343 S. haemolyticus 1.949 S. haemolyticus (T); CCM2737; X66100 

 

344 S. haemolyticus 2.257 S. haemolyticus (T); CCM2737; X66100 

 

345 S. haemolyticus 2.141 S. haemolyticus (T); CCM2737; X66100 

 

347 S. haemolyticus 2.209 S. haemolyticus (T); CCM2737; X66100 
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ID MALDI-TOF MS  16S rRNA 

 Species Score value Species 

348 S. haemolyticus 2.344 S. haemolyticus (T); CCM2737; X66100 

 

349 S. haemolyticus 2.030 S. haemolyticus (T); CCM2737; X66100 

 

357 

 

S. haemolyticus 2.320 S. haemolyticus (T); CCM2737; X66100 

379 S. haemolyticus 2.191 S. haemolyticus (T); CCM2737; X66100 

 

380 S. haemolyticus 2.362 S. haemolyticus (T); CCM2737; X66100 

 

400 S. hominis 2.255 S. hominis (T); DSM 20328; X66101 

 

401 S. hominis 2.433 S. hominis (T); DSM 20328; X66101 

 

402 S. hominis 2.431 S. hominis (T); DSM 20328; X66101 

 

403 S. hominis 2.352 S. hominis (T); DSM 20328; X66101 

 

405 S. hominis 2.165 S. hominis (T); DSM 20328; X66101 

 

406 S. hominis 2.333 S. hominis (T); DSM 20328; X66101 

 

409 S. hominis 2.203 S. equorum (T); ATCC 43958; AB009939 

 

567 S. lugdunensis 2.290 S. lugdunensis (T); ATCC 43809; 

AB009941 

569 S. pasteuri 

 

2.192 S. pasteuri (T); ATCC 51129; AB009944 

579 S. pasteuri 2.294 S. pasteuri (T); ATCC 51129; AB009944 

 

592 S. pasteuri 2.399 S. pasteuri (T);ATCC 51129; AB009944 

 

604 S. pettenkoferi 1.772 S. pettenkoferi (T); B3117; AF322002 

 

607 S. pettenkoferi 2.153 S. pettenkoferi (T); B3117; AF322002 

 

609 S. saprophyticus 2.119 S. saprophyticus (T); ATCC 15305; 

AP008934 

614 S. saprophyticus 2.235 

S. capitis (T); ATCC 49326; AB009937 

 

S. saprophyticus (T); ATCC 15305; 

AP008934 

 

630 S. sciuri 2.008 S. sciuri (T); DSM 20345T; AJ421446 

 

632 S. sciuri 2.190 S. sciuri (T); DSM 20345T; AJ421446 

 

636 S. simiae 2.049 S. simiae (T); CCM 7213; AY727530 
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ID MALDI-TOF MS  16S rRNA 

 Species Score value  Species 

639 S. simiae 1.897 S. simiae (T); CCM 7213; AY727530 

 

644 S. simulans 1.879 S. simulans (T); ATCC 27848; D83373 

 

653 S. warneri 2.236 S. warneri (T); L37603 

 

654 S. warneri 2.254 S. warneri (T); L37603 

 

656 S. warneri 2.069 S. warneri (T); L37603 

 

714 S. xylosus 2.162 S. xylosus (T); ATCC 29971; D83374 

 

4.4 MALDI-TOF MS data analysis 

4.4.1 Cluster analysis of selected staphylococci 

To find out the potential taxonomic relationships based on MALDI-TOF MS profiles of 

staphylococci, 411 isolates recovered from the general public and different 

environmental sites were selected for cluster analysis. This included isolates recovered 

from BCF; DSH; DSL; DSR; DSS; DST; HAS; HB; HH, and 13 out of 19 species 

identified were systematically analysed by BioNumerics 7.5 (Applied Math, Belgium). 

Eleven out of 411 isolates identified were S. aureus, and 12 other staphylococcal 

species include S. epidermidis (n=123), S. hominis (n=111), S. warneri (n=35), S. 

capitis (n=50), S. haemolyticus (n=42), S. pasteuri (n=21), S. saprophyticus (n=9), S. 

simiae (n=4); S. cohnii (n=2);  S. caprae (n=1), S. lugdunensis (n=1), and  S. simulans 

(n=1). 

The unrooted dendrogram was built based on MALDI-TOF MS data. It was the 

reflection of the traditionally rooted dendrogram tree, but more compact. Each spot at 

the end of the branch represented a staphylococcal isolate.  9 major clusters, of 

staphylococci species were identified, including S. hominis, S. haemolyticus, S. 
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epidermidis, S. pasteuri, S. warneri, S. aureus, S. saprophyticus, S. capitis, and S. 

simiae (Fig 4.2).  

 
 

Figure 4. 2  Unrooted cluster analysis of staphylococci species using MALDI-TOF MS. 

Staphylococcal species were distributed in different clades and the circles were used to 

show the species forming these clades. The branches within each clade present the 

taxonomic relationship of staphylococci. 

4.4.2 Cluster analysis of Staphylococcus spp. recovered from each site 

4.4.2.1 Dominant species of each site 

The presence of staphylococcal species differed between sites. The most common 

species isolated from DSL were S. haemolyticus and S. epidermidis; whereas S. 

epidermidis and S. capitis were predominant among the isolates recovered from DST 
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and HB. Moreover, S. epidermidis together with S. hominis were predominant among 

the isolates recovered from the HH, DSS and DSR. S. haemolyticus and S. hominis were 

predominant among the isolates recovered from the DSH. In addition, S. haemolyticus 

was predominant among the isolates recovered from HAS. The most common species 

isolated from BCF was S. hominis (Table 4.4). 

Table 4. 4  Predominant and common staphylococcal species recovered from the human 

hands and different environmental sites 

Sites  Predominant species  Commonly isolated species  

BCF S. hominis S. epidermidis 

DSH S. haemolyticus S. hominis 

DSL S. haemolyticus  S. epidermidis 

DSR S. epidermidis S. hominis 

DSS S. epidermidis S. hominis 

DST S. epidermidis S. capitis 

HAS S. haemolyticus - 

HB S. epidermidis S. capitis 

HH S. epidermidis S. hominis 

Note: BCF- baby care facilities; DSH- different sites of hotels; DSL-different sites of a 

library; DSR: different sites of restaurants. DSS-different sites of supermarkets; DST-

different sites of transportation facilities; HAS- hotel air samples; HB-handbags; HH- 

human hands. 

 

4.4.2.2 Cluster analysis of isolates recovered from different sites 

Three-dimensional scaling was performed to demonstrate the overall relationship of 411 

staphylococcal isolates (Fig 4.3). Based on the data, all isolates were distributed into 4 

groups. Groups 1, 2, 3 lacked the extensive diversity which was observed in the fourth 

group (Fig 4.3). 
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The stick is the visualization of the dendrogram, and the two spots that are connected by 

a stick are connected in the dendrogram. The X, Y, and Z axis are arbitrary units. It’s 

the distance between the isolates that represent the similarity, and that distance exists of 

components in all three axis.  

In the three-dimensional scaling, the similarity matrix is used to determine the 3D 

position. Isolates that have 100% similarity will be place on top of each other, with no 

distance between them. In contrast, the lower their similarity with each other, the higher 

their distance in the plot.  

 

 

Figure 4. 3 Three-dimensional (3D) scatter plot of 411 staphylococci recovered from 9 

sites.  BCF ; DSH ; DSL  ; DSR  ; DSS  ; DST  ; HAS ; HB  ; HH  . X: -0.4 

to 0.4; Y: -0.2 to 0.4; Z: -0.2 to 0.4. 

 

4.4.2.3 Correlation of staphylococci isolated from different sites 

Staphylococcal isolates recovered from different sites were taxonomically closely 

related. Staphylococcus spp. recovered from HH were taxonomically closely related to 

those isolated from BCF, DSH, DSL, DSR, DSS, DST, HAS, HB and HH (Fig 4.4a), 
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and staphylococcal isolates recovered from BCF were taxonomically closely related to 

those recovered from BCF, DSH, DSL, DSS, DST, HB and HH (Fig 4.4b). In addition, 

staphylococci isolated from DSS were taxonomically closely related to staphylococci 

isolated from BCF, DSH, DSR, DST, HH and DSS itself. Staphylococci recovered from 

DST were taxonomically closely related to staphylococci recovered from BCF, DSR, 

DSS, HH and DST (Fig 4.5a). Staphylococci recovered from DSH were taxonomically 

closely related to those recovered from BCF, DSS, HAS, HH and DSH (Fig 4.5b). 

Whilst staphylococci isolated from DSR were taxonomically closely related to isolates 

recovered from DST, HH and DSR, the staphylococci recovered from DSL were 

taxonomically closely related to those isolated from HH, BCF and DSL.  In addition, 

staphylococci recovered from HB were taxonomically closely related to HH, BCF and 

HB.  
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Figure 4. 4  Isolates recovered from human hands were taxonomically closely related to 

staphylococci recovered from transportation facilities, restaurants, hotels, supermarkets, 

handbags, baby care facilities, library, hotel air and human hands itself. The blue line 

that was used to connect color spots and showed dissemination of taxonomically closely 

related staphylococci recovered from the indicated sites. 



130 
 

 

Figure 4. 5   Isolates recovered from baby care facilities were taxonomically closely 

related to staphylococci recovered from transportation facilities, hands, hotels, 

supermarkets, handbags, library and baby care facilities itself. The blue line that was 

used to connect color spots and showed dissemination of taxonomically closely related 

staphylococci recovered from the indicated sites. 

 

Staphylococcal isolates recovered from HAS were taxonomically closely related to 

isolates from DSH, HH and HAS itself.  
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Figure 4. 6 Isolates recovered from transportation facilities were taxonomically closely 

related to staphylococci recovered from restaurants, hands, supermarkets, baby care 

facilities and transportation facilities itself.  The blue line that was used to connect color 

spots and showed dissemination of taxonomically closely related staphylococci 

recovered from the indicated sites. 
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Figure 4. 7 Isolates recovered from hotels were taxonomically closely related to 

staphylococci recovered from hands, supermarkets, baby care facilities, hotel air and 

hotels itself. The blue line that was used to connect color spots and showed 

dissemination of taxonomically closely related staphylococci recovered from the 

indicated sites. 

 

4.4.2.4 Cluster analysis of each staphylococcal species recovered from different sites 

In addition, cluster analysis has been applied to each Staphylococcus spp. to determine 

the taxonomic relationships of each species isolated from different sites. 

It was demonstrated that S. hominis isolates recovered from 8 different sites, including 

BCF, DSH, DSL, DSR, DSS, DST, HB and HH, were taxonomically related. The 

distribution of 111 S. hominis isolates in the unrooted cluster resulted in the formation 

of 13 clades. S. hominis isolates which were recovered from the same sites such as DSS, 
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HH, BCF, DSR were found to be taxonomically closely related as they appeared in the 

same cluster. However, it was also observed taxonomic relationship among these S. 

hominis isolates that were recovered from different sites such as DSS and DSR and 

those recovered from DSR and DSH.  Moreover, S. hominis isolates recovered from 

DSS and HH, DSR and HH, DSH and HH, BCF and DSH, HB and BCF, BCF and DSL 

were also located in the same cluster, demonstrating their taxonomic close relationship 

(Fig 4.6a).  

 

Figure 4. 8 8a and 8b 8a Three-dimensional (3D) scatter plot of S. hominis isolates 

recovered from BCF, DSH, DSL, DSR, DSS, DST, HH, HB. BCF ; DSH , DSL  , 

DSR , DSS  , DST , HH  , HB  .X: -0.2 to 0.2;  Y: -0.2 to 0.4; Z: -0.2 to 0.2. 8b. 

Three-dimensional (3D) scatter plot of S. haemolyticus isolates recovered from BCF, 

DSH, DSL, DSR, DSS, HAS, HB, HH. BCF ; DSH ; DSL  ; DSR  ; DSS   ; HAS 

 ; HB  ;HH  .X:-0.2 to 0.4;  Y: -0.2 to 0.4;  Z: -0.6 to 0.0.  

The X, Y, and Z axises are arbitrary units. It represents the distance between the closely 

related isolates and that the distance exists in all three axises. Isolates that have 100% 

similarity are above each other, with no distance between them. As less their similarity 

is, the more the distance is between them in the plot. 

 

S. haemolyticus isolates recovered from 8 different sites, including BCF, DSH, DSL, 

DSR, DSS, HAS, HB, and HH were distributed in 3 large clades. One of these 3 clades 

was mainly formed by isolates recovered from HH. Similar to S. hominis, S. 

haemolyticus isolates recovered from DSH, DSL appeared in the same cluster, 
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indicating their taxonomically closely related. Interestingly, S. haemolyticus isolates 

recovered from different sites were also taxonomically closely related as they appeared 

in the same cluster. This included isolates recovered from HH and HAS, HH and DSR, 

HH and DSH, BCF and DSH. Moreover, S. haemolyticus recovered from DSH were 

located in the same cluster with S. haemolyticus recovered from HAS. Therefore, there 

is a possibility that isolates recovered from different sites in the hotels and air harbour 

the same populations of Staphylococcus spp. In addition, it was found that one of S. 

haemolyticus isolates recovered from DSR formed a distinctive branch (Fig 4.6b).  

In relation to S. epidermidis isolates, it was found that isolates recovered from BCF, 

DSH, DSL, DSR, DSS, DST, HH, and HB were taxonomically related. In addition, 

these isolates were organised into nine large clusters. S. epidermidis recovered from HH, 

DSR, DSS, DSL and DST were in the same cluster with S. epidermidis recovered from 

HH, DSR, DSS, DSL, and DST. In addition, the results showed that S. epidermidis 

isolates recovered from DST were located in the same cluster as those isolated from 

BCF, indicating their taxonomically closely related. Additionally, S. epidermidis 

isolates recovered from HH and DSH, HH and DSR, HH and DST, HH and DSS, HH 

and BCF, HH and HB, DSS and DSL, DSS and BCF, DSS and DSR, DSS and DSH, 

HB and DSR, HB and BCF, DSR and DST were also located in same cluster (Fig 4.7a).  
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Figure 4. 9  9a and 9b 9a Three-dimensional (3D) scatter plot of S. epidermidis isolated 

from BCF, DSH, DSL, DSR, DSS, DST, HB, HH. BCF ; DSH  ; DSL  ; DSR  ; 

DSS  ; DST  ; HB ; HH  . X: -0.4 to 0.1; Y: -0.2 to 0.3; Z: -0.2 to 0.2. 9b. Three-

dimensional (3D) scatter plot of S. capitis isolated from BCF, DSH, DSL, DSR, DSS, 

DST, HB, HH. BCF ; DSH  ; DSL  ; DSR  ; DSS  ; DST  ; HB  ; HH  . X: -

0.6 to 0.0; Y: -0.2 to 0.4; Z: -0.2 to 0.1.  

The X, Y, and Z axises are arbitrary units. It represents the distance between the closely 

related isolates and that the distance exists in all three axises. Isolates that have 100% 

similarity are above each other, with no distance between them. As less their similarity 

is, the more the distance is between them in the plot. 

 

 

S. capitis isolates recovered from BCF, DSH, DSL, DSR, DSS, DST, HB and HH were 

arranged into three major clades. The majority of isolates in clade 1 included those 

recovered from DSL. The remaining isolates recovered from HH, DST, DSH, DSS, 

DSR, HB and BCF were evenly distributed within all 3 clades. S. capitis isolates 

recovered from DST, DSH, and HH were located in the same cluster as those recovered 

from DST, DSH, and HH. In addition, S. capitis isolates recovered from HH and DSH, 

HH and DSR, HH and DSS, BCF and DSL, BCF and DSH, DST and DSH, DST and 

DSR, DSH and DSS, DSH and DSL, were found to be located in the same cluster (Fig 

4.7b). 
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Thirty-six S. warneri isolates recovered from BCF, DSH, DSL, DSR, DSS, DST and 

HH were used for cluster analyses and resulted in the formation of 3 major clades. The 

first clade was formed by S. warneri recovered from DST and HH, whereas the second 

clade was formed by those recovered from DSL and DSH and the third clade was 

formed by S. warneri recovered from BCF, HH and DSR.  S. warneri recovered from 

DSR, HH, DST, and DSL were related to those isolates recovered from DSR, HH, DST, 

and DSL as they found to be located in the same clade. Moreover, S. warneri recovered 

from HH and DSR, HH and DST, DST and DSS, DST and DSH, DSS and DSH, DSL 

and BCF were originated from the same cluster (Fig 4.8a). 

 

Figure 4. 10  10a and 10b 10a. Three-dimensional (3D) scatter plot of S. warneri 

isolated from BCF, DSH, DSL, DSR, DSS, DST, HH. BCF ; DSH  ; DSL  ; DSR ; 

DSS  ; DST ; HH . X: -0.4 to 0.0; Y: -0.2 to 0.3; Z: -0.2 to 0.1. 10b. Three-

dimensional (3D) scatter plot of S. pasteuri isolated from DSH, DSR, DSS, DST, HB, 

HH. DSH ; DSR ; DSS  ; DST  ; HB  ; HH  . X: -0.2 to 0.4; Y: -0.3 to 0.2; Z: -

0.2 to 0.2.  

The X, Y, and Z axises are arbitrary units. It represents the distance between the closely 

related isolates and that the distance exists in all three axises. Isolates that have 100% 

similarity are above each other, with no distance between them. As less their similarity 

is, the more the distance is between them in the plot. 
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Nineteen S. pasteuri isolates recovered from DSH, DSR, DSS, DST, HB and HH 

formed a distinct clade. It was observed close taxonomic relationship between S. 

pasteuri isolates recovered from DST and DSS, HH and DSR as they were located in 

same cluster (Fig 4.8b).   

Eleven S. aureus isolates have been analysed in this study. It was found that S. aureus 

isolates that were recovered from six different sites (BCF, DSH, DSR, DSS, HB, HH) 

formed 2 major clades. Two S. aureus isolates recovered from DSR were found to be 

located in the same clade. S. aureus isolates recovered from DSR and DSS were 

taxonomically closely related to those recovered from DSR and DSS. Apart from this, 

two S. aureus isolates, (one recovered from DSH and the other from HH) were found to 

be located in same cluster, demonstrating their close taxonomic relationship (Fig 4.9a). 

 

Figure 4. 11 11a and 11b 11a. Three dimensional (3D) scatter plot of S. aureus isolated 

from BCF, DSH, DSR, DSS, HB, HH. BCF ; DSH ; DSR  ; DSS ; HB  ;HH . X: 

-0.2 to 0.1; Y: -0.1 to 0.2; Z: -0.1 to 0.05. 11b. Three-dimensional (3D) scatter plot of S. 

saprothyticus isolated from BCF, DSH, DSL. BCF  ; DSH  ; DSL   .X: -0.3 to 0.0; 

Y: -0.15 to 0.1; Z: -0.04 to 0.04.  

The X, Y, and Z axises are arbitrary units. It represents the distance between the closely 

related isolates and that the distance exists in all three axises. Isolates that have 100% 

similarity are above each other, with no distance between them. As less their similarity 

is, the more the distance is between them in the plot. 



138 
 

Eight S. saprophyticus isolates were recovered from BCF, DSH, and DSL. S. 

saprophyticus isolated from DSH were located in same cluster as those isolated from 

BCF (Fig 4.9b).  

Cluster analysis was applied to four S. simiae isolates, and they all were from DST. 

Interestingly, the clade formed by these isolates was located between S. warneri and S. 

caprae (Fig 4.10).   

  

 
Figure 4. 12  Three-dimensional (3D) scatter plot of S. simiae isolates recovered from 

DST. DST . X: -0.04 to 0.02; Y: -0.01 to 0.02; Z: -0.008 to 0.004. 

The X, Y, and Z axises are arbitrary units. It represents the distance between the closely 

related isolates and that the distance exists in all three axises. Isolates that have 100% 

similarity are above each other, with no distance between them. As less their similarity 

is, the more the distance is between them in the plot. 

 

4.5 Chapter summary 

The identification of environmental bacteria showed that: 

1. 991 out of 1152 (86%) were shown reliable identification; 

2. 718 (62%) were identified to be Staphylococcus spp.; 

3. Reproducibility of MALDI-TOF MS identification was confirmed by obtaining 

results from two modes of MALDI-TOF MS in fully automated fashion;  
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4. 16S rRNA gene sequencing results confirmed the reliability of MALDI-TOF MS 

identification; 

5. Cluster analysis of staphylococci isolated from different sites was found to be 

taxonomically closely related. 

It is important to do rapid and accurate identification of microorganisms in 

microbiology study. This chapter introduced the identification of staphylococcal isolates 

with MALDI-TOF MS, and tested the reproducibility and reliability of MALDI-TOF 

MS in identifying environmental staphylococci. Moreover, MALDI-TOF MS data were 

combined with isolation sites to do cluster analysis. Evaluation of the diversity of 

environmental staphylococcal species will be discussed in the discussion chapter. The 

importance of reliability and reproducibility in identifying environmental staphylococci 

will also be discussed later. Finally, the taxonomic relationship of staphylococci isolated 

from different sites will be assessed in the discussion chapter. 
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Chapter 5 Phenotypic analysis of environmental staphylococci 

The emergency of antibiotic resistance in clinical staphylococci has been widely 

reported (Appelbaum, 2006; Brennan et al., 2011). The presence of antibiotic resistance 

put a great challenge in treatment (IWG-SCC, 2009), and the antibiotic susceptibility 

test is of great important for clinicians to select the right antimicrobial agents (Jorgensen 

& Ferraro, 2009). In addition,  antimicrobial susceptibility tests can be applied to 

environmental microorganisms to survey the influence caused by overuse of antibiotics 

(Wang et al., 2008). Environmental staphylococci may act as a reservoir of antibiotic 

resistance genes, so it is necessary to include less frequently diseases associated 

microorganisms in antibiotic resistance research in order to prevent the resistance before 

it appears in pathogens (Blair et al., 2014). Antibiotic susceptibility tests were applied to 

677 environmental recovered staphylococci. In addition, antibiotic susceptibility 

profiles were combined with MALDI-TOF MS identification data for systematic 

taxonomic analysis.  

5.1 Antibiotic susceptibility test  

The antibiotic susceptibility was determined by comparing the diameter of inhibition 

zone with BSAC or CLSI standards (Howe & Andrew., 2012; Creagh & Lucey., 2007). 

Antibiotic resistance patterns were determined for 677 strains of staphylococci from 9 

sites, and 649 (96%) staphylococcal isolates were resistant to more than one antibiotic. 

Resistance to penicillin, and fusidic acid was recorded in more than 60% of all 

staphylococcal species. Resistance to the other compounds tested was as follows: 

erythromycin 33%, streptomycin 31%, amoxicillin 27%, vancomycin 24%, tetracycline 

18%, mupirocin 16%, cefepime 10%, gentamicin 10%, oxacillin 7%, and 

chloramphenicol 5%. For the resistance to non-β-lactam antibiotics, 453 staphylococcal 

isolates (67%) were resistant to fusidic acid, 226 isolates (33%) were resistant to 
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erythromycin, and the varied antibiotic resistance ratio of other non-β-lactam antibiotics 

such as gentamicin, vancomycin and chloramphenicol (Table 5.1). In addition to these 

non-β-lactam antibiotic resistant strains, 448 (66%) of the staphylococcal strains were 

resistant to the traditional β-lactam antibiotic penicillin, and 50 (7%) of staphylococcal 

isolates were resistant to oxacillin which express additional penicillin-binding protein 

(Fig 5.1).  

Apart from high ratio resistant to penicillin and fusidic acid, there were species patterns 

of resistance: S. epidermidis, S. hominis and S. pasteuri were predominantly resistant to 

erythromycin, whereas S. capitis has relatively low resistance ratio (1%) of gentamicin, 

and shows relatively high ratio of streptomycin (45%) resistance.  Additionally, S. 

warneri presents higher resistant (47%) to streptomycin (Table 5.1). The data sets of the 

rest of the species were of less than 30 isolates, however, these staphylococcal species: 

S. arlettae, S. aureus, S. auricularis, S. caprae, S. cohnii, S. equorum, S. lugdunensis, S. 

pettenkoferi, S. saprophyticus, S. sciuri, S. simiae, S. simulans, and S. xylosus, had 

similar antibiograms with species which had more than 30 isolates. For example, there 

were high levels of penicillin and fusidic acid resistance in all of small data sets species 

except for S. simiae (n=10). In addition to penicillin and fusidic acid, S. sciuri has high 

resistance ratio of oxacillin (67%), mupirocin (67%), and streptomycin (67%).  

Multi-resistance was seen in 677 tested staphylococcal species, including one isolate 

resistant to 11 antibiotics, one isolate resistant to 10 antibiotics, five to 9 antibiotics,   

seventeen isolates resistant to 8 antibiotics, thirteen to 7 antibiotics, forty-four to 6 

antibiotics, fifty-eight to 5 antibiotics, one hundred and six to 4 antibiotics, one-hundred 

and thirty-eight to 3 antibiotics, one hundred and sixty-one to 2 antibiotics, and one 

hundred and five to 1 antibiotic. Twenty-eight staphylococcal isolates were susceptible 

to all the tested antibiotics. (Appendix II.1) 
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Table 5. 1  Antibiotic susceptibility profile of environmental staphylococci 

Test result 

 

No of resistant isolates/No of  tested isolates  (% resistance) 

 

Resistance to oxacillin penicillin 

 

vancomycin 

 

mupirocin cefepime gentamicin fusidic acid streptomycin amoxicillin erythromycin tetracycline 
chloram 

phenicol 

S. epidermidis 

 

15/181 (8) 

 
132/181 (73) 53/181 (29) 30/181 (17) 18/181 (10) 13/181 (7) 116/181 (64) 39/181 (22) 48/181 (27) 78/181 (43) 31/181 (17) 6/181 (3) 

S. hominis 

 

4/164 (2) 

 
111/164 (68) 22/164 (13) 17/164 (10) 9/164 (5) 10/164 (6) 110/164 (67) 36/164 (22) 30/164 (18) 62/164 (38) 34/164 (21) 5/164 (3) 

S. capitis 

 

3/75 (4) 

 
44//75 (59) 13/75 (17) 12/75 (16) 3/75 (4) 1/75 (1) 45/75 (60) 34/75 (45) 17/75 (23) 10/75 (13) 7/75 (9) 4/75 (5) 

S. haemolyticus 

 

11/74 (14) 

 
41/74 (55) 22/74 (30) 13/74 (18) 18/74 (24) 11/74 (15) 51/74 (70) 34/74 (46) 30/74 (41) 20/74 (27) 25/74 (32) 10/74 (14) 

S. warneri 

 

2/68 (3) 

 
38/68 (56) 22/68 (32) 12/68 (18) 6/68 (9) 15/68 (22) 41/68 (60) 32/68 (47) 27/68 (40) 19/68 (28) 11/68 (16) 1/68 (1) 

S. pasteuri 

 

2/32 (6) 

 
22/32 (69) 5/32 (16) 4/32 (12) 2/32 (6) 3/32 (9) 22/32 (69) 8/32 (25) 10/32 (31) 14/32 (44) 5/32 (16) 1/32 (3) 

S.saprophyticus 

 

3/20 (15) 

 
18/20 (90) 4/20 (20) 5/20 (25) 1/20 (5) 2/20 (10) 20/20 (100) 2/20 (10) 5/20 (25) 7/20 (35) 3/20 (15) 2/20 (10) 

Note: oxacillin (1µg);  penicillin G (1 unit); vancomycin (5 µg); mupirocin (20 µg); cefepime (30 µg); gentamicin (10 µg); fusidic acid (10 µg); streptomycin (10 µg)； amoxicillin (10 µg); 

erythromycin (5 µg); tetracycline (10 µg); chloramphenicol (30 µg). 
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Test result 

 

No of resistant isolates/No of  tested isolates  (% resistance) 

 

Resistance to oxacillin penicillin 

 

vancomycin 

 

mupirocin cefepime gentamicin fusidic acid streptomycin amoxicillin erythromycin tetracycline 
chloram 

phenicol 

S. cohnii 

 

4/14 (29) 

 
11/14 (79) 3/14 (21) 3/14 (21) 5/14 (36) 0/14 (0) 13/14 (93) 8/14 (57) 4/14 (29) 9/14 (64) 2/14 (14) 2/14 (14) 

S. aureus 

 

0/12 (0) 

 

 

10/12 (83) 6/12 (50) 2/12 (17) 0/12 (0) 7/12 (58) 10/12 (83) 4/12 (33) 6/12 (50) 3/12 (25) 0/12 (0) 1/12 (8) 

S. simiae 
 

0/10 (0) 

 

1/10 (10) 3/10 (30) 0/10 (0) 0/10 (0) 0/10 (0) 4/10 (40) 0/10 (0) 0/10 (0) 0/10 (0) 0/10 (0) 0/10 (0) 

S. sciuri 

 

4/6 (67) 

 
4/6 (67) 2/6 (33) 4/6 (67) 1/6 (17) 1/6 (17) 5/6 (83) 4/6 (67) 2/6 (33) 0/6 (0) 0/6 (0) 1/6 (17) 

S. pettenkoferi 

 

1/5 (20) 

 
3/5 (60) 1/5 (20) 0/5 (0) 1/5 (20) 1/5 (20) 3/5 (60) 3/5 (60) 2/5 (40) 1/5 (20) 1/5 (20) 1/5 (20) 

S. lugdunensis 

 

1/5 (20) 

 
4/5 (80) 1/5 (20) 1/5 (20) 0/5 (0) 0/5 (0) 3/5 (60) 0/5 (0) 0/5 (20) 1/5 (20) 0/5 (0) 0/5 (0) 

S. equorum 

 

0/3 (0) 

 
2/3 (67) 1/3 (33) 1/3 (67) 0/3 (0) 0/3 (0) 1/3 (33) 1/3 (33) 1/3 (33) 0/3 (0) 1/3 (33) 0/3 (0) 

S. caprae 

 

0/2 (0) 

 
2/2 (100) 0/2 (0) 0/2 (0) 2/2 (100) 2/2 (100) 2/2 (100) 1/2 (50) 1/2 (50) 0/2 (0) 0/2 (0) 0/2 (0) 

Note: oxacillin (1µg);  penicillin G (1 unit); vancomycin (5 µg); mupirocin (20 µg); cefepime (30 µg); gentamicin (10 µg); fusidic acid (10 µg); streptomycin (10 µg)； amoxicillin (10 µg); 

erythromycin (5 µg); tetracycline (10 µg); chloramphenicol (30 µg). 
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Test result 

 

 

No of resistant isolates/No of  tested isolates  (% resistance) 

 

Resistance to oxacillin penicillin 

 

vancomycin 

 

mupirocin cefepime gentamicin fusidic acid streptomycin amoxicillin erythromycin tetracycline 
chloram 

phenicol 

S. xylosus 

 

0/2 (0) 

 
2/2 (100) 1/2 (50) 1/2 (50) 1/2 (50) 1/2 (50) 2/2(100) 2/2(100) 0/2(0) 0/2(0) 1/2 (50) 0/2 (0) 

S. auricularis 

 

0/2 (0) 

 
1/2 (50) 1/2 (50) 0/2 (0) 1/2 (50) 0/2 (0) 1/2 (50) 0/2 (0) 1/2 (50) 0/2 (0) 0/2 (0) 0/2 (0) 

S. arlettae 

 

0/1 (0) 

 
1/1 (100) 0/1 (0) 0/1 (0) 0/1 (0) 0/1 (0) 1/1 (100) 1/1 (100) 1/1 (100) 1/1 (100) 0/1 (0) 0/1 (0) 

S. simulans 

 

0/1 (0) 

 
1/1 (100) 0/1 (0) 0/1 (0) 0/1 (0) 0/1 (0) 1/1 (100) 0/1 (0) 0/1 (0) 0/1 (0) 0/1 (0) 0/1 (0) 

 

 

50/677 

(7) 

 

448/677 

(66) 

 

160/677 

(24) 

 

105/677 

(16) 

 

68/677 

(10) 

 

67/677 

(10) 

 

451/677 

(67) 

 

209/677 

(31) 

 

185/677 

(27) 

 

225/677 

(33) 

 

121/677 

(18) 

 

34/677 

(5) 

Note: oxacillin (1µg);  penicillin G (1 unit); vancomycin (5 µg); mupirocin (20 µg); cefepime (30 µg); gentamicin (10 µg); fusidic acid (10 µg); streptomycin (10 µg)； amoxicillin (10 µg); 

erythromycin (5 µg); tetracycline (10 µg); chloramphenicol (30 µg).  
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Figure 5. 1  Percent of environmental staphylococci resistant to penicillin G, fusidic acid, erythromycin, streptomycin, amoxicillin, vancomycin, 

tetracycline, oxacillin, mupirocin, cefepime, gentamicin and chloramphenicol 
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5.2 MIC (oxacillin) test  

In addition to the antibiotic susceptibility tests, oxacillin MICs was determined for 

mecA gene positive coagulase negative staphylococci and all S. aureus. The oxacillin 

MICs for tested staphylococci were highly variable with MICs ranging from 0.015 mg l
-

1
 to 256 mg l

-1
.  

5.3 Antibiotic susceptibility of taxonomically closely related 

staphylococci 

As well as determinining the potential taxonomic relationships based upon MALDI-

TOF MS profiles of staphylococci, antibiotic susceptibility profiles of these 411 

staphylococcal isolates were combined to assess the antibiotic susceptibility variations 

of taxonomically closely related staphylococci.   

5.3.1 Antibiotic susceptibility of staphylococci 

Three-hundred and twenty-six (80%) out of 411 staphylococci were resistant against 2 

or more antibiotics, including 1 staphylococci isolates resistant to 10 antibiotics, 4 to 9 

antibiotics, 10 isolates were resistant to 8 antibiotics, 7 to 7 antibiotics, 20 to 6 

antibiotics, 29 to 5 antibiotics, 59 to 4 antibiotics, 89 to 3 antibiotics, 107 to 2 

antibiotics, and 63 to 1 antibiotic. Of all isolates tested only 22 were susceptible to all 

antibiotics tested.  

5.3.2 Antibiotic resistance patterns of taxonomically closely related 

staphylococci 

As noted above, MALDI-TOF MS data of 411 staphylococci were combined with 

antibiotic susceptibility profiles to determine the antibiotic resistant patterns of 

taxonomically closely related staphylococci. Staphylococci resistant to more than 2 
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antibiotics were considered as multiple antibiotic resistant, whereas susceptible isolates 

were those that demonstrated resistant to one antibiotic or none. The distribution of 

antibiotic resistance patterns in staphylococcal isolates was analysed with BioNumerics 

7.5 (Applied Math, Belgium). It was demonstrated that susceptible and multiple 

resistant isolates were taxonomically closely related (Fig 5.2), and 30 multidrug 

resistant isolates were taxonomically closely related to 30 susceptible isolates 

respectively, indicating that these might belong to the same genotype of the founding 

strain. 

 

Figure 5. 2 Three-dimensional (3D) scatter plot of multiple antibiotic resistant  and 

susceptible  staphylococci. X: -0.4 to 0.4; Y: -0.2 to 0.4; Z: -0.2 to 0.4.  

The X, Y, and Z axises are arbitrary units. It represents the distance between the closely 

related isolates and that the distance exists in all three axises. Isolates that have 100% 

similarity are above each other, with no distance between them. As less their similarity 

is, the more the distance is between them in the plot. 
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5.3.3 Cluster analysis of each staphylococcal species combined with 

antibiotic susceptibility profile 

Staphylococcal species selected for antibiotic susceptibility profile associated cluster 

analysis were S. aureus, S. capitis, S. epidermidis, S. haemolyticus, S. hominis, S. 

pasteuri, S. saprophyticus, S. simiae, and S. warneri. 

Ninety-four (85%) multiple resistant and 17 (15%) susceptible S. hominis were analysed. 

Eight multiple antibiotic resistant S. hominis were taxonomically closely related to 8 

susceptible S. hominis (Fig 5.3a).  

 

Figure 5. 3 3a and 3b 3a. Three-dimensional (3D) scatter plot of multiple resistant  

and susceptible  isolates of S. hominis. X:-0.2 to 0.2; Y: -0.2 to 0.4; Z: -0.2 to 0.2. 3b. 

Three-dimensional (3D) scatter plot of multiple resistant  and susceptible  isolates of 

S. epidermidis. X: -0.4 to 0.1; Y: -0.2 to 0.3; Z: -0.2 to 0.2.   

The X, Y, and Z axises are arbitrary units. It represents the distance between the closely 

related isolates and that the distance exists in all three axises. Isolates that have 100% 

similarity are above each other, with no distance between them. As less their similarity 

is, the more the distance is between them in the plot. 
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Eighty-five (69%) multiple resistant and 38 (31%) susceptible S. epidermidis were 

analysed. It was found that 14 multiple antibiotic resistant S. epidermidis were 

taxonomically closely related to 14 susceptible S. epidermidis (Fig 5.3b).  

In this study, thirty-nine (93%) multiple resistant and 3 (7%) susceptible S. 

haemolyticus were determined. Of those only one multiple resistant S. haemolyticus was 

found taxonomically closely related to one susceptible S. haemolyticus (Fig 5.4a).  

 

Figure 5. 4 4a and 4b 4a. Three-dimensional (3D) scatter plot of multiple resistant  

and susceptible  isolates of S. haemolyticus. X: -0.2 to 0.4; Y: -0.4 to 0.2; Z: -0.6 to 0.0.  

4b. Three-dimensional (3D) scatter plot of multiple resistant  and susceptible   

isolates of S. capitis. X: -0.6 to 0.0; Y: -0.2 to 0.4; Z:-0.2 to 0.1.  

The X, Y, and Z axises are arbitrary units. It represents the distance between the closely 

related isolates and that the distance exists in all three axises. Isolates that have 100% 

similarity are above each other, with no distance between them. As less their similarity 

is, the more the distance is between them in the plot. 

 

 

38 (76%) multiple resistant and 12 (24%) susceptible S. capitis were determined. It was 

found that 3 multiple resistant S. capitis were taxonomically closely related to 3 

susceptible S. capitis. The distribution of the resistant (Red) S. capitis isolates on the left 
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side, and susceptible isolates on the right side of the cube indicated that these isolates 

were not related to one another (Fig 5.4b). 

Thirty (86%) multiple resistant and 5 (14%) susceptible isolates of S. warneri were 

determined. From these isolates only 1 multiple resistant S. warneri was found to be 

taxonomically closely related to 1 susceptible S. warneri (Fig 5.5a). 

 

Figure 5. 5 5a and 5b 5a Three-dimensional (3D) scatter plot of multiple resistant  and 

susceptible  isolates of S. warneri. X: -0.6 to 0.0; Y: -0.2 to 0.3; Z: -0.2 to 0.1 5b. 

Three-dimensional (3D) scatter plot of multiple resistant  and susceptible  isolates of 

S. pasteuri. X: -0.2 to 0.4; Y: -0.3 to 0.2; Z: -0.2 to 0.2.  

The X, Y, and Z axises are arbitrary units. It represents the distance between the closely 

related isolates and that the distance exists in all three axises. Isolates that have 100% 

similarity are above each other, with no distance between them. As less their similarity 

is, the more the distance is between them in the plot. 

 

 

For S. pasteuri, 18 (86%) multiple resistance and 3 (14%) susceptible isolates were 

determined. It was found that two multiple resistant S. pasteuri were taxonomically 

closely related to two susceptible S. pasteuri (Fig 5.5b). 

In this study, ten multiple resistant and 1 susceptible S. aureus were determined. It was 

showed that multiple resistant S. aureus were not related to this susceptible S. aureus 
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(Fig 5.6a).  In addition, it was found that all S. saprophyticus isolates (n=9) were 

multiple resistant (Fig 5.6b). Moreover, 3 multiple resistant and 1 susceptible S. simiae 

were determined and it was found that one of multiple resistant S. simiae was 

taxonomically closely related to 1 susceptible S. simiae (Fig 5.7).  

 

Figure 5. 6 6a and 6b 6a. Three-dimensional (3D) scatter plot of multiple resistant  

and susceptible  isolates of S. aureus. X: -0.2 to 0.1; Y: -0.1 to 0.2; Z:-0.1 to 0.05. 6b. 

Three-dimensional (3D) scatter plot of multiple resistant  and susceptible  isolates of 

S. saprophyticus. X: -0.3 to 0.0; Y: -0.15 to 0.1; Z:-0.04 to 0.04.  

The X, Y, and Z axises are arbitrary units. It represents the distance between the closely 

related isolates and that the distance exists in all three axises. Isolates that have 100% 

similarity are above each other, with no distance between them. As less their similarity 

is, the more the distance is between them in the plot. 
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Figure 5. 7 Three-dimensional scatter plot of multiple resistant  and susceptible  

isolates of S. simiae. X: -0.04 to 0.02; Y: -0.01 to 0.02; Z: -0.008 to 0.004.  

The X, Y, and Z axises are arbitrary units. It represents the distance between the closely 

related isolates and that the distance exists in all three axises. Isolates that have 100% 

similarity are above each other, with no distance between them. As less their similarity 

is, the more the distance is between them in the plot. 

5.3.4 Variations of antibiotic susceptibility profile of taxonomically closely 

related staphylococci 

In order to identify antibiotic susceptibility variations of taxonomically closely related 

staphylococci, two representative isolates recovered from different sites as well as from 

the same sites were selected from each cluster. Staphylococcal species selected for these 

analyses were S. hominis, S. epidermidis, S. haemolyticus, S. capitis and S. warneri 

(Appendix II.2). 

Thirty-five closely related clusters were determined for S. hominis. Twenty-five of these 

clusters were formed by the isolates recovered from different sites.  In 2 clusters 

(clusters 1-2) were detected only one antibiotic susceptibility variation, in 3 clusters 

(clusters 3-5) two antibiotic susceptibility variations, in 10 clusters (clusters 6-15) 3, in 

5 clusters (clusters 16-20) 4, in 2 clusters (clusters 21-22) 5, in 3 clusters (cluster 23- 25) 

6. In total ten clusters were formed by the isolates recovered from the same site. There 

was no obvious antibiotic susceptibility variation observed in three clusters (cluster 26-
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28). However, 1 antibiotic susceptibility variation was detected in 2 clusters (cluster 29-

30), two in 2 clusters (cluster 31-32), three in 1 cluster (cluster 33), and four in 2 

clusters (cluster 34-35) (Appendix II.2 ).  

For S. epidermidis, thirty-four taxonomically closely related clusters were identified.  

Twenty-two of these clusters were formed by isolates recovered from different sites.  

No antibiotic sensitivity difference was detected in one cluster (cluster 1). One 

antibiotic susceptibility variation was detected in 3 clusters (cluster 2-4), two in 3 

clusters (cluster 5-7), three in 7 clusters (cluster 8-14), four in 5 clusters (cluster 15-19), 

five in 1 cluster (cluster 20), six in 1 cluster (cluster 21), and seven in 1 cluster (cluster 

22). S. epidermidis isolates recovered from the same sites formed twelve clusters. In 

two out of 12 clusters (cluster 23-24) there is no antibiotic susceptibility variation, 

however, one antibiotic susceptibility variation was detected in 4 clusters (cluster 25-

28), two in 2 clusters (cluster 29-30), three in 1 cluster (cluster 31), six in 1 cluster 

(cluster 32), seven in 1 cluster (cluster 33), and eight in 1 cluster (cluster 34) (Appendix 

II.2).  

Moreover, antibiotic susceptibility variations were determined for twelve taxonomically 

closely related clusters of S. haemolyticus. Six out of 12 clusters were formed by the 

isolates recovered from different sites. In 2 clusters (cluster 1-2) were detected 4 

antibiotic variations, six in 1 cluster (cluster 3), seven in 1 cluster (cluster 4), and eight 

in 2 clusters (cluster 5-6). Six clusters were formed by isolates recovered from the same 

site and in 1 cluster (cluster 7) was found 1 antibiotic susceptibility variation, three in 1 

cluster (cluster 8), five in 1 cluster (cluster 9), six in 2 clusters (cluster 10-11), and 

seven in 1 cluster (cluster 12) (Appendix II.2). 
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Fifteen taxonomically closely related clusters of S. capitis were analysed for antibiotic 

susceptibility variations.  Eleven out of 15 clusters were formed by the isolates 

recovered from the different sites. In one such cluster (cluster 1) was found no antibiotic 

susceptibility variation, and further three variations in 3 clusters (cluster 2-4), four in 3 

clusters (cluster 5-7), five in 3 clusters (cluster 8-10), and seven in 1 cluster (cluster 11). 

Among those clusters that were formed by isolates recovered from the same site two 

antibiotic susceptibility variations were detected in 2 clusters (cluster 12-13), three in 1 

cluster (cluster 14), and nine antibiotic susceptibility variations in 1 cluster (cluster 15)  

(Appendix II.2).  

10 taxonomically closely related clusters of S. warneri, were also examined for 

antibiotic susceptibility variations. Five out of 10 clusters were formed by isolates 

recovered from different sites, in one of which (cluster 1) was detected one antibiotic 

susceptibility variation. Three antibiotic variations were detected in 2 clusters (cluster 2-

3), four in 1 cluster (cluster 4), and six in 1 cluster (cluster 5). Moreover, five clusters 

were formed by isolates from the same site. In 4 of five clusters (cluster 6-9) were 

observed 3 antibiotic variations and in 1 cluster (cluster 10) was detected 6 antibiotic 

variations (Appendix II.2).  

5.3.5 Percentage of multiple resistant staphylococci recovered from each site 

In addition to find out variation of antibiotic susceptibility profile of taxonomically 

closely related staphylococci, the number of susceptible and multiple resistant 

staphylococci in each site was summarized.  A total of 325 (80%) of all staphylococci 

isolates were multiple resistant, and 86 were susceptible. Table 5.2 demonstrates the 

distribution of multiple resistant and susceptible staphylococci in each site. All five 

staphylococcal isolates recovered from HAS were multiple antibiotic resistant. Thirty-
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one (94%) of all isolates recovered from BCF were multiple resistant staphylococci, and 

2 (6%) were susceptible. More than 80% staphylococci isolates recovered from DSH 

(n=46), DSS (n=51), HH (n=86) and DSL (n=22) were also multiple resistant. Forty-

eight (72%) of 67 isolates recovered from DSR were multiple resistant.  In addition, 6 

(60%) and 30 (58%) of staphylococci isolates recovered from HB and DST respectively 

were also multiple resistance (Table 5.2).  

 

Table 5. 2 Distribution of multiple resistant and susceptible staphylococci within each 

site 

Sites Total 

isolates 

Multiple resistant 

isolates (%) 

Susceptible 

isolates (%) 

Hotel air  5 5(100%) 0(0%) 

Baby care facilities 33 31(94%) 2(6%) 

Library 25 22(88%) 3(12%) 

Hotels 53 46(87%) 7(13%) 

Supermarkets 59 51(86%) 8(14%) 

Human hands 107 86(80%) 21(20%) 

Restaurants 67 48(72%) 19(28%) 

Handbags 10 6(60%) 4(40%) 

Transportation facilities 52 30(58%) 22(42%) 
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5.4 Chapter summary 

The antibiotic susceptibility profile of staphylococci showed that: 

1. Six hundred and forty-eight (96%) staphylococci were found to be resistant to at least 

one antibiotic;  

2. Cluster analysis showed that 30 multidrug resistant staphylococci were 

taxonomically closely related to 30 susceptible staphylococci;  

3. No obvious differences of antibiotic susceptibility profiles were observed between 

clusters that were formed by isolates recovered from different sites and clusters that 

were formed by isolates recovered from same site. 

Antimicrobial susceptibility tests can be applied to environmental microorganisms to 

survey the dissemination of antibiotic-resistant environmental staphylococci. This 

chapter introduced the antibiotic susceptibility of staphylococci, and analysed the 

antibiotic susceptibility variation of taxonomically closely related staphylococci. The 

comparison of antibiotic susceptibility profiles and multiple antibiotic resistance ratios 

with clinical studies will be carried out in the discussion chapter. Evaluation of 

environment act as a reservoir of antibiotic-resistant staphylococci will be carried out in 

the discussion chapter. Finally, the antibiotic susceptibility profiles will be combined 

with MALDI-TOF MS data to assess antibiotic susceptibility variation of taxonomically 

closely related staphylococci.  
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Chapter 6 Genotypic analysis of selected staphylococci 

Methicillin resistant S. aureus (MRSA) is a major public health problem, and infections 

caused by MRSA confer severe economic and healthy consequences (Köser et al., 2012). 

Methicillin resistant of MRSA is due to additionally acquired a mecA gene, which 

encodes for penicillin binding protein 2a (PBP2a) with a low affinity to β-lactam 

antibiotics (Tulinski et al., 2012). In this study, the mecA gene PCR was used to explore 

the dissemination of mecA gene positive environmental staphylococci. 

Oxacillin susceptible mecA positive S. aureus (OS-MRSA) have been reported in 

clinical isolates, and precaution in avoiding selection of high oxacillin resistant MRSA 

during treatment processes has been advocated (Hososaka et al., 2007). However, little 

is known about oxacillin susceptible mecA positive coagulase negative staphylococci 

(OS-MRCoNS). In this study, the occurrence of OS-MRCoNS was assessed, and the 

expression of PBP2a of mecA gene positive staphylococci with varied MIC was 

determined.  

The application the of molecular typing system has greatly promoted the pursuit of 

staphylococcal epidemiology studies, which in turn improved the efficiency of health 

care facilities to track the source and transmission of staphylococcal outbreak (Oliveira 

& Tomasz, 2002). In addition, molecular epidemiology has been employed to determine 

the population structure of environmental microbial pathogens (Oliveira & Tomasz, 

2002). Here, SCCmec and MLST approaches were employed for the systematic typing 

of environmental staphylococci.   
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6.1 mecA gene  

6.1.1 Detection of mecA gene for all staphylococci 

The presence of mecA gene was determined for 714 staphylococcal isolates. PCR was 

undertaken with approapriate positive and negative controls. Eighty-nine (12%) mecA 

positive staphylococci were detected; however, among these MRSA was not found. S. 

sciuri had the highest mecA positive ratio (83%) among 19 staphylococcal species, 

followed by S. cohnii (36%), S. haemolyticus (24%), S. pettenkoferi (20%), and S. 

lugdunensis (20%). No mecA gene was found in 8 species, including S. aureus, S. 

simiae, S. equorum, S. caprae, S. xylosus, S. auricularis, S. simulans, and S. arlettae. 

Apart from the species mentioned above, the rest of the species’ mecA positive ratio was 

between 6 to 13% (Table 6.1).  
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Table 6. 1 mecA gene positive isolates recovered from general public settings 

 Species No of isolates Number of mecA positive isolates (%) 

S. epidermidis 198 24(12) 

S. hominis 173 11(6) 

S. haemolyticus 79 19(24) 

S. capitis 79 6(8) 

S. warneri 68 9(13) 

S. pasteuri 34 4(12) 

S. saprophyticus 20 4(20) 

S. cohnii 14 5(36) 

S. aureus 12 0(0) 

S. simiae 10 0(0) 

S. sciuri 6 5(83) 

S. pettenkoferi 5 1(20) 

S. lugdunensis 5 1(20) 

S. equorum 3 0(0) 

S. caprae 2 0(0) 

S. xylosus 2 0(0) 

S. auricularis 2 0(0) 

S. simulans 1 0(0) 

S. arlettae 1 0(0) 

Total 714 89(12) 

 

The antimicrobial resistances patterns of the 89 mecA-positive staphylococci are shown 

in Table 6.2. Eighty-four of mecA gene positive isolates were multidrug-resistant 

(resistant to more than 2 antibiotics); their resistances to antibiotics varied from 2 to 8 

antibiotics.
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Table 6. 2  Molecular characterisation and antibiotic resistance of mecA gene positive staphylococci isolated from environment 

ID Sites Species PG VAN MUP CEF GM FC S A E T C mecA mec ccr SCCmec 
MIC/OX 

(mg l
-1

) 

71 HH S. capitis  S S S S S S R S S S S + - - I* 0.5 

75 HH S. capitis  R S S S S R R S S S S + Class A NT NT 0.5 

81 HH S. capitis  R S S R S R R R R S S + NT 5 NT 0.5 

70 HH S. capitis R S S S S S R S S R S + NT 5 NT 0.25 

83 HH S. capitis S S R S S R R S S S S + NT 5 NT 0.12 

24 DSH S. capitis S S S S S R R S S S S + NT 1 NT 0.12 

106 HAS S. cohnii R S R R S R I S S S S + Class C  5 V 2 

108 HH S. cohnii S S S I S R R S R R S + Class A NT NT 1 

107 HAS S. cohnii R R S R S R R S R R R + Class A 5 V 1 

100 DSH S. cohnii R S R S S S S R R S S + Class A 5 5A 1 

97 BCF S. cohnii R S S R S R R S R S S + Class B 1 I 0.25 

118 DSH S. epidermidis R S R R R R I R R R S + Class B 2 IV 256 

279 HH S. epidermidis R R S S S R S S R S S + Class B 2 IV 2 

127 DSH S. epidermidis  R R S I S S S R R R S + Class C 5 V 2 

139 DSR S. epidermidis R R R R S R S R R R S + Class C 5 V 2 

191 DSS S. epidermidis R S S S S R S R S S S + Class B 4 VI 2 

308 HH S. epidermidis R S R S S R S R R S S + Class B NT NT 2 

153 DSH S. epidermidis R S S S S R S S S S S + Class C 5 V 1 

187 DSS S. epidermidis R R S S S S S S R S S + Class C 5 V 1 

134 DSL S. epidermidis R S S S S R R R R R S + Class B 1 I 1 

Note: * determined by Zhang’s method. R: resistant, S sensitive. I: intermediate 

BCF- baby care facility; DSH- different sites of hotels; DSL- different sites of a library; DSR- different sites of restaurants; DSS- different 

sites of supermarkets; DST- different sites of transportation facilities; HAS- hotel air samples; HB- handbags; HH- human hands.  

   A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: oxacillin (1 µg); PG: penicillin G (1 unit); S: streptomycin (10 µg); T: tetracycline (10 

µg); VAN: vancomycin (5 µg). 
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ID Sites Species PG VAN MUP CEF GM FC S A E T C mecA mec ccr SCCmec 
MIC/OX 

(mg l
-1

) 

259 HH S. epidermidis  R S S R S R R R R S S + Class C 5 V 1 

234 HB S. epidermidis  S S R S S R R S R R S + Class A NT NT 1 

135 DSL S. epidermidis R S S S S R R R R R S + Class B 2 IV 0.5 

124 DSH S. epidermidis  R R S R S R R R S R S + Class B 2 IV 0.5 

133 DSL S. epidermidis R S S S S R R R R R S + Class B 3 3B 0.5 

126 HH S. epidermidis  R R S I S S R R R S S + - - III* 0.5 

257 HH S. epidermidis  R S S S S S S R I R S + Class A 1 1A 0.12 

249 DSH S. epidermidis  R R S S S R R S S R S + NT 2 NT 0.12 

119 DSH S. epidermidis R S S S S S S R I R S + Class C 5 V 0.12 

111 BCF S. epidermidis R S S S S S S S S S S + Class A 2 II 0.12 

202 DST S. epidermidis S R R S S R I S S S S + Class B 5 5B 0.12 

264 HH S. epidermidis S S R S S R R S S S S + Class B 2 IV 0.06 

125 DSH S. epidermidis  S R S I S S R S S S S + NT 5 NT 0.06 

185 DSS S. epidermidis R R S S S S S S S S S + Class C NT NT 0.06 

129 DSL S. epidermidis R S S S S R R R R R S + Class B 1 I 0.03 

379 HAS S. haemolyticus R S S R S R R S R R S + Class A 5 5A 256 

316 DSH S. haemolyticus R R R R S R I S R S R + Class C 5 V 256 

317 DSH S. haemolyticus R R S R R R R R R R R + Class A 2 II 256 

318 DSH S. haemolyticus R S S R R R R R R S S + Class C 5 V 8 

319 DSH S. haemolyticus R S S R S R I R R S S + Class C 5 V 8 

362 DSL S. haemolyticus R S S I S S R R S S S + Class C 5 V 2 

367 DSL S. haemolyticus R S S R S S R R S S S + Class C 5 V 2 

Note: * determined by Zhang’s method. R: resistant, S sensitive. I: intermediate 

BCF- baby care facility; DSH- different sites of hotels; DSL- different sites of a library; DSR- different sites of restaurants; DSS- different 

sites of supermarkets; DST- different sites of transportation facilities; HAS- hotel air samples; HB- handbags; HH- human hands.  

   A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: oxacillin (1 µg); PG: penicillin G (1 unit); S: streptomycin (10 µg); T: tetracycline (10 

µg); VAN: vancomycin (5 µg). 
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ID Sites Species PG VAN MUP CEF GM FC S A E T C mecA mec ccr SCCmec 
MIC/OX 

(mg l
-1

) 

355 DSH S. haemolyticus  R S S R R R R R S R S + Class C 5 V 2 

384 HH S. haemolyticus R S R S S R R S S S S + Class C 5 V 2 

320 DSH S. haemolyticus R R R R S R I S S R R + Class A 1 1A 1 

380 HAS S. haemolyticus R R R S S R R S R R R + Class C 5 V 0.5 

321 DSH S. haemolyticus R R S S S R I R S S S + Class C 5 V 0.25 

322 DSH S. haemolyticus R S S S S S I R S R S + Class A 1 1A 0.25 

382 HH S. haemolyticus R S S I S R R S R S S + - - II* 0.25 

324 DSH S. haemolyticus R S S S S S I R S R S + Class B 1 I 0.12 

323 DSH S. haemolyticus S S S S R S R R I R S + Class A 2 II 0.12 

381 HH S. haemolyticus S S S I S S R S S S S + Class B 5 5B 0.12 

360 DSH S. haemolyticus  S S S S S R S S S S R + Class B 5 5B 0.06 

369 DSL S. haemolyticus R S S S S R R S R S R + Class B 1 I 0.03 

399 DSH S. hominis R R S S S R S S S S R + Class A 1 1A 8 

413 DSH S. hominis  S S R S S R R S S S S + Class C 5 V 2 

506 DSS S. hominis S R S S S R S S S S S + Class B 1 I 0.5 

498 DSS S. hominis R S S S S R S S R S S + Class A NT NT 0.5 

426 DSH S. hominis  R S S I S R R R R S S + Class A NT NT 0.25 

430 DSH S. hominis  R S R S S R R S S S S + NT 5 NT 0.12 

400 DSH S. hominis R R R S S R S R R R S + Class A 1 1A 0.12 

326 DSH S. hominis S S S S S S S R I S S + Class A 1 1A 0.06 

401 DSH S. hominis R S R R S R I R R S S + Class A 1 1A 0.06 

412 DSH S. hominis R S S S S R S R R S S + NT 1 NT 0.06 

Note: * determined by Zhang’s method. R: resistant, S sensitive. I: intermediate 

BCF- baby care facility; DSH- different sites of hotels; DSL- different sites of a library; DSR- different sites of restaurants; DSS- different 

sites of supermarkets; DST- different sites of transportation facilities; HAS- hotel air samples; HB- handbags; HH- human hands.  

   A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: oxacillin (1 µg); PG: penicillin G (1 unit); S: streptomycin (10 µg); T: tetracycline (10 

µg); VAN: vancomycin (5 µg). 
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ID Sites Species PG VAN MUP CEF GM FC S A E T C mecA mec ccr SCCmec 
MIC/OX 

(mg l
-1

) 

391 BCF S. hominis R S S S S R S S S S S + NT 5 NT 0.03 

564 DSH S. lugdunensis R S S S S S I S R S S + Class A 5 5A 0.5 

593 HH S. pasteuri  R S S S R R R R S S S + NT 5 NT 0.5 

597 HH S. pasteuri R S R I S S R S S S S + NT 5 NT 0.5 

589 HB S. pasteuri  R S S S S R R S R S S + Class A 5 5A 0.25 

592 HH S. pasteuri  S S R S S R R S S S S + Class B 5 5B 0.25 

603 DSH S. pettenkoferi R R S R R R R R R R R + Class A 5 5A 8 

616 BCF S. saprophyticus R R R S S R I R R R S + NT 5 NT 256 

612 BCF S. saprophyticus R S R S S R S S R S S + NT NT NT 1 

627 HH S. saprophyticus R S I S S R S S S R S + Class B 5 5B 0.5 

621 DSS S. saprophyticus R S R R S R S R S R S + Class B 2 IV 0.25 

628 DSH S. sciuri R R S R S R I S S S R + Class A 5 5A 16 

630 HH S. sciuri  R R R I S R R S S S S + Class A 4 VIII 2 

632 DSH S. sciuri  R S S I S R R R S S S + Class A 5 5A 1 

633 DSH S. sciuri  R S R I R R R R S S S + Class B 5 5B 1 

629 HH S. sciuri  S S R S S S S S S S S + - - II* 0.25 

659 DSH S. warneri  R R R S S R R R S S S + NT 5 NT 0.5 

704 HH S. warneri  R S S I S R R R R S S + Class C 5 V 0.5 

662 DSH S. warneri  R S S S R R R R S R S + Class C 5 V 0.25 

694 HH S. warneri R S S S S S S S S R S + - - I* 0.25 

653 DSH S. warneri R S S S S S I S R S S + Class A 5 5A 0.25 

654 DSH S. warneri R R S S S R I S S S S + Class C 5 V 0.25 

655 BCF S. warneri S S R S R R R S I S S + Class B 1 I 0.12 

648 BCF S. warneri  R S S S R R S R S S S + NT 5 NT 0.06 

645 BCF S. warneri R S S S S R S S S S S + NT 4 NT 0.015 

Note: * determined by Zhang’s method. R: resistant, S sensitive. I: intermediate 

BCF- baby care facility; DSH- different sites of hotels; DSL- different sites of a library; DSR- different sites of restaurants; DSS- different 

sites of supermarkets; DST- different sites of transportation facilities; HAS- hotel air samples; HB- handbags; HH- human hands.  
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   A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: gentamicin 

(10 µg); MUP: mupirocin (20 µg); OX: oxacillin (1 µg); PG: penicillin G (1 unit); S: streptomycin (10 µg); T: tetracycline (10 µg); VAN: 

vancomycin (5 µg).  
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No mecA gene was found in twelve S. aureus isolates, all of which were phenotypically 

susceptible to oxacillin. MICs of 12 mecA-negatives S. aureus isolates ranged from 0.06 

to 0.12 mg l
-1

.   

The presence of the mecA gene was also demonstrated in 702 staphylococcal species, 

including: S. epidermidis, S. haemolyticus, S. sciuri, S. cohnii, S. hominis, S. 

saprophyticus, S. lugdunensis, S. pasteuri, S. capitis, S. warneri, and S. pettenkoferi 

(Table 6.2); however, the carriage of mecA did not always result in strains 

demonstrating significant levels of resistant to oxacillin. Thirty-nine of the 89 (44%) 

mecA positive staphylococci were found to have MICs below 0.5 mg l
-1

 to oxacillin 

(Table 6.2). Of 24 mecA-positive S. epidermidis isolates, 9 (38%) were classified as 

susceptible (oxacillin). Eight strains of 17 S. haemolyticus (47%) that tested positive for 

the mecA gene demonstrated susceptible to oxacillin. This inconsistency is also 

observed in other species, S. hominis (7/11), S. sciuri (1/5), S. cohnii (1/5), S. 

saprophyticus (1/4), S. lugdunensis (0/1), S. pasteuri (2/4), S. capitis (3/6), S. warneri 

(7/9), and S. pettenkoferi (0/1) (Table 6.2). 

6.1.2 mecA gene expression in selected staphylococci 

mecA gene is oxacillin resistance determinant (Tulinski et al., 2012), however, MICs of 

44 % mecA gene positive isolates in this study were found to be below 0.5 mg l
-1

. In 

order to clarify this inconsistence, LC-MS/MS were applied to 4 selected staphylococci 

with MICs ranged from 0.12 to 256 mg l
-1

. 

6.1.2.1 Protein extraction 

To start mecA gene expression analysis, protein was extracted and the concentration was 

determined by Bradford assay (Sigma Aldrich, UK). The concentration of each sample 

is shown in the Table 6.3. 
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Table 6. 3  Protein concentration of 4 staphylococci 

ID Concentration (µg µl
-1

) 

S. hominis 506 2.18081 

S. haemolyticus 318 2.37212 

S. epidermidis 118 (G6_2) 3.48394 

S. epidermidis 111 3.10822 
 

6.1.2.2 PBP 2a expression 

Penicillin binding protein 2a was expressed in S. haemolyticus 318 and S. epidermidis 

118 (G6_2), and the expression of PBP 2a in S. epidermidis 118 (G6_2) was 1.5 times 

more than that in S. haemolyticus 318; however, penicillin binding protein 2a was not 

found in S. hominis 506 and S. epidermidis 111 (Table 6.4). 

Table 6. 4  Quantified expression of penicillin binding protein in 4 staphylococci by 

LC-MS/MS 

ID MIC (mg l
-1

) mecA gene Spectrum number count 

PBP2a PBP2 

S.epidermidis 111 0.12 + 0 1 

S.hominis 506 0.5 + 0 1 

S.haemolyticus 318 8 + 1 7 

S.epidermidis 118 (G6_2) 256 + 2 1 

6.2 SCCmec typing 

After determining the mecA gene positive staphylococcal isolates, the SCCmec types of 

89 mecA-positive isolates were examined. 20 staphylococci (22%) carried SCCmec V, 

followed by SCCmec type I (9 isolates, 10%), type IV (6 isolates, 7%), type II (5 

isolates, 6%), one type III (1%), one type VI (1%), and one type VIII (1%). In addition, 

seven isolates harboured a new SCCmec type 1A, which carried combination of class A 

mec complex and ccr type 1. Of the fifteen isolates that were non-typeable, eight carried 

a combination of class A mec complex and ccrC, six carried a combination of class B 

mec and ccrC, and one carried class B mec and ccr type 3. Additionally, 24 isolates 
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(29%) could not be typed due to lack of the mec complex or the ccr complex (Table 6.2 

and 6.5). 

 

 

 

 



168 
 

 

Table 6. 5  Diversity of SCCmec types in coagulase negative staphylococci 

 I II III IV V VI VIII 1A 3B 5A 5B NT Total No 

S. capitis 1           5 6 

S. cohnii 1    2     1  1 5 

S. epidermidis 2 1 1 5 6 1  1 1  1 5 24 

S. haemolyticus 2 3   9   2  1 2  19 

S. hominis 1    1   4    5 11 

S. lugdunensis          1   1 

S. pasteuri          1 1 2 4 

S. pettenkoferi          1   1 

S. sciuri  1     1   2 1  5 

S. saprophyticus    1       1 2 4 

S. warneri 2    2     1  4 9 

 9 5 1 6 20 1 1 7 1 8 6 24 89 

NT: non-typable.
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6.3 Multi-locus sequence typing  

Following the determination of SCCmec types, MLST was performed to determine the 

housekeeping genes of 19 S. epidermidis. MLST is an accurate typing approach used for 

microorganisms, and MLST type is determined by combination of seven housekeeping 

gene locus (Thomas et al., 2007).  Each housekeeping gene of 19 S. epidermidis were 

compared with the MLST database, and arc C, aro E, gtr of 120 were determined to be 

new locus as there was no match in the database. gtr of 119 was determined to be a new 

locus, as no homology in the database was found. MLST typing revealed that 17 S. 

epidermidis strains represent new MLST types.  MLST type of S. epidermidis 120, 119，

122，121,  279, 133, 134, 135, 126, 259, 124, 127, 234, 187, 308, 153 and 191 were 

assigned as ST515, ST516, ST517, ST518, ST599, ST600, ST600, ST600, ST601, 

ST602, ST602, ST603, ST604, ST605, ST606, ST607 and ST608. S. epidermidis 133, 

134 and 135 were isolated from DSL, and they shared the same MLST type ST600. S. 

epidermidis 259 was isolated from HH, while S. epidermidis 124 was isolated from 

DSH.  Both of them were ST602 (Table 6.6). In addition, S. epidermidis 139 were 

identified to be a known type ST360, and S. epidermidis 118 (G6_2) were determined to 

be ST59. 
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Table 6. 6 MLST types identified in S. epidermidis 

ID Species Sites arcC aroE gtr muts pyr Tpi yqil ST 

118 S. epidermidis  Hotels 2 1 1 1 2 1 1 ST59 

119 S. epidermidis  Hotels 1 2 5 1 1 1 14 ST516 

120 S. epidermidis  Hotels 28 25 5 5 7 5 11 ST515 

121 S. epidermidis  Hotels 1 2 1 1 1 1 14 ST518 

122 S. epidermidis  Hotels 1 2 2 6 2 16 1 ST517 

124 S. epidermidis  Hotels 57 1 2 2 4 1 1 ST602 

127 S. epidermidis  Hotels 57 10 5 5 10 16 21 ST603 

133 S. epidermidis Library 57 1 2 2 4 1 4 ST600 

134 S. epidermidis  Library 57 1 2 2 4 1 4 ST600 
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ID Species Sites arcC aroE gtr muts pyr Tpi yqil ST 

135 S. epidermidis Library 57 1 2 2 4 1 4 ST600 

139 S. epidermidis  Restaurants 3 3 5 5 7 4 4 ST360 

153 S. epidermidis  Restaurants 57 1 22 2 2 16 1 ST607 

187 S. epidermidis  Supermarkets 57 1 1 2 2 1 1 ST605 

191 S. epidermidis  Supermarkets 57 3 5 5 7 14 11 ST608 

234 S. epidermidis  Handbags 57 1 1 1 2 41 1 ST604 

126 S. epidermidis  Hands 57 25 9 5 6 1 8 ST601 

259 S. epidermidis  Hands 57 1 2 2 4 1 1 ST602 

279 S. epidermidis  Hands 57 17 5 5 3 4 31 ST599 

308 S. epidermidis  Hands 57 1 2 2 4 7 1 ST606 
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6.4 Chapter summary 

Genotypic characterisation of staphylococci showed that: 

1. mecA gene was found in eighty-nine (12%) staphylococcal isolates; 

2. Thirty-nine of the 89 (44%) isolates that were mecA positive were found to have 

MICs below 0.5 mg l
-1

 to oxacillin; 

3. Expression of PBP 2a was found in high oxacillin resistant mecA positive 

staphylococci, but not in oxacillin susceptible mecA positive staphylococci; 

4. SCCmec type I, II, III, IV, V, VI, VIII were determined in environmental 

staphylococci; 

5. Fourteen new MLST types were determined in 19 selected staphylococci.  

MRSA is a potential public health threat, which has been recovered from both clinical 

and community associated settings all over the world. However, little is known about 

the dissemination of methicillin-resistant staphylococcal isolates recovered from the 

environment. This chapter introduced the dissemination of mecA gene positive 

staphylococci and molecular characterization of mecA gene positive staphylococci.  The 

correlation of mecA-positive and phenotypic oxacillin susceptibility in environment 

staphylococci will be assessed by comparing with clinical staphylococci in the 

discussion chapter, and then the existence of the oxacillin susceptible mecA-positive 

environmental staphylococcal isolates will be assessed in the discussion chapter. The 

prevalent SCCmec types in the environment will be compared with community-

associated SCCmec types and hospital-associated SCCmec types. Finally, the MLST 

types of environmental staphylococci will be compared with international reported 

MLST types to assess the dominant lineage of environmental staphylococci in the 

discussion chapter. 
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Chapter 7 Genomic analysis of S. epidermidis 118 (G6_2) 

Complete genome sequencing of staphylococci can provide insights into important 

genomic features and assess the variation of plasmids that contribute to the 

pathogenicity of staphylococci (Gill et al., 2005). Whole genome sequencing has been 

used to analyse clinical significant staphylococci, transmission of S. aureus in health 

care facilities, and antibiotic resistance in clinical isolates (Harris et al., 2013; Peleg et 

al., 2012; Price et al., 2013); however, complete genomic features of environmental 

isolated staphylococci has been rarely reported. Since environmental staphylococci may 

act as a reservoir for antibiotic resistance genes (Wright, 2007), it would be necessary to 

gain insights into the genomic feature of environmental staphylococci. Whole genome 

sequencing was applied to S. epidermidis 118 (G6_2), which was recovered from a 

hotel room. MIC of S. epidermidis 118 (G6_2) against oxacillin was 256 mg l
-1

, and 

phenotypically resistant to 11 out of 13 tested antibiotics. 

7.1 Bacteria 

S. epidermidis 118 (G6_2) was isolated and purified from a hotel room in London area 

in 2013, and it was resistant to all tested antibiotics, except vancomycin and 

chloramphenicol. Moreover, the MIC of S. epidermidis 118 (G6_2) was determined to 

be 256 mg l
-1

 against oxacillin. In addition, the mecA gene was identified and the 

SCCmec was determined to be type IV for this isolate.   

The accession number for S. epidermidis 118 (G6_2) is ERR387168.  
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7.2 Phylogenetic relationship with clinical reference S. epidermidis 

S. epidermidis 118 (G6_2) and publically available assembled 92 S. epidermidis were 

chosen to show the phylogenetic relationship (Fig 7.1). S. epidermidis 118 (G6_2) was 

highlighted in red. The S. epidermidis most similar to S. epidermidis 118 (G6_2) was 

boxed in red; however, the phylogenetic relationship was distinguishable as it formed a 

distinct branch (Fig 7.1).  

The 92 reference isolates were referred to datasets of clinical S. epidermidis (Roach et 

al., 2015; Tewhey et al., 2014). Isolates SRR1656389, SRR1656376 and SE_BCM-

HMP0060 (Roach et al., 2015) were in a distinct clade and shown to be most similar to 

S. epidermidis 118 (G6_2) (Fig 7.1).  Whereby, S. epidermidis 118 (G6_2) is closest to 

the root of the clade. 
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Figure 7. 1 Phylogenetic tree based on whole genome sequencing 
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7.3 General genomic features and plasmids 

General genomic features of S. epidermidis 118 (G6_2), S. epidermidis PR62a, S. 

epidermidis ATCC12228 and S. aureus N315 were shown in Table 7.1. In general, the S. 

epidermidis 118 (G6_2) genome comprises of one chromosome (2408357 bp in length) 

and six plasmids, annotated as pG6_2_1 to pG6_2_6 (the largest, pG6_2_1, is 10570 

and the smallest, pG6_2_6, is 3426 bp in length), with an average G+C content of 

32.02%. It has a total (chromosome and plasmids) of 2213 predicted protein coding 

sequences, of which 21.5% were annotated as hypothetical and 14.3% were annotated 

as putative functions. 
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Table 7. 1 General features of S. epidermidis 118 (G6_2) and reference staphylococci 

 S. aureus S. epidermidis 

N315 RP62a ATCC 12228 118 (G6_2) 

Chromosome     

Length of sequences 2814816 2616530 2499279 2408357 

G+C content 32.80% 32.1% 32.10% 32.02% 

Protein coding region 2595 2391 2419 2213 

Ribosomal RNAs 16 19 16 4 

16S 5 6 5  

23S 5 6 5  

5S 6 7 6  

Transfer RNAs 62 59 60 60 

Plasmid     

Length of sequences 24653 27310 P1:4439 P1：10570 

   P2:4679 P2：4909 

   P3:8007 P3：4588 

   P4:17261 P4：4576 

   P5:24370 P5：4271 

   P6:6585 P6：3426 

Antibiotic resistance genes     

Beta-lactamase   + + 

tetracycline resistant protein   + + 

Bleomycin resistant protein     

Penicillin binding proteins     

Bifunctional AAC-APH  +  + 

Aminoglycoside phosphotransferase + +   
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 S. aureus S. epidermidis 

N315 RP62a ATCC 12228 118 (G6_2) 

Penicillin binding protein 2a + +  + 

Fosfomycin resistance protein  +  + 

Macrophage scavenger receptors    + 

Inactivating enzymes    + 

Isoleucyl RNA synthetase    + 

Elongation factor G     + 
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7.4 Genotypic prediction of antibiotic resistance 

Antibiotic resistance prediction, using the ResFinder (version 2.1) online tool (Center 

for Genomic Epidemiology), revealed a wide range of potential resistance features 

dispersed across the chromosome and plasmids (Table 7.2).  A total of seven resistance 

phenotypes were predicted and included: aminoglycoside resistance (aac(6’) – aph(2”) 

genes, 100% identity); beta-lactam resistance (borne from the presence of both the 

mecA and blaZ genes, 100% identity); fosfomycin resistance (fosA gene, 100% identity); 

macrolide resistance (mph(C) gene, 100% identity); macrolide, lincosamide and 

streptogramin B resistance (msr(A) gene, 98.98% identity); and tetracycline resistance 

(tet(K) gene, 99.93% identity).  Of these, only mecA and fosA were mapped to the 

chromosome, the remainder were localised to the plasmids, specifically, plasmid 

pG6_2_1 harboured blaZ, pG6_2_2 has the gene tet(K), pG6_2_3 has both mph(C) and 

msr(A), and pG6_2_4 possessed the aac(6’) – aph(2”) genes.  

With the 13 tested antibiotics, S. epidermidis 118 (G6_2) was shown to be 

phenotypically resistant to streptomycin (aminoglycoside antibiotic), gentamicin 

(aminoglycoside antibiotic), penicillin (beta-lactam antibiotic), oxacillin (beta-lactam 

antibiotic), amoxicillin (beta-lactam antibiotic), cefepime (beta-lactam antibiotic), 

cefoxitin (beta-lactam antibiotic), erythromycin (macrolide antibiotic), tetracycline 

(tetracylines antibiotic), fusidic acid (steroid antibiotic), and mupirocin 

(monoxycarbolic acid antibiotic).  

The antibiotic resistance genes determined by WGS correlated with the phenotypic data 

is as follows:  aac(6')-aph(2'') encodes for aminoglycoside-modifying enzymes,  

resulting in aminoglycoside resistance (streptomycin and gentamicin); blaZ encodes β-

lactamase, responsible for beta-lactam resistance (penicillin);  mecA encodes penicillin-
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binding protein 2a, responsible for beta-lactam resistance (oxacillin, cefoxitin, cefepime 

and amoxicillin); fosA encodes fosfomycin resistance protein, responsible for 

fosfomycin resistance; msr(A) encodes macrophage scavenger receptors, responsible for 

macrolide, lincosamide and streptogramin B resistance; mph(C) encodes inactivating 

enzymes, responsible for  macrolide resistance (erythromycin); and tet(K) encodes the 

tetracycline efflux pump, responsible for tetracycline resistance; The resistance 

determinants towards streptomycin, gentamicin, penicillin, oxacillin, cefoxitin, 

amoxicillin, cefepime, erythromycin, tetracycline were successfully predicted by 

ResFinder (version 2.1) online tool (Center for Genomic Epidemiology). These 

however did not predict genes responsible for fusidic acid and mupirocin resistance 

using ResFinder (version 2.1). The determinants responsible for mupirocin resistance 

have been found in Prokka annotated file. Mupirocin resistance in S. aureus can be 

caused by acquisition of an additional isoleucyl RNA synthetase (ileS) gene (Hodgson 

et al., 1994).  In this study, ileS gene responsible for the resistance of mupirocin was 

present in S. epidermidis 118 (G6_2). Although it is expected to be captured by 

ResFinder tool, it does not make part of the database and hence it was overlooked. 

Fusidic acid resistance occurs due to the mutations in the fusA encoding elongation 

factor G (EF-G) or rplF (or fusE) (Howden & Grayson, 2006). These mutations cannot 

be captured by ResFinder as it only identifies acquired resistance genes.  

Comparative analysis with reference strains revealed that S. epidermidis RP62a includes 

five antibiotic resistance genes, including aminoglycoside resistance spc genes (100% 

identity) and aac(6’) – aph(2”) genes (100% identity); beta-lactam resistance mecA 

(100% identity); fosfomycin resistance (fosA gene, 99.07% identity); macrolide 

resistance gene, erm(A) (100% identity). Only two resistance genes, including beta-

lactam resistance blaZ genes (100% identity) and tetracycline resistance genes (tet(K) 
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gene, 99.93% identity) were found in S. epidermidis ATCC12228. Four antibiotic 

resistance genes were found in S. aureus N315: aminoglycoside resistance spc genes 

(100% identity) and aadD genes (99.74% identity); beta-lactam resistance mecA gene 

(100% identity); and macrolide resistance gene, erm(A) (100% identity). 
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Table 7. 2  Genotypic prediction of antibiotic resistance of S. epidermidis 118 (G6_2) 

Product Gene name Accession number 

(Identity %) 

Location Position in contig Function Class of antibiotic Antibiotics 

Aminoglycoside

-modifying 

enzymes 

aac(6')-

aph(2'') 

M13771 (100) pG6_2_4 2386323..2387762 Aminoglycoside 

resistance Aminoglycoside 
Gentamicin 

Streptomycin 

β-lactamase blaZ AJ302698 (100) pG6_2_1 1668561..1669406 Beta-lactam 

resistance 

Beta-lactam 

Penicillin 

Oxacillin 

Amoxicillin 

Cefepime 

Cefoxitin 

Penicillin-

binding protein 

2a 

mecA AB505628 (100) Genome 2648..4657 Beta-lactam 

resistance 

Fosfomycin 

resistance 

protein 

fosA ACHE01000077 

(100) 

Genome 104692..105120 Fosfomycin 

resistance Phosphonic  Fosfomycin 

Macrophage 

scavenger 

receptors 

msr(A) X52085 (98.98) pG6_2_3 1472987..1474453 Macrolide, 

Lincosamide 

and 

Streptogramin B 

resistance 

Microlide 
Erythromycin 

 

Inactivating 

enzymes 

mph(C) AF167161 (100) pG6_2_3 1474552..1475451 Macrolide 

resistance 

Tetracycline 

efflux pump 

tet(K) U38428 (99.93) pG6_2_2 430430..431809 Tetracycline 

resistance 
Tetracycline Tetracycline 

Isoleucyl RNA 

synthetase 

ileS - - - Fusidic acid 

resistance 
Steroid Fusidic acid 

Elongation 

factor G  

fusA - - - Monoxycarbolic 

resistance 
Monoxycarbolic Mupirocin 
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7.5 Functional genes uniquely found in S. epidermidis 118 (G6_2) 

104 genes were uniquely found in the chromosome of S. epidermidis 118 (G6_2), when 

compared to the reference strains in this study. The majority were annotated as 

hypothetical, while the remainder comprised of a variety of functions, including heavy 

metal transport, regulatory, HTH domain, transpose and metabolic proteins.  There were 

eight genes that were exclusively found in one of S. epidermidis 118 (G6_2) plasmids. 

The majority of these were annotated as hypothetical, of the remainder the gene qacC, 

yheS and Tn552 were identified. 

7.6 Comparative virulence genes 

Comparison of S. epidermidis 118 (G6_2) with S. aureus N315 showed that (1) 312 

genes were in common; (2) 32 genes were uniquely found in S. epidermidis 118 (G6_2); 

(3) 522 genes were missing in S. epidermidis 118 (G6_2). Comparison of S. epidermidis 

118 (G6_2) with S. epidermidis RP62a revealed that (1) 303 genes were in common; (2) 

40 genes were uniquely found in S. epidermidis 118 (G6_2); (3) 75 genes were missing 

in S. epidermidis 118 (G6_2). Comparison of S. epidermidis 118 (G6_2) with S. 

epidermidis ATCC12228 showed that (1) 306 genes were common; (2) 38 genes were 

uniquely found in S. epidermidis 118 (G6_2); (3) 44 genes were missing in S. 

epidermidis 118 (G6_2) (Table 7.3). 

 

Table 7. 3  Comparision of virulence genes between S. epidermidis 118 (G6_2) and 

reference staphylococci 

S. epidermidis Virulence genes S. aureus S. epidermidis 

  N315 RP62a ATCC12228 

 Unique  32 40 38 

118 (G6_2) Common  312 303 306 

 Missing  522 75 44 
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There were 266 genes present in all four staphylococcal isolates in this study. The 

intracellular adhesion genes icaA, icaB, icaC, icaD and icaR responsible for biofilm 

formation (Cramton et al., 1999) were not present in S. epidermidis 118 (G6_2) and S. 

epidermidis ATCC12228.  In contrast, icaA was present in S. aureus N315 (Zhang et al., 

2003) and S. epidermidis RP62a (Kaplan et al., 2011). In addition, the genes copZ_2, 

copA_2 and csoR_1 variants associated with copper transport were determined in S. 

epidermidis 118 (G6_2) (Harrison et al., 2000; Schelder et al., 2011). A further 34 other 

heavy metal associated genes were shown to be homologous between S. epidermidis 

118 (G6_2) and S. epidermidis RP62a and ATCC12228.  Forty-eight genes were shown 

to be specific to S. aureus N315, primarily associated with iron transport and 

metabolism.   

Virulence determinants in each staphylococcal species were shown in Table 7.4. A total 

of 29 virulence genes belonging to 14 virulence factors families were found in S. 

epidermidis 118 (G6_2), which is less than S. aureus N315 (n=61) but more than S. 

epidermidis RP62a (n=19) and ATCC 12228 (n=18). Thirteen virulence factors were 

found in common between the four staphylococcal strains, including htrA, sspA, sspB, 

lip, lipA, hlb, nuc, clpP, clpB, clpX, clpC clpE and isaA. Twelve virulence genes, setC, 

sspP, lip_1, lip_2, lip2_1, lip2_2, lipR_2, lipM, lipL, lipR, sfpA, and sigD, were 

uniquely found in S. epidermidis 118 (G6_2). isaB, lytN and cptV were found in both S. 

epidermidis 118 (G6_2) and S. aureus N315, but not in S. epidermidis RP62a and 

ATCC 12228. The gene geh was the only common gene found in S. epidermidis 118 

(G6_2), RP62a and ATCC12228.  
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Table 7. 4 Virulence genes in S. epidermidis 118 (G6_2) and reference staphylococci 

Virulence factor S.aureus S.epidermidis 

N315 RP62a ATCC12228 118 (G6_2) 

 Gene Gene Gene Gene 

Enterotoxin sea    

 sec3    

 seg    

 sei    

 sel    

 sem    

 sen    

 seo    

 sep    

 yent1    

 yent2    

Exotoxin set1    

 set2    

 set3    

 set4    

 Set6    

 set7    

 set8    

 set9    

 set10    

 set11    

 set12    

 set13    

 set14    

 set15    

 -   setC 

Exfoliative toxin  eta    

Toxic shock syndrome toxin tsst    

Serine protease splA    

 splB    

 splC    

 splD    

 splF    

 htrA htrA htrA htrA 

     

Serine V8 protease sspA sspA sspA sspA 

Cysteine protease sspB sspB sspB sspB 

 sspC    

    sspP 

Lipase lip lip lip lip 

    lip_1 

    lip_2 

    lip2_1 
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Virulence factor S.aureus S.epidermidis 

N315 RP62a ATCC12228 118 (G6_2) 

 Gene Gene Gene Gene 

    lip2_2 

    lipR_2 

  geh geh geh 

  geh1, gehC geh1,gehC  

  geh2, gehD geh2, gehD  

Lipase/esterase lipA lipA lipA lipA 

    lipL 

    lipM 

    lipR 

Leukotoxin D lukD    

Leukotoxin E lukE    

Leukocidin F lukF    

Leukocidin M lukM    

Alpha hemolysin hly    

Beta hemolysin hlb hlb hlb hlb 

Delta hemolysin hld hld hld  

Gamma hemolysin, 

component A 

hlgA    

Gamma hemolysin, 

component C 

hlgC    

Gamma hemolysin, 

component B 

hlgB     

Hyaluronate lyase hysA    

Thermonuclease 

nuclease 

nuc nuc nuc nuc 

Cell wall hydrolase lytN   lytN 

Clp protease, procolytic 

subunit 

clpP clpP clpP clpP 

Clp protease, ATP 

binding subunit 

clpB clpB clpB clpB 

Clp protease, ATP 

binding subunit 

clpX clpX clpX clpX 

Clp protease, ATP 

binding subunit 

clpC clpC clpC clpC 

Clp protease, ATP  

binding submit 

clpE clpE clpE clpE 

Staphylococcal 

protein A Spa 

Spa    

Phenol-soluble modulin hldc    

Immunodominant 

staphylococcal antigen A 

isaA isaA isaA isaA 

Immunodominant 

staphylococcal antigen B 

isaB   isaB 

cytoplasmic proteins isdl    

Pilin Subunit Gene    sfpA 

Sigma D factor    sigD 
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Virulence factor S.aureus S.epidermidis 

 N315 RP62a ATCC1228 118 (G6_2) 

 Gene Gene Gene Gene 

Intercellular adhesion gene ica ica   

ATPase_copper_transporter ctpV   cptV 

 

Surface protein genes identified in each staphylococcal species were shown in Table 7.5. 

Eight surface protein genes were found in S. epidermidis 118 (G6_2), of which sdrC, 

sdrD, sdrG, ebh, ebp, and atl were involved in adherence to host tissue, pls involved in 

methicillin resistant, and sasK involved in binding to heme-iron (Gill et al., 2005).  

Surface protein genes, sdrC and sdrD were present in both S. epidermidis 118 (G6_2) 

and S. aureus N315, and pls were appeared in S. epidermidis 118 (G6_2) and RP62a. 

sdrG and ebp were present in three S. epidermidis. Furthermore, sasK, ebh and atl were 

found in all staphylococcal species. Moreover, surface protein genes found in S. 

epidermidis 118 (G6_2) (n=8) was less than S. aureus N315 (n=19) and S. epidermidis 

RP62a (n=9), and equal to S. epidermidis ATCC12228 (n=8).  
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Table 7. 5  Surface proteins of S. epidermidis 118 (G6_2) and reference staphylococci 

Genes Functional name Function 
S.aureus S.epidermidis 

N315 RP62a ATCC12228 G6_2 

clfA Clumping factor A a +    

clfB Clumping factor B a +    

fnbA Fibronectin  binding protein A a +    

fnbB Fibronectin  binding protein B a +    

sdrC SdrC a +   + 

sdrD SdrD a +   + 

sdrE SdrE a +    

sdrF SdrF a  + +  

sdrG SdrG a  + + + 

sdrH SdrH a  + +  

spa ProteinA a,b +    

pls Methicillin resistant surface protein d  +  + 

sasC Cell wall surface anchor protein d +    

sasG Cell wall surface anchor protein d + + +  

sasK Cell wall surface anchor protein c + + + + 

isdC Heme transporter d +    

isdI Heme degrading moxooxygenase a +    

map Extracellular adherence protein a +    

empbp Extracellular matrix and plasma binding protein a +    

ebh Cell wall-associated fibronectin binding protein a + + + + 

efb Fibrinogen binding protein a +    

ebp Elastin binding protein a  + + + 

atl Biofunctional autolysin a + + + + 

Note: a, adherence to host tissue (extracellular matrix, fibrinogen, fibronectin, collagen, elastin, endothelial and epithelial cells); b, evasion of 

host defense; c, binding to heme-iron; d, unknown; 
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7.7 Chapter summary 

Whole genome analysis of S. epidermidis 118 (G6_2) showed that:  

1. Environmental S. epidermidis 118 (G6_2) formed distinctive branch with clinical 

reference S. epidermidis; 

2. Nine antibiotic resistance genes were found in genome of S. epidermidis 118 (G6_2); 

3. Multiple virulence and anti-detergent genes were determined in S. epidermidis 118 

(G6_2). 

Antibiotic resistance is a major global threat to public health and increasingly antibiotic 

resistant bacteria are emerging from different ecological niches, including 

environmental sources. Little is known of the genetic variations associated with strains 

isolated from environmental sources and/or general public settings. 

S. epidermidis is an opportunistic pathogen primarily recovered from infections arising 

from healthcare associated medical devices. Genome sequencing of S. epidermidis 

strains have been reported, however, these have been limited to commensal and 

nosocomial strains.  To understand the genetic background of environmental S. 

epidermidis strains, whole genome sequence analysis of multidrug-resistant S. 

epidermidis 118 (G6_2) was performed.   

The comparative analysis of S. epidermidis 118 (G6_2) and clinical reference strains of 

S. aureus N315 and other S. epidermidis RP62a and ATCC12228 genomes will be 

discussed in the discussion chapter.  Evaluation of the antibiotic resistance and 

virulence in environmental multidrug-resistant S. epidermidis 118 (G6_2) will be 

discussed in the discussion chapter. 
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Chapter 8 mecA gene transfer via mating experiment 

Wielders et al., (2001) reported the evidence of in vivo transfer of mecA gene between 

clinical S. aureus isolates, and Bloemendaal et al., (2010) also showed the evidence of 

in vivo SCCmec transfer from S. epidermidis to S. aureus during antibiotic therapy, 

Bloemendaal et al have attempted to replicate the SCCmec transfer in vitro; however, 

the transfer of mecA/SCCmec in vitro has not been reported (Bloemendaal et al., 2010). 

After reviewing the present findings, mating experiment mediated transferring of 

mecA/SCCmec from environmental staphylococci to S. aureus NCTC6571 in vitro was 

applied. Additionally, comparative proteomic analysis provided functional genomics 

data for S. aureus to resistant to antibiotic. 

8.1 mecA gene amplification in conjugants 

The broth mating method was used to determine the mecA gene transfer, 10 trans-

conjugants were isolated and purified with mannitol salt agar supplemented with 4 mg l
-

1
 oxacillin, and mecA gene PCR were applied to these ten conjugants. S aureus 

NCTC6571 (recipient) showed a negative result, and S. hominis 399 (donor), conjugants 

No 3, 6, 7 and 10, showed positive results. These conjugants were then tested with 

another pair of mecA gene primers (286 bp), and conjugant No7 was showed positive 

results (Fig 8.1). 
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Figure 8. 1 Gel image of mecA gene PCR product. A 527 bp mecA primers (Hanssen et 

al., 2004), B 286 bp mecA primers (Kondo et al., 2007); Sa: S. aureus; SH: S.hominis 

399; 3: conjugant No3; 6: conjugant No6; 7: conjugant No7; 10: conjugant No10; M: 

DNA ladder. 

 

8.2 16S rRNA gene sequencing of conjugant 

The species of conjugant was identified by partial 16S rRNA gene sequencing. The 

partial 16S rRNA gene of conjugant No7 was amplified, and the sequence was 

examined to be S. aureus in comparison with the nucleotide database at National Center 

for Biotechnology Information (NCBI) by using BLAST
®

 (http://blast.ncbi.nlm.nih.gov/ 

Blast.cgi).  

8.3 ProlexTM staph XTRA latex tests and MIC of conjugant 

The conjugant was also tested by Staph latex test, which showed a positive result. The 

MICs of S aureus NCTC 6571 (recipient), S. hominis 399 (donor) and No7 (conjugant) 

http://blast.ncbi.nlm.nih.gov/%20Blast.cgi
http://blast.ncbi.nlm.nih.gov/%20Blast.cgi
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were determined. The recipient was fully susceptible to oxacillin, with MIC value of 

0.125 mg l
-1

, and the MIC of conjugant was 0.25 mg l
-1

, which indicated fully 

susceptible to oxacillin. However, the conjugant could grow on mannitol salt agar 

supplemented with 4 mg l
-1

 oxacillin. The potential reason for this conflict phenomenon 

may be due to the mannitol salt agar, which contains high concentration of salt. In order 

to confirm the transfer of mecA gene between S. hominis and S. aureus, Southern 

blotting and PFGE were applied to donor, recipient and conjugant. 

8.4 Southern blotting 

After determining the MIC of conjugant, donor and recipient, Southern blotting was 

applied to determine the presence of the mecA gene in conjugant. According to Southern 

blotting results, the presence of mecA gene was confirmed in donor, but not in S. aureus 

NCTC6571 (recipient) and conjugant No7. 

8.5 PFGE results 

To avoid contamination of conjugant No7, pulse-field gel electrophoresis was used to 

examine the genetic patterns of donor, recipient and conjugant. PFGE showed that the 

conjugant and S. aureus NCTC 6571 (recipient) had the same pattern, but was different 

from the donor (Fig 8.2). The same PFGE pattern indicated the presence of one strain, 

and no contamination was found.  
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Figure 8. 2 PFGE patterns of donor, recipient and conjugant. λ = M Wt Ladder; Lane 1 

= Donor (S. hominis, mecA positive); Lane 2 = Recipient (S. aureus, mecA negative); 

Lane 3 = Conjugant No7  

 

8.6 Comparative proteomic analysis  

As noted above, no mecA gene was detected in conjugant No7 based on Southern 

blotting, however, conjugant No7 could survive and propagate on 4 mg l
-1

 oxacillin 

supplemented MSA. The colonies of conjugant No7 on oxacillin supplemented MSA 

were small and sticky. Comparative proteomic analysis was then applied to clarify 

protein expression differences between S. aureus NCTC 6571 and conjugant No7.  
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8.6.1 Protein extraction 

The first stage of comparative proteomic analysis was protein extraction. S. aureus 

NCTC 6571 was cultured on mannitol salt agar, and meanwhile conjugant No7 were 

cultured on mannitol salt agar supplemented with 4 mg l
-1

 oxacillin.  

Protein was extracted and the concentration was determined by Bradford assay (Sigma 

Aldrich, UK). The concentration of each sample was shown in the Table 8.1.  

Table 8. 1 Protein concentration of S. aureus NCTC6571 and conjugant No7 

ID 

 

Concentration 1 

(µg µl
-1

) 

Concentration 2 

(µg µl
-1

) 

Concentration 3 

(µg µl
-1

) 

S.aureus NCTC 6571 

 

3.46308 1.66304 1.36051 

Conjugant No 7 

 

4.04837 7.67402 7.42345 

 

8.6.2 In-gel trypsin digestion 

Second, 10 µg of protein extract was loaded on to a gel and separated by 1D SDS-

PAGE using MES running buffer (Invitrogen, UK) in accordance with the 

manufacturer’s instructions. The 1D SDS-PAGE band patterns of S. aureus and 

conjugant No7 was showed in figure 8.3.  

 

Figure 8. 3 1D SDS-PAGE (triplicates) band patterns of S. aureus and conjugant No7. 

M:  protein ladder, Sa: S. aureus (cultured on MSA); No7: conjugant (cultured on 

oxacillin suppl MSA). 
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8.6.3 Comparative analysis of protein expression 

The comparative analysis of protein expression demonstrated that various proteins were 

upregulated or exclusively expressed in conjugant No7 but not in S. aureus NCTC 6571. 

All of these proteins could be classified into 7 categories by function: including proteins 

involved in efflux, cell wall synthesis, virulence, reparation, stress response, 

degradation, and translation.  

A total of 1353 proteins were detected by LC-MS/MS, and 757 proteins were both 

found in S. aureus (recipient) and conjugant No7. 300 proteins were uniquely expressed 

in S. aureus (recipient), and 296 proteins were uniquely expressed in conjugant No7 

(Fig 8.4).  

                    

Figure 8. 4 Overview of protein expression differences in S. aureus NCTC 6571 and 

conjugant No7 

 

No penicillin binding protein 2a was found in both S. aureus and conjugant. However, 

EmrB/QacA subfamily protein, drug resistance transporter (A6QJJ3, 71 KDa), and 

ATP-binding cassette transporter (A6QIF7, 33 KDa) were increasingly expressed in the 

conjugant. EmrB/QacA subfamily protein, drug resistance transporter and ATP binding 
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cassette transporter can be implicated in antibiotic resistance through facilitating the 

export of various cytotoxic drugs out of the membrane (Dawson & Locher, 2006; 

Lomovskaya & Lewis, 1992) (Table 8.2). In addition, the upregulation of these two 

transporters are also involved in the stringent response of bacteria (Anderson et al., 

2006).   

In addition to the protein involved in efflux, increased expression of proteins involved 

in cell wall synthesis were also observed in the conjugant, such as UDP-N-

acetylmuramate-L-alanine ligase (A6QFM8, 45 kDa), penicillin binding protein 2 

(A6QG81, 83 kDa); glycosyl transferase group 2 family protein (A6QDN2, 66 kDa) , 

and glutamate racemase (MURI, 30 kDa) (Fotheringham et al., 1998; Munshi et al., 

2013; Rebets et al., 2014; Sauvage et al., 2008) (Table 8.2). However, the expression of 

penicillin binding protein 1 (A6QG81, 83 kDa) remains the same in both samples 

(Sauvage et al., 2008). 

Moreover, in conjugant cultured with oxacillin, the virulence factors, including 

clumping factor A (CLFA, 97 kDa); zinc metalloprotease (A6QEG3, 78 kDa); Clp 

protease, procolytic subunit (CLPP, 22 kDa); Clp protease, chaperone protein (A6QFI5, 

98 kDa); Clp protease, ATP- binding subunit  (A6QEH7, 91 kDa), were specifically 

present or expressed at an increased level (Bloemendaal et al., 2010; Gill et al., 2005; 

Josefsson et al., 2001) (Table 8.2). 

DNA ligase (DNLJ, 75 kDa) which is involved in DNA repair was found exclusively in 

conjugant (Cynthia Chen et al., 2002; Hanawalt & Cooper, 1979). Another repair 

protein is DNA mismatch repair protein MutS (MUTS, 100 kDa), whose function is 

known to correct DNA replication mismatch during the adverse influences on the 

genome (O’Neill, 2002). The expression of MutS was found to remain the same. 
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29 stress response proteins were identified, including 4 SOS response proteins, 13 

stringent response proteins, and 12 heat-shock response proteins. The stress response 

proteins of bacteria are important for survival during imposition of environmental 

stresses (Anderson et al., 2006) (Table 8.2). All SOS response proteins were found to be 

upregulated in conjugant in comparison with S. aureus.  10 stringent response proteins 

(except aspartate-semialdehyde dehydrogenase, sulphite reductase and threonine 

synthase) were upregulated in the conjugant. The expression of 7 heat shock response 

proteins was increased, whereas the expression of 5 heat shock response proteins 

remains the same in conjugant.  Notably, no cold shock protein was found in both 

isolates (Table 8.2).  

Thioredoxin, which is essential to protect cells from oxygen damage, was upregulated 

in conjugant (Bore et al., 2007). Additionally, four proteins that belong to heat shock 

protein family were found to be upregulated in conjugant (Table 8.2). Chaperone 

protein DnaJ and DnaK is known to maintain normal function of cell and solubilize the 

protein aggregates (Cuéllar et al., 2013; Mogk et al., 2003), and small heat shock 

protein GrpE (Hsp20) and molecular chaperone Hsp31 are involved in protein folding 

and stabilization (Muthaiyan et al., 2012).  

ATP-dependent protease subunit (HSLV, 20 kDa) and Dead-box RNA helicase 

(A6QIS5, 57 kDa) that are involved in degradation process in cells were found to be 

upregulated in the conjugant. HslU–HslV is a bacterial proteasome, the function of 

which is known to preserve cellular homeostasis by degrading substrate polypeptides 

(Shi & Kay, 2014). In addition, Dead box RNA helicase are involved in bacterial 

mRNA degradation (Py et al., 1996).   
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Expression differences were also found in 30S ribosomal proteins and 50S ribosomal 

protein. Increased expression of 30S ribosomal proteins S6, S9, S10, S11, S12, S13, 

S20, S21 and 50S ribosomal proteins L3, L4, L5, L6, L10, L13, L15, L17, L18, L19, 

L21, L22, L23 were observed in the conjugant. Apart from this, the 50S ribosomal 

proteins L24 and L32 were not expressed in conjugant but in S. aureus (recipient). 

However, 50S ribosomal protein L14 was exclusively expressed in conjugant (Table 

8.2). 

363 out of 475 (76 %) uncharacterized proteins were up-expressed in conjugant cells, 

and 92 uncharacterized proteins were uniquely expressed in the conjugant whereas 102 

uncharacterized proteins were exclusively expressed in S. aureus. Unfortunately, the 

functions of these proteins are not currently known. 

 

Table 8. 2 Comparative analysis of peptides identified in S. aureus NCTC 6571 and 

conjugant No7 

Protein ID Size Category Spectrum count 

(Gene)   S.aureus 

NCTC6571 

Conjugant 

No7  

Drug resistance transporter, 

EmrB/QacA subfamily 

protein (opp) 

71 KDa Efflux pumps 

 

1 2 

ABC transporter  

 

33 KDa Efflux pumps 

 

1 4 

Penicillin-binding protein 2 

(pbpB) 

83 KDa Cell wall synthesis 

 

3 9 

Penicillin-binding protein 1 

(pbpA) 

83 KDa Cell wall synthesis 

 

1 1 

Glycosyl transferase group 

2 family protein  

66 KDa Cell wall synthesis 

 

5 13 

Glutamate racemase 

(murl) 

30 KDa Cell wall synthesis 

 

0 5 

UDP-N-acetylglucosamine 

1-carboxyvinyltransferase 2 

(murA) 

45 KDa Cell wall synthesis  2 8 

Zinc metalloprotease  

(ftsH) 

78 KDa Virulence factor 9 15 

Clp protease, procolytic 

subunit  

(clpP) 

22 KDa Virulence factor 12 18 

Clp protease, Chaperone 

protein (ClpB) 

98 KDa Virulence factor 5 7 
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Protein ID Size Category Spectrum count 

(Gene)   S. aureus 

NCTC6571 

Conjugant 

No7 

Clp protease, ATP binding 

subunit  (clpC) 

91 KDa Virulence factor 15 24 

Clumping factor A 

(clfA) 

97 KDa Virulence factor 0 3 

DNA Ligase 

(ligA) 

75 KDa Reparation  0 1 

DNA mismatch repair 

protein (Muts) 

100 KDa Reparation 1 1 

Thioredoxin homolog 

 

12 KDa Oxygen response 4 11 

Heat shock protein 20 

(GrpE) 

16 KDa Heat shock protein 1 4 

Chaperone protein DnaJ  

(DnaJ) 

66 KDa Heat shock protein 0 3 

Chaperone protein DnaK 

(DnaK) 

66 KDa Heat shock protein 35 45 

Molecular chaperone 

Hsp31  

(hchA) 

32 KDa Heat shock protein 3 12 

Protein recA 

(recA) 

38 KDa SOS response 2.6 4 

Mechanosensitive channel 

protein  (mscL) 

14 KDa SOS response 1 3 

Excinuclease ABC, A 

subunit (uvrA) 

105 KDa SOS response 1 1.3 

Excinuclease ABC, B 

subunit (uvrB) 

77 KDa SOS response 3 4 

Accessory gene regulator 

protein A (agrA) 

28 KDa Stringent response 1 2 

Glycine cleavage system T 

protein (gcvT) 

40 KDa Stringent response 11 16 

Aspartate-semialdehyde 

dehydrogenase (asd) 

36 KDa Stringent response 1 1 

Bifunctional autolysin 

(atl) 

137 KDa Stringent response 105 142 

Fibrinogen-binding protein 

(fbp) 

76 KDa Stringent response 1 2 

Histidinol-phosphate 

aminotransferase (hisC) 

40 KDa Stringent response 2 3 

Oligopeptide ABC 

transporter (oppC) 

40 KDa Stringent response 2.3 2.6 

Oligopeptide ABC 

transporter (oppD) 

40 KDa Stringent response 2 3 

Oligopeptide ABC 

transporter (oppF) 

36 KDa Stringent response 5 7 

Peptide methionine 

sulfoxide reductase  (msrA) 

21 KDa Stringent response 4 7 

Proline dehydrogenase 

(putA) 

38 KDa Stringent response 4 6 

Sulfite reductase 

(cysJ) 

72 KDa Stringent response 2 2 
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Protein ID Size Category Spectrum count 

(Gene)   S. aureus  Conjugant 

   NCTC6571 No7 

Threonine synthase 

(thrC) 

 

38 KDa Stringent response 1 1 

Riboflavin synthase, beta 

subunit  (ribH) 

16 KDa Heat shock response  7 10 

Glycine betaine/ 

carnitine/choline ABC 

transporter  (opuCA) 

46 KDa Heat shock response  3 5 

Orotidine 5-phosphate 

decarboxylase  (pyrF) 

26 KDa Heat shock response  2 4 

Purine nucleoside 

phosphorylase  (deoD) 

26 KDa Heat shock response  13 18 

Transcriptional regulator  

(ctsR) 

18 KDa Heat shock response  1 1 

Urease, gamma subunit 

(ureA) 

11 KDa Heat shock response  10 10 

Urease, beta subunit 

(ureB) 

15 KDa Heat shock response  6 7 

Urease, alpha subunit 

(ureC) 

62 KDa Heat shock response  11 13 

Urease accessory protein 

(ureD) 

32 KDa Heat shock response  1 1 

Urease accessory protein 

(ureE) 

17 KDa Heat shock response  12 14 

Urease accessory protein 

(ureF) 

26 KDa Heat shock response  1 1 

Urease accessory protein 

(ureG) 

22 KDa Heat shock response  1 1 

ATP-dependent protease 

subunit (HslV) 

20 KDa Degradation 1 7 

Dead-box RNA helicase 

(csh) 

57 KDa Degradation 3 16 

30S ribosomal protein S6 

 

12 KDa Translation 7 30 

30S ribosomal protein S9 

 

15 KDa Translation 6 19 

30S ribosomal protein S10 

 

12 KDa Translation 12 20 

30S ribosomal protein S11 

 

14 KDa Translation 6 32 

30S ribosomal protein S12 

 

15 KDa Translation 3 13 

30S ribosomal protein S13 

 

14 KDa Translation 20 36 

30S ribosomal protein S20 

 

9 KDa Translation 5 21 

30S ribosomal protein S21 

 

7 KDa Translation 1 2 

50S ribosomal protein L3 

 

24 KDa Translation 6 11 
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Protein ID Size Category Spectrum count 

(Gene)   S. aureus Conjugant 

   NCTC6571 No7 

50S ribosomal protein L4 

 

22 KDa Translation 8 21 

50S ribosomal protein L5 

 

20 KDa Translation 24 74 

50S ribosomal protein L6 

 

20 KDa Translation 20 51 

50S ribosomal protein L10 

 

18 KDa Translation 11 43 

50S ribosomal protein L13 

 

16 KDa Translation 7 28 

50S ribosomal protein L14 

 

13 KDa Translation 0 4 

50S ribosomal protein L15 

 

16 KDa Translation 8 24 

50S ribosomal protein L17 

 

14 KDa Translation 13 52 

50S ribosomal protein L18 

 

13 KDa Translation 13 42 

50S ribosomal protein L19 

 

13 KDa Translation 5 25 

50S ribosomal protein L21 

 

11 KDa Translation 18 57 

50S ribosomal protein L22 

 

13 KDa Translation 10 51 

50S ribosomal protein L23 

 

11 KDa Translation 10 37 

50S ribosomal protein L24 

 

12 KDa Translation 4 0 

50S ribosomal protein L32 

 

6 KDa Translation 1 0 

 

8.7 Chapter summary 

The study of mecA gene transfer has confirmed that: 

1. mecA gene transfer between staphylococcal species was not observed; 

2. Proteins involved in efflux, virulence, stress response and gene expression regulation 

were exclusively or increasingly expressed in S. aureus cultured with 4 mg l
-1

 

oxacillin. 

Methicillin-resistant determinants mecA gene is known to be located on staphylococcal 

cassette chromosome mec. Although it has been defined as a mobile genetic element, 

the transfer mechanism of SCCmec has not been clarified. This chapter introduced the 
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mecA gene transfer via conjugation from environmental S. hominis to S. aureus. 

Although the transfer of mecA gene was not observed, the proteins involved in efflux, 

virulence, stress response, and cell wall synthesis were observed to be upregulated in 

conjugant. In the discussion chapter, the failure of mecA gene transfer and the proteins 

involved in oxacillin resistance in mecA-negative S. aureus will be discussed. 
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Chapter 9 Discussion  

The introduction of antibiotics to clinical infection treatment has revolutionised 

medicine (Gensini et al., 2007), and thousands of lives have been saved since their first 

discovery (Fishman et al., 1998; Leibovici et al., 1998; Sykes, 2001; Wielders et al., 

2001). However, the growing danger of antibiotic resistant is recognized internationally 

(Alanis, 2005).  Currently, there is an alerting global threat of antibiotic resistance, and 

concerns have been raised all over the world (WHO, 2014).  WHO Antimicrobial 

Resistance Global Report showed the β-lactam resistant proportion of S. aureus in 2014, 

including African Region (12-80%), Americas (21-90%), Eastern Mediterranean Region 

(10-53%), European Reigion (0.3-60%), South-East Asia (10-26%), Westen Pacific 

Region (4-84%). Lowest β-lactam resistance ratio was found in Aisa; however, only 3 

countries were included. Together with publications of other Asia countries, the ratio 

was 2-81% (WHO, 2014).  

Microorganisms are continuously evolving various antibiotic resistance mechanisms for 

their adaptation in environment, and thus the development of new antibiotics will not 

help to solve the problem of antibiotic resistance in the long term (Alanis, 2005).  

However, the collection of antibiotic resistance data is useful, since these data can 

inform decisions of public health organization to publicize the need for reduced 

antibiotic abuse and emphasis the optimal use of antibiotics (Bartlett et al., 2013).  In 

this case, it is of great important to apply basic resistance-related research for antibiotic 

resistance screening (Bartlett et al., 2013).  

The threat of antibiotic resistance in hospital and community associated staphylococci is 

a big concern for public health (Bradford, 2001; Hampton, 2013). The environment has 

been considered to be a potential reservoir of antibiotic resistance genes, which 
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immensely contribute to the resistome (Wright, 2007). Many studies addressed the issue 

of MRSA and MRCoNS in hospital settings but little is known about the situation in the 

environment and public settings (Brennan et al., 2011; Kinnevey et al., 2012; Zong et al., 

2011).  

This study has provided a systematic analysis of antibiotic resistance environmental 

staphylococci ， includes identification of staphylococci with MALDI-TOF MS, 

statistical analysis of antibiotic resistance, the carriage of mecA gene, molecular 

characterision of mecA positive staphylococci, complete genomic analysis of one S. 

epidermidis isolate, assessment of the transfer of antibiotic resistance genes between 

staphylococcal species, and look into the stress response associated oxacillin resistance 

of MSSA. 

Staphylococcus spp. 

Staphylococci are classified into six species groups by Lamers et al., (2012) and Becker 

et al., (2014) according to their genotypic relationships and phenotypic properties. In 

this study, 19 staphylococcal species have been identified belonging to 5 species groups, 

except for Hyicus-Intermedius (Becker et al., 2014). S. aureus can cause numerous 

different kinds of infections, such as skin, soft-tissue, bone, joint, respiratory infections, 

endovasculitis, sepsis and endocarditis, followed by S. epidermidis (n=6), S. 

lugdunensis (n=6), S. saprophyticus (n=5), while infections caused by S. simiae and S. 

arlettae have not been reported (Lowy, 1998; Becker et al., 2014; Vandenesch et al., 

1993; Murdoch et al., 1996; Bȍcher et al., 2009; Tee et al., 2003; Kuroda et al., 2005; 

Widerstrȍm et al., 2012; Suzuki et al., 2012; Wang et al., 2012).17 out of 19 

staphylococcal species identified in this study have been previously reported to cause 

infections (Archer, 1998; Becker et al., 2014).  The most common staphylococcal 

species were S. epidermidis (28%), followed by S. hominis (24%), and S. haemolyticus 
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(11%).  S. epidermidis, S. hominis, and S. haemolyticus were also dominant in all 

isolation sites. S. epidermidis was predominantly found in hands, handbags, 

transportation facilities, supermarkets, restaurants, while S. haemolyticus was 

predominantly found in hotels, library, and hotel air samples, and S. hominis dominant 

in BCF. Soge et al., 2009 found that S. epidermidis was the most common CoNS 

species in US West Coast public marine beaches, followed by S. saprophyticus (Soge et 

al., 2009). S. haemolyticus was predominantly in both hotel and hotel air samples. Both 

samples were collected in the same hotel environment, which support the theory that the 

airborne bacteria are derived from the environment and building occupants (Fox et al., 

2011). S. hominis, S. haemolyticus and S. epidermidis were previously recovered from 

the baby feces and breast milk (Albesharat et al., 2011). In this study, the sampling sites 

of baby care facilities include dummies and nappy changing area, and the predominant 

species were consistent with species that were found in the baby rectum.  Many other 

species, including S. capitis, S. warneri, S. pasteuri, S. saprophyticus, S. cohnii, S. 

aureus, S. simiae, S. sciuri, S. pettenkoferi, S. lugdunensis, S. equorum, S. caprae, S. 

xylosus, S. auricularis, S. simulans, S. arlettae, were not prevalent. The findings of this 

study are consistent with those found in other reports studying CoNS isolated from 

patients, medical devices and the hospital environment (Minto et al., 1999; Sheikh & 

Mehdinejad, 2012). Sheikh & Mehdinejad, (2012) characterized 134 nosocomial 

associated CoNS belonging to 16 species, and the majority were identified to be S. 

epidermidis (19.4%) and S. haemolyticus (14.9%). Minto et al., (1999) found that S. 

epidermidis (68.2%), S. haemolyticus (11.1%), and S. hominis (3.2%) were predominant 

in 126 CoNS strains that were recovered from blood samples. Most of staphylococcal 

species were isolated from humans; and some staphylococci were recovered from 

sources such as soil, water and food (Kamal et al., 2013; Normanno et al., 2007). S. 
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simiae is reported to be isolated from squirrel monkeys of South American (Pantucek, 

2005). In this study, 19 staphylococcal species were isolated from human-related 

environment, including baby care facilities, hotels, library, restaurants, supermarkets, 

transportation facilities, hands, handbags and air of hotels.    

To our knowledge, this is the first systematic taxonomic analysis of staphylococci 

isolated from human hands and inanimate sites in the London region, UK. In this study, 

mass spectral patterns among strains were compared to discern intra- and inter-species 

taxonomic relationships.  Staphylococci recovered from different sites were found to be 

taxonomically closely related, which aids the understanding of the transmission and 

dissemination of staphylococcal isolates. This has also been discussed by other authors 

(Simões et al., 2011) .  Staphylococci isolates recovered from hands were taxonomically 

closely related to the isolates recovered from hotels, supermarkets, restaurants, library, 

transportation facilities, handbags, baby care facilities, air samples, and hands. Pratt et 

al., (2001) reported that poor hand hygiene is one of the major causes of cross 

contamination and antibiotic resistance transmission in health care facilities. The 

findings in this study support this hypothesis as the majority of the isolates were 

recovered from hand touched inanimate objects. In addition, de Neeling et al., (2007) 

reported the isolation of MRSA from slaughterhouse air samples, and demonstrated the 

transmission of MRSA via aerosols. Moreover, in this study air isolates were recovered 

from hotel environments, and the taxonomic relationship between isolates recovered 

from air and different sites in the same hotels was demonstrated.  

MALDI-TOF MS 

The importance of rapid and accurate identification of microorganisms have been 

demonstrated (Valentine et al., 2005; Yao et al., 2002). Matrix-assisted laser 

desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has been 
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proved to be a high throughput technique for bacterial identification in clinical 

laboratories (Van Veen et al., 2010). MALDI-TOF MS identifies the species by 

comparing mass spectrum pattern with reference patterns in the database (Maier et al., 

2006). MALDI-TOF MS has been employed to identify yeasts (Candida) and bacteria, 

such as Actinomyces, Corynebacterium, Enterobacter, Enterococcus, Escherichia coli, 

Micrococcus luteus, Pseudomonas aeruginosa, S. aureus, that were recovered from 

various clinical specimens, including blood, cerebrospinal fluid, pus, biopsies, 

respiratory tract, wounds, and stools (Dhiman et al., 2011; Seng et al., 2009). Dubois et 

al., (2012) tested 767 clinical isolates with MALDI-TOF MS, and 96.2% of isolates 

showed correct identification, including 86.7% of isolates were identified into species 

level and 9.5% of isolates were identified into genus level, while 1.3% misidentified,  

and 2.5% unidentified. In this study, 86% of 1152 environmental isolates provided 

reliable identification, including species level (73%), genus level (13%) and 

unidentified (14%). Generally, the percentage of reliable identification of environmental 

isolates is lower than clinical isolates. MALDI-TOF MS is a revolutionary new 

identification technique that was first introduced in 1996 (Claydon et al., 1996). The 

reproducibility and reliability of MALDI-TOF MS in identifying microorganisms has 

been extensively examined (Carbonnelle et al., 2007; Majcherczyk et al., 2006; Sandrin 

et al., 2013).  16S rRNA gene sequence is an older molecular technique for bacterial 

taxonomic study used since the 1980s (Janda & Abbott, 2007), and is a routine 

approach for identifying microorganisms in  microbiology labs (Clarridge, 2004).  In 

this study, MALDI-TOF MS was in good agreement (92%) with the 16S rRNA gene 

sequencing in identifying staphylococcal species. With 5 inconsistent isolates, 3 of them 

were consistent with the second match of 16S rRNA sequencing identification results, 

and 2 of them were inconsistent. The 16S rRNA sequencings were compared to NCBI 
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databases, various species with same score were displayed. Therefore, the identification 

accuracy of staphylococci may be affected (Loonen et al., 2012). Function stability, 

ubiquitous presence in all organisms and the fact that different positions in 16S rRNA 

sequences change at very different rates make 16S rRNA gene sequencing is an 

efficacious tool for phylogenetic analysis (Woese, 1987). Ribosomal protein, like 16S 

ribosomal DNA, is very stable (Maier et al., 2006).  The ribosomal proteins patterns can 

be detected by MALDI-TOF MS, which correspond to the 16S ribosomal DNA 

sequence (Hotta et al., 2010; Maier et al., 2006).  Therefore, profile analysis of MALDI-

TOF MS result in a similar family tree in comparison with 16S rRNA gene sequences 

(Maier et al., 2006).   It is reported that MALDI-TOF MS can be used for genotyping, 

phenotyping, and determining antibiotic resistance (DeMarco & Ford, 2013; 

Ghebranious et al., 2005). In this study, MALDI-TOF MS data have been used for 

taxonomic analysis of staphylococci. 

In this study, a family tree was built based on the MALDI-TOF MS profile of 

environmental staphylococci, and taxonomic relationship of staphylococci recovered 

from different sites has been assessed. Taxonomic relationship can be analysed based on 

16S rRNA gene sequences, though it is very difficult to handle a large quantity of data 

with regard to turnaround time and costs (Veen et al, 2010),  

While MALDI-TOF MS has been certified to be a useful, rapid, reliable technique for 

identification microorganisms in medical and food safety industries, concerns have been 

raised on the reproducibility of this technique (Schumaker et al., 2012). Reproducibility 

can be referred to as the accuracy of identified strains (Sandrin et al., 2013). The 

reproducibility was assessed by testing fresh cultures from different days, or by 

different operators (Majcherczyk et al., 2006; Schumaker et al., 2012). However, no 

standardized approach has been used to report reproducibility (Sandrin et al., 2013).  
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Until now, reproducibility of MALDI-TOF MS has been assessed for clinical and food 

isolates, but assessment of environmental isolates has not been reported (Carbonnelle et 

al., 2007; Majcherczyk et al., 2006). In this study, 1-3 isolates of each staphylococcal 

species were selected to assess the reproducibility of MALDI-TOF MS in identifying 

environmental staphylococci. The findings from this study demonstrated that MALDI-

TOF MS has an excellent reproducibility (98.5%) in identifiying environmental 

staphylococci, which is consistent with previous studies (Schumaker et al., 2012).  

Antibiotic resistance 

The presence of resistance towards most of the available antibiotics has been recognized 

in staphylococcal species (Becker et al., 2014). In comparation with clinical 

staphylococci, the antibiotic resistance in environmental staphylococcal isolates is less 

known. The susceptibility towards antibiotics can be determined using the antimicrobial 

susceptibility test (Jorgensen & Ferraro, 2009). Susceptibility patterns of staphylococcal 

species against antimicrobial agents in this study showed that the majority of 

staphylococci were resistant to penicillin (66%) and fusidic acid (67%). The antibiotic 

that the isolates displayed the least degree of resistance to was chloramphenicol (5%). 

Generally, it is widely accepted that clinical isolates demonstrate higher levels of 

antibiotic resistance due to consistent antibiotic exposure (Antoniadou et al., 2013). 80% 

of clinical CoNS were reported to be resistant to oxacillin in Europe (Hanberger et al., 

2001); whereas 7% of isolates were resistant to oxacillin in this study,  which is 

incompatible to their findings. Ferreira et al., (2002) reported 61.6% and 21.4% of 

clinical staphylococcal strains were resistant to oxacillin and mupirocin respectively, 

which is higher than the percentage of resistance in this study (oxacillin 7%, mupirocin 

16%).  Agvald-Ohman et al., (2004) reported 86%, 48%, and 54% of clinical 

staphylococci were resistant to oxacillin, erythromycin, and gentamicin accordingly, 
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which is higher than environmental staphylococci in this study (oxacillin 7%, 

erythromycin 33%, gentamicin 10%). In addition, Mohan et al., (2002) reported 40% of 

clinical staphylococci were resistant to chloramphenicol, whereas, 5% of staphylococci 

were resistant to chloramphenicol is in this study. Akinkunmi & Lamikanra, (2010) 

reported that 34.2% of clinical staphylococci were resistant to tetracycline in 

comparison with 18% of environmental staphylococci in this study.  Fritsche et al., 

(2003) showed 21% of clinical staphylococci were resistant to cefepime, while 10% of 

staphylococci were resistant to cefepime in this study. Meanwhile, resistant to fusidic 

acid (32.2%), vancomycin (0%), amoxicillin (10%) and streptomycin (16%) in clinical 

staphylococcal strains is lower than the percentage of environmental staphylococci 

isolates (fusidic acid 67%, vancomycin 24%, amoxicillin 27%, streptomycin 31%) in 

this study (Akinkunmi & Lamikanra, 2010; Ferreira et al., 2002; Idriss et al., 2014).     

Coagulase negative staphylococci are considered to be less virulent compared to S. 

aureus due to they rarely produce toxins or virulence factors (Otto, 2013). Neverthless, 

isolation of a wide range of multiple antibiotic resistant coagulase negative 

staphylococci in this study is a worrisome finding. Agvald-Ohman et al., (2004) 

reported multidrug resistant CoNS from clinical samples, which is compatible with 

environmental staphylococci. In this study, multi-resistance was commonly seen: 

including 0.3% of staphylococcal isolates resistant to more than 10 antibiotics; and 20.8% 

resistant to at least five tested antibiotics. It is reported that more than 80% of isolates 

recovered from swine and chicken manure were resistant to at least one antibiotic in 

China (Zhu et al., 2013). 96% staphylococcal species were resistant to at least 1 

antibiotic in this study, which is higher than the percentage reported by Zhu et al., 

(2013). Only 4% staphylococcal isolates were susceptible to all the tested antibiotics in 

this study. The level of multiple antibiotic resistant isolates recovered from different 
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sites was varied. According to Soge et al., (2009), the multiple antibiotic resistant CoNS 

recovered from public beaches were 62%. In this study, the multiple antibiotic 

resistance ratios of CoNS recovered from baby care facilities, hotels, library, restaurants, 

supermarkets, hotel air samples, handbags, and hands were higher than the ratio 

determined in CoNS recovered from US West Coast public marine beaches. In general, 

all the isolates (100%) recovered from hotel air samples were multiple antibiotic 

resistance, while 58% of isolates recovered from transportation facilities showed lowest 

multiple antibiotic resistance ratio. The multiple antibiotic resistance ratios of hands 

were between baby care facilities and handbags (personal items) as well as hotels, hotel 

air, library, restaurants, supermarkets and transportation facilities (public settings). The 

variation of multiple antibiotic resistance ratio was also observed within personal items 

and public settings, and no pattern was determined. 

Multiple drug resistant microorganisms were first reported in the late 1950s (Levy & 

Marshall, 2004), and later in 2007, the number of multidrug-resistant bacteria infections 

was 400,000, of which 25,000 were lethal in Europe only (Bush et al., 2011). In this 

study, multiple antibiotic resistant staphylococci were isolated from all 9 sites, and 544 

(80%) staphylococcal isolates were resistant to two or more antibiotics. Staphylococci 

can acquire antibiotic resistance by horizontal gene transfer or genetic mutation (Otto, 

2013).  Different mechanisms contribute to the  antibiotic resistance of microorganisms 

(Blair et al., 2014). The environment plays an important role in the development of 

antibiotic resistance in microorganisms (Cantas et al., 2013). Antimicrobial agents from 

antimicrobial producing bacteria in soil and the human therapeutics, animal therapeutics, 

sewage, agriculture and veterinary industries favour the selection of antibiotic resistance 

genes, and thus make the environment a reservoir of antibiotic resistance bacteria and 

antibiotic resistance genes (Cantas et al., 2013).  The findings of high levels of multiple 
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resistant staphylococci in the environment support the theory that antibiotics in the 

natural environment contribute to the selection of antibiotic resistance microorganisms  

Sexton et al., (2006) reported that the environment may play an important role in the 

dissemination of antibiotic resistance. In this study, MALDI-TOF MS data were 

combined with antibiotic resistance profiles for taxonomic analysis. 30 multiple 

antibiotic resistant staphylococci were taxonomically closely related to 30 susceptible 

staphylococci respectively, indicating that these might belong to the same genotype as 

the founding strain. Kraemer & Iandolo, (1990) reported the transfer of antibiotic 

resistance genes between species or interspecies, which may be a contributing factor in 

the development of different antibiotic resistance patterns in taxonomically closely 

related isolates. Additionally,  Thouverez et al., (2003) has shown the correlation of 

antibiotic susceptibility and the MRSA genotype over a 4-year period.  In this study, it 

was showed that taxonomically closely related antibiotic resistant staphylococci were 

recovered from different sites with varied antibiotic susceptibility profile. Up to 9 

antibiotic susceptibility variations were observed in two taxonomically closely related 

staphylococci, which were recovered from same site, and up to 8 antibiotic 

susceptibility variations were found in other two taxonomically closely related 

staphylococci recovered from different sites.  This finding also supports the theory that 

transfer of antibiotic resistant determinants contribute to the development of different 

antibiotic resistance patterns in taxonomically closely related isolates (Kraemer & 

Iandolo, 1990).  

Community associated MRSA USA300, is an epidemic strain responsible for severe 

antibiotic resistance associated infections, which has reportedly been recovered from 

frequently touched surfaces in buses serving both hospital and community routes in 

potugal, which indicates the spillover of MRSA from hospital settings to the community 
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(Lutz et al., 2014). The taxonomic analysis of this study showed low diversity among 

each staphylococcal species. The dissemination of antimicrobial resistance in the 

environment is associated with ubiquitous bacteria. Staphylococci, as one of the 

ubiquitous bacteria, are known to be able to survive in the environment as well as 

colonize on humans (Cantas et al., 2013). In this study, staphylococci recovered from 

different sites were determined to be taxonomically closely related. In addition, no 

obvious differences of antibiotic susceptibility profile were observed between clusters 

that were formed by isolates recovered from different sites and clusters that were 

formed by isolates recovered from same site. This finding also supports the theory that 

the spread of antimicrobial resistance is associated with the dissemination of ubiquitous 

bacteria in the environment (Cantas et al., 2013).  

Methicillin resistant staphylococci are a major public health problem, with severe 

economic and health consequences (Stefani & Varaldo, 2003). mecA gene encodes for 

penicillin binding protein 2a (PBP2a), which has a low affinity to β-lactam antibiotics 

and confers the methicillin resistant (Tulinski et al., 2012). Hussain et al., (2000) 

assessed the correlation of the presence of mecA gene and oxacillin susceptibility 

breakpoints (0.5 mg l
-1

) in 493 clinical CoNS of 11 species, and classified these 

staphylococci into 4 categories. The mecA gene was determined in category I and II 

staphylococci, and the percentage of mecA positive isolates was as followings: S. 

haemolyticus (83.3%), S. epidermidis (61.9%), S. hominis (51.8%), S. cohnii (28.5%), S. 

warneri (27.3%), and S. saprophyticus (9.0%) (Hussain et al., 2000). Category II (S. 

cohnii, S. warneri, S. saprophyticus) differed from category I (S. haemolyticus, S. 

epidermidis, S. hominis) by their low mecA-positive ratio (Hussain et al., 2000). In this 

study, S. haemolyticus (24%), S. epidermidis (12%), S. hominis (6%) had mecA-positive 

strains but with lower mecA-positive ratios in comparision with clinical isolates. In 
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addition, S. cohnii (36%) and S. saprophyticus (20%) of category II recovered from this 

study showed higher mecA-positive ratio than clinical isolates, whereas, lower mecA-

positive ratio was observed in S. warneri (13%) of this study. It is reported that no 

mecA gene was found in category III and IV staphylococci, including  S. xylosus, S. 

lugdunensis, S. capitis, S.simulans, and S. schleiferi (Hussain et al., 2000). In this study, 

no mecA gene was determined in S. xylosus and S. simulans, which is consistent with 

clinical study report. In contrast, the presence of mecA gene was determined in S. 

lugdunensis (20%) and S. capitis (8%). It is also reported that category III (S. 

lugdunensis and S. xylosus) lack mecA gene, but phenotypically resistant to oxacillin. In 

their study, Hussain et al have not explained why this occurs (Hussain et al., 2000), 

however, proteomic data in this study suggested that expression of PBPs remain the 

same or upregulated, resulting the mecA-negative conjugant being phenotypically 

resistant to oxacillin. In contrast with Hussain et al’s finding, S. lugdunensis recovered 

from this study was determined to be mecA positive and resistant to oxacillin. In this 

study, S. simiae, as sister species of S. aureus, was not identified to harbour mecA gene 

(Suzuki et al., 2012). The origin of mecA gene in S. aureus is considered to be from the 

common ancestor of S. fleurettii, S. vitulinus and S. sciuri (Tsubakishita et al., 2010). 

Moreover, mecA1 gene of S. sciuri can mediate the high-level oxacillin resistance in S. 

aureus (Harrison et al., 2014). In this study, the high mecA-positive ratio of S. sciuri 

(83%) is a worrisome finding. 

Oxacillin susceptible MRSA (OS-MRSA), that has been reported worldwide (Hososaka 

et al., 2007; Saeed et al., 2010), is defined as oxacillin susceptible mecA gene positive S. 

aureus (Hososaka et al., 2007). Hososaka et al (2007) also indicate the possibility of 

high level resistance induced by beta-lactam antibiotics. In this study, 12 S. aureus were 

neither oxacillin resistance nor mecA gene positive, and 89 mecA gene positive CoNS 
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were determined. The MICs (oxacillin) of mecA gene positive staphylococci varied 

from 0.015 to 256 mg l
-1

, and 39 out of 89 mecA-positive CoNS were susceptible to 

oxacillin. The mecA gene positive, oxacillin susceptible CoNS were prevalent in 

environmental staphylococci. The mecA gene encodes a penicillin binding protein 2a, 

which has a low affinity to β-lactam antibiotics, and is thus phenotypically resistant to 

β-lactam antibiotics (Tomasz et al., 1989). In this study, the expression of mecA gene 

has been assessed in 4 CoNS with MIC range from 0.12 to 256 mg l
-1

. The presence of 

PBP2a was determined in high oxacillin resistant isolates, but not in S. epidermidis 111 

(MIC 0.12 mg l
-1

) and S. hominis 506 (MIC 0.5 mg l
-1

). The proteomic results of this 

study help to understand the oxacillin resistant variation of mecA gene positive 

staphylococci. Pinho et al., (2001) has reported that the optimal expression of 

methicillin resistant in MRSA requires collaboration of PBP2a and PBP2. TPase 

domain of PBP2a is involved in transpeptidation, and TGase domain of PBP2 is 

essential for transglycosylation in presence of methicillin (Pinho et al., 2001). 

Predictably, the presence of PBP2 has been determined in 2 PBP2a positive CoNS in 

this study.   

The mecC gene shares less than 70% similarity with original mecA gene, and present in 

SCCmec type XI (Becker et al., 2014). mecC gene has been recovered from human and 

varied animal hosts (Loncaric et al., 2013); however, no mecC gene positive 

staphylococci was determined in this study. To date, there are 4 mecA gene homologues 

have been reported, including mecA1 (80%), mecA2 (90%), mecB (60%) and mecC 

(70%). It is believed that novel mecA homologues may be identified in the future (Ito et 

al, 2012).  
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SCCmec and MLST 

SCCmec is a mobile genetic element, comprising of mecA gene, recombinase gene, 

regulatory elements and additional genes (Monecke et al., 2011). The variation of 

SCCmec confers the sources of MRSA (Monecke et al., 2011). Therefore, SCCmec is a 

molecular typing technique for epidemiological study of staphylococci (Oliveira & 

Tomasz, 2002). The structural diversity of SCCmec has been reported in hospital 

environments (Barbier et al., 2011; Zong et al., 2011). The variation in SCCmec is 

related to the high throughput of individuals in the hospital tested (Barbier et al., 2011). 

The first identification information of SCCmec type I, II, III elements are as followings: 

Type I (1961, UK), type II (1982, Japan) and type III (1985, New Zealand). SCCmec 

type I, II, III of MRSA has been reported to be associated with hospital (Monecke et al., 

2011). Whilist, SCCmec type IV and V are present in community associated MRSA 

(Monecke et al., 2011). In addition, it is found that the presence of SCCmec elements is 

associated with slow growth rate (Monecke et al., 2011), and the slow growth rate has 

been considered to be a disadvantage of selection in the absence of an antibiotic 

selection pressure (Ender et al., 2004; Lee et al., 2007). In this case, isolates carrying 

SCCmec are not as competent as wild type strains in the absence of antibiotics 

(Monecke et al., 2011).  Moreover, SCCmec type IV and I have similar structures 

(Oliveira & Tomasz, 2002). SCCmec type IV lacks a flanking region in comparison 

with SCCmec type I (Oliveira & Tomasz, 2002), and thus the type IV SCCmec element 

represents increased mobility by its smaller size (Oliveira & Tomasz, 2002). In this 

study, SCCmec types were identified in CoNS. 15 CoNS out of 89 (17%) mecA gene 

positive staphylococci were assigned to SCCmec type I, II or III, while SCCmec type IV 

and V took 29% (n=26). In the environment, community associated SCCmec type is 

more prevalent than nosocomial associated SCCmec types, which may support the 



217 
 

theory of the advantage in the spread of smaller SCCmec elements (Oliveira & Tomasz, 

2002). SCCmec type VI was identified in clinical MRSA that were recovered from 

Portugal and has been redefined in 2006 (Oliveira & Tomasz, 2002). Moreover, type 

VIII SCCmec has been first identified in 2009 in Canada (Zhang et al., 2009). One of 

each type has been identified in this study, whereas SCCmec types IX were not detected 

in this study. It has been reported by others that the distribution of SCCmec types in 

MRCoNS varies and may depend on the human host and geographical locations of the 

isolates (IWG-SCC, 2009; Oliveira et al., 2006; Zhang et al., 2009; Zong et al., 2011). 

In previous reports, SCCmec types I, II, III and V were found to be the most common in 

environmental isolates, such isolates were taken from areas such as public beaches 

(Soge et al., 2009). In this study, SCCmec type I, IV, and V have been identified to be 

prevalent in environmental isolates. Becker et al., (2014) has summarized the 

community and livestock associated SCCmec types, including S. capitis (I, IA, II, III, 

IV, IVa, V, NT), S. cohnii (NT), S. epidermidis (I, IIa, IIb, III, III (variant), IV, IVa, IVb, 

IVc, IVd, IVe, IVg, V, VI, NT), S. haemolyticus (I, II, II.1, III, III (variant), IV, V, NT), 

S. honomis (I, III, IV, NT), S. pasteuri (IVc), S. saprophyticus (III, NT), S. sciuri (I, III, 

IIIA, V, VII, NT) and S. warneri (IV, IV.1, IVb, IVE, NT). In addition, NT, which 

stands for  non-typeable and/or novel non-designated types, was identified in S. capitis, 

S. cohnii, S. epidermidis, S. haemolyticus, S. hominis, S. saprophyticus, S. sciuri, S, 

warneri. In this study, species associated SCCmec types differed from Becker et al. The 

SCCmec types found in S. capitis (I, NT), S. haemolyticus (I, II, V, NT) and S. hominis 

(I, V, NT) of this study is less than community associated SCCmec types. whereas, S. 

cohnii (I, V, NT), S. pasteuri (NT), S. saprophyticus (IV, NT), S. sciuri (II, VIII, NT), S. 

warneri (I, V, NT) harbors different SCCmec types in comparison with community 

associated staphylococci. SCCmec types of S. epidermidis in this study is consistent 
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with community associated S. epidermidis.  In addition, associations were found 

between SCCmec carriage and certain species, for example SCCmec type V was 

preferentially associated with S. haemolyticus, S. hominis, S. warneri, and S. 

epidermidis. Previously, with clinical isolates, type V SCCmec was reported to be 

associated mainly with S. haemolyticus (Zong et al., 2011).  

Apart from the variations in the classified SCCmec types isolated, 22 unclassified 

SCCmec types were also reported in this study. Eight of these had a combination of 

class A mec complex and ccrC, six carried a combination of class B mec and ccrC, one 

carried class B mec and ccr3, and seven had a combination of class A mec complex and 

ccr type 1. The 1A has been reported by other workers to be a new type 1A (Bouchami 

et al., 2011). SCCmec harbouring mecA but lacking ccr is known as pseudo (ψ)-

SCCmec, while it is reported that SCCmec12263 possess a ccr complex but lack mecA 

(Harrison et al., 2013; Katayama et al., 2003).  23 isolates (29%) of this study could not 

be typed as they lack either mec complex or ccr complex.  It is known that SCCmec 

without ccr and mec genes have been classified as ψ SCC elements (Becker et al., 2014), 

and ψ SCC element was identified in one S. saprophyticus of this study.  

S. epidermidis is considered to be clinical contaminant, and thus epidemiological studies 

of S. epidermidis are limited (Herwaldt et al., 1996; Wang et al., 2003). To date, studies 

on S. epidermidis have been focused on clinical isolates (Li et al., 2009), S. epidermidis 

ST2 has been found to be dominant in hospitals in China, Europe and USA, and is 

associated with the presence of ica operon and IS256 (insertion sequences) positive (Li 

et al., 2009; Mendes et al., 2012; Miragaia et al., 2007). A wide range of genetic 

variation existing amongst S. epidermidis isolates has been demonstrated (Hussain et al., 

2000) In this study, 14 new MLST types were assigned for 19 S. epidermidis isolates. 

MLST is a powerful tool for global epidemiological studies (Oliveira & Tomasz, 2002),  
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since it can identify important genetic background correlation of staphylococci 

recovered all over the world by comparing the MLST types (Diep et al., 2004), 

Internationally recognized clones S. epidermidis ST59 has been isolated from hospital 

in Taiwan, Denmark, Mexico, Cape Verde, Spain, Hungary, USA and China, and 

associated with SCCmec type V (Li et al., 2009; Mendes et al., 2012; Miragaia et al., 

2007).  In this study, S. epidermidis ST59 was associated with SCCmec type IV, and 

this is the first report of ST59 associated with SCCmec type IV, which is different to 

those already reported. Mendes et al., (2012) reported the isolation of S. epidermidis 

ST360 from clinical specimens in the USA, however, little information of S. epidermdis 

ST360 has been reported. In this study, S. epidermidis ST360 is combined with 

SCCmec type V. In addition, isolates recovered from human hands (259) and hotels 

(124) shared the same MLST type: ST602, which suggested the possible correlation of 

staphylococci recovered from different sites. However, S. epidermidis 259 harboured 

SCCmec type V, whereas S. epidermidis 124 was associated with SCCmec IV. 3 S. 

epidermidis isolates of this study recovered from library (133, 134, 135) were assigned 

the same MLST type; however, S. epidermidis 133, 134, 135 harboured SCCmec type 

3B, I, IV accordingly. The same MLST type associated with different SCCmec types 

has been reported previously, such as S. epidermidis ST2 harbouring type II, III, IV and 

non-typable SCCmec, and ST22 is associated with SCCmec type III, IV and V 

(Miragaia et al., 2007). It is believed that different MRSA clones can appear in some 

clonal complexes (CC), and lead to the isolates with the same MLST type but different 

SCCmec type (Robinson & Enright, 2004). This theory is supported by the findings of 

same MLST type associated with different SCCmec types in this study.  
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Antibiotic resistant and virulence genes in S. epidermidis 118 (G6_2) 

S. epidermidis is an important opportunistic pathogen, which is commonly related to 

infections due to indwelling medical devices (Becker et al., 2014). A pan-genome 

sequence analysis of 71 S. epidermidis that are recovered from healthy human bodies 

shows that formate dehydrogenase is exclusively present in the commensal lineage 

(Conlan et al., 2012). In this study, the formate dehydrogenase was present in S. 

epidermidis 118 (G6_2).  In addition, the phylogenetic relationship indicates the close 

relationship of S. epidermidis 118 (G6_2) with SRR1656389, SRR1656376 and 

SE_BCM-HMP0060 strains that were recovered from intensive care units (Roach et al., 

2015).  

Antibiotic resistance genes detected in S. epidermidis 118 (G6_2) 

Zankari et al., (2013) reported that WGS presented high antimicrobial susceptibility 

concordance with phenotypic tests in E. coli. Moreover, the promising feature of WGS 

for antimicrobial susceptibility prediction in a clinical isolate S. aureus was also 

demonstrated (Gordon et al., 2014). In this study, the correlation between antibiotic 

resistance genes and phenotypic antimicrobial susceptibility was determined in S. 

epidermidis 118 (G6_2).  aac(6')-aph(2''); blaZ; mecA;  fosA; msr(A); mph(C); tet(K); 

ileS and fusA in the genome of S. epidermidis 118 (G6_2); these are responsible for the 

streptomycin, gentamicin, penicillin, oxacillin, amoxicillin, cefepime, cefoxitin, 

fosfomycin, erythromycin, tetracycline, fusidic acid, and mupirocin resistance (Bernat 

et al., 1997; Bryan et al., 2004; Daigle et al., 1999; Fiebelkorn et al., 2003; Hodgson et 

al., 1994; Howden & Grayson, 2006; Olsen et al., 2006; Ubukata et al., 1989; Wang et 

al., 2008). S. epidermidis G6_2 harboured 9 antibiotic resistance genes, which is greater 

than those contained in clinical reference strains. blaZ is known to encode an enzyme 

inactivated β-lactam by hydrolysis of antibiotics. aac(6')-aph(2''), fosA and mph(C) are 
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known to inactivate aminoglycoside, fosfomycin and macrolide antibiotics by encoding 

transferases that form a covalent bond with antibiotics. mecA and ileS encodes penicillin 

binding protein 2a and additional isoleucyl tRNA synthetase which has low affinity to 

β-lactam antibiotics and mupirocin respectively. msr(A) and tet(K) encode efflux that 

confers to macrolide and  tetracycline resistance. Finally, the fusA mutation has 

contributed to the fusidic acid resitance (Cookson, 1998; Hodgson et al., 1994; Howden 

& Grayson, 2006; Martemyanov et al., 2001; Matsuoka et al., 2003; Ng et al., 2001; 

Schmitz, 1999). Five different mechanisms are involved in multiple antibiotic 

resistances of S. epidermidis 118 (G6_2).  

S. epidermidis has been considered to be a reservoir of antibiotic resistance genes, 

which facilitate the survival of S. aureus by horizontal transfer of antibiotic resistant 

determinants (Otto, 2013). There is evidence to support the theory that S. epidermidis is 

a reservoir of antibiotic resistance gene for S. aureus. Staphylococcal cassette 

chromosome mec (SCCmec) elements and arginine catabolic mobile elements (ACME) 

were found more frequently in S. epidermidis than S. aureus. Moreover, SCCmec type 

IV of S. epidermidis showed 98-98% similarity to SCCmec type IVa in S. aureus, and 

ccrAB gene in S. epidermidis are 100% identical to S. aureus. In addition, the 

methicillin resistant is more prevalent among S. epidermidis than S. aureus (Otto, 2013).   

In this study, S. epidermidis 118 (G6_2) was observed to harbour 9 antibiotic resistance 

determinants, thus supporting Otto’s theory.  In addition, Qin et al., (2012) reported a 

Campylobacter coli harbouring 6 aminoglycoside resistance genes isolated from 

chicken slaughterhouses. In contrast with C. coli harbouring 6 aminoglycoside 

resistance determinants,  9 antibiotic resistance determinants of S. epidermidis 118 

(G6_2) are responsible for the resistance of 7 classes of antibiotics, including steroid, 

aminoglycoside, beta-lactam, fosfomycin, microlide, tetracycline, and monoxycarbolic 
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acid antibiotics. The development of antibiotic resistance is mostly due to the gene 

transfer (Otto, 2013). Mobile genetic elements, such as plasmids, transposons, 

pathogenic islands and chromosomal cassette, contribute to the dissemination of 

antibiotic resistance genes (Zhu et al., 2013). In this study, 5 out of 9 antibiotic 

resistance genes were located on plasmids of S. epidermidis 118 (G6_2), indicating the 

high mobility of these antibiotic resistance determinants. Recently, using different 

genome sequence approaches, Méric et al., (2015) has shown that S. aureus and S. 

epidermidis share considerable interspecies mobile genetic elements. 

In addition to the multiple antibiotic resistant determinants, the copper responsive gene 

(cptV) and copper chaperone (copZ) were found in S. epidermidis 118 (G6_2), whose 

functions are known to encode proteins for copper efflux and adaption to copper stress 

(Schelder et al., 2011). Zhu et al., (2013) reported that the heavy metal is co-selective 

pressure, preserves the presence of antibiotic resistance genes in bacteria. Moreover, 

three functional genes: qac, yehS and Tn552, were found to be located in one of the S. 

epidermidis 118 (G6_2) plasmids. Quaternary ammonium compounds (QAC) are 

widely used in the food industry and clinical environment as low toxic detergents; 

however, QAC resistant staphylococci have been emerged in communities and the food 

industries (Heir et al., 1998).  qac genes are known to encode QAC-resistance protein 

which are responsible for the efflux of QAC and dye from cells (Heir et al., 1998).  In 

bacteria, ABC transporters are crucial for nutrient uptake and exportation of toxin and 

antibiotics (Davidson & Chen, 2004). yehS gene is known to be one of the genes that 

encode ABC transporter ATP-binding protein, which involves in nutrient uptake and 

secretion of toxins and antimicrobial agents from the cell (Davidson & Chen, 2004). 

Tn552 is a beta-lactamase related transposon, which is known for encoding beta-
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lactamase and two regulatory proteins: blaI, blaR1, which control the expression of 

beta-lactamase (Rowland & Dyke, 1990).  

Virulence genes determined in S. epidermidis 118 (G6_2) 

Virulence genes found in S. aureus express a variety of virulence proteins, including 

enterotoxin, exotoxin, hemolysin (alpha, beta, gamma, and delta), nuclease, protease, 

and lipase (Dinges et al., 2000).  Proteins encoded by virulence genes are generally 

involved in converting host tissue into nutrients for the growth of bacteria and invasion 

(Dinges et al., 2000). setC is a pyrogenic toxin superantigen, and can trigger toxic shock 

syndrome by causing massive cytokine release (Dinges et al., 2000). In this study, setC 

was exclusively determined in S. epidermidis 118 (G6_2).  Alpha-hemolysin has 

neurotoxic and dermonecrotic effects on a variety of mammalian cells and delta-

hemolysin is capable of lysing a wide range of mammalian cells (Dinges et al., 2000);  

however, the mechanism by which beta-hemolysin causes disease has not yet been 

clarified (Schwan et al., 2003). In this study, only beta-hemolysin encoding gene hlb 

was present in S. epidermidis 118 (G6_2). The nuclease can facilitate S. aureus escape 

from neutrophils and therefore undermine the immune system. nuc was present in S. 

epidermidis 118 (G6_2) and reference isolates (Berends et al., 2010). Extracellular 

protease, including serine proteinase (sspA), cysteine proteinase (sspB) and staphopain 

A (sspP), were known to have putative roles in virulence (Shaw et al., 2004; Zarfel et al., 

2013). In addition to sspA and sspB, S. epidermidis G6_2 harbours sspP exclusively. lip, 

geh and lipA are members of the bacteria lipase family, and might be involved in 

pathogenicity by reducing the ability of immune cells to undertake phagocytosis ability 

(Stehr et al., 2003). lip, geh and lipA were all present in S. epidermidis 118 (G6_2). In 

addition, clp proteinase found in staphylococci is more like a stress response protein, 

and degrades misfolded proteins under stress conditions (Michel et al., 2006). Moreover, 
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lytN found in S. aureus N315 and S. epidermidis 118 (G6_2) encodes cell wall 

hydrolase/autolysin (Lindsay et al., 2005). Immunodominant staphylococcal antigen A 

(isaA) and immunodominant staphylococcal antigen B (isaB) were identified as a 

putative autolysin (Stapleton et al., 2007). Both isaA and isaB were determined in S. 

epidermidis 118 (G6_2). sfpA gene was reported to be located on a plasmid  of E. coli,  

and encoding sfp fimbriae mediating the mannose-resistant hemagglutination (MRHA) 

(Müsken et al., 2008). The finding of this gene in S. epidermidis 118 (G6_2) strain is 

supportive evidence that the transfer of virulence factors may occur via plasmids (Zhu 

et al., 2013). In C. difficile, sigD is a regulon, which positively controls toxin expression 

via regulation of tcdR transcription (El Meouche et al., 2013). The sigD gene has been 

shown to regulate the expression of tcdA, tcdB toxins, which are involved in the early 

stages intestine tract colonization of Clostridium difficile and cause intestinal damage 

(El Meouche et al., 2013).  sigD gene was detected in S. epidermidis 118 (G6_2) and to 

my knowledge this is the first report of the sigD gene found in staphylococci.  The study 

also showed that tcdA was present in S. epidermidis 118 (G6_2). The polysaccharide 

intercellular adhesin gene ica is the gene that confers biofilm synthesis of 

staphylococcal species (Arciola et al., 2001; Zhang et al., 2003) No ica gene was 

detected in S. epidermidis 118 (G6_2) in this study, and thus S. epidermidis 118 (G6_2) 

is a non-biofilm forming isolate. Phenol soluble modulins responsible for immune 

evasion of S. epidemidis were determined in S. epidermidis 118 (G6_2), RP62a and 

ATCC12228 (Liles et al., 2001). 

Various surface proteins contribute to the pathogenicity of staphylococci, which can 

enable them to invade hosts and remain there (Becker et al., 2014). sdrC, sdrD, sdrE are 

considered to be the surface protein of S. aureus (Foster et al., 2014), while sdrF, sdrG, 

sdrH are S. epidermidis associated surface proteins (McCrea et al., 2000). sdrC, sdrD, 
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and sdrE of S. aureus have crucial role in colonization and evasion of the host cells 

(Foster et al., 2014). In this study, sdrC and sdrD were first reported to be expressed in 

S. epidermidis. Autolysin (atl) is expressed in S. aureus, and for S. epidermidis, the 

homolog of atl which mediates initial adhesion functions is known as atlE (Becker et al., 

2014). Moreover, cell wall associated fibronectin binding protein (ebh), elastin binding 

protein (ebp) and bifunctional autolysin (atl), are found in both S. aureus and S. 

epidermidis (Gill et al., 2005). Another surface protein, sas is known to transfer from S. 

epidermidis to S. aureus via prophage (Otto, 2013).  Additionally, pls is found in S. 

aureus and S. epidermidis, and is known to regulate the adhesion process (Josefsson et 

al., 2005) and mediate methicillin resistant (Gill et al., 2005). In this study, sasK, ebh, 

ebp and atl were found in S. epidermidis 118 (G6_8) and all reference staphylococcal 

species, while pls was only found in S. epidermidis RP62a and 118 (G6_2). S. 

epidermidis 118 (G6_2) presented fewer virulence genes than S. aureus N315, however, 

it showed equivalent or even more virulence than two clinical S. epidermidis strains. 

Moreover, S. epidermidis 118 (G6_2) harbours 9 antibiotic resistance genes, more than 

were found in clinical reference staphylococci.   

mecA transfer in vitro 

Methicillin resistant is encoded on a mobile genomic island named SCCmec (Kondo et 

al., 2007). The origin of SCCmec in S. aureus is considered to be acquired from CoNS, 

which has been documented by Otto (2013). Theories supporting this hypothesis 

include the high level of SCCmec homologies in both S. aureus and CoNS as well as the 

occurrence of mecA gene in CoNS is more frequent than in S. aureus (Otto, 2013). 

Under laboratory conditions, mecA gene cannot be transferred by conjugation and 

transformation, whereas, phage mediated transduction of SCCmec within two S. aureus 

have been reported (Cohen & Sweeney, 1973). No phage mediated transduction of 
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SCCmec elements between different staphylococcal species has been reported 

(Katayama et al., 2000).  The SCCmec transfer mechanism remains to be solved. In this 

study, the mecA gene was not transferred between staphylococcal species during the in 

vitro mating experiment, which was confirmed by Southern blotting, PFGE, LC-

MS/MS and MIC assays. This finding is in concordance with previous report by 

Bloemendaal et al., (2010). Bloemendaal et al (2010) suggested that unsuccessful 

transfer of SCCmec is due to low frequencies or unfavourable in vitro conditions, since 

Bloemendaal et al (2010) indicated that one methicillin resistant S. aureus was derived 

from methicillin susceptible  S. aureus  by horizontal mecA gene transfer in vivo.  4 mg 

l
-1

 oxacillin supplemented mannitol salt agar is recommended to be used as a reliable 

screening medium for detection and identification of methicillin resistant S. aureus 

(Lally et al., 1985).  However, it is reported that oxacillin supplemented MSA shows 

relatively low sensitivity in the selection of MRSA in comparison with conmercialized 

selective agar (Stoakes et al., 2006). PCR is a widely used genetic method for antibiotic 

resistance gene determination (Sakoulas et al., 2001; Zhang et al., 2008); However, 

false positive results have been reported previously (Tham et al., 1991).  PFGE and 

Southern blotting are considered to be more reliable techniques in detecting the 

presence of specific genes (Trindade et al., 2003). In this study, the conjugant growing 

on 4 mg l
-1

 oxacillin supplemented mannitol salt agar (MSA, Oxoid Basingstoke UK) 

was determined to be mecA gene negative S. aureus (MSSA). In order to find out the 

reason of survival of MSSA on oxacillin supplemented MSA, it is essential to examine 

and compare, at a proteomic level, the successful transfer of mecA/SCCmec, as 

proteomics is a powerful tool to determine functional genomics (Ziebandt et al., 2010).  
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Stress response mediate the antibiotic resistance 

It is well established that methicillin resistant is determined by penicillin binding 

protein 2a with low affinity to β-lactam antibiotics, encoded by the mecA gene 

(Wielders et al., 2002). No penicillin binding protein 2a was detected in either 

conjugant or S. aureus (recipient). However, upregulation of proteins involved in 

various stress responses was observed. Previous studies have revealed that bacterial can 

acquire antibiotic resistance through vertical transmission from ancestors, such as the 

target of an antibiotic being altered by mutation to reduce affinity, or adjust the 

efficiency of efflux pumps that are involved in clearance of antibiotic from cells or 

degradative systems (Hastings et al., 2004). Increased single nucleotide mutations were 

observed after exposure to antibiotics, including nucleotide mutation in mprF gene, 

point mutation in spa gene and nos gene mutant (Richards et al., 2015). Caspermeyer, 

(2015) has shown that adaptation and survival ability of S. aureus is increased after 

exposure to a single antibiotic, and emphasis on the role of mutation in antibiotic 

resistance evolution. Stress environment increase the mutation and thus contribute to 

selective advantages (Foster, 2005a).  In this study, oxacillin most likely acted as a 

stress source, triggering stress responses of S. aureus and elevating the mutation rate, 

and thus contributing to the oxacillin resistant phenotype that allowed them to survive 

and proliferate on oxacillin supplemented mannitol salt agar. Finally, vertically 

transmission of these resistance traits to offspring enabled their survival in oxacillin 

supplemented mannitol salt agar. Proteomic level analysis is a unique approach to 

reveal the stress responses of bacteria (Xiao et al., 2003), and it has been successfully 

employed to look at the linezolid stress response of S. aureus (Bernardo et al., 2004).   

The beta-lactam mediated SOS response has been previously reported in clinical mecA 

positive, oxacillin susceptible MRSA (Cuirolo et al., 2009), and the LexA/RecA protein 
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regulated SOS response increases the mutation rate which allows the selection of high 

oxacillin resistant populations from mecA positive, oxacillin susceptible MRSA 

(Cuirolo et al., 2009). Similar phenomena were found in this study, increased 

expression of RecA gene in mecA negative S. aureus was observed after exposure to 

beta-lactam antibiotic.  

Mismatch repair is important for genomic integrity (Foster, 2005a); however, mismatch 

repair protein may remain at low levels under stress conditions so that mutations cannot 

be corrected (Foster, 2005a). It was found that the expression of MutS (key gene for 

mismatch repair) remained the same after exposure to beta-lactam antibiotic in this 

study. It is reported that bacteria can acquire resistant traits by mutation and altering the 

efficiency of degradation system. Additionally, these traits can be vertically transferred 

to offspring  (Hastings et al., 2004). Upregulation of proteins that are involved in 

degradation were observed in this study.  

The stringent response is known to be triggered by the stressful environment (Gao et al., 

2010), and has been reported to tolerate antibiotic resistance in Enterococcus faecalis 

(Abranches et al., 2009). The proteins responsible for amino acid biosynthesis and 

transport processes are observed to be upregulated in the stringent responses (Anderson 

et al., 2006). ABC transporter is one such transport protein (Anderson et al., 2006), and 

is known to be one of the most significant contributing factors for antibiotic resistance 

(Gupta et al., 2010). In this study, ABC transporter and drug resistance transporter 

(EmrB/QacA) were found to be upregulated in presence of oxacillin.  

The heat shock response is known to be induced by temperature or DNA damage 

(Guisbert et al., 2008; Muthaiyan et al., 2012). Heat-denatured proteins are known to be 

targeted by ClpC and then degraded by ClpP (Frees et al., 2004). As part of this system, 

ClpB is speculated to interact with heat shock proteins (DnaK, DnaJ) to solubilize the 
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protein aggregates (Mogk et al., 2003). Urease operon (ureA-ureD) are known to 

convert urease to ammonia and CO2 (Anderson et al., 2006). The increased expression 

of urease operon is all known to help address the effects of temperature elevation 

(Anderson et al., 2006). GroE is important for transcription under heat elevation, as it 

protects the RNA polymerase holoenzyme from heat inactivation (Ziemienowicz et al., 

1993). In this study, the isolates that were used for comparative proteomic analysis were 

both cultured at 37℃; however, these heat shock response associated proteins (ClpB, 

ClpC, ClpP, urea-ureD, GroE) were upregulated in presence of oxacillin. Foster, 

(2005a) has reported that other conditions responsible for unfolded proteins can trigger 

heat shock response. The finding of this study supports that the heat shock response can 

be triggered by antibiotic associated stress (Guisbert et al., 2008; Muthaiyan et al., 

2012). 

Heat shock protein is a family of proteins that are active during exposure to stress 

environments, such as excess heat, oxygen and UV light (Cao et al., 1999; Matz et al., 

1995; Ritossa, 1962). Hsp40 (DnaJ) controls protein homeostasis in the cell (Cuéllar et 

al., 2013). Hsp20 (GrpE) has been reported to assist reactivation of heat-inactivated 

RNA polymerase (Ziemienowicz et al., 1993). Heat shock protein 20, 40, 70 were all 

found to be upregulated in conjugant of this study.   

The upregulation of virulence genes is also induced under stress conditions (Anderson 

et al., 2006). In this study, virulence factors such as zinc metalloprotease (ftsH), 

protease, Clp protease (clp), and clumping factor A (clfA), were found to be expressed 

at increased levels in the presence of oxacillin. In addition, The PBPs are membrane-

associated proteins that catalyse the synthesis of cell wall peptidoglycan in S. aureus, 

and peptidoglycan is an important component of the bacterial cell wall (Dmitriev et al., 

2004; Memmi et al., 2008). Muthaiyan et al., (2012) has assessed the killing effect of 
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Valencia orange essential oil on S. aureus, and downregulation of PBPs and 

peptidoglycan was observed in the presence of the Valencia orange essential oil. In this 

study, expression of PBPs remained the same or upregulated, and upregulation of 

peptidoglycan biosynthesis associated proteins (mur) were observed in conjugant. This 

suggests that the conjugant was resistant to oxacillin in the absence of mecA gene.   
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Chapter 10 Concluding remarks    

The introduction of antibiotic in clinical use is a revolutionary paradigm in morden  

medicine (Gensini et al., 2007). However, the misuse of antibiotics has led to the global 

crisis of antimicrobial resistance (Bartlett et al., 2013).  The presence of antimicrobial 

resistance determinants is due to evolutionary selection by the environment, and thus 

the environment acts as a reservoir of antibiotic resistance determinants (Wright, 2007). 

Staphylococci, as an opportunistic pathogen, are the major cause of nosocomial 

infections, and the emergence of antibiotic resistance in staphylococci poses a major 

threat to public health (Becker et al., 2014). Meanwhile, development of new 

antimicrobial agents has been slowed down by the economic and regulatory barriers, 

and staphylococci continue adapting new antibiotic resistance feature for survival 

(Bartlett et al., 2013). Thus it is necessary to carry out antibiotic resistance screening. 

The data of resistance-related research can notify public health authorities to make the 

right strategies to control and limit the spread of antibiotic resistance in environment 

(Bartlett et al., 2013).  

This study has assessed the distribution of antibiotic resistance of staphylococcal 

species in environment. The significant findings of my study are as follows: 

1. 19 staphylococcal species were identified in this study, and 17 species were 

previously reported to be isolated from clinical specimens. Taxonomic 

correlations were determined in staphylococci recovered from human hands and 

8 non-biological sites; 

2. This is the first report of the employment of MALDI-TOF MS for identification 

of a large amount of environmental staphylococci. The reliability of MALDI-

TOF MS in identifying environmental staphylococcal species was confirmed. In 
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addition, reproducibility of MALDI-TOF MS in identifying environmental 

staphylococci was assessed for the first time with two different modes of 

MALDI-TOF MS in automated fashion, and MALDI-TOF MS was confirmed to 

be a highly reproducible method for identifying environmental staphylococci. 

3. Multiple antibiotic resistance staphylococci were widely distributed in the 

environment, and 80% staphylococci were resistant to two or more antibiotics. 

Varied antibiotic susceptibility profiles were observed within taxonomically 

closely related staphylococci, suggesting the acquisition of antibiotic resistance 

determinants by mutation and HGT. Cluster analysis also showed no significant 

difference between multidrug resistant and susceptible staphylococci. This 

demonstrates that antibiotic resistance genes are produced in both pathogenic 

and non-pathogenic bacteria as defined by ‘resistomes’. 

4. The ratio of mecA-positive environmental CoNS was generally lower than the 

ratios reported by clinical study; however, the species of mecA-positive 

environmental CoNS were more diverse than the species in clinical study 

reports. Oxacillin susceptible mecA-positive CoNS (OS-MRCoNS) was first 

determined in environmental CoNS. Unassigned or untypable SCCmec types 

were dominant in environmental staphylococci. For assigned SCCmec types, 

SCCmec type V was prevalent in the environment. 17 S. epidermidis harboured 

new MLST types, and ST59 was firstly reported to be associated with SCCmec 

type IV. Same ST type with varied SCCmec types was observed in this study. 

5. Whole genome sequencing was applied to an environmental S. epidermidis, 

leading to the identification of 29 virulence genes, 8 surface proteins and 9 

antibiotic resistance determinants. 5 out of 9 antibiotic resistance determinants 

were located on plasmids, which suggest the high mobility of these antibiotic 
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resistant determinants. Multiple virulence factors and antibiotic resistance genes 

suggest that S. epidermidis 118 (G6_2) could be more virulent and infections 

could be more difficult to treat. A highly pathogenic S. epidermidis 118 (G6_2), 

recovered from inanimate sites in hotel rooms has been reported.   

6. mecA gene transfer in natural conditions via conjugation was not observed, and 

more sophisticated mechanisms may be required to trigger mecA gene transfer 

between staphylococcal species in vitro. Whole proteomic expression 

differences were detected and quantified in S. aureus cultured with and without 

oxacillin. Proteins involved in stress response, transporter mediated antibiotic 

resistance, virulence and gene expression regulation were exclusively or 

increasingly expressed in S. aureus when exposed to oxacillin. This finding 

indicates the new trait of antibiotic resistance of Staphylococcus spp., and may 

be a potential threat to public health. 

In conclusion, the dissemination of multidrug resistance staphylococci in non-healthcare 

environments is evidence that these environments act as a reservoir for antibiotic 

resistant pathogens and determinants.  Antibiotic resistance genes from environmental 

microorganisms comprise a huge proportion of the resistomes. 
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Chapter 11 Future work 

This study provides a general overview of antibiotic resistance in environmental 

staphylococci, and it is a worrisome finding of wide-spread dissenmination of multiple 

antibiotic resistant staphylococci in non-healthcare related environments.  New MLST 

types identified in environmental staphylococci displayed the distinctive lineage. In 

addition, a high virulence and antibiotic resistant S. epidermidis was recovered from 

hotel rooms at an establishment with a generally high standard of hygiene. Finally, 

mecA gene transfer was not observed in vitro; however, proteomic analysis has revealed 

that the stress responses of S. aureus were triggered to adapt to survive in the presence 

of oxacillin. 

MALDI-TOF MS has been reported to be a useful, rapid, reliable tool in identifying 

microorganisms; however, concerns of reproducibility of this technique have been 

raised (Schumaker et al., 2012). The reproducibility of MALDI-TOF MS refers to the 

accuracy with which strains are identified (Sandrin et al., 2013). The reproducibility 

was obtained by testing fresh cultures from different days, and different operators 

(Majcherczyk et al., 2006; Schumaker et al., 2012). However, no standardized approach 

has been used to report reproducibility (Sandrin et al., 2013). In this study, the 

reproducibility of 34 environmental staphylococcal isolates belonging to 18 species was 

tested with two modes of MALDI-TOF MS. More environmental samples need to be 

tested for further validation of MALDI-TOF MS reproducibility in future.  

In this study, the antibiotic resistance is determined by disc diffusion method, minimum 

inhibitory method or resistance gene PCR, however, disc diffusion assay and minimum 

inhibitory method require at least one working day to get the results, and PCR still 

needs several consecutive steps to get the results (Jorgensen & Ferraro., 2009; 
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Cherkaoui et al., 2010). As the development of MALDI-TOF MS, uses of MALDI-TOF 

MS for rapid identification of resistance against β-lactam antibiotics have been reported. 

The resistance of β-lactam can be detected by mass spectrometry by a molecular mass 

shift, which is caused by the hydrolysis of the β-lactam ring (Sparbier et al., 2012). In 

the future, it would be great to employ MALDI-TOF MS for rapid determination of the 

susceptibility towards β-lactam antibiotic instead of traditional disc diffusion methods. 

The whole genomic sequence of S. epidermidis 118 (G6_2) provides an insight into the 

genomic composition of an environmental S. epidermidis. The presence of multiple 

virulence genes and antibiotic resistance genes make S. epidermidis 118 (G6_2) a 

potential threat to public health, as S. epidermidis 118 (G6_2) harbours more antibiotic 

resistance and virulence genes than other two well-known clinical reference S. 

epidermidis strains. In order to better characterize the pathogenicity of S. epidermidis 

118 (G6_2), it is necessary to carry out animal research to assess the pathogenicity of 

the S. epidermidis 118 (G6_2) in vivo. In the future, the S. epidermidis 118 (G6_2) 

virulence can be assessed by in rabbit urinary tract infection, blood vessel infection, and 

endocarditis models. After clinical, histopathologic, bacteriological and serological 

examination of urinary tract infection, blood vessel infection and endocarditis, the 

pathogenicity of S. epidermidis 118 (G6_2) can be characterized.  

Similar to S. epidermidis 118 (G6_2), 3 S. haemolyticus and 1 S. saprophyticus species 

were identified that displayed multiple antibiotic resistances and whose oxacillin MICs 

reach up to 256 mg l
-1

.  S. saprophyticus is the second only to E. coli as a major cause of 

urinary tract infection, and surface-associated protein of S. saprophyticus contributes to 

its ability to adhere to urothelial cells (Raz et al., 2005).  S. haemolyticus and S. 

epidermidis, are the most prevalent staphylococcal species, and both are major causes of 

neonatal infections (Becker et al., 2014). The highly plastic genome of S. haemolyticus 
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confers frequent genomic rearrangement, insertion, and acquisition of antibiotic 

resistance (Takeuchi et al., 2005). There are a lot of genomic data on S. aureus and S. 

epidermidis, however, little is known on the other staphylococcal species. Therefore, 

these environmental S. haemolyticus and S. saprophyticus can be further assessed by 

whole genome sequencing to determine their genomic features that contribute to their 

pathogenicity.  Moreover, further pan genome sequencing of environmental multidrug 

resistant Staphylococcus spp. would immensially contribute to the further findings of 

antibiotic resistance transmission between intra species.  In the future, genomic work 

can broaden our knowledge to other staphylococci. 

Finally, the transfer mechanism of SCCmec elements has not been elucidated. 

Bloemendaal et al., (2010) has reported that methicillin resistant S. aureus was derived 

from methicillin susceptible S. aureus by horizontal mecA gene transfer in vivo; 

however, this process can not be replicated with in vitro conjugation of the same S. 

aureus strains (Bloemendaal et al., 2010). Recently, Ray et al (2016) successfully 

observed the conjugative transfer of SCCmec from S. epidermidis to S. aureus by 

inserting the SCCmec elements into a staphylococcal plasmid, however, these manual 

modifications may not happen in nature. Previous studies have demonstrated enhanced 

horizontal transfer of mobile genetic elements in cells grown under biofilm formation 

conditions (Madsen et al., 2012), it will be worthwhile to try conjugative transfer of 

SCCmec using biofilm cultured cells. Additionally, the transformation of SCCmec 

elements faces difficulties by common laboratory method, and for now, transformation 

can not replicate this process (Otto, 2013). In the future, it may worth to try 

transformation of SCCmec elements via improved methods. In contrast, experimentally 

phage mediated transduction of SCCmec within two S. aureus has been reported (Cohen 

& Sweeney, 1973), however, no phage mediated transduction of SCCmec elements 
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between different staphylococcal species has been reported (Katayama et al., 2000). 

Recently, Chen et al., (2015) have described staphylococcal intra- and interspecies 

genetic elements transfer by cos phages. Phage mediated transduction is one of the 

important horizontal gene transfer mechanisms, and acts as one of the main 

evolutionary driving forces of bacteria (Chen et al., 2015). Therefore, it remains to find 

out if the SCCmec elements can be transferred by phage transduction. In the future, it is 

worth to try phage-mediated transduction to assess the SCCmec transfer between 

environmental staphylococcal species.  
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Appendix I Buffers and Solutions 

I.1 Culture mediums 

Nutrient agar (Oxoid Ltd, Basingstoke, UK) 

28 g nutrient agar powder  

1 L ddH2O  

Nutrient broth (Oxoid Ltd, Basingstoke, UK) 

13 g nutrient broth powder  

1 L ddH2O 

Mannitol salt agar (Oxoid Ltd, Basingstoke, UK) 

111 g mannitol salt agar powder  

1 L ddH2O 

Brilliance
TM

 UTI clarity agar (Oxoid Ltd, Basingstoke, UK) 

39 g Brilliance
TM

 UTI clarity agar powder  

1 L ddH2O 

Iso-sensitest agar (Oxoid Ltd, Basingstoke, UK) 

31.4 g iso-sensitest agar powder 

1 L ddH2O 

Tryptic soy agar (Oxoid Ltd, Basingstoke, UK) 

40 g tryptic soy agar powder  

1 L ddH2O 

Tryptic soy broth (Oxoid Ltd, Basingstoke, UK) 

30 g tryptic soy broth powder 

1 L ddH2O 

I.2 General buffers 

50×TAE buffer 

0.04 M Tris-Acetate 

0.001 M EDTA  

6×DNA Loading dye 

50 % (v/v) Glycerol 

0.25 % (w/v) Bromophenol  

0.25 % (w/v) Xylene cyanol 

I.3 Southern hybridization buffer and solutions 

Depurination solution 

0.25 N HCl 
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Denaturation buffer 

0.5 M NaOH 

1.5 M NaCl 

Dissolve in ddH2O 

Neutralization buffer 

0.5 M Tris-HCl 

3 M NaCl 

Dissolve in ddH2O 

pH 7.0 

20×SSC 

3 M NaCl 

0.3 M Trisodium citrate 

Dissolve in ddH2O 

pH 7.0 

Maleic acid buffer 

1 M Maleic acid buffer 

1.5 M NaCl 

Detection buffer 

1 M Tris 

1 M NaCl 

Blocking solution 

10 % (v/v) Blocking reagent (Roche) 

90 % (w/v) Maleic acid buffer 

 

I.4 PFGE buffers and solutions 

SE Buffer  

15 mM NaCl 

5 mM EDTA 

First lysis buffer 

6 mM Tris,  

100 mM EDTA,  

1 M NaCl,  

0.5 % (w/v) Brij 58,   

0.2 % (w/v) Sodium deoxycholate,  

0.5 % (w/v) N-Lauroyl sarcosine,  

1 mM MgCl2 

 

Alkaline Lysis Buffer/proteinase K 

1 % (w/v) N-Lauroyl sarcosine,  

0.5 M EDTA 
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Dissolved in ddH2O 

pH 9.5 

 
TE buffer 

10 mM Tris 

10 mM EDTA  

Dissolved in ddH2O 

pH 7.5 

0.5× TBE 

45 mM Tris-borate 

1 mM EDTA 
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Appendix II Antibiotic susceptibility data 

II.1 Antibiotic susceptibility profile of all staphylococci 

ID Species Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

1 Staphylococcus arlettae BCF S R S S S S R R R R S S 

 1/1(tested/total)              

 

2 Staphylococcus aureus BCF S S S S S S R S R I S I 

3 Staphylococcus aureus BCF S R S R S R R I R R S S 

4 Staphylococcus aureus BCF S R S R S S R S S S S S 

5 Staphylococcus aureus DSH S R R S I R S R S S S S 

6 Staphylococcus aureus DSH S R R S I R S S R S S S 

7 Staphylococcus aureus DSH S R R S I S R R R S S S 

8 Staphylococcus aureus DSR S R S S S R R R S R S S 

9 Staphylococcus aureus DSR S R S I S R R S R R S S 

10 Staphylococcus aureus DSS S R R I S S R S S I S S 

11 Staphylococcus aureus DSS S R S S S S R S S S S S 

12 Staphylococcus aureus DSS S R R I S R R S R S S S 

13 Staphylococcus aureus HB S S R S I R R R S S S R 

 12/12(tested/total)              

 

14 Staphylococcus auricularis DST S S S S S S S S S S S S 

15 Staphylococcus auricularis DST S R R I R S R S R S S S 

 2/2(tested/total)              

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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ID Species Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

16 Staphylococcus capitis BCF S S S R S S R S S S S S 

17 Staphylococcus capitis BCF S R S R S S R S S S S S 

18 Staphylococcus capitis BCF S R S S S S R S R S S S 

19 Staphylococcus capitis DSH S R S R S S S S S S S S 

20 Staphylococcus capitis DSH S R R S S S R I S I S S 

21 Staphylococcus capitis DSH S S R R R R R R R R S R 

22 Staphylococcus capitis DSH S R S S S S S R S S S S 

23 Staphylococcus capitis DSH S R R S S S R R R S S S 

24 Staphylococcus capitis DSH S S S S S S R R S S S S 

25 Staphylococcus capitis DSH S R S S S S S R S S S S 

26 Staphylococcus capitis DSH S S R S I S S S S S S S 

27 Staphylococcus capitis DSH S S S S S S S R S R S R 

28 Staphylococcus capitis DSH S R S S S S S R S S S S 

29 Staphylococcus capitis DSH S R R R S S S R S S S S 

30 Staphylococcus capitis DSL S S S S S S R R S S R S 

31 Staphylococcus capitis DSL S S S S S S S R S S S S 

32 Staphylococcus capitis DSL S R S S S S S R R S S S 

33 Staphylococcus capitis DSR S R S S S S R S S S S S 

34 Staphylococcus capitis DSR             

35 Staphylococcus capitis DSR S R S S S S S S S R S S 

36 Staphylococcus capitis DSR S R R S S S R S S S R S 

37 Staphylococcus capitis DSR S S S S S S R S S S S S 

38 Staphylococcus capitis DSR S R S R S S S S S S S S 

39 Staphylococcus capitis DSR S R S S S S R S S S S S 

40 Staphylococcus capitis DSR             

41 Staphylococcus capitis DSR             

42 Staphylococcus capitis DSR             

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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ID Species Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

43 Staphylococcus capitis DSS S R R I S S R R S S S S 

44 Staphylococcus capitis DSS S R S S S S R S S S S S 

45 Staphylococcus capitis DSS S R S S S S R S S S R S 

46 Staphylococcus capitis DSS S R S S S S R S S S S S 

47 Staphylococcus capitis DSS S R R I S S R S S S S S 

48 Staphylococcus capitis DSS S R S S S S R S S S R S 

49 Staphylococcus capitis DSS S R S R S S S S S R S R 

50 Staphylococcus capitis DST S R S S S S R R R R S S 

51 Staphylococcus capitis DST S R S S S S S R R S S S 

52 Staphylococcus capitis DST S S S S S S S S S S S S 

53 Staphylococcus capitis DST S S S S S S R S S S S S 

54 Staphylococcus capitis DST S R S S S S R S S S S S 

55 Staphylococcus capitis DST S S S R S S S S S S S S 

56 Staphylococcus capitis DST S S S S S S S S S S S S 

57 Staphylococcus capitis DST S S S S S S R S S S S S 

58 Staphylococcus capitis DST S S S I S S R S S S S S 

59 Staphylococcus capitis DST S S S R S S R S S S S S 

60 Staphylococcus capitis DST S S S S S S R S S S S S 

61 Staphylococcus capitis DST S R S S S S R S S S S S 

62 Staphylococcus capitis DST S R S S S S R S S S S S 

63 Staphylococcus capitis DST S S S S I S S S S S S S 

64 Staphylococcus capitis HB S S S S S S S R S R S S 

65 Staphylococcus capitis HB S R S S S S S S S S S S 

66 Staphylococcus capitis HB S S S S S S S R S S S S 

67 Staphylococcus capitis HB S R S S S S R R R S S S 

68 Staphylococcus capitis HH S R R R S S S R R S S S 

69 Staphylococcus capitis HH S R S S S S R R R S R S 

70 Staphylococcus capitis HH S R S S S S S R S S R S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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ID Species Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

71 Staphylococcus capitis HH R S S S S S S R S S S S 

72 Staphylococcus capitis HH S S S S S S S R S S S S 

73 Staphylococcus capitis HH S S S S S S R R S S S S 

74 Staphylococcus capitis HH S R S S S S R R R S S S 

75 Staphylococcus capitis HH R R S S S S R R S S S S 

76 Staphylococcus capitis HH S S S S I S S R S S S S 

77 Staphylococcus capitis HH S R S S S S R R S S S S 

78 Staphylococcus capitis HH S R S S I S R R R S S S 

79 Staphylococcus capitis HH S R S S S S R R R S S S 

80 Staphylococcus capitis HH S S S S S S S S R S S S 

81 Staphylococcus capitis HH R R S S R S R R R R S S 

82 Staphylococcus capitis HH S R S S S S S R R S S S 

83 Staphylococcus capitis HH S S S R S S R R S S S S 

84 Staphylococcus capitis HH S S S S S S R R S S S S 

85 Staphylococcus capitis HH S S R I S S R S S R S S 

86 Staphylococcus capitis HH S S S I S S R S S I S S 

87 Staphylococcus capitis HH S R S I S S R S R S R S 

88 Staphylococcus capitis HH S S R S S S S S S R S S 

89 Staphylococcus capitis HH S R S I S S R S S S S S 

90 Staphylococcus capitis HH S R S S S S R S S S S S 

91 Staphylococcus capitis HH S S S I S S S R S S S S 

92 Staphylococcus capitis HH S R R I S S S S S S S S 

93 Staphylococcus capitis HH S R R R R S R S R S S R 

94 Staphylococcus capitis HH S S S I S S R S S R S S 

 75/79(tested/total)              

95 Staphylococcus caprae DSS S R S S S S R S S S S S 

96 Staphylococcus caprae HB S R S S S S R R R S S S 

 2/2(tested/total)              

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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ID Species Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

 

97 Staphylococcus cohnii BCF S R S S R S R R S R S S 

98 Staphylococcus cohnii BCF S R S R R S R R R S S S 

99 Staphylococcus cohnii DSH S R R S S S R S R R S S 

100 Staphylococcus cohnii DSH R R S R S S S S R R S S 

101 Staphylococcus cohnii DSH S R S S S S R S S R S R 

102 Staphylococcus cohnii DSH S R S S S S R R S R S S 

103 Staphylococcus cohnii DSH S R S S R S R R S S S S 

104 Staphylococcus cohnii DSL S S S S S S R R S R S S 

105 Staphylococcus cohnii DSL S - S S S S R S S S S S 

106 Staphylococcus cohnii HAS R R S R R S R I S S S S 

107 Staphylococcus cohnii HAS R R R S R S R R S R R R 

108 Staphylococcus cohnii HH R S S S I S R R S R R S 

109 Staphylococcus cohnii HH S R R S I S R R R S S S 

110 Staphylococcus cohnii HH S R S S S S R S S R S S 

 14/14(tested/total)              

 

111 Staphylococcus epidermidis BCF S R S S S S S S S S S S 

112 Staphylococcus epidermidis BCF S R S S S S R S R S S S 

113 Staphylococcus epidermidis BCF S R S S S S R S S S S S 

114 Staphylococcus epidermidis BCF S S S S S S R S S R S S 

115 Staphylococcus epidermidis BCF S R S S S S S S S R S S 

116 Staphylococcus epidermidis BCF S R S I S S R S R S S S 

117 Staphylococcus epidermidis BCF S R S S S S R S R I R S 

118 Staphylococcus epidermidis DSH R R S R R R R I R R R S 

119 Staphylococcus epidermidis DSH S R S S S S S S R I R S 

120 Staphylococcus epidermidis DSH S R R S S S R S S I S S 

121 Staphylococcus epidermidis DSH S R S S S S R R R I R R 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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ID Species Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

122 Staphylococcus epidermidis DSH S R S R S S R R S S S S 

123 Staphylococcus epidermidis DSH S R S S I S R R S S S S 

124 Staphylococcus epidermidis DSH R R R S R S R R R S R S 

125 Staphylococcus epidermidis DSH S S R S I S S R S S S S 

126 Staphylococcus epidermidis DSH R R R S I S S R R R S S 

127 Staphylococcus epidermidis DSH R R R S I S S S R R R S 

128 Staphylococcus epidermidis DSH S R R S R R S R R S S R 

129 Staphylococcus epidermidis DSL S R S S S S R R R R R S 

130 Staphylococcus epidermidis DSL S R R S S S S R R S S S 

131 Staphylococcus epidermidis DSL S R R R R S R S R S S S 

132 Staphylococcus epidermidis DSL S R S S S S S R R S S S 

133 Staphylococcus epidermidis DSL R R S S S S R R R R R S 

134 Staphylococcus epidermidis DSL R R S S S S R R R R R S 

135 Staphylococcus epidermidis DSL R R S S S S R R R R R S 

136 Staphylococcus epidermidis DSL S R S S S S S R S R S S 

137 Staphylococcus epidermidis DSL S R S S S S S R R R S S 

138 Staphylococcus epidermidis DSR S S R S R S R S S R S S 

139 Staphylococcus epidermidis DSR R R R R R S R S R R R S 

140 Staphylococcus epidermidis DSR S R R R R R R S R S R S 

141 Staphylococcus epidermidis DSR S R S S S S R S R S R S 

142 Staphylococcus epidermidis DSR S R R I S S R S S R S S 

143 Staphylococcus epidermidis DSR S R R R R R R S R R S S 

144 Staphylococcus epidermidis DSR S S S S S S R S S S S S 

145 Staphylococcus epidermidis DSR S R S S S S R S S S S S 

146 Staphylococcus epidermidis DSR S R S S S S R S S R S S 

147 Staphylococcus epidermidis DSR S R R S S S R S S R S S 

148 Staphylococcus epidermidis DSR S S S S S S R S S R S S 

149 Staphylococcus epidermidis DSR S R R S S R R S S R R S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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150 Staphylococcus epidermidis DSR S R R S S R S S S R S S 

151 Staphylococcus epidermidis DSR S R S S S S R S S S S S 

152 Staphylococcus epidermidis DSR S R S R S S R S S S S S 

153 Staphylococcus epidermidis DSR R R S S S S R S S S S S 

154 Staphylococcus epidermidis DSR S S S S S S R S S R S S 

155 Staphylococcus epidermidis DSR S R S S S S S S S S S S 

156 Staphylococcus epidermidis DSR S R S S R R S S S S S S 

157 Staphylococcus epidermidis DSR S R S S S S S S S S S S 

158 Staphylococcus epidermidis DSR S R S S S S R S S R S S 

159 Staphylococcus epidermidis DSR S R S S S S R S S S S S 

160 Staphylococcus epidermidis DSR S R S S S S R S S S S S 

161 Staphylococcus epidermidis DSR S R S R S S S S S S S S 

162 Staphylococcus epidermidis DSR S R S S S S S S S S S S 

163 Staphylococcus epidermidis DSR S R S S S S S S S S R S 

164 Staphylococcus epidermidis DSR S R S I S S S S S S S S 

165 Staphylococcus epidermidis DSR S R S S S S S S S S S S 

166 Staphylococcus epidermidis DSR             

167 Staphylococcus epidermidis DSR             

168 Staphylococcus epidermidis DSR S R S R S S S S S R S S 

169 Staphylococcus epidermidis DSR S S S S S S R S S R S S 

170 Staphylococcus epidermidis DSR S R S S S S R S S S S S 

171 Staphylococcus epidermidis DSR S R S S S S S S S S S S 

172 Staphylococcus epidermidis DSR S R S S S S R S S S S S 

173 Staphylococcus epidermidis DSR S S S S S S R S S S S S 

174 Staphylococcus epidermidis DSS             

175 Staphylococcus epidermidis DSS S R S I S S S S S R S S 

176 Staphylococcus epidermidis DSS S S S S S S R S S I S S 

177 Staphylococcus epidermidis DSS S R R S S S S S S R S S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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178 Staphylococcus epidermidis DSS S R R S S S R S S R R S 

179 Staphylococcus epidermidis DSS S R S I I S S S R R S S 

180 Staphylococcus epidermidis DSS S R R I S S R S S S S S 

181 Staphylococcus epidermidis DSS S R S S S S R S R S S S 

182 Staphylococcus epidermidis DSS S S S I S S S S S S S S 

183 Staphylococcus epidermidis DSS S S S I S S S S S R S S 

184 Staphylococcus epidermidis DSS S R S S S S R S S S S S 

185 Staphylococcus epidermidis DSS S R R S S S S S S S S S 

186 Staphylococcus epidermidis DSS S R S S S S S S R S S S 

187 Staphylococcus epidermidis DSS R R R S S S S S S R S S 

188 Staphylococcus epidermidis DSS S R S R R R R S R S S S 

189 Staphylococcus epidermidis DSS S R R R R R R S R S S S 

190 Staphylococcus epidermidis DSS S S S S S S S S S S S S 

191 Staphylococcus epidermidis DSS R R S S S S R S R S S S 

192 Staphylococcus epidermidis DSS S R R S S S R S S S S S 

193 Staphylococcus epidermidis DSS S S S S S S S S S S S S 

194 Staphylococcus epidermidis DSS S S S S S S S S S S S S 

195 Staphylococcus epidermidis DSS S S S S S S S S S S S S 

196 Staphylococcus epidermidis DSS S R S S S S R S S S S S 

197 Staphylococcus epidermidis DSS S R R S S S R S S S S S 

198 Staphylococcus epidermidis DSS             

199 Staphylococcus epidermidis DSS S R S I S S R S S S S S 

200 Staphylococcus epidermidis DST S R S S S S R S R R S S 

201 Staphylococcus epidermidis DST S R S S S S S R R R R S 

202 Staphylococcus epidermidis DST S S R R S S R I S S S S 

203 Staphylococcus epidermidis DST S S S S S S R S S R S S 

204 Staphylococcus epidermidis DST S S R R S S S S S R S S 

205 Staphylococcus epidermidis DST S R S S S S S R R R R S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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206 Staphylococcus epidermidis DST S R R S S S R S R R S S 

207 Staphylococcus epidermidis DST S S S S S S R S S S S S 

208 Staphylococcus epidermidis DST S S S S S S S S S R S S 

209 Staphylococcus epidermidis DST S S S S S S R S S S S S 

210 Staphylococcus epidermidis DST S S R R S S R S S R S S 

211 Staphylococcus epidermidis DST S R S S S S R S R R S S 

212 Staphylococcus epidermidis DST S S S S S S R S S R S S 

213 Staphylococcus epidermidis DST S S R S S S R S S S S S 

214 Staphylococcus epidermidis DST S R S S S S S S R R S S 

215 Staphylococcus epidermidis DST S S S S S S R S S S S S 

216 Staphylococcus epidermidis DST S R S S S S R S R R S S 

217 Staphylococcus epidermidis DST             

218 Staphylococcus epidermidis DST             

219 Staphylococcus epidermidis DST S S S S S S R S S S S S 

220 Staphylococcus epidermidis DST S R S S S S R S R R S S 

221 Staphylococcus epidermidis DST             

222 Staphylococcus epidermidis DST S R S S S S S S S S S S 

223 Staphylococcus epidermidis DST S S R S S S S S S R S S 

224 Staphylococcus epidermidis DST S S S S S S R S S S S S 

225 Staphylococcus epidermidis DST S S S S S S S S S R S S 

226 Staphylococcus epidermidis DST S S S S S S S S S R S S 

227 Staphylococcus epidermidis DST S S S S S S R S S S S S 

228 Staphylococcus epidermidis DST S S S R S S S S S S S S 

229 Staphylococcus epidermidis DST S R S S S S S S S S S S 

230 Staphylococcus epidermidis DST S R R S S S R S R I S S 

231 Staphylococcus epidermidis DST S S S S S S R S S S S S 

232 Staphylococcus epidermidis DST S R S I S S S S S R S S 

233 Staphylococcus epidermidis HB S R S S I S S S S R R S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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234 Staphylococcus epidermidis HB R S S R S S R R S R R S 

235 Staphylococcus epidermidis HB S S S S S S S S S S R S 

236 Staphylococcus epidermidis HB S S R S R R R R S S R S 

237 Staphylococcus epidermidis HB S S S S S S R S S S S S 

238 Staphylococcus epidermidis HB S R S S S S R R S S S S 

239 Staphylococcus epidermidis HH S S S R S S S S S S S R 

240 Staphylococcus epidermidis HH S S R S S R R S S S S S 

241 Staphylococcus epidermidis HH             

242 Staphylococcus epidermidis HH             

243 Staphylococcus epidermidis HH             

244 Staphylococcus epidermidis HH S R S S S S S S S S S S 

245 Staphylococcus epidermidis HH S R S S S S R R R R S S 

246 Staphylococcus epidermidis HH S R S R S S S S S S S S 

247 Staphylococcus epidermidis HH S R S S S S S R S S S S 

248 Staphylococcus epidermidis HH S R S R I S S S S S S S 

249 Staphylococcus epidermidis HH S R R S S S R R S S R S 

250 Staphylococcus epidermidis HH S R S R S S R R R S S S 

251 Staphylococcus epidermidis HH S R S S S S R R R R S S 

252 Staphylococcus epidermidis HH S S S S S S R R S S R S 

253 Staphylococcus epidermidis HH S S S R I R R R S S S S 

254 Staphylococcus epidermidis HH S R R S S S S R S S S S 

255 Staphylococcus epidermidis HH S R S S I S R R S S S S 

256 Staphylococcus epidermidis HH S R R R I S R R R R S R 

257 Staphylococcus epidermidis HH S R S S S S S S R I R S 

258 Staphylococcus epidermidis HH S S R S S S R R S R S S 

259 Staphylococcus epidermidis HH R R S S R S R R R R R S 

260 Staphylococcus epidermidis HH S S S S S S R R S S S S 

261 Staphylococcus epidermidis HH S R S S S S R R S S S S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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262 Staphylococcus epidermidis HH S S S R S S S R S S S S 

263 Staphylococcus epidermidis HH S R S S S S R R R S R S 

264 Staphylococcus epidermidis HH S S S R S S R R S S S S 

265 Staphylococcus epidermidis HH S S S S S S R R S S S S 

266 Staphylococcus epidermidis HH S R R R S S R S S R S S 

267 Staphylococcus epidermidis HH S R S I S S R S S R S S 

268 Staphylococcus epidermidis HH S R S I S S R S S R R S 

269 Staphylococcus epidermidis HH S R R S S S R S S S S S 

270 Staphylococcus epidermidis HH S R R S S S R S R R S S 

271 Staphylococcus epidermidis HH S R S S S S R S S R S S 

272 Staphylococcus epidermidis HH S R S I S S R S S R S S 

273 Staphylococcus epidermidis HH S R R I S S R S S S S S 

274 Staphylococcus epidermidis HH S R R S S S R S S R R S 

275 Staphylococcus epidermidis HH S R R I S S R S S S S S 

276 Staphylococcus epidermidis HH S R S I S S R S S R S S 

277 Staphylococcus epidermidis HH S R S S S S S S S R S S 

278 Staphylococcus epidermidis HH S R R S S S S S R R S S 

279 Staphylococcus epidermidis HH R R R S S S R S S R S S 

280 Staphylococcus epidermidis HH S R R S S S R S S R S S 

281 Staphylococcus epidermidis HH S S S S S S R S S R S S 

282 Staphylococcus epidermidis HH S R S S S S S S S R S S 

283 Staphylococcus epidermidis HH S R S I R S S S S R S S 

284 Staphylococcus epidermidis HH S R R R R S S S S S S S 

285 Staphylococcus epidermidis HH S R S S S S R S S R S S 

286 Staphylococcus epidermidis HH S S S R S S R S S R R S 

287 Staphylococcus epidermidis HH S R R R R R R S R S S R 

288 Staphylococcus epidermidis HH S R S S S S R S S S S S 

289 Staphylococcus epidermidis HH S R S S S S R S S R S S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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290 Staphylococcus epidermidis HH S R R I R S R S S S S R 

291 Staphylococcus epidermidis HH S R S S S S R R S S S S 

292 Staphylococcus epidermidis HH S R R R S S R S S S S S 

293 Staphylococcus epidermidis HH S R S S S S S S S S S S 

294 Staphylococcus epidermidis HH             

295 Staphylococcus epidermidis HH S R R S S S S S S S S S 

296 Staphylococcus epidermidis HH             

297 Staphylococcus epidermidis HH S S S I S S S S S R S S 

298 Staphylococcus epidermidis HH S R S S S S R S S R S S 

299 Staphylococcus epidermidis HH S R R S S S R S S R S S 

300 Staphylococcus epidermidis HH             

301 Staphylococcus epidermidis HH             

302 Staphylococcus epidermidis HH             

303 Staphylococcus epidermidis HH             

304 Staphylococcus epidermidis HH S R S S S S R S S S S S 

305 Staphylococcus epidermidis HH S R R S S S S S S R R S 

306 Staphylococcus epidermidis HH S R S R S S R S S R S S 

307 Staphylococcus epidermidis HH             

308 Staphylococcus epidermidis HH R R S R S S R S R R S S 

 181/198(tested/total)              

 

309 Staphylococcus equorum DSH S R S S S S S S S I S S 

310 Staphylococcus equorum DST S R R R S S R R R S R S 

311 Staphylococcus equorum DST S S S S S S S S S I S S 

 3/3(tested/total)              

 

312 Staphylococcus haemolyticus BCF S S S S S S S S S S S S 

313 Staphylococcus haemolyticus BCF S S R S S S R R S S R S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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314 Staphylococcus haemolyticus BCF S R S R R R R R R I S R 

315 Staphylococcus haemolyticus BCF S R S I S S R S R R S S 

316 Staphylococcus haemolyticus DSH R R R R R S R I S R S R 

317 Staphylococcus haemolyticus DSH R R R S R R R R R S R R 

318 Staphylococcus haemolyticus DSH R R S S R R R R R R S S 

319 Staphylococcus haemolyticus DSH R R S S R S R I R R S S 

320 Staphylococcus haemolyticus DSH R R R R R S R I S S R R 

321 Staphylococcus haemolyticus DSH S R R S S S R I R S S S 

322 Staphylococcus haemolyticus DSH S R S S S S S I R S R S 

323 Staphylococcus haemolyticus DSH S S S S S R S R R I R S 

324 Staphylococcus haemolyticus DSH S R S S S S S I R S R S 

325 Staphylococcus haemolyticus DSH S R R R S R R S R I S S 

326 Staphylococcus haemolyticus DSH S S S S S S S S R I S S 

327 Staphylococcus haemolyticus DSH S R S R S S R S R S S S 

328 Staphylococcus haemolyticus DSH S R S R S S R S R I S S 

329 Staphylococcus haemolyticus DSH S R S S S S R R R I S S 

330 Staphylococcus haemolyticus DSH S S R S R S R S R S S S 

331 Staphylococcus haemolyticus DSH S S S S S S R S R I S S 

332 Staphylococcus haemolyticus DSH S S S S R S S S R I R S 

333 Staphylococcus haemolyticus DSH S R R S S S R S S I S S 

334 Staphylococcus haemolyticus DSH S R S S S S R S S I S S 

335 Staphylococcus haemolyticus DSH S S S S R S S S R I R R 

336 Staphylococcus haemolyticus DSH S S R S S S S S R I R S 

337 Staphylococcus haemolyticus DSH S R S S R S R R S I R S 

338 Staphylococcus haemolyticus DSH S R S S S S S R R I S S 

339 Staphylococcus haemolyticus DSH S R R S S S R R R I S S 

340 Staphylococcus haemolyticus DSH S S S S S S S S S I R S 

341 Staphylococcus haemolyticus DSH S S S S S S S S R I R S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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342 Staphylococcus haemolyticus DSH S R S S S S R S S I R S 

343 Staphylococcus haemolyticus DSH S S S R S S R S S S S S 

344 Staphylococcus haemolyticus DSH S S S S S R R S S I R S 

345 Staphylococcus haemolyticus DSH S S S S R S R S S I S S 

346 Staphylococcus haemolyticus DSH S S S S S S S S S I S S 

347 Staphylococcus haemolyticus DSH S R S R R S R R S R R R 

348 Staphylococcus haemolyticus DSH             

349 Staphylococcus haemolyticus DSH             

350 Staphylococcus haemolyticus DSH             

351 Staphylococcus haemolyticus DSH             

352 Staphylococcus haemolyticus DSH             

353 Staphylococcus haemolyticus DSH S R S S I S R R R R S S 

354 Staphylococcus haemolyticus DSH S S R S I R S S S R S S 

355 Staphylococcus haemolyticus DSH R R S S R R R R R S R S 

356 Staphylococcus haemolyticus DSH S S S S I S S R S S S S 

357 Staphylococcus haemolyticus DSH S S S R S S S S S S S S 

358 Staphylococcus haemolyticus DSH S S R S I S R R S S S S 

359 Staphylococcus haemolyticus DSH S R R S R S R R S S S R 

360 Staphylococcus haemolyticus DSH S S S S S S R S S S S R 

361 Staphylococcus haemolyticus DSL S S S S I S R R S S R S 

362 Staphylococcus haemolyticus DSL R R S S I S S R R S S S 

363 Staphylococcus haemolyticus DSL S S R S I S S R S S S S 

364 Staphylococcus haemolyticus DSL S S R S I S R R S S S S 

365 Staphylococcus haemolyticus DSL S R R S I S R R S S S S 

366 Staphylococcus haemolyticus DSL S S R S I S S R S S S S 

367 Staphylococcus haemolyticus DSL R R S S R S S R R S S S 

368 Staphylococcus haemolyticus DSL S S S S I S S R S R R S 

369 Staphylococcus haemolyticus DSL S R S S S S R R S R S R 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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370 Staphylococcus haemolyticus DSL S S S S S S R R S S S S 

371 Staphylococcus haemolyticus DSR S S S S S S S S S S S S 

372 Staphylococcus haemolyticus DSR S S S I S S R S S S S S 

373 Staphylococcus haemolyticus DSS S R S S S S R S S R S S 

374 Staphylococcus haemolyticus DSS S R R I S S R S S I R S 

375 Staphylococcus haemolyticus DSS S R S I S S R S S S S S 

376 Staphylococcus haemolyticus DSS S R S R R S R S S R S S 

377 Staphylococcus haemolyticus DST S R S S S R R R R R S S 

378 Staphylococcus haemolyticus DST S S S S S S S I S R S S 

379 Staphylococcus haemolyticus HAS R R S S R S R R S R R S 

380 Staphylococcus haemolyticus HAS R R R R S S R R S R R R 

381 Staphylococcus haemolyticus HH S S S S I S S R S S S S 

382 Staphylococcus haemolyticus HH S R S S I S R R S R S S 

383 Staphylococcus haemolyticus HH S R R R I R R R R S R S 

384 Staphylococcus haemolyticus HH R R S R S S R R S S S S 

385 Staphylococcus haemolyticus HH S S S S R S R R R R R S 

386 Staphylococcus haemolyticus HH S R R I S S R S S R R S 

387 Staphylococcus haemolyticus HH S S S S S S R S S R S S 

388 Staphylococcus haemolyticus HH S R S I S S R S R S S S 

389 Staphylococcus haemolyticus HH S R S I S S R S S S S S 

390 Staphylococcus haemolyticus HH S S R I S R R R S R R S 

 74/79(tested/total)              

 

391 Staphylococcus hominis BCF S R S S S S R S S S S S 

392 Staphylococcus hominis BCF S R S S S S R S R S S S 

393 Staphylococcus hominis BCF S R S S S S R S R S S S 

394 Staphylococcus hominis BCF S S S S S S R S S S S S 

395 Staphylococcus hominis BCF S R S S S S R S R R S S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 



287 
 

ID Species Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

396 Staphylococcus hominis BCF S S S R S S R S S S S S 

397 Staphylococcus hominis BCF S R S S S S R S R S S S 

398 Staphylococcus hominis BCF S R S S R S R S R R R S 

399 Staphylococcus hominis DSH R R R S S S R S S S S R 

400 Staphylococcus hominis DSH S R R R S S R S R R R S 

401 Staphylococcus hominis DSH S R S R R S R I R R S S 

402 Staphylococcus hominis DSH S S S S S S R S R S S S 

403 Staphylococcus hominis DSH S R S S S S R S R S S S 

404 Staphylococcus hominis DSH S R S S S S R R S I S S 

405 Staphylococcus hominis DSH S R S S S S S R S S S S 

406 Staphylococcus hominis DSH S R S S S S S S S S S S 

407 Staphylococcus hominis DSH S S S S S S S S R S S S 

408 Staphylococcus hominis DSH S R S S S S R S S I R S 

409 Staphylococcus hominis DSH S S S S S S R S S S S S 

410 Staphylococcus hominis DSH S S S S S S R S S S S S 

411 Staphylococcus hominis DSH             

412 Staphylococcus hominis DSH S R S S S S R S R R S S 

413 Staphylococcus hominis DSH R S S R S S R R S S S S 

414 Staphylococcus hominis DSH S R R S I S S S R S S S 

415 Staphylococcus hominis DSH S S S S I S S S S S S S 

416 Staphylococcus hominis DSH S R S S I S S R R S R S 

417 Staphylococcus hominis DSH S R S S I S S R S S S S 

418 Staphylococcus hominis DSH S R R S R S S S R S S S 

419 Staphylococcus hominis DSH S R S S I S S R R R S S 

420 Staphylococcus hominis DSH S R S S R S R R R R S S 

421 Staphylococcus hominis DSH S R S S I S R R S S S S 

422 Staphylococcus hominis DSH S R S S S S S R S S S S 

423 Staphylococcus hominis DSH S R S S I R S R R S S S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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424 Staphylococcus hominis DSH S S S S S S S S S S S S 

425 Staphylococcus hominis DSH S S S R S S S R S S S S 

426 Staphylococcus hominis DSH S R S S I S R R R R S S 

427 Staphylococcus hominis DSH S R S S I S S S S S S S 

428 Staphylococcus hominis DSH S S R S S S S R S S S S 

429 Staphylococcus hominis DSH S S S R S S S S S S S S 

430 Staphylococcus hominis DSH S R S R S S R R S S S S 

431 Staphylococcus hominis DSH             

432 Staphylococcus hominis DSH S R S S I S R R S S S S 

433 Staphylococcus hominis DSL S R S S S S S R S S S S 

434 Staphylococcus hominis DSR S S S I S S R S S S S S 

435 Staphylococcus hominis DSR S R S R R R R S R S S S 

436 Staphylococcus hominis DSR S S S S S R R S S S S S 

437 Staphylococcus hominis DSR S R S I S S R S S R S S 

438 Staphylococcus hominis DSR S R S R S S R S S S R S 

439 Staphylococcus hominis DSR S S S S S S R S S R S S 

440 Staphylococcus hominis DSR S R S S S S R S S S S S 

441 Staphylococcus hominis DSR S R S S S S S S S S S S 

442 Staphylococcus hominis DSR S R S I S S R S S R R S 

443 Staphylococcus hominis DSR S R S S S S R S S S S S 

444 Staphylococcus hominis DSR S R S R S S R S S S R S 

445 Staphylococcus hominis DSR S S S I S S S S S S S S 

446 Staphylococcus hominis DSR S R S S S S R S S R R S 

447 Staphylococcus hominis DSR S R R I S S R S R S R S 

448 Staphylococcus hominis DSR S R R S S R R R S S S S 

449 Staphylococcus hominis DSR S R S I S S R S S R S S 

450 Staphylococcus hominis DSR S R R I S S R S S S S S 

451 Staphylococcus hominis DSR S S S S S S S S S R S S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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ID Species Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

452 Staphylococcus hominis DSR S S S I S R R S S R S S 

453 Staphylococcus hominis DSR S S S S S S S S S S S S 

454 Staphylococcus hominis DSR S S R S S S S S S R R S 

455 Staphylococcus hominis DSR S R S S S S R S S S S S 

456 Staphylococcus hominis DSR S R S S S S R S S S S S 

457 Staphylococcus hominis DSR S S S S S S S S S R S S 

458 Staphylococcus hominis DSR S R S I S S S S S R S S 

459 Staphylococcus hominis DSR S R S S S S R S S S S S 

460 Staphylococcus hominis DSR S R S S S S R S S S S S 

461 Staphylococcus hominis DSR S S S S S S R S S R S S 

462 Staphylococcus hominis DSR S S S S S S R S S S S S 

463 Staphylococcus hominis DSR S S S S S S S S S S S S 

464 Staphylococcus hominis DSR S S S I S S R S S S S S 

465 Staphylococcus hominis DSR             

466 Staphylococcus hominis DSR S S R S S S R S S S S S 

467 Staphylococcus hominis DSR S R S S S S R S S R S S 

468 Staphylococcus hominis DSS S R S R S S R S R R R R 

469 Staphylococcus hominis DSS S S S R S S S S S S S S 

470 Staphylococcus hominis DSS S R S S S S R S S R S S 

471 Staphylococcus hominis DSS S R S I S S R S S S S S 

472 Staphylococcus hominis DSS S R R I S S R S S S R S 

473 Staphylococcus hominis DSS S R S I S S R S S R S S 

474 Staphylococcus hominis DSS S R S R S S S S S R R S 

475 Staphylococcus hominis DSS S R S S S S R S S R S S 

476 Staphylococcus hominis DSS S R S S S S S S S S S S 

477 Staphylococcus hominis DSS S S S S S S R S S R S S 

478 Staphylococcus hominis DSS S S S I S S R S S R S S 

479 Staphylococcus hominis DSS S S S S S S R S S R S S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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ID Species Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

480 Staphylococcus hominis DSS S S S S S S R S S R S S 

481 Staphylococcus hominis DSS S R S I S S R S S R S S 

482 Staphylococcus hominis DSS S R S S S S S S S S R S 

483 Staphylococcus hominis DSS S R S R R R R S S R R R 

484 Staphylococcus hominis DSS S R S S S S R S S S S S 

485 Staphylococcus hominis DSS S R S S S S S R S R S S 

486 Staphylococcus hominis DSS S R S S S S R S S S S S 

487 Staphylococcus hominis DSS S R S S S S R S S S S S 

488 Staphylococcus hominis DSS S R S S S S R S S S R S 

489 Staphylococcus hominis DSS S R S S S S R S S S S S 

490 Staphylococcus hominis DSS S R S S S R R S S S S S 

491 Staphylococcus hominis DSS S R S S S S R R S R S R 

492 Staphylococcus hominis DSS S R S S I S R S S R S S 

493 Staphylococcus hominis DSS S R S S S S R S S S R S 

494 Staphylococcus hominis DSS S S S S S S S S S S S R 

495 Staphylococcus hominis DSS S R S S S S S S S R R S 

496 Staphylococcus hominis DSS S S R S S S S S S S S S 

497 Staphylococcus hominis DSS S R S S S S S S S R R S 

498 Staphylococcus hominis DSS R R S S S S R S S R S S 

499 Staphylococcus hominis DSS S R S S S S R S S S S S 

500 Staphylococcus hominis DSS             

501 Staphylococcus hominis DSS S S S S S S S S S S S S 

502 Staphylococcus hominis DSS S R S S S S S S S S S S 

503 Staphylococcus hominis DSS S S S S S S S S S R S S 

504 Staphylococcus hominis DSS S S S S S S R S S S S S 

505 Staphylococcus hominis DSS S R S S S S R S S S S S 

506 Staphylococcus hominis DSS R S R S S S R S S S S S 

507 Staphylococcus hominis DST S R S S S S R R R S S S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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ID Species Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

508 Staphylococcus hominis DST S R S S S S R R R S S S 

509 Staphylococcus hominis DST S R S S S S S S S S S S 

510 Staphylococcus hominis DST S R S S S S R R R R R S 

511 Staphylococcus hominis DST S R S S S S S R R R S S 

512 Staphylococcus hominis DST S S S S S S R S S R S S 

513 Staphylococcus hominis DST S S S S S S R S S S S S 

514 Staphylococcus hominis DST S R S S S S S S S S S S 

515 Staphylococcus hominis DST S R S S S S S S S S S S 

516 Staphylococcus hominis DST S S S S S S S S S S S S 

517 Staphylococcus hominis HB S R S S S S R R S R S S 

518 Staphylococcus hominis HB S R R S S S S S S S R S 

519 Staphylococcus hominis HH             

520 Staphylococcus hominis HH S S S S S R R S S S S S 

521 Staphylococcus hominis HH S S R S S S S S S S S S 

522 Staphylococcus hominis HH S S S S I S S R S S S S 

523 Staphylococcus hominis HH             

524 Staphylococcus hominis HH S R S S S S R R S S S S 

525 Staphylococcus hominis HH S S S R S S R R S S S S 

526 Staphylococcus hominis HH S S S S R S R R S S S S 

527 Staphylococcus hominis HH S R S S I S R R S R S S 

528 Staphylococcus hominis HH S R R S R S S S R S S S 

529 Staphylococcus hominis HH S S S S I S R R S S R S 

530 Staphylococcus hominis HH S R R S S S R S S S S S 

531 Staphylococcus hominis HH S R S I S S R S S S S S 

532 Staphylococcus hominis HH S S S I S S R S S R S S 

533 Staphylococcus hominis HH S R S S S S S S S R S S 

534 Staphylococcus hominis HH S R S S S S R S S S S S 

535 Staphylococcus hominis HH S R S R I S R S R R R S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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ID Species Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

536 Staphylococcus hominis HH S S S S S S S S S R R S 

537 Staphylococcus hominis HH S R R S S S S S S R S S 

538 Staphylococcus hominis HH S R R S S S R R S R R S 

539 Staphylococcus hominis HH S S S I S S S S S S S S 

540 Staphylococcus hominis HH S R S S S R S S S R R S 

541 Staphylococcus hominis HH S R S S S S S R S R R S 

542 Staphylococcus hominis HH S R S S S S S S R R S S 

543 Staphylococcus hominis HH S S S S S S S S S S S S 

544 Staphylococcus hominis HH S R S S S S S S S R R S 

545 Staphylococcus hominis HH S R S I S S R S S R R S 

546 Staphylococcus hominis HH S S S S S S R R S R S S 

547 Staphylococcus hominis HH S R S S S S R S S R S S 

548 Staphylococcus hominis HH S R S S S S R S S S S S 

549 Staphylococcus hominis HH S R S I S S R S S R R S 

550 Staphylococcus hominis HH S R S S S S R S S S S S 

551 Staphylococcus hominis HH S S S I S R R R S R S S 

552 Staphylococcus hominis HH S R S S S S R S S S S S 

553 Staphylococcus hominis HH             

554 Staphylococcus hominis HH S R S I S S R S S S S S 

555 Staphylococcus hominis HH S R S S S S R S S R R S 

556 Staphylococcus hominis HH S R S I S S R S S S S S 

557 Staphylococcus hominis HH S R R S S S R R S R S S 

558 Staphylococcus hominis HH S S S S S S R S S R S S 

559 Staphylococcus hominis HH S S S S S S R S S S S S 

560 Staphylococcus hominis HH S R R S S S R S R S R S 

561 Staphylococcus hominis HH S R S S S S R S S R R S 

562 Staphylococcus hominis HH             

563 Staphylococcus hominis HH             

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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 164/173(tested/total)              

 

ID Species Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

564 Staphylococcus lugdunensis DSH R R S S S S S I S R S S 

565 Staphylococcus lugdunensis DSH S R S R S S R S S I S S 

566 Staphylococcus lugdunensis DSH S R S S S S R S S I S S 

567 Staphylococcus lugdunensis DSL S R R S S S R I S S S S 

568 Staphylococcus lugdunensis DSL S S S S S S S S S S S S 

 5/5(tested/total)              

 

569 Staphylococcus pasteuri DSH S S S S S S S S S I S S 

570 Staphylococcus pasteuri DSR S R S I S S R S S S S S 

571 Staphylococcus pasteuri DSR S R S I S S R S S I S S 

572 Staphylococcus pasteuri DSR S R S I S S R S S R R S 

573 Staphylococcus pasteuri DSR S R S I S S R S R R R S 

574 Staphylococcus pasteuri DSR S S S S S S R S S S S S 

575 Staphylococcus pasteuri DSR S R S I S S R S R R S S 

576 Staphylococcus pasteuri DSS S R R I S S R S S R S S 

577 Staphylococcus pasteuri DSS S R S R R S R S R R S S 

578 Staphylococcus pasteuri DSS S R R S S S S S S R S S 

579 Staphylococcus pasteuri DST S R S S S R R R S S S S 

580 Staphylococcus pasteuri DST S R S S S S R S R R S S 

581 Staphylococcus pasteuri DST S R S R R S R S R R S S 

582 Staphylococcus pasteuri DST S R S S S S R S S S S S 

583 Staphylococcus pasteuri DST S R S S S S R S S R S S 

584 Staphylococcus pasteuri DST S S S S S S S S S S R S 

585 Staphylococcus pasteuri DST S S S S S S S S S S S S 

586 Staphylococcus pasteuri DST S R S S S S S S R S S S 

587 Staphylococcus pasteuri DST S R R S S S S S R S S S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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ID Species Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

588 Staphylococcus pasteuri DST S R R S S S S S R S S S 

589 Staphylococcus pasteuri HB S R S S S S R R S R S S 

590 Staphylococcus pasteuri HH S S S S I S S R S S S R 

591 Staphylococcus pasteuri HH             

592 Staphylococcus pasteuri HH S S S R S S R R S S S S 

593 Staphylococcus pasteuri HH R R S S S R R R R S S S 

594 Staphylococcus pasteuri HH             

595 Staphylococcus pasteuri HH S S S S S R R R S S S S 

596 Staphylococcus pasteuri HH S R S S I S R R R R R S 

597 Staphylococcus pasteuri HH R R S R I S S R S S S S 

598 Staphylococcus pasteuri HH S R R S S S S S S R R S 

599 Staphylococcus pasteuri HH S R S S S S R S S R S S 

600 Staphylococcus pasteuri HH S S S S S S R S S R S S 

601 Staphylococcus pasteuri HH S S S I S S R S S S S S 

602 Staphylococcus pasteuri HH S S S I S S R S S S S S 

 32/34(tested/total)              

               

603 Staphylococcus pettenkoferi DSH R R R S R R R R R R R R 

604 Staphylococcus pettenkoferi DSH S R S S S S S S S I S S 

605 Staphylococcus pettenkoferi DSH S S S S S S R R S S S S 

606 Staphylococcus pettenkoferi DST S R S S S S S S R S S S 

607 Staphylococcus pettenkoferi HH S S S S I S R R S S S S 

 5/5(tested/total)              

 

608 Staphylococcus saprophyticus BCF S R S S S R R S R S S S 

609 Staphylococcus saprophyticus BCF S R S S S R R S R R S S 

610 Staphylococcus saprophyticus BCF S R S S S S R S S S S S 

611 Staphylococcus saprophyticus BCF S R S R S S R S S R S S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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ID Species Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

612 Staphylococcus saprophyticus BCF R R S R S S R S S R S S 

613 Staphylococcus saprophyticus BCF S R S S S S R S S S S S 

614 Staphylococcus saprophyticus BCF S R R R S S R S R R S S 

615 Staphylococcus saprophyticus BCF S R S S S S R S S S S S 

616 Staphylococcus saprophyticus BCF R R R R S S R I R R R S 

617 Staphylococcus saprophyticus DSH S R R S I S R R S R S S 

618 Staphylococcus saprophyticus DSL S R S S S S R R S S S S 

619 Staphylococcus saprophyticus DSL S R S S S S R S S S S S 

620 Staphylococcus saprophyticus DSS S R R I S S R S S R S S 

621 Staphylococcus saprophyticus DSS S R S R R S R S R S R S 

622 Staphylococcus saprophyticus DSS S R S S S S R S S S S R 

623 Staphylococcus saprophyticus DSS S R S S S S R S S S S R 

624 Staphylococcus saprophyticus HH S S S S S S R S S S S S 

625 Staphylococcus saprophyticus HH S S S S S S R S S S S S 

626 Staphylococcus saprophyticus HH S R S S S S R S S S S S 

627 Staphylococcus saprophyticus HH R R S I S S R S S S R S 

 20/20(tested/total)              

 

628 Staphylococcus sciuri DSH R R R S R S R I S S S R 

629 Staphylococcus sciuri DSH S S S R S S S S S S S S 

630 Staphylococcus sciuri DSH R R R R I S R R S S S S 

631 Staphylococcus sciuri DSH S S S R I S R R S S S S 

632 Staphylococcus sciuri DSH R R S S I S R R R S S S 

633 Staphylococcus sciuri DSH R R S R I R R R R S S S 

 6/6(tested/total)              

 

634 Staphylococcus simiae DST S S S S S S R S S S S S 

635 Staphylococcus simiae DST S 3 R S S S S S S S S S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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ID Species Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

636 Staphylococcus simiae DST S S R S S S R S S S S S 

637 Staphylococcus simiae DST S S S I S S S S S S S S 

638 Staphylococcus simiae DST S S S S S S R S S S S S 

639 Staphylococcus simiae DST S S S S S S R S S S S S 

640 Staphylococcus simiae DST S S S S S S S S S S S S 

641 Staphylococcus simiae DST S S S S S S S S S S S S 

642 Staphylococcus simiae DST S S S S S S S S S S S S 

643 Staphylococcus simiae DST S R R S S S S S S S S S 

 10/10(tested/total)              

 

644 Staphylococcus simulans BCF S R S S S S R S S S S S 

 1/1(tested/total)              

 

645 Staphylococcus warneri BCF S R S S S S R S S S S S 

646 Staphylococcus warneri BCF S S S R S R R S S S S S 

647 Staphylococcus warneri BCF S R S S S R R S R S S S 

648 Staphylococcus warneri BCF S R S S S R R S R S S S 

649 Staphylococcus warneri BCF S S S I S S R S S R S S 

650 Staphylococcus warneri BCF S S S S S S R S S S S S 

651 Staphylococcus warneri BCF S S S S S S R S S S S S 

652 Staphylococcus warneri BCF S R S S S S R S S S S S 

653 Staphylococcus warneri DSH S R S S S S S I S R S S 

654 Staphylococcus warneri DSH S R R S S S R I S S S S 

655 Staphylococcus warneri DSH S S S R S R R R S I S S 

656 Staphylococcus warneri DSH S R S S S S R R R I R S 

657 Staphylococcus warneri DSH S R R S S S R S S I S S 

658 Staphylococcus warneri DSH S S S R S S S S S S S S 

659 Staphylococcus warneri DSH R R R R S S R R R S S S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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ID Species Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

660 Staphylococcus warneri DSH S R R S I R R R R S S S 

661 Staphylococcus warneri DSH S R S S R S R R R R S S 

662 Staphylococcus warneri DSH S R S S S R R R R S R S 

663 Staphylococcus warneri DSH S R S S I S S S R S R S 

664 Staphylococcus warneri DSH S S S S S S S R R S S S 

665 Staphylococcus warneri DSH S S S S I R R R S R S S 

666 Staphylococcus warneri DSH S S S R S S S S S S S S 

667 Staphylococcus warneri DSH S S R S S S S S S S S S 

668 Staphylococcus warneri DSH S R R S S S S S R S S S 

669 Staphylococcus warneri DSH S S R S S S S S S S S S 

670 Staphylococcus warneri DSL S S R S S S S R S S S S 

671 Staphylococcus warneri DSL S S S S S S S R S S S S 

672 Staphylococcus warneri DSL S S R S S S R R S R R S 

673 Staphylococcus warneri DSL S S R S S S R R R S S S 

674 Staphylococcus warneri DSL S S R S S S S R S S S S 

675 Staphylococcus warneri DSL S R R S S S R R R S S S 

676 Staphylococcus warneri DSR S R R I S S S S S S S S 

677 Staphylococcus warneri DSR S R R S S R S S S R S S 

678 Staphylococcus warneri DSR S S S S S R S S S R S S 

679 Staphylococcus warneri DSR S R S S S R R S S R R S 

680 Staphylococcus warneri DSR S S R S S S R S S S S S 

681 Staphylococcus warneri DSR S R S S S S S S S S S S 

682 Staphylococcus warneri DSS S S S R S S S S S S S S 

683 Staphylococcus warneri DSS S R R R S S R S S S S S 

684 Staphylococcus warneri DST S R R R S R S R R I S S 

685 Staphylococcus warneri DST S R R R S R S R R S S S 

686 Staphylococcus warneri DST S R R R S R S R R S S S 

687 Staphylococcus warneri DST S S S S S R R S S S S S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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ID Species Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

688 Staphylococcus warneri DST S R S S S S R S R R S S 

689 Staphylococcus warneri DST S R S S S S R S R S S S 

690 Staphylococcus warneri DST S R S S S S R S R S S S 

691 Staphylococcus warneri DST S S S S S S R S R S S S 

692 Staphylococcus warneri DST S S S S S S S S S S S S 

693 Staphylococcus warneri DST S S S S S S R S S S S S 

694 Staphylococcus warneri HB S R S S S S S S S S R S 

695 Staphylococcus warneri HB S S S S I S R R S R S R 

696 Staphylococcus warneri HH S S S R S R S R S R S S 

697 Staphylococcus warneri HH S S S S I S R R S S S S 

698 Staphylococcus warneri HH S R S S S S R R R R S S 

699 Staphylococcus warneri HH S R S S S S R R R R S S 

700 Staphylococcus warneri HH S R R S I R R R S R R S 

701 Staphylococcus warneri HH S S S R S S R R S I S S 

702 Staphylococcus warneri HH S R S S S R R R R S R S 

703 Staphylococcus warneri HH S S R S R R R R R R R S 

704 Staphylococcus warneri HH R R S S I S R R R R S S 

705 Staphylococcus warneri HH S R R S R S R R R R S S 

706 Staphylococcus warneri HH S S S S R S R R S S S S 

707 Staphylococcus warneri HH S R S S S S R S S S S S 

708 Staphylococcus warneri HH S S S S R S R R R R R S 

709 Staphylococcus warneri HH S R S S S S S R S S S S 

710 Staphylococcus warneri HH S R S S R S R R R R S S 

711 Staphylococcus warneri HH S R S S S S R S S S S S 

712 Staphylococcus warneri HH S R S S S S S S S S R S 

 68/68(tested/total)              

 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 

µg);  VAN: vancomycin (5 µg). 
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ID Species Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

713 Staphylococcus xylosus HH S R R R I R R R S S R S 

714 Staphylococcus xylosus HH S R S S R S R R S S S S 

 2/2(tested/total)              

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline (10 µg);  

VAN: vancomycin (5 µg). 

BCF- baby care facility; DSH- different sites of hotels; DSL- different sites of a library; DSR- different sites of restaurants; DSS- different sites 

of supermarkets; DST- different sites of transportation facilities; HAS- hotel air samples; HB- handbags; HH- human hands. 
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II.2 Antibiotic susceptibility variation of closely related staphylococci 

ID Species Cluster Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

455 Staphylococcus hominis 1 Restaurants 
S R S 

S 
S S R S S S S S 

554 Staphylococcus hominis  Hands I 

                

471 Staphylococcus hominis 2 Supermarkets 
S R S 

I 
S S R S S S S S 

440 Staphylococcus hominis  Restaurants S 

                

458 Staphylococcus hominis 3 Restaurants 
S R S I S S 

S 
S S R 

S 
S 

549 Staphylococcus hominis  Hands R R 

                

493 Staphylococcus hominis 4 Supermarkets 
S R S S S S 

R 
S S 

S 
R S 

544 Staphylococcus hominis  Hands S R 

                

503 Staphylococcus hominis 5 Supermarkets 
S S 

S 
S S S S S S 

R 
S S 

521 Staphylococcus hominis  Hands R S 

                

543 Staphylococcus hominis 6 Hands 
S 

S 
S S S S 

S 
S 

S 
S S S 

403 Staphylococcus hominis  Hotels R R R 

                

430 Staphylococcus hominis 7 Hotels 
S R S 

R 
S S R 

R S 
S S S 

397 Staphylococcus hominis  Baby care facilities S S R 

                

488 Staphylococcus hominis 8 Supermarkets 
S R 

S S 
S S R S S S 

R 
S 

450 Staphylococcus hominis  Restaurants R I S 

                

556 Staphylococcus hominis 9 Hands 
S R S 

I 
S S R S 

S S 
S S 

395 Staphylococcus hominis  Baby care facilities S R R 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: gentamicin 

(10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline  (10 µg);  VAN: 

vancomycin (5 µg). 
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ID Species Cluster Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

517 Staphylococcus hominis 10 Handbages 
S 

R 
S S S S R 

R 
S 

R 
S S 

394 Staphylococcus hominis  Baby care facilities S S S 

                

442 Staphylococcus hominis 11 Restaurants 
S 

R 
S 

I 
S S 

R 
S S R R S 

536 Staphylococcus hominis  Hands S S S 

                

481 Staphylococcus hominis 12 Supermarkets 
S 

R 
S 

I 
S S R 

S 
S R S S 

546 Staphylococcus hominis  Hands S S R 

                

463 Staphylococcus hominis 13 Restaurants 
S S S S 

S 
S 

S S 
S S S S 

526 Staphylococcus hominis  Hands R R R 

                

482 Staphylococcus hominis 14 Supermarkets 
S 

R 
S 

S 
S S S S S S 

R 
S 

445 Staphylococcus hominis  Restaurants S I S 

                

508 Staphylococcus hominis 15 Supermarkets 
S R S S S S 

R R R 
S S S 

502 Staphylococcus hominis  Hotels S S S 

                

531 Staphylococcus hominis 16 Hands 
S 

R 
S 

I 
S S 

R S 
S S S S 

425 Staphylococcus hominis  Hotels S R S R 

                

485 Staphylococcus hominis 17 Supermarkets 
S 

R 
S 

S 
S S S 

R 
S 

R 
S S 

539 Staphylococcus hominis  Hands S I S S 

                

433 Staphylococcus hominis 18 Library 
S 

R 
S 

S 
S S 

S R 
S S S S 

396 Staphylococcus hominis  Baby care facilities S R R S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: gentamicin 

(10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline  (10 µg);  VAN: 

vancomycin (5 µg). 
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ID Species Cluster Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

476 Staphylococcus hominis 19 Supermarkets 
S 

R S 
S S S S S S 

S S 
S 

454 Staphylococcus hominis  Restaurants S R R R 

                

510 Staphylococcus hominis 20 Supermarkets 
S R 

S S 
S S R 

R 
R 

R 
R S 

447 Staphylococcus hominis  Restaurants R I S S 

                

438 Staphylococcus hominis 21 Restaurants 
S R S R 

S 
S R 

S S S R 
S 

401 Staphylococcus hominis  Hotels R I R R S 

                

548 Staphylococcus hominis 22 Hands 
S R 

S S 
S S R S 

S S S 
S 

400 Staphylococcus hominis  Hotels R R R R R 

                

451 Staphylococcus hominis 23 Restaurants S S S 
S S S 

S 
S S 

R 
S 

S 

399 Staphylococcus hominis  Hotels R R R R S R 

                

483 Staphylococcus hominis 24 Supermarkets 
S R S 

R R R 
R S S 

R R R 

534 Staphylococcus hominis  Hands S S S S S S 

                

478 Staphylococcus hominis 25 Supermarkets 
S 

S S I 
S 

S 
R 

S 
S 

R 
S S 

448 Staphylococcus hominis  Restaurants R R S R R S 

                

479 Staphylococcus hominis 26 Supermarkets 
S S S S S S R S S R S S 

480 Staphylococcus hominis  Supermarkets 

                

499 Staphylococcus hominis 27 Supermarkets 
S R S S S S R S S S S S 

505 Staphylococcus hominis  Supermarkets 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: gentamicin 

(10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline  (10 µg);  VAN: 

vancomycin (5 µg). 
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ID Species Cluster Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

437 Staphylococcus hominis 28 Restaurants 
S R S I S S R S S R S S 

449 Staphylococcus hominis  Restaurants 

                

459 Staphylococcus hominis 29 Restaurants 
S R S S S S 

R 
S S S S S 

441 Staphylococcus hominis  Restaurants S 

                

460 Staphylococcus hominis 30 Restaurants 
S 

R 
S S S S R S S S S S 

462 Staphylococcus hominis  Restaurants S 

                

464 Staphylococcus hominis 31 Restaurants 
S S S I S 

S 
R S S 

S 
S S 

452 Staphylococcus hominis  Restaurants R R 

                

541 Staphylococcus hominis 32 Hands 
S R S S S 

S 
S 

R 
S R R S 

540 Staphylococcus hominis  Hands R S 

                

393 Staphylococcus hominis 33 Baby care facilities 
S R S S 

S 
S R S R 

S S 
S 

398 Staphylococcus hominis  Baby care facilities R R R 

                

497 Staphylococcus hominis 34 Supermarkets 
S 

R 
S 

S 
S S S S S 

R R 
S 

469 Staphylococcus hominis  Supermarkets S R S S 

                

538 Staphylococcus hominis 35 Hands 
S R 

R 
S S S 

R R 
S R 

R 
S 

533 Staphylococcus hominis  Hands S S S S 

                

180 Staphylococcus epidermidis 1 Supermarkets 
S R R I S S R S S S S S 

275 Staphylococcus epidermidis  Hands 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: gentamicin 

(10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline  (10 µg);  VAN: 

vancomycin (5 µg). 
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ID Species Cluster Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

232 Staphylococcus epidermidis 2 Transportation facilities 
S R S 

I 
S S S S S R S S 

115 Staphylococcus epidermidis  Baby care facilities S 

                

175 Staphylococcus epidermidis 3 Supermarkets 
S R S I S S S S S 

R 
S S 

164 Staphylococcus epidermidis  Restaurants S 

                

194 Staphylococcus epidermidis 4 Supermarkets 
S 

S 
S S S S S S S S S S 

293 Staphylococcus epidermidis  Hands R 

                

186 Staphylococcus epidermidis 5 Supermarkets 
S R S S S S 

S 
S 

R 
S S S 

160 Staphylococcus epidermidis  Restaurants R S 

                

150 Staphylococcus epidermidis 6 Restaurants 
S R R S S 

R 
S S S 

R 
S S 

295 Staphylococcus epidermidis  Hands S S 

                

192 Staphylococcus epidermidis 7 Supermarkets 
S 

R R 
S S S R S S S S S 

209 Staphylococcus epidermidis  Transportation facilities S S 

                

146 Staphylococcus epidermidis 8 Restaurants 
S 

R S 
S S S 

R 
S S R S S 

223 Staphylococcus epidermidis  Transportation facilities S R S 

                

196 Staphylococcus epidermidis 9 Supermarkets 
S R S S S S 

R S 
S 

S 
S S 

136 Staphylococcus epidermidis  Library S R R 

                

144 Staphylococcus epidermidis 10 Restaurants 
S 

S 
S 

S 
S S R S S 

S 
S S 

306 Staphylococcus epidermidis  Hands R R R 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: gentamicin 

(10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline  (10 µg);  VAN: 

vancomycin (5 µg). 
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ID Species Cluster Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

176 Staphylococcus epidermidis 11 Supermarkets 
S 

S 
S S S S R S 

S 
I 

S 
S 

117 Staphylococcus epidermidis  Baby care facilities R R R 

                

203 Staphylococcus epidermidis 12 Transportation facilities 
S 

S 
S S S S 

R 
S S 

R 
S S 

155 Staphylococcus epidermidis  Restaurants R S S 

                

280 Staphylococcus epidermidis 13 Hands 
S R 

R 
S S S 

R 
S S 

R 
S S 

111 Staphylococcus epidermidis  Baby care facilities S S S 

                

216 Staphylococcus epidermidis 14 Transportation facilities 
S R 

S 
S S S R S 

R 
R 

S 
S 

274 Staphylococcus epidermidis  Hands R S R 

                

189 Staphylococcus epidermidis 15 Supermarkets 
S R R 

R R R 
R S R 

S 
S S 

270 Staphylococcus epidermidis  Hands S S S R 

                

247 Staphylococcus epidermidis 16 Hands 
S R S S 

S 
S S 

R 
S 

S S 
S 

233 Staphylococcus epidermidis  Handbags I S R R 

                

197 Staphylococcus epidermidis 17 Supermarkets 
S R 

R S 
S S 

R 
S S 

S 
S S 

168 Staphylococcus epidermidis  Restaurants S R S R 

                

230 Staphylococcus epidermidis 18 Transportation facilities 
S 

R R 
S S S R S 

R I 
S S 

114 Staphylococcus epidermidis  Baby care facilities S S S R 

                

228 Staphylococcus epidermidis 19 Transportation facilities 
S 

S 
S 

R 
S S 

S 
S S 

S 
S S 

272 Staphylococcus epidermidis  Hands R I R R 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: gentamicin 

(10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline  (10 µg);  VAN: 

vancomycin (5 µg). 
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ID Species Cluster Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

162 Staphylococcus epidermidis 20 Restaurants 
S R 

S S S 
S 

S 
S S S S 

S 

290 Staphylococcus epidermidis  Hands R I R R R 

                

163 Staphylococcus epidermidis 21 Restaurants 
S 

R S 
S 

S S S S 
S S R S 

236 Staphylococcus epidermidis  Handbags S R R R R R 

                

191 Staphylococcus epidermidis 22 Supermarkets R 
R 

S 
S 

S S R S 
R S S 

S 

128 Staphylococcus epidermidis  Hotels S R R R S R R 

                

134 Staphylococcus epidermidis 23 Library 
R R S S S S R R R R R S 

135 Staphylococcus epidermidis  Library 

                

215 Staphylococcus epidermidis 24 Transportation facilities 
S S S S S S R S S S S S 

219 Staphylococcus epidermidis  Transportation facilities 

                

207 Staphylococcus epidermidis 25 Transportation facilities 
S S 

S 
S S S R S S S S S 

213 Staphylococcus epidermidis  Transportation facilities R 

                

208 Staphylococcus epidermidis 26 Transportation facilities 
S S S S S S 

S 
S S R S S 

212 Staphylococcus epidermidis  Transportation facilities R 

                

171 Staphylococcus epidermidis 27 Restaurants 
S R S S S S 

S 
S S S S S 

151 Staphylococcus epidermidis  Restaurants R 

                

304 Staphylococcus epidermidis 28 Hands 
S R S S S S R S S 

S 
S S 

289 Staphylococcus epidermidis  Hands R 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: gentamicin 

(10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline  (10 µg);  VAN: 

vancomycin (5 µg). 
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ID Species Cluster Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

263 Staphylococcus epidermidis 29 Hands 
S R S S S S R R R 

S R 
S 

251 Staphylococcus epidermidis  Hands R S 

                

227 Staphylococcus epidermidis 30 Transportation facilities 
S S S S S S 

R 
S S 

S 
S S 

225 Staphylococcus epidermidis  Transportation facilities S R 

                

291 Staphylococcus epidermidis 31 Hands 
S R 

S S 
S S R 

R 
S S S S 

292 Staphylococcus epidermidis  Hands R R S 

                

249 Staphylococcus epidermidis 32 Hands 
S 

R R S S S 
R R S S 

R 
S 

253 Staphylococcus epidermidis  Hands S S R I R S 

                

258 Staphylococcus epidermidis 33 Hands 
S 

S R S S 
S 

R R 
S 

R 
S S 

248 Staphylococcus epidermidis  Hands R S R I S S S 

                

156 Staphylococcus epidermidis 34 Restaurants S 
R 

S S 
R 

R S 
S 

S S S 
S 

139 Staphylococcus epidermidis  Restaurants R R R S R R R R 

                

389 Staphylococcus haemolyticus 1 Hands 
S 

R 
S 

I S 
S R S S 

S 
S S 

345 Staphylococcus haemolyticus  Hotels S S R I 

                

332 Staphylococcus haemolyticus 2 Hotels 
S S S S 

R 
S S S 

R I R 
S 

312 Staphylococcus haemolyticus  Baby care facilities S S S S 

                

362 Staphylococcus haemolyticus 3 Library R 
R S S 

I 
S 

S 
R 

R S S 
S 

337 Staphylococcus haemolyticus  Hotels S R R S I R 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: gentamicin 

(10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline  (10 µg);  VAN: 

vancomycin (5 µg). 
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ID Species Cluster Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

371 Staphylococcus haemolyticus 4 Restaurants 
S 

S 

S S 
S 

S S S 
S 

S S 
S 

390 Staphylococcus haemolyticus  Hands R I R R R R R 

               

382 Staphylococcus haemolyticus 5 Hands S 
R 

S S I 
S R 

R 
S 

R S S 

320 Staphylococcus haemolyticus  Hotels R R R R I S R R 

                

326 Staphylococcus haemolyticus 6 Hotels S S 
S S 

S 
S 

S S R I S 
S 

379 Staphylococcus haemolyticus  Hotel air samples R R R R R S R R 

                

364 Staphylococcus haemolyticus 7 Library 
S S R S I S 

R 
R S S S S 

366 Staphylococcus haemolyticus  Library S 

                

361 Staphylococcus haemolyticus 8 Library 
S S 

S 
S I S 

R 
R S S 

R 
S 

363 Staphylococcus haemolyticus  Library R S S 

                

368 Staphylococcus haemolyticus 9 Library 
S 

S S 
S I S 

S 
R S 

R R 
S 

365 Staphylococcus haemolyticus  Library R R R S S 

                

318 Staphylococcus haemolyticus 10 Hotels R 
R S 

S 
R 

R 
R R 

R 
R 

S S 

347 Staphylococcus haemolyticus  Hotels S R S S R R 

                

339 Staphylococcus haemolyticus 11 Hotels 
S 

R R 
S S S 

R R R 
I 

S 
S 

340 Staphylococcus haemolyticus  Hotels S S S S S R 

                

322 Staphylococcus haemolyticus 12 Hotels S 
R 

S 
S 

S S S I 
R S R 

S 

317 Staphylococcus haemolyticus  Hotels R R R R R R R 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: gentamicin 

(10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline  (10 µg);  VAN: 

vancomycin (5 µg). 
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ID Species Cluster Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

39 Staphylococcus capitis 1 Restaurants 
S R S S S S R S S S S S 

61 Staphylococcus capitis  Transportation facilities 

                

30 Staphylococcus capitis 2 Library 
S S S 

S 
S S R 

R 
S S 

R 
S 

16 Staphylococcus capitis  Baby care facilities R S S 

                

18 Staphylococcus capitis 3 Baby care facilities 
S R S 

S 
S S 

R 
S 

R 
S S S 

19 Staphylococcus capitis  Hotels R S S 

                

37 Staphylococcus capitis 4 Restaurants 
S S 

S 
S S S 

R 
S S 

S 
S S 

88 Staphylococcus capitis  Hands R S R 

                

48 Staphylococcus capitis 5 Supermarkets 
S R 

S S 
S S 

R 
S S S 

R 
S 

92 Staphylococcus capitis  Hands R I S S 

                

54 Staphylococcus capitis 6 Transportation facilities 
S 

R S 
S 

S 
S 

R 
S S S S S 

26 Staphylococcus capitis  Hotels S R I S 

                

60 Staphylococcus capitis 7 Transportation facilities 
S 

S 
S 

S 
S S R S 

S 
S 

S 
S 

87 Staphylococcus capitis  Hands R I R R 

                

59 Staphylococcus capitis 8 Transportation facilities 
S 

S 
S 

R 
S S R 

S S 
S 

S 
S 

69 Staphylococcus capitis  Hands R S R R R 

                

75 Staphylococcus capitis 9 Hands R R 
S S S S 

R 
R S 

S 
S 

S 

27 Staphylococcus capitis  Hotels S S S R R 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: gentamicin 

(10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline  (10 µg);  VAN: 

vancomycin (5 µg). 
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ID Species Cluster Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

45 Staphylococcus capitis 10 Supermarkets 
S 

R 
S S 

S 
S 

R S 
S S 

R 
S 

76 Staphylococcus capitis  Hands S I S R S 

                

93 Staphylococcus capitis 11 Hands 
S R 

R R R 
S 

R S R 
S S 

R 

28 Staphylococcus capitis  Hotels S S S S R S S 

                

90 Staphylococcus capitis 12 Hands 
S 

R 
S S S S R 

S 
S S S S 

84 Staphylococcus capitis  Hands S R 

                

56 Staphylococcus capitis 13 Transportation facilities 
S S S 

S 
S S 

S 
S S S S S 

58 Staphylococcus capitis  Transportation facilities I R 

                

71 Staphylococcus capitis 14 Hands R 
S S S S S S 

R S 
S S S 

80 Staphylococcus capitis  Hands S S R 

                

21 Staphylococcus capitis 15 Hotels 
S 

S R R R R R 
R 

R R 
S 

R 

22 Staphylococcus capitis  Hotels R S S S S S S S S 

                

681 Staphylococcus warneri 1 Restaurants 
S R S S S S S S S S 

S 
S 

712 Staphylococcus warneri  Hands R 

                

711 Staphylococcus warneri 2 Hands 
S R S S S S 

R S 
S 

S 
S S 

653 Staphylococcus warneri  Hotels S I R 

                

690 Staphylococcus warneri 3 Transportation facilities 
S R S S 

S 
S 

R 
S R S 

S 
S 

663 Staphylococcus warneri  Hotels I S R 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: gentamicin 

(10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline  (10 µg);  VAN: 

vancomycin (5 µg). 
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ID Species Cluster Sites OX PG  VAN  MUP  CEF  GM  FC  S  A  E  T   C 

671 Staphylococcus warneri 4 Library 
S S S 

S 
S S 

S R 
S 

S 
S S 

649 Staphylococcus warneri  Baby care facilities I R S R 

                

684 Staphylococcus warneri 5 Transportation facilities 
S R 

R R S R S 
R R 

I 
S S 

661 Staphylococcus warneri  Hotels S S R S R R 

                

679 Staphylococcus warneri 6 Restaurants 
S R 

S 
S S R 

R 
S S R 

R 
S 

677 Staphylococcus warneri  Restaurants R S S 

                

706 Staphylococcus warneri 7 Hands 
S S S S R S R R 

S S S 
S 

708 Staphylococcus warneri  Hands R R R 

                

688 Staphylococcus warneri 8 Transportation facilities 
S 

R 
S S S S R S 

R R 
S S 

693 Staphylococcus warneri  Transportation facilities S S S 

                

672 Staphylococcus warneri 9 Library 
S S R S S S 

R 
R S 

R R 
S 

674 Staphylococcus warneri  Library S S S 

                

685 Staphylococcus warneri 10 Transportation facilities 
S 

R R R 
S 

R S R 
R S S S 

691 Staphylococcus warneri  Transportation facilities S S S S R S 

Note: A: amoxicillin (10 µg); CEF: cefepime (30 µg); C: chloramphenicol (30 µg); E: erythromycin (5 µg); FC: fusidic acid (10 µg); GM: 

gentamicin (10 µg); MUP: mupirocin (20 µg); OX: Oxacillin (1 µg);  PG: penicillin G (1 unit); S: streptomycin (10 µg);  T: tetracycline  (10 

µg);  VAN: vancomycin (5 µg). 


