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Abstract

This thesis proposes a new econometric methodology for the estimation and inference of macro-

economic models in the presence of time variation in the parameters. A novel quasi-Bayesian

local likelihood (QBLL) approach is established and it is shown that the method gives rise to as-

ymptotically valid quasi-posterior distributions. In addition, in the special case of linear Gaussian

models, expressions of the quasi-posteriors are derived in closed form, which simpli�es inference and

makes the use of MCMC unnecessary. Inference based on the QBLL approach, as a consequence

of modelling parameter variation nonparametrically, is robust to di¤erent processes for the drifting

parameters, as its validity does not depend on parametric restrictions typically imposed by alterna-

tive state space models. In addition, the Bayesian treatment of the approach provides a remedy to

the �curse of dimensionality�by accommodating large dimensional systems. We demonstrate that

the proposed estimators exhibit good �nite sample properties, and, unlike the alternative para-

metric state space models, are robust to di¤erent parameter processes. We provide a variety of

interesting macroeconomic applications and forecasting exercises to reduced-form VAR models. In

addition, we develop the methodology to the estimation of structural DSGE models in the presence

of parameter drift. We apply the proposed algorithms to di¤erent medium-sized DSGE models in

order to study structural change in the parameters.

4



Contents

1 Introduction 12

2 The QBLL approach 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Asymptotic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Linear Gaussian Univariate Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Linear Gaussian Multivariate Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Conditional quasi-posterior distributions . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Optimal prior shrinkage and optimal lag . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.1 Comparison to state space models . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7.2 Comparison to alternative methods for large TVP-VARs . . . . . . . . . . . . 30

2.8 A Gibbs sampling approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8.1 Homoscedastic BVAR model with time varying parameters . . . . . . . . . . 31

2.8.2 Heteroscedastic BVAR model with �xed parameters . . . . . . . . . . . . . . 32

2.8.3 Time varying structural BVAR model . . . . . . . . . . . . . . . . . . . . . . 33

2.9 Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.10 Applications to VAR models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.10.1 Empirical application to U.S. monetary policy and in�ation persistence . . . 42

2.10.2 Forecasting exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Time Varying Parameter DSGE Model 62

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Time Variation in DSGE Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 The Quasi-Bayesian Local Likelihood Method for DSGE Models . . . . . . . . . . . 67

3.3.1 Characterising the Posterior Distributions . . . . . . . . . . . . . . . . . . . . 69

3.3.2 Computing Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3.3 Nonparametric Heteroscedasticity in a DSGE Model . . . . . . . . . . . . . . 71

3.4 Model and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5



3.6 Time Varying Impulse Response Functions . . . . . . . . . . . . . . . . . . . . . . . . 79

3.7 Forecasting with a time varying DSGE Model . . . . . . . . . . . . . . . . . . . . . . 85

3.7.1 Point Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.7.2 Density Forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.7.3 Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Time Varying DSGE model with Financial Frictions 95

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 The DSGE model with �nancial frictions . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.2 Time-varying impulse response functions . . . . . . . . . . . . . . . . . . . . . 105

4.3.3 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Time Varying COMPASS Model of the U.K. Economy 110

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Model and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 Households . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.2 Firms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.3 Monetary Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.4 Government Spending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.5 Rest of the World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5 Time varying impulse response functions . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 Time varying variance decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.7 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Conclusion 131

6



7 Appendix 143

7.1 Proofs and Additional Results for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . 143

7.1.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.1.2 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.1.3 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.1.4 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.1.5 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.1.6 Proof of Proposition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.1.7 Proof of Proposition 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.1.8 Proof of Proposition 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.1.9 Additional Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.1.10 Additional results and data description . . . . . . . . . . . . . . . . . . . . . 163

7.1.11 Additional Monte Carlo Results . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.2 Model and Data Description and Additional Results for Chapter 3 . . . . . . . . . . 171

7.2.1 The Smets and Wouters (2007) Model . . . . . . . . . . . . . . . . . . . . . . 171

7.2.2 Additional Time Varying IRFs . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.3 Model and Data Descriptions and Additional Results for Chapter 4 . . . . . . . . . . 177

7.3.1 The Smets and Wouters (2007) model with �nancial frictions . . . . . . . . . 177

7.3.2 Measurement equation, data description and transformations . . . . . . . . . 179

7.3.3 Robustness checks: �at kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.3.4 Robustness check: di¤erent spread variable . . . . . . . . . . . . . . . . . . . 190

7.3.5 Robustness check: Simulation Exercise . . . . . . . . . . . . . . . . . . . . . . 192

7.4 Model Data Descriptions and Additional Results for Chapter 5 . . . . . . . . . . . . 194

7.5 Examples of parameter processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7



List of Tables

1 Bias, RMSEs and coverage rates of models based on DPG I . . . . . . . . . . . . . . . . 36

2 Bias, RMSEs and coverage rates of models based on DPG II . . . . . . . . . . . . . . . . 37

3 Bias, RMSEs and coverage rates of models based on DPG III . . . . . . . . . . . . . . . 38

4 Bias, RMSEs and coverage rates of models based on DPG IV . . . . . . . . . . . . . . . 40

5 Posterior probabilities of change in in�ation persistence for pair-wise periods. . . . . . 47

6 RMSFEs and forecast bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Log predictive scores and PITs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 RMSFEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9 Forecast bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

10 Log predictive scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

11 PITs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

12 RMSFEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

13 RMSFEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

14 Forecast bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

15 Log predictive scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

16 Log predictive scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

17 RMSFEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

18 Log scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

19 RMSFEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

20 Log predictive scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

21 Bias of models based on DGP in equation (89) . . . . . . . . . . . . . . . . . . . . . . . 165

22 MSEs of models based on DGP in equation (89) . . . . . . . . . . . . . . . . . . . . . . . 166

23 Coverage rates of models based on DGP in equation (89) . . . . . . . . . . . . . . . . . 166

24 Bias log volatility of models based on DGP in equation (89) . . . . . . . . . . . . . . . . 167

25 MSEs log volatility of models based on DGP in equation (89) . . . . . . . . . . . . . . . 167

26 Coverage rates log volatility of models based on DGP in equation (89) . . . . . . . . . 168

27 Data Description for DSGE with FF in Chapter 3 . . . . . . . . . . . . . . . . . . . . . . 180

28 Prior distributions for the structural parameters . . . . . . . . . . . . . . . . . . . . . . . 181

29 Prior distributions for the parameters of the exogenous processes . . . . . . . . . . . . 181

30 RMSFEs and Log Scores for additional variables. . . . . . . . . . . . . . . . . . . . . . 184

8



31 RMSFEs and Log Scores: Comparison with AR(1).. . . . . . . . . . . . . . . . . . . . . 185

32 RMSFEs and Log Scores for selected variables . . . . . . . . . . . . . . . . . . . . . . . 186

33 Priors for estimated parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

34 Priors for estimated parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

35 Observables, data transformation and measurement equations . . . . . . . . . . . . . . 195

9



List of Figures

1 DGP III. Typical realisation of the time varying parameters and volatilities . . . . . 39

2 DGP IV. Typical realisation of the time varying parameters and volatilities . . . . . 41

3 Core in�ation and natural rate of unemployment . . . . . . . . . . . . . . . . . . . . 43

4 Volatilities over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 In�ation Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 In�ation Persistence over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 In�ation Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Monetary policy activism over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9 IRFs to monetary policy shock after including commodity prices . . . . . . . . . . . 49

10 IRFs to unit monetary policy shock for selected periods . . . . . . . . . . . . . . . . 50

11 The DSGE parameters over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

12 The DSGE parameters over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

13 The DSGE parameters over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

14 IRFs to 1 unit monetary policy shock . . . . . . . . . . . . . . . . . . . . . . . . . . 80

15 IRFs to 1 st. dev. monetary policy shock . . . . . . . . . . . . . . . . . . . . . . . . 80

16 IRFs to 1 unit price mark up shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

17 IRFs to 1 st. dev. price mark up shock . . . . . . . . . . . . . . . . . . . . . . . . . . 81

18 IRFs to 1 unit TFP shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

19 IRFs to 1 st. dev. TFP shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

20 IRFs to 1 unit preference shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

21 IRFs to 1 st. dev. preference shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

22 IRFs to 1 unit wage mark up shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

23 IRFs to 1 st. dev. wage mark up shock . . . . . . . . . . . . . . . . . . . . . . . . . 86

24 Robustness Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

25 QBLL Estimates of DSGE model parameters with FF . . . . . . . . . . . . . . . . . 99

26 QBLL Estimates of DSGE model parameters with FF . . . . . . . . . . . . . . . . . 101

27 Robustness Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

28 Robustness Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

29 Simulation Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

30 Responses to 1 st. dev. and 25 basis points of �nancial friction shock . . . . . . . . . 106

10



31 Flow of Goods and Services in the COMPASS . . . . . . . . . . . . . . . . . . . . . . 113

32 QBLL Estimates COMPASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

33 QBLL Estimates COMPASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

34 QBLL Estimates COMPASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

35 IRFs of variables to 1 st. dev. monetary policy shock . . . . . . . . . . . . . . . . . . 121

36 IRFs of variables to 25 basis points monetary policy shock . . . . . . . . . . . . . . . 122

37 IRFs of variables to 1 st. dev. risk premium shock . . . . . . . . . . . . . . . . . . . 123

38 IRFs of variables to 25 basis points risk premium shock . . . . . . . . . . . . . . . . 124

39 Variance decomposition of output growth . . . . . . . . . . . . . . . . . . . . . . . . 125

40 Variance decomposition of in�ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

41 Variance decomposition of policy rate . . . . . . . . . . . . . . . . . . . . . . . . . . 127

42 Probability Integral Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

43 O¤-diagonal covariance matrix elements over time . . . . . . . . . . . . . . . . . . . 164

44 Typical realisation of the time varying parameters and volatilities . . . . . . . . . . . 169

45 Typical realisation of the time varying parameters and volatilities . . . . . . . . . . . 170

46 Typical realisation of the time varying parameters for the STAR model . . . . . . . 170

47 IRFs to 1 unit investment technology shock . . . . . . . . . . . . . . . . . . . . . . . 175

48 IRFs to 1 st. dev. investment technology shock . . . . . . . . . . . . . . . . . . . . . 176

49 IRFs to 1 unit government spending shock . . . . . . . . . . . . . . . . . . . . . . . . 176

50 IRFs to 1 st. dev. government spending shock . . . . . . . . . . . . . . . . . . . . . . 177

51 Additional QBLL Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

52 Additional QBLL Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

53 Additional Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

54 Additional Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

55 Additional Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

56 Additional Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

57 Additional Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

58 Additional Robustness Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

59 Additional Simulation Exercise Results . . . . . . . . . . . . . . . . . . . . . . . . . . 192

60 Additional Simulation Exercise Results . . . . . . . . . . . . . . . . . . . . . . . . . . 193

61 Additional Simulation Exercise Results . . . . . . . . . . . . . . . . . . . . . . . . . . 194

62 Examples of parameter processes satisfying i) or ii) . . . . . . . . . . . . . . . . . . . 197

11



1 Introduction

Standard econometric techniques usually assume that the data generating process depends on a

number of �xed parameters. In a macroeconomic context, this has the implication that relationships

between economic variables remain constant over time. This assumption is not supported by

evidence from macro time series, where relationships between variables are subject to structural

change: in the case of the recent 2008 �nancial crisis this structural change was abrupt, while

in the context of the transition of the world economy from the volatile period of the 1970s-1980s

oil crises to the low volatility period of the Great Moderation in the late 1980s and 1990s, the

structural change was slow and gradual. Standard econometric models fail to capture such time

varying relationships and deliver invalid inference in the cases where time variation is erroneously

ignored. The issue has assumed increased practical relevance as time series samples span longer

periods due to the increase of data availability, so the problem of accommodating time varying

relationships has assumed a prominent role in econometric research.

This thesis contributes to this research by combining existing nonparametric approaches with

Bayesian methods and establishing a quasi-Bayesian local likelihood (QBLL) estimation methodol-

ogy for a general multivariate model with time varying parameters. The proposed estimators di¤er

from existing state space approaches in that they estimate parameter time variation nonparamet-

rically without imposing assumptions on the stochastic processes of the parameters. The QBLL

approach augments the frequentist estimators of Giraitis, Kapetanios and Yates (2014) and Giraitis,

Kapetanios, Wetherilt and Zikes (2016) in order to provide a Bayesian treatment for the drifting

parameters. It is the Bayesian treatment that allows to increase the dimension of the models and

helps avoid over�tting. This is particularly relevant for Vector Autoregressions (VAR) where the

number of parameters is large. In addition, the Bayesian treatment enables the construction of

MCMC algorithms that can sample from the joint posterior of the parameters in the presence of

mixtures of time varying and time invariant parameters.

In Chapter 2, we establish the QBLL methodology and prove that the resulting quasi-posterior

distributions are asymptotically valid for inference and con�dence interval construction. In the

special case of linear Gaussian models, we derive closed form expressions for the quasi-posterior

densities: these are of Normal-Gamma and Normal-Wishart distributional form, which alleviates
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the need to use MCMC methods and makes the approach fast and tractable. Chapter 2 also posi-

tions the method in the existing literature, comparing and contrasting it to: i) existing parametric

state space approaches and ii) nonparametric approaches. Another contribution of Chapter 2 is

to constructs several Gibbs sampling algorithms, which can sample from the joint posterior distri-

bution of combinations of time varying and time invariant parameters. This is done in line with

the nonparametric strategy of this thesis, hence without imposing parametric assumptions on the

parameters. In addition, in Chapter 2 we provide a study of the �nite sample performance of the

QBLL estimators and compare them to alternative methods. Finally, we demonstrate the method

in action with an empirical application and a forecasting exercise using Bayesian VAR models with

time varying parameters.

Having established the theoretical framework and applied it to reduced form models in Chapter

2, we turn to structural models in Chapter 3. In particular, we develop further the approach and

demonstrate how it can be employed for the estimation of dynamic stochastic general equilibrium

(DSGE) models in the presence of drifting parameters. DSGE models have recently received consid-

erable attention in policy analysis and forecasting and we demonstrate that allowing for parameter

variation can not only be very e¤ective in detecting structural change or model misspeci�cation,

but it can also signi�cantly improve the forecasting performance of the model, which can have wide

ranging policy applications.

The methodology of Chapter 3 is general and can be applied to any DSGE model and Chapter

4 and 5 are applications of the approach to di¤erent DSGE models. In Chapter 4, we address an

important drawback of DSGE models after the events of 2007-8, namely the lack of a �nancial

sector and as a result, the inability of standard DSGE models to �t well the data in-sample or

forecast out-of-sample after the beginning of the �nancial crisis. To this end, Chapter 4 estimates a

DSGE model with �nancial frictions with the QBLL approach. After allowing for parameter drift,

we �nd that the parameters guiding the �nancial sector in the model do not change after 2008;

instead, the volatility of the �nancial shock doubles in the crisis, suggesting a new interpretation

of the recent crisis as a �Bad Luck�event.

In Chapter 5, we apply the QBLL approach to a medium-sized open economy DSGE model for

the UK. The model is known as COMPASS and is the main organising model for policy analysis

and forecasting in the Bank of England. We �nd that the relative importance of the risk premium

shock of the model, measured as the wedge between the policy instrument and the interest rate

that households and �rms face, has increased during the 2008 crisis, indicating changes in the credit
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availability.

Finally, Chapter 6 summarises the �ndings of the thesis and provides concluding remarks. The

Appendix in Chapter 7 contains the proofs of all propositions, algorithm descriptions and some

additional results.
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2 The QBLL approach

2.1 Introduction

Time varying parameter models have recently received a lot of attention in macroeconometric liter-

ature, due to their ability to accommodate structural changes or breaks in the relationships between

key macroeconomic variables. As the time span of available data increases, it is implausible that

relationships between economic variables remain �xed; consequently, the issue of accommodating

parameter time variation in econometric models, such as vector autoregressions (VARs), has as-

sumed an increasingly prominent role both in theoretical and empirical macroeconometric research.

The standard approach to the estimation of time varying parameter (TVP) VARmodels employs

state space methods. In a seminal paper, Cogley and Sargent (2002) study the changing dynamics of

macroeconomic variables in the U.S. using a TVP-VAR with autoregressive coe¢ cients modelled as

random walk processes. In subsequent work, Sims (2001) and Stock (2001) note that the uncovered

parameter drift reported in Cogley and Sargent (2002) may be exaggerated as a result of a time

invariant covariance matrix assumption. Primiceri (2005) and Cogley and Sargent (2005) address

this issue by accommodating drifting volatility in VAR models, the former by employing a procedure

suggested by Kim, Shephard and Chib (1998) and the latter by utilising a Metropolis within Gibbs

algorithm with a technique from Jacquier, Polson and Rossi (1994). Both approaches require

a parametric speci�cation of the stochastic process generating the volatility parameters. More

recently, Cogley, Primiceri and Sargent (2010) propose a VAR model, which in addition to drifts

in the parameters and volatilities, also features time varying volatility in the state equations of the

autoregressive parameters.

An alternative to the parametric state space approach is presented in Giraitis et al. (2014), who

propose a nonparametric method for the estimation of the coe¢ cient and variance processes in a

time varying linear regression setting and establish the theoretical properties of their kernel-type

estimator. Their method is extended to a general local likelihood framework that accommodates

consistent and asymptotically normal extremum estimation by Giraitis et al. (2016).

Neither state space models nor the frequentist estimators of Giraitis et al. (2014, 2016) can

accommodate large dimensional systems in the presence of time variation in the parameters. This

Chapter attempts to address this issue by combining the existing nonparametric approach with

Bayesian methods and establishing a quasi-Bayesian local likelihood (QBLL) estimation methodol-

ogy for a general multivariate model with time varying parameters. The QBLL approach augments
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the frequentist estimators of Giraitis et al. (2016) in order to provide a Bayesian treatment for the

drifting parameters and avoid over-�tting. We prove that the resulting quasi-posterior distributions

are asymptotically valid for inference and con�dence interval construction. In addition, we derive

in closed form a Normal-Wishart expression for the quasi-posterior density in the special case of a

Gaussian VAR model.

Another key issue addressed in this Chapter is the development of an econometric procedure that

can estimate mixtures of time invariant and time varying parameters, by developing several Gibbs

algorithms based on the analytic expressions obtained for the conditional quasi-posterior densities.

It is the Bayesian treatment of this Chapter that facilitates the construction of such algorithms

and to our best knowledge, this is the �rst procedure that can accommodate such mixtures without

imposing parametric assumptions on the parameter processes.

The proposed QBLL method has several advantages over the widely used state space approaches

to drifting parameters. First, the parameter time variation enters nonparametrically, ensuring

consistent estimation in a wide class of parameter processes, and alleviating the risk of invalid

inference due to misspeci�cation of the state equation. This point is illustrated further in the

Monte Carlo exercise. Second, unlike standard state space methods, the proposed method does not

su¤er from dimensionality issues. The combination of our closed form quasi-posterior expressions

with Minnesota-type priors, speci�ed directly on the drifting parameters, allows the number of

variables in the VAR to be very large. To illustrate this point, the QBLL approach can handle

estimation of an 87 variable TVP-VAR model (see Section 2.10.2), whereas state space methods

are limited to models with at most 4 variables. The availability of analytic expressions for the joint

quasi-posterior density in the Gaussian VAR case alleviates the computational burden of MCMC

methods used for the estimation of TVP-VARs by state space methods. Another advantage of the

proposed quasi-Bayesian approach is the inverted-Wishart property of the time varying covariance

matrix, which ensures symmetric positive de�niteness of the resulting estimators, without the need

of further restrictions.

We apply our novel QBLL approach to study the changing dynamics in a VAR model with key

U.S. macroeconomic variables. We �nd considerable time variation in the series for the natural rate

of unemployment and core in�ation, as well as a signi�cant decline in in�ation persistence after the

beginning of the Great Moderation period. These results con�rm evidence in Cogley and Sargent

(2002, 2005) on the time varying dynamics of in�ation. We also uncover a fall in the volatilities of

the series after the end of the oil crises, which is in line with evidence presented in Primiceri (2005)
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and Sims and Zha (2006).

In order to access the forecast record of the QBLL estimators, we design an out-of-sample

forecasting exercise. We �nd that allowing for time varying parameters can improve both point and

density forecasts of BVAR models. Increasing the dimension of the VAR along with parameter time

variation, which is made feasible by the use of the QBLL methodology established in this Chapter,

can enhance forecast performance further, delivering unbiased forecasts and uniform probability

integral transformations. Moreover, the algorithms developed in this Chapter, by accommodating

mixtures of time varying and time invariant parameters, allow us to �switch o¤�variation in the

autoregressive component or in the volatility of the VAR and investigate further the source of

forecast improvements. To this end, we �nd that drifts in the autoregressive matrix can eliminate

forecast bias while variation in the volatility improves density forecasts.

The rest of the Chapter is organised as follows. Section 2.2 develops the QBLL methodology

and establishes its asymptotic validity. In Sections 2.3 and 2.4, we derive closed form quasi-

posterior expressions for the special case of a linear Gaussian regression model and a VAR model

respectively; these expressions provide the building block of a number of Gibbs algorithms developed

in Section 2.8. In Section 2.9, we study the �nite sample properties of the QBLL estimators and

compare them to existing methods in a Monte Carlo experiment. Section 2.10 contains our empirical

contribution to the literature on changing dynamics of in�ation and monetary policy in the US and

the forecasting exercise. Section 2.11 provides a concluding discussion and Appendix 7.1 contains

all proofs of propositions and some additional algorithms and empirical results.

2.2 Asymptotic Theory

This Section establishes the QBLL methodology for inference in the presence of time varying

parameters. Bayesian analysis is conducted by employing a modi�cation to the Giraitis et al. (2016)

frequentist estimator, augmenting the resulting modi�ed objective function by a prior density and

deriving a posterior density for the purpose of estimation and con�dence interval construction. The

asymptotic validity of the posterior density arising from the QBLL approach is formally established

by Proposition 1 below.

Let yt be an observed time series with log-density lt(ytjyt�1; �t); conditional on history yt�1 =

fy1; :::; yt�1g ; depending on a time varying �nite-dimensional vector of parameters �t, satisfying

one of the conditions (i)-(ii) presented below.
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(i) For each t 2 f1; :::; Tg ; �t is a deterministic function of time given by

�t = �

�
t

T

�
(1)

where �(:) is a piecewise di¤erentiable function.

(ii) For 1 � h � t as h!1; �t is a vector-valued stochastic process satisfying

sup
j:jj�tj�h

jj�t � �j jj2 = Op (h=t) : (2)

Both (1) and (2) imply that the sequence of parameters drifts slowly with time, a property that

is important for consistent estimation of �t. An extremum estimator �̂j = argmax� `j(�j) for �j is

derived by maximising an objective function given by

`j(�j) :=

TX
t=1

wjtlt
�
ytjyt�1

�
j 2 f1; :::; Tg (3)

where lt
�
ytjyt�1

�
is the conditional log-density for observation t and the weights wjt are computed

using a kernel function and normalised to sum to one:

wjt = ~wjt=
XT

t=1
~wjt; ~wjt = K

�
j � t
H

�
for j; t 2 f1; :::; Tg : (4)

The kernel function K is assumed to be non-negative, continuous and bounded function with

domain R. The bandwidth parameter H satis�es H ! 1 and H = o(T= log T ). For example, the

widely used Normal kernel weights are given by

~wjt = (1=
p
2�) exp((�1=2)((j � t)=H)2) for t; j = 1; ::; T; (5)

while the rolling window procedure results as a special case of the choice of a �at kernel weights:

wjt = I( jt� jj � H). For further discussion of the advantages of exponential kernels over the �at

kernel for introducing time variation, refer to Giraitis et al. (2014) and Giraitis, Kapetanios and

Price (2013). In this setup, Giraitis et al. (2016) show that, under regularity conditions, �̂j is an
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H1=2 + (T=H)1=2- consistent estimator of �j for all j = [�T ], 0 < � < 1. Furthermore, de�ning

b�j := 1

{jT

 
�@

2`j(�̂j)

@�@�0

!�1
; {jT :=

�XT

t=1
w2jt

��1
; (6)

a:s: positive de�niteness of b�j and the bandwidth rate H = o(T 1=2) are su¢ cient for asymptotic

normality of �̂j : b��1=2j (�̂j � �0j )!d N (0; I) as T !1

for all j = [�T ], 0 < � < 1, with N (0; I) denoting the multivariate standard normal distribution.

The aim of this Chapter is to provide a Bayesian treatment to this estimation problem. Note

that, while �̂j is a consistent extremum estimator, it is not a maximum likelihood estimator becausePT
t=1wjtlt

�
ytjyt�1

�
is not a log-likelihood function. Let �j(�j) denote a prior density for �j at time

j, assumed to be strictly positive and continuous over a compact parameter space �: By combining

this prior density with the objective function of Giraitis et al. (2016) in (3), we obtain

pj(�j) =
�j(�j) exp(`j(�j))R
��j(�) exp(`j(�))d�

: (7)

pj(�j) is a proper density for �j and can be interpreted as an update to the prior beliefs about �j

after observing the data. In this sense, pj(�j) can be referred to as a quasi-Bayesian (or Laplace

type) posterior density based on statistical learning. Properties of such quasi-posterior densities

and the resulting estimators1 have been studied by Chernozhukov and Hong (2003) and Tian, Liu

and Wei (2007). In particular, Chernozhukov and Hong (2003) give conditions under which pj(�j)

can be asymptotically approximated (in total variation of moments norm) by a normal density. As

explained in Chernozhukov and Hong (2003), in order for pj(�j) to be a valid approximation of

a limit distribution for �j suitable for con�dence interval construction, a generalised information

matrix equality must apply for an objective function  j that produces an extremum estimator �̂j :

lim
T!1

V ar
�
�̂j

�
= lim

T!1

�
�EH

�
 j
�
�0j
����1

(8)

where H (f) = @2f=@�@�0 denotes the Hessian matrix of a function f(�). Since this asymptotic

equivalence does not hold for the local likelihood function `j of Giraitis et al. (2016), we propose a

1A quasi-Bayesian estimator can be de�ned as the minimiser of some expected loss function, for example for the
quadratic loss function, the minimiser is the posterior mean

R
�
�jpj(�j jY )d�j :
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modi�cation that re-scales `j by employing a di¤erent weighting scheme:

'j(�j) :=
TX
t=1

#jtlt
�
ytjyt�1

�
#jt := {jTwjt for j; t 2 f1; :::; Tg (9)

where lt is the log-likelihood function that appears in (3), and wjt and {jT are de�ned in (4)

and (6) respectively. It is clear that the objective functions 'j(�j) and `j(�j) give rise to the

same maximiser �̂j . However, unlike the case  j = `j , the generalised information matrix equality

(8) holds for the objective function  j = 'j ; thereby producing a valid posterior variance. The

derivation of the asymptotic results based on objective function (9) is summarised by the following

proposition.

Proposition 1. Let � be the parameter space of �j, and de�ne Jj(�0j ) := � 1
{jT EH

�
'j
�
�0j
��
.

Denote the probability density of the normal distribution N
�
0; Jj(�

0
j )
�1� by

p1(x) :=

vuut ��Jj(�0j )��
(2�)dim(�

0
j )
exp

�
�1
2
x0Jj(�

0
j )x

�
:

Consider the following family of random vectors:

Hj :=
�
hj �

p{jT
�
�j � �0j

�
� Jj(�0j )�1r'j(�0j )=

p{jT : �j 2 �
	
:

Then, for all j = [�T ], 0 < � < 1; the quasi-posterior density pj (hj) of the transformation hj,

based on the objective function (9), for any random vector hj 2 Hj , is asymptotically approximated

by p1(hj) in total variation of moments norm:Z
HTj

(1 + khk�) jpj (h)� p1(h)j dh!p 0 as T !1

for all � > 0.

Remarks

1. The assumptions and proof can be found in Appendix 7.1.1. Assumptions 2 and 3 are high

level assumptions and require veri�cation on a case-to-case basis2.

2 In a more recent version of this work, we provide veri�cation of Assumptions 2 and 3 for the linear Gaussian
local likelihood function.
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2. By consistency of �̂j ; 1
{jTr'j(�

0
j )!p 0 as T !1: Proposition 1 therefore implies that when

the sample size T is large, draws from pj(�j) have the following approximate distribution:

�simj � N
�
�0j ;
�
{jTJj(�0j )

��1�
:

Since {jT ! 1 for all j, we conclude that the mean and median of the quasi-posterior

distribution pj(�j) are also consistent. Moreover, con�dence intervals constructed using the

variance of pj(�j) provide asymptotically valid inference because the quasi-posterior has the

same asymptotic variance as the extremum estimator of Giraitis et al. (2016).

3. The violation of the information equality (8) by the objective function `j of Giraitis et al.

(2016) is irrelevant for the frequentist estimators studied in that paper; it only becomes an

issue after augmentation of the local likelihood `j by a prior density. To provide an intuition

of why normalisation of the weights by {jT is required in (9), note that, if the weights wjt

satisfy
PT

t=1wjt = 1 as in Giraitis et al. (2016), the local likelihood would not dominate the

prior as T ! 1. For the prior to vanish, we require that the weights wjt sum to something

that increases with the sample size; and in order to obtain the same rate of convergence as

in Giraitis et al. (2016), the weights #jt need to sum to {jT :

2.3 Linear Gaussian Univariate Setting

In this Section we derive closed form Normal-Gamma expressions for the quasi-posterior distribution

of a linear regression model with time varying parameters. Let

yt = �0t + x1t�1t + :::xkt�kt + "t; where "t � NID(0; �2t )

and stacking xt in a 1� (k+1) vector of exogenous �xed regressors, xt := (1; x1t; :::; xkt) and �t as

a (k + 1)� 1 vector of time varying parameters, �t = (�0t; �1t; :::; �kt)0; we can re-write the model

as

yt = xt�t + "t:

"t are independent normally distributed mean zero disturbances with a variance �2t ; also indexed

by time. For convenience, we will work with the precision, denoted by �t; and given by the inverse

of the variance parameter, �t := ��2t :

Employing the proposed normalisation of the weights in (9) and following the frequentist ap-
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proach of Giraitis et al. (2016), the weighted likelihood of the sample Y := (y1; :::; yT )
0 at each

point in time j is given by

Lj(Y j�j ; �j ; X) = (2�)�Sj=2�
Sj=2
j exp

(
��j
2

TX
t=1

#jt(yt � xt�j)2
)

where Sj =
PT

t=1 #jt = {jT and {jT is de�ned in (6). One can equivalently write the local likelihood

in a more compact form as

Lj(Y j�j ; �j ; X) = (2�)�Sj=2�
Wj=2
j exp

�
��j
2
(Y �X�j)0Dj(Y �X�j)

�
(10)

where Y := (y1; :::; yT )0 is a T�1 vector, X = (x01; :::; x
0
T )
0 is a T�k matrix andDj is a T�T diagonal

weighting matrix, containing the kernel weights in its main diagnal, Dj = diag(#j1; :::; #jT ):

Next, assume that �j and �j have Normal-Gamma prior distribution for j 2 f1; :::; Tg:

�j j�j � N
�
�0j ; (�j�0j)

�1
�
; �j � Ga(�0j ; 0j) (11)

where �0j is a k � 1 vector of prior means, �0j is a k � k positive de�nite symmetric matrix, and

�0j and 0j are the shape and scale parameters of the Gamma distribution respectively.

Proposition 2. Combining the weighted likelihood Lj in (10) with the prior in (11), �j and �j

have Normal-Gamma quasi-posterior distribution for j = f1; :::; Tg:

�j j�j ; X; Y � N
�e�j ; (�je�j)�1� ; (12)

�j � Ga(e�j ; ej);
with posterior parameters:

e�j = e��1j (X 0DjX�̂j + �0j�0j)

e�j = �0j +X
0DjX; ~�j = �0j + Sj=2

ej = 0j +
1

2

�
Y 0DjY � e�0je�je�j + �00j�0j�0j� 3

where

�̂j = (X
0DjX)

�1X 0Djy
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is the local likelihood estimator for �j.

Proposition 3. The marginal distribution of �j is given by a multivariate non-standardised t-

distribution with 2e�j degrees of freedom:
�j jY;X � Te�j

�
~�j ;

~j
~�j
~��1j

�

where e�j, e�j, ej and e�j are de�ned in Proposition 2.
2.4 Linear Gaussian Multivariate Setting

In this Section we derive closed form Normal-Wishart expressions for the quasi-posterior distribu-

tion of a VAR(k) model with time varying parameters.

Suppose that we have an M � 1 dimensional vector yt generated by a time varying parameter

(TVP) VAR model of lag order k. Then, yt can be written as:

yt = B0t +
Xk

p=1
Bptyt�p + "t (13)

where B0t is an M � 1 vector of time varying intercepts, and Bpt is an M �M matrix of time

varying autoregressive coe¢ cients for lag p = 1; :::; k. The error term, "t, is an M � 1 vector

of normally distributed zero mean random variables, with a positive de�nite symmetric M �M

contemporaneous covariance matrix R�1t , which may be varying over time. Then, "t can be written

as: "t = R
�1=2
t �t where �t � NID(0M ; IM ). In addition, denote by xt := (1; y0t�1; :::; y

0
t�k) a

1 � (Mk + 1) vector and by Bt := (B0t; B1t; :::; Bkt) an M � (Mk + 1) matrix. Then, the model

(13) can be written as

yt = Btx
0
t + "t

After vectorising, one can write

yt = (IM 
 xt)�t +R
�1=2
t �t; (14)

where �t := vec(B0t) is an M(Mk + 1)� 1 vector for t = 1; :::; T:

Following the approach of Giraitis et al. (2016) and employing the proposed normalisation of

the weights in (9), the weighted likelihood of the sample (y1; :::; yT ) for the VAR(k) model (13) at
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each point in time j is given by

Lj(yj�j ; Rj ; X) = (2�)�MSj=2 jRj jSj=2e�
1
2

PT
t=1 #jt(yt�(IM
xt)�j)0Rj(yt�(IM
xt)�j) (15)

where Sj =
PT

t=1 #jt and the kernel weights #jt are de�ned in (9). Denote by Y = (y1; :::; yT )
0 a

T �M matrix of stacked vectors y01; :::; y
0
T and de�ne y = vec(Y ) as a TM � 1 vector. Similarly,

de�ne E = ("1; :::; "T )
0 and TM � 1 vector " = vec(E): Let X be a T �Mk + 1 matrix de�ned as

X = (x01; :::; x
0
T )
0 : Then the weighted likelihood (15) can be written in a more compact form as:

Lj(yj�j ; Rj ; X) / jRj jSj=2 exp
�
�1
2
(y � (IM 
X)�j)0(Rj 
Dj)(y � (IM 
X)�j)

�
(16)

where Dj := diag(#j1; :::; #jT ) for j 2 f1:::; Tg:

Next, assume that �j and Rj have Normal-Wishart prior distribution for j 2 f1; :::; Tg:

�j jRj � N
�
�0j ; (Rj 
 �0j)�1

�
; Rj �W (�0j ; 0j) (17)

where �0j is a (Mk+1)M � 1 vector of prior means, �0j is a (Mk+1)� (Mk+1) positive de�nite

symmetric matrix, �0j is a scalar scale parameter of the Wishart distribution and 0j is a M �M

positive de�nite symmetric matrix.

Proposition 4. Combining the weighted likelihood Lj in (16) with the prior in (17), �j and Rj

have Normal-Wishart quasi-posterior distribution for j = f1; :::; Tg:

�j jRj ; X; Y � N
�e�j ; (Rj 
 e�j)�1� ; (18)

Rj � W (e�j ; ej);
with posterior parameters:

e�j = �IM 
 e��1j � h(IM 
X 0DjX)�̂j + (IM 
 �0j)�0j
i
; (19)

e�j = �0j +X
0DjX; e�j = �0j + Sj ;

ej = 0j + Y
0DjY +B0j�0jB

0
0j � eBje�j eB0j ;

where

�̂j = (IM 
X 0DjX)
�1(IM 
X 0Dj)y (20)
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is the local likelihood estimator for �j.

The marginal distribution of the parameter vector �j can be obtained by integrating the joint

quasi-posterior distribution p(�j ; Rj jY;X) obtained in Proposition 4 over the M(M +1)=2 distinct

elements of the symmetric matrix Rj .

Proposition 5. The marginal distribution of �j is given by a multivariate non-standardised t-

distribution with e�j �Mk degrees of freedom:

�j jY;X � Te�j�Mk

 e�j ; ej 
 e��1je�j �Mk � 2

!

where e�j, e�j, ej and e�j are de�ned in Proposition 4.
2.5 Conditional quasi-posterior distributions

There are two cases of particular interest to be considered for the model (14): �rst, when the

covariance matrix R�1=2t is known; second, when the parameter vector �t is known. The resulting

closed form conditional quasi-posterior densities, derived in Propositions 4 and 5 below, are useful

for the design of the Gibbs algorithms for estimating model (14) generated by mixtures of �xed

and time varying parameters. These Gibbs algorithms are developed in Section 2.8.

Case 1. For known covariance matrix R�1t , the model (14) can be transformed in the following

way:

eyt = ext�t + �t; �t � NID(0M ; IM );

eyt = R
1=2
t yt; ext = R

1=2
t (IM 
 xt): (21)

Case 2. For known �t, the model (13) can be written as

"t = yt � (IM 
 xt)�t = R
�1=2
t �t; �t � NID(0M ; IM ):

Proposition 6. If a N
�
�0j ; V

�1
0j

�
prior distribution is selected for �j in Case 1, the quasi-

posterior distribution of �j is given by N
�e�j ; eV �1j

�
with posterior mean and variance

e�j = eV �1j

�XT

t=1
#jtex0teyt + V0j�0j� ; eVj = V0j +

XT

t=1
#jtex0text (22)
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for each j 2 f1; :::; Tg, where ext and eyt are de�ned in (21).
Proposition 7. If a Wishart W (�0j ; 0j) prior distribution is selected for Rj in Case 2, the

quasi-posterior of Rj is also Wishart W (e�j ; ej) with posterior parameters
e�j = �0j +

XT

t=1
#jt; ej = 0j +

XT

t=1
#jt"

0
t"t (23)

for each j 2 f1; :::; Tg :

2.6 Optimal prior shrinkage and optimal lag

If the VAR dimension is large, it is convenient to have an automatic way to select the prior tightness

�0j and the most widely used approaches are the Minnesota prior proposed by Litterman (1980)

and the sum of coe¢ cients prior developed by Doan, Litterman and Sims (1984). These require that

the researcher chooses a small number of hyperparameters that control the overall tightness of the

prior. The question of optimal (i.e. data-driven) choice of hyperparameters and the related question

of choosing optimal lag order for the VAR model has received a lot of attention in the Bayesian

literature with papers such as Phillips (1995), Carriero, Kapetanios and Marcellino (2012), Carriero,

Clark and Marcellino (2015a), Giannone, Lenza and Primiceri (2015). To this end, Carriero et al.

(2012, 2015) maximise the marginal likelihood of the data, given by

p(Y ) =

Z Z
p(Y j�;R)p(�jR)p(R)d�dR

over a �ne grid of points for the overall prior tightness (or the lag order). Giannone et al. (2015)

use a hierarchical prior for the overall tightness parameter �; p (�) which then delivers a posterior

p(�jY ) / p(Y j�)p(�):

In the Proposition 8 below, we derive a closed form expression for the quasi-marginal likelihood

p(Y ) in the setup of time varying parameter VAR model. There is one such expression for each

point in time, so that if the researcher wants to obtain optimal shrinkage (or lag order) for the

estimation of the parameters at some point in time j, she can maximise the analytic expression

below at time j with respect to the overall shrinkage hyperparameter or proceed by specifying a

hierarchical prior for it.

26



Proposition 8. The quasi-marginal likelihood of the sample Y is given by

pj(Y ) =

Z Z
p(Y j�;R)p(�jR)p(R)d�dR

=
(2)(M�1)Sj=2 j�0j j(Mk+1)=2 �M (e�j=2) ��0j���0j=2

�Sj=2 je�j j�(Mk+1)=2 �M (�0j=2)
��ej��e�j=2 for j 2 f1; :::; Tg:

Remarks.

1. The quasi-posteriors derived in Proposition 2 and Proposition 4 share similarity with the

Normal-Gamma and Normal-Wishart conjugate posterior results in the Bayesian VAR liter-

ature respectively. However, the QBLL approach is augmented to include the kernel weights

#jt and provides posterior distributions for each point in time j, thereby accommodating time

variation in the parameters. Note that the result in Proposition 1 applies to a system of a

general form; however, since the focus of this Chapter is linear Gaussian models, we restricts

attention on VAR systems.

2. While the model in (13) is of parametric form, the time variation in the parameters is dealt

with nonparametrically: the sequence of parameters needs only satisfy one of the �slow drift�

conditions (1) or (2), which encompass a wide class of processes without the need to impose

a speci�c modelling restrictions on the parameters.

3. The QBLL approach provides a framework for accommodating prior beliefs on the presence

of time variation in the parameters, since the prior parameters are allowed to vary over time.

4. Quasi-Bayesian point estimators for �j and R
�1
j can be obtained by using the means of the

quasi-posterior distribution in Proposition 4. For �j ; the posterior mean is given by e�j in
(19). For R�1j , the Wishart property of Rj implies an inverse Wishart IW (~�j ; ~j) distribution

for R�1j , with posterior mean given by ~j=(~�j �M � 1), in the notation of Proposition 4.

5. In view of the modi�cation of the kernel weights in (9), the quasi-Bayesian estimators in Re-

mark 4 are asymptotically equivalent to the local likelihood estimator of Giraitis et al. (2016)

and thereby inherit the latter�s consistency and asymptotic normality properties. In particu-

lar, e�j is a weighted average of the prior mean, �0j ; and the local likelihood estimator in (20)
with relative weights given by IM
(�0j+X 0DjX)

�1�0j and IM
(�0j+X 0DjX)
�1X 0DjX re-

spectively. The former expression depends positively on the prior tightness ��10j and converges

to zero as T !1; the latter expression converges to 1. Convergence of both expressions (and
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hence asymptotic negligibility of the priors) applies because the modi�ed kernel weights #jt

ensure that plimT!1X 0DjX = 1. Similarly, the posterior mean for R�1j is asymptotically

equivalent to the local likelihood estimator of Giraitis et al. (2016).

6. Despite the asymptotic equivalence of the quasi-Bayesian and local likelihood estimators

discussed in Remark 5, the prior distribution may have a considerable small sample e¤ect: a

suitable choice of prior can improve the �nite sample performance of the frequentist estimator

and can help avoid over-�tting in VAR systems. Moreover, the prior plays an essential role in

large-dimensional VAR systems, where the local likelihood estimator may be unde�ned due

to lack of invertibility of X 0DjX. In such cases, the presence of the prior ensures feasibility

of the QBLL estimator.

2.7 Discussion

We provide a discussion of the relative merits of the proposed QBLL approach compared to widely

used state space approaches to the estimation of the time varying parameters �j and R
�1
j . The most

serious limitation of state space methodology is the inability to accommodate large dimensional

VAR systems, and we provide an additional comparison of our QBLL approach to alternative

methods that are able to deal with large dimensions.

2.7.1 Comparison to state space models

Writing a VAR model in state space requires adding the drifting parameters to a state vector

of latent variables. This involves the speci�cation of a stochastic process for modelling these

unobserved parameters, with a random walk process being the most common assumption in the

literature (see for example, Cogley and Sargent (2002, 2005), Primiceri (2005), Mumtaz and Surico

(2009), Cogley et al. (2010) and Clark (2012)). This assumption is convenient as it is the simplest

way to induce persistence in the parameters and, at the same time, considerably reduces the number

of additional coe¢ cients added to each state equation. However, inaccurate speci�cation of the state

equation as a random walk invalidates inference, even asymptotically. The �nite sample distortions

resulting from such misspeci�cation can be as severe as coverage rates of 30% for a nominal of 95%,

as demonstrated in the Monte Carlo exercise in Section 2.9. Similar evidence for a univariate model

is presented in Appendix 7.1.11. State space models also require additional assumptions about how

the innovations in the newly added state variables are correlated across equations.
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Although state space models make use of Bayesian tools such as MCMC algorithms, it is

arguable that the drifting parameters no longer receive a Bayesian treatment. While prior distri-

butions are speci�ed for the initial values of the �lter and for the additional coe¢ cients guiding

the processes, the actual drifting parameters are now latent variables. Consequently, some of the

bene�ts of Bayesian estimation are forgone and state space models can run into issues such as non-

stationary draws from the time varying autoregressive matrices or values that make little economic

sense. These di¢ culties can be overcome if prior distributions for the drifting parameters can be

directly speci�ed at each point in time, as is the case with the proposed QBLL estimators.

Another issue that arises when modelling the drifting covariance matrix R�1j in a state space

setup is the potential loss of the positive de�nite property of this matrix, if the elements of R�1j

are modelled as drifting stochastic processes. To address this issue, Cogley and Sargent (2005),

Primiceri (2005) and Cogley et al. (2010) diagonalise the covariance matrix using Cholesky de-

composition and then assume that the diagonal elements follow a random walk in logarithms,

thus ensuring they remain positive. This requires additional modelling assumptions relating to the

stochastic properties of the elements of lower triangular matrix in the Cholesky decomposition.

Diagonalisation of the covariance matrix is useful for conducting structural analysis and Canova

and Perez Forero (2015) shows how to estimate time varying identifying restrictions that are not

necessarily just-identi�ed and recursive. However, in models where structural shock analysis is not

required, diagonalisation has only been employed as means to facilitate estimation of the drifting

volatilities (Cogley and Sargent (2005), Clark (2012)). The QBLL approach permits direct esti-

mation of R�1j , which has an inverted-Wishart posterior density and hence remains symmetric and

positive de�nite at each point in time, thus making diagonalisation redundant. When applied to

structural shock analysis, the QBLL estimator is informative on the presence of time variation in

the identifying restrictions, this information being an outcome of the estimation procedure rather

than a maintained assumption.

Perhaps the most important limitation to the practical application of state space methodology

is their inability to accommodate large dimensional models. The size and complexity of the state

space increases substantially with the VAR dimension, since an extra state equation is required

for each parameter as well as an additional shock and additional coe¢ cients guiding the process4.

As a result, state space models su¤er from dimensionality problems and their application to the

4For instance, in a state space setting, a four variables TVP VAR (2) with stochastic volatility requires the addition
of 40 state equations.
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estimation of TVP-VAR models is limited to a model of three to four variables. Additional complex-

ity in the estimation procedure of state space models arises from numerical approximation of the

joint posterior density conducted by MCMC algorithms. On the other hand, the proposed QBLL

methodology admits a closed form joint posterior density, allowing estimation of VAR models of

size of over 80 variables5, as demonstrated in Section 2.10.2.

2.7.2 Comparison to alternative methods for large TVP-VARs

To address the dimensionality problems of state space models, Koop and Korobilis (2013) employ

a �forgetting factor�approach, which involves discounting past observations in the Kalman �lter

prediction step. Their approach provides a remedy to the dimensionality problem but remains

susceptible to the modelling limitations of state space methods discussed in the previous Section;

e.g. lack of robustness to misspeci�cation of the state equations.

The paper of Kapetanios, Marcellino and Venditti (2015) also proposes a solution to the dimen-

sionality problem, employing a procedure based on the frequentist kernel estimator of Giraitis et al.

(2016). They propose a stochastic constraint estimator and a ridge estimator in order to achieve

shrinkage of their VAR parameters and avoid over-�tting. Their stochastic constraint estimator

coincides with the mean of the QBLL posterior in equation (19), while their ridge estimator is a

special case of (19). The treatment of the VAR parameters in Kapetanios et al. (2015) is frequentist

and does not allow for: (i) posterior distributions varying over time; (ii) a mechanism for taking into

account prior beliefs about the volatilities. The QBLL approach produces a closed form expression

for the joint posterior density in (18) and can incorporate prior beliefs about R�1j in the form of

the parameters �0j and 0j . An additional advantage of the methodology of this Chapter, is that

Bayesian analysis provides a framework for the construction of MCMC algorithms which enables

the estimation of mixtures of time varying and time invariant parameters.

2.8 A Gibbs sampling approach

There are cases when the researcher would like to consider the model (13) outlined in Section 2.5

with time invariant autoregressive coe¢ cients � and time varying variances R�1t . Such models

have been proposed by Primiceri (2005) and Sims and Zha (2006) have become popular for being

able to �t well macroeconomic data when the sample considered contains periods characterised

5Such a VAR(1) model with 80 variables with time variation in the parameters and the covariance matrix would
require the use of 9720 state equations.
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by di¤erent volatility; for example, data containing the high volatility periods of the oil crises

followed by the low volatility periods of the Great Moderation. Alternatively, the researcher might

want to keep the variances of the errors �xed over time and allow for time varying autoregressive

coe¢ cients, as in Cogley and Sargent (2002). This approach also has merits: an AR model with

drifting autoregressive coe¢ cients is a �exible framework that can �t a range of nonlinearities.

Such models are popular and widely used in other disciplines such as image and signal processing

(see for example, Kitagawa (1996), Abramovich, Spencer and Turley (2007)). Another approach

useful in some applications assumes most parameters to be �xed but one or two, interesting from

economic perspective, are allowed to vary over time.

It is therefore desirable to develop a framework of inference that encompasses all the above

scenaria by allowing for mixtures of time varying and time invariant parameters. To this end, we

utilise the Bayesian theory developed in Section 2.5 in order to design several Gibbs algorithms

that can produce approximate joint posterior distributions for mixtures of time varying and time

invariant parameters. Such cases are not covered by the estimators of Giraitis et al. (2014, 2016)

and are only covered by state space models at the cost of possible state equation misspeci�cation

and VAR dimensionality restrictions, as discussed in Section 2.7. The algorithms proposed below

perform well with di¤erent parameter processes and allow the researcher to remain agnostic about

the parameters�data generating process.

2.8.1 Homoscedastic BVAR model with time varying parameters

Consider an M -dimensional process yt de�ned by a VAR model with time-varying autoregressive

parameters and time invariant volatility: yt = (IM 
 xt)�t + R�1=2�t; � � N (0M ; IM ); where xt
is a 1 �Mk + 1 vector process de�ned in (13) and �t is M(Mk + 1) � 1 vector of time varying

coe¢ cients:

A Gibbs algorithm that can sample from the joint quasi-posterior of �t and R
�1 can be con-

structed in the following way. Conditional on a draw R; the model can be rede�ned as

eyt = R1=2yt = ext�t + �t (24)

where ext := R1=2(IM 
xt): Assuming a normal prior N (�0j ; V0j) for the parameter process �j , the

quasi-posterior distribution of �j , established in Proposition 6, is also normal N (e�j ; eVj) at each
point in time j with parameters given in (22). On the other hand, conditional on a draw from the
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history of �j ; �1:T = (�1; :::; �T ), the model (24) can be written as e"t = yt�(IM
Xt)�t = R�1=2�t:

Then, assuming a Wishart prior distribution W (�0; 0) for R
�1 and stacking eE = (e"1;e"2; :::;e"tT )0,

the conditional posterior of R�1 can be written as R�1jX;Y; �1:T �W (e�; e), where
e� = �0 + T; e = 0 + eE0 eE: (25)

The conditional posterior of R�1 is of standard form and the conditional quasi-posterior distribution

of �j , characterised in Proposition 6, can be easily drawn from; hence, the estimation of the model

in (24) permits the use of a Gibbs algorithm with the following steps.

Algorithm 1. Step 1. Initialise the algorithm with a guess, R�1;0:

Then for i = 1; :::; N , iterate between steps 2 and 3.

Step 2. Draw �ij jY;X;R�1;i�1 from N (e�j ; eVj) with posterior parameters de�ned in (22) for
each point in time j 2 f1; :::; Tg :

Step 3. Draw R�1;ijX;Y; �i1:T from W (e�; e) with posterior parameters de�ned in (25).
Standard Markov chain Monte Carlo (MCMC) results apply as follows. Since the form of the

quasi-posterior distributions has been established and since the steps above constitute a Markov

chain, iterating between step 2 and 3 results into convergence of the distribution of the chain to its

stationary distribution and hence, draws from the algorithm (after discarding a fair proportion of

initial draws) can be used for an approximation of the joint quasi-posterior distribution of �j and

R�1.

2.8.2 Heteroscedastic BVAR model with �xed parameters

Consider an M -dimensional process yt de�ned by the model

yt = (IM 
 xt)� + "t; "t � N (0; R�1t ) (26)

where xt is a 1 � Mk + 1 vector process de�ned in (13) and � is M(Mk + 1) � 1 vector of

time invariant coe¢ cients: The error term "t has a time varying variance covariance matrix R�1t .

Conditional on observing a draw of R�11:T from the history (R�11 ; :::; R�1T ), the model reduces to

a GLS problem with known time varying covariance matrix. Pre-multiplying equation (26) with

R
1=2
t , we obtain R1=2t yt = R

1=2
t (IM 
 xt)� + �t; �t � N (0M ; IM ); and after de�ning byt := R

1=2
t yt

and bxt := R
1=2
t (IM 
 xt); byt follows a homoscedastic model byt = bxt�+ �t: Assuming a normal prior
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N (�0; V0) for �; the posterior distribution is also normal N (e�; eV ); with parameters
eV =  TX

t=1

ex0text + V �10

!�1
; e� = eV  TX

t=1

ex0teyt + V �10 �0

!
: (27)

Conditional on observing the coe¢ cients �; the model simpli�es to "t = yt � (IM 
 Xt)� where

"t � N (0M ; R�1t ) and is also observed: Then, by assuming a Wishart prior W (�0j ; 0j) for R�1j at

each point in time j 2 f1; :::; Tg ; Proposition 7 implies that the conditional quasi-posterior of R�1j
at each point in time j is also Wishart W (e�j ; ej); with parameters given in (23).

Since, the conditional posterior of � is of standard form and the quasi-posterior distribution

of R�1j has been characterised in Section 2.5, a Gibbs algorithm can be constructed in order to

recursively draw from the conditional posterior distributions of � and R�11:T to approximate their

joint posterior distribution. The algorithm consists of three steps.

Algorithm 2. Step 1. Initialise the algorithm with �0:

For i = 1; :::; N iterate between steps 2 and 3.

Step 2. For each j 2 f1; :::; Tg draw R�1;ij jX;Y; �i�1 fromW (e�j ; ej) with posterior parameters
de�ned in (23).

Step 3. Draw �ijY;X;R�1;i1:T from N (e�; eV ) with posterior parameters de�ned in (27).
Note that it is easy to extend the models (24) and (26) respectively to include: i) a set of

regressors which enter (24) with time invariant coe¢ cients �; in addition to the regressors Xt which

enter with time varying coe¢ cients �t; ii) a set of regressors which enter (26) with time varying

coe¢ cients �t in addition to the regressors xt which enter with invariant coe¢ cients, �. For space

consideration, the corresponding algorithms are outlined in Appendix 7.1.9.

2.8.3 Time varying structural BVAR model

Algorithms 1 and 2 involve reduced-form VAR models. In macroeconomic applications, structural

VARs (SVARs) are often applied to analyse macroeconomic shocks and transmission of macroeco-

nomic shocks to key variables. SVAR models orthogonalise the VAR residuals so that the resulting

�structural�shocks have a diagonal covariance matrix. The simplest such orthogonalisation of the

M �M covariance matrix R�1t considered in the literature involves a Cholesky decomposition. In
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particular, consider the model:

yt = (IM 
Xt)�t + "t; var("t) = R�1t = A�1
�1t A�10 (28)

where 
�1t is diagonal matrix with elements !it; varying over time, and A is a lower triangular

matrix with ones on its main diagonal. Providing a Bayesian treatment for the 1
2M(M � 1) non-

zero elements of A is straightforward. As shown in Cogley and Sargent (2002), the VAR model can

be written as

A(yt � (IM 
Xt)�t) := Ay�t = 

�1=2
t �t; �t � N (0; IM ): (29)

As argued in Primiceri (2005), the researcher might also want to allow the orthogonalisation scheme

of the structural shocks to be time-varying. In Primiceri (2005), this involves adding the non zero

or one elements of At to the state vector and specifying stochastic processes for them (in his

application, these follow a random walk process). Below, we present an alternative algorithm that

can provide estimates over time of At, by employing the nonparametric kernel-based QBLL method,

which does not require specifying parameter process.

Conditioning on �t and 
t; the model in (28) with drifting lower triangular matrix At simpli�es

to a set of k � 1 equations in (29), i = 2; :::; k; with equation i having y�it as a dependent variable

and �y�jt as regressor:

!�1it y
�
it| {z }bYit
= �!�1it [y

�
1t; :::; y

�
i�1;t]| {z }bXit

26664
ai1;t
...

ai;i�1;t

37775+ �it:

Assuming a normal prior N (a0;ij ; �0;ij) for aij ; the coe¢ cients of the ith row of matrix Aj at each

point in time j 2 f1; :::; Tg ; the quasi-posterior distribution of aij is also normal N
�eaj ; eVj� ;with

parameters

eVj =  ��10;ij + TX
t=1

#jt bX 0
t
bXt

!�1
; eaj = eV �1j

 
TX
t=1

#jt bX 0
it
bYit + ��10;ija0;ij

!
: (30)

It is straightforward to build this step into one of the previously outlined Gibbs algorithms (with

or without time variation in the VAR�s autoregressive parameters or in the volatility) in order to

draw �t; 
t and At from their conditionally conjugate quasi-(or standard) posterior distributions in
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order to approximate their joint quasi-posterior distribution. The kernel approach can be extended

to the estimation of not necessarily just-identi�ed or recursive time varying identifying restrictions;

we leave this question for future research.

2.9 Monte Carlo

In this Section, we design a Monte Carlo exercise to study the �nite sample properties of the

QBLL estimators introduced in this Chapter and how they compare to the alternative state space

approach. We limit our attention to a two dimensional VAR(1) model with no intercept term

(Appendix 7.1.11 contains some earlier Monte Carlo results with a univariate models and also

compares the QBLL approach with non-linear particle �lter). We simulate data using four di¤erent

data generating processes (DGPs) and estimate the models we want to compare based on these

simulated samples. Sample sizes of 100, 500 and 1000 are considered and due to computational

considerations, 300 replications for each DGP and sample size are simulated. In each case, we

compute the bias and the root mean square error (RMSE) of the estimators. For simplicity, the

average bias and the root of the MSE over time are reported, summarised averaging over the

autoregressive and covariance parameters respectively. We also report the 95% coverage rates for

the parameter estimates, computed as the proportion of time that the true parameter �nds itself

in the 95% posterior con�dence intervals implied by the di¤erent models. For the QBLL approach,

we use the means of the quasi-posterior density as point estimates, the normal kernel in (5) for the

kernel weights with bandwidth of T 0:5 and a Minnesota type prior6 with loose overall shrinkage

� = 1: Our choice of bandwidth H = T 0:5 is motivated by the optimal bandwidth choice used for

inference in time varying random coe¢ cient models, see Giraitis et al. (2014). For all state space

models in the Monte Carlo exercise, we use the algorithm outlined in Cogley and Sargent (2005)

with 3,000 Gibbs draws7, modi�ed to allow for time varying Cholesky lower triangular matrix,

whose elements are modelled as a random walk, as in Primiceri (2005). The priors and initial

values of the state space models are set using the initial 10% of the observations as a presample.

6The priors for the autoregressive parameters are as in Bańbura, Giannone and Reichlin (2010) with � = 1 and
the Wishart prior parameters for the volatilities are as in Kadiyala and Karlsson (1997).

7From which the �rst 1,000 have been discarded.
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DGP I. The �rst DGP we consider is a model with �xed parameters and �xed volatility:

yt = Byt�1 + "t; "t � NID(0;	); y0 = 0; (31)

B =

24 0:7 0:1

0:2 0:6

35 and 	 =

24 0:2 0:1

0:1 0:4

35 :
DGP I

Autoregressive Volatility

Bias RMSE Coverage Bias RMSE Coverage

T=100 QBLL_TVP_TVV -0.0307 0.1698 0.9326 -0.0105 0.0605 0.9292
SS_TVP_TVV -0.0207 0.1275 0.9526 0.0002 0.0574 0.9032

T=500 QBLL_TVP_TVV -0.0134 0.1033 0.9457 -0.0030 0.0410 0.9383
SS_TVP_TVV -0.0072 0.0779 0.9163 -0.0026 0.0347 0.8592

T=1000 QBLL_TVP_TVV -0.0126 0.0874 0.9399 -0.0051 0.0341 0.9424
SS_TVP_TVV -0.0081 0.0677 0.8957 -0.0077 0.0318 0.8197

Table 1. Bias, RMSEs and coverage rates of models based on DGP I for 100, 500 and 1000 observations respectively.

Our motivation is to assess how well models featuring time varying parameters can �t a simple

time invariant model. Table 1 presents the bias, RMSE and coverage rates for the QBLL estimator

featuring time varying parameters and volatility (QBLL_TVP_TVV) and a state space model,

with drifting parameters and volatilities, referred to as SS_TVP_TVV. It is clear from Table 1

that both models deliver valid inference. For small samples, the state space approach has smaller

RMSEs, but when the sample size increases, both models deliver similar performance. With the

increase of the sample size, the coverage rate of the state space model for both the autoregressive

parameters and the variance deteriorates, and when the sample size is 1000, the coverage rate is

considerably below the nominal 95%, implying the presence of type I errors. On the other hand,

the con�dence intervals implied by the QBLL approach remain valid for all sample sizes.

DGP II. The second DGP is given by a model with �xed autoregressive matrix as in (31) and

time varying volatility:

yt = Byt�1 + "t; "t � NID(0;�t); y0 = 0;

�t = H�1
t 	tH

�10
t
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where Ht is a lower triangular matrix with ones on its main diagonal and bottom left element h21,

	t is a diagonal matrix, with diagonal elements, '11 and '22; and

h21;t =

Pt
i=1 �ip
t

; �i � NID(0; 0:12);

log'kk;t =

Pt
i=1 �

k
ip

t
; �ki � NID(0; 0:12); k = 1; 2:

DGP II

Autoregressive Volatility

Bias RMSE Coverage Bias RMSE Coverage

QBLL_TVP_TVV -0.0301 0.1532 0.9334 -0.0138 0.2186 0.9328
T=100 SS_TVP_TVV -0.0168 0.1170 0.9508 -0.0051 0.2028 0.8389

QBLL_FP_TVV -0.0073 0.0801 0.9492 0.0232 0.2405 0.9564
SS_FP_TVV -0.0072 0.0986 0.8567 0.0013 0.1876 0.8211

QBLL_TVP_TVV -0.0137 0.0940 0.9416 -0.0057 0.1490 0.9401
T=500 SS_TVP_TVV -0.0069 0.0710 0.9183 -0.0133 0.1347 0.8019

QBLL_FP_TVV -0.0023 0.0345 0.9492 0.0114 0.1546 0.9491
SS_FP_TVV -0.0021 0.0568 0.7483 -0.0118 0.1377 0.7963

QBLL_TVP_TVV -0.0110 0.0777 0.9414 -0.0093 0.1254 0.9326
T=1000 SS_TVP_TVV -0.0063 0.0653 0.8626 -0.0187 0.1206 0.7900

QBLL_FP_TVV -0.0028 0.0260 0.9400 0.0048 0.1290 0.9424
SS_FP_TVV -0.0024 0.0512 0.7100 -0.0166 0.1254 0.7892

Table 2. Bias, RMSEs and coverage rates of models based on DGP II for 100, 500 and 1000 observations respectively.

The processes used for h21;t, log'11;t and log'22;t resemble random walk processes, but are

normalised by
p
t in order to have �nite variance, see Giraitis et al. (2014). In addition to the two

models we �t to DGP I: QBLL_TVP_TVV and SS_TVP_TVV, we also include a QBLL model

with �xed autoregressive parameters and time varying volatility, estimated using Algorithm 2 in

Section 2.8 (QBLL_FP_TVV) and, similarly, a state space model with constant parameters and

stochastic volatility (SS_FP_TVV). Table 2 displays the bias, RMSEs and coverage rate of the

di¤erent models estimated with data generated with DGP II. It is clear from Table 2 that both

QBLL_TVP_TVV and SS_TVP_TVV approaches perform well, with the state space model

delivering: (i) smaller RMSEs when the sample size is small, for both the parameters and the

volatility, but also, (ii) lower coverage rates (implying too narrow con�dence intervals and the

presence of type I errors) which seem to deteriorate with the sample size. Additionally, the two

models featuring �xed autoregressive coe¢ cients and drifting volatility: QBLL_FP_TVV and

SS_FP_TVV models perform better than QBLL_TVP_TVV and SS_TVP_TVV respectively,

particularly for the autoregressive parameters. This is to be expected, since both have a mechanism

to build this additional information of parameter invariance in the estimation procedure.
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DGP III. The third DGP is a model featuring both drifting parameters and volatility

yt = Btyt�1 + "t; "t � NID(0;�t); y0 = 0: (32)

We use the same process for the volatility as in DGP II. In addition, the autoregressive parameters

are generated as bounded random walks, subject to stability at each point in time:

Bkm;t =

Pt
i=1 �ip
t

; �i � NID(0; 0:12); for k;m = 1; 2:

DGP III

Autoregressive Volatility

Bias RMSE Coverage Bias RMSE Coverage

T=100 QBLL_TVP_TVV -0.0046 0.1703 0.9473 -0.0275 0.2191 0.9350
SS_TVP_TVV -0.0058 0.1212 0.9135 0.0031 0.2121 0.8433

T=500 QBLL_TVP_TVV -0.0001 0.1129 0.9449 -0.0106 0.1527 0.9423
SS_TVP_TVV 0.0002 0.0662 0.8986 -0.0046 0.1398 0.8058

T=1000 QBLL_TVP_TVV -0.0022 0.0911 0.9500 -0.0082 0.1247 0.9447
SS_TVP_TVV -0.0014 0.0515 0.8936 -0.0030 0.1229 0.8151

Table 3. Bias, RMSEs and coverage rates of models based on DGP III for 100, 500 and 1000 observations respectively.

Table 3 displays the bias, RMSE and coverage rate of the di¤erent models when the data are

generated using DGP III. From Table 3, it clear that both the QBLL model and the state space

model perform well; the state space model delivers smaller RMSEs particularly for the autoregres-

sive parameters. The di¤erences between the two models point estimates narrow when the sample

size increases. Interestingly, the state space model�s con�dence intervals coverage rate deteriorates

with the sample size, implying the presence of type I errors. We �nd that the con�dence intervals

implied by the state space model are sensitive to the tightness of the prior on the variance in the

random walk state equations. We performed a robustness check and found that increasing the prior

tightness delivers worse coverage rates, but loosing the prior, which is a way to �let the data speak�,

considerably increases the di¢ culty of obtaining a stationary draw from the autoregressive matrix

of the VAR and therefore the time required to estimate the model8. Figure 1 provides a graphical

representation of the two estimation procedures for a typical realisation of the parameters and from

Figure 1, the estimates of both methods look quite similar.

8 In a robustness check, we removed the stability condition on the autoregressive matrix for all DGPs and loosened
the prior on the state equation considerably. This delivered better coverage rates, coupled with a worse RMSE
performance and a sizeable proportion of non-stable draws. These results are available upon request.
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Figure 1: DGP III. Typical realisation of the time varying parameters and volatilities

DGP IV. The fourth DGP is given by a model (32), but here the autoregressive parameters and

volatility follow the processes

Bkm;t = 0:25 sin (0:004�t) + 0:25

Pt
i=1 �ip
t

; �i � NID(0; 0:32); for m; k = 1; 2;

h12;t = 0:5 sin (0:004�t) + 0:5

Pt
i=1 �ip
t

; �i � NID(0; 0:32);

log'kk;t = 0:5 sin (0:004�t) + 0:5

Pt
i=1 �

k
ip

t
; �ki � NID(0; 0:32); k = 1; 2:

All parameters in DGP IV combine a deterministic time varying process following a sine wave and

a stochastic part, generated by the bounded random walk process, used in DGPs II and III. For

the estimation of the state space model, if the researcher knows ex-ante that the DGP contains a

deterministic time trend, this information can be further added to the state equations. However,

we continue using the random walk processes for the parameters, as these are widely used in the

literature and the motivation behind our choice is to assess the consequences of using the �wrong�

state equation. Table 4 summarises the resulting bias, RMSE and coverage rate of the di¤erent

models, including a �xed parameter BVAR model (F_BVAR) and two additional QBLL estimators,
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computed using di¤erent values of the bandwidth parameter H, when the sample is simulated using

DGP IV.

DGP IV

Autoregressive Volatility

Bias RMSE Coverage Bias RMSE Coverage

QBLL_TVP_TVV, H=T0:5 -0.0088 0.1853 0.9451 -0.0779 0.3657 0.9227
QBLL_TVP_TVV, H=T0:45 -0.0120 0.2034 0.9456 -0.0904 0.3982 0.9205

T=100 QBLL_TVP_TVV, H=T0:55 -0.0060 0.1694 0.9435 -0.0679 0.3382 0.9238
SS_TVP_TVV -0.0094 0.1332 0.8922 -0.0372 0.3934 0.8040
F_BVAR 0.0056 0.1303 0.8799 -0.0606 0.3673 0.7306

QBLL_TVP_TVV, H=T0:5 0.0057 0.1209 0.9470 -0.0204 0.2130 0.9313
QBLL_TVP_TVV, H=T0:45 0.0041 0.1384 0.9498 -0.0255 0.2402 0.9334

T=500 QBLL_TVP_TVV, H=T0:55 0.0088 0.1074 0.9399 -0.0163 0.1949 0.9202
SS_TVP_TVV 0.0302 0.1437 0.5176 -0.0349 0.3282 0.5560
F_BVAR 0.0304 0.1366 0.3992 0.0384 0.1925 0.3789

QBLL_TVP_TVV, H=T0:5 0.0092 0.1004 0.9464 -0.0009 0.1833 0.9315
QBLL_TVP_TVV, H=T0:45 0.0035 0.1174 0.9485 -0.0100 0.2006 0.9418

T=1000 QBLL_TVP_TVV, H=T0:55 0.0202 0.0930 0.9213 0.0104 0.1864 0.8666
SS_TVP_TVV 0.0545 0.1812 0.2936 -0.0015 0.3613 0.4918
F_BVAR 0.1127 0.2244 0.1697 0.1248 0.5559 0.0984

Table 4. Bias, RMSEs and coverage rates of models based on DGP IV for 100, 500 and 1000 observations respectively. The

table also contains a comparison of the QBLL estimator with bandwidth parameters T 0:45; T 0:5 and T 0:55:

From Table 4 it is clear that both the �xed parameter model and the state space model provide

invalid inference. More importantly, the problem does not vanish asymptotically, with RMSEs and

coverage rates deteriorating with the sample size: the true autoregressive parameters are outside

their 95% con�dence intervals more than 70% of time implied by the state space model, and 80%

of the time implied by the �xed parameter BVAR model for a sample size of 1000. This is evidence

that parameter time variation is an issue that cannot be ignored since �xed parameter models

in this case fail to deliver valid inference and are therefore an unsuitable choice. Moreover, we

highlight once more the point that the state space model also fails to deliver valid inference, as it

models the parameter process parametrically through the state equation and hence its statistical

properties depend on the validity of the assumptions about the state equation. On the other hand,

the nonparametric QBLL estimators remain valid in this case. Figure 2 further illustrates this last

point by displaying typical realisations of the parameters over time: the state space model in this

case does not account well for time variation and provides invalid con�dence intervals. Table 4

also compares the QBLL estimator with bandwidth parameter H = T 0:5 with two alternatives:

H = T 0:45 and H = T 0:55: From Table 4 we see that decreasing the bandwidth reduces the bias

and increases the variance of the estimator. In general, there is a bias-variance trade-o¤ and the

bandwidth selection should depend on how slowly varying the underlying process of the parameters

is, with larger bandwidths delivering smoother estimates. Giraitis et al. (2014) �nd that H = T 0:5
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Figure 2: DGP IV. Typical realisation of the time varying parameters and volatilities

is asymptotically optimal (in the sense that it minimises the rate of the MSE of the estimator)

but in DGP IV, we �nd that the estimator with slightly larger bandwidth H = T 0:55 delivers best

RMSE performance, while the estimator with H = T 0:45 is best for coverage rates.

To summarise, in this Section we show that the class of QBLL estimators exhibit good �nite

sample properties, comparable and in some cases superior to those of state space models. The

latter may su¤er from type I error with probability increasing with the sample size, as well as

non-decreasing RMSEs in case of misspeci�cation of the state equation�s parametric assumptions.

We �nd that inference based on the quasi-posterior distributions introduced in Section 2.4 not only

delivers valid con�dence intervals in all cases examined but is also robust to di¤erent processes for

the drifting parameters.
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2.10 Applications to VAR models

2.10.1 Empirical application to U.S. monetary policy and in�ation persistence

One question that has received a fair amount of attention and that divides the literature on mon-

etary policy in the U.S. is whether the high in�ation of the 1970�s was an outcome of bad policy,

suggesting the presence of time variation in the policy parameters of the model, or simply bad

luck: a structural change in the size of shocks. In other words, was the subsequent period, referred

to as the Great Moderation, a consequence of good policy under the leadership of Paul Volcker

and Alan Greenspan or was it a good luck event - a decrease in the volatilities of the shocks hit-

ting the economy. Supporters of the former view include Taylor (1993), DeLong (1997), Clarida,

Gali and Gertler (2000) and Cogley and Sargent (2002, 2005). On the other hand, Sims (1980),

Bernanke and Mihov (1998), Kim and Nelson (1999), McConnell and Perez Quiros (2000), Sims

and Zha (2006) and Primiceri (2005) have insisted on explaining this phenomenon by the presence

of changing volatility. A related question is whether in�ation dynamics has changed after the Great

Moderation period and, in particular, has in�ation persistence decreased or remained constant over

time as a consequence of the change in policy.

In this context, this Section contributes to the literature on changing monetary policy and in-

�ation dynamics in the U.S. by applying the QBLL methodology proposed in this Chapter and

revisiting classic results presented in Cogley and Sargent (2002, 2005), Primiceri (2005) and Cogley

et al. (2010). Empirical contributions arise due to the novel approach of the Chapter which main-

tains an agnostic position on the parameter variation and, in turn, provides drifts in the parameters

which are of nonparametric form and hence robust to state equation misspeci�cations. Additional

contributions arise from the longer sample period, which spans from 1954Q3-2015Q3.

We estimate a structural time varying parameter BVAR(2) model with changing volatility on

the macroeconomic series in Primiceri (2005)9 employing the QBLL approach, introduced in Section

2.4. In addition, following Del Negro (2003)�s recommendation to include commodity prices due to

their key role during the 1970�s, the model is estimated with the addition of commodity prices10 to

the set of variables. The facilitation of the simple Minnesota prior on the autoregressive matrix at

each time point allows to shrink directly the time varying elements and hence ensures stationary

draws from the quasi-posterior. For the application, we use a Normal-inverted-Wishart conjugate

9The set of variables include annual GDP de�ator in�ation, civilian unemployment rate and the secondary market
rate on the 3-month Treasury bills. Quarterly series for the unemployment rate and the nominal interest rate were
computed as 3-month averages.
10Commodity prices are measured as annual growth of Moody�s commodity price index.
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prior with overall Minnesota shrinkage coe¢ cient of 0.2 for the autoregressive parameters as in

Bańbura et al. (2010) and prior for the Wishart parameters as in Kadiyala and Karlsson (1997)11.

The model requires no stand on whether the Cholesky identifying restrictions are also time varying

or not; this is an outcome of the estimation: the full contemporaneous covariance matrices are drawn

from inverted-Wishart quasi-posterior and subsequently the Cholesky decomposition is employed

at each point in time. Of course, for the structural analysis an assumption on the ordering of the

variables is required in order to identify the monetary policy shock and we use the ordering in

Primiceri (2005)12. First, we re-write the VAR model in equation (13) in companion form:

zt = �t +Atzt�1 + �t; �t � N (0;
t): (33)

Figure 3 presents the core in�ation and natural rate of unemployment, which are computed as the

Figure 3: Core in�ation and natural rate of unemployment

11A range of robustness checks were performed. First, our results are robust to di¤erent lag orders of the VAR
model. In addition, the model was estimated with CPI in�ation instead of GDP de�ator; Fed Funds rate instead of
the 3-month Treasury bill, GDP growth instead of unemployement and oil prices instead of commodity prices. The
main results below do not change with these di¤erent speci�cations. Our results are also robust to di¤erent values of
the overall shrinkage coe¢ cient, �. In particular, the model was estimated with � = 0.05, 0.1, 0.5, 1 and 2 and the
main results do not change.
12 In particular, the ordering is in�ation, unemployment and the nominal interest rate last. In addition, commodity

price is ordered �rst. The ordering of commodity price, in�ation and unemployment is not an identifying assumption
(alternative orderings in the non-policy block were estimated as robustness checks and our results do not change);
however, the ordering of the nominal interest rate is crucial for identi�cation and implies that monetary policy a¤ects
commodity price, in�ation and unemployment with at least one quarter lag, see Christiano, Eichenbaum and Evans
(1999) for details.
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in�nite horizon forecasts of in�ation and unemployment implied by the model:

� t = lim
h!1

Etzt+1 � (I �At)�1�t;

where � t are the resulting stochastic trends of zt. It is remarkable how similar the plots in Figure 3

are both quantitatively and in terms of shape to those presented in Cogley and Sargent (2002, 2005),

even though their estimation method is considerably di¤erent. In particular, core in�ation is around

2% in the 1960s, peaks to 6.5% in the 1970s and then falls down to pre-1970s levels after mid-1980s.

The natural rate of unemployment also peaks in the 1970s but much less sharply, which is consistent

with Cogley and Sargent (2002, 2005). More interestingly, since our sample contains the recent

�nancial crisis, Figure 3 allows to assess the natural rate of unemployment during that period and

it is evident that the increase is sharp and large in magnitude with the natural rate reaching 7.5 in

2009, when actual unemployment in the U.S. reached 10%. Figure 3 also suggests a recovery in the

unemployment�s natural rate after 2009. However, it is clear that the posterior con�dence bands

are much wider at the end of the sample implying larger uncertainty about its exact value after

2009. Figure 4 presents the volatilities of the four variables in the model over time13. These are

Figure 4: Volatilities over time

13The variation in the o¤ diagonal elements of the covariance matrix can be found in the Appendix, Section 8.7.
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consistent with the results presented in Primiceri (2005). In�ation volatility peaks in the mid-1970s

and then falls dramatically during the Great Moderation period. Unemployment volatility is high

in the late 1950s (note that most of the earlier papers do not use data during the period 1950-1960,

which is typically used as pre-sample). Moreover, unemployment volatility peaks in the mid-1970s

and is relatively low during the 1990s. We �nd that the 2008 �nancial crisis causes not only a large

increase in the unconditional mean of unemployment but also in its variance, which remains high

even after 2014. Finally, from Figure 4 we see that the 3-month Treasury rate�s volatility exhibits

a large increase in 1980 with aggressive monetary policy and tackling in�ation under the leadership

of Paul Volcker as chairman of the Fed and later falls to pre-1970s levels. Figure 5 compares the

standard deviation of in�ation from Figure 4 with its unconditional standard deviation, computed

using the companion form of the model in (33) as

V (�t) = e�

hX1

j=0
Ajt
tA

j0
t

i
e0�

where e� is a selection vector. It is worth comparing these results with Cogley et al. (2010) where

they report the unconditional variance for di¤erent measures of in�ation. While the standard

deviation of in�ation peaks only once in the late 1970s, from the right panel of Figure 5 it is clear

that the unconditional standard deviation has a double peak, one around 1973 and another around

1979, coinciding with the two oil shocks. Both results are in line with evidence presented in Cogley

et al. (2010).

Figure 5: In�ation Volatility
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Figure 6: In�ation Persistence over time

Next, we turn to the question of in�ation persistence implied by the QBLL approach. Cogley

and Sargent (2002) measure persistence as the normalised spectrum of in�ation at zero. Cogley

et al. (2010) introduce a new measure which they claim can be estimated more precisely. We follow

their de�nition of in�ation persistence h steps ahead as

R2t;h = 1�
e�

hPh�1
j=0 A

j
t
tA

j0
t

i
e0�

e�

hP1
j=0A

j
t
tA

j0
t

i
e0�

:

The measure R2t;h represents the proportion of total variation explained by past shocks or equiva-

lently one minus the proportion of total variation due to future shocks. It takes values between zero

and one, with large values implying that past shocks die out slowly making in�ation more persis-

tent and hence predictable. Figure 6 presents the in�ation persistence, measured by the posterior

mean of R2t;h; computed at each point in time and for horizons ranging from one quarter to ten

years ahead. In addition, Figure 7 displays the posterior mean of in�ation persistence for selected

horizons with 16% and 84% con�dence bands. It is evident that in�ation persistence dies out with
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lengthening the forecast horizon, which is expected. Furthermore, in�ation is very persistent in the

1970s and early 1980 with two peaks roughly corresponding to the two oil shocks and persistence

dies out slower over forecast horizons. The left panel of Figure 7 looks similar to what Cogley et al.

(2010) report for in�ation persistence for one quarter ahead forecasts. However, their TVP-VAR

model delivers draws for R2t;1 which are very closely clustered at one around 1980 which they in-

terpret as possible misspeci�cation, while from the left panel of Figure 7, it is clear that the QBLL

con�dence bands for R2t;1 are bounded away from one. Another di¤erence is that the con�dence

bands for R2t;h in Figure 7, especially at medium horizons, are much more narrow than the ones

presented in Cogley et al. (2010), delivering more precise estimates. Furthermore, due to the longer

sample, we can assess in�ation persistence during the 2008 �nancial crisis, when quarterly in�ation

reached negative values in 2009 and it is clear from both Figure 6 and 7 that in�ation persistence

increases during this period. However, unlike the period of 1970-1980s, in 2008 the R2t;h measure

dies out quickly over the forecast horizon and at 12 steps ahead there is no di¤erence in in�ation

persistence during the crisis compared to previous periods.

Figure 7: In�ation Persistence

horizon In�ation Persistence 1960-1980 In�ation Persistence 1980-2006
p-value of increase p-value of decrease

1 0.916 0.899
4 0.901 0.886
12 0.928 0.860

Table 5. Posterior probabilities of change in in�ation persistence for pair-wise periods. The table displays the probability of an

increase of in�ation persistence between 1960Q1 and 1980Q1 and of a decrease between 1980Q1 and 2006Q1 respectively.

To address the question of whether there is statistical evidence of higher persistence in 1980
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compared to 1960 and statistically lower persistence in 2006 compared to 1980, Table 5 reports the

posterior probabilities of an increase between 1960 and 1980 and those of a decrease between 1980

and 2006. The values in Table 5 suggest evidence of the presence of statistically signi�cant change

in in�ation persistence for di¤erent horizons at levels close to 90% and this con�rms the evidence

presented in Cogley et al. (2010).

Next, we turn to the question of structural change in monetary policy. First, we can investigate

the systematic component of monetary policy by computing the degree of monetary policy activism.

Figure 8 displays the policy activism parameter, at; computed as: at = bt
1��t

; where bt and �t are the

coe¢ cients of one period lagged in�ation and interest rate respectively in the interest rate equation

of the VAR model. Periods in which at is below one can be interpreted as periods characterised by

passive monetary policy or periods in which the Taylor principle is violated (see Woodford (2003)

for details). From Figure 8, it is clear that the degree of policy activism implied by the QBLL

approach is always above one, implying that we do not �nd evidence of passive monetary policy

even in the periods of the oil crises. This result is at odds with evidence presented in Cogley and

Sargent (2002, 2005) and since the QBLL approach is nonparametric with respect to the parameter

processes, the time variation in at, and hence the validity of this result, do not depend on state

equation assumptions. It is also evident from Figure 8 that during the �rst years of the appointment

of Paul Volcker as a chairman of the Fed, the degree of policy activism is higher than other periods.

This is consistent with a Taylor rule featuring changing parameters and supporting evidence is

presented in Chapter 3 where we �nd in a linearised DSGE model with time varying parameters

that there is an increase in the in�ation targetting coe¢ cient after the appointment of Paul Volcker.

They also �nd that this increase coincides with a decrease in the output gap coe¢ cient, suggesting

that the Fed was giving priority to unemployment over the oil crises period.

Finally, we employ our time varying BVAR model for structural shock analysis in order to

assess structural changes in the non-systematic component of monetary policy. We investigate

whether there is evidence for changes in the transmission mechanism of the monetary policy shock

to variables, resulting from the documented time variation in the parameters. Figure 9 displays

the impulse response functions of in�ation, unemployment and the nominal rate to a monetary

policy shock. The top panel presents responses to a unit of the shock and hence measures only

changes in the transmission of the shock over time without taking into account changes in the

volatility. The bottom panel displays the responses to a one standard deviation of the shock and

these incorporate the decrease in the volatility of the monetary policy shock over the second half
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Figure 8: Monetary policy activism over time

Figure 9: IRFs to monetary policy shock after including commodity prices
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of the sample. From Figure 9, it is evident that in�ation responds negatively to a unit shock of

monetary policy apart from the periods around 1960 and 2008, i.e. there is a price puzzle during

these periods: in�ation increases with a positive monetary policy shock. Most of the puzzle goes

away when considering the changing size of the shock over time and it is clear from the bottom

left panel of Figure 9 that in�ation responds substantially more to an unanticipated monetary

policy shock during Paul Volcker�s chairmanship than in any other period. Further evidence for

Figure 10: IRFs to unit monetary policy shock for selected periods

the increase in the in�ation responsiveness to monetary policy shock can be found in the top panel

of Figure 10, from where it is clear that the di¤erence in in�ation response between 1981Q3 and

1975Q114 is statistically signi�cant. Interestingly, it appears from Figure 9 that in�ation becomes

less responsive to a monetary policy shock after the end of the second term of Paul Volcker in 1987

and from Figure 10 we also �nd statistically signi�cant di¤erence between in�ation responses during

Volcker�s and Greenspan�s years. Similarly, unemployment becomes less responsive to monetary

policy shocks during the Great Moderation period. These results are consistent with evidence

presented in Boivin and Giannoni (2006), who interpret the decreased responsiveness of in�ation

and output to a monetary policy shock after the 1980s which they also �nd in their application, as

an outcome of the monetary authority becoming more e¤ective and systematically more responsive
14The choice of dates for Figure 10 was motivated by Primiceri (2005), who uses the same periods for comparison.

He argues that these periods are representative of the typical economic conditions of the chairmanships of Burns,
Volcker and Greenspan, respectively.
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in managing economic �uctuations after 1980. Finally, unemployment responds negatively to a

positive policy shock during the recent crisis, which goes against standard monetary policy theory.

This period is characterised by record high unemployment coupled with unconventional monetary

policy, which cannot be captured by the nominal interest rate instrument frozen around the zero

lower bound (ZLB). Hence, the model implied monetary policy shock is disabled during this period

and cannot account for unemployment changes. This shortcoming can be addressed in several

ways. One could to simply end the sample period at 2008 and this strategy has been employed

by many in the literature. However, since the VAR model in (33) has a mechanism to account for

structural change explicitly, the events in 2008 do not contaminate estimates in distant periods15

and hence we choose to use the entire sample available. Alternatively, if we would like to say

something about monetary policy in this period, then additional variables should be added to

proxy for the unconventional monetary policy (for example, Baumeister and Benati (2013) identify

an unconventional monetary policy shock as a shock to the spread of the 10 year Treasury yield

over the nominal rate, while the nominal interest rate is unchanged at the ZLB). We leave this

issue to future research and instead remain cautious in interpreting these results as anything other

than misspeci�cation due to omitted variables.

To summarise, we applied our novel QBLL approach to revisit much debated issues of changing

macroeconomic dynamics, introduced in Cogley and Sargent (2002, 2005), Primiceri (2005) and

Cogley et al. (2010). We found that not only does the volatility of the series change over time but

also the autoregressive component of the VAR, implying that whereas there has been a change in

policy, especially after Paul Volcker�s appointment as chairman of the Federal Reserve, there has

also been a �luck�component implied by the considerable time variation uncovered in the volatility

of the series. Our QBLL estimator delivers results broadly consistent with evidence presented in

Cogley and Sargent (2002, 2005) and evidence of in�ation persistence in Cogley et al. (2010), even

though the estimation procedures di¤er considerably. In particular, unlike the parametric state

space approach used in previous papers, the QBLL procedure is nonparametric with respect to

the parameter processes and hence robust to various speci�cations. It is worth noting that the

proposed methodology has the added advantage of being considerably simpler and computationally

cheaper to implement and permits increasing the dimension of the VAR model to include additional

relevant variables.
15 In a robustness check, we estimated the model with sample ending in 2007Q4 and the estimation results for the

pre-crisis periods do not change.
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2.10.2 Forecasting exercise

In this Section we design a pseudo out-of-sample forecasting exercise in order to assess the forecast-

ing record of the proposed QBLL approach. In particular, we compare the forecasts of various sizes

BVAR models, with and without time varying parameters, using US data. The dataset16 is from

Stock and Watson (1996), spanning from 1950Q2 to 2014Q1. The dataset contains 87 quarterly

macroeconomic series in �rst di¤erence17. The forecast origins range from 1970Q2 to 2010Q2 and

we compute forecasts for one up to eight quarters ahead. Accuracy of point forecasts is measured

using the root mean squared forecast error (RMSFE) and forecast bias. Forecast density perfor-

mance is evaluated using log predictive scores and probability integral transformation (PIT). The

logscores and PITs are computed with the help of a nonparametric estimator to smooth the draws

from the predictive density obtained for each forecast and horizon. We test whether a model is

statistically more accurate than the benchmark against the two-sided alternative, with the Diebold

and Mariano (1995)�s statistic computed with Newey-West estimator to obtain standard errors.

The results of the Diebold-Mariano test are provided for the RMSFEs and logscores. For the bias,

we test whether the models�bias is statistically di¤erent from zero. In addition, uniformity of the

PITs is assessed using the test statistic of Berkowitz (2001), with a null hypothesis of uniform PITs.

We begin by estimating a set of small BVAR models which include 3 macroeconomic vari-

ables: GDP growth, in�ation and the 3-month Treasury rate. The models are: a �xed parameter

BVAR model (F_BVAR), a time varying parameter and volatility BVAR model estimated using

the closed form QBLL expressions derived in Proposition 4 (QBLL_TVP_TVV), a drifting para-

meter homoscedastic BVAR model estimated with the Gibbs algorithm proposed in Section 2.8.1

(QBLL_TVP_FV) and an invariant parameter heteroscedastic BVAR estimated with the Gibbs

algorithm developed in Section 2.8.2 (QBLL_FP_TVV). All BVAR models are of lag order one

and use a Normal-inverted-Wishart conjugate prior with overall shrinkage for the autoregressive

parameters as in Bańbura et al. (2010) and prior Wishart parameters as in Kadiyala and Karlsson

(1997). In addition, the use of a small dataset permits comparison with alternative state space

TVP-BVAR models. For the comparison, we estimate three di¤erent state space models: one

with both autoregressive parameters and volatilities varying over time, one with invariant volatili-

16Detailed variable descriptions and data transformations can be found in Appendix 8.7.
17The choice of using a VAR model in �rst di¤erence is motivated by results in Carriero, Galvão and Kapetanios

(2015), who show in a forecast evaluation containing various models and countries, that their BVAR model in
di¤erences performs better on average than the one in levels.
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ties and drifting parameters and one with invariant parameters and drifting volatilities18, labelled

SS_TVP_TVV, SS_TVP_FV and SS_FP_TVV respectively. Following the literature (Cogley

and Sargent (2002), Primiceri (2005), Clark (2012), Mumtaz and Surico (2009)), the parameters,

the elements of the lower triangular matrix and the log volatilities are all assumed to follow random

walk processes.

RMSFEs small models Forecast bias small models
horizon GDP growth In�ation T-bill GDP growth In�ation T-bill

F_BVAR
1 0.82 0.35 0.20 0.15* -0.05* 0.01
2 0.84 0.46 0.21 0.18* -0.05 0.01
4 0.85 0.56 0.20 0.18* -0.03 0.01
8 0.84 0.64 0.20 0.19* 0.02 0.01

SS_TVP_TVV
1 1.01* 0.82* 1.00 0.16* -0.03 0.01
2 1.00 0.80* 1.01 0.20* -0.05 0.02
4 1.01 0.81* 1.00 0.21* -0.08 0.02
8 1.01* 0.87* 1.05 0.23* -0.08 0.02

QBLL_TVP_TVV
1 1.03 0.94 1.05* 0.03 0.03 0.00
2 1.03 0.85* 1.05* 0.03 0.05 0.00
4 1.05 0.79* 1.04 0.02 0.06 0.00
8 1.04 0.77 1.04* 0.04 0.08 0.00

SS_FP_TVV
1 1.02 0.82* 1.00 0.15* -0.03 0.01
2 1.00 0.80* 1.02 0.20* -0.04 0.02
4 1.01* 0.80* 0.99 0.21* -0.05 0.02
8 1.01* 0.87* 1.00 0.21* -0.04 0.02

QBLL_FP_TVV
1 0.98 0.87* 1.00 0.15* -0.03 0.01
2 1.02 0.86* 0.99 0.19* -0.05 0.01
4 1.02 0.89* 1.01 0.20* -0.07 0.01
8 1.02* 0.97 1.00 0.20* -0.06 0.01

SS_TVP_FV
1 1.02 0.83* 1.01 0.16* 0.00 0.02
2 1.00 0.81* 1.02* 0.20* 0.00 0.02
4 1.01 0.81* 0.99 0.20* 0.02 0.02
8 1.01 0.89* 1.00 0.20* 0.05 0.02

QBLL_TVP_FV
1 1.04* 0.95 1.07* 0.03 0.03 0.00
2 1.04 0.85* 1.08* 0.02 0.05 0.00
4 1.05 0.78* 1.03 0.02 0.06 0.00
8 1.04 0.77 1.06* 0.03 0.08 0.00

Table 6. RMSFEs and forecast bias. The �gures in the left panel under F_BVAR are absolute RMSFEs, the �gures under

the remaining models are ratios of RMSFEs over the F_BVAR model. The �gures in the right panel display forecast bias for

each model. �*�, �**�and �***� indicate rejection of the null of equal performance or zero forecast bias against the two-sided

alternative at 10%, 5% and 1% signi�cance level respectively.

The left panel of Table 6 presents the absolute performance of the small time invariant BVAR

model (in RMSFEs) and the relative performance of alternative models over di¤erent horizons (num-

bers smaller than one imply superior performance of the particular model relative to F_BVAR). It

18We use versions of the algorithms outlined in Cogley and Sargent (2002, 2005) with 10,000 Gibbs draws from
which the �rst 5,000 have been discarded. The priors and initial values are set using a presample of 30 observations.
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is evident that the performance of all small models is very similar. In particular, they can rarely im-

prove over the �xed parameter BVAR model for GDP growth and the 3-month Treasury rate, while

all models deliver large and signi�cant improvements in terms of RMSFEs for in�ation. This is not

surprising, given the evidence of considerable structural change in in�ation dynamics presented in

Section 2.10.1. The right panel of Table 6 presents the forecast bias of the di¤erent models over

the sample (positive numbers imply positive bias) and one, two and three stars indicate rejection

of the null of zero forecast bias at signi�cance levels of 10%, 5% and 1% respectively.

From the right panel of Table 6, the �xed parameter BVAR displays a large signi�cant positive

bias for GDP growth. This is expected as the evaluation periods span from 1970Q2 up to 2010Q2

and arguably contain periods characterised by serious structural change. To give an illustration of

the issue, in the beginning of the �rst oil crisis, the �xed parameter model delivers estimates by

averaging the data from the pre-crisis insample period and even after the beginning of the crisis,

it continues to overestimate output. On the other hand, time varying parameter models have a

mechanism to capture the change in the relationships between variables and hence reduce bias.

The QBLL approach also uses the insample period but progressively discounts distant data, giving

more weight to the near past, and delivers unbiased forecasts. A more surprising result is that state

space models featuring time variation in the parameters, and hence a mechanism to account for

structural change, cannot improve systematic errors in the forecasts for GDP growth, implied by

the statistically signi�cant forecast bias. The gains of the QBLL_TVP_TVV over the state space

models could be explained by recalling that unlike state space models, the QBLL approach does not

force a parametric model on the parameter processes, which are allowed to vary freely and hence

�t data better. Another interesting result is that while allowing the variances to change with the

QBLL_FP_TVV model does not help with the bias, allowing for variation in the autoregressive

parameters with the QBLL_TVP_FV model makes GDP growth forecasts unbiased. This is an

indication that variation in the autoregressive component of the VAR is important for reducing

forecast bias.

Table 7 accesses the quality of the density forecasts measured by logscores and PITs of the

predictive density. The left panel of Table 7 displays absolute log predictive score for the F_BVAR

model and di¤erences in logscores for the alternative models, so numbers greater than zero imply

superior performance over the F_BVAR. The right panel of Table 7 presents the p-values of the

chi-squared Berkowitz (2001) test of uniformity of the PITs for all models (for example, numbers

smaller than 0.05 indicate rejection of the null of uniform PITs at 5%). All models can deliver sta-
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tistically signi�cant improvements for in�ation over the benchmark in terms of log predictive score.

This is most likely a consequence of the superior point forecast implying that the forecast density

is centered more precisely around the ex-post realised value. In addition, some models can also

deliver superior forecast density performance for output growth and the interest rate. It is evident

that the models with drifting volatility and �xed parameters SS_FP_TVV and QBLL_FP_TVV

perform better than their counterparts, SS_TVP_FV and QBLL_TVP_FV. This can be further

seen from the PIT p-values in the right panel of Table 7, reinforcing the view that for improving

density forecasts, it is crucial to allow for changing volatility rather than variation in the autore-

gressive parameters.

Log score small models PITs small models
horizon GDP growth In�ation T-bill GDP growth In�ation T-bill

F_BVAR
1 -1.24 -0.42 0.10 0.00 0.00 0.00
2 -1.28 -0.67 0.01 0.00 0.00 0.00
4 -1.28 -0.87 0.03 0.00 0.13 0.00
8 -1.29 -1.04 -0.02 0.00 0.64 0.00

SS_TVP_TVV
1 0.11*** 0.33*** 0.56*** 0.02 0.73 0.23
2 0.08 0.42*** 0.45*** 0.00 0.02 0.54
4 0.03 0.44*** 0.37** 0.00 0.00 0.40
8 0.00 0.37*** 0.46* 0.00 0.01 0.02

QBLL_TVP_TVV
1 0.02 0.22*** 0.23** 0.03 0.43 0.00
2 0.01 0.32*** 0.18 0.01 0.04 0.00
4 -0.01 0.36*** 0.14 0.00 0.00 0.00
8 -0.07 0.24 0.18 0.00 0.00 0.00

SS_FP_TVV
1 0.10*** 0.33*** 0.54*** 0.03 0.95 0.45
2 0.10** 0.41*** 0.44*** 0.00 0.19 0.40
4 0.04 0.39*** 0.36** 0.00 0.20 0.42
8 0.03 0.32*** 0.47* 0.00 0.61 0.07

QBLL_FP_TVV
1 0.06 0.31*** 0.33*** 0.00 0.07 0.00
2 0.04 0.36*** 0.27** 0.00 0.45 0.00
4 0.03 0.34*** 0.09 0.00 0.13 0.00
8 0.02 0.20** 0.23 0.00 0.00 0.00

SS_TVP_FV
1 0.01 0.24*** 0.05 0.01 0.79 0.00
2 0.03*** 0.25*** 0.08 0.00 0.24 0.00
4 0.01 0.21*** 0.08 0.00 0.39 0.00
8 0.02 0.03 0.06 0.00 0.00 0.00

QBLL_TVP_FV
1 -0.04** 0.10*** -0.08 0.00 0.00 0.00
2 -0.01 0.24*** -0.08 0.01 0.01 0.00
4 -0.02 0.34*** 0.00 0.01 0.18 0.00
8 0.00 0.39** 0.05 0.00 0.03 0.00

Table 7. Log predictive scores and PITs. The �gures in the left panel under F_BVAR are absolute log scores, the �gures under

the remaining models are di¤erences of log scores from the F_BVAR model. �*�, �**�and �***� indicate rejection of the null

of equal performance against the two-sided alternative at 10%, 5% and 1% signi�cance level respectively, using a Diebold -

Mariano test. The �gures in the right panel display p-values of the chi-squared Berkowitz (2001)�s test of uniformity for all

models, values in bold indicate models that cannot reject the null of uniformity at 95%.
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RMSFEs medium and large models
horizon GDP In�ation PCE Inv. Cons. Unemp. Ind. T-bill Real Wage In�ation

Growth (de�ator) Growth Growth Growth Rate Production Growth (CPI)

F_BVAR
1 0.77 0.34 0.40 0.03 0.73 0.07 1.25 0.20 0.85 0.50
2 0.82 0.41 0.53 0.04 0.71 0.08 1.60 0.20 0.86 0.65
4 0.84 0.50 0.59 0.04 0.68 0.09 1.57 0.20 0.88 0.72
8 0.84 0.62 0.70 0.04 0.69 0.09 1.59 0.20 0.88 0.85

SS_TVP_TVV
1 1.08* 0.85* - - - - - 1.00 - -
2 1.03 0.89* - - - - - 1.02 - -
4 1.01 0.91* - - - - - 1.00 - -
8 1.02 0.90* - - - - - 1.05 - -

QBLL_TVP_TVV
1 1.04 0.82* 0.87* 1.10* 0.86* 1.05 1.01 1.07 1.05 0.93
2 1.02 0.84* 0.88* 1.01 0.96 1.07 1.01 1.11* 0.99 0.95
4 1.05 0.79* 0.85* 1.08* 1.06 1.11* 1.10* 1.03 0.99 0.93
8 1.05 0.78 0.83 1.07* 1.08* 1.14* 1.08* 1.05* 1.01 0.90

QBLL_FP_TVV
1 1.00 0.86* 0.97 1.14* 0.93 1.10 0.96 1.06 0.99 0.93*
2 1.01 0.84* 0.92* 0.99 0.93 1.03 0.99 0.97 0.99 0.92*
4 0.96* 0.81* 0.88* 0.98 0.97 1.02 0.99 1.00 1.01 0.91*
8 0.99 0.93* 0.96 1.01 1.01 1.00 0.97* 0.99 1.02 0.98

QBLL_TVP_FV
1 1.11* 0.99 0.94 1.26* 0.85* 1.20* 1.16* 1.26* 1.01 1.01
2 1.05 0.93 0.88* 1.13 0.95 1.13* 1.05 1.18* 0.96 0.98
4 1.06 0.87 0.91 1.03 1.03 1.10* 1.04 1.14 0.99 0.95
8 1.07* 0.80 0.85 1.27* 1.01 1.32* 1.07* 1.27* 0.98 0.90

F_BVAR_L
1 0.96 0.94 0.99 0.99 0.90* 0.91 0.96 1.00 1.03 1.00
2 0.92* 0.93* 0.98 0.91* 0.93* 0.95 0.90 0.97 0.99 1.00
4 1.01 0.96 0.98 1.01 0.98 1.03 1.02 1.00 1.00 1.00
8 0.99 0.95* 0.96* 0.99* 1.00 1.01 0.99 1.01* 1.00 0.97

QBLL_TVP_TVV_L
1 1.01 0.83* 0.92 1.14* 0.85* 0.96 0.99 1.07 1.09* 0.99
2 1.00 0.81* 0.89* 1.02 0.93 1.02 0.99 1.09* 0.99 0.96
4 1.08* 0.81* 0.87* 1.11* 1.07 1.14* 1.14* 1.04 1.00 0.95
8 1.08* 0.79 0.84 1.09* 1.09* 1.21* 1.13* 1.06* 1.02 0.90

Table 8. RMSFEs. The �gures under F_BVAR are absolute RMSFEs, the �gures under the remaining models are ratios of

RMSFEs over the F_BVAR model. �*�, �**�and �***�indicate rejection of the null of equal performance against the two-sided

alternative at 10%, 5% and 1% signi�cance level respectively, using a Diebold - Mariano test.

Next, we investigate whether including additional variables to the model can improve the fore-

cast performance. This choice is motivated by the forecasting literature (Bańbura et al. (2010),

Koop (2011), Carriero, Clark and Marcellino (2015a)), which suggests good forecasting record of

large dimensional BVARmodels. In particular, we estimate two models: (i) a �xed parameter model

(F_BVAR), and (ii) a time varying parameter model with changing volatility (QBLL_TVP_TVV),

on a medium size dataset (consisting of 17 macroeconomic variables described in Appendix 7.1.10).

Using the medium dataset, we also estimate two mixture of time varying and time invariant pa-

rameter models using Algorithms 1 and 2 developed in Sections 2.8.1 and 2.8.2 respectively: (i)

QBLL_FP_TVV is a BVAR model with time invariant parameters and time varying volatility,

and (ii) QBLL_TVP_FV is a BVAR model with time varying autoregressive coe¢ cients and
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homoscedastic covariance matrix. Finally, we estimate two large BVAR models19 using the en-

tire dataset (consisting of 87 variables): (i) a model with time invariant parameters labelled

F_BVAR_L, and (ii) a model, estimated with the QBLL approach, featuring time varying pa-

rameters and time varying volatility (QBLL_TVP_TVV_L).

Forecast bias medium and large models
horizon GDP In�ation PCE Inv. Cons. Unemp Ind. T-bill Real Wage In�ation

Growth (de�ator) Growth Growth Growth Rate Production Growth (CPI)

F_BVAR
1 0.14* -0.01 -0.05 0.00 0.07 0.00 0.24* 0.01 0.17* -0.08*
2 0.16* -0.02 -0.06 0.00 0.11* 0.00 0.27* 0.01 0.21* -0.11*
4 0.17* -0.03 -0.07 0.00 0.13* 0.00 0.28 0.01 0.22* -0.13
8 0.19* 0.00 -0.05 0.00 0.16* 0.00 0.33* 0.01 0.22* -0.11

SS_TVP_TVV
1 0.16* -0.03 - - - - - 0.01 - -
2 0.20* -0.05 - - - - - 0.02 - -
4 0.21* -0.08 - - - - - 0.02 - -
8 0.23* -0.08 - - - - - 0.02 - -

QBLL_TVP_TVV
1 0.05 0.02 0.03 0.00 0.06 -0.01 0.07 0.00 0.03 0.03
2 0.02 0.04 0.04 0.00 0.05 0.00 0.03 0.00 0.01 0.04
4 0.01 0.05 0.04 0.00 0.04 0.00 -0.04 0.00 0.02 0.05
8 0.03 0.07 0.06 0.00 0.05 0.00 -0.01 0.00 0.03 0.06

QBLL_FP_TVV
1 0.10* 0.00 -0.06* 0.00 0.12* 0.01 0.19* 0.01 0.17* -0.06*
2 0.10 -0.01 -0.07* 0.00 0.13* 0.00 0.17 0.00 0.22* -0.10*
4 0.10 -0.04 -0.09 0.00 0.15* 0.01 0.16 0.00 0.23* -0.12
8 0.12 -0.05 -0.11 0.00 0.18* 0.01 0.20 0.00 0.24* -0.15

QBLL_TVP_FV
1 0.03 0.01 0.02 0.00 0.07 0.00 0.02 0.01 0.04 0.02
2 0.04 0.03 0.04 0.00 0.05 0.00 0.08 0.01 0.02 0.05
4 0.03 0.05 0.05 0.00 0.04 0.00 -0.01 0.00 0.03 0.06
8 0.03 0.07 0.07 0.00 0.07 0.01 0.01 0.00 0.03 0.06

F_BVAR_L
1 0.01 -0.06* -0.07* 0.00 0.02 0.01* 0.01 0.00 0.08 -0.11*
2 0.07 -0.08* -0.12* 0.00 0.08 0.01 0.10 -0.01 0.15* -0.18*
4 0.16* -0.11 -0.15* 0.00 0.14* 0.00 0.26 0.00 0.21* -0.22*
8 0.20* -0.08 -0.12 0.00 0.18* 0.00 0.36* 0.01 0.22* -0.19

QBLL_TVP_TVV_L
1 0.02 0.02 0.02 0.00 0.04 0.00 0.02 0.00 0.02 0.01
2 0.01 0.04 0.03 0.00 0.03 0.00 -0.01 0.00 0.02 0.03
4 -0.01 0.05 0.04 0.00 0.02 0.01 -0.09 0.00 0.03 0.05
8 0.00 0.07 0.05 0.00 0.04 0.01 -0.07 -0.01 0.03 0.06

Table 9. Forecast bias. The �gures display forecast bias for each model. �*�, �**�and �***�indicate rejection of the null of zero

forecast bias against the two-sided alternative at 10%, 5% and 1% signi�cance level respectively.

Table 8 presents the absolute performance of the medium time invariant BVAR model (in RMS-

FEs) and the relative performance of alternative models over di¤erent horizons. From Table 8, it

is clear that even a time invariant model with additional variables can outperform the small time

varying model, SS_TVP_TVV, for GDP growth. In addition, the various time varying medium

19As explained in Bańbura et al. (2010), the overall shrinkage, �, should be invertly proportional to the size of the
model. The shrinkage parameter for the small models is 0.3, for the medium models 0.2, and for the large models 0.11.
A grid for other values of � were considered for each model and size and whereas the absolute forecast performance
of the models depends on �; the relative models�performance presented in this section is robust to di¤erent values
of �:
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and large models can outperform the SS_TVP_TVV for in�ation implied by the larger improve-

ments over the �xed parameter model. The best performing model for in�ation is the medium

size QBLL_TVP_TVV model. In addition, the time varying speci�cations can improve RMSFE

performance of the F_BVAR for consumption growth and PCE growth.

Log score medium and large models

horizon GDP In�ation PCE Inv. Cons. Unemp. Ind. T-bill Real Wage In�ation
Growth (de�ator) Growth Growth Growth Rate Production Growth (CPI)

F_BVAR

1 -1.19 -0.35 -0.51 2.03 -1.08 1.30 -1.67 0.08 -1.28 -0.70
2 -1.25 -0.56 -0.79 1.77 -1.13 1.08 -1.93 -0.02 -1.37 -0.96
4 -1.28 -0.79 -0.94 1.76 -1.13 0.99 -1.96 -0.03 -1.37 -1.16
8 -1.29 -0.99 -1.23 1.75 -1.14 0.98 -1.97 -0.02 -1.37 -1.35

SS_TVP_TVV

1 0.05 0.26*** - - - - - 0.59*** - -
2 0.04 0.31*** - - - - - 0.48*** - -
4 0.03 0.35*** - - - - - 0.43** - -
8 0.00 0.33*** - - - - - 0.45* - -

QBLL_TVP_TVV

1 0.07 0.29*** 0.19** -0.03 0.19*** -0.01 0.12** 0.29** 0.08 0.13
2 0.02 0.35*** 0.15** 0.00 0.15*** -0.11 0.04 0.24* 0.13 0.07
4 0.03 0.39*** 0.09 -0.04 0.05 -0.22 -0.11 0.22 0.11 0.11
8 0.00 0.33** 0.07 -0.11 -0.04 -0.34 -0.08 0.22 0.10 -0.01

QBLL_FP_TVV

1 0.06 0.20*** -0.01 -0.08 0.09** -0.08 0.17*** 0.32** 0.06 0.04
2 0.07 0.27*** 0.08** 0.01 0.08 -0.05 -0.04 0.34** 0.13 0.10**
4 0.12* 0.32*** 0.18*** 0.01 0.11* -0.05 -0.01 0.22* 0.12 0.18**
8 0.07 0.12 0.03 -0.03 0.04 -0.03 0.06 0.22 0.09 -0.03

QBLL_TVP_FV

1 -0.08 0.13*** 0.07 -0.22*** 0.07 -0.19*** -0.24*** -0.25** -0.05 0.01
2 -0.05* 0.18*** 0.08 -0.18*** 0.06 -0.18*** -0.08* 0.04 0.04 -0.03
4 -0.03 0.25*** 0.09 -0.23*** 0.03 -0.21*** -0.03 0.09 0.04 0.13
8 -0.06** 0.32* 0.40* -0.34*** -0.01 -0.33*** -0.02 -0.08 0.09 0.27*

F_BVAR_L

1 0.07 0.07*** -0.02 0.01 0.07** 0.07** 0.04** 0.07 -0.04 0.01
2 0.08*** 0.08*** 0.03 0.09*** 0.05** 0.07* 0.10*** 0.08 0.05 0.00
4 0.00 0.07*** 0.05* 0.00 0.01 -0.01 0.00 0.08 0.04 0.02
8 0.01 0.05** 0.07** 0.03* -0.01 -0.02 0.00 -0.06 0.01 0.03

QBLL_TVP_TVV_L

1 0.09 0.30*** 0.07 -0.06 0.20*** 0.09* 0.16*** 0.38*** 0.04 -0.04
2 0.08* 0.37*** 0.16** 0.05 0.17*** 0.06 0.13* 0.31** 0.12 0.07
4 -0.02 0.39*** 0.09 -0.04 0.05 -0.16 -0.07 0.22 0.11 0.12
8 -0.03 0.35** 0.09 -0.12 -0.04 -0.37 -0.11 0.16 0.10 0.06

Table 10. Log predictive scores. The �gures under F_BVAR are absolute log scores, the �gures under the remaining models

are di¤erences of log scores from the F_BVAR model. �*�, �**� and �***� indicate rejection of the null of equal performance

against the two-sided alternative at 10%, 5% and 1% signi�cance level respectively, using a Diebold - Mariano test.

Table 9 presents the forecast bias of the di¤erent models. It is evident that, while statistically

signi�cant forecast bias is present in medium and large time invariant models, the forecasts of

the medium and large time varying speci�cations are virtually unbiased for all variables and all
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horizons. More interestingly, when we consider the medium model with drifting volatility and

time invariant autoregressive component, we also �nd forecast bias in some variables. On the

other hand, allowing for drifting autoregressive parameters when the volatility is held constant

over time removes the bias. This con�rms the results from the small models: variation in the

autoregressive component of the VAR can signi�cantly reduce systematic errors in the forecasts.

Table 10 accesses the quality of the density forecasts of the medium and large models. It displays

absolute log predictive score for the F_BVAR model and di¤erences in logscores for the alternative

models. We see from Table 10 that the various time varying speci�cations can deliver forecast

density improvements for most variables. In particular, the best performing model is the large

time varying parameter and volatility model, QBLL_TVP_TVV_L, implying that by including

additional variables we can obtain superior estimates of the uncertainty around the point forecast.

PITs medium and large models
horizon GDP In�ation PCE Inv. Cons. Unemp. Ind. T-bill Real Wage In�ation

Growth (de�ator) Growth Growth Growth Rate Production Growth (CPI)

F_BVAR
1 0.04 0.00 0.09 0.00 0.00 0.11 0.00 0.00 0.00 0.00
2 0.00 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.13
8 0.00 0.75 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.05

SS_TVP_TVV
1 0.02 0.73 - - - - - 0.23 - -
2 0.00 0.02 - - - - - 0.54 - -
4 0.00 0.00 - - - - - 0.40 - -
8 0.00 0.01 - - - - - 0.02 - -

QBLL_TVP_TVV
1 0.61 0.32 0.52 0.93 0.13 0.35 0.56 0.10 0.07 0.59
2 0.17 0.25 0.00 0.14 0.24 0.00 0.00 0.34 0.09 0.00
4 0.42 0.06 0.00 0.38 0.29 0.00 0.00 0.00 0.15 0.00
8 0.14 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.09 0.00

QBLL_FP_TVV
1 0.10 0.04 0.00 0.01 0.01 0.00 0.06 0.00 0.00 0.00
2 0.15 0.48 0.01 0.27 0.02 0.00 0.00 0.68 0.00 0.00
4 0.12 0.03 0.20 0.08 0.00 0.00 0.00 0.00 0.00 0.03
8 0.08 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.00

QBLL_TVP_FV
1 0.00 0.01 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.03
2 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00
4 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.71 0.25

F_BVAR_L
1 0.05 0.00 0.04 0.00 0.00 0.01 0.00 0.00 0.00 0.00
2 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.00
8 0.00 0.04 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00

QBLL_TVP_TVV_L
1 0.81 0.16 0.03 0.82 0.12 0.76 0.22 0.00 0.10 0.00
2 0.72 0.13 0.00 0.94 0.12 0.38 0.62 0.44 0.19 0.00
4 0.13 0.14 0.00 0.66 0.60 0.00 0.00 0.05 0.38 0.00
8 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.02 0.29 0.00

Table 11. PITs. The �gures display p-values of the chi-squared Berkowitz (2001)�s test of uniformity for all models, values

greater than 0.05 indicate that we cannot reject the null of uniformity at 95%.

Finally, Table 11 presents the p-values of the chi-squared Berkowitz (2001) test of uniformity
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for all medium and large models. From Table 11, it is clear that for time invariant models, both

medium and large, we can reject the null of uniform PITs for most variables and horizons. On the

other hand, for the medium time varying model, QBLL_TVP_TVV, we cannot reject the null of

uniformity for all variables one step ahead. The large time varying model, QBLL_TVP_TVV_L,

also performs exceptionally well. Another important result is that the model featuring drifting

volatility and invariant autoregressive parameters performs better in terms of PITs than the model

with drifting parameters and invariant volatility, con�rming our previous result that for density

forecast performance, drifting volatility is more important than drifting autoregressive parameters.

To summarise, a forecasting exercise was conducted, where we estimated various sizes �xed and

time varying parameter BVAR models. Several conclusions emerged: �rst, the small QBLL models

can deliver model forecast performance similar to that of state space models. Second, the QBLL

approach allows to increase the number of variables in the system: as we demonstrated increasing

the VAR dimension while allowing for time variation in the parameters can improve both point and

density forecasts over (i) small models, and (ii) invariant models of the same dimensions. Third,

the QBLL approach performs exceptionally well in eliminating forecast bias as well as in delivering

uniform PITS and this is true for most variables and horizons. Finally, by assessing the forecast

performance of BVAR models with mixtures of time varying and time invariant parameters, we

reached an important conclusion: allowing for drifting volatility in a BVAR model improves density

forecasts compared to a model with invariant volatility; on the other hand, time variation in the

autoregressive component of the VAR model can signi�cantly reduce forecast bias. Since both

point and density performance is crucial for forecasting, we conclude that variation in both the

parameters and variances of BVAR models should be considered.

2.11 Summary

This Chapter establishes a novel quasi-Bayesian local likelihood (QBLL) approach for econometric

inference in models with time varying parameters. The Bayesian framework is based on augmenting

the local likelihood of Giraitis et al. (2016) with a prior distribution; this augmentation principle

delivers asymptotically valid quasi-posterior distributions which admit closed form expressions in

the special case of a linear Gaussian univariate regression model and multivariate VAR model. The

approach is of su¢ cient generality and �exibility to give rise to Gibbs algorithms that are able to

sample from a BVAR model with a mixture of time varying and time invariant parameters.

The Monte Carlo exercise demonstrates that the class of QBLL estimators based on: (i) the
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closed form joint distribution derived in Section 2.4; (ii) the proposed MCMC algorithms in Section

2.8, both exhibit good �nite sample properties, and inference based on their quasi-posterior densities

delivers valid con�dence intervals. Importantly, QBLL inference is robust to di¤erent processes for

the drifting parameters, as its validity does not depend on parametric restrictions typically imposed

by state space models.

The novel QBLL approach is employed to empirically address the issue of changing macroeco-

nomic dynamics in the U.S. and con�rms previous results of Cogley and Sargent (2002, 2005) and

Primiceri (2005) on the presence of signi�cant structural change in core in�ation and the natural

rate of unemployment as well as of substantial drifts in the volatility of the series. In the light of

these results, we conclude that ignoring the time variation (by instead estimating a time invariant

model) will result in invalid inference on the model�s parameters. We also �nd that in�ation has

become signi�cantly less persistent after the beginning of the Great Moderation, which is in line

with more recent results in Cogley et al. (2010).

Finally, in a forecasting exercise we �nd that the QBLL estimators deliver excellent forecast

performance. Their ability to accommodate drifting parameters nonparametrically delivers forecast

improvements over �xed parameter models, such as virtually unbiased forecasts and uniform PITs.

In addition, their capacity to considerably increase the number of variables can improve both point

and density forecasts of small-dimensional models. We �nd that both drifts in the volatility and in

the parameters can have important impact on forecasting: drifts in the volatility improve density

forecasts while time variation in the autoregressive component signi�cantly reduces forecast bias.
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3 Time Varying Parameter DSGE Model

3.1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) models are popular tools extensively used in

both academic work and macroeconomic policy making. Their success is a result of their capacity

to combine economic microfoundations derived from optimisation decisions of agents with rational

expectations and business cycle �uctuations. Traditionally, the consensus in the macroeconomic

literature has been that there exists an apparent trade-o¤ between theoretical coherence, whereby a

model�s outcomes can be explained by well-established theory, and empirical coherence, whereby a

model can �t and explain macroeconomic data well, but its outcomes are often di¢ cult to interpret

or justify from a theoretical standpoint. Models that exhibit theoretical and empirical coherence

simultaneously were deemed infeasible. DSGE models were alleged to be at the theoretical end

of this trade-o¤ curve. On the other hand, reduced-form models, such as VAR models, exploiting

correlations in time series with little reliance on macroeconomic theory, were put at the empirical

end. It was the work of Smets and Wouters (2003, 2005, 2007), based on earlier work of Rotemberg

and Woodford (1997) and Christiano, Eichenbaum and Evans (2005), that changed this perception

and demonstrated that medium-sized DSGE models can be successfully taken to the data and

produce superior forecasts to standard BVAR models. Following Smets and Wouters, the literature

on DSGE model estimation and forecasting has become a vibrant area of research with considerable

progress in the development of the underlying economic theory and the design of numerical solution

and estimation algorithms.

At the heart of DSGE models are so called deep parameters that de�ne the preferences and

technological environment of the economy. These are kept constant and are structural in the sense

that they are not subject to the Lucas critique - they are invariant to both policy and structural

shocks. There are two issues related to these parameters that this Chapter will address. First, it

is important to recognise the possibility of parameter drift in order to re-evaluate the usefulness

and relevance of DSGE models. If substantial evidence is found that some of these structural

parameters are in fact not constant, this could be interpreted as a need to revise existing models

in order to account for such variation. It is possible that slow time variation is the outcome of long

term cultural or technological shifts in the economy that DSGE models are ill-equipped to model,

since they focus primarily on business cycle �uctuations. Nevertheless, taking into account such

slow variation is paramount for the e¤ective use of DSGE models. Furthermore, time variation in
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these parameters can be a signal for misspeci�cation in existing models and hence a guide to amend

and improve them. Second, these models are widely used in forecasting both by academics and

o¢ cial institutions. Hence, allowing the structural parameters to change and using only their most

recent values for generating predictions seems like a useful modi�cation that would be expected to

improve forecasting performance, possibly at the cost of making the separation between structural

and reduced-form models less clear.

To accommodate such time variation in DSGE model parameters, this Chapter applies a quasi-

Bayesian Local Likelihood (QBLL) method, developed in a general reduced-form setting in Chapter

2. QBLL estimates parameters at each point in time, appropriately weighting the sum of log

likelihoods of the sample, with weights generated by a kernel function. The method is general

and can be applied to any DSGE model. Furthermore, for generating forecasts, it is no more

computationally intensive than estimating a DSGE model with �xed parameters.

This and next two Chapters contribute to a small but expanding literature on estimating DSGE

models with time variation in the parameters which has two strands. Fernandez-Villaverde and

Rubio-Ramirez (2008) and Justiniano and Primiceri (2008) model time variation by assuming

stochastic processes for a subset of the parameters and include these to the set of state equations.

For instance, Fernandez-Villaverde and Rubio-Ramirez (2008) assume that the agents, in the model,

take into account current and future parameter variation, utilising the parameters�representation

as stochastic processes when computing their expectations. A similar assumption is made by

Schorfheide (2005), Bianchi (2013), Foerster, Rubio-Ramirez, Waggoner and Zha (2014), but the

parameters are modelled as Markov-switching processes. In contrast, Canova (2006), Canova and

Sala (2009) and Giacomini and Rossi (2009) assess parameter time variation by estimating DSGE

models over rolling samples. A similar strategy was followed by Castelnuovo (2012), Cantore,

Levine and Melina (2012) and Canova and Ferroni (2012). It is useful to contrast our work with

both these strands. This �rst strand makes parametric assumptions about the variation in the

parameters. These assumptions are not microfounded but have a reduced form �avour. Instead,

the method presented in the current Chapter is agnostic about the source of the variation apart from

assuming that it is slow, although given some time it can track more abrupt forms of change. Given

the considerable likelihood that any changes are the result of long term cultural and technological

shifts that no mainstream business cycle model is well equipped to explain, this agnostic approach

has merit. A further issue is that computational complexity restricts the ability of allowing for time

variation to only a small subset of the model parameters whereas our approach is scaleable to the full
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set of parameters. Concerning the second strand, our proposed method employs a nonparametric

kernel-based procedure that encompasses rolling window estimation as a special case. The approach

presented in the current Chapter is an extension and formalisation of rolling window estimation,

generalised by combining kernel-generated local likelihoods with appropriately chosen priors to

generate a sequence of quasi-posterior distributions for the objects of interest over time, following

the methodology developed in Chapter 2. Evidence provided in Giraitis et al. (2014) suggests

that other kernel functions may have more desirable propeties than the �at kernel underlying

the rolling window. Our approach is related to the one in Giraitis, Kapetanios, Theodoridis and

Yates (2013), but they apply the local kernel estimator developed by Giraitis et al. (2014) to

the minimum distance estimator that matches DSGE and VAR impulse responses, to provide a

frequentist estimation approach. Both the kernel and the rolling window approaches, when applied

to structural models, assume that, instead of being endowed with perfect knowledge about the

economy�s data generating process, agents take parameter variation as exogenous when forming

their expectations about the future. This assumption facilitates estimation and can be rationalised

from the perspective of models featuring learning problems, where agents form beliefs about the

parameters based on observing past data. For example, Cogley and Sargent (2009) utilise Kreps

(1998)�s anticipated utility approach, where in each period agents employ their current beliefs as

the true (time invariant) parameters. They show that in the presence of parameter uncertainty,

the anticipated utility approach outperforms the rational expectation approximation. A recent

application of the anticipated utility approach is Johannes, Lochstoer and Mou (2015), where

assets are priced at each point in time, using current posterior means for the parameters and

assuming that current values will last inde�nitely in the future. At each period, agents learn the

new parameter values and adjust their expectations20.

One aim of the following Chapters is to improve the accuracy of DSGE models in forecasting.

Smets and Wouters (2007) show that their medium-sized DSGE model can generate forecasts for

seven US macro variables that are superior to those obtained from a BVAR model. The gains of the

structural model over the reduced-form model are substantial especially at longer horizons. Addi-

tional evidence that DSGE models may deliver competitive forecasts in comparison with statistical

models and survey of professional forecasters is provided by Rubaszek and Skrzypczynski (2008),

Steinbach, Mathuloe and Smith (2009), Edge, Kiley and Laforte (2009), Edge and Guerkaynak

20A similar outcome can be achieved in a linearised DSGE model with random walk processes for the drifting
parameters (a frequently made assumption in the time varying parameter VAR literature), where rational expectations
on the side of agents would imply that the future values of the parameters are equal to the current posterior means.
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(2010), Wieland and Wolters (2011) and Del Negro and Schorfheide (2013b). To the best of our

knowledge, there is no documented evidence of the forecasting performance of a DSGE model with

time variation in the parameters. The closest to ours is the working paper by Edge, Guerkaynak

and Kisacikoglu (2013) who use rolling window scheme to assess the forecasting record of a DSGE

model.

The Chapter is organised as follows. Section 3.3 introduces the Quasi-Bayesian Local Likelihood

approach in the context of DSGE models including a Metropolis within Gibbs algorithm for het-

eroscedastic time invariant DSGE model, Section 3.4, 3.5 and 3.6 present an empirical application

based on the Smets and Wouters (2007) model, Section 3.7 provides a forecasting comparison and

Section 3.8 concludes.

3.2 Time Variation in DSGE Models

In the context of DSGE model estimation, there are advantages of adopting a Bayesian approach.

Bayesian methods provide a natural way of combining econometric estimation with information

provided by calibration methods widely used in the previous generation of models (see Kydland

and Prescott (1996)). For example, by construction, we know that the discount factor, �, that

consumers use to discount expected future utility cannot take negative values, is bounded between

zero and one and a typical value based on the assumption of a 4% annual discount rate is 0.99.

Adding a probability mass in the form of a prior is a natural way to incorporate such additional

information which is not contained in the data and serves as augmenting the likelihood with arti�cial

observations. In addition, the likelihood of DSGE models may often be ill-identi�ed or not globally

concave. Adding a prior can resolve such issues and make the problem well-de�ned (see, Lindley

(1971)). Finally, a Bayesian approach can deal in a natural way with model misspeci�cation.

Instead of assuming that there is a unique parameter vector that contains the "true" values of all

parameters, the Bayesian approach considers the parameters as random variables and the estimation

procedure as a learning process with respect to the characteristics of these random variables, after

incorporating information on the available data. An and Schorfheide (2007) and Del Negro and

Schorfheide (2013a) o¤er a detailed review of Bayesian inference in the context of DSGE models.

Here, we follow the methodology from Chapter 2. Let pt(�t) denote a prior distribution for �t

at time t. Then, the quasi-posterior pt(�tjY ) is given by:

pt(�tjY ) =
pt(�t)Lt(Y j�t)R

�pt(�t)Lt(Y j�t)d�
/ pt(�t)Lt(Y j�t)
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where Lt(Y j�t) is the local likelihood function, Lt(Y j�t) =
TY
j=1

L(yj jyj�1; �t)wtj for t = 1; ::; T ,

Y = (y1; ::; yT )
0; and L(yj jyj�1; �t) denotes the likelihood for observation j, conditional on the

history yj�1. As demonstrated in Chapter 2, this provides a generic quasi-Bayesian principle for

estimating general time varying coe¢ cient models that require little more than standard Bayesian

numerical techniques applicable to �xed coe¢ cient models. The discussion and results in Chapter

2 related chie�y to time variation in reduced form models. One advantage of our method is that it

is applicable without conjugacy: if the posterior did not belong to a known distributional family,

other MCMC methods can be used to generate draws from that posterior. Here, we extend the

method and outline how it can be applied to the estimation of a DSGE model.

The literature on time varying DSGE models is less developed than that on time varying re-

duced form models and more contraversial. The alternative approach of specifying processes for the

drifting parameters in a DSGE context has been applied for instance by Fernandez-Villaverde and

Rubio-Ramirez (2008). The main advantage of their approach is that agents populating the model

take into account the parameters�stochastic processes when forming their expectations about the

future. Our econometric approach, on the other hand, does not incorporate a law of motion for the

parameters when solving the agents�rational expectation problem. However, if the parameters of

the model are driven by either a time varying deterministic or slowly moving stochastic process,

as the popular random walk assumption in the literature, then our econometric approach does

not violate the rational expectation assumption in a linearised model because future changes in the

parameters are unpredictable by both agents and the econometrician. This implies that current pa-

rameter values are the best prediction for future values anyway. Another disadvantage of modelling

parameters�variation by explicitly specifying a stochastic process is that it is subject to the curse

of dimensionality. The state vector needs to be augmented for each parameter allowed to vary and

an additional shock is introduced. Because of this dimensionality problem, all parameters cannot

be modelled simultaneously in this way. For instance, Fernandez-Villaverde and Rubio-Ramirez

(2008) do not allow both Taylor rule and price rigidity parameters to vary simultaneously when

estimating their DSGE model. Our alternative econometric approach does not su¤er from such

dimensionality issues.

In addition, the modelling approach of Fernandez-Villaverde and Rubio-Ramirez (2008) imposes

an additional structure by relying on the assumption that the law of motion for the parameters�

time variation is correctly speci�ed. Our nonparametric approach performs well for many di¤erent
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parameters�laws of motion. Chapter 2 demonstrated in a Monte Carlo exercise that if the law of

motion is misspeci�ed, inconsistent estimates of the parameters�time variation are obtained if they

are treated as unobserved state variables as in Fernandez-Villaverde and Rubio-Ramirez (2008). In

contrast, the results in Chapter 2 suggest that our nonparametric alternative is consistent for a wide

class of parameter processes. Schorfheide (2007) argues that by treating time varying parameters

as unobserved state variables as in Fernandez-Villaverde and Rubio-Ramirez (2008), identi�cation

issues which are attenuated by the use of priors, as argued earlier in this Section, may arise21. Our

approach has the advantage of being able to incorporate prior information about the time varying

parameters at each point in time to solve possible identi�cation issues.

3.3 The Quasi-Bayesian Local Likelihood Method for DSGE Models

In this Section, we show how to apply the QBLL approach described in Chapter 2 to a DSGE

model with linear state-space representation. Note, however, that the QBLL method could also be

applied to models that have a non-linear state space representation such as in Fernandez-Villaverde

and Rubio-Ramirez (2007).

The linearized rational expectation model with time varying parameters can be written in the

form:

A(�t)Etxt+1 = B(�t)xt + C(�t)vt; vt s N(0; Q(�t))

where xt is a n � 1 the vector of model�s variables, vt is a k � 1 vector of structural shocks, �t
is a vector of parameters, including parameters governing preferences and the shocks�stochastic

processes, A;B and C are matrices, which are functions of �t; Q(�t) is a diagonal covariance matrix,

and Et is the expectation operator conditional on information available at time t: Observe that we

have one such equation at each point in time t = 1; :::; T .

A numerical solution of the rational expectation model can be obtained by one of the available

methods (for instance, Blanchard and Kahn (1980) or Sims (2002)). The resulting state equation

is given by:

xt = F (�t)xt�1 +G(�t)vt (34)

where the n� n matrix F and n� k matrix G can be computed numerically for a given parameter
21For instance, Fernandez-Villaverde and Rubio-Ramirez (2008) obtain values of their Taylor rule parameters for

which the Taylor principle is not satis�ed.
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vector �t. The system is augmented with a measurement equation:

yt = D(�t) + Z(�t)xt (35)

where yt is an m � 1 vector of observables, typically of a smaller dimension than xt (i.e. m < n)

and Z is a m� n matrix that links those observables to the latent variables in the model xt.

Equations (34) and (35) provide the state-space representation of the model, which is linear and

Gaussian at each successive set of parameters �t for t = 1; :::; T . Therefore, the Kalman �lter can be

employed to recursively build the likelihood of the sample of observables fytgTt=1. The appropriately

weighted likelihood of the sample is given by:

Lt(Y j�t) =
TY
j=1

L(yj jyj�1; �t)wtj for t = 1; ::; T

where wtj is an element of the T � T weighting matrix W = [wtj ]
T
t;j=1, computed using a kernel

function given in equation (4):

wjt = ~wjt=
XT

t=1
~wjt; ~wjt = K

�
j � t
H

�
for j; t 2 f1; :::; Tg :

with a bandwidth H; satisfying the conditions in Chapter 2.

In the �xed parameter case, the weights on each likelihood sum up to T . In our case, each row

of W is normalised to sum up to 2H + 1, such that:

TX
j=1

wtj = 2H + 1 t = 1; :::; T:

This normalisation is employed in order to maintain the relative weights between the likelihood

and the prior22.

For the application presented in this Chapter, the Normal kernel function in (5) is used to

generate the weights. If the bandwidth H goes to in�nity, the likelihood would collapse to the

�xed parameter case, where each likelihood is weighted equally. If H is small, the weights are

concentrated around a single observation. Our choice of bandwidth is H = T 0:5, motivated by the
22This chapter contains earlier work in which we had an intuition that the sum of the weights needs to diverge

with the sample size to obtain consistency; we had not, however, obtained the result in Proposition 1 yet, which gives
us the normalising rate. Hence, here and in the following two chapters, we normalise the weights to sum to 2H + 1;
which results in a consistent estimator with variance larger than the asymptotic variance of the estimator in chapter
2, where the weights sum up to {jT :
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optimal bandwidth choice used for inference in time varying random coe¢ cient models (see Giraitis

et al. (2014)).

The local likelihood of the DSGE model at point t, denoted Lt(Y j�t), is augmented with the

prior distributions for the parameters, pt(�t), to get the quasi-posterior at time t, pt(�tjY ):

pt(�tjY ) =
Lt(Y j�t)pt(�t)

p(Y )
/

TY
j=1

L(yj jyj�1; �t)wtjpt(�t):

It should be noted that, for our DSGE applications, we assume the prior pt(�t) to be �xed over

time, i.e., pt(�t) = p(�t) for all t. One could potentially allow the prior to be time varying, exploring

the idea that the posterior yesterday can be used for a prior today. However, since we would like

to explore only the possibility of parameter drift, we choose to be agnostic about time variation in

the parameters before the estimation and keep the prior values �xed over time.

3.3.1 Characterising the Posterior Distributions

To obtain the joint posterior distribution of the parameters, we need numerical methods because

the matrices F and G are non-linear functions of �; and hence the posterior does not fall in known

families of distributions with moments that could be derived analytically. The most commonly used

procedure to generate draws from the posterior distribution of � is the Metropolis-Hastings (MH)

algorithm, proposed by Metropolis et al. (1953) and generalised by Hastings (1970). Although

the quasi-posterior distribution could be obtained by other methods, such as the Importance Sam-

pling (IS) algorithm, the MH algorithm delivers good convergence under fairly general regularity

condition (see Geweke (1999, 2005)) and asymptotically normal posterior distribution (see Walker

(1969), Crowder (1988) and Kim (1998)).

The algorithm described here is version of Schorfheide (2000)�s Random Walk Metropolis

(RWM) algorithm, modi�ed to include the kernel weighting scheme. Our aim is to obtain a se-

quence of posterior distributions pt(�tjY ) for each point in time t = 1; ::; T: At each t the algorithm

implements the following steps.

Step 1. The posterior is log-linearised and passed to a numerical optimisation routine. Opti-

misation with respect to � is performed to obtain the posterior mode:

b�t = argmin
�

0@� TX
j=1

wtj logL(yj jyj�1; �t)� log p(�t)

1A :
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Step 2. Numerically compute b�t, the inverse of the (negative) Hessian, evaluated at the
posterior mode, b�t.

Step 3. Draw an initial value �0t from N(b�t; c20b�t).
Step 4. For i = 1; :::; nsim, draw �t from proposal distribution N(�(i�1)t ; c2b�t). Compute

r(�i�1t ; �tjY1:T ) =
TY
j=1

L(yj jyj�1; �t)wtjp(�t)=
TY
j=1

L(yj jyj�1; �i�1t )wtjp(�i�1t );

which is the ratio between the weighted posterior at the proposal �j and �
i�1
t .

The draw �t is accepted (setting �
i
t = �t) with probability �

i
t = minf1; r(�(i�1)t ; �tjy1:T )g and

rejected (�it = �i�1t ) with probability 1 � � it. c
2
0 and c

2 are scaling parameters adjusting the step

size of the MH algorithm in order to get desirable rejection rates such that we achieve convergence.

The literature supports setting the scaling parameters such that acceptance rates of between 20%

and 40% are achieved23.

3.3.2 Computing Forecasts

Once the time varying quasi-posterior distribution of the parameters is obtained using the

algorithm in Section 3.3.1, we can compute out-of-sample forecasts for the observables y. For this

task, we only need the corresponding quasi-posterior distribution at the end of each in-sample,

p(�t=T jY ), which contains the most recent values of the model�s parameters and hence the most

relevant information for predicting the future. Therefore, for generating DSGE-based predictions,

our method is as computationally intensive as forecasting with standard �xed parameter DSGE

models: it requires the computation of the posterior only once.

The predictive distribution of the sample p(yT+hjy1:T ), h horizons ahead, is given by the con-

ditional probability of the forecasts, averaged over all possible values of the parameters, the unob-

servables at the end of the sample xT , and all possible future paths of the unobservables xT+1:T+h:

p(yT+hjy1:T ) =

Z
(xT ;�T )

0B@ Z
xT+h

p(yT+hjxT+h)p(xT+hjxT ; �T ; y1:T )dxT+h

1CA p(xT j�T ; y1:T )p(�T jy1:T )d(xT ; �T )

23 In particular, Roberts, Gelman and Gilks (1997) show that, under some conditions, the optimal asymptotic
acceptance rate is 23.4%.
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where p(�T jy1:T ) is the posterior of the parameters at the end point of the in-sample period, T .

We employ a slightly modi�ed version of the algorithm for generating draws from the predictive

distribution outlined in Del Negro and Schorfheide (2013b). The algorithm is as follows.

Step 1. Using the saved draws from the posterior at the end of the sample p(�T jy1:T ); for

every draw k = 1; ::; nsim (or for every n-th draw if thinning is required), apply the Kalman �lter

to compute the moments of the unobserved variables at T using the density p(xT j�kT ; y1:T ):

Step 2. Draw a sequence of shocks vkT+1:T+h from a N(0; Q(�kT )), where Q(�
k
T ) is a draw from

the quasi-posterior distribution of the diagonal variance-covariance matrix of the shocks at T . For

each draw k from p(�T jy1:T ) and from p(xT j�kT ; y1:T ), use the state equation to obtain forecasts for

the unobserved variables:

bxkT+1:T+h = F (�kT )x
k
T :T+h�1 +G(�

k
T )v

k
T+1:T+h:

Step 3. Use the forecast simulations for the latent variables in the measurement equation:

bykT+1:T+h = D(�kT ) + Z(�
k
T )bxkT+1:T+h:

Using the above algorithm, we obtain a predictive density of nsim draws of bykT+1:T+h which can
be used to derive numerical approximations of moments, quantiles and densities of the out-of-

sample forecasts.Finally, point forecasts are obtained by computing the mean of the distribution ofbykT+1:T+h for each forecasting horizon.
3.3.3 Nonparametric Heteroscedasticity in a DSGE Model

In the previous subsection, we show how to apply the QBLL estimation procedure to a linearised

DSGE model in order to estimate all the model�s parameters varying over time. The idea of the

algorithms outlined in Chapter 2 is general and can be applied in non-linear and non-conjugate

setups such as DSGE models. Here we outline a Metropolis within Gibbs algorithm that can be

used to consider time variation in the variances of the DSGE exogenous shocks while keeping the

structural parameters that characterise the preferences of the agents in the model �xed. We use

the structure of the algorithm presented in Justiniano and Primiceri (2008), modi�ed to include the

quasi-Bayesian local likelihood estimator of the estimation of the time varying covariance matrix.

The linearized rational expectation model with heteroscedastic disturbances can be written in
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the form:

A(�)Etxt+1 = B(�)xt + C(�)�t; �t s N(0;�t)

where xt is a n � 1 the vector of model�s variables, vt is a k � 1 vector of structural shocks, �

is a vector of parameters, A;B and C are matrices, functions of �; �t is a diagonal time-varying

covariance matrix, and Et is the expectation operator conditional on information available at time

t:

A numerical solution of the rational expectation model can be obtained with a resulting state

equation is given by:

xt = F (�)xt�1 +G(�)�
1=2
t #t; #t s N(0; In) (36)

where the n � n matrix F and n � k matrix G can be computed numerically for a given �. Note

that because the DSGE model is linearised, the solution in (36) does not depend on the history of

�1:T .The system is augmented with a measurement equation:

yt = D(�) + Z(�)xt (37)

where yt is an m � 1 vector of observables, typically of a smaller dimension than xt (i.e. m < n)

and Z is a m� n matrix that links those observables to the latent variables in the model xt.

Conditional on the history of �1:T ; equations 36 and 37 are a linear Gaussian state-space

system; so standard Kalman �lter techniques can be employed to recursively build the likelihood of

the sample of observables fytgTt=1. The likelihood of the sample, combined with a prior distribution

for the parameter vector �, is given by:

p(�jY ) /
TY
t=1

L(ytjyt�1; �)p(�):

To draw from the posterior, a Metropolis step will be employed. Conditional on the hiatory �1:T

and on the Metropolis draw from the posterior of �; a draw from the structural shocks vt can be

obtained using Carter and Kohn (1994) or Durbin and Koopman (2002)�s disturbance smoothers.

Conditonal on a draw of the history of the shocks v1:T and on the Metropolis draw of �; we have

that: vt = �t�t: This means we are in the setting of Proposition 7 so by specifying a Gamma
24

24Note that since �t is a diagonal matrix, the Wishart prior in Proposition 7 W (�0t; 0t) can be written as Gamma
prior for the ith diagonal element Ga(�i0t=2; 

i
0t=2): This makes a di¤erence computationally, as it is faster to draw
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prior for each diagonal element of ��1t with parameters �i0t=2; 
i
0t=2; the posterior at each point in

time t is also Gamma with parameters:

~�it=2 = �i0t=2 +
TX
j=1

wtj=2 (38)

~it=2 = i0t=2 +
1

2
V 0DtV

where V = [v1;:::; vT ]
0 and Dt = diag(wtj) and wtj is the t; jth element of the kernel weighting

matrix de�ned in (4).

Algorithm Outline: Metropolis within Gibbs Suppose we are in iteration g; so we have

�g;HT;g;�g;b�gt ;mTg :

Then iteration g + 1 looks like this:

Step 1. Draw the history of structural shocks b�g+11:T using Carter and Kohn (1994) or Durbin

and Koopman (2002) algorithms the state space below.

xgt = F (�g)xgt�1 +G(�
g)b�t

yt = D(�g) + Z(�g)xgt

Step 2. Draw the volatilities �g+11:T using the novel QBLL approach from an inverse - Gamma25

at each point in time t with parameters given in (38).

Step 3 (Metropolis Step). Draw �g+1; conditional on the draw from the history of volatilities

�g+11:T . In particular, draw # from the proposal distribution N(�g; c2b�); where b� is the Hessian

evaluated at the posterior mode and c2 is a scaling parameter that controls the step size through

the parameter space (and hence the rejection rate of the Metropolis).

Compute

r =

TY
t=1

L(xtj#)p(#)=
TY
t=1

L(xtj�g)p(�g)

Accept (�g+1 = #) with probability � = minf1; rg and reject (�g+1 = �g) with probability 1�� .

from univariate distrbutions.
25This is the case as if ��2 � Ga(�; ); then �2 � Inv �Ga(�; ):
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3.4 Model and Data

The DSGE model to which we apply our quasi-Bayesian Local Likelihood approach is the model

from Smets and Wouters (2007), which is an extension of a small-scale monetary RBC model with

sticky prices (such as Goodfriend and King (1997), Rotemberg and Woodford (1997), Woodford

(2003), Ireland (2004) and Christiano et al. (2005)). In addition to the sticky prices, the model

also contains some additional shocks and frictions, including sticky nominal price and wage settings

with backward in�ation indexation, investment adjustment costs, �xed costs in production, habit

formation in consumption and capital utilization. It also features seven exogenous shocks that

drive the stochastic dynamics of the model. The foundations of the model are derived from the

intertemporal optimisation problems of di¤erent agents. In particular, there are seven types of

agents in the model: consumers that supply labour, choose consumption level, hold bonds and make

investment decisions; intermediate goods producers which are in a monopolistically competitive

market and cannot adjust prices at each period and �nal goods producers, who buy intermediate

goods, package them and resell them to consumers in a perfectly competitive market. In addition,

there is a labour market with a similar structure: there are labour unions with market power that

buy the homogenous labour from households, di¤erentiate it, set wages and sell it to the labour

packers, who package it and resell it to intermediate goods producers in a perfectly competitive

environment. Finally, there is a central bank that follows a nominal interest rate rule, adjusting

the policy instrument in response to deviations of in�ation or output from their target levels and

a government that collects lump-sum taxes which appear in the consumer�s budget constraint and

whose spending is exogenously driven.

The model is log-linearised around its steady state and trended variables are detrended with a

deterministic trend26. The model is estimated using seven macroeconomic quarterly time series for

the United States for the period of 1964Q3 to 2012Q4 as observables. The variables are the ones

used in Smets and Wouters (2007), namely, output, consumption, investment and wages per capita

growth; in�ation, hours and the interest rate (see Appendix 7.2 for more details).

In this Section we present results for the �xed parameter model and also for the version with

time varying parameters estimated with QBLL method described in the previous Section. In both

cases, we employ the priors from Smets and Wouters (2007), with a number of MH draws of 220; 000,

26The linearised model is presented in the Appendix. For full derivations from the non-linear �rst
order conditons, please refer to the Technical Appendix in Smets and Wouters (2007) available at:
http://www.aeaweb.org/aer/data/june07/20041254_app.pdf
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from which we drop the �rst 20; 000. We set the scaling parameters such that acceptance rates are

around 25%. We apply the QBLL method using the Normal kernel function in equation (5) with

a bandwidth size of T 0:5:

3.5 Results

In this Section, we discuss the parameter estimates (Figures 11-13). We employ Figures 11-13 to

judge informally whether a parameter�s variation is substantial by checking whether the QBLL

estimates are outside the con�dence bands of the �xed-parameter estimates. We adopt Fernandez-

Villaverde and Rubio-Ramirez (2008)�s de�nition of �structural�parameters: these are preference

and technology parameters which are invariant to both policy and shocks. If a parameter is found to

be within the �xed-parameter 68% bands, we conclude that it is in fact �structural�. If a parameter

varies smoothly over time, following a clear pattern, we infer that it has been a subject to structural

change. On the other hand, if a parameter exhibits an erratic time variation, we would point to

a possible misspeci�cation of that parameter. The solid blue line are the time varying estimates

obtained with the QBLL method and 68% con�dence bands are represented by the dotted blue

lines. The green line represents the full sample �xed-parameter estimates, with the dotted lines

around it - 68% con�dence bands.

Figure 11: The DSGE parameters over time

The top panel of Figure 11 assesses results for the policy preference parameters. Our results
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are broadly consistent with previous studies (Clarida et al. (2000), Cogley and Sargent (2002),

Fernandez-Villaverde and Rubio-Ramirez (2008)) that found evidence of structural changes in Tay-

lor rule parameters. The Federal Reserve has shifted its policy priority from output towards in�ation

since the parameter that measures the reaction to in�ation increases between 1979 and 1996, while

the reaction to the output gap decreases over this period. The interest rate smoothing parameter

is lower in the 1980s than in later periods, while the steady state in�ation rate decreases between

1985 and 1996.

The second panel of Figure 11 provides evidence of changes in the steady-state growth rate of

per capita output (as well as consumption, investment and the real wage, which share the same

trend). During most of the period and up to 2005, the QBLL posterior mean for this parameter

is around 0.4, that is, an annual growth rate of 1.6%, however, this decreases to 1% annually in

period of the 2007-8 �nancial crisis. In contrast, �xed-parameter estimates under-estimate these

values over most of the sample, but over-estimate it during the recent period. This parameter is

important for generating forecasts as it appears in several of the measurement equations and Kolasa

and Rubaszek (2015) bring attention to the importance of this parameter in reducing forecasting

bias.

Figure 12: The DSGE parameters over time

The �ndings on the price rigidity parameters are consistent with the evidence presented in

Fernandez-Villaverde and Rubio-Ramirez (2008). In particular, we document a negative relation
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between the price indexation (last panel in Figure 11) and price stickiness (second panel in Figure

11) parameters after the mid-1970s; hence, periods characterised by high Calvo probability para-

meter are also of low indexation and vice versa. The fall in in�ation indexation during the Great

Moderation is consistent with �ndings of Gali and Gertler (1999) and could be explained by the

decreased need to adjust prices frequently due to low and stable in�ation leading to longer length

of contracts27 and hence higher Calvo probability parameter and lower indexation. The variation

uncovered in the price rigidity parameters suggests that there is no stable predictive relation be-

tween in�ation and output gap over time (i.e. the Phillips curve has become �atter in the low

volatility period of the Great Moderation) which cast doubt on the ability of Calvo pricing models

to adequately capture pricing behavior of �rms and unions in the economy.

There are parameters that appear to move very little over the entire sample period or seem

to remain within the con�dence bands of the �xed parameter estimates throughout most of the

sample, such as the elasticity of intertemporal substitution and the household discount factor (last

panel of Figure 11), and the elasticity of labour supply or the �xed production costs (�rst panel

of Figure 2). We draw comfort on those results, as they could be interpreted as evidence of the

structural nature of these parameters.

On the other hand, the moving average (MA) coe¢ cient, the persistence coe¢ cient (last panel

of Figure 12) and the standard deviation (last panel in Figure 13) of the wage mark-up shock

process, as well as the Calvo parameter in labour markets (top panel in Figure 12) all appear very

volatile and this could be evidence that they are seriously misspeci�ed and should not be kept

�xed. Interestingly enough, all four are parameters that govern labour market dynamics through

the wage equation and all become very unstable during the Great Moderation period. This could

be interpreted as evidence that during the Great Moderation, a Calvo model with an ARMA wage

shock may not have been an adequate model to characterise the dynamics of the labour market in

the US. An alternative interpretation is that there might be insu¢ cient information in the data in

order to jointly identify all four parameters during the Great Moderation.

The standard deviations of the structural shocks (panel 2 and 3 of Figure 13) also move in the

expected direction, consistent with �ndings of low stochastic volatility during the Great Moderation

(e.g. Primiceri (2005) and Sims and Zha (2006)). In particular, all shocks� volatilities fall in

the late 1980s and remain low throughout the 1990s. Moreover, their posterior distributions are

narrower during that period implying that there is less uncertainty about the possible values they

27The average price duration is given by 1
1��p

, where �p is the Calvo probability in the goods market.
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Figure 13: The DSGE parameters over time

can take. The standard deviation of the monetary policy shock, for instance, peaks in the 1980s,

implying a larger role of the shock throughout that period and falls considerably after the 1990s,

having lesser impact on the business cycle as a consequence of the more adequate policy. For some

shocks�standard deviations (e.g. TFP, investment-speci�c technology and price-mark up shocks)

we observe an increase in the end of the sample leading to the recent �nancial crisis. Due to

the considerable time variation we uncover in the volatilities of the shocks, using the most recent

values of the estimated volatility parameters when generating forecasts is expected to improve

the density of the forecasts compared to simply using the �xed parameter estimates that average

these over the entire in-sample period. Finally, the autoregressive coe¢ cients for the stochastic

processes (panels 1 and 2 of Figure 13) seem to move considerably, which is unsurprising as these

are designed to capture dynamics in the data. They are not truly structural, in the sense that

there is no underlying macroeconomic theory that implies that they are not subjected to shocks or

policy. Most of the shocks�persistence coe¢ cients display a U-shape with low persistence towards

the end of the Oil Crises and higher persistence during the Great Moderation. For instance, the

TFP shock becomes very persistent during the recent crisis with AR coe¢ cient very close to one,

implying almost permanent shock to productivity.
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3.6 Time Varying Impulse Response Functions

In this Section, we turn to the estimated impulse response functions over time. We investigate

whether there is evidence for structural change in the transmission mechanism of important vari-

ables to macroeconomic shocks, resulting from the documented time variation in the paramerers.

Figure 14 displays the impulse response functions of output, in�ation and the interest rate to

a monetary policy shock. Since the response is to a unit of the shock, it measures only changes in

the transmission of the monetary policy shock over time without taking into account changes in

the volatility of the shock, as documented in the previous subsection.

First, the response of the Fed rate to the monetary policy shock is roughly the same throughout

the sample period and it is around half a percentage point. The response of output, in contrast,

shows a clear trend over time, with responses increasing from around 2.5% to 4% on impact. The

response of in�ation, on the other hand, displays a U-shape, with in�ation being quite responsive

to policy in the late 1960s and early 1970s, and in the more recent period. This results are at odds

with the �ndings in Boivin and Giannoni (2006), who �nd a considerable decrease in the responses

of output, in�ation and the interest rate to a policy shock in their post-1980 sub-sample, using

minimum distance estimator between a structural VAR and a small DSGE model. They attribute

this result mainly to the higher estimate of the in�ation targeting parameter in their policy rule

over the second period.

Figure 15 presents responses to a one standard deviation of the shock and these incorporate the

decrease in the volatility of monetary policy shock over the second half of the sample. Instead of

increasing responsiveness of output, we now observe somewhat constant response over time with

an increase in the end of the sample due to the aggressive policy during the crisis. Interestingly,

once one allows for changing size of the shock over time, in�ation�s response to policy is actually

decreasing over time. Furthermore, one standard deviation policy shock results into considerably

higher response of the interest rate during Volcker�s years than in any other period.

Figures 16 and 17 display the responses to a price mark-up shock. The picture that emerges is

that both output and investment become much more responsive to an in�ation shock during the

Great Moderation period, implying that the same shock to in�ation has a relatively more harmful

e¤ect on these variables in that period than during the Oil Crises, when in�ation was record high.

It is also evident from the policy rate response that policy makers retaliated more to a unit of

in�ation shock after Paul Volcker�s appointment as a Federal Reserve chairman.
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Figure 14: IRFs to 1 unit monetary policy shock

Figure 15: IRFs to 1 st. dev. monetary policy shock
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Figure 16: IRFs to 1 unit price mark up shock

Figure 17: IRFs to 1 st. dev. price mark up shock
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Figure 18: IRFs to 1 unit TFP shock

Figure 18 and 19 are the IRFs of selected variables to a unit and a standard deviation of the

TFP shock. The most intriguing result that emerges is that the response of all output, consumption

and investment, whether one allows for the size of the shock to vary over time or not, is considerably

larger in periods characterised by recessions such as the Oil Crisis in early 1970s and the recent

crisis, implying an asymmetrically larger e¤ects of TFP shocks in recessions than in booms. The

decreasing responsiveness of the interest rate over time could be explained by the Federal Reserve

responding less aggressively to output and more aggressively to in�ation which is less a¤ected

by productivity shocks. The response of hours worked to productivity shock and the resulting

implications for the relevance and relative importance of this shock for the business cycle is a much

debated topic (Gali (1999)). Once we allow for time variation in the TFP responses, the response of

hours remains negative in all periods for all horizons except several periods in the early 1990s when

the response changes sign and becomes positive after less than 10 quarters. This could be attributed

to the increased persistence of the shock that we uncover during this period. Furthermore, as argued

in Smets and Wouters (2007), the habit coe¢ cient is important for explaining the negative e¤ect

of TFP on hours and as shown in Figure 11, we obtain low habit persistence in the 1990s which

contributes to the weakened duration of the negative e¤ect.Figures 20 and 21 display the responses

to a preference shock. It appears that, after allowing for the changing size of the shock over time,
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Figure 19: IRFs to 1 st. dev. TFP shock

output, consumption and investment are more responsive to the shock, both on impact and in

duration, in periods characterised by recessions, suggesting asymmetric responses to the preference

shock in the model.

Finally, Figures 22 and 23 display the responses to a unit and a standard deviation of wage

mark up shock respectively. The parameters characterising the labour market during the Great

Moderation period, which we discussed in the previous Section, are the reason for the misbehaved

impulse response functions during the same period. It is clear that the responses are not smooth

over time and the resulting response per unit of the shock of output, in�ation and hours becomes

essentially zero for all horizons after the beginning of the 1990s. Once we allow for the changing

size of the shock, the picture becomes even more distorted, since the standard deviation of the wage

mark up shock is itself one of the parameters that are misspeci�ed during the Great Moderation

period28.

28The IRFs of selected variables to the remaining shocks (namely, Investment Technology and Government Spending
Shocks) can be found in the Appendix 7.2, see Figures 47-50.
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Figure 20: IRFs to 1 unit preference shock

Figure 21: IRFs to 1 st. dev. preference shock
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Figure 22: IRFs to 1 unit wage mark up shock

3.7 Forecasting with a time varying DSGE Model

As we discussed in the introduction, the literature has documented evidence of the forecasting

accuracy of �xed-parameter DSGE models (Smets and Wouters (2007), Edge et al. (2009), Edge

and Guerkaynak (2010), Del Negro and Schorfheide (2013b), Del Negro, Giannoni and Schorfheide

(2014)). In this Section we evaluate the relative forecasting performance of our time varying

DSGE model. In addition to the �xed-parameter Smets and Wouters (2007) speci�cation, we also

compare the forecasting record of the time varying DSGE model against univariate models (AR(1),

a Random Walk (RW) and a time varying AR(1)) and multivariate reduced-form models (a BVAR

and a time varying stochastic volatility BVAR (TV-SV BVAR)).

The BVAR uses a standard Normal-inverted-Wishart conjugate prior with optimal shrinkage

and optimal lag selection as in Carriero, Clark and Marcellino (2015a). The TV-SV BVAR features

time varing autoregressive coe¢ cients as in Cogley and Sargent (2002) and stochastic volatility as

in Primiceri (2005)29. Since it is burdensome to estimate this model for more than three variables

and obtain stationary draws from the posterior distribution of the autoregressive coe¢ cients, we

limit our TV-SV BVAR to only output growth, in�ation and the Fed Funds rate. The TV-AR

29The TV-SV BVAR is of lag order one and uses random walk processes for both the autoregressive coe¢ cients
and the log volatility. For more details, see for instance Benati and Mumtaz (2007).
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Figure 23: IRFs to 1 st. dev. wage mark up shock

model is computed using the non-parametric kernel based method, as in Giraitis et al. (2014)30.

We employ the algorithm outlined in Section 3.3.2 to generate density forecasts for the observ-

ables of the time varying DSGE model.

Since real-time data is limited and only available after 199131, we perform the out-of-sample

forecasting on �nal revised data as we would like to be able to assess performance across di¤erent

periods. Our forecast origins range from 1974Q3 up to 2010Q1 and we compute forecasts for one

up to twelve quarters ahead.

We measure accuracy of point forecasts using the root mean squared forecast error (RMSFE)

and forecast bias. The accuracy of density forecasts are measured by log predictive scores. We

compute the logscore with the help of a nonparametric estimator to smooth the draws from the

predictive density obtained for each forecast and horizon. We test whether a model is statistically

more accurate than the benchmark with the Diebold and Mariano (1995) statistic computed with

Newey-West estimator to obtain standard errors. We provide the results of the Diebold-Mariano

test for the RMSFEs and logscores. For the bias, we simply test whether the models� bias is

30The model is estimated in each point in time t : b�t = (X 0DtX)
�1X 0DtY where X contains the lagged dependant

variable Y and Dt is a diagonal matrix with the kernel weights of the tth row of the weighting matrix in equation (4)
in its main diagonal. The variance of the residuals is also time varying and computed in point t as b�2t = "0Dt"=tr(Dt):

Density forecasts are then generated, using wild bootstrap and the last period values b�T and b�2T :
31Real-time data on compensation is not available prior to 1991.
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statistically di¤erent from zero.

3.7.1 Point Forecasts

Table 12 presents the absolute performance of the our TV DSGE model (in RMSFEs) and the

relative performance of our approach to alternative models over di¤erent horizons (numbers smaller

than one imply superior performance of the TV DSGE relative to the alternatives). One, two and

three stars indicate that we reject the null of equal accuracy in favour of the better performing

model at signi�cance levels of 10%, 5% and 1% respectively.

Forecast Performance - RMSFEs: 1974Q3-2011Q3
Horizon Output Consumption Investment Wages Hours In�ation Interest Rate

1 0.72 0.66 1.88 0.74 0.63 0.28 0.26
2 0.79 0.69 2.14 0.74 1.07 0.38 0.40

TV-DSGE 4 0.82 0.69 2.30 0.73 1.83 0.48 0.55
8 0.77 0.67 2.17 0.74 2.69 0.48 0.72
12 0.77 0.68 2.15 0.78 3.15 0.49 0.81
1 0.99 0.91** 1.04* 1.01 1.04 1.09*** 1.01
2 0.98 0.87** 1.07* 1.00 1.00 1.14*** 1.01

TV-DSGE/ 4 0.98 0.88** 1.08 1.00 0.97 1.17** 0.98
F-DSGE 8 0.97 0.93* 1.05 1.00 0.91 1.07 0.94

12 0.99 0.96 1.03 0.99 0.89 1.00 0.90
1 0.89 0.92 0.99 0.97 1.07* 0.97 0.99
2 0.94 0.92 0.99 0.99 1.05 0.99 0.97

TV-DSGE/ 4 0.90 0.90 0.98 1.00 0.98 1.02 0.99
BVAR 8 0.92 0.90 0.98 0.97 0.87 0.79 0.94

12 0.93 0.94 0.97 0.98* 0.80 0.72 0.90
1 0.88 - - - - 0.98 1.03

TV- 2 0.97 - - - - 1.00 1.08
DSGE/TV-SV 4 0.92 - - - - 1.04 1.05

BVAR 8 0.83 - - - - 0.82 0.94
12 0.81 - - - - 0.74 0.90
1 0.90* 0.94 1.02 1.00 0.88* 1.03 0.96
2 0.94 0.94 1.01 1.02 0.86* 1.07 0.98

TV-DSGE/ 4 0.97 0.96 1.00 0.99 0.86* 1.08 0.95
AR(1) 8 0.97 0.97 0.97 0.98 0.82** 0.93 0.84*

12 0.98 0.99 0.97 0.99 0.80* 0.84 0.80**
1 0.70** 0.72** 0.79* 0.74** 0.52** 0.86* 0.63**
2 0.71** 0.74** 0.79** 0.72** 0.64** 1.02 0.84

TV-DSGE/ 4 0.69** 0.72** 0.76** 0.69** 0.76** 1.08 0.86
RW 8 0.70** 0.67** 0.67** 0.74** 0.80** 0.96 0.83*

12 0.63** 0.66** 0.59** 0.72** 0.80** 0.90 0.80**
1 0.86** 0.87** 0.93 0.97 0.86** 1.01 0.94
2 0.89* 0.84* 0.86* 0.98 0.82** 1.04 0.98

TV-DSGE/ 4 0.90* 0.82 0.81* 0.96 0.80** 1.07 0.86
TV-AR(1) 8 0.88** 0.74 0.71** 0.95** 0.73** 0.94 0.73**

12 0.87** 0.73 0.66* 0.94** 0.68** 0.89 0.64**

Table 12: RMSFEs. The �gures under TV-DSGE model are absolute RMSFEs, the �gures under the remaining models are

ratios of RMSFEs of TV-DSGE over the alternatives. �*�, �**� and �***� indicate rejection of the null of equal performance

against the two-sided alternative at 10%, 5% and 1% signi�cance level respectively, using a Diebold - Mariano test.

There are some gains from using the time varying model over the standard �xed parameter

DSGE for most variables but the di¤erences are small and rarely signi�cant. One exception is in-

�ation: the time varying model performs signi�cantly worse than the �xed-parameter speci�cation.
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The model also outperforms the standard BVAR, which con�rms previous �ndings (e.g. Smets and

Wouters (2007), Adolfson, Andersson, Linde, Villani and Vredin (2007), Christo¤el, Coenen and

Warne (2010)). Moreover, we �nd superior performance for output growth over the TV-SV BVAR.

Finally, the TV DSGE model strongly outperforms the univariate models.

In order to better understand the strengths and weaknesses of our approach, we further in-

vestigate the point forecast accuracy by splitting our sample of forecasts into subsamples corre-

sponding roughly to three distinct periods in U.S. recent economic history: namely, the Oil Crisis

or Great In�ation period (at least the end of it, ranging 1974Q2:1982Q4), the Great Moderation

(1983Q1:2005Q4) and the recent �nancial crisis (2006Q1:2011Q3). Table 13 presents the relative

RMSFE performance of our approach and Table 14 displays the forecast bias for per capita GDP

growth, in�ation and the interest rate during the three periods. For the Oil Crisis period, our

method is superior to the two BVARs and comparative to the standard DSGE approach for out-

put. When it comes to forecast bias in the Great In�ation Period, both DSGE models strongly

and signi�cantly underestimate in�ation, but in relative terms our model does poorly, resulting in

signi�cantly worse RMSFE performance. The reason for this result is the relatively small sample

size at this point and hence, little advantage in down-weighting past data. Interestingly, the two

BVARs deliver unbiased in�ation forecasts, but systematically underestimate output growth.

Forecast Performance - RMSFEs
Oil Crisis Great Moderation Recent Crisis

1974Q3-1982Q4 1983Q3-2005Q4 2006Q1-2011Q3
Horizon Output In�ation Int Rate Output In�ation Int Rate Output In�ation Int Rate

1 0.96 0.46 0.46 0.65 0.18 0.16 0.60 0.26 0.10
2 1.16 0.67 0.71 0.62 0.20 0.27 0.72 0.29 0.18

TV-DSGE 4 1.22 0.90 0.91 0.64 0.22 0.39 0.70 0.35 0.33
8 1.13 0.89 1.17 0.61 0.25 0.53 0.69 0.28 0.48
12 1.18 0.91 1.34 0.57 0.27 0.56 0.71 0.19 0.53
1 0.98 1.15*** 1.03 1.02 0.97 0.99 0.90 1.13* 0.76**
2 1.08** 1.19*** 1.05 0.92** 0.96 0.96 0.86 1.21 0.79*

TV-DSGE/ 4 1.06* 1.19* 1.01 0.98 0.98 0.96 0.79 1.34 0.79
F-DSGE 8 1.01 1.11 0.99 1.00 0.98 0.99 0.82 0.91 0.63

12 1.03 1.05 0.97 0.97 0.96 1.04 0.88 0.54 0.52
1 0.81 1.07 1.04 1.04 0.76** 1.03 0.76 1.13 0.47*
2 1.04 1.12 0.98 0.95 0.69** 1.13* 0.72 1.14 0.53

TV-DSGE/ 4 0.97 1.26 0.99 1.01 0.57** 1.16* 0.62* 1.05 0.65
BVAR 8 0.96 1.00 0.96 1.09 0.50** 1.03 0.64 0.62 0.66

12 0.91 0.95 1.00 1.09 0.46** 0.92 0.77 0.37 0.54
1 0.83 1.03 1.02 0.97 0.84* 1.06 0.80 1.09 0.86*

TV-DSGE/ 2 1.12 1.10 1.10 0.89 0.73* 1.06 0.81 1.22 0.82
TV-SV 4 1.02 1.21 1.09 0.88 0.61 1.02 0.76 1.32 0.83
BVAR 8 0.81 0.88 0.95 0.91 0.62 1.01 0.75 1.02 0.73

12 0.76 0.77 0.94 0.93 0.62 0.91 0.77 0.78 0.67

Table 13: RMSFEs. The �gures under TV-DSGE model are absolute RMSFEs, the �gures under the remaining models are ra-

tios of RMSFEs of TV-DSGE model over the alternatives. �*�, �**�and �***�indicate rejection of the null of equal performance

against the two-sided alternative at 10%, 5% and 1% signi�cance level respectively, using a Diebold - Mariano test.
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Although, as argued earlier, our method does on average worse for in�ation over the full fore-

cast sample, during the Great Moderation, we obtain better performance. The Great Moderation

was characterised by low and stable in�ation and very low business cycle volatility. It is clear

from the forecast bias, that both BVAR models and the standard DSGE model signi�cantly over-

estimate in�ation during this period. This is the case, since the standard DSGE and the �xed

coe¢ cient BVAR models, in order to generate projections, use samples which contain the entire

Oil Crisis period, characterised by very high in�ation. Our method, on the other hand, obtains

better performance and remains virtually unbiased because of its way of down-weighting distant

data. The TV-SV BVAR features time variation in the autoregressive coe¢ cients of the VAR,

so it is surprising that is fails to capture the structural change in in�ation dynamics during the

Great Moderation and also systematically overestimates in�ation. This could be due to the way

time variation enters the model; our approach models time variation non-parametrically, and it is

more robust to misspeci�cations in the stochastic processes for the time varying parameters that

the TV-SV BVAR utilises (for further discussion and Monte Carlo evidence, see Section 2.9 and

Appendix 7.1.11). All models deliver similar, in terms of RMSFEs, output forecasts during the

Great Moderation; however, both DSGE models underestimate output.

Forecast Performance - Bias
Oil Crisis Great Moderation Recent Crisis

1974Q3-1982Q4 1983Q3-2005Q4 2006Q1-2011Q3
Horizon Output In�ation Int Rate Output In�ation Int Rate Output In�ation Int Rate

1 0.11 -0.23** -0.06 -0.10 0.00 -0.01 -0.04 -0.08 0.01
2 0.15 -0.39** -0.14 -0.19** 0.01 0.00 0.07 -0.13* 0.03

TV-DSGE 4 0.18 -0.60** -0.34 -0.25** 0.03 0.02 0.16 -0.17 0.09
8 -0.02 -0.63 -0.58 -0.25** 0.02 0.03 0.18 -0.12 0.24
12 -0.06 -0.66 -0.88 -0.18 0.01 0.05 0.13 -0.04 0.45
1 0.06 -0.18** -0.07 -0.18** 0.02 -0.01 0.31** -0.01 0.04
2 0.04 -0.32** -0.17 -0.30** 0.04 -0.01 0.48** 0.00 0.11*

F-DSGE 4 0.09 -0.52** -0.41 -0.34** 0.08** -0.01 0.55* 0.06 0.28*
8 -0.02 -0.58* -0.69 -0.27** 0.11* 0.03 0.49 0.19 0.64
12 -0.04 -0.63 -1.00 -0.20 0.13* 0.10 0.39 0.29 0.96
1 -0.41** 0.03 -0.06 0.02 0.11*** -0.03 0.33** 0.02 -0.11**
2 -0.47** 0.05 -0.18 0.03 0.17*** -0.01 0.61** 0.03 -0.13

BVAR 4 -0.28 0.05 -0.44* 0.01 0.27*** 0.06 0.86** 0.05 -0.04
8 -0.16 0.13 -0.62 -0.07 0.42*** 0.22 0.84* 0.21 0.35
12 -0.13 0.15 -0.78 -0.09 0.51** 0.37* 0.59 0.38 0.79
1 -0.25 -0.05 -0.01 -0.05 0.07*** 0.02 0.40*** -0.01 0.00

TV-SV 2 -0.36* -0.04 -0.03 -0.06 0.12*** 0.04 0.55** 0.00 0.03
BVAR 4 -0.42* 0.01 -0.07 -0.06 0.17** 0.09 0.61* 0.01 0.11

8 -0.67* 0.22 -0.03 -0.02 0.19* 0.15 0.61 0.07 0.34
12 -0.73 0.33 -0.14 0.04 0.20 0.22 0.56 0.14 0.60

Table 14: Forecast Bias. The table reports forecast bias, computed as the mean forecast error. �*�, �**�and �***�indicate rejec-

tion of the null of zero bias against the two-sided alternative at 10%, 5% and 1% signi�cance level respectively, using a Diebold

- Mariano test.

The period of the recent �nancial crisis (2007-2009) has been a subject to many discussions.
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This crisis generated serious critiques for the forecasting literature, for instance, Wieland and

Wolters (2011), Del Negro and Schorfheide (2013b) provide evidence that DSGE models not only

failed to predict it, but even once the crisis had started, failed to forecast the trough and quickly

returned the economy to positive growth rates. During the 2006-2011 period, which overlaps with

the recent crisis period and subsequent recovery, our model outperforms the standard DSGE model

and both BVARs for all horizons and even with a small sample size of 23 observations, manages

to deliver some statistically signi�cant improvements. This could also be seen from the forecast

bias where all alternative models considerably overestimate output, but our approach impressively

delivers unbiased output forecasts at one step ahead, compared to a bias of around 0.31% quarterly

GDP growth for the �xed parameter DSGE model, 0.33% for the BVAR and 0.40% for the TV-

SV BVAR. Our interpretation of this result is similar to before; both the BVAR model and the

standard DSGE model use as in-sample period data from Oil Crisis and the Great Moderation in

order to generate forecasts for the recent crisis, while our method also makes use of these data

but discounts it and gives more weight to recent observations. The resulting trend coe¢ cient, ;

as seen in Section 3.5, falls considerably after 2007. This parameter is important and can have

substantial e¤ect on the model�s forecasts, as it enters as an intercept in the measurement equation

for output, consumption, investment and wage growth. For in�ation, while RMSFE performance

during the same period is relatively similar to the standard DSGE model (worse in the short

run and better at longer horizons), the forecast bias is negative for the TV DSGE model while

positive for the standard DSGE. Another interesting result is that, our method, while delivering

similar interest rates forecasts during the previous subsamples, delivers very large and statistically

signi�cant improvements over all models during the crisis. Our TV DSGE model contains a Taylor

rule with changing parameters and in particular, during the crisis period with interest rates close

to the Zero Lower Bound (ZLB), our interest rate smoothing coe¢ cient jumps to levels near 0.9.

This delivers interest rate forecasts that are close to a random walk model while in�ation targeting

and output gap values have a reduced e¤ect.

To summarise, in periods, in which serious structural change is present, such as the recent one,

the forecast errors of the TV DSGE model are relatively smaller and the model is more robust to

forecast bias resulting from the presence of the structural change in the in-sample period.
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3.7.2 Density Forecasts

Table 15 accesses the quality of the density forecasts measured by logscores of the predictive

density. The table displays absolute log predictive score for the TV DSGE model and di¤erences

in logscores over the alternative models, so numbers greater than zero imply superior performance

of our approach.

A few comments are in order. First, it is clear that overall our method outperforms considerably

and statistically signi�cantly the standard DSGE for most variables and horizons. Interestingly,

our simple univariate TV AR(1) also delivers density performance superior to that of the standard

DSGE model. These results are important as they imply that, while allowing for parameter drift

results in moderate gains for point accuracy and only for some variables and periods, it results in

signi�cantly improved density forecasts. One way to look at this is to infer about the importance

of stochastic volatility. As seen in Section 3.5, the uncovered time variation in the standard devia-

tions of the shocks in the structural model is substantial and previous studies have con�rmed this

result (Primiceri (2005), Sims and Zha (2006), Justiniano and Primiceri (2008)). Since volatility is

inherently time varying and subjected to structural change, it is clear that conditioning on the most

recent values of the volatility of the shocks when simulating the density of forecasts, as outlined

in Section 3.3.2, will deliver better forecast uncertainty. Since the TV-SV BVAR also allows for

changing volatility, it is unsurprising that it delivers very similar density forecast performance.
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Forecast Performance - Log Predictive Score: 1974Q3-2011Q3
Horizon Output Consumption Investment Wages Hours In�ation Interest Rate

1 -1.14 -1.05 -2.00 -1.28 -0.97 -0.02 0.30
2 -1.20 -1.06 -2.17 -1.10 -1.50 -0.25 -0.30

TV-DSGE 4 -1.23 -1.10 -2.28 -1.09 -2.15 -0.45 -0.82
8 -1.22 -1.07 -2.22 -1.11 -2.65 -0.52 -1.19
12 -1.21 -1.05 -2.23 -1.19 -2.81 -0.53 -1.36
1 0.05** 0.05 0.03 0.00 -0.04 0.02 0.34***
2 0.06** 0.12*** 0.02 0.12 0.03 -0.01 0.25**

TV-DSGE- 4 0.06** 0.11*** -0.03 0.05 0.06 0.00 0.13
F-DSGE 8 0.07* 0.06 -0.04 0.05 0.19 0.07 0.08

12 0.07 0.07* 0.00 0.03 0.42 0.15** 0.18
1 0.09 0.03 0.06 -0.02 -0.10** 0.14** 0.39***
2 0.08 0.05 0.10 0.15 -0.01 0.16* 0.22**

TV-DSGE- 4 0.11 0.07 0.09 0.11 0.02 0.20* 0.01
BVAR 8 0.05 0.06 0.03 0.15 0.13 0.34** 0.01

12 0.04 0.08* 0.07 0.12 0.42 0.45** 0.09
1 0.04 - - - - -0.01 -0.05

TV- 2 0.03 - - - - -0.06 -0.06
DSGE-TV-SV 4 0.00 - - - - -0.09 -0.07

BVAR 8 0.09 - - - - 0.01 0.05
12 0.10 - - - - 0.08 0.06
1 0.03 -0.05 0.09* 0.05 0.16** 0.12* 0.28***
2 -0.04 -0.09 -0.04 0.19*** 0.25* 0.11* 0.19**

TV-DSGE- 4 -0.05 -0.12 -0.06 0.24*** 0.30 0.18** 0.10
AR(1) 8 -0.09 -0.14** -0.05 0.26*** 0.43* 0.29** 0.24

12 -0.11 -0.13* -0.05 0.23** 0.48** 0.40** 0.37
1 0.25*** 0.23** 0.35*** 0.39*** 1.02*** 0.34*** 0.79***
2 0.33*** 0.26** 0.21 0.37*** 0.69*** 0.13* 0.41***

TV-DSGE- 4 0.51*** 0.49*** 0.26 0.39*** 0.41** 0.17* 0.23
RW 8 0.84*** 0.84*** 0.57*** 0.55*** 0.44** 0.38*** 0.15

12 1.06*** 1.07*** 0.74*** 0.66*** 0.29 0.57*** 0.13
1 0.12* 0.11 0.20** 0.12 0.23*** 0.13** 0.29***
2 0.10 0.06 0.12 0.27*** 0.42*** 0.10 0.34**

TV-DSGE 4 0.09 0.06 0.20 0.25*** 0.70** 0.14 0.40**
TV-AR(1) 8 0.08 0.05 0.34** 0.26*** 1.42*** 0.16 0.82**

12 0.04 0.00 0.34** 0.21** 1.93*** 0.16 1.12**

Table 15: Log Predictive Score. The �gures under TV-DSGE model are absolute log predictive scores, the �gures under the

remaining models are di¤erences of RMSFEs over the TV-DSGE model. �*�, �**�and �***�indicate rejection of the null of equal

performance against the two-sided alternative at 10%, 5% and 1% signi�cance level respectively, using a Diebold - Mariano test.

Table 16 further investigates the relative density performance of our approach over the sub-

sample periods. It is clear that our method delivers better forecast uncertainty than the standard

DSGE and the standard BVAR over the Great Moderation period, which is unsurprising. The

in-sample that the two �xed coe¢ cient models contain is the high volatility period of the Oil

Crises, hence, as anticipated, density forecasts during the Great Moderation generated with these

in-samples are worse. On the other hand, our TV DSGE model as well as the TV-SV BVAR

account for this reduced uncertainty (our approach - by kernel down-weighting of Oil Crises data

and the TV-SV BVAR - by �tting random walk state equations for the volatility paths) and hence

deliver similar and superior performance over the �xed parameter models.
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Forecast Performance - Log Predictive Score
Oil Crisis Great Moderation Recent Crisis

1974Q3-1982Q4 1983Q3-2005Q4 2006Q1-2011Q3
Horizon Output In�ation Int Rate Output In�ation Int Rate Output In�ation Int Rate

1 -1.44 -0.71 -0.77 -1.04 0.27 0.55 -1.07 -0.09 0.84
2 -1.57 -1.13 -1.31 -1.05 0.06 -0.07 -1.25 -0.20 0.22

TV-DSGE 4 -1.65 -1.44 -1.55 -1.09 -0.10 -0.65 -1.21 -0.37 -0.46
8 -1.58 -1.38 -1.98 -1.10 -0.26 -0.99 -1.15 -0.32 -0.86
12 -1.60 -1.38 -2.02 -1.10 -0.29 -1.23 -1.11 -0.26 -0.94
1 -0.04 -0.17** 0.21 0.09*** 0.13** 0.35*** 0.02 -0.12 0.48***
2 -0.08** -0.21* 0.42 0.13*** 0.09** 0.17 0.02 -0.12 0.28*

TV-DSGE- 4 -0.09** -0.16 0.59 0.10*** 0.11** -0.04 0.13* -0.18 0.10
F-DSGE 8 -0.06* -0.07 0.31 0.10** 0.14** -0.12 0.13 0.02 0.45

12 -0.05* -0.02 0.85 0.10 0.19** -0.32 0.11 0.21 1.02
1 0.42 -0.01 0.34 -0.05 0.27*** 0.33*** 0.12 -0.10 0.66**
2 -0.01 0.02 0.22 0.00 0.28*** 0.14 0.49 -0.08 0.48

TV-DSGE- 4 0.06 -0.13 0.04 -0.02 0.39*** -0.07 0.66 -0.02 0.21
BVAR 8 0.00 -0.10 0.04 -0.03 0.50*** -0.07 0.38 0.34* 0.26

12 0.08 -0.05 0.40 -0.03 0.60** -0.18 0.23 0.60 0.61
1 0.19 -0.07 -0.24 -0.05 0.02 -0.03 0.18 -0.02 0.10

TV-DSGE- 2 -0.01 -0.20 -0.25 -0.07 0.01 -0.07 0.42 -0.11 0.23
TV-SV 4 -0.05 -0.38 -0.16 -0.10 0.05 -0.16 0.38 -0.17 0.37
BVAR 8 0.10 -0.05 -0.08 -0.09 0.09 -0.08 0.70 -0.18 0.67

12 0.32 0.17 0.06 -0.05 0.09 -0.14 0.33 -0.07 0.76

Table 16: Log Predictive Score. The �gures under TV-DSGE model are absolute log predictive scores, the �gures under the

remaining models are di¤erences of RMSFEs over the TV-DSGE model. �*�, �**� and �***� indicate rejection of the null

of equal performance against the two-sided alternative at 10%, 5% and 1% signi�cance level respectively, using a Diebold -

Mariano test.

3.7.3 Robustness Checks

In this Section, we investigate the impact of some of our assumptions on the forecasting perfor-

mance of the time varying DSGE model. We exploit the impact of di¤erent bandwidth sizes and

the use of the rolling windows method. Figure 25 plots the RMSFEs32 for the �xed-parameter

DSGE model and the time varying DSGE estimated under di¤erent assumptions. We include our

baseline case with the normal kernel method and bandwidth equals to T 0:5, and also the case the

bandwidth of T 0:55. We also consider �at kernels which are equivalent to rolling windows of 40 and

60 observations. The results in Figure 25 support our baseline estimation method since they imply

a forecasting performance that is superior to alternative speci�cations.

Robustness Check. Comparison of RMSFEs obtained with bandwidthsH = T 0:5; T 0:55 and rolling windows

of size 40 and 60.
32For computational time considerations, the robustness checks have only been computed at the mode of the

parameter posterior. Furthermore, the sample size of the forecasts is smaller than in the comparison in the previous
Section due to use of larger in-sample periods by the wider rolling windows.
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Figure 24: Robustness Check

3.8 Summary

This Chapter develops a quasi-Bayesian local likelihood method to accommodate time variation

in DSGE models�parameters, appropriately weighting the sum of log likelihoods of the sample with

weights generated by a kernel function. The method can be applied to any DSGE model that has

a state-space representation. The empirical application presented uncovers some time variation in

the Smets and Wouters (2007) model�s parameters and points to potential misspeci�cation in the

labour market of the model during to the low volatility environment of the Great Moderation period.

When it comes to forecasting, our estimation procedure is no more computationally intensive than

estimating a DSGE model with �xed parameters and, as demonstrated in the forecasting exercise,

can deliver some gains in the forecast performance both for point and density projections especially

in the presence of serious structural change such as the recent �nancial crisis.
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4 Time Varying DSGE model with Financial Frictions

4.1 Introduction

The previous Chapter discussed the success of dynamic stochastic general equilibrium (DSGE) for

policy analysis and macroeconomic forecasting. In particular, following Smets and Wouters (2007),

many authors evaluated the DSGE models�s forecasting performance, providing evidence that they

can produce accurate forecasts of output growth and in�ation in real time (Edge and Guerkaynak

(2010), Woulters (2012) and Del Negro and Schorfheide (2013b)). However, the recent �nancial

crisis has posed a serious challenge to macroeconomic modelling and forecasting. Perhaps the most

important aspect of this challenge is the inability of standard DSGE models to accommodate the

impact of developments in the �nancial sector on the rest of the economy. Based on the seminal

work of Bernanke, Gertler and Gilchrist (1999), various authors have exploited �nancial channels in

a DSGE structure as a way of improving the �t of the DSGE model to the 2008-2009 global �nancial

crisis, including Christiano, Motto and Rostagno (2014), Del Negro and Schorfheide (2013b) and

Del Negro, Hasegawa and Schorfheide (2014). Interestingly, Del Negro, Hasegawa and Schorfheide

(2014) �nd that the Smets and Wouters (2007) model with �nancial frictions, while delivering

relatively better forecasts during the crisis, performs worse in tranquil periods than the model

without �nancial frictions. This is consistent with evidence of the changing predictive power of

various economic and �nancial indicators on U.S. output and in�ation (Stock and Watson (2003)).

Even if asset prices are, on average, poor indicators of economic activity, their predictive power

should have increased during the recent �nancial crisis. For example, Gilchrist and Zakrajsek

(2011) and Philippon (2009) argue that the predictive power of corporate bond credit spread for

the business cycle and economic activity reveal the potential of bond markets to signal (even more

accurately than stock markets) the decline in fundamentals prior to the 2007-2008 business cycle

downturn.

Incorporating a �nancial channel in a DSGE model may not be enough to address the e¤ect

that structural changes in the underlying economy might have on preference parameters and on

exogenous shock processes. As argued in Chapter 3, a standard assumption in the literature has

been that the DSGE parameters are structural in the Lucas sense, that is, they are invariant to

both policy and structural shocks. However, long term cultural or technological shifts might result

in slow parameter variation. While DSGE analysis focuses primarily on business cycle frequency,

parameter drift is potentially of great importance when considering sample periods of over 40 years,
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which are routinely used for estimation and calibration of DSGE models. A related issue is the

extent to which all parameters of medium-sized DSGE models are equally immune to the Lucas

critique. While parameters such as households� discount factor with distinct microfoundations

may be una¤ected to long run change, other parameters associated with rigidity dynamics have

a reduced-form �avour and may be more vulnerable to technological or social change, or other

factors. Even if one believes in the structural nature of DSGE parameters, it is important that

one recognises at least the possibility of time variation in the parameters when estimated over long

time periods.

In this Chapter, we employ the approach developed in Chapter 3 to investigate the changing

nature of the e¤ect of �nancial frictions to the rest of the economy. The model we investigate is a

Smets and Wouters (2007) model with an added �nancial sector as in Bernanke et al. (1999) and

Del Negro and Schorfheide (2013b). The advantage of the speci�cation discussed in this Chapter is

that the importance of the �nancial frictions for macroeconomic variables depends on a preference

parameter and on the stochastic properties of the new �nancial friction shock. By looking at the

possibility of time variation in these parameters, while also allowing all other DSGE parameters to

change over time, we can measure whether the signi�cance of �nancial frictions change over time.

We �nd that the parameter that triggers the transmission of �nancial frictions to the economy

remains relatively constant during the entire sample period we analyse. However, the volatility

of the �nancial friction shock rises dramatically during the 2007-2011 period. This new �nding

contributes to the debate between �Good Luck�versus �Good Policy�when explaining the Great

Moderation (Gali and Gambetti (2009), Benati and Surico (2009), Sims and Zha (2006)). We

provide evidence that the �nancial frictions shock was muted during the 1985-2007 period. Note

that our model presents arguments in favour of changes in the volatility of the shocks while also

allowing for changes in the parameters of the policy rule. As a consequence, this Chapter produces

a new source of evidence of �Good Luck�during the Great Moderation period while also allowing

for a �Good Policy�channel. Related investigation of changes in the volatility of �nancial shocks

over time is presented in Fuentes-Albero (2014), where a Smets and Wouters (2007) DSGE model

with �nancial frictions is estimated with constant parameters over di¤erent subsamples and the

breaks in the volatility of the residuals of the model are dated. The author �nds that the size

of the �nancial shocks has increased over time, while their importance in explaining non-�nancial

variables has remained relatively unchanged. Cardani, Paccagnini and Villa (2015) estimate a

Smets and Wouters (2007) model with banking intermediation and report the posterior means of
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the parameters over time implied by their recursive forecasting scheme, providing further evidence

of the changing importance of the �nancial shock in their model.

This Chapter also exploits the forecasting performance of the time-varying DSGE model with

�nancial frictions, extending the results of Del Negro and Schorfheide (2013b) and Kolasa and

Rubaszek (2015), who use only �xed parameters speci�cations.

The Chapter is organised as follows. Section 4.2 describes the DSGE model used in the em-

pirical applications in Section 4.3. Finally, Section 4.4 concludes and Appendix 7.3 contains data

description, priors, additional results and robustness checks.

4.2 The DSGE model with �nancial frictions

The DSGE model with �nancial frictions combines the Smets and Wouters (2007) model (SW),

which extends a small-scale monetary RBC model with sticky prices (such as Goodfriend and King

(1997), Rotemberg and Woodford (1997), Woodford (2003), Ireland (2004) and Christiano et al.

(2005)), with �nancial frictions as in Bernanke et al. (1999). In addition to the sticky prices, the

SW model also includes additional shocks and frictions, featuring sticky nominal price and wage

settings with backward in�ation indexation, investment adjustment costs, �xed costs in production,

habit formation in consumption and capital utilization. Our complete log-linearised speci�cation of

the model is described in Appendix 7.3. It di¤ers from the �nancial friction speci�cation in Kolasa

and Rubaszek (2015) and Del Negro and Schorfheide (2013b) in that we are using a deterministic

rather than stochastic trend in productivity.

In comparison with the SW model, the main di¤erence of the model discussed in this Chapter is

the inclusion of a �nancial sector from where entrepreneurs borrow funds to �nance their projects.

To prevent entrepreneurs to accumulate enough for self-�nancing, the model assumes that a constant

proportion of them dies each period. The success of the entrepreneurs�projects depend on both

aggregate and idiosyncratic shocks. While entrepreneurs observe the impact of both types of

shocks, the banks do not observe idiosyncratic shocks. The �nancial intermediary faces a standard

agency problem in writing the optimal contract to lend to the entrepreneurs. The bank charges a

�nance premium in order to cover its monitoring costs. The �rst order condition from the expected

return maximisation of the entrepreneurs, subject to the bank contract, gives rise to one of the

three key equations in the �nancial frictions block together with the evolution of the net worth of

entrepreneurs and the arbitrage equation for capital. The most important impact of the �nancial

friction is that it �accelatares�the impact of negative shocks, since the default risk increases during
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recessions, which has a negative impact on net worth and investment, that further rises the default

risk as a consequence of the corporate bond spread.

The log-linearised equation, assuming a deterministic trend in productivity, that links the �-

nancial friction shock "!t and the expected spread is written as

Et
h
~Rkt+1 � rt

i
=

(1� �=)
(1 + �=)�c

"bt + &sp;b(qt + kt � nt) + "!t ;

where "bt is the risk premium shock, � describes the habit formation on consumption,  is the

long-run growth rate, �c is the elasticity of intertemporal substitution. The transmission of the

�nancial shock to aggregate investment via Tobin�s qt depends crucially of the parameter &sp;b. If

this parameter collapses to zero (in the absence of the �nancial friction shock "!t ), the model is

equivalent to one with no �nancial frictions. The �nancial friction shock follows an AR(1) process

"!t = �!"
!
t�1 + �!�

!
t ;

with variance �2!. This implies that the DSGE model with �nancial frictions has eight stochastic

shocks. We are particularly interested in how the parameters &sp;b, �! and �! evolve over time

since they have an impact on how the �accelerator�mechanism, created by allowing for �nancial

frictions, changes over time.

Our full set of measurement equations is described in Appendix 7.3. In addition to the seven

observables employed by Smets and Wouters (2007), we add a time series of the corporate bond

spread, Spreadt, measured as the di¤erence between the BAA Corporate Bond Yield over the 10

Year Treasury Note Yield. This time series is linked to the �nancial friction block above by equation

Spreadt = SP � + 100� Et[ ~Rkt+1 � rt];

where rt is the policy rate.

4.3 Empirical results

In this Section, we apply the quasi-Bayesian local likelihood (QBLL) method outlined in Chapter 3

to the DSGE model with �nancial frictions described in Section 4.2. We compare our results with

the model estimated assuming �xed parameters. The QBLL method is applied with the weights wtj

generated by the normal kernel function and a bandwidth
p
T : The parameter prior distributions
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can be found in Appendix 7.3. These priors are the same as in Smets and Wouters (2007); for the

�nancial friction block parameters we tried di¤erent prior speci�cations (see Appendix 7.3). The

number of draws of the MH algorithm is 150; 000, from which we drop the �rst 15; 000. The scaling

parameter for the MH has been adjusted in order to obtain rejection rates of 20%-30%33. We use

U.S. data on eight observables described in Appendix 7.3 from 1970Q1 up to 2014Q2.

Figure 25: QBLL Estimates of DSGE model parameters with FF

Figures 26 and 27 present the estimates of selected parameters. The remaining parameters can be

found in Appendix 7.3, and they are qualitatively similar to the estimates in Chapter 3. In Figures

26 and 27, the blue solid line is the posterior mean obtained by QBLL, with the black dotted

lines displaying 5% and 95% posterior con�dence intervals, and the pink dash-dotted line is the

posterior mode obtained by QBLL. Finally, the dashed blue line is the posterior mean obtained by

standard Bayesian methods with �xed coe¢ cients, and the green dashed lines are the 5% and 95%

33Roberts et al. (1997) show that the optimal acceptance rate is 0.234 and their result serves as a rough benchmark in
the literature; however, it is asymptotic and rests on the assumption that the elements of each chain are independent.
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posterior quantiles. We would judge informally whether a parameter�s variation is substantial by

checking whether our estimates are outside the 5% and 95% quantiles of the posterior distribution

of the �xed parameter model. We expect that the time-varying parameters, estimated by QBLL,

will move slowly over time, in agreement with their variation representing stable and gradually

changing relationships between the variables of the model, caused by smooth structural change.

Parameters that vary in a erratic way would suggest that there exists no stable relationship between

variables over time which might indicate model misspeci�cation of a di¤erent nature to that arising

out of smooth structural change.

Figure 26 displays the parameters of the Taylor rule, that is, interest rate smoothing and the

relative impacts of in�ation, output gap, and output growth on the policy rate. Estimated values

are broadly in agreement with previous studies (Clarida et al. (2000), Cogley and Sargent (2002),

Fernandez-Villaverde and Rubio-Ramirez (2008)) and suggest that the Federal Reserve has shifted

the priority of its policy from output towards in�ation in the mid-1980s. In particular, the Taylor

rule in�ation parameter starts increasing considerably especially after 1983, Paul Volcker�s second

term as a Chairman of the Federal Reserve, while the output gap coe¢ cient falls during that

period. Interest rate smoothing seems to have been low in the 1980s with tackling in�ation being a

priority and becomes higher through the second half of the sample. More interesting, we observe an

increase in the output gap coe¢ cient during the recent crisis, providing evidence that U.S. monetary

authorities shifted attention to the sharply declining output. Monetary policy shock becomes more

persistent during the crisis with interest rates near the Zero Lower Bound.

Figure 26 also includes the parameters of the �nancial friction block. Both the measurement

equation parameter, SP �; and the coe¢ cient that measures the impact of �nancial frictions on

Tobin�s q,&sp;b, have posterior means obtained with QBLL that are larger than assuming �xed

parameters, but their values are in general stable over time34. The parameter measuring the

persistence of the �nancial friction shock obtained with QBLL is in line with the one obtained

with the �xed coe¢ cient model since the QBLL estimate has large posterior con�dence bands. In

contrast, the volatility of �nancial frictions shocks increases twofold in period between 2007 and

2011 in comparison with the previous period and also with the �xed parameter posterior estimates.

34 In the presence of time variation, �xed parameter estimation is inconsistent and hence results can be very di¤erent
under both schemes especially in a non-linear setup. To address the question of why the con�dence intervals of SP �

and �sp;b obtained by BLL do not overlap with the �xed parameter ones, we o¤er a di¤erent explanation. Since
the BLL approach uses a smaller sample (taking into account the down-weighting), it gives larger relative weight to
the prior. For most parameters, this makes little di¤erence, as the priors are not very tight. However, for SP � and
�sp;b, the BLL approach delivers estimates much more narrowly concentrated around the prior means than the �xed
parameter model which uses a larger sample.
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One might worry that this large increase may be caused by the inadequacy of the DSGE model to

�t the data during the �nancial crisis period.

Figure 26: QBLL Estimates of DSGE model parameters with FF

Figure 27 compares the time variation of the �nancial friction volatility with the volatilities of the

other seven shocks. The results are broadly consistent with �ndings of low volatility during the

Great Moderation (e.g. Primiceri (2005) and Sims and Zha (2006)). In particular, the volatilities

of all shocks (except the wage mark up shock) fall in the late 1980s and remain low throughout

the 1990s. The standard deviation of the monetary policy shock, for instance, is twice as large in

the 1980s than in the 1990s. The volatilities of productivity and spending shocks are also small

during the 1985-2005 period. These results suggest that the QBLL approach applied to the DSGE

with �nancial frictions is able to reproduce previously documented changes in the variance of the

shocks. Our new �nding, however, is the clear increase in the �nancial friction shock variance from

0.2 to 0.4 during the 2007-2011 period. Similar relative size increases are not found for the other
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shocks since the total factor productivity shock only slightly exceeds the �xed parameter estimate

during the most recent period.

In summary, the application of the QBLL approach to the DSGE model with �nancial frictions

suggests that the volatility of the �nancial shock increased in the 2007-2011 but was small in the

previous period. This adds a �Good Luck�component to the interpretation of the Great Moderation

period (1985-2006) since previous papers (Gali and Gambetti (2009), Benati and Surico (2009), Sims

and Zha (2006)) looked at DSGE models that did not include a �nancial sector, and as consequence

had no �nancial shocks. Moreover, we �nd that the volatility of the �nancial friction shock starts

falling in 2012 and returns to pre-crisis levels in the end of 2014, suggesting a recovery of the

economy from the �nancial crisis. An alternative explanation for the uncovered variation in the

�nancial volatility is that the DSGE model we consider is too stylised and cannot capture fully

the linkages between the �nancial sector and the rest of the economy and consequently, the impact

of the events of the �nancial crisis appear in the variance of the �nancial friction shock in our

empirical investigation.

4.3.1 Robustness Checks

In this Section, we report a number of robustness checks we performed in order to test the va-

lidity of the results presented in the previous Section. First, we checked the robustness of our

�ndings by trying di¤erent prior speci�cations (see Appendix 7.3 for details) and by changing the

trend assumption on productivity from deterministic to stochastic35. In all these speci�cations, we

con�rmed the results presented in Figure 1 and 2.

In addition, in Figure 28, we provide a comparison of the QBLL estimates of selected para-

meters36 with ones generated with a simple rolling window scheme (solid green line)37. It is clear

from Figure 28 that while the general pattern of the parameters does not change, the estimates

obtained using the rolling window are considerably noisier. This is the case as at each point, a

new observation is added and another one is thrown away. On the other hand, the QBLL, due to

its capacity to reweight past observations without completely discarding any information, delivers

smoother time variation. Noisy time variation in the DSGE parameters is not desirable for at least

two reasons. First, if moving one observation forward causes large shifts in the values of some

35These additional results are available upon request.
36The remaining parameters can be found in Appendix 6.5.
37For computational considerations, we only present the posterior mode estimates. To make the results comparable

with the BLL results from the previous section, we use window size of [2H+1] observations; where H is the bandwidth
used for the normal kernel.

102



parameters, this might distort forecasting performance. Second, as argued in the previous Section,

we believe that the variation in the DSGE parameters should be gradual, because it implies stable

and gradually changing relationships between the variables of the model. The normal kernel has

been found in the Monte Carlo study of Giraitis et al. (2014) to provide estimators with lower MSE

compared to the �at kernel.

Furthermore, in order to assess the robustness of our results with respect to di¤erent spread

variables, we estimated the model using the di¤erence between the BAA corporate bond yield and

the Fed Funds rate (solid blue line). Figure 29 displays the posterior modes of selected parameter

estimates38. We discover that the results with this alternative spread speci�cation do not alter our

main conclusions.

Figure 27: Robustness Check

In addition, we also ran a small simulation exercise39 in order to check if the QBLL approach works

38The remaining parameters can be found in Appendix 6.6.
39Due to computational time considerations, we only ran 10 replications, each with a sample size of 1000.
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even in the absence of parameter time variation. We generated data from a �xed parameter DSGE

model with �nancial frictions (dotted green line), using as a parameter vector the prior means40.

Then, we applied our QBLL approach (solid blue line) to these arti�cial data. Figure 30 displays

the resulting estimates from a representative replication for selected parameters41 and demonstrates

how the QBLL approach recovers the true parameters with virtually no time variation. This sug-

gests that the method is valid even in the absense of time variation and therefore the uncovered

variation in the model�s parameters in our empirical application is not spurious but is instead a

feature of the US data used for estimation.

Figure 28: Robustness Check

Finally, our choice of bandwidth in the empirical application in the previous Section is moti-

vated by the optimal bandwidth choice used for inference in time varying random coe¢ cient models
40We set the standard deviations to 0.1, as the prior mean for these is in�nite.
41The remaining parameters can be found in Appendix 6.7.
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in Giraitis et al. (2014). In addition, in Chapter 2 and 3, we performed a number of robustness

checks with respect to di¤erent values of H. Moreover, in an application to the Smets and Wouters

(2007) model without �nancial frictions, Chapter 3 showed that H =
p
T delivers the best forecast

performance for most variables.

Figure 29: Simulation Exercise

4.3.2 Time-varying impulse response functions

The main objective of this subsection is to evaluate how the �nancial frictions shock propagates to

the rest of the economy over time. Our previous results suggest that the size of the �nancial shock is

larger in the 2007-2011 period. However, the parameter that governs the transmission of the shock

to macro variables, �sp;b, does not change very much. Figure 31 displays the impulse response

functions of output and investment. The top panel of Figure 31 describes the responses to one-

standard deviation of the shock, so it captures the e¤ect of the shock on the desired variables over

time while also taking into account its changing size. The bottom panel of Figure 31 describes the
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responses to 25-basis-points shock, which are useful for investigating the changes in the transmission

while keeping the size of the shock constant over time.

We can see that the negative responses of output 10 quarters after the shock are 0.1% during

2008-2011 period instead of 0.05% prior to 2008. Similarly, investment, which is the main channel

through which the �nancial shock a¤ects output, responds much more sharply during the 2007-

2011 period, with an accumulated response of minus 6.5% in the �ve years after the shock hits,

as supposed to minus 1.5% in the pre-crisis period. If we consider the impact of a �xed-sized

shock instead, the resulting responses of both output and investment are virtually the same across

periods. This con�rms our conjecture that what has changed over time is the size of the �nancial

shocks rather than the way in which �nancial markets operate in the model.

Figure 30: Responses to 1 st. dev. and 25 basis points of �nancial friction shock

4.3.3 Forecasting

Our previous results indicate that the QBLL approach applied to the DSGE model with �nancial

frictions is able to capture important variation of the parameters over time. In particular, Figure

27 provides exhaustive evidence of changes in the volatility of the shocks. The literature on fore-
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casting with time-varying volatilities (e.g., Carriero, Clark and Marcellino (2015b)) suggests that

we should expect improvements in forecasting accuracy in particularly when evaluating the predic-

tive densities. In this subsection, we use the algorithm outlined in Chapter 2 to generate density

forecasts for the observables, using the posterior distribution of the parameters at the last period T

of the in-sample to generate the out-of-sample predictions. Our forecast origins are 2000Q1-2012Q2

and we generate projections 1 to 8 quarters ahead. In addition to our time-varying DSGE model

with �nancial frictions (TV FF), we compute forecasts for the DSGE model with (�xed FF) and

without �nancial frictions assuming �xed parameters. The standard Smets and Wouters (2007)

(SW) model has been evaluated by Edge and Guerkaynak (2010), Woulters (2012) and Del Negro

and Schorfheide (2013b), and it is able to perform well at long forecast horizons for output growth

and in�ation, so we use it as a benchmark in Table 17.

2000Q1-2006Q4 2007Q1-2012Q2

TV FF relative to SW TV FF relative to SW

h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

Output Growth 1.00 1.20 1.26 1.27 0.90** 0.90* 0.95 0.97

Investment Growth 0.87 0.74* 0.68* 0.88 0.95 0.99 1.12 1.17

In�ation 0.99 0.98 0.97 0.90 1.03 1.05 1.05 0.93

Fed Funds Rate 0.89** 0.89** 0.86** 0.79 0.64** 0.66* 0.86 1.05

Fixed FF relative to SW Fixed FF relative to SW

Output Growth 1.21 1.53 1.77 1.65 0.92 0.86* 0.86** 0.84*

Investment Growth 0.93 0.84 0.80 0.95 0.94 0.93 1.06 1.19

In�ation 1.02 1.05 1.09 1.01 0.98* 0.98* 0.99 1.10

Fed Funds Rate 0.82** 0.79** 0.84* 0.89 0.97 0.95 1.00 0.98

Table 17: RMSFEs. The table reports ratios of RMSFEs relative to the SW model RMSFEs. �*�, �**�and

�***�indicate rejection of the null of equal performance against the one-sided alternative at 10%, 5% and

1% respectively, using a Diebold and Mariano test.

Table 17 evaluates the performance of point forecasts using root mean squared forecast errors

(RMSFEs) for output growth, in�ation and the Fed Funds rate, since these variables are of prime

interest. In addition, we also report the forecasts for investment growth42 as it is the channel

through which the �nancial markets enter the model43. Entries are ratios with respect to the SW

model benchmark. Values smaller than one imply that the model (either the TV FF or �xed FF)

is more accurate than the benchmark. Table 18 presents the relative forecasting performance in

42The forecasts for the remaining variables can be found in Appendix 6.4. They lead to qualitatively similar
conclusions.
43A forecasting comparison with an AR(1) and a TVP AR(1) models can be found in Appendix 6.4. The au-

toregressive models are included because it is important to verify that the DSGE model is at least as accurate as
univariate statistical models.
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terms of log predictive scores. The log score is computed as the value of the predictive density

evaluated at the realised target variable and is therefore a measure of the precision of the density

forecasts. We test whether a model is statistically more accurate than the SW benchmark with the

Diebold and Mariano (1995) statistic computed with Newey West estimator for the standard errors.

One, two and three stars indicate rejection of the null of equal performance against the one-sided

alternative of better performance over the SW benchmark at 10%, 5% and 1% respectively. Both

tables present results for two sub-periods: 2000Q1-2006Q4 and 2007Q1-2012Q2. The �rst period

is relatively tranquil in comparison with the second one.

2000Q1-2006Q4 2007Q1-2012Q2

Density TV FF relative to SW Density TV FF relative to SW

h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

Output Growth 0.13*** 0.10* 0.10* 0.05 0.05 0.05 -0.09 -0.09

Investment Growth 0.19* 0.29* 0.35* 0.11 -0.04 0.31 -0.27 -0.22

In�ation -0.08 -0.07 0.03 0.11 5.56 3.60 2.52 -0.36

Fed Funds Rate 0.49*** 0.18 -0.16 -0.12 0.47*** 0.31 -0.08 -0.48

Density Fixed FF relative to SW Density Fixed FF relative to SW

Output Growth -0.10 -0.15 -0.19 -0.19 0.01 0.08 0.12* 0.05

Investment Growth 0.01 0.01 0.01 -0.06 0.16 0.52 0.14 -0.11

In�ation 0.00 -0.04 -0.11 -0.09 -2.92 0.59 1.58 -0.09

Fed Funds Rate 0.03** -0.02 -0.08 -0.05 0.02 0.01 -0.03 0.11

Table 18: Log Scores. The table reports di¤erences of log predictive scores from to the SW model log scores.

�*�, �**�and �***� indicate rejection of the null of equal performance against the one-sided alternative at

10%, 5% and 1% respectively, using a Diebold and Mariano test.

Del Negro, Hasegawa and Schorfheide (2014) and Kolasa and Rubaszek (2015) documented that

the DSGE model with �nancial frictions does not improve forecasts in comparison with the Smets

and Wouters (2007) model in the period before 2007. The results in Table 17 con�rm this since the

inclusion of �nancial frictions worsens the forecasts of in�ation, output and investment growth in

the period 2000-2006, while improving forecasts of the interest rate. The TV FF model brings the

forecasting performance at similar levels to the SW model during this tranquil period. In addition,

during the volatile period of 2007-2012, the TV FF model con�rms previous �ndings of relatively

good performance of �nancial friction models in comparison to the standard SW model. For the

Fed Funds Rate, the TV FF model delivers statistically signi�cant improvements over the SW

model for both point and density forecasts. One explanation is that by allowing for time variation

in the coe¢ cients of the Taylor rule, we obtain a value for the smoothing parameter that is close

to one; that is, the forecasts from the Taylor rule resemble random walk forecasts, which is an
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adequate model for forecasting the Fed Funds Rate in the vicinity of the Zero Lower Bound. Table

18 presents similar results for density forecast performance for selected variables44 using log scores.

Qualitatively, the results are similar to the ones using RMSFEs.

4.4 Summary

This Chapter employs the quasi-Bayesian Local Likelihood approach developed previously in Chap-

ter 2 and 3 to a DSGE model that combines the Smets and Wouters (2007) model with �nancial

frictions as in Bernanke et al. (1999). As a consequence, this Chapter proposes a time varying

DSGE model with �nancial frictions. Our results suggest that the parameter governing how �nan-

cial friction shocks a¤ect investment decisions is stable over time, but the volatility of the �nancial

shock jumps in the period 2007-2012 and returns to the pre-crisis values after 2012. Moreover, when

looking at the impulse response functions, we �nd that the responses of output and investment to

25 basis points of the �nancial shock do not change over time. In contrast, when we consider the

responses to a standard deviation of the shock, taking into account the changing volatility over

time, we observe a substantial change in the way these variables respond to �nancial shocks during

the period of the recent crisis. This evidence leads us to provide an interpretation of the recent

�nancial crisis as a �Bad Luck�event , that is, it is caused by changes in the volatility of �nancial

shocks while taking into account policy changes. An alternative explanation of the results presented

in this Chapter is that the DSGE model we consider is perhaps too stylised to fully account for the

connection between the �nancial sector and the macroeconomy and, as a consequence, the events

of the 2008 crisis appear in the variance of the �nancial friction shock instead.

Finally, our forecasting exercise demonstrates that the time varying model with �nancial frictions

improves the forecasting performance of the �nancial friction model especially in the tranquil 2000-

2006 period.

44The density forecast for the remaining variables, as well as density forecast comparison with an AR(1) and a
TVP AR(1) models can be found in Appendix 6.4.
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5 Time Varying COMPASS Model of the U.K. Economy

5.1 Introduction

As argued in Chapter 3 and 4, medium-sized DSGE models, such as the one presented in Smets

and Wouters (2007), are routinely estimated by academics and policy makers for the U.S. economy.

However, such models are tailor-made for the U.S. and the standard assumption made is closed

economy, which might not be appropriate for small open economies. Hence, central banks in other

countries have developed their own DSGE models aimed at �tting better data in their economy,

e.g. the Riksbank�s RAMSES model (Adolfson et al. (2007)) or the ECB�s New Area Wide model

(Christo¤el et al. (2010)). A medium-sized DSGE for the U.K. economy, referred to as COMPASS,

was developed by Burgess, Fernandez-Corugedo, Groth, Harrison, Monti, Theodoridis and Waldron

(2013). COMPASS is an open economy New Keynesian model which shares many theoretical

features of other DSGE models.

As discussed in Chapter 3, the estimation of DSGE models relies on the assumption that the

model�s parameters are not subject to change; i.e. parameters are structural in the Lucas sense -

invariant to both policy and shocks. In general, this is a strong assumption that is worthy of testing.

And, over particular time periods, there are reasons to doubt it will hold. For example, the UK

economy is likely to have experienced several structural breaks over several decades associated with

changes in monetary regime. Following the end of the Bretton Woods system and various crises in

the mid 1970s, UK monetary policy was set by the government with the aim of controlling various

di¤erent monetary aggregates. This framework was replaced in the late 1980s by informal exchange

rate targeting, which was formalised in 1989 when the UK entered the Exchange Rate Mechanism.

The ERM came to an end in 1992 when the target level of sterling became unsustainable, after

which it was replaced by in�ation targeting, which was conducted by the Government until 1997

and the Monetary Policy Committee of the Bank of England subsequently. Putting aside the

certainty that parameters describing the behaviour of monetary policy would have changed over

this period, it is hard to believe that such fundamental changes in monetary regime would not have

been accompanied by changes in, for example, parameters describing the price setting behaviour

of �rms. More recently, the Great Recession of 2008 caused a large and persistent decline in

activity relative to pre-crisis levels, which is hard to reconcile with pre-crisis parameter estimates.

And, once the Bank rate had become constrained by an e¤ective lower bound, the picture is further

complicated by the adoption of large scale asset purchases and an increased use of forward guidance.
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At the very least, it is hard to believe that parameters governing macroeconomic volatility (the

standard deviations of shocks) would have been una¤ected by the crisis. Such parameter variation,

if ignored can result into misspeci�cation and poor model �t. Hence, even if one believes in the

structural nature of DSGE parameters, it is important that one recognises at least the possibility of

parameter drift. The estimation exercise in Burgess et al. (2013) sidesteps some of these issues by

restricting the estimation to the post in�ation targeting, pre �nancial crisis sample (1993-2007) and

by removing some of the remaining trends from the data (like the disin�ation following the adoption

of in�ation targeting in the early 1990s). This strategy has the advantage of making it more likely

that the constant parameter assumption is valid, but has two main drawbacks. The sample is, by

almost any standard, relatively short. Although this is mitigated by the use of Bayesian techniques,

it is certainly not ideal, because there would be additional variation over a longer sample that should

improve the identi�cation of the posterior parameter estimates. More importantly, in hindsight,

it is clear that the 1993-2007 sample represents an extraordinarily benign period of steady growth

and broader macroeconomic stability. Parameter estimates over this period are, therefore, unlikely

to be a good guide to the future, which has obvious implications for forecasting. Time variation

in the model�s parameters can also be a signal for misspeci�cation and hence allowing for time

variation can improve the �t of the model as well as serve as a future guide to amend and revise it.

In this Chapter, we employ the approach developed in Chapter 3 and apply it to COMPASS to

investigate the structural nature of the parameters of the model. The �exibility of the approach in

the face of structural change permits the estimation of COMPASS over a longer period, alleviating

the need to restrict the sample to post-1993 and pre-crisis data. In this version of this Chapter,

we investigate the time-variation that is due to the �nancial crisis as well as the period 1987-

1993, leaving estimation using pre-1987 data for future work45. Our prioritisation of possible time

variation induced by the �nancial crisis re�ects that it is more immediately applicable to. In

addition, we investigate the time-variation that is due to the �nancial crisis, in part because that

is more immediately applicable to analysis of the current economic outlook. The evident changes

in the transmission of monetary-policy shocks and in the estimated productivity trend we �nd, as

well as the large changes in the volatility parameters, highlight the importance of this exercise and

contribute to the small but expanding literature on estimating DSGE models with time variation

in the parameters. Our main empirical �nding is that the risk premium shock in the model has

45 In a more recent version of this work, we go back to 1975 and handle the missing observations for some series
early in the sample with the Kalman �lter.
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played an important role in the UK economy during the recent �nancial crisis. In particular, we

�nd the volatility of the shock is nearly twofold its 2000 level and the transmission of the shock to

economic variables, such as the nominal interest rate, has changed considerably during the crisis.

Finally, since COMPASS is used routinely for generating quarterly forecasts for the UK economy,

allowing the model�s parameters to change and using only their most recent values for generating

predictions is a useful modi�cation that makes the model more �exible and delivers some gains in

the model�s forecasting performance46.

The remainder of the Chapter is organised as follows. Section 5.2 presents COMPASS, Sections

5.4, 5.5, 5.6 and 5.7 contains the empirical results and forecasting comparison and Section 5.8

concludes.

5.2 Model and Data

We apply the methodology developed in Chapter 3 to an operational medium size DSGE model

of the UK economy, namely that used as the main organizing framework in the Bank of England

forecasting process, since late 2011. A detailed description of the model - known as COMPASS,

which is short for Central Organizing Model for Projection Analysis and Scenario Simulation - is

presented in Burgess et al. (2013).

For our purposes, a high level description of the model setup and an overview of the key

mechanisms is enough. In particular, for the most part we will report log-linearized conditions,

referring to Burgess et al. (2013) for the derivation from �rst principles. The economy is made up

of �ve main economic agent types: households, �rms, the monetary policy maker, the government

and the rest of the world. We will brie�y describe each of them in turn.

5.2.1 Households

Households come in two types: optimizing and hand-to-mouth. Optimizing households make the

following key economic decisions:

46The advantage of the time varying version of the model over the standard �xed parameter version is its better
forecast performance, which comes at no extra computational cost since for generating forecasts, only the posterior
distribution at the last period is required. However, one might still want to use the standard �xed parameter version
in a policy setting: i) from a policy perspective it is not clear how useful the time varying version is because the
parameter changes are external to agents in the model; ii) it is more computationally demanding to estimate, as it
requires characterisation of the posterior density at each point in time.
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Figure 31: Flow of Goods and Services in the COMPASS

1. Intertemporal Consumption Decision
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(39)

Equation (39) is a relatively standard consumption Euler equation. The �rst term on the

RHS contains past consumption because agents�utility is subject to habit formation while

the second term contains a risk-premium term "̂Bt , which measures a wedge between the rate

set by policy-makers and that faced by consumers. The third term on the RHS depends on

the fact that a share (1�!0) of the agents are hand-to-mouth so their consumption depends

on their labor income.

2. Investment Decision

Optimizing Households can smooth consumption over time by either investing in physical
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capital or investing in �nancial assets. Investment is subject to adjustment costs, which

result in the following standard-looking Euler equation:

it =
��H
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 I
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where tqt is Tobin�s q value of one unit of capital, which depends on the di¤erence between

the future expected streams of returns on capital rKt and the real interest rate, adjusted for

the risk-premium shock:

tqt =
1� �K

rK + (1� �K)
Ettqt+1 �

�
rt � Et�Zt+1 + "̂Bt

�
+

rK

rK + (1� �K)
EtrKt+1

3. Portfolio Decision

Strictly speaking, households delegate their portfolio decision to risk-neutral portfolio pack-

agers who collect deposits from households and buy domestic and foreign bonds. The end-

result is the following UIP condition:

qt = Etqt+1 +
�
rt � Et�Zt+1

�
� "̂BFt

which is an arbitrage condition between returns on domestic and foreign assets.

4. Wage Setting

Households supply di¤erentiated labor services in a monopolistically competitive setting. As

a result, they have some degree of wage-setting power, i.e. they set their nominal wage at a

markup over their marginal-rate of substitution between consumption and leisure (see Erceg,

Henderson and Levin (2000)). The wage setting process is also subject to an adjustment cost

(Rotemberg (1982)) which, when allowing for indexation to the previous periods�wage rate

governed by �W , results in the following wage Phillips Curve:

�Wt = �̂Wt +
"̂Lt + �Llt +

�C(cot� Ccot�1)
1� C

� wt
�W

�
1 + ��H�W

� +
�W

1 + ��H�W
�Wt�1 +

��H

1 + ��H�W
Et�Wt+1

where the �rst term on the RHS is the markup, which is allowed to vary over time, and the

second represents the marginal rate of substitution.
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Hand-to-mouth households do not have access to �nancial markets by assumption. They will

consume their labor income in every period and will receive government transfers to ensure their

income grows in line with that of optimizing households along the balanced growth path.

5.2.2 Firms

The production sector in COMPASS is somewhat more complicated than in most medium-size

DSGEs (e.g. Smets and Wouters, 2007) because of interactions with the rest of the world and

because the model is required to provide a detailed breakdown of various "demand components".

1. Value Added Producers

This is the most standard of sectors. Firms hire capital and labor, which are used in a

Cobb-Douglas production function:

vt = (1� �L) kt�1 + �Llt + "̂TFPt

Firms face monopolistic competition, hence they set their price at a markup over their mar-

ginal cost. They are also subject to price-adjustment costs, which ultimately result in the

following value-added in�ation Phillips Curve:

�Vt = �̂Vt +
1

�V (1 + ��
H�V )

mcVt +
�V

1 + ��H�V
�Vt�1 +

��H

1 + ��H�V
Et�Vt+1 (41)

2. Importers

They simply buy goods and services from the rest of the world and sell it domestically. They

set prices in domestic currency at a markup over the marginal cost.

3. Final Output Producers

They operate a similar technology and are subject to the same time of pricing frictions as

the value added producers. However, their production function combines value-added output

and imports to produce �nal output.

4. Retailers

Retailers operate in a competitive market and transform �nal output into Consumption, Busi-

ness and Other Investment, Government Spending and Exports, as Figure 31 illustrates. In

doing so, they operate linear technologies which di¤er in their productivities. This is a tech-
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nical expedient to accommodate di¤erent trend growth rates in the corresponding observable

variables.

5. Exporters

They buy export goods from the corresponding retail sector and sell it to the rest of the

world. They operate in a monopolistically-competitive market subject to price-adjustment

frictions, which results in a Phillips Curve along the lines of equation (41) (prices are set in

foreign currency).

5.2.3 Monetary Policy

In COMPASS policy rates are set according to a simple linear reaction function:

rt = �Rrt�1 + (1� �R)

24��
0@1
4

3X
j=0

�Zt�j

1A+ �Y ŷt
35+ "̂Rt

which feature a response to annual in�ation in deviation from its target (which also corresponds

to its steady-state level in COMPASS), the output gap and a degree of interest-rate smoothing

governed by �R. The Taylor rule is not subject to in�ation-target shocks (see Del Negro et al.

(2014)) because the target has never changed in the UK since it was �rst introduced47

5.2.4 Government Spending

Real-government spending, in deviations from trend, is assumed to follow a simple autoregressive

process:

gt � gt�1 + Zt = (�G � 1) gt�1 + "̂Gt (42)

where Zt measures labor-augmenting productivity and spending is �nanced via lump-sum taxes on

optimizing households.

5.2.5 Rest of the World

While it still retains some features of a closed economy, e.g. the interest-rate setting power, the

UK economy is, in many ways, modeled as a small open economy.

47The data is detrended in a way that we will details in the next section so that this is not an issue even prior to
the introduction of the 2 percent in�ation target.
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In particular, this implies that world output and prices are independent of domestic shocks,

with one important exception, which is necessary for balanced growth, namely the fact that the

world economy inherits the domestic permanent labor productivity shock according to a term !Ft

which ensures the catching up of the world to the domestic productivity shock does not happen

instantaneously.

As a result, the world economy is described by three simple equations:

zFt = !Ft + �ZF z
F
t�1 + "̂

ZF

t (43)

pX
F

t = �PXF pX
F

t�1 + "̂
PXF

t (44)

xt = zFt + "̂
�F

t � �F
�
pEXPt � pXF

t

�
(45)

which describe world output (which includes the !Ft term described above), world prices and the

equation governing the demand for UK exports, which is an increasing function of world output

and a decreasing function of the prices of UK exports (pEXPt ) relative to world prices, the " terms

representing exogenous disturbances.

5.3 Data

The model is estimated using �fteen macroeconomic quarterly time series48 for the period of 1987Q3

to 2012Q3. The variables, data transformations and measurement equations are described in Ap-

pendix 7.4. All variables, except for the policy rate, are log-di¤erenced. We also subtract what we

call time-varying trends from some of the variables, e.g. exports. This terms represent a simple way

to capture the fact while the model implies a common long-run growth rate for all real variables,

the average growth rates measured in the sample di¤er. Most time-varying trends capture this

idea, i.e. they subtract a constant from the log-di¤erenced variable so that it roughly averages the

same growth rate as UK GDP.

The exception to this rule in the in�ation time-varying trend, whose purpose is conceptually

slightly di¤erent. Its purpose is to correct for the fact that prior to 1992 there was no explicit

in�ation target so there should be no expectation that in�ation hovered around 2 percent on average.

Hence we pre-process the data so that imposing a 2 percent average for in�ation throughout is not

restrictive. Irrespective of the motivations behind these corrections, what matters for our purposes

48Notice that COMPASS features 16 structural shocks and 7 measurement errors, so the number of shocks is larger
than the number of observables.
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is that they are applied before the data is shown to the model and they do not depend on model

estimates. Rather they are part of the transformation of raw data into model-consistent observables

and capture features of the data COMPASS is not meant to model accurately (e.g. secular trends

in world trade).

5.4 Estimation Results

In this Section we present results for the �xed parameter model and also for the version with time

varying parameters estimated with the QBLL method described in Chapter 3. In both cases, we

employ most priors from Burgess et al. (2013)49, with four MH chains with 220; 000 draws each,

from which we drop the �rst 20; 000, and apply a thinning rate of 50%50. We set the MH scaling

parameters such that acceptance rates are around 25%. We apply the QBLL method using the

Normal kernel function in equation (5) with a bandwidth size of
p
T : The results are presented

Figure 32: QBLL Estimates COMPASS

in Figures 33-35, where the dark blue dotted line is the posterior mean obtained with the QBLL

approach, the light blue dotted lines are the 5% and 95% posterior bands, the dotted black line

is the posterior mean obtained with standard �xed parameter Bayesian estimation and the dotted

49See Appendix for details.
50That is, our e¤ective number of draws is 400,000 after thinning and burning.
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Figure 33: QBLL Estimates COMPASS

green lines are the corresponding 5% and 95% posterior bands around it. We employ Figures 33-35

to judge informally whether a parameter�s variation is substantial by checking whether the QBLL

estimates are outside the con�dence bands of the �xed-parameter estimate.

The Taylor rule parameters are subjected to some time variation. In particular, the output

gap coe¢ cient increases twofold from its early 2000s level, indicative of a possible shift in the

weight attached to stabilising output versus headline in�ation in response to oil price shocks and

the �nancial crisis. At the same time, the interest rate smoothing parameter �the coe¢ cient on

the lagged policy rate in the Taylor rule � declines, indicative of a desire for the central bank

to react more quickly to unfolding events than the reduced-form Taylor rule characterisation of

their past behaviour would have prescribed. In addition, consistent with the substantial easing

of policy during the crisis, the volatility of the monetary policy shock increases towards the end

of the sample. In fact, we �nd considerable time variation in some parameters that govern the

stochastic processes of the exogenous shocks. In particular, we �nd that both the persistence and

the volatility of the risk premium shock display a U-shape over our sample period, with its standard

deviation more than doubling in the end of the sample compared to pre-crisis levels. Moreover the

volatility of the world output shock also increase in the end of the sample, in order to capture

the increased volatility we observe in foreign output data during the crisis. Trend productivity,
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Figure 34: QBLL Estimates COMPASS

the steady state growth rate of �nal output per capita, also falls slightly during the crisis. The

standard �xed parameter approach underestimates this value between 1995-2005 but overestimates

it at the beginning and end of the sample. This parameter is important for generating forecasts51

as it appears in several of the measurement equations (output, consumptions, investment, export,

imports and wages) and allowing it to vary is expected to have an e¤ect on the model�s forecasting

performance.

Finally, in Figure 35, we observe that the measurement error standard deviations of our time

varying COMPASS model are uniformly lower than the estimates of the standard �xed parameter

model, implying that allowing for time variation in fact improves the �t of the model leading to

smaller measurement error.

5.5 Time varying impulse response functions

In this Section, we investigate the changing transmission mechanism of shocks over time. Figure

36 and 37 display the impulse response functions for output, prices, nominal interest rate and the

exchange rate to a monetary policy shock varying over time52.

51 In fact, Burgess et al. (2013) calibrate this parameter to a value of 1.007 (or 2.7902 in annualised terms).
52The monetary policy shock in the model is a transitory shock without persistence.
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Figure 35: IRFs of variables to 1 st. dev. monetary policy shock

Figure 36 displays responses to a one standard deviation of the shock and captures the e¤ect

of the policy shock on the variables of interest, while also taking into account the changing size of

the shock. Figure 37, on the other hand, presents the responses to a 25 basis points shock, which is

useful in investigating changes in the transmission mechanism of the shock while keeping the size

of the shock constant over time. It is evident from the estimation results in Figure 34 that the size

of the monetary policy shock, that is, its volatility, displays a U-shape, with values of 0.1 in the

period 1995-2005. A reduced role for monetary policy shocks over this period is consistent with

policy having been very stable over this period. As result, both output and in�ation become less

responsive to the policy shock during this period, which is clear from Figure 36. From Figure 37, it

is evident that even when we �switch o¤�the changing volatility over time, by keeping the size of the

shock �xed, output and in�ation remain less responsive to the shock after 1997. These results are

consistent with evidence presented in Boivin and Giannoni (2006) for the U.S., who interpret the

decreased responsiveness of in�ation and output to a monetary policy shock after the 1980s which

they �nd in their application, as an outcome of the monetary authority becoming more e¤ective

and systematically more responsive in managing economic �uctuations after 1980. Similarly, for

the UK, we can explain the decreased responsiveness of output and in�ation to a policy shock (i.e.

response to the non-systematic component of monetary policy) by the Bank of England becoming

independent and hence more e¤ective in the systematic conduct of monetary policy after 1998.
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Figure 36: IRFs of variables to 25 basis points monetary policy shock

Figure 38 and 39 present the impulse response functions of output, consumption, the nominal rate

and investment to: (i) a one standard deviation and, (ii) 25 basis points of the risk premium shock

respectively. From the analysis in the previous Section, both the persistence and the volatility of

the shock display a U-shape during 1995-2005, so it is not surprising that the responses to the shock

follow a similar pattern with responses for output, consumption and investment all responding less

to the shock both on impact and in terms of duration during this period. In addition, we �nd

evidence of considerable time variation in the transmission mechanism of the risk premium shock

to the nominal interest rate and this result is robust whether we consider the changing size of the

shock, as in Figure 38, or 25 basis points, as in Figure 39. In particular, the response to a standard

deviation of the shock is close to zero during the period of 1997-2005 on impact and on duration

and jumps to -0.2 during the crisis period with around 15 quarters required for the nominal rate

to go back to steady state. This large structural change in the nominal rate during the second

half of the sample can be explained by the uncovered time variation in the Taylor rule output gap

parameter during the same period, since the output gap is a¤ected by the risk premium shock

through its e¤ect on consumption and investment. This, combined with the increase in the size of

the risk premium shock, causes an intensi�ed response of the interest rate.
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Figure 37: IRFs of variables to 1 st. dev. risk premium shock

5.6 Time varying variance decompositions

In this Section, we investigate the changing variance decompositions of key model observables over

time. Figures 40-42 display the proportion of the variance of GDP growth, in�ation and the policy

rate respectively explained by the various exogenous shocks over time. The variance of GDP growth

is explained primarily by the variance of demand shocks but towards the end of the sample, we see

that the risk premium shock also starts to play a role even at longer horizons. In�ation�s variation

is absorbed almost entirely by the variance of domestic mark up shocks at one quarter ahead, while

at two and four years, we observe that imported price shocks and the risk premium shock also have

an e¤ect. Finally, the variance of the policy rate is almost entirely explained by the variance of the

monetary policy shock at one quarter ahead. In the period 1997-2005, domestic demand shocks

explain around 20-40% of the policy rate variation at two and four years, while at the end of the

sample, the risk premium shock explains nearly 80% of the policy rate variation. This is more

evidence suggesting that the role of the risk premium shock has been substantial during the recent

�nancial crisis. There are two competing explanations for these results. First, the risk premium

is a wedge between the interest rate set by the central bank and the rates faced by agents in the

model at which they borrow and lend and in this sense, the risk premium shock can be thought

of as a shock to the borrowing costs of agents. So, unsurprisingly, its size increases during the
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Figure 38: IRFs of variables to 25 basis points risk premium shock

recent �nancial crisis, re�ecting the increasing borrowing costs during the so called credit crunch.

A second and more critical approach to explaining the result is by recalling that COMPASS is a

stylised DSGE model which lacks a �nancial sector and cannot therefore account for the events of

2008, other than through an increase in the variance of the exogenous risk premium shock.
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Figure 39: Variance decomposition of output growth

5.7 Forecasting

In this Section we evaluate the relative forecasting performance of our time varying parameter

COMPASS (TVP-COMPASS) model. In addition, we compare the forecasting record of COMPASS

against the �xed-parameter COMPASS (F-COMPASS) speci�cation53. We measure accuracy of

point forecasts using the root mean squared forecast error (RMSFE). The accuracy of density

forecasts are measured by log predictive scores. We compute the logscore with the help of a

nonparametric estimator to smooth the draws from the predictive density obtained for each forecast

and horizon. We test whether the TVP-COMPASS model is statistically more accurate than the

benchmark F-COMPASS with the Diebold and Mariano (1995) statistic computed with Newey-

West estimator to obtain standard errors. We provide the results of the Diebold-Mariano two-sided

test for the RMSFEs and logscores.

In addition, we also informally access the density forecast performance of the two models by

looking at the probability integral transformation (PIT) at Figure 44, computed as the cumulative

density function of the nonparametric estimator for the predictive density at the ex-post realised

53See Fawcett, Koerber, Masolo and Waldron (2015) for an evaluation of the forecast performance of a �xed
parameter version of COMPASS against statistical and judgemental benchmarks.
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Figure 40: Variance decomposition of in�ation

value of the target variable obtained for each forecast and horizon.

Table 19 presents the absolute performance of our TVP COMPASS model (in RMSFEs) and

the relative performance of our approach to the standard F-COMPASS over di¤erent horizons

(numbers smaller than one imply superior performance of the TVP COMPASS relative to the F-

COMPASS). One, two and three stars indicate that we reject the null of equal accuracy in favour

of the better performing model at signi�cance levels of 10%, 5% and 1% respectively. In order to

better understand the strengths and weaknesses of our time varying modi�cation, we have split

the forecast sample into two sub-periods: 1997Q3-2005Q2 and 2005Q3-2010Q4. Moreover, we es-

timate two di¤erent speci�cations of COMPASS: with and without estimating the productivity

trend parameter. When this trend is not estimated, it is calibrated to a value of 1.007 as in Burgess

et al. (2013). From Table 19, several conclusions emerge. First, in the relatively tranquil period

of 1997Q3-2005Q2, which we argued in the previous Section is characterised by low volatility of

monetary policy and risk premium shocks, we �nd better point forecasts for output growth, con-

sumption growth and the interest rate. The better forecast performance of the TVP COMPASS

model for the interest rate is due to the uncovered time variation in the policy rule parameters and

in particular, the coe¢ cient on output gap. Moreover, we �nd large signi�cant improvements for
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Figure 41: Variance decomposition of policy rate

in�ation (17-19%) at short horizons, while the F-COMPASS performs better at longer horizons.

Second, when looking at the period 2005Q3-2010Q4, we �nd statistically signi�cant improvements

for output, consumption and hours growth. On the other hand, our TVP COMPASS delivers

slightly worse forecasts for in�ation, but the di¤erences are rarely statistically signi�cant. Third, it

seems that whether we estimate the productivity trend or keep it �xed makes little di¤erence as far

as forecasting is concerned. However, there is a pattern in the results; in the �rst subperiod, adding

the trend to the parameter vector delivers almost always uniformly worse point forecasts (although

the di¤erences are very small). This is interesting and could be explained by the fact that the

period is characterised by relatively stable productivity over time, hence as long as productivity

is calibrated at a reasonable value, adding it to the parameter vector only reduces the degrees of

freedom of the estimation, which makes forecasts worse. On the other hand, in the period 2005Q3-

2010Q4, when trend productivity is falling, as shown in Figure 36, the forecasts generated with the

trend speci�cation are almost always uniformly better than when keeping trend calibrated.
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RMSFEs Forecast O rig ins: 1997Q3: 2005Q2 RMSFEs Forecast O rig ins: 2005Q3:2010Q4

TREND

H Y C I INF EXC INT H Y C I INF EXC INT H

1 0.55 0.62 5.59 0.24 1.95 0.10 0.58 1.75 1.32 5.05 0.35 3.78 0.27 1.38

2 TV 0.51 0.58 4.82 0.21 1.72 0.17 0.60 1.42 1.55 4.40 0.40 3.55 0.51 1.07

4 0.49 0.61 5.35 0.23 1.60 0.23 0.60 1.27 1.52 5.00 0.41 3.44 0.91 0.81

8 0.46 0.56 4.76 0.27 1.57 0.19 0.54 1.22 1.32 4.86 0.37 3.29 1.41 0.78

1 TV 1.11 0.93 1.03** 0.81* 1.01 0.89** 1.08 0.96** 0.86** 1.00 1.04 1.01 0.99 0.99

2 /F 0.96 0.97 0.99 0.83 1.00 0.89 0.92** 0.89** 0.88** 0.96 1.09* 1.01 1.01 0.90**

4 0.89* 0.98 1.01 1.05 1.01 0.86 0.91* 0.93* 0.93* 1.02 1.09 1.00 1.03 0.92*

8 0.97 0.96 1.04* 1.08 0.99 0.93 1.00 0.97 0.97 1.02 1.05 1.00 0.99 1.00

NO TREND

H Y C I INF EXC INT H Y C I INF EXC INT H

1 0.57 0.61 5.57 0.24 1.98 0.10 0.59 1.86 1.40 5.11 0.35 3.81 0.27 1.44

2 TV 0.49 0.56 4.76 0.21 1.74 0.18 0.59 1.52 1.62 4.62 0.39 3.58 0.51 1.13

4 0.47 0.60 5.28 0.23 1.60 0.24 0.60 1.32 1.56 5.30 0.41 3.45 0.93 0.83

8 0.45 0.56 4.74 0.27 1.58 0.20 0.54 1.25 1.35 5.10 0.37 3.29 1.46 0.78

1 TV 1.13 0.92 1.03** 0.81* 1.02 0.89** 1.11 1.02 0.91* 1.02 1.02 1.02* 1.00 1.02*

2 /F 0.98 0.97 0.99 0.83 1.00 0.88* 0.94* 0.96** 0.92** 1.02 1.08 1.02 1.03 0.94**

4 0.90 0.98 1.02 1.06 1.01 0.86 0.92* 0.98** 0.96 1.09 1.07 1.00 1.05 0.95**

8 0.97 0.96 1.05* 1.08 1.00 1.00 1.00 1.00 1.00 1.08 1.04 1.00 1.03 1.00

Table 19. RMSFEs. The �gures under TV are absolute RMSFEs of the COMPASS estimated with QBLL, computed as the

mean of the predictive density, the �gures under the F are ratios of RMSFEs of TVP-COMPASS over the alternative �xed

parameter COMPASS model. �*�, �**�and �***�indicate rejection of the null of equal performance against the two-sided

alternative at 10%, 5% and 1% signi�cance level respectively, using a Diebold - Mariano test.

Table 20 accesses the quality of the density forecasts measured by logscores of the predictive den-

sity. The table displays absolute log predictive score for the TVP-COMPASS model and di¤erences

in logscores over the alternative F-COMPASS model, so numbers greater than zero imply superior

performance of our approach. It is clear from Table 20 that allowing for time variation in the

parameters of COMPASS delivers large and statistically signi�cant improvements in the density

forecasts during 1997Q3-2005Q2. The period of 2005Q3-2010Q4, on the other hand, is charac-

terised by better TVP COMPASS performance for some variables (output, consumption and hours

growth), while worse for others.
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Log Pred ictive Score: Forecast O rig ins: 1997Q3: 2005Q2 Log Pred ictive Score: Forecast O rig ins: 2005Q3:2010Q4

TREND

H Y C I INF EXC INT H Y C I INF EXC INT H

1 -1.06 -1 .02 -3 .43 0.01 -2 .11 0.85 -1 .18 -2 .27 -1 .72 -3 .15 -0 .44 -2 .88 -0 .63 -1 .73

2 TV -1.08 -1 .00 -2 .99 0.06 -2 .05 0.31 -1 .23 -1 .80 -1 .93 -2 .92 -0 .62 -2 .85 -1 .99 -1 .53

4 -1 .10 -1 .05 -3 .17 -0 .04 -2 .03 0.05 -1 .27 -1 .66 -1 .89 -3 .09 -0 .69 -2 .91 -3 .33 -1 .43

8 -1 .10 -1 .02 -3 .02 -0 .15 -2 .02 0.15 -1 .26 -1 .63 -1 .78 -2 .99 -0 .55 -3 .09 -6 .44 -1 .43

1 0.09** 0.20*** 0.00 0.28*** 0.10** 0.17* 0.12*** 0.08** 0.22** -0 .02 -0 .09 -0 .02 -0 .16 0.04

2 TV 0.13*** 0.21*** 0.04* 0.30*** 0.12** 0.08 0.15*** 0.19** 0.27** 0.03 -0 .20 -0 .10 -0 .19 0.10***

4 -F 0.15** 0.21** 0.00 0.21** 0.13** 0.13* 0.15** 0.07** 0.11 -0 .07 -0 .22 -0 .18 0.83 0.05*

8 0.14* 0.25** -0 .06* 0.14* 0.14* 0.18 0.14** 0.02 -0 .02 0.00 -0 .15 -0 .43 1.41 0.03

NO TREND

H Y C I INF EXCH INT H Y C I INF EXCH INT H

1 -1.06 -1 .02 -3 .44 0.00 -2 .12 0.85 -1 .19 -2 .39 -1 .81 -3 .19 -0 .44 -2 .87 -0 .64 -1 .78

2 TV -1.07 -0 .98 -2 .98 0.06 -2 .05 0.31 -1 .23 -1 .91 -2 .02 -2 .98 -0 .61 -2 .87 -2 .00 -1 .57

4 -1 .09 -1 .03 -3 .15 -0 .05 -2 .03 0.00 -1 .27 -1 .72 -1 .95 -3 .17 -0 .67 -2 .98 -3 .58 -1 .44

8 -1 .10 -1 .02 -3 .02 -0 .15 -2 .02 0.11 -1 .26 -1 .65 -1 .81 -3 .05 -0 .56 -3 .09 -6 .51 -1 .44

1 0.08*** 0.20*** -0 .03 0.28*** 0.09** 0.18** 0.11*** -0.01 0.15 -0 .06 -0 .08 -0 .01 -0 .22 -0 .01

2 TV 0.13*** 0.22*** 0.04 0.30*** 0.12** 0.08 0.15*** 0.08** 0.18* -0 .04 -0 .19 -0 .09 -0 .23 0.06***

4 -F 0.15** 0.22** 0.00 0.20** 0.13** 0.10 0.15** 0.01 0.06 -0 .15 -0 .19 -0 .25 0.58 0.05**

8 0.14* 0.24* -0 .06* 0.14* 0.15* 0.14 0.15** -0.02 -0 .07 -0 .08 -0 .15 -0 .43 1.11 0.03

Table 20: Log Predictive Scores. The �gures under TV are absolute log predictive scores for the COMPASS estimated with

QBLL, computed as the log of the predictive density evaluated at the ex-post realised observation, the �gures under F are

di¤erences of log scores of the TVP-COMPASS over the alternative �xed parameter model. �*�, �**�and �***�indicate rejection

of the null of equal performance against the two-sided alternative at 10%, 5% and 1% signi�cance level respectively, using a

Diebold-Mariano test.

Another way of assessing density forecast performance of the two models is by looking at the

probability integral transformation (PITs) in Figure 44, computed as the CDF of the predictive

density evaluated at the ex-post realised observation. Over a long enough sample, one would expect

outturns in all parts of the distribution at frequencies that match the relevant probabilities. For

example, we would expect to observe 5% of the realised values in the bottom 5% of the distribution.

The histogram in Figure 44 displays the PITs for the TVP-COMPASS model and the F-COMPASS

with green and blue bars respectively and the blue dotted line is the pdf of a uniform distribution.

The PITs in Figure 44 for selected variables at one step ahead reveal that neither model is very

close to delivering a uniform CDF. However, the TVP-COMPASS model is closer to being uniform

than the F-COMPASS variant, suggesting that allowing for time variation improves forecast density

accuracy at the one-step ahead horizon at least to some degree.
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Figure 42: Probability Integral Transformations

5.8 Summary

This Chapter applied the quasi-Bayesian nonparametric procedure developed by Chapter 3 to a

DSGE model of the UK economy, in order to assess the question of structural change in the model�s

parameters. We found evidence for time variation in the Taylor rule parameters as well as in the

standard deviation and persistence parameters of some of the exogenous shocks. By looking at the

impulse response functions and the variance decompositions, we also reached a conclusion about

the importance of the risk premium shock and its role in the recent �nancial crisis. We o¤ered

two alternative explanations for this result. The �rst provides an account for the crisis through an

increase in the borrowing costs of agents in the model, while the second explains the result through

an increase in the volatility which shows up in the variances of the exogenous component of the

model, by arguing that the DSGE model is too stylised to �t well the events of the crisis. Finally,

this Chapter also provided a forecasting comparison of the time varying structural model with the

standard �xed parameter model and we found gains for both point and density forecasts, especially

in the 1997Q3-2005Q2 period.
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6 Conclusion

This thesis establishes a novel quasi-Bayesian local likelihood (QBLL) approach for econometric

inference in models with time varying parameters. The Bayesian framework is constructed by

augmenting the local likelihood of Giraitis et al. (2016) through the Bayes principle with a prior

distribution; this idea delivers asymptotically valid quasi-posterior distributions which admit closed

form expressions in the special case of linear Gaussian models.

The approach is of su¢ cient generality and �exibility to produce Gibbs algorithms with mix-

tures of time varying and time invariant parameters. In addition, the approach can be applied

to structural models where the quasi-posterior distributions are not of a known form, using the

Metropolis algorithm proposed in Chapter 3.

Our Monte Carlo study indicates that the class of QBLL estimators exhibit good �nite sample

properties, and inference based on their quasi-posterior densities delivers valid con�dence intervals.

Crucially, as a consequence of modelling time variation nonparametrically, inference based on the

QBLL approach is robust to di¤erent processes for the drifting parameters, its validity not depend-

ing on parametric restrictions typically imposed by state space models. In addition, the proposed

approach has the capacity to facilitate a large number of variables, as a result of the Bayesian prin-

ciple which allows to shrink parameters whenever the model is large. As demonstrated in Chapter

2, this can have important applications in forecasting, delivering signi�cant improvements for both

point and density forecasts.

In Chapter 2, we employ the novel approach to a VAR model to empirically address the issue of

changing macroeconomic dynamics in the U.S. We uncover signi�cant structural change in the series

for core in�ation, in�ation persistence and the natural rate of unemployment as well as substantial

drifts in the volatility of the series. We stress that in this context, not modelling explicitly the time

variation will result in invalid inference on the model�s parameters.

In Chapter 3 we developed the method further to the estimation of structural DSGE models

and applied it to the Smets and Wouters (2007) model. In Chapter 4, we extend the DSGE model

and add �nancial frictions in order to investigate the structural change in the �nancial sector of

the model during the recent crisis. We found that the volatility of the �nancial shock of the model

increases two-fold during the crisis period while the structural parameters guiding the �nancial

sector remain unchanged, which led us to give a �Bad Luck� event interpretation of the crisis.

Finally, in Chapter 5, we estimated the COMPASS model used by the Bank of England on UK
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data in order to investigate structural change in the UK economy.

The main result that we �nd in Chapters 3-5 is that DSGE models�parameters are generally

not constant over time. We �nd evidence of drifts in the policy parameters and this is unsurprising,

given how much monetary policy has evolved in the past few decades. We also �nd considerable

variation in the volatility of the structural shocks. Importantly, when allowing for parameter

variation, we can improve the forecasting performance of standard �xed parameter models, which

can provide a valuable tool for policy analysis.
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7 Appendix

7.1 Proofs and Additional Results for Chapter 2

7.1.1 Proof of Proposition 1

We follow the proof of Theorem 1 in Chernozhukov and Hong (2003), which is a generalisation

of earlier results by Ibragimov and Has�minskii (1981) and Bickel and Yahav (1969) for a non-

likelihood based objective functions. We replace Chernozhukov and Hong (2003)�s asymptotic

analysis based on
p
T -neighbourhoods of the true (in their analysis �xed) parameter �0 to general

{1=2jT -neighbourhoods of �
0
j (now indexed by time) with {jT de�ned in (6). This is justi�ed since

{jT � H

�R
K(x)dx

�2R
K2(x)dx

where H, the bandwidth parameter associated with the kernel, satis�es H !1 as T !1:

In fact, the argument of Chernozhukov and Hong (2003) is valid for an arbitrarym1=2
T -neighbourhood

as long as mT ! 1 as T ! 1. The radius of the speci�ed neighbourhood corresponds to the

consistency rate of the extremum estimator of �0j .

Assumptions.

For all j = [�T ], 0 < � < 1 :

1. �0j 2 int(�) and � � Rdim(�j) is compact.

2. 8� > 0; 9� > 0 such that

lim inf
T!1

P

8<: sup
k�j��0jk>�

1

{jT
�
'Tj(�j)� 'Tj(�0j )

�
� ��

9=; = 1:

3. For �j in an open neighbourhood of �0j , 'Tj(:) admits the following expansion

'Tj(�j)� 'Tj(�0j ) = (�j � �0j )0r'Tj(�0j )�
1

2
(�j � �0j )0{jTJTj(�0j )(�j � �0j ) +RTj(�j) (46)

where the main components

r'Tj(�0j ) =
@'Tj(�

0
j )

@�j
and JTj(�

0
j ) := �

1

{jT
EH

�
'Tj

�
�0j
��
;

143



and the remainder RTj(:) satisfy:

(a) �JTj(�0j )1=2r'Tj(�0j )=
p{jT !d N (0; I) as T !1:

(b) The matrix JTj(�0j ) satis�es

�� : = lim sup
T!1

�max(JTj(�
0
j )) <1

�� : = lim inf
T!1

�min(JTj(�
0
j )) > 0; (47)

where �max(A) and �min(A) denote the maximal and minimal eigenvalue of a symmetric

matrix A:

(c) 8" > 0; 8� > 0; 9� > 0 9M > 0 such that

lim sup
T!1

P

8<: sup
M=

p{jT�k���0jk��
kRTj(�)k

{jT
� � �0j2 > �

9=; � "; (48)

lim sup
T!1

P

8<: sup
k���0jk�M=

p{jT
kRTj(�)k > "

9=; = 0: (49)

4. The prior density �j(:) is strictly positive and Lipschitz continuous function over �.

5. The time variation in the true parameters �0j satis�es one of conditions (1) or (2).

The asymptotics in Proposition 1 is established as T ! 1; and since j = [�T ]; we have

j ! 1: We explicitly allow the quantities above to depend on j in order to emphasise the time

varying nature of the estimation problem. Assumption 1 is a standard assumption maintained by

Giraitis et al. (2016). Assumption 2 is a high-level assumption that requires uniform convergence

of the objective function outside a neighbourhood of �0j : A CLT is assumed in 3a) for r'Tj(�0j ); the

gradient of the objective function. Assumption 3c), requires that the remainder term RTj(�j) of the

quadratic approximation of the objective function is well behaved. By Lemma 2 in Chernozhukov

and Hong (2003) Assumption 3c) is satis�ed for any twice continuously di¤erentiable objective

function with a uniform convergence of the Hessian of second derivatives to its limit. Note that

the objective functions studied in Giraitis et al. (2016) and in this thesis are twice continuously

di¤erentiable and in addition, Giraitis et al. (2016) assume uniform law of large numbers (ULLN)

for the Hessian. Assumption 4 explicitly allows the prior density to vary over time and requires

stronger Lipschitz continuity of �j . Finally, Assumption 5 is required for consistent estimation in
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the frequentist setup of Giraitis et al. (2016) and is a necessary condition for the CLT in Assumption

3a).

Proof. We follow the Chernozhukov and Hong (2003) notation and de�ne hTj =
p{jT (�j � �Tj)

and �Tj := �0j +
1
{jT JTj(�

0
j )
�1r'Tj(�0j ): Letting

HTj :=
�
hTj �

p{jT
�
�j � �0j

�
� JTj(�0j )�1r'Tj(�0j )=

p{jT : �j 2 �
	

(50)

we need to show that Z
HTj

khka
��p�Tj(h)� p1(h)�� dh!p 0 (51)

for all a � 0: Recalling the de�nition of the quasi-posterior density in (7):

pTj(�j) =
�j(�j) exp('Tj(�j))R
��j(�) exp('Tj(�))d�

;

we begin by applying the transformation of �j = hTj=
p{jT + �Tj to obtain

pTj(hTj) =
1

p{jT
pTj(hTj=

p{jT + �Tj)

=
�j(hTj=

p{jT + �Tj) exp('Tj(hTj=
p{jT + �Tj))R

HTj�j(hTj=
p{jT + �Tj) exp('Tj(hTj=

p{jT + �Tj)dh
(52)

= �j(hTj=
p{jT + �Tj) exp(!Tj(hTj))=CTj (53)

where

!Tj(hTj) = 'Tj

�
hTjp{jT

+ �Tj

�
� 'Tj(�0j )�

1

2{jT
�
r'Tj(�0j )

�0
JTj(�

0
j )
�1 �r'Tj(�0j )� (54)

and

CTj =
R
HTj�j(h=

p{jT + �Tj) exp f!Tj(h)g dh: (55)

For hTj belonging to the integration area HTj in (50), the following useful identity applies:

!Tj(hTj) = �
1

2
h0TjJTj(�

0
j )hTj +RTj

�
hTj=

p{jT + �Tj
�

8hTj 2 HTj : (56)
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To prove (56), note that, by de�nition of HTj , for any hTj 2 HTj there exists a �j 2 � satisfying

the identities

hTj =
p{jT

�
�j � �0j

�
� JTj(�0j )�1r'Tj(�0j )=

p{jT ; (57)

�j =
hTjp{jT

+ �Tj : (58)

Applying (57) to (54) and using (46) of Assumption 3 we obtain,

!Tj(hTj) = 'Tj (�j)� 'Tj(�0j )�
1

2{jT
�
r'Tj(�0j )

�0
JTj(�

0
j )
�1 �r'Tj(�0j )�

= (�j � �0j )0r'Tj(�0j )�
1

2
(�j � �0j )0{jTJTj(�0j )(�j � �0j ) +RTj(�j)

� 1

2{jT
�
r'Tj(�0j )

�0
JTj(�

0
j )
�1 �r'Tj(�0j )� :

Using (58) in each of the terms in of the above expression and collecting terms proves (56). Having

established (56), we prove that all subsequential probability limits of CTj in (55) are strictly positive.

Using (49), dominated convergence and the properties of the Gaussian density we obtain

CTj =

Z
HTj

�j

�
h

p{jT
+ �Tj

�
exp

�
�1
2
h0JTj(�

0
j )h+RTj

�
h

p{jT
+ �Tj

��
dh

= �j
�
�0j
� Z

Rdim(�
0
j
)
exp

�
�1
2
h0JTj(�

0
j )h

�
dh

+

Z
HTj

�
�j

�
h

p{jT
+ �Tj

�
� �j

�
�0j
��
exp

�
�1
2
h0JTj(�

0
j )h

�
dh+ op (1)

= (2�)dim(�
0
j )=2 det(JTj(�

0
j ))

�1=2�j
�
�0j
�
+ op (1) ;

because Lipschitz continuity of �j implies that�j � h
p{jT

+ �Tj

�
� �j

�
�0j
� � c

 h
p{jT

+ �Tj � �0j
!p 0 (59)

for all hTj 2 HTj . We conclude that, as T !1

���CTj � (2�)dim(�0j )=2 det(JTj(�0j ))�1=2�j ��0j����!p 0 (60)

and, since lim infT!1 det(JTj(�0j ))
�1=2�j

�
�0j
�
> 0 by Assumptions 3b and 4,

lim inf
T!1

P (CTj > ") � 1� " (8" > 0) : (61)
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Using (53), the left side of (51) can be written as

Z
HTj

khka
��p�Tj(h)� p1(h)�� dh = ATjC

�1
Tj (62)

where CTj is de�ned in (55) and

ATj =

Z
HTj

khka
�����( h
p{jT

+ �Tj) exp(!(h))� CTj�Tj (h)
���� dh

where

�Tj (hTj) = (2�)
� dim(�j)=2 det(JTj(�

0
j ))

1=2 exp

�
�1
2
h0TjJTj(�

0
j )hTj

�
:

Adding and subtracting exp
n
�1
2h
0
TjJTj(�

0
j )hTj

o
�j
�
�0j
�
in the above expression we obtain that

ATj � A
(1)
Tj +A

(2)
Tj where

A
(1)
Tj =

Z
HTj

khka
����j(h=p{jT + �Tj)e!(h) � e� 1

2
h0JTj(�

0
j )h�j

�
�0j
���� dh; (63)

A
(2)
Tj =

Z
HTj

khka
����j ��0j�� CTj(2�)� dim(�j)=2 det(JTj(�0j ))1=2��� exp��12h0JTj(�0j )h

�
dh:

By using (60) and the dominated convergence theorem, A(2)Tj !p 0 as T ! 1. Also, (61) implies

that
���C�1Tj ��� = Op (1). Therefore, by (62), the proposition is proved if A

(1)
Tj !p 0 where A

(1)
Tj the

integral in (63).

To show that the integral A(1)Tj !p 0, de�ned in (63), we partition the area of integration in (50)

as follows: HTj = H
(1)
Tj [H

(2)
Tj [H

(3)
Tj , where

i) H(1)Tj = fh 2 HTj : khk �Mg ;

ii) H(2)Tj =
�
h 2 HTj : khk > �

p{jT
	
;

iii) H(3)Tj =
�
h 2 HTj :M < khk � �

p{jT
	
;

where � is some positive number satisfying (48) and M is a �xed number in (0;1). It remains to

prove A(1)Tj !p 0 over areas i)-iii). Note that, by (50) and Assumption 3(a),

hTjp{jT
= �j � �0j +Op

�
1

p{jT

�
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so the areas i)-iii) can be expressed in terms of �j : for example,

H(3)Tj =
�
� 2 � : M

p{jT
< k�k � �

�
: (64)

for all but �nitely many T:

(i) Area H(1)Tj . By �niteness of M; it su¢ ces to show that the following quantity is op (1):

sup
h2H(1)Tj

khka
���e!Tj(h)�j(h=p{jT + �Tj)� e� 1

2
h0JTj(�

0
j )h�j(�

0
j )
���

= max
khk�M

khka e�
1
2
h0JTj(�

0
j )h
��exp�RTj �h=p{jT + �Tj�	�j(h=p{jT + �Tj)� �j(�0j )��

� Ma max
khk�M

��exp�RTj �h=p{jT + �Tj�	�j(h=p{jT + �Tj)� �j(�0j )��
� Ma max

khk�M
exp

�
RTj

�
h=
p{jT + �Tj

�	
max
khk�M

���j(h=p{jT + �Tj)� �j(�0j )��
+Ma max

khk�M

��exp�RTj �h=p{jT + �Tj�	� 1�� sup
j
�j(�

0
j ) (65)

The second term of (65) is op (1) by (49) since supkhk�M
h=p{jT + �T � �0j = Op(1=

p{jT ).

Since exp
�
RTj

�
h=
p{jT + �Tj

�	
= 1 + op (1) by (49), the �rst term of (65) is is op (1) by (59).

(ii) Area H(2)Tj . It is su¢ cient to show that:

a)
R
khk>�p{jT khk

a �(h=
p{jT + �T ) exp(!(h))dh!p 0 and

b)
R
khk>�p{jT khk

a exp
�
�1
2h
0JTj(�

0
j )h
	
dh!p 0:

To show a), change variables �j = hTj=
p{jT+�Tj , so that the area of integration is

� � �Tj >
�: We have that the expression in a) is bounded by

{(�+1)=2jT

Z
k���Tjk>�

� � �Tj� �j(�) exp�'Tj(�)� 'Tj(�0j )	
� exp

�
� 1

2{jT
r'Tj(�0j )0JTj(�0j )�1r'Tj(�0j )

�
d�

which in turn, is bounded by

{(�+1)=2jT CKn

Z
k���Tjk>�=2

(1 + k�k�)�j(�) exp
�
'Tj(�)� 'Tj(�0j )

�
d� (66)

with Kn := exp(� 1
2{jTr'Tj(�

0
j )
0JTj(�

0
j )
�1r'Tj(�0j )) = Op(1); because �Tj = Op (1) : By Assump-
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tion 2, 8� > 0; 9" > 0 such that

lim
n!1

P

8<: sup
k�j��0jk>�=2

exp
�
'Tj(�j)� 'Tj(�0j )

�
� exp(�"{jT )

9=; = 1

so that (66) is bounded by

Op(1){
(�+1)=2
jT exp (�"{jT )

Z
�
k�k� �j(�)d� = op(1)

by boundedness of � and continuity of �j(:) in Assumption 1 and Assumption 4 respectively.

b) follows directly since the Gaussian density has in�nitely many moments and {jT !1.

(iii) Area H(3)Tj . By integrability of Gaussian density functions, we can choose M to be large

enough to make the term in A1n exp
n
�1
2h
0
TjJTj(�

0
j )hTj

o
arbitrarily small: So, it is su¢ cient to

show that for all " > 0; there exists M such that the remaining term

lim inf
T!1

P

(Z
M<khk��p{jT

khka
���j(h=p{jT + �T ) exp(!Tj(h))�� dh < "

)
� 1� ": (67)

By (56),

e!(hTj) � e�
1
2
h0TjJTj(�

0
j )hTj+jRTj(�T+hTj=p{jT )j: (68)

Moreover, � in the partition of HTj is chosen to satisfy (48): by (64) and (48), for all " > 0 and

� > 0, there exists a � > 0 and M > 0; such that

1� " � lim inf
T!1

P

(
sup

M<khk��p{jT

��RTj(h=p{jT + �Tj)��h+p{jT (�Tj � �0j )2 �
1

4
�

)

� lim inf
T!1

P

(
sup

M<khk��p{jT

��RTj(h=p{jT + �Tj)��
2 khk2 + 2

p{jT (�Tj � �0j )2 �
1

4
�

)

� lim inf
T!1

P

(
sup

M<khk��p{jT

��RTj(h=p{jT + �Tj)��
khk2 + C2

� 1

2
�

)

� lim inf
T!1

P

8<: sup
M<khk��p{jT

��RTj(h=p{jT + �Tj)��
khk2

�
1 + C2

M2

� � 1

2
�

9=;
= lim inf

T!1
P

(
sup

M<khk��p{jT

��RTj(h=p{jT + �Tj)��
khk2

� 1

2
B�

)
(69)
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for all " > 0 and all � > 0 and some C > 0, with B = 1 + C2=M2. The equality in (69) follows

since
p{jT (�Tj � �0j ) =

1
p{jT

JTj(�
0
j )
�1r'Tj(�0j ) = Op(1)

so lim infT!1 P
�p{jT (�Tj � �0j ) � C

	
= 1 for some C > 0. Choosing � = (2B)�1 �� (with ��

de�ned in (47)) in (69) yields

lim inf
T!1

P

���RTj(hTj=p{jT + �Tj)�� � 1

4
khTjk2 ��

�
> 1� ": (70)

Going back to (68), we want to show that

lim inf
T!1

P
�
e!(hTj) � Ce�

1
4
h0TjJTj(�

0
j)hTj

�
� 1� ":

Note that, by the identity minkxk=1 x0Ax= kxk2 = �min(A) for any symmetric A; we obtain

�1
4
h0TjJTj

�
�0j
�
hTj � �1

2
h0TjJTj

�
�0j
�
hTj +

1

4
�min

�
JTj

�
�0j
��
khTjk2

� �1
2
h0TjJTj

�
�0j
�
hTj +

1

4
�� khTjk2

for all but �nitely many T: Denoting

G1T = �1
2
h0TjJTj

�
�0j
�
hTj +

��RTj ��T + hTj=p{jT ���
G2T =

1

4
�� khTjk2 �

��RTj ��T + hTj=p{jT ��� ;
the above inequality implies that

lim inf
T!1

P
�
e!(hTj) � Ce�

1
4
h0TjJTj(�

0
j)hTj

�
� lim inf

T!1
P

�
e!(hTj) � Ce�

1
2
h0TjJTj(�

0
j)hTj+

1
4
��khTjk2

�
= lim inf

T!1
P
�
e!(hTj) � CeG1T eG2T

�
� lim inf

T!1
P
�
e!(hTj) � CeG1T eG2T

��� eG2T � 1�P �eG2T � 1�
= lim inf

T!1
P
�
eG2T � 1

�
� 1� "
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by (70), where we have used the fact that

P
�
e!(hTj) � CeG1T eG2T

��� eG2T � 1� = 1
for any C � 1 by (68) and (70). This completes the proof of Proposition 1.

7.1.2 Proof of Proposition 2

We have a linear regression model with parameters varying over time:

yt = xt�t + "t:

where xt is a 1� (k + 1) vector of exogenous �xed regressors and �t is a (k + 1)� 1 vector of time

varying parameters, possibly including a time varying intercept term. "t are independent normally

distributed mean zero disturbances with a variance �2t ; also indexed by time.

The weighted likelihood of the sample Y := (y1; :::; yT )0 at each point in time j is given by

Lj(Y j�j ; �j ; X) = (2�)�Sj=2�
Sj=2
j exp

(
��j
2

TX
t=1

#jt(yt � xt�j)2
)

where Sj =
PT

t=1 #jt = {jT and {jT is de�ned in (6), or equivalently in a more compact form as

Lj(Y j�j ; �j ; X) = (2�)�Sj=2�
Wj=2
j exp

�
��j
2
(Y �X�j)0Dj(Y �X�j)

�
(71)

where Y := (y1; :::; yT )0 is a T�1 vector, X = (x01; :::; x
0
T )
0 is a T�k matrix andDj is a T�T diagonal

weighting matrix, containing the kernel weights in its main diagnal, Dj = diag(#j1; :::; #jT ):

Next, assume that �j and �j have Normal-Gamma prior distribution for j 2 f1; :::; Tg:

�j j�j � N
�
�0j ; (�j�0j)

�1
�
; �j � Ga(�0j ; 0j)

implying that

p(�j ; �j) =

aj0
0j

�(�0j)
(2�)�(k+1)=2 j�0j j

1
2�

�0j�1
j �

(k+1)=2
j (72)

� exp
�
��j
2
((�j � �0j)0�0j(�j � �0j) + 20j)

�
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Combining the local likelihood function of the sample in (71) with the prior in (72) yields the

following joint local quasi-posterior density, p(�j ; �j jY;X) /

�
�0j�1+Sj=2+(k+1)=2
j exp

�
��j
2

�
20j + (�j � �0j)0�0j(�j � �0j) + (Y �X�j)0Dj(Y �X�j)

��
:

It is useful to employ in the expression in the exponent above the following identity:

u0Au� 2a0u = (u�A�1a)0A(u�A�1a)� a0A�1a (73)

for any vectors u and a and a symmetric p.d. matrix A: In particular,

��j
2

�
20j + �j

0(X 0DjX + �0j)�j � 2(�0j 0�0j + Y 0DjX)�j + �0j
0�0j�0j + Y

0DjY
�

= ��j
2

h
2ej + (�j � e�j)0e�j(�j � e�j)i

and hence

p(�j ; �j jY;X) / �
�0j+Sj=2�1+(k+1)=2
j exp

�
��j
2

h
2ej + (�j � e�j)0e�j(�j � e�j)i�

which is in fact of Normal-Gamma form:

�j jX;Y;Dj ; �j � N
�e�j ; (�je�j)�1�

�j jX;Y;Dj � Ga(e�j ; ej)
with parameters:

e�j = e��1j (X 0DjX�̂j + �0j�0j)

e�j = �0j +X
0DjX; ~�j = �0j + Sj=2

ej = 0j +
1

2

�
Y 0DjY � e�0je�je�j + �00j�0j�0j�

which completes the proof of Proposition 2.
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7.1.3 Proof of Proposition 3

To obtain the marginal quasi-posterior of �j; integrate out the joint quasi posterior given in () with

respect to � :

p(�j jY;X;Dj) =
R1
0 p(�j ; �jY;X)d�

= C�14j
R1
0 �~�j+

k+1
2 exp

�
��
�
~j �

1

2
(�j � ~�j)0~�j(�j � ~�j)

��
d�

After change of variables, x = �(~j �
1

2
(�j � ~�j)0~�j(�j � ~�j)); we obtain:

= C�14j
R1
0 x(~�j+

k+1
2
)�1 exp f�xg

�
~j �

1

2
(�j � ~�j)0~�j(�j � ~�j)

��~�j� k+1
2

dx

p(�j jY;X) =
~
~�j
j j~�j j

1
2

�(~�j)(2�)
k+1
2

�
~j �

1

2
(�j � ~�j)0~�j(�j � ~�j)

��~�j� k+1
2

�(~�j +
k + 1

2
)

=
�(

2~�j+k+1
2 )

(2~�j�)(k+1)=2~�
�(k+1)=2
j ~

(k+1)=2
j j~�j j�1=2 �(~�j)

�
�
1� 2~�j

2~j2~�j
(�j � ~�j)0~�j(�j � ~�j)

��(~�j+ k+1
2
)

Hence p(�j jY ) is the density of a Student�s t-distribution of the form

Tv(�; �
2) =

�(v+p2 )

�(v2 )v
p
2�

p
2 j�j 12

�
1� 1

v�2
(� � �)2

� v+p
2

where v = 2~�j , � = ~�j and � =
~j
~�j
~��1j : Therefore, we have that �j jY;X � T2�M

�
~�j ;

~j
~�j
~��1j

�
as

required.

7.1.4 Proof of Proposition 4

We have that theM�1 dimensional vector yt is generated by a time varying parameter VAR model

of lag order k:

yt = B0t +
Xk

p=1
Bptyt�p + "t; (74)

where B0t is an M � 1 vector of time varying intercepts, and Bpt is an M �M matrix of time

varying autoregressive coe¢ cients for lag p = 1; :::; k. The error term, "t, is an M � 1 vector

of normally distributed zero mean random variables, with a positive de�nite symmetric M �M
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contemporaneous drifting covariance matrix R�1t , so that "t = R
�1=2
t �t where �t � NID(0M ; IM ).

In addition, let xt := (1; y0t�1; :::; y
0
t�k) be a 1 � (Mk + 1) vector and Bt := (B0t; B1t; :::; Bkt) be

an M � (Mk + 1) matrix. Then, (74) can be written as yt = Btx
0
t + "t and after vectorising,

yt = (IM 
 xt)�t +R
�1=2
t �t, where �t := vec(B0t) is an M(Mk + 1)� 1 vector:

The weighted likelihood of the sample (y1; :::; yT ) at each point in time j is given by

Lj(yj�j ; Rj ; X) = (2�)�MSj=2 jRj jSj=2e�
1
2

PT
t=1 #jt(yt�(IM
xt)�j)0Rj(yt�(IM
xt)�j) (75)

where Sj =
PT

t=1 #jt and the kernel weights #jt are de�ned in (9). Denote by Y = (y1; :::; yT )
0

a T �M matrix of stacked vectors y01; :::; y
0
T and de�ne y = vec(Y ) as a TM � 1 vector. De�ne

E = ("1; :::; "T )
0 implying that " := vec(E) is a TM � 1 vector: Let X be a T �Mk + 1 matrix

de�ned as X = (x01; :::; x
0
T )
0 : Then the weighted likelihood can be written in a more compact form

as:

Lj(yj�j ; Rj ; X) / jRj jSj=2 exp
�
�1
2
(y � (IM 
X)�j)0(Rj 
Dj)(y � (IM 
X)�j)

�
where Dj := diag(#j1; :::; #jT ) for j 2 f1; :::; Tg:

Next, specify a prior for �j and Rj that has Normal-Wishart distribution:

p(�j ; Rj) / jRj j(Mk+1)=2 exp

�
�1
2
(�j � �0j)0(Rj 
 �0j)(�j � �0j)

�
�jRj j

�0j�M�1
2 exp

�
�1
2
tr(0jRj)

�

where �0j is a (MK+1)M �1 vector of prior means, �0j is a (Mk+1)� (Mk+1) positive de�nite

symmetric precision matrix, �0j is a scalar scale parameter of the Wishart distribution, 0j is a

positive de�nite symmetric matrix, tr(:) denotes the trace operator and / denotes proportionality

upto a constant. Combining the weighted likelihood with the prior, we obtain the local quasi-

posterior density,

p(�j ; Rj jY;X) / exp

�
�1
2
(y � (IM 
X)�j)0(Rj 
Dj)(y � (IM 
X)�j)

�
jRj jSj=2jRj j(Mk+1)=2

�jRj j
�0j�M�1

2 exp

�
�1
2
(�j � �0j)0(Rj 
 �0j)(�j � �0j)�

1

2
tr(0jRj)

�
: (76)
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A direct application of identity (73) in the expression in the exponential term in (76) yields:

(y � (IM 
X)�j)0(Rj 
Dj)(y � (IM 
X)�j) + (�j � �0j)0(Rj 
 �0j)(�j � �0j)

= y0(Rj 
Dj)y + �
0
0j(Rj 
 �0j)�0j + �0j(Rj 
 (X 0DjX + �0j))�j � 2[Rj 


�
XDjy + �0j�0j

�
]0�j

= y0(Rj 
Dj)y + �
0
0j(Rj 
 �0j)�0j +

�
�j � e�j�0 (Rj 
 e�j)��j � e�j�� e�0j(Rj 
 e�j)e�j (77)

where

e�j =
�
IM 
 e��1j � h(IM 
X 0DjX)�̂j + (IM 
 �0j)�0j

i
; (78)

e�j = �0j +X
0DjX:

It remains to study the remaining terms in (77):

exp

�
�1
2

h
y0(Rj 
Dj)y + �

0
0j(Rj 
 �0j)�0j � e�0j(Rj 
 e�j)e�j + tr(0jRj)i� :

The �rst three terms will receive the same treatment. For example, the �rst term can be written

as:

y0(Rj 
Dj)y =
h
(IM 
D1=2

j )vec(Y )
i0
(Rj 
 IT )

h
(IM 
D1=2

j )vec(Y )
i

= vec(D
1=2
j Y )0(Rj 
 IT )vec(D1=2

j Y )

= tr(D
1=2
j Y RjY

0D
1=2
j ) = tr(Y 0DjY Rj) (79)

where the second line is obtained using the equality vec(ABC) = (C 0 
 A)vec(B) and the third

line uses the equality tr(ABC) = vec(A0)0(I 
B)vec(C) = vec(A)0(B 
 I)vec(C 0): Similarly,

�00j(Rj 
 �0j)�0j = tr(B0j�0jB
0
0jRj); and (80)

e�0j(Rj 
 e�j)e�j = tr( eBje�j eB0jRj); (81)

where �0j = vec(B00j) and e�j = vec( eB0j): After combining (77), (79),(80) and (81) the quasi-
posterior in (76) can be written as: p(�j ; Rj jY;X) /

jRj j(Mk+1)=2jRj j
e�j�M�1

2 exp

�
�1
2

h
(�j � e�j)0(Rj 
 e�j)(�j � e�j) + tr �ejRj�i� (82)
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which is a Normal-Wishart density with parameters e�j ; e�j ; e�j and ej ; where e�j and e�j are de�ned
above in (78) and

e�j = �0j + Sj ; ej = 0j + Y
0DjY +B0j�0jB

0
0j � eBje�j eB0j ;

which proves Proposition 4.

7.1.5 Proof of Proposition 5

To obtain the marginal quasi-density of the parameter vector �j , we integrate the joint quasi-

posterior distribution, p(�j ; RjY;X)dR in (82) over the M(M + 1)=2 distinct variables in Rj ;

p(�j jY;X) =
R
R>0p(�j ; RjY;X)dR

= Cj
R
R>0 exp

�
�1
2
(�j � e�j)0(R
 e�j)(�j � e�j)�

� jRj(Mk+1)=2 jRj
e�j�M�1

2 exp

�
�1
2
tr
�ejR�� dR (83)

where

Cj =
(2�)�M(Mk+1)=2 je�j jM=2

2
1
2
Me�j ��ej���e�j=2 �M � e�j2 � :

Note that the �rst exponential term in (83) can be written as

exp

�
�1
2
(�j � e�j)0(R
 e�j)(�j � e�j)�

= exp

�
�1
2
vec

he�1=2j (Bj � eBj)0i0 (R
 IMk+1)vec
he�1=2j (Bj � eBj)0i�

= etr

�
�1
2
(Bj � eBj)e�j(Bj � eBj)0R� ;

where etr(�) is the exponential trace operator, so that

p(�j jY;X) = C5j
R
R>0 jRj

e�j�M�1+Mk+1

2 etr

�
�1
2

h
(Bj � eBj)e�j(Bj � eBj)0 + ejiR� dR: (84)

By Theorem 2.1.11 in Muirhead (2005), for a n � n symmetric positive de�nite matrix R; with

Re(	) > 0 and Re(�) > 0, the following holds:

R
R>0jRj

��n�1
2 exp

�
�1
2
tr(	�1R)

�
d(R) = �n(�)j	j�2n�:
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Applying the theorem in (84), we have that

p(�j jY;X) = C5j�M

�e�j +Mk + 1

2

� ���(Bj � eBj)e�j(Bj � eBj)0 + ej���� e�j+Mk+1

2
2M

e�j+Mk+1

2

=
(2�)�M(Mk+1)=2 je�j jM=2

2�
1
2
Me�j ��ej���e�j=2 �M � e�j2 ��M

�e�j +Mk + 1

2

� ��ej��� e�j+Mk+1

2

�
���e�1j (Bj � eBj)e�j(Bj � eBj)0 + IM ���� e�j+Mk+1

2
2M

e�j+Mk+1

2

= ��M(Mk+1)=2 je�j jM=2
��ej���Mk+1

2

�M

� e�j+Mk+1
2

�
�M

� e�j
2

� ���e�1j (Bj � eBj)e�j(Bj � eBj)0 + IM ���� e�j+Mk+1

2
:

Recall the de�nition of a matrix variate t-distribution density of a p�m matrix B:

p(B; �;M;�;
) =
�p(

1
2(� +m+ p� 1))

�
1
2
mp�p(

1
2(� + p� 1))

j�j�
1
2
m j
j�

1
2
p

�
��Ip +��1(B �M)
�1(B �M)0��� 1

2
(�+m+p�1)

;

and note that p(�j jY;X) is a vectorised counterpart of the above de�nition with parameters:

m =Mk + 1; p =M; � = e�j �Mk; M = eBj ; 
�1 = e�j ; � = ej :
We therefore have

�j jY;X = vec(B0j)jY;X � Te�j�Mk

 
vec( eB0j); ej 
 e��1je�j �Mk � 2

!
;

which proves Proposition 5.

7.1.6 Proof of Proposition 6

Assume that the variance covariance matrix R�1=2t in equation (13) is known. Then, transform the

model in the following way:

R
1=2
t yt = R

1=2
t (IM 
 xt)�t + �t; �t � NID(0M ; IM ):
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Next, specify a prior for �t of the form:

�j � N
�
�0j ; V

�1
0j

�
for j 2 f1; :::; Tg :

Combining the prior with the local likelihood in (75) yields a quasi-posterior density for �j of the

form

p(�j jY;X;R1:T ) / exp
�
�1
2

�XT

t=1
#jt(eyt � ext�j)0(eyt � ext�j) + (�j � �0j)0V0j(�j � �0j)��

where ext = R
1=2
t (IM 
 xt) and eyt = R

1=2
t yt: A direct application of identity (73) implies that the

conditional quasi-posterior of �j is N
�e�j ; eV �1j

�
:

p(�j jY;X;R1:T ) / exp
�
�1
2

�
�j � e�j�0 eVj ��j � e�j��

with posterior parameters

e�j = eVj�1 �XT

t=1
#jtex0teyt + V0j�0j� ; eVj = V0j +

XT

t=1
#jtex0text

which proves Proposition 6.

7.1.7 Proof of Proposition 7

Assume that �t is known in the model in equation (13). Write the model as:

"t := yt � (IM 
 xt)�t = R
�1=2
t �t; �t � NID(0M ; IM );

and specify a WishartW (�0j ; 0j) prior density for R
�1
t . Combine the prior with the local likelihood

(75) to obtain conditional quasi-posterior density for Rj of the form

p(Rj jY;X; �1:T ) / exp
�
�1
2

�XT

t=1
#jt"t

0Rj"t + tr(0jR)

��
jRj j

PT
t=1 #jt=2jRj j(Mk+�0j�M)=2:

(85)
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After stacking the observed "t as a T�M matrix E := ("1; "2; :::; "T )0, we can write
PT

t=1 #jt"t
0Rj"t =

vec(E)0(Rj 
Dj)vec(E) where Dj = diag(#jt): The calculation

vec(E)0(Rj 
Dj)vec(E)

=
h
(IM 
D1=2

j )vec(E)
i0
(Rj 
 IT )

h
(IM 
D1=2

j )vec(E)
i

= vec(D
1=2
j E)0(Rj 
 IT )vec(D1=2

j E)

= tr(D
1=2
j ERjE

0D
1=2
j ) = tr(E0DjERj)

implies that the conditional quasi-posterior density for Rj in (85) is of W (e�j ; ej) form:
p(Rj jY;X; �1:T ) / exp

�
�1
2

�
tr(ejR)�� jRj j e�j�M�1

2

with posterior parameters

e�j = �0j +
XT

t=1
#jt; ej = 0j +

XT

t=1
#jt"

0
t"t:

7.1.8 Proof of Proposition 8

To obtain the quasi-marginal likelihood of the sample Y; we integrate the local likelihood over all

possible values of the parameters �j and Rj :

pj(Y ) =

Z Z
p(Y j�;R)p(�jR)p(R)d�dR

= (2�)�Sj=2 j�0j j(Mk+1)=2 (2)
�M�0j=2

�M (�0j=2)

��0j���0j=2 Z jRjSj=2jRj
�0j�M�1

2 etr

�
1

2
0jR

�
�
Z
(2�)�(Mk+1)=2 exp

�
�1
2
(y � (IM 
X)�)0(R
Dj)(y � (IM 
X)�)

�
jRj(Mk+1)=2

� exp
�
�1
2
(� � �0j)0(R
 �0j)(� � �0j)

�
d�dR
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Completing the square in the exponential term, by using idenity (73), we have

pj(Y ) = (2�)�Sj=2 j�0j j(Mk+1)=2 (2)
�M�0j=2

�M (�0j=2)

��0j���0j=2 Z jRjSj=2jRj
�0j�M�1

2 etr

�
1

2
0jR

�
� exp

�
�1
2

�
y0(R
Dj)y + �

0
0j(R
 �0j)�0j � e�0j(R
 e�j)e�j�� je�j j�(Mk+1)=2

�
Z
(2�)�(Mk+1)=2jR
 e�j j(Mk+1)=2 exp

�
�1
2

��
� � e�j�0 (R
 e�j)�� � e�j��� d�| {z }

=1

dR

where e�j and e�j are de�ned in Proposition 4. After transforming remaining terms in the exponent
above, using equations (79), (80) and (81), we have

pj(Y ) =
(2)(M�1)Sj=2 j�0j j(Mk+1)=2 �M (e�j=2) ��0j���0j=2

�Sj=2 je�j j�(Mk+1)=2 �M (�0j=2)
��ej��e�j=2

�
Z

1

�M (e�j=2)(2)�Me�j=2 ��ej��e�j=2 jRj e�j�M�1
2 etr

�
�1
2
ejR� dR| {z }

=1

where e�j and ej are de�ned in Proposition 4, which completes the proof of Proposition 8.
7.1.9 Additional Algorithms

Homoscedastic BVAR model with mixture of time varying and time invariant slope

parameters Consider a homoscedastic VAR model, which includes, in addition to the regressors

with time varying coe¢ cients, a subset of regressors with invariant parameters:

yt = (IM 
 Zt)� + (IM 
Xt)�t +R
�1=2�t; �t � N (0; IM )

where Zt are �xed exogenous variables or lags of yt:

Conditional on knowing R and �; rede�ne byt := R1=2(yt � (IM 
 Zt)�) = bxt�t + �t wherebxt = R1=2(IM 
Xt): Assuming a normal N (�0j ; V0j) prior for �j ; the conditional quasi-posterior

of �j is also normal by Proposition 6: �j jY;X;Z;R�1; �j � N (e�j ; eVj); with parameters de�ned in
(22). On the other hand, conditional on a draw from the posterior of �j for each j 2 f1; :::; Tg,

the model can be written as eyt = yt � (IM 
Xt)�t = �(IM 
 Zt)� + R�1=2�t: Hence, conditional

on the time varying �j ; we have a standard linear Gaussian model with �xed parameters. Then,
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assuming a Normal-Wishart prior �;R � NW (�0; �0; a0; 0) for R
�1 and �; it follows that

�;RjX;Y; Z; �1:T � NW (e�; e�;ea; e)
with parameters:

e� = IM 

"
(�0 +

TX
t=1

Z 0tZt)
�1

 
TX
t=1

Z 0teyt + �0�0
!#

(86)

e� = �0 +
TX
t=1

Z 0tZt; e� = �0 + T; e = 0 + ey0teyt + S0�0S00 � eSe�eS0;
where �0 = vec(S00) and e� = vec(eS0):

Since the conditional posterior distribution of R�1 and � is of standard form and the conditional

quasi-posterior of �t have been established in Proposition 6, a Gibbs algorithm can be designed to

approximate the joint posterior of R�1; � and �t , using the following steps.

Algorithm 3. Step 1. Initialise the algorithm with �0 and R�1;0:

For i = 1; :::; N iterate between steps 2 and 3 below.

Step 2. For j 2 f1; :::; Tg draw �ij jY;X;R�1;i�1; �i�1 from N (e�j ; eVj) with posterior parameters
in (22).

Step 3. Draw R�1;i; �ijY;X; �i1:T from NW (e�; e�; e�; e) with posterior parameters in (86).
Heteroscedastic BVAR model with mixture of time varying and time invariant slope

parameter Next, we consider a heteroscedastic BVAR model which includes, in addition to

heteroscedasticity and �xed slope coe¢ cients �, a subset of regressors which enter the model with

drifting parameters �t

yt = (IM 
 Zt)� + (IM 
Xt)�t +R
�1=2
t �t; �t � N (0; IM ) (87)

where Zt are �xed exogenous variables or lags of yt: Conditional on �; the model can be written as

byt = yt � (IM 
 Zt)� = (IM 
Xt)�t +R
�1=2
t �t:

Draws from the joint quasi-posterior of �t and Rt can be obtained using the closed form ex-

pressions in Proposition 1, using byt instead of yt; if a Normal-Wishart prior NW (�0j ; �0j ; �0j ; 0j)
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is assumed for �j and Rj ; then, the posterior is also Normal-Wishart NW (e�j ; e�j ;eaj ; ej) with pa-
rameters given in (19).

On the other hand, conditional on the draw from the history of �1:T and R1:T ; we can de�ne

y�t = R
1=2
t (yt � (IM 
 Xt)�t) = z�t � + �t with z

�
t = R

1=2
t (IM 
 Zt) and the model reduces to the

standard linear Gaussian model with �xed parameters and known variance: Then, by assuming

a normal prior N (�0; Q0) for �; the conditional posterior is also Normal: �jY;X;Z;R�11:T ; �1:T �

N (e�; eQ) with parameters
e� =  TX

t=1

z�0t z
�
t +Q

�1
0

!�1 TX
t=1

z�0t y
�
t +Q

�1
0 �0

!
; eQ =  TX

t=1

z�0t z
�
t +Q

�1
0

!�1
: (88)

Hence, the conditional posterior of � is of standard form and the conditional quasi-posterior of �j

and R�1j have been characterised in Proposition 1 and can be easily drawn from, the model (87)

permits the use of a Gibbs algorithm with the following steps to approximate the joint posterior of

�1:T ; R1:T and �.

Algorithm 4. Step 1. Initialise the algorithm with �0:

For i = 1; :::; N iterate between steps 2 and 3 below.

Step 2. For each j 2 f1; :::; Tg ; drawR�1;ij and �i from �j ; Rj jX;Y; Z; �i�1 � NW (e�j ; e�j ;eaj ; ej);
with posterior parameters de�ned in (19).

Step 3: Draw �ijY;X;Z;R�1;i1:T ; �
i
1:T from N (e�; eQ) with posterior parameters de�ned in (88).
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7.1.10 Additional results and data description

Series Desription Transformation
1 Real GDP DLOG(GDP)*100
2 GDP De�ator DLOG(GDPDEF)*100
3 Consumer Price Index DLOG(CPI)*100
4 Business Investm ent DLOG(INV)
5 Real Personal Consumption Exp enditure DLOG(CONS)*100
6 C iv ilian Unemployment Rate D (UNRATE/4)
7 Industria l P roduction DLOG(IP)*100
8 3-Month Treasury B ill: Secondary Market Rate D (TBILL/4)
9 ISM Manufacturing: PM I Composite Index DLOG(PM I)
10 ISM Manufacturing: New Orders Index DLOG(NEWORDERS)
11 Average Hours DLOG(AVERAGEHOURS)*100
12 Nonfarm Business Sector: Real Compensation Per Hour DLOG(REALWAGE)*100
13 Producer Price Index DLOG(PPI)*100
14 Personal Consumption Exp enditures: Chain-typ e Price Index DLOG(PCE)*100
15 Reuters/Je¤ries-CRB Total Return Index (w/GFD extension) DLOG(COMINDEX)
16 BAA Corporate Spread D(CORPSPREAD)
17 NYSE Sto ck Market Capita lization DLOG(STOCKCAP)
18 Industria l P roduction : Business Equipm ent DLOG(IPBUSEQ)*100
19 Industria l P roduction : Consumer Goods DLOG(IPCONGD)*100
20 Industria l P roduction : Durab le Consumer Goods DLOG(IPDCONGD)*100
21 Industria l P roduction : Durab le Materia ls DLOG(IPDMAT)*100
22 Industria l P roduction : F inal P roducts (M arket G roup) DLOG(IPFINAL)*100
23 Industria l P roduction : F inal P roducts and Nonindustria l Supplies DLOG(IPFPNSS)*100
24 Industria l P roduction : M anufacturing (SIC ) DLOG(IPMANSICS)*100
25 Industria l P roduction : M ateria ls DLOG(IPMAT)*100
26 Industria l P roduction : Nondurab le Consumer Goods DLOG(IPNCONGD)*100
27 Dow Jones Industria l Total returns index DLOG(DOW )
28 ISM Manufacturing: Inventories Index DLOG(INVENTORIES)
29 ISM Manufacturing: Supplier Deliveries Index DLOG(SUPPLIERS)
30 ISM Manufacturing: PM I Composite Index DLOG(NAPM)
31 ISM Manufacturing: PM I Employm ent index DLOG(NAPMEI)
32 ISM Manufacturing: Production index DLOG(NAPMPI)
33 ISM Manufacturing: Prices index DLOG(NAPMPRI)
34 C iv ilian Employment DLOG(EMPLOY)*100
35 A ll Employees: Construction DLOG(USCONS)*100
36 A ll Employees: F inancia l Activ ities DLOG(USFIRE)*100
37 A ll Employees: Good producing industries DLOG(USGOOD)*100
38 A ll Employees: Government DLOG(USGOVT)*100
39 A ll Employees: Trade and Transp ortation DLOG(USTPU)*100
40 A ll Employees: reta il trade DLOG(USTRADE)*100
41 A ll Employees: wholesa le trade DLOG(USWTRADE)*100
42 A ll Employees: Durab le Goods DLOG(DMANEMP)*100
43 A ll Employees: M anufacturing DLOG(MANEMP)*100
44 A ll Employees: Non-Durab le Goods DLOG(NDMANEMP)*100
45 A ll Employees: Serv ice Provid ing industries DLOG(SRVPRD)*100
46 Total Non-Farm Payrolls DLOG(PAYEMS)*100
47 Real Personal Incom es exclud ing current transfers DLOG(W875RX1)*100
48 Business Conditions Index DLOG(BCI)
49 Real Imports DLOG(IMPORTS)*100
50 Real Exports DLOG(EXPORTS)*100
51 Real Governm ent Sp ending DLOG(REALGS)*100
52 Real Net Taxes DLOG(REALTAX)
53 Number of C iv ilians unemployed for 15 weeks or over DLOG(UEMP15OV)
54 Number of C iv ilians unemployed for 15 to 26 weeks DLOG(UEMP15T26)
55 Number of C iv ilians unemployed 27 weeks and over DLOG(UEMP27OV)
56 Number of C iv ilians unemployed for 5 to 14 weeks DLOG(UEMP5TO14)
57 Number of C iv ilians unemployed for less than 5 weeks DLOG(UEMPLT5)
58 Average M ean Duration of employment DLOG(UEMPMEAN)
59 Average Weekly Hours of Production and Nonsup erv isory Employees:Goods-Producing DLOG(CES0600000007)*100
60 Average Hourly Earn ings of Production and Nonsup erv isory Employees:Goods-Producing DLOG(CES0600000008)*100
61 Average Hourly Earn ings of Production and Nonsup erv isory Employees:Construction DLOG(CES2000000008)*100
62 Average Weekly hours of Production and Nonsup erv isory Employees:M anufacturing DLOG(CES3000000008)*100
63 Average Hourly Earn ings of Production and Nonsup erv isory Employees:M anufacturing DLOG(AWHMAN)*100
64 C iv ilian Labour Force DLOG(CLF)*100
65 C iv ilian Partic ipation rate DLOG(CIVPART)*100
66 Nonfarm Business Sector: Unit Labor Cost DLOG(ULC)*100
67 M2 Money Sto ck DLOG(M2)*100
68 Total Consumer Cred it Owned and Securitized , Outstanding DLOG(CREDIT)*100
69 Commercia l and Industria l Loans, A ll Commercia l Banks DLOG(BUSLOANS)*100
70 Real Estate Loans, A ll Commercia l Banks DLOG(REALLN)*100
71 Producer Price Index: Commodities: M etals and metal products: P rim ary nonferrous m etals DLOG(PPICMM)*100
72 Producer Price Index: C rude Materia ls for Further Pro cessing DLOG(PPICRM)*100
73 Producer Price Index: F in ished Consumer Goods DLOG(PPIFCG)*100
74 Producer Price Index: F in ished Goods DLOG(PPIFGS)*100
75 Producer Price Index: Interm ediate Materia ls: Supplies & Components DLOG(PPIITM )*100
76 Consumer Price Index for A ll U rban Consumers: Apparel DLOG(CPIAPPSL)*100
77 Consumer Price Index for A ll U rban Consumers: M edical Care DLOG(CPIMEDSL)*100
78 Consumer Price Index for A ll U rban Consumers: A ll item s less shelter DLOG(CUUR0000SA0L2_D11)*100
79 10 year Govt Bond Y ield m inus 3 mth yield D (GB10-TBILL)
80 6-month Treasury b ill m inus 3 mth yield D (TBILL6-TBILL)
81 1 year Govt Bond Y ield m inus 3 mth yield D (GB1-TBILL)
82 5 year Govt Bond Y ield m inus 3 mth yield D (GB5-TBILL)
83 AAA Corporate Bond Spread D(AAA-GB10)
84 S&P500 Total Return Index DLOG(STOCK)
85 S&P500 P/E Ratio D (PE)
86 US UK Exchange Rate DLOG(DOLLARATE)
87 US Canada exchange rate DLOG(CNRATE)*100
Large BVAR models in the forecasting exercise are estim ated w ith all 87 variab les, m edium BVAR models include variab les 1-17.
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Figure 43: O¤-diagonal covariance matrix elements over time

7.1.11 Additional Monte Carlo Results

This Section contains earlier Monte Carlo simulations. The DGP is given by

yt = �t + ut; ut � NID(0; �2t ) (89)

�t = 1=
p
t
Xt

i=1
!t (90)

log �2t = 1=
p
t
Xt

i=1
vt (91)

Equations (90) and (91) can be equivalently written as

�t =
p
(t� 1) =t�t�1 + !t=

p
t

and

log �2t=
p
(t� 1) =t log �2t�1+vt=

p
t

respectively. The models that we compare are the QBLL estimator of with Normal-Gamma prior

introduced in Section 2.3, a QBLL estimator with a uniform prior (which delivers an estimator
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equivalent to the frequentist estimator of Giraitis et al. (2014)), a state space model with volatility

modelled as in Kim et al. (1998) and a particle �lter. We present two sets of results: i) when the

correct state equation is speci�ed and ii) when instead we �t a stationary AR(1) state equations54

with an autoregressive parameter 0.5. The tables below summarise the bias, MSE and coverage

rates for di¤erent models and also, where applicable, for di¤erent bandwidth parameters.

Bias time-varying intercept
QBLL QBLL Normal Linear SS Linear SS Particle Filter Particle Filter

Bandwidth Uniform Prior Gamma Prior Misspeci�cation Misspeci�cation
T=50

H=T0:40 0.0030 0.0001
H=T0:45 0.0032 0.0007
H=T0:50 0.0034 0.0013 0.0011 -0.0075 -0.0012 -0.0112
H=T0:55 0.0036 0.0018
H=T0:60 0.0038 0.0022

T=100

H=T0:40 -0.0002 -0.0023
H=T0:45 -0.0001 -0.0017
H=T0:50 0.0001 -0.0013 -0.0015 -0.0120 -0.0036 -0.0156
H=T0:55 0.0002 -0.0009
H=T0:60 0.0002 -0.0007

T=500

H=T0:40 0.0039 0.0040
H=T0:45 0.0039 0.0040
H=T0:50 0.0039 0.0040 0.0035 0.0045 0.0054 0.0051
H=T0:55 0.0039 0.0039
H=T0:60 0.0038 0.0038

T=1000

H=T0:40 0.0018 0.0013
H=T0:45 0.0018 0.0015
H=T0:50 0.0018 0.0015 0.0014 -0.0025 0.0018 -0.0047
H=T0:55 0.0017 0.0015
H=T0:60 0.0016 0.0015

Table 21. Bias of models based on DGP in equation (89) for 50, 100, 500 and 1000 observations respectively.

54Unlike the Monte Carlo in Section 2.8, here we do not estimate the additional coe¢ cients for the state space
models, we simply use the state space approaches (both linear and non-linear) to �lter the unobserved latent drifting
parameters.

165



MSE time-varying intercept
QBLL QBLL Normal Linear SS Linear SS Particle Filter Particle Filter

Bandwidth Uniform Prior Gamma Prior Misspeci�cation Misspeci�cation
T=50

H=T0:40 0.2080 0.1936
H=T0:45 0.1950 0.1854
H=T0:50 0.1877 0.1816 0.1488 0.3915 0.2293 0.4669
H=T0:55 0.1858 0.1820
H=T0:60 0.1887 0.1864

T=100

H=T0:40 0.1525 0.1449
H=T0:45 0.1411 0.1367
H=T0:50 0.1358 0.1334 0.1083 0.3879 0.1781 0.4705
H=T0:55 0.1358 0.1346
H=T0:60 0.1408 0.1404

T=500

H=T0:40 0.0815 0.0790
H=T0:45 0.0728 0.0717
H=T0:50 0.0700 0.0696 0.0514 0.3773 0.0904 0.4529
H=T0:55 0.0722 0.0722
H=T0:60 0.0795 0.0797

T=1000

H=T0:40 0.0578 0.0566
H=T0:45 0.0511 0.0507
H=T0:50 0.0496 0.0495 0.0352 0.3790 0.0650 0.4565
H=T0:55 0.0529 0.0530
H=T0:60 0.0607 0.0609

Table 22. MSEs of models based on DGP in equation (89) for 50, 100, 500 and 1000 observations respectively.
Coverage rates time-varying intercept

QBLL QBLL Normal Linear SS Linear SS Particle Filter Particle Filter
Bandwidth Uniform Prior Gamma Prior Misspeci�cation Misspeci�cation

T=50

H=T0:40 0.8730 0.9100
H=T0:45 0.8700 0.8970
H=T0:50 0.8520 0.8770 0.9480 0.9900 0.9560 0.9760
H=T0:55 0.8290 0.8480
H=T0:60 0.8030 0.8180

T=100

H=T0:40 0.8960 0.9270
H=T0:45 0.8780 0.9080
H=T0:50 0.8470 0.8710 0.9480 0.9910 0.9480 0.9760
H=T0:55 0.8180 0.8310
H=T0:60 0.7720 0.7740

T=500

H=T0:40 0.9170 0.9310
H=T0:45 0.8880 0.9050
H=T0:50 0.8420 0.8580 0.9420 0.9840 0.9360 0.9810
H=T0:55 0.7830 0.7960
H=T0:60 0.6960 0.6960

T=1000

H=T0:40 0.9140 0.9240
H=T0:45 0.8940 0.8980
H=T0:50 0.8580 0.8720 0.9460 0.9910 0.9510 0.9830
H=T0:55 0.7870 0.7890
H=T0:60 0.6780 0.6830

Table 23. Coverage rates of models based on DGP in equation (89) for 50, 100, 500 and 1000 observations respectively.
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Bias time-varying log volatility
QBLL QBLL Normal Linear SS Linear SS Particle Filter Particle Filter

Bandwidth Uniform Prior Gamma Prior Misspeci�cation Misspeci�cation
T=50

H=T0:40 -0.1471 0.0924
H=T0:45 -0.0795 0.1106
H=T0:50 -0.0198 0.1303 -0.0278 -0.2252 -0.0039 -0.1475
H=T0:55 0.0341 0.1517
H=T0:60 0.0835 0.1749

T=100

H=T0:40 -0.1121 0.0856
H=T0:45 -0.0541 0.0995
H=T0:50 -0.0028 0.1156 -0.0266 -0.2395 -0.0115 -0.1513
H=T0:55 0.0441 0.1344
H=T0:60 0.0882 0.1564

T=500

H=T0:40 -0.0455 0.0722
H=T0:45 -0.0061 0.0796
H=T0:50 0.0288 0.0905 -0.0059 -0.2336 0.0024 -0.1379
H=T0:55 0.0618 0.1055
H=T0:60 0.0951 0.1256

T=1000

H=T0:40 -0.0378 0.0539
H=T0:45 -0.0051 0.0596
H=T0:50 0.0240 0.0691 -0.0080 -0.2464 -0.0011 -0.1484
H=T0:55 0.0523 0.0831
H=T0:60 0.0816 0.1024

Table 24. Bias log volatility of models based on DGP in equation (89) for 50, 100, 500 and 1000 observations respectively.
MSE time-varying log volatility

QBLL QBLL Normal Linear SS Linear SS Particle Filter Particle Filter
Bandwidth Uniform Prior Gamma Prior Misspeci�cation Misspeci�cation

T=50

H=T0:40 0.3241 0.3266
H=T0:45 0.2853 0.3102
H=T0:50 0.2659 0.3019 0.2293 0.6558 0.3668 0.7482
H=T0:55 0.2618 0.3019
H=T0:60 0.2700 0.3098

T=100

H=T0:40 0.2256 0.2388
H=T0:45 0.1979 0.2223
H=T0:50 0.1865 0.2151 0.1569 0.6262 0.2555 0.7205
H=T0:55 0.1879 0.2168
H=T0:60 0.1999 0.2270

T=500

H=T0:40 0.1062 0.1258
H=T0:45 0.0947 0.1131
H=T0:50 0.0942 0.1101 0.0687 0.6289 0.1240 0.7362
H=T0:55 0.1023 0.1158
H=T0:60 0.1185 0.1298

T=1000

H=T0:40 0.0771 0.0901
H=T0:45 0.0677 0.0791
H=T0:50 0.0673 0.0769 0.0478 0.6243 0.0891 0.7214
H=T0:55 0.0747 0.0827
H=T0:60 0.0899 0.0965

Table 25. MSEs log volatility of models based on DGP in equation (89) for 50, 100, 500 and 1000 observations respectively.
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Coverage rates time-varying log volatility
QBLL QBLL Normal Linear SS Linear SS Particle Filter Particle Filter

Bandwidth Uniform Prior Gamma Prior Misspeci�cation Misspeci�cation
T=50

H=T0:40 0.9400 0.8760
H=T0:45 0.9320 0.8590
H=T0:50 0.9150 0.8490 0.9570 0.9880 0.9490 0.9770
H=T0:55 0.8700 0.8250
H=T0:60 0.8190 0.7790

T=100

H=T0:40 0.9440 0.8860
H=T0:45 0.9350 0.8840
H=T0:50 0.9200 0.8730 0.9510 0.9920 0.9490 0.9910
H=T0:55 0.8880 0.8470
H=T0:60 0.8400 0.7950

T=500

H=T0:40 0.9540 0.9130
H=T0:45 0.9500 0.9050
H=T0:50 0.9220 0.8870 0.9410 0.9890 0.9460 0.9840
H=T0:55 0.8770 0.8450
H=T0:60 0.8050 0.7700

T=1000

H=T0:40 0.9640 0.9310
H=T0:45 0.9550 0.9200
H=T0:50 0.9230 0.8900 0.9450 0.9850 0.9400 0.9760
H=T0:55 0.8690 0.8450
H=T0:60 0.7800 0.7570

Table 26. Coverage rates log volatility of models based on DGP in equation (89) for 50, 100, 500 and 1000 observations

respectively.
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Figure 44: Typical realisation of the time varying parameters and volatilities

In addition, the �gures below illustrate what a typical realisation of the time varying parameter

looks like, when the data are a linear regression model with a time varying intercept, generated by

a non-linear smooth transition autoregressive model (STAR) model:

yt = �t + �ut

�t = �t�1(1� exp(��2t�1)) + �!t

!t; ut � NID(0; 1)

 = 5; � = 1; � = 0:5:
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Figure 45: Typical realisation of the time varying parameters and volatilities

Figure 46: Typical realisation of the time varying parameters for the STAR model
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7.2 Model and Data Description and Additional Results for Chapter 3

7.2.1 The Smets and Wouters (2007) Model

The resource constraint is given by:

yt = (1� gy � iy)| {z }
steady state

consumption-output ratio

ct + (( � 1� �)ky)| {z }
steady state

investement-output ratio

it + (R
k
�ky)zt + "

g
t :

Output, yt; is absorbed by consumption ct, investment it, capital utilization zt and government

spending "gt : gy; iy and ky are steady state government-output, investment-output and capital-

output ratios respectively and Rk� is the steady state rental rate of capital.  is the steady state

growth rate of output, used to detrend all non-stationary variables in the model and � is the

depreciation rate of capital. Exogenous government spending follows an AR(1) stochastic process

with an autoregressive coe¢ cient �g and an iid-Normal error term �gt with variance �
2
g :

"gt = �g"
g
t�1 + �

g
t + �ga�

a
t

where �at is the iid-Normal shock to TFP and is motivated by Smets and Wouters (2007) as the

model at hand is a closed economy, with "gt also including data on exports/imports, which could

depend on domestic productivity �at :

The Euler equation for consumption is:

ct =
(�=)

(1 + �=)
ct�1+

1

(1 + �=)
Etct+1+

(�c � 1)W h
� L�=C�

�c(1 + �=)
Et(lt�lt+1)�

(1� �=)
(1 + �=)�c

(rt�Et�t+1+"bt)

and implies that consumption ct is a weighted average between past consumption ct�1 and expected

future consumption Etct+1. It also depends on expected growth in the hours worked Et(lt � lt+1)

and ex-ante real interest rate rt�Et�t+1 and a risk premium shock "bt representing a wedge between

the instrument controlled by the central bank and the rate of return on assets faced by households.

It follows an AR(1) stochastic process with an autoregressive coe¢ cient �b and an iid-Normal error

term �bt with variance �
2
b :

"bt = �b"
b
t�1 + �

b
t :

In the absence of habit formation, � = 0, the �rst term drops out and the Euler equation

becomes entirely forward-looking. When the elasticity of intertemporal substitution, �c = 1, the
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household is facing log utility in consumption and the labour supply term drops out.

The investment Euler equation is:

it =
1

1 + �1��c
it�1 + (1�

1

1 + �1��c
)Etit+1 +

1

(1 + �1��c)2'
qt + "

i
t

implying that current investment it is a weighted average of past investment it�1 and expected

future investment Etit+1. It also depends on the real value of capital qt and an investment-speci�c

technology disturbance term "it that captures the relative e¢ ciency of investment expenditure and

follows an AR(1) stochastic process with an autoregressive coe¢ cient �i and an iid-Normal error

term �it with variance �
2
i :

"it = �i"
i
t�1 + �

i
t:

' is the steady state elasticity of capital adjustment cost and � is the household�s discount factor.

The arbitrage condition between the return to capital and the riskless rate is given by:

qt =
(1� �)

Rk� + (1� �)
Etqt+1 + (1�

(1� �)
Rk� + (1� �)

)Etrkt+1 � (rt � Et�t+1 + "bt)

where the current capital value qt is a weighted average of expected future value Etqt+1 and expected

real rental rate of capital Etrkt+1 and depends also negatively on the ex-ante real interest rate

rt � Et�t+1 and the risk-premium disturbance "bt . The aggregate production function is:

yt = �(�kst + (1� �)lt + "at )

with output being produced with standard factors of production, capital kst , labour lt and technology

"at , assumed to follow an AR(1) stochastic process with an autoregressive coe¢ cient �a and an iid-

Normal error term �at with variance �
2
a:

"at = �a"
a
t�1 + �

a
t :

The parameter � measures one plus the �xed costs in production and � is the capital share after

mark-ups and �xed costs. Since the capital installed today takes a period to become e¤ective,

current capital used in production kst is a sum of capital installed the previous period kt�1 and the

degree of capital utilization zt:

kst = kt�1 + zt:
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The degree of capital utilization zt itself depends positively in the rental rate of capital rkt and  

is a function of the elasticity of capital utilization adjustment cost function, normalised to take

valued between zero and one:

zt =
1�  
 

rkt :

The capital accumulation equation is given by:

kt =
1� �


kt�1 + (1�
1� �

)it + (1�

1� �

)((1 + �1��c)2')"it

where installed capital kt is a function of previously installed capital kt�1, investment �ow it and

the investment-speci�c disturbance "it.

The price mark-up �pt in the monopolistic goods market is given by the di¤erence between

marginal product of labour mplt, which depends on TFP and the capital-labour ratio, and the real

wage wt:

�pt = �(kst � lt) + "at| {z }
mplt

� wt:

The Phillips curve is given by:

�t =
�p

1 + �(1��c)�p
�t�1+

�(1��c)

1 + �(1��c)�p
Et�t+1�

1

1 + �(1��c)�p

(
(1� �(1��c)�p)(1� �p)

�p((�� 1)"p + 1)

)
�pt+"

p
t

and implies that current level of in�ation �t is a function of past in�ation �t�1 and expected future

in�ation Et�t+1, price mark-up �
p
t and a price mark-up shock "

p
t . Without degree of indexation,

�p = 0, the expression reduces to purely forward-looking Phillips curve. �p is the Calvo price

stickiness, "p is the Kimball aggregator in the goods market that measures the degree of strategic

interaction between price-setters and � � 1 is the steady state price mark-up, which depends on

the �xed cost parameter �. The price mark-up error term "pt follows an ARMA(1,1) process with

an autoregressive coe¢ cient �p, a moving average coe¢ cient �p and an iid-Normal error term �pt

with variance �2p, motivated by the desire to capture more of the dynamics in the data on in�ation

�uctuations:

"pt = �p "
p
t�1 + �

p
t + �p�

p
t�1:
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Rental rate of capital is a function of the capital-labour ratio (kt � lt) and the real wage wt:

rkt = �(kt � lt) + wt:

The labour market is characterised by similar conditions to the goods market. In particular,

there is a wage mark-up equation:

�wt = wt � (�llt +
1

1� �= (ct � �=ct�1))| {z }
mrst

where the wage mark-up �wt is the di¤erence between the real wage wt and the marginal rate of

substitution between working and consuming, mrst, that is the disutility of work, with �l capturing

the elasticity of labour supply with respect to the wage. The corresponding wage equation is given

by:

wt =
1

1 + �(1��c)
wt�1 + (1�

1

1 + �(1��c)
)(Etwt+1 + Et�t+1)�

1 + �(1��c)�w
1 + �(1��c)

�t

+
�w

1 + �(1��c)
�t�1 �

1

1 + �(1��c)

(
(1� �(1��c)�w)(1� �w)
�w((�w � 1)"w + 1)

)
�wt + "

w
t :

The real wage wt is a weighted average between past wage wt�1 and expected future real wage

(Etwt+1 + Et�t+1), depends on wage mark-up, current in�ation �t, wage mark-up shock "wt and

partially indexed to past in�ation �t�1. Similarly to the goods market, �w captures the degree of

indexation, �w is the Calvo wage stickiness, "w is the Kimball aggregator in the labour market and

�w�1 is the steady state wage mark-up. Finally, the wage disturbance also follows an ARMA(1,1)

process with an autoregressive coe¢ cient �w, a moving average coe¢ cient �w and an iid-Normal

error term �wt with variance �
2
w, with the MA term added as explained by Smets and Wouters

(2007) to capture more of the high frequency wage �uctuations observed in the data:

"wt = �w "wt�1 + �
w
t + �w�

w
t�1:

The central bank in the model follows a nominal interest rate rule of the form:

rt = �rt�1 + (1� �) fr��t + ry(yt � ypt )g+ r�y
�
(yt � ypt )� (yt�1 � y

p
t�1)

�
+ "rt

by gradually adjusting the policy rate rt in response to �uctuations in in�ation �t, output gap
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(yt� ypt ) and output gap growth (yt� y
p
t )� (yt�1� y

p
t�1). The policy parameters �, r�, ry and r�y

capture the degree of interest rate smoothing, the level of in�ation and output gap targetting and

the short-run feedback from output gap change respectively. The monetary policy shock "rt follow

an AR(1) stochastic process with an autoregressive coe¢ cient �r and an iid-Normal error term �rt

with variance �2r :

"rt = �r "
r
t�1 + �

r
t :

The measurement equation takes the form:

Xt =

266664
100�� logGDPt
100�� logCt
100�� log It
100�� logWt
100� logHt
100�� logPt

FFRt

377775 =
266664





l
�
r

377775+
26664

yt � yt�1
ct � ct�1
it � it�1
wt � wt�1

lt
�t
rt

37775

7.2.2 Additional Time Varying IRFs

Figure 47: IRFs to 1 unit investment technology shock
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Figure 48: IRFs to 1 st. dev. investment technology shock

Figure 49: IRFs to 1 unit government spending shock

176



Figure 50: IRFs to 1 st. dev. government spending shock

7.3 Model and Data Descriptions and Additional Results for Chapter 4

7.3.1 The Smets and Wouters (2007) model with �nancial frictions

The model we use is a Smets and Wouters (2007) model with a deterministic trend, modi�ed to

include a �nancial friction block, as in Bernanke et al. (1999). We refer the reader to the original

paper, Smets and Wouters (2007), for discussion and derivation of the model�s equation and for

completeness, we list here the linearised equations. See also the Technical Appendix in Smets and

Wouters (2007) available at: http://www.aeaweb.org/aer/data/june07/20041254_app.pdf. For

expressions of the FF block parameters and steady states, see:

http://sites.sas.upenn.edu/schorf/�les/hb_forecasting_appendix.pdf, pp 37-39.

� The resource constraint in the model is given by equation,

yt = (1� gy � iy)ct + (( � 1� �)ky)it + (Rk�ky)zt + "
g
t ;

� the consumption Euler equation,

ct =
(�=)

(1 + �=)
ct�1+

1

(1 + �=)
Etct+1+

(�c � 1)W h
� L�=C�

�c(1 + �=)
Et(lt�lt+1)�

(1� �=)
(1 + �=)�c

(rt�Et�t+1+"bt);
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� the investment Euler equation,

it =
1

1 + �1��c
it�1 + (1�

1

1 + �1��c
)Etit+1 +

1

(1 + �1��c)2'
qt + "

i
t;

� the aggregate production function, yt = �(�kst + (1� �)lt + "at );

� the relation between e¤ectively rented capital and capital, kst = kt�1 + zt;

� the degree of capital utilization, zt = 1� 
 rkt ;

� the capital accumulation equation, kt = 1��
 kt�1+(1� 1��

 )it+(1�
1��
 )((1+�

1��c)2')"it;

� the price mark-up, �pt = �(kst � lt) + "at � wt;

� the new Keynesian Phillips curve,

�t =
�p

1 + �(1��c)�p
�t�1+

�(1��c)

1 + �(1��c)�p
Et�t+1�

1

1 + �(1��c)�p

(
(1� �(1��c)�p)(1� �p)

�p((�� 1)"p + 1)

)
�pt+"

p
t ;

� the rental rate of capital, rkt = �(kt � lt) + wt;

� the wage mark-up, �wt = wt � (�llt + 1
1��= (ct � �=ct�1));

� the wage equation,

wt =
1

1 + �(1��c)
wt�1 + (1�

1

1 + �(1��c)
)(Etwt+1 + Et�t+1)�

1 + �(1��c)�w
1 + �(1��c)

�t

+
�w

1 + �(1��c)
�t�1 �

1

1 + �(1��c)

(
(1� �(1��c)�w)(1� �w)
�w((�w � 1)"w + 1)

)
�wt + "

w
t ;

� the Taylor Rule,

rt = �rt�1 + (1� �) fr��t + ry(yt � ypt )g+ r�y
�
(yt � ypt )� (yt�1 � y

p
t�1)

�
+ "rt :

The �nancial friction block

� The corporate spread is de�ned as

Et
h
~Rkt+1 � rt

i
=

(1� �=)
(1 + �=)�c

"bt + &sp;b(qt + kt � nt) + "!t :
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� The arbitrage condition between the return to capital and the riskless rate in Smets and

Wouters (2007) is now replaced by

~Rkt � �t =
rk�

rk� + (1� �)
rkt +

(1� �)
rk� + (1� �)

qt � qt�1:

� Finally, the entrepreneurs�net worth evolution is de�ned as

nt = &n;RK ( ~R
k
t � �t)� &n;R(rt�1 � �t) + &n;q(qt�1 + kt�1) + &n;nnt�1 �

&n;!
&sp;!

"!t�1:

Stochastic processes of exogenous shocks

� Exogenous government spending spending is de�ned as "gt = �g"
g
t�1 + �g�

g
t + �ga�z�

z
t ;

� TFP shock, "at = �a"
a
t�1 + �a�

a
t ;

� risk premium shock, "bt = �b"
b
t�1 + �b�

b
t ;

� investment-speci�c technology shock, "it = �i"
i
t�1 + �i�

i
t;

� monetary policy shock, "rt = �r"
r
t�1 + �r�

r
t ;

� price mark-up shock, "pt = �p"
p
t�1 + �p�

p
t + �p�p�

p
t�1;

� wage mark-up shock, "wt = �w"
w
t�1 + �w�

w
t + �w�w�

w
t�1;

� �nancial friction shock, "!t = �!"
!
t�1 + �!�

!
t :

7.3.2 Measurement equation, data description and transformations

Measurement equation

Yt =

26666664

Output Growtht
Consumption Growtht
Investment Growtht
Wage Growtht
Hours Workedt
In�ationt
Policy Ratet
Spreadt

37777775 =
2666664





l
�
r
SP �

3777775+
2666664

yt � yt�1
ct � ct�1
it � it�1
wt � wt�1

lt
�t
rt

100 � Et( ~Rkt+1 � rt)

3777775 :

Data description
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Data Description

Variable Source

GDP, Total, Constant Prices, AR, SA, USD, 2009 chnd prices U.S. Bureau of Economic Analysis

PCE, Total, Constant Prices, AR, SA, USD, 2009 chnd prices U.S. Bureau of Economic Analysis

Private Fixed Investment, Total, Current Prices, AR, SA, USD U.S. Bureau of Economic Analysis

Consumer price index, AR, SA, Index, 2005=100 U.S. Bureau of Economic Analysis

Real hourly compensation, nonfarm business, index, SA, Index, 2009=100 U.S. Bureau of Labor Statistics

Hours worked per employee, AR U.S. Bureau of Labor Statistics

Employment, all persons (ages 15 and over), SA U.S. Bureau of Labor Statistics

Popultaion Total (Estimates Used in National Accounts) U.S. Bureau of Economic Analysis

Federal Funds Rate (Monthly Average) Federal Reserve, U.S.

Moody�s Baa-Rated Long-Term, Yield, Average, USD Reuters

Constant Maturity Yields, 10 Year, USD Federal Reserve, U.S.

Table 27. Data Description for DSGE with FF in Chapter 3.

Data transformations:

Output Growtht = 100 �� ln(GDPt=POPt)

Consumption Growtht = 100 �� ln(CONt=POPt)

Investment Growtht = 100 �� ln((INVt=CPIt)=POPt)

Wage Growtht = 100 �� ln(WAGEt)

Hours Workedt = 100 � ln
h
((EMPLt �HOURSt)=POPt)� (EMPLt �HOURSt)=POPt))

i
In�ationt = 100 �� ln(CPIt)

Policy Ratet = 1=4 � FFRt

Spreadt = 1=4 � (BAA_Y ieldt � 10Y Treasury_Y ieldt)
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Priors

Table 28: Prior distributions for the structural parameters55 .
Parameter Name Prior Distribution

Distribution Mean St. Dev.

' Elasticity of Capital Adjustment Cost Function Normal 4 1.5

�c Elasticity of Intertemporal Substitution Normal 1.5 0.37

� External Habit Formation Beta 0.7 0.1

�w Calvo Probability in Labour Markets Beta 0.5 0.1

�l Elasticity of Labour Supply to Real Wage Normal 2 0.75

�p Calvo Probability in Goods Markets Beta 0.5 0.1

�w Degree of Wage Indexation Beta 0.5 0.15

�w Degree of Price Indexation Beta 0.5 0.15

 Normalized Elasticity of Capital Beta 0.5 0.2

� Fixed Costs of Intermediate Goods Producers Normal 1.25 0.12

r� In�ation Coe¢ cient in the Taylor Rule Normal 1.5 0.25

� Interest Rate Smoothing Coe¢ cient Beta 0.75 0.1

ry Output Gap Coe¢ cient in the Taylor Rule Normal 0.12 0.05

r�y Short-Run Feedback of Output Gap Change Normal 0.12 0.05

100(��1�1) Normalized Households�Discount Factor Gamma 0.25 0.1

�� Steady State In�ation Rate Gamma 0.62 0.1

l� Steady State Hours Worked Normal 0 2

� Steady State Quarterly Growth Rate Normal 0.4 0.1

� Capital Share Normal 0.3 0.05

SP � Steady State Spread Gamma 2 0.3

�sp;b E¤ect of spread on Tobin�s Q, capital and networth Beta 0.05 0.015

.

Table 29: Prior distributions for the parameters of the exogenous processes.
Parameter Name Prior Distribution

Distribution Mean St. Dev.

�a St. Dev. Of TFP Shock Inverse Gamma 0.1 2

�b St. Dev. of Risk Premium Shock Inverse Gamma 0.1 2

�g St. Dev. of Exogenous Spending Shock Inverse Gamma 0.1 2

�l St. Dev. of Investment-Speci�c Technology Shock Inverse Gamma 0.1 2

�r St. Dev. of Monetary Policy Shock Inverse Gamma 0.1 2

�p St. Dev. of Price Mark-Up Shock Inverse Gamma 0.1 2

�w St. Dev. of Wage Mark-Up Shock Inverse Gamma 0.1 2

�! St. Dev. of Financial Friction Shock Inverse Gamma 0.1 2

�a Persistence Coe¢ cient of TFP Shock Beta 0.5 0.2

�b Persistence Coe¢ cient of Risk Premium Shock Beta 0.5 0.2

�g Persistence Coe¢ cient of Spending Shock Beta 0.5 0.2

�l Persistence Coe¢ cient of Investment Shock Beta 0.3 0.2

�r Persistence Coe¢ cient of Monetary Policy Shock Beta 0.3 0.2

�p Persistence Coe¢ cient of Price Mark Up Shock Beta 0.3 0.2

�w Persistence Coe¢ cient of Wage Mark Up Shock Beta 0.5 0.2

�! Persistence Coe¢ cient of Financial Friction Shock Beta 0.5 0.2

�p MA Coe¢ cient of Price Mark Up Shock Beta 0.5 0.2

�w MA Coe¢ cient of Wage Mark Up Shock Beta 0.5 0.2

�ga Coe¢ cient for TFP Shock in the Spending Equation Normal 0.5 0.2

55We also have upon request time varying estimation results with prior standard deviations 0:1 and 0:005 for SP �

and �sp;b respectively and with prior standard deviations 1 and 0:1 for SP
� and �sp;b respectively. Results on the FF

block remain robust to these two speci�cations.
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Additional results

Figures 51 and 52 are quasi-posterior estimates for the additonal parameters of the DSGE with

FF in Chapter 4. The posterior mean obtained by QBLL in the blue solid line, the 5% and 95%

posterior quantile values are the black dotted lines, the posterior mode obtained by QBLL is the

pink dash-dotted line, the posterior mean obtained by �xed Bayesian estimation is the dashed blue

line, and the 5% and 95% posterior quantiles are the green dashed lines.

Figure 51: Additional QBLL Estimates

182



Figure 52: Additional QBLL Estimates
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Additional forecasting results

2000Q1-2006Q4 2007Q1-2012Q2

TV FF relative to SW TV FF relative to SW

h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

Consumption Growth 1.04 1.03 1.13 1.30 1.02 0.97 1.11 1.57

Wage Growth 1.10 1.03 1.03 1.02 1.14 1.13 1.04 1.04

Hours Worked 1.01 0.869* 0.668* 0.64 0.87** 0.85* 0.85 0.84

Fixed FF relative to SW Fixed FF relative to SW

Consumption Growth 1.45 1.64 1.90 1.87 1.13 1.15 1.23 1.54

Wage Growth 1.06 1.04 1.00 0.99 1.02 1.02 0.99 1.01

Hours Worked 1.01 0.98 1.02 1.22 1.00 0.94 0.87* 0.81*

2000Q1-2006Q4 2007Q1-2012Q2

Density TV FF relative to SW Density TV FF relative to SW

h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

Consumption Growth -0.03 -0.04 -0.04 -0.11 -0.04 -0.06 -0.18 -0.30

Wage Growth -0.18 0.05 0.02 0.04 0.13 0.53 0.39* 0.15

Hours Worked 0.043* 0.082* 0.210* 0.28 0.16** 0.53 2.08 2.79

Density Fixed FF relative to SW Density Fixed FF relative to SW

Consumption Growth -0.34 -0.43 -0.45 -0.43 -0.19 -0.16 -0.19 -0.26

Wage Growth -0.15 -0.06 0.00 0.01 -0.20 0.24 -0.08 -0.02

Hours Worked 0.032* -0.01 -0.06 -0.21 -0.12 0.11 1.76 2.88

Table 30: RMSFEs and Log Scores for additional variables. The table reports ratios of RMSFEs relative to

the SW model RMSFEs and di¤erences of log predictive scores from SW model log scores. �*�, �**�and �***�

indicate rejection of the null of equal performance against the one-sided alternative at 10%, 5% and 1%

respectively, using Diebold and Mariano test.
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2000Q1-2006Q4 2007Q1-2012Q2

TV FF relative to AR(1) TV FF relative to AR(1)

h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

Output Growth 0.85 0.98 1.04 1.16 0.82 0.84 0.91 1.07

Consumption Growth 1.32 1.49 1.34 1.13 0.777* 0.720* 0.83 1.11

Investment Growth 0.96 0.86 0.79 0.91 1.11 1.22 1.41 1.38

Wage Growth 1.04 1.06 1.05 1.07 1.20 1.18 1.12 1.08

Hours Worked 0.92 0.77 0.56 0.49 0.711** 0.754* 0.84 0.87

In�ation 0.906* 0.90 0.876* 0.94 1.02 1.01 0.99 0.730*

Fed Funds Rate 0.666*** 0.704** 0.716* 0.660* 0.742* 0.713* 0.82 1.04

Fixed FF relative to AR(1) Fixed FF relative to AR(1)

Output Growth 1.02 1.25 1.45 1.51 0.84 0.81 0.82 0.93

Consumption Growth 1.83 2.37 2.25 1.62 0.86 0.86 0.92 1.09

Investment Growth 1.03 0.97 0.92 0.98 1.10 1.15 1.33 1.42

Wage Growth 1.01 1.07 1.03 1.04 1.08 1.06 1.06 1.06

Hours Worked 0.93 0.87 0.86 0.94 0.817*** 0.828* 0.85 0.83

In�ation 0.94 0.96 0.98 1.05 0.97 0.94 0.94 0.86

Fed Funds Rate 0.610*** 0.621** 0.704* 0.74 1.13 1.03 0.95 0.98

2000Q1-2006Q4 2007Q1-2012Q2

Density TV FF relative to AR(1) Density TV FF relative to AR(1)

h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

Output Growth 0.00 -0.09 -0.17 -0.24 0.06 -0.14 -0.23 -0.38

Consumption Growth -0.18 -0.32 -0.21 -0.16 0.272* 0.19 0.03 -0.41

Investment Growth 0.11 0.248** 0.352** 0.21 -0.07 -0.32 -0.80 -0.67

Wage Growth 0.321* 0.375** 0.400** 0.380* 0.07 0.27 0.398* 0.336*

Hours Worked 0.00 0.17 0.35 0.59 0.378* 0.40 3.40 5.35

In�ation 0.251* -0.03 0.158** 0.12 0.37 0.29 -0.19 -0.09

Fed Funds Rate 0.477*** 0.250* 0.05 0.24 0.10 0.14 -0.03 -0.53

Density Fixed FF relative to AR(1) DensityFixed FF relative to AR(1)

Output Growth -0.22 -0.33 -0.45 -0.48 0.02 -0.11 -0.02 -0.24

Consumption Growth -0.48 -0.70 -0.63 -0.48 0.12 0.09 0.02 -0.36

Investment Growth -0.08 -0.03 0.01 0.04 0.13 -0.11 -0.39 -0.56

Wage Growth 0.351** 0.274** 0.374** 0.348* -0.27 -0.01 -0.07 0.165*

Hours Worked -0.01 0.08 0.09 0.10 0.10 -0.03 3.09 5.43

In�ation 0.329** 0.01 0.02 -0.08 -8.12 -2.72 -1.14 0.18

Fed Funds Rate 0.02 0.05 0.13 0.30 -0.35 -0.17 0.02 0.06

Table 31: RMSFEs and Log Scores: Comparison with AR(1). The table reports ratios of RMSFEs relative

to an AR(1) model RMSFEs and di¤erences of log predictive scores from an AR(1) model log scores. �*�,

�**�and �***�indicate rejection of the null of equal performance against the one-sided alternative at 10%,

5% and 1% respectively, using Diebold and Mariano test.
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2000Q1-2006Q4 2007Q1-2012Q2

TV FF relative to TVP AR(1) TV FF relative to TVP AR(1)

h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

Output Growth 0.759* 0.89 0.94 1.11 0.83 0.84 0.88 0.78

Investment Growth 0.811** 0.747** 0.659* 0.772* 1.09 1.14 1.09 0.87

In�ation 1.08 1.07 1.11 1.11 0.88 1.22 1.19 0.67

Fed Funds Rate 0.604*** 0.602** 0.589** 0.465* 0.80 0.76 0.84 0.96

Fixed FF relative to TVP AR(1) Fixed FF relative to TVP AR(1)

Output Growth 0.91 1.14 1.31 1.44 0.84 0.80 0.79 0.68

Investment Growth 0.871* 0.84 0.77 0.83 1.07 1.08 1.03 0.89

In�ation 1.12 1.15 1.24 1.24 0.84 1.14 1.13 0.79

Fed Funds Rate 0.553*** 0.531** 0.579** 0.521* 1.21 1.10 0.97 0.90

2000Q1-2006Q4 2007Q1-2012Q2

Density TV FF relative to TVP AR(1) Density TV FF relative to TVP AR(1)

h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

Output Growth 0.248* 0.01 -0.11 -0.20 0.12 0.10 0.02 0.00

Investment Growth 0.228* 0.390** 0.560** 0.540** 0.12 -0.18 -0.33 0.24

In�ation -0.04 -0.14 -0.04 0.07 -2.17 -0.22 -0.45 0.07

Fed Funds Rate 0.672*** 0.569** 0.44 1.010* -0.11 -0.03 -0.14 -0.54

Density Fixed FF relative to TVP AR(1) DensityFixed FF relative to TVP AR(1)

Output Growth 0.03 -0.24 -0.39 -0.44 0.07 0.13 0.23 0.14

Investment Growth 0.04 0.11 0.22 0.367* 0.31 0.03 0.07 0.36

In�ation 0.04 -0.11 -0.17 -0.13 -10.65 -3.23 -1.39 0.33

Fed Funds Rate 0.21 0.369* 0.520* 1.072** -0.57 -0.33 -0.09 0.04

Table 32: RMSFEs and Log Scores for selected variables. The table reports ratios of RMSFEs relative to a

TVP AR(1) model RMSFEs and di¤erences of log predictive scores from a TVP AR(1) model log scores. �*�,

�**�and �***�indicate rejection of the null of equal performance against the one-sided alternative at 10%,

5% and 1% respectively, using Diebold and Mariano test.

For the time varying parameter (TVP) AR(1), the model is estimated in each point in time t :b�t = (X 0DtX)
�1X 0DtY where X contains the lagged dependent variable Y and Dt is a diagonal

matrix with the kernel weights of the tth row of the weighting matrix in equation (4) in its main

diagonal. The variance of the residuals is also time varying and computed in point t as b�2t =
"0Dt"=tr(Dt): Density forecasts are then generated, using wild bootstrap and the last period valuesb�T and b�2T :
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7.3.3 Robustness checks: �at kernel

Figures 53, 54 and 55 display the additional robustness checks for Chapter 4. The posterior mode

obtained by QBLL is the pink dash-dotted line, the 5% and 95% posterior quantile values are the

black dotted lines, the posterior mode obtained by rolling window is the solid green line.

Figure 53: Additional Robustness Checks
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Figure 54: Additional Robustness Checks
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Figure 55: Additional Robustness Checks
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7.3.4 Robustness check: di¤erent spread variable

Figures 56, 57 and 58 display the additional robustness checks with respect to the spread variable

for Chapter 4. The posterior mode obtained by QBLL with spread BAA corporate bond yield over

10 year Treasury note is the pink dash-dotted line, the 5% and 95% posterior quantile values are

the black dotted lines, the posterior mode obtained by QBLL with spread BAA corporate bond

yield minus Fed Funds Rate is the solid blue line.

Figure 56: Additional Robustness Checks
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Figure 57: Additional Robustness Checks

Figure 58: Additional Robustness Checks
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7.3.5 Robustness check: Simulation Exercise

Figures 59, 60 and 61 contain the additional simulation exercise results for Chapter 4. The posterior

mode obtained by QBLL when the DGP is a model with �xed parameters is the solid blue line and

the true parameter values at which the data are generated is the dotted green line.

Figure 59: Additional Simulation Exercise Results
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Figure 60: Additional Simulation Exercise Results
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Figure 61: Additional Simulation Exercise Results

7.4 Model Data Descriptions and Additional Results for Chapter 5

Prior
Parameter Description Distribution Mean Std
�R Policy rule interest rate smoothing Beta 0.800 0.100
�� Policy rule in�ation response Normal 1.500 0.250
�Y Policy rule output gap response Beta 0.125 0.075
�Z Final output price adjustment cost Gamma 7.000 2.000
�V Value added price adjustment cost Gamma 7.000 2.000
�M Import price adjustment cost Gamma 10.00 2.000
�X Export price adjustment cost Gamma 10.00 2.000
�W Nominal wage adjustment cost Gamma 14.00 2.000
�Z Indexation of �nal output prices Beta 0.25 0.075
�V Indexation of value added prices Beta 0.25 0.075
�M Indexation of import prices Beta 0.25 0.075
�X Indexation of export prices Beta 0.25 0.075
�W Indexation of nominal wages Beta 0.25 0.075
 C Habit formation parameter Beta 0.70 0.150
 I Investment adjustment cost Gamma 2.00 0.400
�C Coe¢ cient of relative risk aversion Gamma 1.50 0.200
�L Labour supply elasticity Gamma 2.00 0.300
�F Price elasticity world demand, UK exports Gamma 0.75 0.100
!o Share of optimising households Beta 0.70 0.050
�B Persistence of risk premium forcing process Beta 0.75 0.100
�I Persistence of investment adjustment shock Beta 0.75 0.100
�G Persistence of government spending shock Beta 0.90 0.050
�IO Persistence of other investment shock Beta 0.75 0.100
��F Persistence of export preference shock Beta 0.75 0.100
�M Persistence of import preference shock Beta 0.75 0.100
�L Persistence of labour supply shock Beta 0.75 0.100
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Table 33. Priors for estimated parameters.

Prior
Parameter Description Distribution Mean Std
�BF Persistence of UIP shock Beta 0.75 0.10
�PXF Persistence of world export price shock Beta 0.90 0.05
�ZF Persistence of world output shock Beta 0.90 0.05
�B St dev of risk premium shock Gamma 0.50 0.20
�I St dev of investment adjustment shock Gamma 1.90 0.20
�G St dev of government spending shock Gamma 3.00 0.20
�IO St dev of other investment shock Gamma 14.0 1.00
��F St dev of export preference shock Gamma 2.20 0.20
�M St dev of import preference shock Gamma 2.20 0.20
�LAP St dev of LAP growth shock Gamma 0.35 0.10
�L St dev of labour supply shock Gamma 0.75 0.20
�R St dev of monetary policy shock Gamma 0.10 0.10
�BF St dev of UIP shock Gamma 0.65 0.20
��Z St dev of �nal output markup shock Gamma 0.10 0.10
��W St dev of wage markup shock Gamma 0.30 0.10
��M St dev of import markup shock Gamma 1.30 0.20
��X St dev of export markup shock Gamma 1.30 0.20
�PXF St dev of world export price shock Gamma 1.60 0.20
�ZF St dev of world output shock Gamma 2.50 0.20
�mei St dev of investment measurement error Gamma 0.35 0.10
�meX St dev of export measurement error Gamma 0.18 0.055
�meM St dev of import measurement error Gamma 0.18 0.055
�meL St dev of hours measurement error Gamma 0.045 0.013
�meW St dev of wage measurement error Gamma 0.125 0.0275
�mePM St dev of import price measurement error Gamma 0.34 0.075
�mePX St dev of export price measurement error Gamma 0.34 0.075

Table 34. Priors for estimated parameters.

Variable Description Data transformation equation Measurement equation

gdpkp Real GDP dlngdpkpt � 100� ln gdpkpt �vt + 
Z
t + 100 ln

�
�Z�H

�
�X
�� 1��V

�V

�
ckp Real cons. dlnckpt � 100� ln ckpt �ct + 

Z
t + 100 ln

�
�Z�H

�
ikkp Real inv. dlnikkpt � 100� ln ikkpt �it + 

Z
t + 100 ln

�
�Z�H�I

�
+ �meI meIt

gonskp Real spending dlngonskpt � 100� ln gonskpt �gt + 
Z
t + 100 ln

�
�Z�H�G

�
xkp Real exports dlnxkpt � 100� ln xkpt � dlnxkpttt �xt + 

Z
t + 100 ln

�
�Z�H�X

�
+ �meX meXt

mkp Real imports dlnmkpt � 100� lnmkpt � dlnmkpttt �mt + 
Z
t + 100 ln

�
�Z�H�X

�
+ �meM meMt

pxdef Export de�ator dlnpxdeft � 100� ln pxdeft ��
�;tt
t ��x;ttt �pEXt ��qt + �Zt + 100 ln ��

�X
+ �mePXme

PX
t

pmdef Import de�ator dlnpmdeft � 100� ln pmdeft ��
�;tt
t ��m;ttt �Mt + 100 ln ��

�X
+ �mePMme

PM
t

awe Nom. wage dlnawet � �ln awet ���;ttt �wt + 
Z
t + �

Z
t + 100 ln

�
�Z��

�
+ �meW meWt

cpisa SA CPI dlncpisat � 100� ln cpisat ��
�;tt
t �Ct + 100 ln�

�

rga Bank Rate robst � 100 ln
�
1 + rgat

100

� 1
4 ���;ttt rt + 100 lnR

eer Sterling ERI dlneert � 100� ln eert �qt � �Zt
hrs Hours worked dlnhrst � 100� ln hrst �lt + 100 ln �

H + �meL meLt
yf World output dlnyft � 100� ln yft � dlnyfttt �zFt + 

Z
t + 100 ln

�
�Z�H

�
pxfdef World exp. def. dlnpxfdeft � 100� ln pxfdeft ��

xf,tt
t �pX

F

t + 100 ln ��

�X

Table 35. Observables, data transformation and measurement equations.
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7.5 Examples of parameter processes

In a referee report, we were asked to be more explicit about what parameter processes the approach

can recover. We include a brief discussion below. Recall that we require the parameters to satisfy

one of the following:

(i) For each t 2 f1; :::; Tg ; �t is a deterministic function of time given by

�t = �

�
t

T

�

where �(:) is a piecewise di¤erentiable function.

(ii) For 1 � h � t as h!1; �t is a vector-valued stochastic process satisfying

sup
j:jj�tj�h

jj�t � �j jj2 = Op (h=t) :

Condition i) covers deterministic functions of the time fraction t=T , constant parameters as a

special case as well as breaks in the parameter processes. Condition ii) allows the process to be

stochastic but requires it to be persistent in order for the approach to be able to recover the time

variation. Note that ii) includes processes such as the bounded random walk process used in DGPII

and DGPIII in Chapter 2:

�t =

Pt
i=1 "tp
t

; "t � N (0; v):

This process can equivalently be written as

�t =

r
t� 1
t

�t�1 +
"tp
t
;

so that the variance of the innovations is decreasing while the process is becoming closer to unit

root, and hence the variance of the process �t stabilises. In addition, condition ii) also covers long

memory processes with memory parameter d > 0:5: A stationary AR(1) process is not covered

in condition ii), as it is not persistent enough. Finally, the approach developed in this thesis is

also valid for a combination processes between i) and ii). In the �gure below, we provide several

examples of parameter processes satisfying condition i) or ii) or a combination of the two.
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Figure 62: Examples of parameter processes satisfying i) or ii)
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