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Abstract

Planar maximally supersymmetric Yang-Mills theory (N = 4 SYM) is a special quantum

field theory. A few of its remarkable features are conformal symmetry at the quantum

level, evidence of integrability and, moreover, it is a prime example of the AdS/CFT du-

ality. Triggered by Witten’s twistor string theory [1], the past 15 years have witnessed

enormous progress in reformulating this theory to make as many of these special features

manifest, from the choice of convenient variables to recursion relations that allowed new

mathematical structures to appear, like the Grassmannian [2]. These methods are col-

lectively referred to as on-shell methods. The ultimate hope is that, by understanding

N = 4 SYM in depth, one can learn about other, more realistic quantum field theories.

The overarching theme of this thesis is the investigation of how on-shell methods can aid

the computation of quantities other than scattering amplitudes. In this spirit we study

form factors and correlation functions, said to be partially and completely off-shell quan-

tities, respectively. More explicitly, we compute form factors of half-BPS operators up

to two loops, and study the dilatation operator in the SO(6) and SU(2|3) sectors using

techniques originally designed for amplitudes. A second part of the work is dedicated

to the study of scattering amplitudes beyond the planar limit, an area of research which

is still in its infancy, and not much is known about which special features of the planar

theory survive in the non-planar regime. In this context, we generalise some aspects of the

on-shell diagram formulation of Arkani-Hamed et al. [3] to take into account non-planar

corrections.
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Chapter 1

Introduction

A generic quantum field theory is completely specified by the knowledge of all its cor-

relation functions, the key objects that encode how excitations propagate in spacetime.

Correlation functions of local gauge invariant operators Oi are defined as the following

vacuum expectation values1,

CO1,...,On(x1, . . . , xn) ≡ 〈O1(x1) · · · On(xn)〉 . (1.0.1)

In theories with a Lagrangian description in terms of fundamental fields Ψ, the correlators

can be written inside the path integral as

CO1,...,On(x1, . . . , xn) =

∫
d[Ψ]O1(x1) · · · On(xn)e−SEuc[Ψ] , (1.0.2)

where d[Ψ] corresponds to the integration over all possible field configurations and SEuc

is the Euclidean action (obtained by Wick rotation t 7→ −it),

SEuc[Ψ] ≡
∫
d4xL[Ψ(x)] . (1.0.3)

The exact functional form for all correlators is in general not known and is available only

for very simple models. If a theory is weakly coupled, it is possible to decompose L into a

free piece Lfree and an interaction term Lint which comes multiplied by a small parameter

g,

L = Lfree + gLint , g � 1 . (1.0.4)

In this situation one can expand the exponential in (1.0.2) and thus all correlation functions

(1.0.2) become a series in g.

1Time ordering is implicit.
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From the correlation functions it is possible to extract observable quantities that re-

late theory predictions to measurable cross sections. This is done through the Lehmann-

Symanzik-Zimmermann (LSZ) reduction prescription [9]; it amounts to Fourier transform-

ing the correlator of fundamental fields to momentum space and requiring that the fields

are momentum eigenstates, i.e. plane waves. This procedure leads to scattering ampli-

tudes, which are then used to calculate cross sections of physical processes. More precisely,

the cross sections are obtained from amplitudes by taking its modulus squared, integrating

over the phase space of the outgoing particles and performing an average over the quan-

tum numbers of the initial particles and a sum over the quantum numbers of the outgoing

particles.

In momentum space all momenta entering the scattering amplitudes must satisfy the

on-shell condition p2
i = m2

i whereas for the correlators they are unconstrained. For this

reason, correlation functions are said to be off-shell quantities whereas scattering ampli-

tudes are said to be on-shell.

Scattering amplitudes are formally defined as the overlap between an incoming state of

ni particles and an outgoing state of nf particles. They are the elements of the S-matrix,

Sif ≡ 〈1, . . . , nf |1, . . . , ni〉 . (1.0.5)

Here |1, . . . , n〉 stands for an n-particle momentum eigenstate and similarly for 〈1, . . . , n|.
The incoming and outgoing states are free and the elements of the S-matrix account for

the interactions at finite time.

Interpolating between these completely on-shell and off-shell quantities lie form factors,

defined as the expectation value of a gauge invariant local operatorO(x) computed between

the vacuum and an n-particle on-shell state 〈1, . . . , n|. Conventionally in the definition

of a form factor the spacetime dependence of the operator is also Fourier transformed to

momentum space,∫
d4x e−iq·x〈1 . . . n|O(x)|0〉 =

∫
d4x e−iq·x〈1 . . . n|eiP ·xO(0)e−iP ·x|0〉

=

∫
d4x e−i(q−

∑n
i=1 pi)·x〈1 . . . n|O(0)|0〉 = δ(4)

(
q −

n∑
i=1

pi

)
〈1 . . . n|O(0)|0〉 ,

(1.0.6)

where we used that 〈1 . . . n| is an eigenstate of the momentum operator P with eigenvalue∑
i pi and that the vacuum is translation invariant. The overall delta-function in (1.0.6)
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is a consequence of translation symmetry. Thus, the quantitiy to consider is

FO(1, . . . , n; q) ≡ 〈1, . . . , n|O(0)|0〉 , (1.0.7)

which is a function of a set of on-shell momenta p2
1 = · · · = p2

n = 0 as well as one off-shell

momentum q2 6= 0 associated with the operator.

Form factors can be used to model interactions where the detailed physical process is

not fully known and O stands for an effective interaction, as the one shown in Figure 1.1.

Figure 1.1: A form factor models an effective interaction producing a specified |out〉 state
starting from the vacuum.

Form factors appear in various contexts, an interesting one is the decay of a Higgs boson

into gluons. This process is mediated by a fermion loop, and the leading contribution is

from a top quark running the loop. In the limit where mH � 2mt
2 the mass of the top can

be sent to infinity, giving rise to an effective vertex H TrF 2
SD, where FSD is the self-dual

part of the field strength [10, 11] (see also [12] for a recent discussion). This is shown in

Figure 1.2 underneath, notice that the Higgs particle can be produced as an intermediate

state and thus does not need to satisfy p2
H = m2

H .

Figure 1.2: A Higgs particle decaying into two gluons. In the limit where mH � 2mt this
process is approximated by a form factor.

The quantum field theory we will consider is maximally supersymmetric (N = 4)

Yang-Mills (SYM) with gauge group SU(N) [13], which can been obtained by dimensional

reduction of ten-dimensional N = 1 SYM down to d = 4. This theory has been extensively

studied in the past decades and displays very special properties like quantum conformality

[14], integrability in the planar limit (also called large N or ’t Hooft limit [15]) and it is

2Using the values mH ∼ 126 GeV and mt ∼ 173 GeV the ratio mH/2mt ∼ 0.36.
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the most well understood example of the AdS/CFT correspondence [16], under which

it is dual to type IIB string theory. Due to these properties, this theory is commonly

used to develop new ideas and mathematical techniques that can in principle revolutionise

the current understanding of quantum field theory and gravity. These achievements were

triggered by a duality between amplitudes in N = 4 SYM and an instanton expansion in

a particular twistor string theory, found by Witten in [1].

Scattering amplitudes at weak coupling are given as a perturbative expansion around

a free theory, and to each order in perturbation theory there is a set of Feynman diagrams

that formally encode the mathematical expressions that sum to the amplitude. Each di-

agram looks like a sequence of local interactions in spacetime, where physical particles

exchange virtual particles and sometimes particles with unfixed momentum can run in

loops. Feynman diagrams are therefore easy to picture, and they make each interaction

manifestly local and unitary. There are, however, many drawbacks also in the pack-

age — manifest locality and unitarity come at the expense of a large amount of off-shell

information associated to virtual particles and gauge redundancies. All these unnecessary

ingredients obscure an underlying simplicity of the amplitudes that manifests itself as a

high degree of cancellations, at least for N = 4 SYM. The prime examples are the so-called

Parke-Taylor amplitudes [17]: consider amplitudes with n outgoing gluons, k of which of

helicity −1 and n− k of helicity +1. For k = 0, 1 these amplitudes are zero, and for k = 2

they are given by a single-term expression. In terms of Feynman diagrams one may have

to, for instance, show a cancellation between 10 million terms for 10 gluons!

Figure 1.3: The simplicity of the tree-level scattering of 10 gluons is not manifest from the
Feynman diagram perspective.

The progress made in the last two decades is much related to reformulating N = 4

SYM in a different way in order to expose the underlying structures responsible for the

simplicity of the final amplitudes. In this way, one can say that the study of mathematical

properties of scattering amplitudes has become an area of research in its own right, and
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a very active one indeed. Furthermore, it does not concern only N = 4 SYM; much

has also been learned about theories with fewer supersymmetries, gravity, and theories in

dimensions different than four.

For massless theories such as N = 4 SYM, there is a variety of methods that simplify

the calculation of on-shell quantities enormously, both at tree and loop level. These tech-

niques are collectively referred to as on-shell methods, some of which are reviewed in the

following chapter (for a comprehensive review we indicate [18] and its rich bibliography).

Although the simplicity of N = 4 SYM is remarkably seen by studying its scattering

amplitudes, it does not stop there and also features in the study of off-shell quantities, and

even in other theories. For instance, the anomalous magnetic moment of the electron in

Quantum Electrodynamics (QED) is given by the form factor FJµEM
(e+, e−; q) where JµEM

is the electromagnetic current. This form factor was computed at three loops in [19, 20]

and, while there were ∼ 70 Feynman diagrams to be summed, each of which with a value

which oscillated between ±10 and 100, they combined to a result of O(1) (times (α/2π)3,

where α ∼ 1/137 is the fine structure constant). Cvitanovic later found that if one first

organises the terms in gauge invariant subsets then each combination has a value of O(1).

These enormous cancellations suggest that a better approach is in order. Another example

of simplicties of off-shell quantities are the supersymmetric form factors computed in [21];

their expressions closely resemble that of the Parke-Taylor amplitudes mentioned earlier.

The main theme of this thesis is the study of on-shell methods in N = 4 SYM.

Inspired by the simplicities mentioned above, in Chapters 3 and 4 we investigate how

on-shell methods can be used to unravel simple structures for off-shell quantities. The

second interesting question we investigate in Chapter 5 is how to move beyond the well

understood planar limit of N = 4 SYM.

The on-shell methods that will be used throughout this thesis, as well as some other

useful concepts, will be reviewed in Chapter 2. In Chapter 3 we apply the above methods

to compute sypersymmetric form factors of a particular kind of operators, called half-BPS

operators, up to two loops and find once again a remarkable simplicity in the results.

In Chapter 4 we move on to the study of the one-loop dilatation operator in N = 4

SYM. This operator accounts for the renormalisation of the scaling dimension of composite

operators (the quantum corrections are called anomalous dimensions). The study ofN = 4

SYM has led to the discovery of integrability in the planar limit, providing the tools

to compute the anomalous dimensions of local operators for any value of the coupling.

It is widely expected that the integrability of the planar anomalous dimension problem
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and the hidden structures and symmetries of scattering amplitudes are related in some

interesting way. For this reason, we investigate the application of on-shell methods to the

dilatation operator. Similar ideas were also applied in [22, 23, 24] and the the interplay

between the integrability of the spectral problem and scattering amplitudes has started

to be established in the opposite direction too, see for instance the spectral parameter

deformation introduced in [25, 26].

For a single trace local composite operatorOL(x) = Tr(Ψ1Ψ2 · · ·ΨL)(x) where Ψi, i =

1, . . . , L are fundamental fields, one way to compute its anomalous dimension is by studying

the following (L+ 1)-point correlation function,

C1-loop
OL,Ψ1,...,ΨL

(x, x1, x2, . . . , xL) = 〈Tr(Ψ1Ψ2 · · ·ΨL)(x)Ψ1(x1)Ψ2(x2) · · ·ΨL(xL)〉one-loop .

(1.0.8)

Since every Ψi is a fundamental field, the Fourier transform of (1.0.8) is a form factor.

The complete one-loop dilatation operator is known [27, 28] and was reproduced from a

form factor perspective in [23]3. The approach taken here is different, we consider instead

the two-point function of an operator O(x) with its conjugate Ō(y) at one loop,

C1-loop
O,Ō (x, y) = 〈O(x)Ō(y)〉one-loop

. (1.0.9)

Working also in momentum space allows us to use two different methods originally designed

for scattering amplitudes — MHV rules [30] and generalised unitarity [31, 32, 33, 34] — for

the computation of the dilatation operator in two sectors (called SO(6) and SU(2|3), as

will be reviewed in the corresponding chapter). As we will see, the calculation becomes

very transparent and simple, involving only one single-scale integral.

N = 4 SYM with gauge group SU(N) has been extensively studied in the large N limit.

The idea of a planar limit was introduced by ’t Hooft in the 70’s and relies in exchanging

the expansion in the Yang-Mills coupling constant gYM for 1/N and λ = Ng2
YM [15]. The

latter is called the ’t Hooft coupling and is held fixed (and small) as gYM → 0 and N →∞.

In this formulation, scattering amplitudes which are of leading order in 1/N can be drawn

on a plane whereas corrections can only be drawn on surfaces of higher genus, a property

which naturally fits with the genus expansion in the dual string theory picture.

Planar N = 4 SYM is, however, not the full theory and it is important to investigate

quantities which are subleading in 1/N and in particular which features of the planar

3We also indicate [29] for many applications.
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theory survive in the non-planar corrections. In this spirit, Chapter 5 is dedicated to the

generalisation of an on-shell formulation of planar scattering amplitudes in N = 4 SYM,

introduced by Arkani-Hamed et. al. in [3], beyond the planar limit. In this formulation,

all off-shell information commonly associated to virtual particles are encoded in internal

variables that parametrise an auxiliary space — the Grassmannian Grk,n, which is the

space of k-dimensional planes in Cn. For the sake of clarity we postpone a brief review of

this method to Chapter 5, followed by a generalisation of the formulation away from the

planar limit.

Finally, Chapter 6 contains concluding remarks of the work presented throughout the

thesis and some future research directions.
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Chapter 2

Review

2.1 On-shell methods for scattering amplitudes

The purpose of this section is to give an introduction to the first two manipulations one

performs on scattering amplitudes to expose some of the simplicities mentioned in Chapter

1: colour decomposition and the spinor-helicity formalism. Part of it will be based on [35].

2.1.1 Colour decomposition

In general, scattering amplitudes in gauge theory are functions of the momenta, wavefunc-

tions and colour charges of the external states, as well as the coupling constant(s). As a

first simplification, it is useful to separate the dependence on the colour charges from the

kinematics.

The dependence on the gauge group appears in the interaction terms in the Lagrangian

in terms of structure constants of the colour algebra. The colour structure of the three-

and four-gluon vertices are shown in Figure 2.1.

Figure 2.1: Colour structure corresponding to the three- and four-gluon interaction vertices.

In order to absorb factors of 2 it is useful to redefine the generators of the fundamental

representation of SU(N), ta with a = 1, . . . , N2 − 1, such that

Tr(tatb) = δab ⇒ ta →
√

2 ta . (2.1.1)
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The structure constants must also be redefined as fabc →
√

2 fabc so that the commutation

relation of the Lie algebra,

[ta, tb] =

N2−1∑
c=1

fabctc , (2.1.2)

remains valid. Using (2.1.1) and (2.1.2), the structure constants can be written in terms

of ta as

fabc = Tr(ta[tb, tc]) . (2.1.3)

Doing so, after representing each structure constant as in (2.1.3) one may use use the

completeness relation
N2−1∑
a=1

(ta) ji (ta) l
k = δ li δ

j
k −

1

N
δ ji δ

l
k (2.1.4)

to merge traces. This can be done easily for large N1, where the 1/N term above drops

out and all amplitudes are proportional to a single trace over the n generators associated

to each of the n particles,

Aplanar
n = gn−2

YM

∑
σ∈Sn/Zn

Tr(taσ(1)taσ(2) . . . taσ(n))An(σ(1), σ(2), . . . , σ(n)) , (2.1.5)

where gYM is the coupling constant. The object An on the right-hand side is called partial

amplitude; it is a function of the kinematics only and the order of its arguments (particle

labels) follows that of the generators in the trace that multiplies it. Due to this natural

ordering, it is possible to draw planar partial amplitudes on a disk, as shown in Figure 2.2.

Accounting for 1/N corrections amounts to considering multiple traces in (2.1.5), thus the

Figure 2.2: Single-trace amplitudes can be drawn on a disk and as such are referred to as
planar.

non-planar partial amplitudes can be drawn on surfaces with more than one boundary.

Those will be further explored in Chapter 5. In the next sections, however, we will be

1In this limit there is no distinction between SU(N) and U(N) and the extra U(1) gives rise to the
U(1) decoupling identities.
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strictly considering planar amplitudes (and form factors2).

2.1.2 Spinor-helicity formalism

After colour decomposition, the next step is to write the partial amplitudes in convenient

variables. Here convenient means “making as many symmetries manifest as one can”.

This is the subject of this subsection and it goes by the name of spinor-helicity formalism.

The aim here is to make manifest the on-shell condition p2
i = 03. For massless particles,

this is easily achieved with the observation that the contraction between the momentum

four-vector pµi with the Pauli matrices σµ gives a matrix of less than maximal rank,

pαα̇ = pµσ
µ
αα̇ =

 p0 + p3 p1 − ip2

p1 + ip2 p0 − p3


αα̇

, det(p) = (p0)2− (p1)2− (p2)2− (p3)2 = 0 ,

(2.1.6)

where the four Pauli matrices are

σ0 =

1 0

0 1

 , σ1 =

0 1

1 0

 , σ2 =

0 −i
i 0

 , σ3 =

1 0

0 −1

 . (2.1.7)

The vanishing determinant on (2.1.6) implies that the matrix p factorises as a product of

two spinors of opposite chirality,

pαα̇ = λαλ̃α̇ . (2.1.8)

The Lorentz group acts on the spinors as SU(2)L × SU(2)R. The indices α, α̇ = 1, 2

transform in the fundamental representation of one of the SU(2)L,R, respectively, and are

a singlet under the other SU(2). Thus the irreducible representations of the Lorentz group

can be characterised by a pair of integers or half-integers (p, q) [1]. The spinors λ, , λ̃ and

the four-vector p are in the representations shown in Table 2.1 below.

(1/2, 0) Weyl spinor of negative chirality λα,

(0, 1/2) Weyl spinor of positive chirality λ̃α̇,
(1/2, 1/2) Four-vector pαα̇,

Table 2.1: Representations of the Lorentz group decomposed into representations of
SU(2)L × SU(2)R.

A massless four-vector has only three independent components. In terms of the spinors,

2The discussion of planarity in the context of form factors is a bit more subtle, see Chapter 3, in
particular §3.4.

3It is also possible to make manifest momentum conservation condition
∑n
i=1 pi = 0 by means of

momentum twistors, however this will not be relevant for the work presented here.
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this is a consequence of the following rescaling redundancy,

(λ, λ̃) 7→ (tλ, t−1λ̃), t 6= 0 . (2.1.9)

This rescaling has a physical meaning, it corresponds to the action of the subset of Lorentz

transformations which leave the momentum unchanged, or what is called the little group.

As we will see, when doing such a rescaling the amplitude picks up a phase that depends

on the helicity hi of the corresponding particle with momentum pi,

(λi, λ̃i)→ (tλi, t−1λ̃i) ⇒ A→ t−2hiA . (2.1.10)

Lorentz invariant quantities are constructed contracting the spinors with the SU(2) in-

variant tensors εαβ and εα̇β̇,

εαβ = εα̇β̇ =

 0 1

−1 0

 . (2.1.11)

This gives rise to the following spinor products4

〈ij〉 ≡ 〈λiλj〉 = εαβ λ
iαλjβ, 〈ij〉 = −〈ji〉 ,

[ij] ≡ [λ̃i λ̃j ] = εα̇β̇ λ̃iα̇λ̃
j

β̇
, [ij] = − [ji] .

(2.1.12)

The tensors εαβ, εα̇β̇ and their inverses εαβ, εα̇β̇ are also used to raise and lower the α, α̇

indices.

The scalar product of two momenta pi = λiλ̃i and pj = λj λ̃j in this language is simply

given by the products of angular and square brackets,

2 (pi · pj) = 〈ij〉 [ji] . (2.1.13)

In a massless theory this is equivalent to the Mandelstam variable sij = (pi + pj)
2. Notice

that 〈ij〉 = 0 if λi ∝ λj and equivalently for the square brackets. Physically, vanishing of

either bracket means that the two momenta pi and pj are collinear.

In the amplitudes literature, often the momenta are taken to be complex, and thus the

Lorentz group is SL(2,C)× SL(2,C). In this case λ and λ̃ are independent spinors with

complex components. The requirement that the momenta are real imposes constraints or

relations between the λ’s and λ̃’s. The relations depend on the signature of space-time

and are listed below:

4All spinor conventions used throughout this thesis are presented in Appendix A.
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(+ +−−) λ and λ̃ are real and independent,

(+−−−) λ and λ̃ are complex and λ̃ = ±λ̄.

It is also important to mention that the spinors λ, λ̃ satisfy the Schouten identities:

〈ij〉 〈kl〉 + 〈ik〉 〈lj〉+ 〈il〉 〈jk〉 = 0 ,

[ij] [kl] + [ik] [lj] + [il] [jk] = 0 ,
(2.1.14)

which are very important for simplifying computations.

The last elements present in the partial amplitude which still remain to be written

in terms of the spinor variables are the polarisation vectors/spinors. For a given helicity,

they can be read off the plane wave solutions of the equations of motion of the free theory.

Here it is useful to investigate fermions and gauge bosons separately.

Fermions – helicity h= ±1/2

The Dirac equation in the massless case decouples into two Weyl equations, so the four-

component Dirac spinor can be written as a direct sum of two two-component Weyl spinors

of opposite chirality which satisfy

iσµαα̇pµψ
α̇ = ipαα̇ψ

α̇ = 0 (positive chirality),

iσµαα̇pµψ
α = ipαα̇ψ̄

α = 0 (negative chirality),

where σµ = (1l, ~σ) and σµ = (1l,−~σ). The plane wave solutions are

ψα̇ = cλ̃α̇eixαα̇λ
αλ̃α̇ (positive chirality),

ψ̄α = c′λαeixαα̇λ
αλ̃α̇ (negative chirality),

where c, c′ are non-zero constants. Thus, the polarisation spinors are just

ε(−1/2)
α = λα , ε

(+1/2)
α̇ = λ̃α̇ . (2.1.15)

Gauge bosons – helicity h= ±1

For helicities ±1, the corresponding polarisation vectors (ε(±))µ satisfy pµ(ε(±))µ = 0.

Thus, they can be written, up to a gauge transformation, as

ε
(−)
αα̇ =

λαµ̃α̇

[λ̃µ̃]
, ε

(+)
αα̇ =

µαλ̃α̇
〈λµ〉 . (2.1.16)

20



where µ and µ̃ are reference spinors that are linearly independent of λ and λ̃. Note that

a redefinition of the reference spinors

µ̃→ a µ̃+ b λ̃ , µ→ c µ+ d λ , (2.1.17)

would only change ε(+) and ε(−) by a shift proportional to pαα̇, thus the independence

of ε(−) and ε(+) under rescaling of the reference spinors ensures the independence of the

choice of µ and µ̃ up to a gauge transformation.

In summary, the polarisation vectors/spinors for each helicity are shown in Table 2.2.

Helicity Polarisation vector/spinor

+1/2 ε
(+1/2)
α̇ = λ̃α̇

−1/2 ε
(−1/2)
α = λα

+1 ε
(+)
αα̇ =

µαλ̃α̇
〈λµ〉

−1 ε
(−)
αα̇ =

λαµ̃α̇

[λ̃µ̃]

Table 2.2: Polarisation vectors/spinors for given helicities.

As expected, under the little group rescaling the gluon polarisation vectors scale according

to (2.1.10),

(λ, λ̃)→ (tλ, t−1λ̃) ⇒ (ε(−), ε(+))→ (t2ε(−), t−2ε(+)) . (2.1.18)

The partial amplitudes An inherit the scaling properties of the polarisation vectors. This

can be easily seen in the simple expressions for the scattering amplitudes of gluons of

which two have negative helicity and all remaining gluons have positive helicity. These

are called the Maximally Helicity Violating, or simply MHV amplitudes, and are given by

the Parke-Taylor formula [17, 36]

AMHV
n (1+, . . . , i−, . . . , j−, . . . , n+) = δ(4)

( n∑
a=1

λaλ̃a
) 〈ij〉4
〈12〉 〈23〉 · · · 〈n1〉 . (2.1.19)

The overall delta-function is common to every amplitude and imposes momentum conser-

vation. The parity conjugate of the MHV amplitude (obtained by reversing all helicities)

is called anti-MHV, or MHV amplitude. Is is the same as (2.1.19) with angular brackets
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replaced by square brackets,

AMHV
n (1−, . . . , i+, . . . , j+, . . . , n−) = δ(4)

( n∑
a=1

λaλ̃a
) [ij]4

[12][23] · · · [n1]
. (2.1.20)

Note that, as mentioned before, these one-term expressions for the MHV and MHV am-

plitudes arise as a sum of numerous diagrams in the Feynman expansion.

2.1.3 Supersymmetry

The discussion above regarded amplitudes involving only gluons. Since N = 4 is the

maximal number of supersymmetry (SUSY) generators in four dimensions, all helicity

states are related to each other via SUSY transformations. The aim of this subsection is

to introduce how supersymmetry is made manifest in the context of the spinor-helicity

formalism.

The N = 4 SUSY algebra is generated by the supercharges QAα and Q̄α̇A (in addition

to the Poincaré generators, as will be explained in detail in §2.4), where A = 1, . . . 4 is a

fundamental (upper) or anti-fundamental (lower) SU(4) R-symmetry index. The states

with maximum/minimum helicity are the gluons g+ and g−; these define the ground states

of the supercharges

QAα |g+〉 = 0, Q̄α̇A|g−〉 = 0 (2.1.21)

on which the Q̄/Q generators act as raising/lowering operators to generate the complete

tower of helicity states. Explicitly:

QAα |g−〉 = λα|ψ̄〉A, Q̄α̇A|g+〉 = λ̃α̇|ψ〉A . (2.1.22)

Further action of the SUSY generators and the use of the superalgebra commutation and

anti-commutation relations generates the field content of N = 4 SYM, shown in Table 2.3.

Multiplicity Field SU(2)L × SU(2)R
2 gluons g−, g+ (1/2, 1/2)
4 chiral fermions ψα̇A (1/2, 0)
4 antichiral fermions ψ̄Aα (0, 1/2)
6 (real) scalars φAB = −φBA (0, 0)

Table 2.3: Field content of N = 4 SYM.

The only representation of this superalgebra is an on-shell vector supermultiplet which

comprises all the states above and transforms in the adjoint of the gauge group. A con-

22



venient way to write the supermultiplet is by means of the Nair representation [37] which

uses an auxiliary fermionic variable ηA of helicity h = −1/2 to write a superfield (or,

more precisely, a super-creation operator) in which each component multiplies a different

combination of {ηA}:

|Φ〉 = |g+〉+ ηA |ψA〉+
1

2!
ηAηB |φAB〉+

1

3!
ηAηBηC |ψABC〉+ η1η2η3η4 |g−〉 , (2.1.23)

where we used |ψABC〉 ≡ εABCD|ψ̄D〉.
The on-shell chiral superspace is obtained by augmenting the space-time coordinates

by a set of four extra fermionic coordinates {θαA}. The state |Φ〉 is an eigenstate of the

Q generators: QAα |Φ〉 = λαη
A |Φ〉 whose eigenvalue qAα = λαη

A is the super-momentum

carried by the state |Φ〉 in the θαA fermionic direction.

In this basis, the full tree amplitude can be expanded as An =
∑n−2

k=2 A
k
n where Akn has

fixed fermionic degree 4k and comprises the purely gluonic amplitude as well as the com-

plete family of amplitudes with fermions and scalars related to the gluonic one by SUSY

transformations. For a given k-sector, the helicities of the scattering particles sum to

n− 2k. In particular, the lowest Grassmann weight k = 2 is the MHV amplitude (2.1.19)

recast in the supersymmetric form:

AMHV
n =

δ(0|8)
( n∑
i=1

λiηi
)
δ(4)
( n∑
i=1

λiλ̃i
)

〈12〉 〈23〉 . . . 〈n1〉 . (2.1.24)

The notation δ(a|b) stands for a combination of a bosonic constraints and b fermionic.

We will often denote δ(0|b) ≡ δ(b) as the context will be sufficient to specify its bosonic

of fermionic nature. The additional fermionic delta-functions impose supermomentum

conservation. Amplitudes including fermions, gluons or scalars are obtained by integrating

the final expression with the correct power of η’s. To show this explicitly, recall from

Grassmann calculus

(ηA)2 = 0 ,

∫
dηA 1 = 0 , and

∫
dηA ηA = 1 .

Hence the integration of the superamplitude over η’s with an adequate measure for each
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particle selects a specific state from (2.1.23) as follows:∫
d4η 1 ←→ |g−〉 ,

εABCD

∫
d4η ηA ←→ |ψ〉BCD ,

1

2!
εABCD

∫
d4η ηAηB ←→ |φ〉CD ,

1

3!
εABCD

∫
d4η ηAηBηC ←→ |ψ〉D ,

1

4!
εABCD

∫
d4η ηAηBηCηD ←→ |g+〉 ,

(2.1.25)

where ∫
d4η ≡

∫
dη1dη2dη3dη4 . (2.1.26)

2.2 Tree-level recursion relations

As mentioned in the previous section, MHV and MHV amplitudes are the simplest non-

zero amplitudes. The next level in complexity is the helicity configuration consisting of

three gluons with distinct helicity. Those are referred to as Next to Maximally Helicity

Violating, Next to Next to Maximally Helicity Violating and so forth, in short Nk−2MHV

amplitudes.

In this section, we review two methods which are used to compute Nk−2MHV tree

amplitudes in terms of simpler amplitudes, while a discussion regarding loop amplitudes

is presented in §2.3.1. The methods are:

1. Britto-Cachazo-Feng-Witten (BCFW) recursion relation [38, 39]: Generic ampli-

tudes Akn are written in terms of three-particle building blocks A2
3 (MHV) and A1

3

(MHV).

2. MHV diagrams [30]: Generic amplitudes Akn are expanded in terms of only MHV

building blocks (but not necessarily with only three particles) A2
n.

2.2.1 BCFW recursion relation

The BCFW recursion relation relies on the analytic properties of amplitudes (the location

of singularities) and allows one to ultimately express any tree level amplitude in terms of

amplitudes with only three particles. The kinematics of a three-particle scattering is quite

special for a massless theory, so let us start by exploring it. Using the spinor algebra from
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§2.1.2, momentum conservation yields

(p1 + p2)2 = p2
3 = 0 ⇒ 〈12〉[21] = 0 ,

(p2 + p3)2 = p2
1 = 0 ⇒ 〈23〉[32] = 0 ,

(p1 + p3)2 = p2
2 = 0 ⇒ 〈13〉[31] = 0 .

(2.2.1)

Since 〈ab〉 = [ab] for real momenta in Minkowski signature, the only solution is the trivial

p1 ‖ p2 ‖ p3, so there is no scattering. This provides motivation to consider complex

momenta instead, so that angular and square brackets are independent and there exist

non-trivial solutions to (2.2.1). Of course ultimately one is interested in real momenta,

but considering complex momenta for the intermediate steps is a very useful mathematical

tool which is crucial for the BCFW recursion relation.

A general tree-level amplitude is a product of propagators ∼ 1/P 2 and factors associ-

ated with the interaction vertices. For planar amplitudes, as a consequence of locality, P

can only be a sum of momenta which are adjacent in colour space, so the physical poles

are or the form
1

(pi + pi+1 + pi+2 + . . . )2
.

For complex momenta the amplitude is a meromorphic function with poles associated

to kinematical configurations where some internal propagator becomes null, P 2 = 0. The

main idea behind the BCFW recursion relation is to use this knowledge to determine the

amplitude as a function of its singularities.

The method goes as follows. Given an amplitude Akn, the BCFW-shift is defined as

a deformation of two adjacent momenta by a complex parameter z. Without loss of

generality, using cyclicity one can choose the shifted momenta to be that of particles 1

and n:

λ1 → λ̂1(z) = λ1 + zλn ↔ p1 → p̂1(z) = p1 + z ξ ,

λ̃n → ̂̃
λ
n

(z) = λ̃n − zλ̃1 ↔ pn → p̂n(z) = pn − z ξ ,
(2.2.2)

where ξ = λ̃1λn. For the super BCFW-shift, the fermionic variable η receives a shift

analogous to λ̃,

ηn → η̂n(z) = ηn − z η1 . (2.2.3)

All other particles are left invariant under the BCFW shift. Note that the shifted momenta

p̂1 and p̂n still represent massless particles (after all they are still written as a product

of two spinors) and the original momentum conservation equation still holds (because

p̂1 + p̂n = p1 +pn). Under the BCFW shift the amplitude becomes a holomorphic function
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of z, A→ Â(z). The object of interest is the physical (undeformed) amplitude A(0), which

can also be written as a contour integral

Â(0) =
1

2πi

∮
z=0

dz

z
Â(z) . (2.2.4)

By means of the Cauchy’s residue theorem, the amplitude can also be expanded as a sum

of residues at the poles corresponding to z∗ 6= 0,

Â(0) = −
∑
i

1

zi∗
Res

[
Â(zi∗)

]
. (2.2.5)

The poles for finite z∗ occur when some internal propagator with a dependence on z

becomes on-shell, that is5

(pi + pi+1 + · · ·+ z∗ξ)
2 = 0 . (2.2.6)

This internal propagator generically corresponds to a virtual particle, however for z = z∗

it becomes physical. For this reason the interpretation of each residue in (2.2.5) is a fac-

torisation of the original amplitude into two smaller amplitudes AL and AR. This is shown

in Figure 2.3.

Figure 2.3: BCFW factorisation of an amplitude as two simpler amplitudes connected by
a propagator.

Notice that the shifted particles 1̂ and n̂ are necessarily on different sets, otherwise

the internal propagator would not depend on z. Considering a generic channel L =

{1̂, . . . , i}, R = {i + 1, . . . , n̂}, the momentum flowing in the intermediate propagator is

P̂i(z) = Pi + zξ, where Pi =
∑i

a=1 pa. The solution zi∗ is

P̂ 2
i = 0 ⇒ zi∗ = − P 2

2(ξ · P )
. (2.2.7)

Plugging this in (2.2.5) results finally on the BCFW recursion relation:

Akn =
∑
i,hi

AL

(
1̂(zi∗), 2 . . . , i,−P̂i(zi∗)

) 1

P 2
i

AR

(
P̂i(zi∗), i+ 1, . . . , n̂(zi∗)

)
(2.2.8)

5It is also possible that (2.2.5) has a pole for z →∞. This pole does not have the physical interpretation
of a factorisation and should be investigated separately. This discussion will play a role in Chapter 3, where
this issue will be discussed in more detail. Poles for z →∞ were studied by [40, 41, 42].
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where AL ≡ AkLnL and AR ≡ AkRnR are tree-level amplitudes with smaller n, k, more precisely

kL + kR = k + 1, nL + nR = n+ 2

and the sum accounts for all factorisation channels, that is, all possible ways of defining

the sets L, R as well as the sum over all helicities of the internal on-shell particle.

This recursion relation can be used iteratively for AL and AR. This allows one to ulti-

mately write any tree-level amplitude in terms of three-particle MHV and MHV building

blocks. This will be essential for the on-shell diagram construction in Chapter 5.

2.2.2 MHV diagrams

The second tree level recursion relation which can also be used to compute any Nk−2MHV

amplitude was proposed by Cachazo, Svrček and Witten (CSW) in [30]. It amounts to

decomposing any amplitude as vertices which are off-shell continuations of MHV ampli-

tudes. MHV superamplitudes are given in (2.1.24) and are completely independent of the

anti-holomorphic spinor variables λ̃. For this reason, the off-shell continuation is defined

by associating to each off-shell momentum Lαα̇ a holomorphic spinor

Lαα̇ ↔ `α ≡ Lαα̇ξ
α̇ , (2.2.9)

where ξα̇ is a reference spinor. Using (2.2.9), the generic definition of an off-shell MHV

vertex is

AMHV
n =

δ(4)
( n∑
i=1

λiλ̃i
)
δ(0|8)

( n∑
i=1

λiηi
)

〈12〉 〈23〉 · · · 〈n1〉

off−shell−−−−−→ V MHV
n =

δ(4)
( n∑
i=1

Li

)
δ(0|8)

( n∑
i=1

`iηi

)
〈12〉〈23〉 · · · 〈n1〉 .

(2.2.10)

Gauge invariance demands that the final result is independent of the choice of reference

spinor.

The CSW method was shown to arise in many frameworks. In [43] gluon amplitudes

were obtained by a generalised BCFW shift, where for Nk−2MHV amplitudes, the mo-

menta of the k gluons with negative helicity were shifted, as opposed to just two. In [44]

the expansion is a consequence of a residue theorem in the Grassmannian formulation (see

Chapter 5 for an exposition of this formulation). In [45] it was shown to arise as a change

of variables in the N = 4 SYM Lagrangian in the lightcone gauge; in this description,
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the action is mapped to a free theory plus an infinite set of interaction vertices, each

corresponding to an off-shell MHV amplitude. Lastly, the expansion into MHV vertices

was shown in [46] to be the Feynman diagrams arising from the action in twistor space

[47, 46, 48]. The MHV diagram method was used to successfully compute loop amplitudes

in [49, 50] and will be applied to the computation of the one-loop dilatation operator

Chapter 4.

2.3 Loop techniques

Tree level amplitudes are simple objects, they are just rational functions of the exter-

nal momenta whose singularities are well understood. The nature of the singularities in

massless theories is threefold:

• Factorisation – Internal propagator goes on-shell,

• Collinear – The momenta of two or more particles become parallel to each other,

• “Soft” – The momentum of an external particle becomes small.

The three types of singularities outlined above occur for particular values of the external

momenta. When loop momenta enter the game, the singularity structure of the amplitudes

becomes much more involved. Typically the result of loop integrals involve multivalued

functions with branch cuts. Moreover, the integrals are hard to carry out, and they are

often divergent. The divergences can be of the infrared (IR) kind — for small values of

loop momenta — or ultraviolet (UV) — for large values of loop momenta.

N = 4 SYM is an especially simple theory due to the fact that it is conformal at the

quantum level (i.e. the β-function, the equation that governs how the coupling constant

gYM varies with energy scale, is zero to all orders in perturbation theory [51]). Physically

this means that there is no inherent length scale, so any short distance phenomenon can

be “zoomed out”. As a result there are no UV divergences present in this theory. IR

divergences, on the other hand, have a physical meaning; they tell us that for a massless

theory one cannot distinguish a state of one particle from a state where this particle emits

one or many particles with soft, undetectable momenta or if the measured particle is

indeed one particle or many with collinear momenta. The observable physical quantities,

like cross sections, are however finite. At a given order in perturbation theory, the IR

divergent part of a loop integral precisely cancels against soft singularities of the phase

space integral of a lower-loop amplitude involving extra undetectable particles.
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Indeed one may raise the question that for a conformal theory there is no notion of

the asymptotic states that enter in the definition of the S-matrix (since in the absence

of a length scale it makes no sense to define particles “at infinity”). However, due to IR

divergences one is forced to regulate the integrals to make sense of them (for instance

the threshold of the detector), and this often involves introducing a scale which breaks

conformal symmetry6. There are many ways to regulate integrals, for a comprehensive

presentation of many methods we indicate [52]. The regularisation procedure that will

be used throughout the following chapters is dimensional regularisation, which consists

in evaluating integrals in dimension d = 4 − 2ε, where ε is an infinitesimal parameter, as

opposed to d = 4. In this framework the result of the integral is a Laurent series in ε.

The IR divergent terms appear with negative powers of ε and these must cancel for well

defined observables, allowing one to finally take the physical limit ε→ 0.

One of the consequences of IR divergences is that the result of loop integrals display

fewer symmetries than the tree level amplitudes. For this reason, it is common to study the

loop integrand itself 7, which prior to integration preserves the symmetries of the tree-level

amplitudes and are just rational functions with poles involving both external particles pi

and loop momenta `j .

Of course one is ultimately interested in the results of the integrals themselves. To

this end there exist a rich collection of techniques — integration by parts (IBP) relations

[53] — which allows the representation of a family of integrals in terms of a finite basis

called master integrals, differential equations [54, 55]8, bootstrap approaches [57], and

so forth. In the work presented here we are in the fortunate scenario where it is not

necessary to evaluate any new integral and we review below the techniques which will

be used in the forthcoming chapters. In §2.3.1 we discuss a particular method used to

construct integrands and in §2.3.2, after giving an overview of loop amplitudes, we present

a particular tool which has revolutionised the way one can deal with the special class of

functions that result from loop integrations — the symbol of transcendental functions —

which will play a central role in two-loop form factor computation presented in §3.4.

6In [26, 25] the authors propose a regularisation procedure in terms of spectral parameters which pre-
serves all symmetries of planar amplitudes. However, a proof that the extra parameters actually serve as
regulators, i.e. they disappear for physical observables, is still lacking.

7The loop integrand is only well defined in the planar limit, this is discussed in detail in §2.3.1.
8For an overview of the method and the most modern formulation, see the review [56].
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2.3.1 Integrands

As mentioned before, loop integrals in general involve a complicated combination of mul-

tivalued functions with branch cuts and discontinuities. The integrand of a scattering am-

plitude at a given order in perturbation theory is, in analogy with tree-level amplitudes,

a rational function of external and loop momenta that, after integration, reproduces all

branch cuts and discontinuities of the loop integral, plus potential rational terms. At the

level of the integrand, however, the singularities are simply poles for which propagators

involving one or more loop momenta go on shell.

This is the main idea behind what is called the generalised unitarity method for con-

structing loop integrands [58, 31, 32, 32, 59, 60, 61, 62, 34, 63]. But before embarking on

this, one needs to first investigate if the integrand is a well defined notion to begin with.

As it turns out, in the planar limit the answer is yes, and for non-planar corrections

the answer is, at least until this day, not yet.

A generic loop integral is a sum of many terms. The idea of a well defined loop

integrand relies on the possibility of canonically defining loop integration variables which

are consistent between all terms. For each integral entering the sum, the loop momenta

are dummy integration variables and as such can be redefined as one pleases, however at

the level of the integrand a redefinition of the loop variables changes the locations of the

poles. In order to combine all functions into a single integrand, one has to find a way

to canonically define what is meant by the loop integration variables. This difficulty is

illustrated in Figure 2.4.

Figure 2.4: A one-loop four-particle example illustrating how a redefinition of the loop
integration variables change the location of the poles of the integrand. These ambiguities
is remedied with the use of region momenta which makes the integrand canonically defined.

The solution to this issue for planar integrands comes from the natural ordering of the

external states. If instead one assigns variables labelling regions between the momenta,

the integration variables are uniquely defined as the variables associated with bounded

regions. The map between the standard momenta and the so-called dual variables or
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region momenta is:

pi = xi − xi+1 ≡ xi i+1 . (2.3.1)

For superamplitudes, one defines the analogous dual supermomentum by

λiηAi = θAi − θAi+1 ≡ θAi i+1 , A = 1, 2, 3, 4 , (2.3.2)

where θAi are N = 4 on-shell superspace coordinates. This map is illustrated in Figure

2.5, where it is also clear that the external momenta form a closed polygon with null edges

in the dual space.

Figure 2.5: Dual coordinates where pi = xi− xi−1. Momentum conservation implies that
in dual space the amplitudes as supported on a closed polygon with null edges.

In dual variables, both integrals from Figure 2.4 are identical and given by

I1-loop
4 =

∫
d4x0

1

x2
01x

2
02x

2
03x

2
04

. (2.3.3)

This integrand is the same for identification of the variable ` with any edge of the square,

that is, ` = xi0 for i = 1, . . . , 4, as shown in Figure 2.6. At higher loop order, the unique

integrand is obtained by symmetrising over all possible labellings of internal faces.

Figure 2.6: The canonically defined planar loop integrand in terms of dual variables x.
Loop integration are over variables associated to internal faces, symmetrised for L > 1.

The use of the dual coordinates unravels a remarkable duality within N = 4 SYM,

that between MHV scattering amplitudes and Wilson loops evaluated on the corresponding
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null polygon in x-space [64, 65, 66]9. Polygonal Wilson loops are invariant under ordinary

superconformal symmetry in position space. In the context of amplitudes, this corresponds

to a hidden symmetry of the planar sector, called dual superconformal symmetry [70]. In

the amplitude description, this dual symmetry is broken by IR divergences, whereas in

the Wilson loop description it is broken by UV divergences associated to the cusps.

Both the BCFW and the MHV-diagram expansions presented in §2.2 were originally

proposed for tree-level amplitudes, but afterwards extend to construct loop integrands too.

For the BCFW recursion relation, the idea behind the loop generalisation is to take into

account, in addition to factorisation-like singularities, singularities for which propagators

involving loop momenta become on-shell. The latter can be obtained from a lower loop

amplitude with two extra particles in the so-called forward limit. This allows one to

recursively construct the planar loop integrand [71]. We will not expand on the loop

BCFW recursion relation since it will not be relevant for the future chapters. The loop

MHV-rules, however, will be further discussed and applied in the context of the dilatation

operator in §2.2.2.

Generalised unitarity

Recall that generic loop integrals can be a combination of multivalued functions and

rational terms. In supersymmetric theories the rational terms are absent. For this reason,

the integrand can be found by considering a set of standard integrals that span all possible

physical branch cuts the amplitude may have. The idea behind the generalised unitarity

method is to write the amplitude as a sum of basis integrals and compute the coefficients

of the integrals by matching the singularities of the amplitude with that of the integrals.

The name stems from the standard unitarity cuts, which makes use of the the unitarity

of the S-matrix (S · S† = 1l) to represent the discontinuity of the imaginary part of a loop

amplitude as a sum over two separate lower-loop factors with two propagators set on-shell.

One can compute discontinuities across different unitarity cuts successively, and the name

generalised unitarity refers to the situation where any number of propagators can be cut

by effectively replacing10

i

P 2
7→ δ+(P 2) ≡ δ(P 2)Θ(p0) , (2.3.4)

where the Heaviside function Θ(p0) ensures that the physical state has positive energy.

9This duality was extended to relate Nk−2MHV amplitudes and supersymmetric Wilson loops in [67,
68, 69]

10Throughout explicit calculations the factors of i will often be omitted and reinstated at the end.
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Disregarding rational terms (i.e. focusing on what is called the cut-constructible part of

the integrals), one can determine one-loop amplitudes by cutting up to four propagators. A

basis of integrals at one loop is formed of scalar boxes, triangles and bubbles and tadpoles

[72]. For massless theories, the tadpoles do not contribute and thus will be dropped. The

box, triangle and bubble integrals are shown in Figure 2.7 and their dependence on the

dimensional-regularisation parameter ε, which are relevant for the future chapters, are

written in Appendix B.1.

Figure 2.7: One-loop integral basis for amplitudes in massless theories without rational
terms. Each integral is a sum of Feynman diagrams that share the same propagators.

Thus, at one loop, the cut-constructible part of an amplitude in a generic massless

theory can be expanded as (this discussion simplifies considerably in the case of N = 4

SYM, see below)

A1-loop =
∑
i

cBoxiBoxi +
∑
i

cTriiTrii +
∑
i

cBubiBubi , (2.3.5)

where the coefficients cBoxi , cTrii , cBubi are rational functions of the kinematic variables

and the sums run over all possible ways of distributing the external momenta on the cor-

ners of the integrals. The coefficients of each integral can then be found by matching the

discontinuities of the functions of either side of (2.3.5) in the following way. The coeffi-

cients of the boxes are determined by cutting four propagators (also called a quadruple

cut or a four-particle cut) as they are the only functions that become singular in this sit-

uation. Subsequently, one can determine the coefficients of the triangles by matching the

singularities under triple cuts (notice the boxes also become singular, but their coefficients

are already fixed). In the same way, two-particle cuts determine finally the coefficient of

the bubble integrals, and thus the full cut-constructible part of the loop amplitude.

The situation where as many propagators as possible are cut (the same number of

integration variables, d×L) is called a maximal cut. The values of the integrand evaluated

on solutions of such cuts are called leading singularities. Leading singularities are rational

functions which correspond to discontinuities of the integral across maximal cuts.
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For amplitudes in N = 4 SYM this discussion simplifies further [31, 32, 73]. Bubbles

are UV divergent and therefore absent. Moreover, the planar N = 4 SYM integrand

preserves the dual conformal symmetry present in the tree-level amplitude, this allows

one to also eliminate the triangles from the basis above, leaving only boxes. In contrast

with amplitudes, for form factors dual conformal symmetry is relaxed and one has to keep

the triangles and bubbles in the basis of integrals. For the protected operators studied in

Chapter 3 the bubbles are still unnecessary, as will be explicitly show in §3.3.4. In the

study of the dilatation operator in Chapter 4, one is interested in precisely the opposite —

UV-divergent integrals — and thus the bubble will become relevant.

The problem of finding an integral basis that span all cuts at two loops and higher is

not solved in general. This problem at the level of the planar integrand in N = 4 SYM

is solved, in the sense that the integrand satisfies the all-loop BCFW recursion relation

[71]. In [74] the authors represent the integrand as a linear combination of functions

which are dual conformal invariant and normalised to have unit leading singularity. This

is equivalent to the statement that the leading singularities of the planar integrand are

enough to determine the full integrand. This topic will be revisited in Chapter 5 when we

discuss non-planar leading singularities.

The generalised unitarity method will be heavily used in the context of loop form

factors in Chapter 3 and correlation functions in Chapter 4.

2.3.2 Integrals

Scattering amplitudes at loop level can be very difficult to compute, but explicit calcu-

lations have shown that, to some degree, the special properties of N = 4 SYM lead to

some structure at the level of the integrated expressions too. To make the treatment

of loop amplitudes clearer, it is customary to study instead of the loop amplitude itself,

the helicity-independent function obtained by dividing it by the corresponding tree-level

amplitude. This is called the ratio function,

Mk(L)
n ≡ A

k(L)
n

A
k(0)
n

. (2.3.6)

The first hint of an underlying structure in the context of loop amplitudes was the finding

of Anastasiou, Bern, Dixon and Kosower (ABDK) [75]. They observed that the four-

particle, two-loop ratio function M
2(2)
4 could be expressed in terms of the one-loop result.

An iterative process was further shown to hold at three loops by Bern, Dixon and Smirnov

(BDS) [76], which led them to conjecture that the fully resummed MHV ratio function
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(denoted by MMHV
n ) could be obtained from M

2(1)
n via an exponential relation called the

BDS/ABDK ansatz,

MMHV
n = exp

[ ∞∑
L=1

aL
(
f (L)(ε)M2(1)

n (Lε) + C(L) +O(ε)
)]
. (2.3.7)

The ingredients entering the formula are explained below.

• a is a convenient function of the ’t Hooft coupling λ given by

a ≡ λe−εγE

(4π)2−ε , (2.3.8)

where γE ≈ 0.577 is the Euler-Mascheroni constant, often grouped together with

the coupling constant to absorb extra factors that arise from loop integrations.

• f (L)(ε) is a polynomial of degree two in ε,

f (L)(ε) ≡ f
(L)
0 + f

(L)
1 ε+ f

(L)
2 ε2 , (2.3.9)

where f
(L)
0 is called the L-loop cusp anomalous dimension11, and f

(L)
1 is called the

collinear anomalous dimension.

• C(L) is a constant which is independent of n and ε .

For a while the hope was that (2.3.7) was in fact the final answer to the all-loop MHV

amplitudes, with results verified numerically up to five particles at two loops [79, 80].

This would mean that one would only ever have to calculate one-loop integrals, which are

comparatively an easy task. However, before anyone had a chance to prove (2.3.7), some

disagreement was found starting at six particles12 — while (2.3.7) reproduces correctly the

IR divergent part of M
2(2)
6 , there is a finite correction which is a function of dual conformal

cross ratios [82]. Indeed, any finite correction to the BDS/ABDK ansatz must be dual

conformal invariant and, as such, a function of dual conformal cross ratios. For n < 6

there are no possible cross-ratios (the number of dual conformal cross ratios in an n-particle

scattering is 3n− 15, thus non-zero only for n ≥ 6). An interesting quantity to consider is

therefore the mismatch between the L-loop ratio function and the prediction given by the

11The name stems from the Wilson loop picture where the divergences are of the UV kind, associated
with the cusps. The cusp anomalous dimension γK [77] appears in the anomalous Ward identity of the
dual special conformal generator acting on the finite part of the Wilson loop and it is predicted for any
value of λ [78]. At L loops, the relation between f

(L)
0 and γ

(L)
K is f

(L)
0 = γ

(L)
K /4.

12The existence of a deviation from the BDS/ABDK ansatz was first indicated by Alday and Malda-
cena in [81] from computations at strong coupling. They also constructed the BDS/ABDK ansatz using
AdS/CFT in [64].
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BDS/ABDK ansatz — the remainder function [82, 83]. The BDS/ABDK ansatz captures

all IR divergent terms of the amplitude, thus the remainder is a finite function of dual

conformal cross ratios. At two loops, the remainder is simply the difference between the

two-loop ration function and the result predicted by the BDS/ABDK ansatz (2.3.7),

R2(2)
n = M2(2)

n −
[

1
2(M (1)

n (ε))2 + f (2)(ε)M2(1)
n (2ε) + C(2)

]
. (2.3.10)

At two loops [75],

f (2)(ε) = −2(ζ2 + εζ3 + ε2ζ4) , C(2) = −ζ2
2 , (2.3.11)

where ζn is the Riemann zeta function.

Transcendental functions and symbols

The remainder function itself can be still extremely complicated, as will become clear

shortly. It is widely believed, however, that the L-loop remainder function in N = 4

SYM is a transcendental function of weight (or depth) 2L, that is, a linear combination

of iterated integrals that involves 2L “steps”. The formal definition of transcendental

function of degree m (also called a pure function), F (m), is in terms of its differential,

dF (m) =
∑
i

F
(m−1)
i d log fi , (2.3.12)

where fi is an algebraic function and transcendentality zero functions are constants. A

simple example of a weight m transcendental function of one variable x is the classical

polylogarithm Lim(x), which is recursively defined as

Lim(x) ≡
∫ x

0

dt

t
Lim−1(t) , Li1(x) ≡ − log(1− x) =

∫ x

0

dt

1− t . (2.3.13)

Another notation for Lim(x) is

Lim(x) ≡ −
∫ x

0
d log(1− t) ◦ log(t) ◦ d log(t) ◦ · · · ◦ d log(t)︸ ︷︷ ︸

m−1 times

, (2.3.14)
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where the outermost terms are meant to be integrated first. A more general kind of

iterated integrals are the Goncharov polylogarithms, also recursively defined as

G({a1, a2 . . . , am};x) ≡
∫ x

0

dt

t− a1
G({a2, . . . , am}, t) ,

G({a}, x) ≡
∫ x

0

dt

t− a , a 6= 0 , G({~0n}, x) ≡ 1

n!
logn(x) .

(2.3.15)

So the classical polylogarithms (2.3.13) are special cases of the Goncharov polylogarithms

(2.3.15) for {a1, a2, . . . , am} = {0, 0, . . . , 1}. For an extensive explanation of the properties

of transcendental functions and their appearance in various contexts in Physics, we indicate

the reader the lecture notes [84].

The combination of transcendental functions that result from integrals at loop orders

higher than one can be extremely complicated. For instance, in [85], Del Duca, Duhr and

Smirnov (DDS) computed analytically the remainder function for a six-sided null Wilson

Loop (which is dual to an MHV ratio function [64, 65, 66]13). Their result is very famous

for being (besides very laborious) a 17-page long combination of transcendentality four

functions involving many Goncharov polylogarithms.

Initially it was certainly not expected that this result could be simplified to something

simple, but fortunately this is not true. They key point behind the simplification of that

beast is the fact that polylogarithms satisfy very complicated relations. For transcenden-

tality one, the relation between logarithms is rather simple,

log(xy) = log(x) + log(y) . (2.3.16)

Dilogarithms Li2(x) satisfy the so-called five-term identity,

5∑
n=1

[
Li2(an) + log(an−1) log(an)

]
=

π2

6
,

a1 = x , a2 =
1− x
1− xy , a3 =

1− y
1− xy , a4 = y , a5 = 1− xy .

(2.3.17)

Clearly (2.3.17) is already much more complicated than (2.3.16) and functions of higher

transcendentality satisfy very intricate identities that easily get out of hand. It is perhaps

important to mention that often factors of π appear in relations between transcendental

functions as they are associated to discontinuities across branch cuts, the simplest example

13This correspondence was later generalised to relate Nk−2MHV ration functions and supersymmetric
Wilson Loops [68, 67, 69, 86].
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being

log
(
ei(θ+2π)

)
= log

(
eiθ
)

+ 2πi . (2.3.18)

To bypass the complication arising from relations like (2.3.17) it is very helpful to use the

notion of the symbol of a transcendental function [87, 88]. By definition, the symbol of a

generic iterated integral of transcendentality m is via the recursion (recall (2.3.12))

dF (m) =
∑
i

F
(m−1)
i d log fi ⇒ S[F (m)] ≡

∑
i

S[F
(m−1)
i ]⊗ fi . (2.3.19)

One property of the symbol of a transcendental function that is extremely desirable for loop

integrals is that is makes manifest the location of its branch cuts, and the discontinuities

associated to it. From the definition (2.3.19) one can infer that the function F (m) has

branch cuts for fi = 0 and, moreover, F
(m−1)
i are the corresponding discontinuities. This

is the heart of the idea behind the bootstrap approaches, where the location of the branch

cuts in various kinematic limits, together with integrability data [89, 90, 91], act as physical

input to constrain the symbol [57, 92, 93, 94].

The application of (2.3.19) m times culminates in an m-fold tensor product. This can

be seen easily for a function of a single variable,

F (m)(x) =

∫ x

0
d log(f1(t)) ◦ d log(f2(t)) ◦ · · · ◦ d log(fm(t)) , (2.3.20)

where f1 , . . . , fm are algebraic functions. Its symbol is the m-fold tensor product of the

arguments of the logarithms in the integrals evaluated at the endpoint of the integration,

S[F (m)(x)] = f1(x)⊗ f2(x)⊗ · · · ⊗ fm(x) . (2.3.21)

As a consequence of (2.3.16) and log(xn) = n log(x), the symbols obey

· · · ⊗ x y ⊗ · · · = · · · ⊗ x⊗ · · ·+ · · · ⊗ y ⊗ · · · ,

· · · ⊗ xn ⊗ · · · = n (· · · ⊗ x⊗ · · · ) ,

· · · ⊗ (constant)x⊗ · · · = · · · ⊗ x⊗ · · · .

(2.3.22)

The last property follows from d log c = 0 for any constant c. Table 2.4 contains some

instructive examples of symbols of the functions mentioned earlier. The main advantage

of using the symbols is that every relation satisfied by transcendental functions turns into
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Function Symbol

log(x) x

log(x) log(y) x⊗ y + y ⊗ x
Lin(x) −(1− x)⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸

n−1 times

Table 2.4: Examples of symbols of simple transcendental functions.

an algebraic relation satisfied by the symbols. For example, (2.3.17) with y = 0 (thus only

a1 = x and a2 = 1− x are not constants) reads

Li2(x) + Li2(1− x) + log(x) log(1− x) =
π2

6
. (2.3.23)

This is easily seen considering the symbol of the above expression (see Table 2.4),

−(1− x)⊗ x− x⊗ (1− x) + x⊗ (1− x) + (1− x)⊗ x = 0 . (2.3.24)

Clearly the information about constants which are powers of π are lost after taking the

symbol (c.f. (2.3.22)), as can be seen from going from (2.3.23) to (2.3.24). In other words,

the symbol loses information about which Riemann sheet the multivalued functions are

evaluated on. Terms containing powers of π times lower degree functions are referred to as

beyond the symbol and can, for instance, be determined numerically demanding agreement

between the functions before and after simplification. This will be used in §3.4

The power of the symbols was first demonstrated by Goncharov, Spradlin, Vergu and

Volovich (GSVV) in [87]. There the authors simplified the DDS result for the ratio function

of the six-sided two-loop MHV Wilson loop from the 17-page long linear combination of

classical and generalised polylogarithms to an expression that fits within a line! Moreover

the expression involved only classical polylogarithms (2.3.13), all the more complicated

functions cancelled out. The strategy there was to compute the symbol of the DDS

expression, which turned out to be very simple, and then reconstruct a simple function

that reproduced the same symbol. The procedure of recovering a function from its symbol

is not completely straightforward. In particular, a generic linear combination of tensor

products does not necessarily originates from a function, this is only the case if the symbol
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obeys the integrability conditions,

S[F (m)] =
∑

i1,...,im

fi1 ⊗ · · · ⊗ fim ,

d2F (m) = 0 ⇒
m−1∑
r=1

∑
i1,...,im

fi1 ⊗ · · · ⊗ fir ∧ fir+1 ⊗ · · · ⊗ fim = 0 ,

(2.3.25)

where ∧ stands for the usual wedge product,

· · · ⊗ x ∧ y ⊗ · · · = · · · ⊗ x⊗ y ⊗ · · · − · · · ⊗ y ⊗ x⊗ · · · . (2.3.26)

The integrability conditions assure that the iterated integrals do not change if the inte-

gration path is slightly deformed keeping the endpoints fixed, which is of course required

since the functions depend on the endpoints of integration only. This is also called homo-

topy invariance. In the case of the GSVV symbol, they observed that it also satisfied the

so-called Goncharov condition [95, 87], described as follows. Since the two-loop remainder

function is of transcendentality four, one can denote its symbol schematically by Sabcd
where the subscripts stand for the letters which form the symbol keeping the order of the

arguments. Then the Goncharov condition reads

Sabcd − Sbacd − Sabdc + Sbadc − (a↔ c , b↔ d) = 0 . (2.3.27)

When a symbol obeys this criterion, it means that it can be integrated to a combination

of classical polylogarithms only14. Also, investigating symmetry properties of the symbol

with respect to permutations of its arguments it is possible to find the precise combination

of classical polylogarithms. The same notions will appear in explicit calculations of form

factor remainders in §3.4.

When trying to recover a function from its symbol, it is useful to use the notion of

the coproduct introduced in [96]. The idea is, instead of tackling the complete symbol at

once, to identify which parts of it correspond to functions of highest degree possible (same

as the number of entries in the symbol) and which are products of functions with lower

transcendentality. For instance, in [96] the authors define a projector ρ which acts on an

m-fold tensor product and gives a non-zero result only if the function cannot be written

14There exists a conjecture by Goncharov that all weight four functions can be written in a basis formed
by classical polylogarithms plus the function Li2,2(x, y) =

∑
a1>a2≥1

xa1ya2

a21a
g
22

= −
∫ 1

0
xdt

1−xt log tLi2(xyt).

Goncharov’s condition assures that the function Li2,2 is absent.

40



as a product of simpler functions15. Its action is defined via the recursion

ρ(a1 ⊗ · · · ⊗ am) ≡ m− 1

m

[
ρ(a1 ⊗ · · · ⊗ am−1)⊗ am − ρ(a2 ⊗ · · · ⊗ am)× a1

]
,

ρ(ai) ≡ ai .

(2.3.28)

For a detailed definition of the coproduct we indicate the original work of [96], and also

the explicit form factor example considered in §3.4.

The notions mentioned above can also be formulated in the context of form factors.

In particular, a remainder function was defined in [97] and computed for the two-loop

form factor of the chiral part of the stress tensor multiplet. In §3.4, we will compute the

remainder function of an infinite class of operators called half-BPS operators (see §2.5

for more details). There the use of symbols will be extremely fruitful, and will allow

substantial simplification, similar to that of GSVV, of the form factor remainders.

2.4 The N = 4 superconformal Algebra

In this section, we will present general aspects of the N = 4 superconformal algebra in

four dimensions that will be relevant for the discussions on form factors and the dilatation

operator. The conventions are taken from [98].

A superconformal algebra is a combination of the regular conformal algebra with the

(Poincaré) SUSY algebra whose closure require the addition of extra generators called

superconformal charges. Let us do it step by step. The Poincaré algebra is generated by

spacetime translations (Pµ) and Lorentz transformations (rotations and boosts, Mµν =

−Mνµ , µ, ν = 0, 1, 2, 3). They satisfy the following commutation relations:

[Mµν , Pρ] = −i (ηµρPν − ηνρPµ) ,

[Mµν ,Mρσ] = −i(ηµσMνρ + ηνρMµσ − ηνσMµρ − ηµρMνσ) ,
(2.4.1)

where ηµν = diag(1,−1,−1,−1) is the Minkowski metric. The conformal algebra is gen-

erated by augmenting (2.4.1) with special conformal transformations Kµ (also called con-

formal boosts) and spacetime dilatations D. The additional commutation relations are

15The idea behind it is that the symbol of products of functions are given in terms of a shuffle product
and the projector ρ is defined such that it annihilates any shuffle product. For details, see [96].
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the following,

[D,Pµ] = iPµ , [D,Mµν ] = 0 , [D,Kµ] = −iKµ ,

[Mµν ,Kρ] = −i (ηµρKν − ηνρKµ) ,

[Pµ,Kν ] = 2i (Mµν + ηµνD) .

(2.4.2)

The action of the dilatation operator on a local scalar operator O(x) is given by

[D,O(x)] = i

(
∆ + x

∂

∂x

)
O(x) , (2.4.3)

where ∆, the eigenvalue of D acting on O(0), is the conformal dimension of O(x). The

bare dimension ∆0 of a composite operator is simply the sum of the dimensions of its

fundamental constituent fields. For instance in d = 4 the dimension of the fundamental

fields can be read off from the Langrangian density by requiring that all kinetic terms have

mass dimension four. Denoting the dimension of a generic field Ψ by [Ψ], scalar fields,

fermions and the field strength have dimensions, respectively,

[φ] = 1 , [ψ] = [ψ̄] = 3/2 , [Fµν ] = 2 . (2.4.4)

In interacting theories, ∆ gets quantum corrections called anomalous dimensions. This

topic will be explained in detail in §2.6.

Due to the commutation relations between D and the other conformal generators (first

line of (2.4.2)), it follows that

[D, [Kµ,O(0)]] = i(∆− 1)O(0) , [D, [Pµ,O(0)]] = i(∆ + 1)O(0) , (2.4.5)

and thus Pµ/Kµ act as raising/lowering operators for the conformal dimension, respec-

tively. Together they generate a representation of the conformal group whose highest

weight state is called a conformal primary operator Õ(x). When evaluated at the origin

x = 0, it is annihilated by Kµ,

[Kµ, Õ(0)] = 0 . (2.4.6)

The action of a sequence of Pµ generates an infinite tower of descendant operators which

are obtained from Õ by taking derivatives, i.e. Oµ1µ2···µn = ∂µ1∂µ2 · · · ∂µnÕ.

In a superconformal theory, in addition to (2.4.2) there are supercharges, which are

fermionic generators QAα , Q̄α̇A and SαA, S̄
α̇A, where A = 1, . . .N classifies the number

of supersymmetries. From now on we will use N = 4 which is the relevant case for the
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remaining chapters. The Q, Q̄ generators together with (2.4.1) form a closed algebra which

is called Poincaré supersymmetry. To begin with, it is helpful to write the generators in

terms of spinor indices, in the same way as in §2.1.2. Using the Pauli matrices σµαα̇

and (σ̄µ)α̇α = εαβσµ
ββ̇
εα̇β̇, the generators of translations, conformal boosts and Lorentz

transformations are represented as

Pαα̇ = σµαα̇Pµ , K̄α̇α = (σ̄µ)α̇αKµ ,

M β
α = − i

4
σµαα̇(σ̄ν)α̇βMµν , M̄ β̇

α̇ = − i
4

(σ̄µ)β̇ασναα̇Mµν

(2.4.7)

The additional non-zero (anti-)commutation relations are

{QAα , Q̄α̇B} = 2Pαα̇δ
A
B ,

[M β
α , QAρ ] = δ β

ρ QAα −
1

2
δ β
α QAρ , [M α̇

β̇
, Q̄ρ̇A] = −δαρQ̄β̇A +

1

2
δαβQ̄ρ̇A .

(2.4.8)

The commutators between the supercharges and the momentum operator vanish as a

consequence of the independence of Q/Q̄ on the spacetime coordinates (they are global).

Finally, the superconformal algebra is the conjunction of (2.4.2) and (2.4.1). Closure of

the algebra demands the existence of a second set of supercharges – called superconformal

charges – SαA/S̄
α̇A which are obtained by the action of Kµ on the supercharges Q/Q̄,

[Kµ, QAα ] = −σµαα̇S̄α̇A , [Kµ, Q̄α̇A] = SαAσ
µ
αα̇ , {S̄α̇A, SαB} = 2δABK̄

α̇α , (2.4.9)

as well as the SU(4) ∼= SO(6) R-symmetry generators RAB, A,B = 1, . . . , 4. The com-

mutation relations between the dilatation operator and the supercharges Q, Q̄/S, S̄ reveal

their scaling dimensions to be +1/2 and −1/2, respectively,

[D,QAα ] =
i

2
QAα , [D, Q̄α̇A] =

i

2
Q̄α̇A , [D,SαA] = − i

2
SαA , [D, S̄α̇A] = − i

2
S̄α̇A .

(2.4.10)

A particular anti-commutation relation that is crucial for the discussion in §2.5 is that

between Q and S,

{QAα , SβB} = 4
[
δAB(M β

α −
i

2
δ β
α D)− δ β

α RAB
]
. (2.4.11)

The symmetry group of N = 4 SYM is PSU(2, 2|4) whose maximal bosonic subgroup is

the Lorentz SU(2)L × SU(2)R times the R-symmetry group SU(4).
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2.5 Half-BPS operators

Superconformal primary operators are defined as the operators with lowest conformal

dimension. Since according to (2.4.10) the superconformal charges lower the dimension

by half a unit, superconformal primary operators obey, in addition to (2.4.6),

[SαA, Õ(0)] = 0 , [S̄α̇A, Õ(0)] = 0 . (2.5.1)

A special situation occurs when a superconformal primary operator is annihilated by one

or more extra SUSY generators. For instance, for some QAα it obeys

[QAα , Õ(0)] = 0 . (2.5.2)

In the following chapters we will be interested in scalar operators. In this case it follows

from (2.5.1) and (2.5.1) that

[{QAα , SβB}, Õ(0)] = 0

⇒ 4 δAB [M β
α , Õ(0)]︸ ︷︷ ︸

= 0 for scalar Õ

−2i δAB δ
β

α [D, Õ(0)]− 4 δ β
α [RAB, Õ(0)] = 0 .

(2.5.3)

Therefore the conformal dimension and R-charge of Õ are related. A remarkable conse-

quence of this relation is that the conformal dimensions of these operators, called BPS

operators or chiral primary operators (CPO), do not receive quantum corrections (and thus

the operators are said to be protected). This is the case because the R-charges are integers

while the anomalous dimensions are smooth functions of the coupling constant. Thus, for

(2.5.3) to hold, ∆ = ∆0 for any value of the coupling constant. BPS operators are said

to give rise to short representations since their multiplets are constrained by additional

SUSY generators (even though the representations are still infinite-dimensional).

In Chapter 3 we will consider form factors of half-BPS operators, that is, operators

which preserve half of the SUSY generators. One example is the scalar bilinear half-BPS

operator in N = 4 SYM defined as

OABCD ≡ Tr(φABφCD) − (1/12) εABCDTr(φ̄LMφLM ) , (2.5.4)

where

φ̄AB ≡ 1
2ε
ABCDφCD . (2.5.5)
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This operator belongs to the 20′ representation of the SU(4) R-symmetry group.

2.6 The dilatation operator

Conformal field theories (CFTs) have, by definition, no mass spectrum. The usual way one

thinks of states in euclidean CFTs is through the map between states and local operators

inserted at the origin,

|O〉 = lim
x→0
O(x)|0〉 . (2.6.1)

This correspondence is inherent to CFTs because it relies on a map between Rd and the

cylinder Sd−1 × Rtime, under which the origin of Rd is mapped to the far past in the

cylinder. In this correspondence, the time evolution in the cylinder corresponds to the

dilatation operator on Rd, that is, the generator of rescaling of spacial coordinates,

xµ → λxµ . (2.6.2)

For this reason, the analogous notion of a mass spectrum in a CFT is the conformal

dimension of local operators, which dictates how they transform under a dilatation. A

scalar local operator with dimension ∆, denoted by O∆(x), transforms under (2.6.2) like

O∆(x) → λ−∆O∆(λx) . (2.6.3)

The conformal dimension of a scalar operator O∆ can be read off from the two point

function between itself and its conjugate, which is fixed by conformal symmetry to be16

〈O∆(x)Ō∆(y)〉 =
1

|x− y|2∆
. (2.6.4)

For a free theory ∆ coincides with the bare dimension ∆0. However, for interacting theories

the scaling dimension gets renormalised. This happens because the two-point functions

suffer from UV divergences arising from the integration over the interaction points. For

small values of the coupling constant, the first correction is a small perturbation of the

bare dimension,

∆ = ∆0 + γ , γ � ∆0 . (2.6.5)

16In general, two-point functions of different operators O∆1(x) and O∆2(y) are given by

〈O∆1(x)O∆2(y)〉 =
δ∆1∆2

|x− y|2∆1
.
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The factor γ is called the one-loop anomalous dimension. In this case, (2.6.4) can be

expanded as

〈O∆(x)Ō∆(y)〉 =
1

|x− y|2∆
=

1

|x− y|2∆0

[
1− γ log(|x− y|2Λ2) + . . .

]
, (2.6.6)

where Λ is the UV cutoff scale. When computing two-point functions in interacting theo-

ries, one generally finds that the UV divergences are not always proportional to the initial

tree-level correlator, but instead receive contributions of tree-level two-point functions of

different operators. This is referred to as the mixing problem and as a consequence one

should indeed compute a matrix of anomalous dimensions. For this reason, the dilatation

operator is represented as an expansion in the ’t Hooft coupling λ as

D =
∞∑
n=0

λnD(2n) , (2.6.7)

where the eigenvalues of D(0) are the bare dimensions of operators, the eigenvalues of D(2)

are the one-loop anomalous dimensions and so forth. Normally in the literature D(2) is

represented by the letter Γ.

Therefore, to be precise, (2.6.6) is only valid for operators said to have definite anoma-

lous dimension, and the one-loop anomalous dimension γ entering a “diagonal” two-point

function is the corresponding eigenvalue of the matrix Γ. The operators with definite

anomalous dimension are linear combinations of single trace operators that diagonalise Γ.

So the idea behind the solution to the spectral problem is to, at one loop,

1. Find the matrix of anomalous dimensions Γ, also called the one-loop dilatation op-

erator,

2. Find the eigenvalues of Γ, that is, the spectrum of anomalous dimensions.

3. Find the eigenvectors of Γ, that is, the operators with definite anomalous dimension.

The solution to the mixing problem is in general very hard. Fortunately there are some

cases where a set of operators only mix among themselves at a given order in perturbation

theory. These are called closed sectors. Table 2.5 shows two closed sectors that will be

studied later in Chapter 4: SO(6) and SU(2|3) at one loop. They consist of composite

local operators formed of a particular set of fundamental fields, or letters.

The solution to the spectral problem was revolutionised by Minahan and Zarembo

(MZ) in [99] where they showed that the one-loop dilatation operator in the SO(6) sector

is equivalent to the Hamiltonian of a spin chain with nearest-neighbour interactions and,
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Sector Letters

SO(6) φAB , A,B = 1, 2, 3, 4

SU(2|3)
{
ψ1α, φ1A

}
, A = 2, 3, 4

Table 2.5: Two closed sectors of the mixing problem at one loop that will be studied in
Chapter 4.

moreover, this Hamiltonian is integrable. In this picture, single trace operators are mapped

to a periodic spin chain where each site carries an SO(6) vector index. For illustrative

purposes, we briefly present the main results of MZ.

Generic operators in the SO(6) sectors are of the form

OA1B1,A2B2,...,ALBL(x) ≡ Tr
(
φA1B1(x) · · ·φALBL(x)

)
. (2.6.8)

According to (2.6.6), to obtain the one-loop dilatation operator one must investigate the

UV divergent part of the two-point function (suppressing indices),

〈O(x1)Ō(x2)〉
∣∣∣one-loop

UV
. (2.6.9)

In the planar limit and at one loop, only interactions between scalar fields which are

adjacent in colour space are relevant, and thus one can equivalent study the two-point

function

〈
(φaABφ

b
CD)(x1)(φcA′B′φ

d
C′D′)(x2)

〉 ∣∣∣one-loop

UV
, (2.6.10)

where a, b, c, d are SU(N) colour labels (note that only the full operator is gauge invariant)

and we used (2.5.5). An equivalent statement is that the dilatation operator can be

expanded as a sum of operators acting on two adjacent sites at a time,

Γ =
λ

8π2

L∑
i=1

Γi i+1 , ΓLL+1 ≡ ΓL 1 , (2.6.11)

and thus it is enough to study, at one loop, only a two-site operator Γi i+1.

There are three possible ways to contract the R-symmetry indices of (2.6.10), shown in

Table 2.6. At tree level, the only planar contraction is the identity, whereas at one loop also

the permutation and trace structures contribute to the dilatation operator. Considering

all possible interactions of the theory, MZ observed that self-energy diagrams and terms

where the scalars exchange a gluon (shown in Figure 2.8) contribute only to the identity
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εABC′D′εCDA′B′ Identity (1l)

εABA′B′εCDC′D′ Permutation (P)

εABCDεA′B′C′D′ Trace (Tr)

Table 2.6: The three possible ways to contract the R-symmetry indices of the two-point
function (2.6.10). For planar contractions at tree level only the identity is allowed, whereas
at one loop all three structures are present.

part and can be fixed by imposing that γ = 0 for R-symmetry assignments corresponding

to a protected operator.

Figure 2.8: Feynman diagrams that contribute to the identity part of the dilatation opera-
tor [99].

The only interaction that contributes to the permutation and trace structures at one

loop comes from the term involving four scalars in the Lagrangian of N = 4 SYM. This

term is of the form

Vscalar ∼ g2Tr([φAB, φCD][φ̄AB, φ̄CD]) . (2.6.12)

So the only integral to consider corresponds to the interaction between four scalar fields,

depicted in Figure 2.9. It is given by

I(x12) =

∫
ddz ∆2(x1 − z) ∆2(x2 − z) , (2.6.13)
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Figure 2.9: The particular one-loop integral in configuration space contributing to the
dilatation operator.

where x12 ≡ x1 − x2 and

∆(x) ≡ −π
2− d

2

4π2
Γ
(d

2
− 1
) 1

(x2)
d
2
−1

, (2.6.14)

is the (Euclidean) scalar propagator in d dimensions.

Note that I(x12) has UV divergences arising from the regions z → x1 and z → x2. The

result for the one loop dilatation operator found by MZ is

Γ =
λ

8π2

L∑
n=1

(1l− P + 1
2Tr)nn+1 . (2.6.15)

The discovery of this underlying spin chain introduced a completely new perspective

to the spectral problem, and techniques used in the context of integrable systems — the

various kinds of Bethe ansätze — could now be applied for N = 4 SYM. This illustrates

how special N = 4 SYM is; integrability — factorisation of the S-matrix into a sequence

of 2 → 2 scattering processes — is usually thought of as a phenomenon intrinsic to

two-dimensional systems, and is unlikely to feature in a four-dimensional theory. There

is, however, a hidden two-dimensionality in N = 4 SYM which can be thought of as a

spin chain [28], or indeed the two-dimensional worldsheet of the dual string theory picture.

Integrability in the context of the AdS/CFT duality has been largely studied and a detailed

review is contained in [100].

Since the discovery of MZ, the dilatation operator has been extensively studied, and

it is known completely at one loop [27, 28]. At higher loop order, the SU(2|3) sector

remains closed at, but the SO(6) sector does not. Direct perturbative calculations at

higher loops — without the assumption of integrability — have been performed only up

to two [101, 102, 103], three [104, 105, 106] and four loops [107].

The aim of the work presented in Chapter 4 is to establish a connection between the

on-shell methods presented in §2.3.2 and the dilatation operator. Inspired by [22], where
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the one-loop dilatation operator in the SO(6) sector (2.6.15) was rederived in twistor

space, we do the same using MHV rules in §2.2.2 and, subsequently, using generalised

unitarity — thus only on-shell information — in the SO(6) and SU(2|3) sectors.
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Chapter 3

Form factors of half-BPS operators

3.1 Introduction

Recently, there has been a resurgence of interest in the study of form factors in N = 4

SYM. One reason behind this is that, as discussed in Chapter 1, form factors interpolate

between fully on-shell quantities, i.e. scattering amplitudes, and correlation functions,

which are off shell. Indeed, recalling the definition presented in Chapter 1, a form factor

is obtained by taking a gauge-invariant, local operator O(x) in the theory, applying it to

the vacuum |0〉, and considering the overlap with a multi-particle state 〈1, . . . , n|, as in

(1.0.7),

FO(1, . . . , n; q) ≡ 〈1, . . . , n|O(0)|0〉 , (3.1.1)

Once we fix a certain operator, one can study how the form factor changes as we vary

the state. In a pioneering paper [108] almost thirty years ago, van Neerven considered the

simplest form factor of the operator Tr(φ2
12), namely the two-point (also called Sudakov)

form factor, deriving its expression at one and two loops. Operators of the kind Tr(φk12) are

called half-BPS operators, reviewed in §2.5. These operators are special, and in particular

have their scaling dimension protected from quantum corrections.

More recently, the computation of form factors at strong coupling was considered in

[81, 109], and at weak coupling in a number of papers in N = 4 SYM [110, 111, 21,

112, 113, 114, 115, 97, 116, 117, 118, 119, 23, 24, 120, 121, 122, 123, 42, 124, 125] and

also in ABJM theory1 [127, 128, 129]. In particular, in [110] it was pointed out that

on-shell methods can successfully be applied to the computation of such quantities, and

the expression for the infinite sequence of MHV form factors of the simplest dimension-

1Aharony-Bergman-Jafferis-Maldacena (ABJM) theories are three-dimensional N = 6 Chern-Simmons
theories constructed in [126]. They display many special features analogous to N = 4 SYM, for instance
a ’t Hooft limit as well as Yangian symmetry in the planar limit.
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two, scalar half-BPS operators was computed. Perhaps unsurprisingly, this computation

revealed the remarkable simplicity of this quantity — for instance, the form factor of two

scalars and n − 2 positive-helicity gluons is very reminiscent of the Parke-Taylor MHV

amplitude (2.1.19),

〈g+(p1) · · ·φ12(pi) · · ·φ12(pj) · · · g+(pn)|O(0)|0〉 =
〈ij〉2

〈12〉 · · · 〈n1〉 , (3.1.2)

where O ≡ Tr(φ2
12). These form factors maintain this simplicity also at one loop — they

are proportional to their tree-level expression, multiplied by a sum of one-mass triangles

and two-mass easy box functions2. Other common features between form factors and

amplitudes include the presence of a version of colour-kinematics duality [118] similar to

that of BCJ [130], and the possibility of computing form factors at strong coupling using

Y-systems [109, 131] which extend those of the amplitudes [132]. A second motivation to

study form factors is therefore to explore to what extent their simplicity is preserved as

we vary the choice of the operator and of the external state.

There are interesting distinctive features of form factors as compared to scattering

amplitudes. One of them is the presence of non-planar integral topologies in their pertur-

bative expansion. Indeed, the presence of a colour-singlet operator introduces an element

of non-planarity in the computation even when we consider external states that are colour

ordered, as is usual in scattering amplitudes. Specifically, the external leg carrying the mo-

mentum of the operator does not participate in the colour ordering, and hence non-planar

integrals are expected to appear at loop level. Even the simple two-loop Sudakov form

factor of [108] is expressed in terms of a planar as well as a non-planar two-loop triangle

integral. In general, non-planar contributions for single trace form factors of Tr(φk12) arise

at kth loop order.

One may wonder if higher-loop corrections can spoil the simple structures observed at

tree level and one loop. There is a number of examples which indicate that, fortunately,

this is not the case. For instance, in [115] the three-loop corrections to the Sudakov form

factor were computed and found to be given by a maximally transcendental expression.

Exponentiation of the infrared divergences leads one to define a finite remainder function

in the same spirit of the BDS remainder function (2.3.10) [82, 83]. Using the concept of

the symbol of a transcendental function [87] as well as various physical constraints, it was

found that the form factor remainder is given by a remarkably simple, two-line expression

written in terms of classical polylogarithms only. Moreover, the remainder function was

2See Appendix B.1 for the definition of these integral functions.
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found to be closely related to the analytic expression of the MHV amplitude six-point

remainder at two-loops found in [87].

Similarly to the miraculous simplifications which occur in going from the result of an

explicit calculation [85] to the expression of [87], the (complicated) two-loop planar and

non-planar functions found in [97] combined into a maximally transcendental, compact

result. Surprising agreement was furthermore found between this form factor and the

maximally transcendental part of certain very different quantities, namely the Higgs plus

three-gluon amplitudes in QCD computed in [133]. A hint of a possible connection between

such unrelated quantities (and a further reason to study half-BPS form factors in N = 4

SYM) is that the top component of the stress-tensor multiplet operator (of which Tr (φ2
12)

is the lowest component) is the on-shell Lagrangian of the theory, which contains the term

TrF 2
SD, where FSD is the self-dual part of the field strength. In turn, it is known that

Higgs plus multi-gluon amplitudes in the large top mass limit can be obtained from an

effective interaction of the form H TrF 2
SD, shown in Figure 1.2.

Incidentally, we note that form factors can be used to compute correlation functions

using generalised unitarity as in [117, 134]. They also appear in the intermediate sums

defining total cross sections, or the event shapes considered in [135, 136, 137], and in the

computation of the dilatation operator in [23, 120].

In this chapter we concentrate on the calculation of form factors of half-BPS operators

in N = 4 (SYM). In particular we look at operators of the form Ok ≡ Tr(φk12), with

k > 2, and their superpartners, which can be packaged into a single superfield Tk. Here

φAB = −φBA denotes the three complex scalar fields of the theory, satisfying the reality

condition φ̄AB = (1/2)εABCDφCD, where A, . . . ,D are SU(4) R-symmetry indices.

Sudakov form factors of O2 (the lowest component of T2) have been constructed up

to four loops [108, 115, 118], while in [110, 97] form factors of O2 with more than two

external on-shell states were computed. Later, the supersymmetric form factors of T2 were

presented in [21, 112] using harmonic and Nair’s on-shell superspace [37], extending the

results obtained for the bosonic operator O2.

The superfield Tk is a generalisation of the stress-tensor multiplet T2. For k > 2 it

is dual to massive Kaluza-Klein modes of the AdS5 × S5 compactification of type IIB

supergravity3, while for k = 2 it is dual to the massless graviton multiplet.

In this chapter we study form factors of Ok and super form factors of Tk with k > 2,

quoting the results of [4] and [5]. For our purposes we find it convenient to introduce a

3Their four-point functions were studied in [138].
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more concise notation,

Fk,n ↔ FTk,n Supersymmetric form factor of Tk ,

Fk,n ↔ FOk,n Form factor of Tr
[
(φ12)k

]
.

Notice that in order to have a non-vanishing result for the form factor Fk,k, all external

states must be equal to φ12.

In §3.2 we present MHV form factors Fk,n of Tk with n external legs at tree level and

in §3.3.4 at one loop. In §3.4 we will focus on the special class of form factors Fk,k which

we call “minimal” because they have the same number of on-shell legs fundamental fields

in Tk. In the case k=n= 2, called Sudakov, the result has trivial kinematic dependence

dictated by dimensional analysis and Lorentz invariance. The minimal form factors Fk,k
are close cousins of the Sudakov form factors (and for this reason sometimes we refer to

them as Sudakov as well, in a slight abuse of nomenclature) and hence it is natural to

expect that their kinematic dependence will be simpler, albeit non-trivial, compared to

the general case with n > k. Indeed, we will be able to present very compact, analytic

expression for arbitrary n = k written in terms of simple, universal building blocks.

3.2 Tree level

So far, most of the available results are concerned with bilinear half-BPS operators.4 In

this section we will focus on form factors of operators of the form Tr (φk) with an n-point

external state, for arbitrary k and n. In fact, there is no reason to limit our study to scalar

operators, as one can supersymmetrise the scalar operators in a similar fashion as is done

in the case of the stress-tensor multiplet operator. Thus, the operator we consider is

Tk ≡ Tr[(W++)k] , (3.2.1)

where W++ is a particular projection of the chiral vector multiplet superfield WAB(x, θ)

of N = 4 SYM, introduced in the next section. For k = 2 this is the chiral part of the

stress-tensor multiplet operator. Tk is a half-BPS operator, and its lowest component is

simply the scalar operator Tr[(φ++)k].

In §3.2.1 we review a convenient formalism to study these operators, namely harmonic

superspace [139, 140]. We will then consider form factors of the chiral part of the operators

4With the exception of [111], where form factors of operators of the form Tr (φn) were considered with
an external state containing the same number n of particles as of fields in the operator.
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Tk, which preserve half of the supersymmetries off shell [69, 86]. External states will

be described naturally with the supersymmetric formalism of Nair [37]. One can then

write down very simple Ward identities, similar to those considered in [21] for the case of

the stress-tensor multiplet operator, which we can then solve finding constraints on the

expressions for the form factors.

In §3.2.2 we consider the simplest supersymmetric form factors, namely those of T3.

Using BCFW recursion relations [38, 39] (in the supersymmetric version of [141, 142]) we

will find a compact expression for the n-point form factor of this operator. Interestingly,

the standard recursion relation with adjacent shifts contains a boundary term, hence we

are led to use a recursion relation with next-to-adjacent shifts.

The presence of boundary terms in the adjacent-shift recursion relations for the form

factor of T3 motivates us in §3.2.3 to study their structure for the case of the form factor of

Tk for general k. This will lead us to propose a new supersymmetric recursion relation for

the MHV form factors of Tk, which involves form factors with different operators, namely

Tk and Tk−1. We also look at a simple generalisation of this recursion to the case of NMHV

form factors. Based on some experimentation for lower values of k, we propose a general

solution for all n-point MHV form factors of Tk for arbitrary k and n. We also check that

our proposed solution satisfies the required cyclic symmetry.

§3.2.4 briefly shows that MHV diagrams [30] can be extended to compute form factors

of the half-BPS operators considered in this chapter, as a simple extension of the work

of [21] where MHV rules for the stress-tensor multiplet operator were found. We present

two examples in detail, namely the calculation of a four-point NMHV form factor using

bosonic as well as supersymmetric MHV rules.

3.2.1 Super form factors of Tk and Ward identities

In this section we will study the supersymmetric form factors of the operators Tk intro-

duced in (3.2.1), which generalise those of the stress-tensor multiplet operator studied in

[21].

We begin our discussion by recalling that the states in the N = 4 multiplet can be

efficiently described using the formalism introduced by Nair [37], where all helicity states

are packaged into the super-wavefunction (2.1.23).

The supersymmetric operator we wish to consider is a generalisation of the chiral part

of the stress-tensor multiplet operator T2. It is defined as

Tk(x, θ+) ≡ Tr
[(
W++(x, θ+)

)k]
, (3.2.2)

55



where W++ is a particular projection of the chiral vector multiplet superfield WAB(x, θ),

defined as follows.5 We introduce the harmonic projections of the chiral superspace coor-

dinates θαA and supersymmetry charges QAα as

θα±a ≡ θαAu
A
±a Q±aα ≡ ū±aA QAα . (3.2.3)

Here a = 1, 2 is an SU(2) index, and the harmonic SU(4) u and ū variables are normalised

as in Section 3 of [69]6. Then

W+a+b ≡ uA+au
B
+bWAB = εabW++ . (3.2.4)

In particular, the chiral part of the stress-tensor multiplet operator is simply

T2(x, θ+) ≡ Tr(W++W++)(x, θ+) = Tr(φ++φ++) + · · · +
1

3
(θ+)4L . (3.2.5)

Note that the (θ+)0 component is the scalar operator Tr(φ++φ++), whereas the (θ+)4

component is the chiral on-shell Lagrangian denoted by L. In complete analogy to (3.2.5),

we have

Tk(x, θ+) = Tr
[
(φ++)k

]
+ · · · . (3.2.6)

Ward identities associated to supersymmetry can be used to constrain the expression of

the super form factor. This was done in [21] and we briefly review here this procedure.

We consider a symmetry generator s that annihilates the vacuum. It then follows that

〈0|[s ,Φ(1) · · ·Φ(n)O ]|0〉 = 0 , (3.2.7)

or

〈0|Φ(1) · · ·Φ(n) [s , O] |0〉 +
n∑
i=1

〈0|Φ(1) · · · [s , Φ(i)] · · ·Φ(n)O|0〉 = 0 , (3.2.8)

where 〈0|Φ(1) · · ·Φ(n) is the superstate 〈1 · · ·n|. In this notation, a form factor is simply

〈0|Φ(1) · · ·Φ(n)O |0〉 or, more compactly, 〈1 · · ·n| O |0〉. We are interested in the action

of the supersymmetry charges Q±, which are realised on the half-BPS operators Tk as

[Q− , Tk(x, θ+)] = 0 , [Q+ , Tk(x, θ+)] = i
∂

∂θ+
Tk(x, θ+) . (3.2.9)

5We follow closely the notation and conventions of [69, 86], see also [21].
6The only difference is that all upper/lower indices are swapped, this is to keep the notation consistent

with that of Chapter 2
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The first relation is a simple consequence of the fact that Tk(x, θ+) is independent of θ−,

while the second shows that Q+ can be used to relate the various components in the

supermultiplet described by Tk(x, θ+).

We now introduce the object we will compute, i.e. the (super) Fourier transform of the

form factor,

Fk,n(1, . . . , n; q, γ+) ≡
∫
d4x d4θ+ e−(iq·x+iθ+·γ+) 〈 1 · · ·n |Tk(x, θ+) |0〉 , (3.2.10)

where θ+ · γ+ = θα+aγ
+a
α .

The Ward identities (3.2.8) for Q+ and Q− then give

( n∑
i=1

λiη−,i
)
Fk(1, . . . , n; q, γ+) = 0 ,

( n∑
i=1

λiη+,i − γ+
)
Fk(1, . . . , n; q, γ+) = 0 ,

(3.2.11)

where

η±a,i ≡ ū±aA ηA,i . (3.2.12)

Momentum conservation follows from the Ward identity for the momentum generator,

(
q −

n∑
i=1

pi
)
Fk(1, . . . , n; q, γ+) = 0 . (3.2.13)

Hence, the Ward identities require that

Fk,n(1, . . . , n; q, γ+) ∝ δ(4)
(
q −

n∑
i=1

λiλ̃i
)
δ(4)
(
γ+ −

n∑
i=1

λiη+,i
)
δ(4)
( n∑
i=1

λiη−,i
)
. (3.2.14)

It was shown in [21] that the supersymmetric MHV form factor of the the stress-tensor

multiplet operator T2 is simply obtained by multiplying the required delta functions by a

Parke-Taylor denominator:

FMHV
2,n (1, . . . , n; q, γ+) =

δ(4)
(
q −

n∑
i=1

λiλ̃i
)
δ(4)
(
γ+ −

n∑
i=1

λiη+,i
)
δ(4)
( n∑
i=1

λiη−,i
)

〈12〉〈23〉 · · · 〈n1〉 . (3.2.15)

One of the goals of this work is to determine the form factors of the more general operators

Tk for any k and for a generic number n of external particles.

57



3.2.2 The super form factor FMHV
3,n

In this section we will study the form factors of the chiral operator T3, where Tk is defined in

(3.2.2). In particular we will consider the form factor with the simplest helicity assignment,

namely MHV,7 and will show that it is given by the compact expression

FMHV
3,n (1, . . . , n; q, γ+) = FMHV

2,n (1, . . . , n; q, γ+)
( n∑
i<j=1

〈i j〉 η−,i · η−,j
)
, (3.2.16)

where we have introduced the shorthand notation

η−,i · η−,j = η−,j · η−,i ≡ 1

2
η−a,iη−b,j εab , η−,i · η−,i = η−1,iη−2,i ≡ (η−,i)2 . (3.2.17)

Interestingly, this form factor can be written as a product of the stress-tensor MHV form

factor (3.2.15) with an additional term which compensates for the different R-charge of

the operator T3. Indeed, it is immediate to see that, for FMHV
3,n to be non-vanishing for an

external state containing three scalars and an arbitrary number of positive-helicity gluons,

the form factor must have a fermionic degree which exceeds that of FMHV
2,n by two units.

We also show an equivalent expression for the super form factor FMHV
3,n given by the

following formula,

FMHV
3,n (1, . . . , n; q, γ+) = FMHV

2,n (1, . . . , n; q, γ+)
( n−2∑
i≤j=1

(2− δij)
〈n i〉 〈j n− 1〉
〈n− 1n〉 η−,i · η−,j

)
.

(3.2.18)

Although (3.2.18) looks slightly more complicated than (3.2.16), this expression will prove

more convenient for later generalisations to higher k and applications to loop computa-

tions.

To prove the equivalence of (3.2.16) and (3.2.18), consider the expression

n∑
i<j=1

〈i j〉 η−,i · η−,j +
n∑

i,j=1

〈n i〉 〈j n− 1〉
〈n− 1n〉 η−,i · η−,j . (3.2.19)

The second term on the right-hand side of (3.2.19) is in fact zero due to supermomentum

conservation in the Q− direction, as can be seen by rewriting it as

n∑
i,j=1

〈n i〉 〈j n− 1〉
〈n− 1n〉 η−,i · η−,j =

1

〈n− 1n〉
( n∑
i=1

〈n i〉 η−,i
)
·
( n∑
j=1

〈j n− 1〉 η−,j
)
. (3.2.20)

7Note that in general, the MHV form factor of Tk will have fermionic degree 8 + 2(k − 2).
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Splitting the sum in (3.2.19) over all i, j in that term into the cases i = j, i < j and j < i,

it is straightforward to show that (3.2.16) and (3.2.18) are equal. Explicitly we have

n∑
i<j=1

〈i j〉 〈n− 1n〉+ 〈n i〉 〈j n− 1〉+ 〈n j〉 〈i n− 1〉
〈n− 1n〉 η−,i · η−,j +

n∑
i=1

〈n i〉 〈i n− 1〉
〈n− 1n〉 (η−,i)2

=
n∑

i<j=1

2
〈n i〉 〈j n− 1〉
〈n− 1n〉 η−,i · η−,j +

n∑
i=1

〈n i〉 〈i n− 1〉
〈n− 1n〉 (η−,i)2 .

(3.2.21)

We also comment that it is straightforward to show that the expression (3.2.16) is cyclically

invariant. Defining

V (1, 2, . . . , n) ≡
n∑

i<j=1

〈i j〉 η−,i · η−,j , (3.2.22)

then isolating the terms with label ‘1’,

n∑
i<j=1

〈i j〉 η−,i · η−,j =
n∑
j=1

〈1 j〉 η−,1 · η−,j︸ ︷︷ ︸
= 0 due to

n∑
j=1

λjη−,j = 0

+
n∑

i<j=2

〈i j〉 η−,i · η−,j = V (2, 3, . . . , n) ,

(3.2.23)

Using the same argument it follows that V (2, 3, . . . , n) = V (2, 3, . . . , n, 1), so V (1, 2, . . . , n, ) =

V (2, 3, . . . , n, 1) as required.

For the case of three external legs, the form factor F3,3 is simply equal to one, or

(η−,1)2(η−,2)2(η−,3)2 in the supersymmetric language. Indeed, it is easy to check that

(3.2.16) evaluated for n = 3 reproduces this result. Having established the correctness of

F3,3 for three external legs, we will prove the validity of (3.2.16) for all n by induction

using the BCFW recursion relation.

A caveat is in order here: for adjacent BCFW shifts, (3.2.16) has a residue at z →∞.

The physical interpretation of this behaviour is interesting and will be discussed in §3.2.3.

On the other hand, F3,n has a good large-z behaviour under next-to-adjacent shifts, which

we will use in the next section to prove (3.2.16) for generic n.

Proof for general n from recursion relations with non-adjacent shifts

We now move on to proving (3.2.16) using recursion relations. We consider the form factor

with n+ 1 external particles under the following next-to-adjacent BCFW shifts, which we
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denote by (2̂, n+ 1),

λ2 → λ2 + zλn+1 ,

λ̃n+1 → λ̃n+1 − zλ̃2 ,

η−,n+1 → η−,n+1 − zη−,2 .

(3.2.24)

Since in the MHV case we only have a three-particle MHV amplitude attached to an n-

particle MHV form factor, there are two diagrams to consider, shown in Figure 3.1.

Figure 3.1: The two BCFW recursive diagrams contributing to FMHV
3,n+1 under a next-to-

adjacent shift (2̂, n+ 1). The amplitude on the right is MHV.

These are explicitly given by

FMHV
3,n (P̂1, 3, . . . , n, n+ 1; q, γ+)

1

s12
AMHV(−P̂1, 1, 2̂) , P̂1 = p1 + p̂2 , (3.2.25)

FMHV
3,n (1, P̂2, 4, . . . , n,+1; q, γ+)

1

s23
AMHV(−P̂2, 2̂, 3) , P̂2 = p̂2 + p3 , (3.2.26)

where FMHV
3,n is given in (3.2.16) while

AMHV(1, 2, 3) =
δ(4)

(
η1[23] + η2[31] + η3[12]

)
[12][23][31]

. (3.2.27)

It is straightforward to evaluate these two diagrams, and the corresponding results are

Diag 1 = FMHV
2,n+1

〈23〉 〈1n+ 1〉
〈13〉 〈2n+ 1〉

 n+1∑
i>j=4

〈i j〉 η−,i · η−,j +
n+1∑
j=4

〈3 j〉 η−,3 · η−,j

+

n+1∑
j=3

〈1 j〉
(
η−,1 +

〈2n+ 1〉
1n+ 1

η−,2
)
· η−,j

 ,

Diag 2 = FMHV
2,n+1

〈12〉 〈3n+ 1〉
〈13〉 〈2n+ 1〉

 n+1∑
i<j=4

〈i j〉 η−,i · η−,j + 〈13〉 η−,1 ·
(
η−,3 +

〈2n+ 1〉
〈3n+ 1〉η

−,1
)

+
n+1∑
j=4

〈3 j〉
(
η−,3 +

〈2n+ 1〉
〈3n+ 1〉η

−,1
)
· η−,j

 . (3.2.28)
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Summing these two contributions by collecting coefficients of η−,i · η−,j , we obtain the

expected result for the (n+ 1)-particle form factor,

FMHV
3,n+1 = FMHV

2,n+1

n+1∑
i<j=1

〈i j〉 η−,i · η−,j . (3.2.29)

This completes the proof of our result for F3,n via the BCFW recursion relation.

A few examples of component form factors

To conclude this section, it is useful to present a couple of examples of component form

factors. In particular, we will look at the lowest component of Tk (i.e. the coefficient of

the lowest power of θ+ in (3.2.5)), which is given by the scalar operator8

Ok(x) ≡ Tr
[
φ12(x)k

]
. (3.2.30)

To begin with, we consider the simple case k = 3. From Feynman diagrams, it is immediate

to see that at tree level the form factor of O3(x) is equal to one (apart from a trivial

momentum conservation delta function):

F3,3(1φ12 , 2φ12 , 3φ12 ; q) ≡
∫
d4x e−iq·x 〈1φ12 , 2φ12 , 3φ12 |Tr

[(
φ12(x)

)3]|0〉
= δ(4)

(
q −

3∑
i=1

λiλ̃i
)
.

(3.2.31)

From (3.2.16), we can immediately derive the expression for the n-point MHV form factor

with three scalars and n− 3 positive-helicity gluons. This is given by

FMHV
3,n ({g+}, aφ12 , bφ12 , cφ12 ; q) =

〈ab〉 〈bc〉 〈ca〉
〈12〉 〈23〉 · · · 〈n1〉 δ

(4)
(
q −

n∑
i=1

λiλ̃i
)
, (3.2.32)

where the three scalars φ12 are at positions a, b, c. Notice that (3.2.32) scales as (λi)0 for

i ∈ {a, b, c} and (λi)−2 for i /∈ {a, b, c} as required.

In fact, similar arguments can be used to write down a very concise formula for the

MHV form factor of Ok with k scalars and n− k positive-helicity gluons for general k. It

contains a ratio of Parke-Taylor factors, where in the numerator only the (ordered) scalar

particle momenta appear, while the denominator is the standard Parke-Taylor expression

8In all our computations we will choose the reference directions such that φ++ ≡ φ12.
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for n particles,

FMHV
k,n ({g+}, iφ12

1 , iφ12
2 , . . . , iφ12

k ; q) =
〈i1 i2〉 〈i2 i3〉 · · · 〈ik i1〉
〈12〉 〈23〉 · · · 〈n1〉 δ(4)

(
q −

n∑
i=1

λiλ̃i
)
. (3.2.33)

The correctness of (3.2.33) can easily be shown using BCFW recursion relations [38, 39]

with adjacent shifts applied to form factors [110]. We will not present this proof here,

rather we will now consider its supersymmetric generalisation.

3.2.3 A new recursion relation and conjecture for the MHV super form

factors of Tk

In this section we will propose a new recursion relation for the form factors of the half-

BPS supersymmetric operators Tk, shown below in (3.2.37). This recursion relation is

quite different from the usual BCFW recursion relation applied to form factors, in the

sense that it relates form factors of operators Tk with different k. In the following we

will motivate this recursion relation, whose origin lies in the presence of certain boundary

terms in the usual supersymmetric BCFW recursion relation for Tk with adjacent shifts.

Following this, we will conjecture an expression for the MHV form factors of the operators

Tk for general k and show that it satisfies this new recursion relation as well as the cyclicity

requirement for some values of k and n.

A new recursion relation for form factors

As observed in §3.2.2, the tree-level expression (3.2.16) develops a non-vanishing large-

z behaviour under an adjacent BCFW shift. In the case of T3, we can circumvent this

problem by using a next-to-adjacent shift, for which there is no pole at infinity. Indeed,

this is the strategy we followed in §3.2.2 in order to determine the form factors of T3

from recursion relations. The situation is worse for the operators Tk with k > 3; one can

convince oneself that even with non-adjacent shifts the bad large z behaviour cannot be

eliminated.

This feature impels us to look for other means to study form factors of Tk for general

k. Fortunately, the exploration of the boundary term for adjacent BCFW shifts brought

to our attention an intriguing recursion relation involving the MHV form factors Fk,n,

Fk−1,n−1 and Fk,n−1, as we will now discuss.
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Considering the n-particle form factor FMHV
k,n shifted according to the BCFW shifts

λn → λn − zλn−1 ,

λ̃n−1 → λ̃n−1 + zλ̃n ,

ηn−1 → ηn−1 + zηn ,

(3.2.34)

the claim is that its residue at z →∞, which we denote by RMHV
k,n , is given by

RMHV
k,n = (η−,n)2F̃MHV

k−1,n−1(1, . . . , n− 1; q, γ+) . (3.2.35)

In this equation and in the following, F̃ is the form factor F with the momentum and

supermomentum conservation delta-functions stripped off. For k = 3, we can confirm

this by simply using our result for FMHV
3,n given in (3.2.16). Performing the BCFW shift

(3.2.34) and using supermomentum conservation, we find that the residue at z → ∞ is,

on the support of the delta- functions,

RMHV
3,n =

n−2∑
i=1
〈i n− 1〉 η−,i · η−,n

〈12〉 〈23〉 · · · 〈n− 1 1〉 =
(η−,n)2

〈12〉 〈23〉 · · · 〈n− 1 1〉 ,
(3.2.36)

which is indeed simply (η−,n)2 × F̃MHV
2,n−1(1, . . . , n− 1; q, γ+).

Conceptually this result is very interesting since it shows that the form factors of

the operator Tk are related to the form factors of the operator Tk−1 in a simple manner.

In practice, (3.2.35) allows us to determine the n-particle form factor FMHV
k,n from the

(n− 1)-particle form factors FMHV
k,n−1 and FMHV

k−1,n−1 in the following way:

F̃MHV
k,n (1, . . . , n; q, γ+) =

〈n− 1 1〉
〈n− 1n〉 〈n 1〉F̃

MHV
k,n−1(1′, 2, . . . , n− 2, (n− 1)′; q, γ+)

+ (η−,n)2 F̃MHV
k−1,n−1(1, . . . , n− 1; q, γ+) ,

(3.2.37)

where we have solved the BCFW diagram in the inverse soft form [143, 144, 145, 3]; indeed

the first term in (3.2.37) simply adds particle n to the (n− 1)-particle form factor FMHV
k,n−1

with a soft factor. To maintain momentum conservation, we need to shift the legs adjacent
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to n, i.e. (n− 1)′ and 1′, with the corresponding shifted spinors given by

λ̃(n−1)′ = λ̃n−1 +
〈n 1〉
〈n− 1 1〉 λ̃

n , λ̃1′ = λ̃1 +
〈nn− 1〉
〈1n− 1〉 λ̃

n ,

η(n−1)′ = ηn−1 +
〈n 1〉
〈n− 1 1〉η

n , η1′ = η1 +
〈nn− 1〉
〈1n− 1〉 η

n .

(3.2.38)

The second term in (3.2.37) is again an (n − 1)-particle form factor, but now for the

operator Tk−1. The factor (η−,n)2 ensures that the fermionic degree of the expression is

correct. The recursion relation may be recast into a slightly different form by removing

the Parke-Taylor prefactor,

fk,n(1, . . . , n) = fk,n−1(1′, 2, . . . , n− 2, (n− 1)′)

+ (η−,n)2 fk−1,n−1(1, . . . , n− 1)
〈n− 1n〉 〈n 1〉
〈n− 1 1〉 ,

(3.2.39)

where we have defined fk,n(1, . . . , n) from the relation

FMHV
k,n (1, . . . , n; q, γ+) ≡ FMHV

2,n (1, . . . , n; q, γ+) fk,n(1, . . . , n) . (3.2.40)

Given the fact that the form factors of T2 are simply given by the Parke-Taylor formula, and

the k-point form factor of the operator Tk is just one (or, in a supersymmetric language,∏k
i=1(η−,i)2, the recursion relation (3.2.37) fully determines all MHV form factors for

any operator Tk. Indeed, in the next section we will propose an explicit solution to the

recursion relation for the form factor FMHV
k,n .

A peek into NMHV form factors of Tk

Having found a novel recursion relation (3.2.37) for MHV super form factors, we would

like to study how to generalise it to non-MHV helicity configurations. Non-adjacent shifts

also work for non-MHV form factors of T3, which in principle fully determines all form

factors of this operator. We can use them in order to derive the expression of non-MHV

form factors, of which we can then study the large-z behaviour under adjacent shifts.

The simplest non-MHV form factor is the NMHV four-particle form factor of T3. From

the recursion relation with non-adjacent BCFW shifts on legs 2 and 4 given in Figure 3.2,
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Figure 3.2: Recursion relation for the four-point NMHV form factor of T3. The amplitude
on the left is MHV.

we find the following result,

FNMHV
3,4 = δ(4)

(
γ+ −

∑
i

λiη+,i
)
δ(4)
(∑

i

λiη−,i
)δ(4)

(
[23]η4 + [34]η2 + [42]η3

)
(η−,1)2

[23][34][42]s2
234

− (1↔ 3)

= δ(4)(γ+ −
∑
i

λiη+,i)

4∏
i=1

(η−,i)2
[δ(2)([23]η+,4 + [34]η+,2 + [42]η+,3)

[23][34][42]

− (1↔ 3)
]
.

(3.2.41)

If we expand the fermionic delta function δ(2)
(
[23]η+,4 + [34]η+,2 + [42]η+,3

)
, we find non-

trivial agreement with the result (3.2.65) that we will derive later using MHV rules.

Having obtained (3.2.41), we can find its behaviour under adjacent BCFW shifts, for

instance,

λ1 → λ1 − z λ2 ,

λ̃2 → λ̃2 + z λ̃1 ,

η2 → η2 + z η1 ,

(3.2.42)

doing so, we find that the residue of FNMHV
3,4 at large z is given by

RNMHV
3,4 = δ(4)

(
γ+ −

4∑
i=1

λiη+,i
)
δ(4)
( 4∑
i=1

λiη−,i
)z4 δ(4)([13]η4 + [34]η1 + [41]η3)

z2 [13][34][41](2 q · p1̂)2
(η−,1)2

=
q4

〈2|q|1]2
(η−,1)2 × F̃NMHV

2,3 (3, 4, 1; q, γ+) .

(3.2.43)

In the last step we related the residue of the NMHV form factor of the operator T3 at

infinity with the NMHV form factor of T2, similarly to the case of MHV form factors

considered earlier. From (3.2.43) we see that the structure of this boundary term is more

complicated than in the MHV case. It would be interesting to understand this boundary

term for a general non-MHV form factor.
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Supersymmetric MHV form factors of Tk

In this section we will propose a solution to the recursion relation (3.2.37) for the form

factor FMHV
k,n . We begin by considering the case k = 4. After computing a few simple

examples by using the recursion relation (3.2.37), a clear pattern appears for FMHV
4,n , which

is given by

FMHV
4,n = FMHV

2,n

n−3∑
1≤i≤j

n−2∑
j<k≤l

(2− δij)(2− δkl)
〈n i〉 〈j k〉 〈l n− 1〉
〈n− 1n〉 (η−,i · η−,j)(η−,k · η−,l) .

(3.2.44)

This is clearly a generalisation of the k = 3 case for FMHV
3,n considered in (3.2.18).

Further generalisation of FMHV
3,n and FMHV

4,n leads to a proposal for FMHV
k,n for arbitrary

k. In general we will have 2(k − 2) nested sums with fermionic degree 2(k − 2) in η−

(besides the delta function of supermomentum conservation). Our conjecture for FMHV
k,n is

FMHV
k,n = FMHV

2,n

n−k+1∑
1≤a1≤b1

n−k+2∑
b1<a2≤b2

· · ·
n−2∑

bk−3<ak−2≤bk−2

× Ca1,b1,a2,b2,··· ,ak−2,bk−2

k−2∏
α=1

(η−,aα · η−,bα) ,

(3.2.45)

where the coefficients Ca1,b1,a2,b2,··· ,ak−2,bk−2
are natural generalisations of the coefficient in

(3.2.44),

Ca1,b1,a2,b2,··· ,ak−2,bk−2
=(

k−2∏
α=1

(2− δaαbα)

)
〈na1〉 〈b1 a2〉 · · · 〈bk−3 ak−2〉 〈bk−2 n− 1〉

〈n− 1n〉 .
(3.2.46)

In the summations in (3.2.45) we sum over pairs of indices aα, bα, for α = 1, . . . , k − 2.

We have compared (3.2.45) to the result obtained from the recursion relation (3.2.37) and

agreement has been found for all cases we have checked, namely k ≤ 6, n ≤ 7.

We would like to stress that, unlike the case of the recursion for the form factor

F3,n with non-adjacent shifts, the recursion relation (3.2.37) is a conjecture, hence it is

important to check the correctness of the resulting Fk,n in (3.2.45), obtained from studying

(3.2.37). One non-trivial test consists in checking the cyclicity of the result. In Appendix

C.1 we prove that our result for FMHV
4,n indeed enjoys this symmetry in a very non-trivial

way. Unfortunately we have not been able to prove the cyclicity of Fk,n for arbitrary k,

however we have checked various cases for k ≤ 6 with Mathematica and found that the
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required symmetry is indeed present. The proof of F4,n and these checks provide support

both to the conjectured recursion relation (3.2.37) and solution (3.2.45).

3.2.4 MHV rules for Fk,n

In [21], MHV rules for the form factor of the stress-tensor multiplet operator were con-

structed. Here we show in a number of concrete applications that these MHV rules can

directly be extended to the form factors of the operators Tk with k > 2. In this approach,

the usual MHV vertices of [30] are augmented by a new set of vertices obtained by continu-

ing off-shell the holomorphic form factor expression for FMHV
k,n using the same prescription

as in [30]. In the following we will illustrate the application of this technique by computing

a few examples, but we comment that the approach can be used in general to obtain form

factors with higher MHV degree and number of loops, as was done in [146] for one-loop

MHV amplitudes.

Four-particle bosonic NMHV form factor

As a first example, we consider the bosonic form factor FNMHV(1φ12 , 2φ12 , 3φ12 , 4−; q) and

compute it with MHV rules. There are two diagrams that contribute to this, shown in

Figure 3.3.

Figure 3.3: Expansion of FNMHV(1φ12 , 2φ12 , 3φ12 , 4−; q) using MHV rules.

These result in the respective expressions

[
FNMHV

3,4 (1φ12 , 2φ12 , 3φ12 , 4−; q)
](1)

= FMHV
3,3 (2φ12 , 3φ12 , P φ12

A ; q)AMHV
3 (−P φ34

A , 4−, 1φ12)

(3.2.47)[
FNMHV

3,4 (1φ12 , 2φ12 , 3φ12 , 4−; q)
](2)

= FMHV
3,3 (1φ12 , 2φ12 , P φ12

B ; q)AMHV
3 (−P φ34

B , 3φ12 , 4−) ,

(3.2.48)

with

PA = p1 + p4 , |A〉 = (p1 + p4)|ξ] ,

PB = p3 + p4 , |B〉 = (p3 + p4)|ξ] ,
(3.2.49)
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where |ξ] is the reference spinor used in the off-shell continuation needed in order to define

spinors associated to the internal momenta PA,B, cf. (2.2.9) [30]. A crucial check of the

correctness of the procedure is to confirm that the final answer for an amplitude or form

factor evaluated with MHV diagrams is independent of the choice of the reference spinor

|ξ].
Using the fact that that F (aφ12 , bφ12 , cφ12 ; q) = 1 (omitting a delta function of momen-

tum conservation), the first contribution (3.2.47) is simply given by

1

〈14〉 [14]
× 〈A4〉2 〈14〉2
〈A1〉 〈A4〉 〈41〉 = − 〈4A〉

[14] 〈A1〉 = − 〈4|1|ξ]
[14][ξ|4|1〉 . (3.2.50)

Analogously, the second contribution (3.2.48) is

1

〈34〉 [34]
× 〈4B〉2 〈34〉2
〈34〉 〈4B〉 〈B3〉 =

〈4B〉
[34] 〈B3〉 =

〈4|3|ξ]
[34][ξ|4|3〉 . (3.2.51)

Summing these, we get

〈4|3|ξ][ξ|4|1〉[14]− 〈4|1|ξ][34][ξ|4|3〉
[14][ξ|4|1〉[34][ξ|4|3〉 =

[ξ|p4 p1 p4 p3|ξ]− [ξ|p4 p3 p4 p1|ξ]
[ξ4] 〈43〉 [34][41] 〈14〉 [4ξ] . (3.2.52)

The numerator can be rewritten as

[ξ4] 〈41〉 〈43〉 ([14][3ξ]− [34][1ξ]) = [ξ4]2 〈41〉 〈43〉 [31] , (3.2.53)

thus the final result is independent of the choice of |ξ] and is given by

FNMHV
3,4 (1φ12 , 2φ12 , 3φ12 , 4−; q) =

[31]

[34][41]
, (3.2.54)

which is the k-increasing inverse soft factor, as expected.

Four-particle super form factors

Figure 3.4: Expansion of FNMHV
3,4 using supersymmetric MHV rules.

In this section we compute the supersymmetric form factor FNMHV
3,4 using MHV dia-
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grams. The diagrams contributing are shown in Figure 3.4, which can be written as

FNMHV
3,4 = FMHV

3,3 (1, 2, P ; q, γ+)
1

〈34〉 [34]
AMHV

3 (−P, 3, 4) + cyclic(1, 2, 3, 4) , (3.2.55)

where

P = p3 + p4 , |P 〉 = (p3 + p4)|ξ] , (3.2.56)

while the MHV superamplitude is

AMHV
n (1, . . . , n) =

δ(8)
(∑n

i=1 λ
iηi
)

〈12〉 · · · 〈n1〉 . (3.2.57)

We consider first the term on the left of Figure 3.4. Writing the form factor as
(η−,P )2

〈12〉2
,

the integration over η−,P becomes simply∫
d2η−,P (η−,P )2δ(4)

(
λ1η−,1 + λ2η−,2 + λP η−,P

)
δ(4)
(
λ3η−,3 + λ4η−,4 − λP η−,P

)
= 〈12〉2 〈34〉2

4∏
i=1

(η−,i)2 .

(3.2.58)

Integrating over η+,P gives∫
d2η+,P δ(4)

(
γ+ − λ1η+,1 − λ2η+,2 − λP η+,P

)
δ(4)
(
λ3η+,3 + λ4η+,4 − λP η+,P

)
= δ(4)

(
γ+ −

4∑
i=1

λiη+,i)δ(2)
(
〈3P 〉 η+,3 + 〈4P 〉 η+,4

)
.

(3.2.59)

substituting this into (3.2.55), we get

FNMHV
3,4 =

4∏
i=1

(η−,i)2δ(4)
(
γ+ −

4∑
i=1

λiη+,i
)
δ(2)
(
〈3|4|ξ]η+,3 + 〈4|3|ξ]η+,4

) 1

[ξ|4|3〉[34]〈4|3|ξ] .

(3.2.60)

We note that (3.2.60) does not scale with the reference spinor |ξ]. Also, we see that all

the dependence on |ξ] cancels out for all coefficients of η+,i · η+,j as follows. For the cross

terms i 6= j, the only contribution comes from the diagram with particles i and j on

the amplitude side, for example the diagram in Figure 3.4 is the only one which carries

η+,3 · η+,4 with a coefficient

〈3|4|ξ]〈4|3|ξ]
[ξ|4|3〉[34]〈4|3|ξ] =

1

[34]
. (3.2.61)
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For the terms with (η+,i)2, the contribution comes from two diagrams with particle i on

the amplitude side. Taking as an example the (η+,4)2 coefficient, we must also take into

account the following particular diagram,

FMHV
3,3 (2, 3, P ; q, γ+)

1

〈41〉 [41]
AMHV

3 (−P, 4, 1)

=
4∏
i=1

(ηi,−)2δ(4)(γ+ −
4∑
i=1

λiη+,i)δ(2)
(
〈4|1|ξ]η+,4 + 〈1|4|ξ]η+,1

) 1

[ξ|1|4〉[41]〈1|4|ξ] ,
(3.2.62)

where

P = p4 + p1 , |P 〉 = (p4 + p1)|ξ] . (3.2.63)

Thus, summing the coefficients of (η+,4)2 we get:

[ξ|1|4〉
[41]〈1|4|ξ] +

〈4|3|ξ]
[ξ|4|3〉[34]

=
[13]

[14][43]
. (3.2.64)

This cancellation of the reference spinor clearly happens for all i = 1, . . . , 4. Our final

result for this form factor is

FNMHV
3,4 = ∆4|4+

4∏
i=1

(η−,i)2 ×
4∑
i=1

(
(η+,i)2 [i+ 1 i− 1]

[i+ 1 i][i i− 1]
+
η+,i · η+,i+1

[i i+ 1]

)
, (3.2.65)

where we have defined ∆4|4+ ≡ δ(4)
(
q−

4∑
i=1

λiλ̃i
)
δ(4)
(
γ+−

4∑
i=1

λiη+,i
)
. As mentioned earlier,

this result agrees with what we have obtained from non-adjacent BCFW shifts.

3.3 One loop

In this section we move on to the one-loop level. We begin by deriving the universal form

of the IR-divergent part of generic form factors in N = 4 SYM. This is determined by a

single two-particle diagram where a four-point amplitude sits on one side of the cut. We

then compute the three-point form factor of T3 at one loop, and then extend this result

to n points using supersymmetric quadruple cuts [147]. Finally, we present the expression

for the infinite sequence of n-point MHV form factors of Tk for arbitrary k and n.

On general grounds, we can expand F (1)
k,n as9

F (1)
k,n = −F (0)

k,n

n∑
i=1

si i+1I
1m
3;i (si i+1) + finite boxes + three-mass triangles , (3.3.1)

9The precise definitions of the various triangle and box integrals can be found in Appendix B.1.
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where I1m
3;i is a one-mass triangle, and si i+1 ≡ (pi + pi+1)2. We can motivate (3.3.1) by

knowing that the answer should be expressed in terms of triangles and boxes (bubbles

are absent since the theory is finite in the UV). Furthermore, the IR-divergent part of

any one-loop form factor must be proportional to its tree-level counterpart in order to

guarantee the correct exponentiation of these divergences, as we will explicitly show in the

next section. This explains the first term in (3.3.1). In practice, all the IR divergences

contained in the box functions which do not contain two-particle invariants si i+1 have to

cancel with corresponding divergences from one-mass triangles, leaving behind only finite

boxes and a collection of one-mass triangles where the massless legs are pi and pi+1. In

Appendix C.2 we explicitly compute the bosonic form factor F
(1)

Trφ3
12

(1φ12 , 2φ12 , 3φ12 , 4+; q)

and show that the above structure holds, i.e. the IR divergent parts of the box functions

cancel against two-mass triangles, leaving only the finite part of the boxes and one-mass

triangles.

The above discussion leaves room for three-mass triangles, and does not put any con-

straints on what finite boxes will appear. However, the form factors with MHV helicity

configuration which we will consider are special in two ways:

1. Three-mass triangles are in fact absent. This can easily be understood by counting

the fermionic degree of the cut diagram. Consider a triple cut contributing to this

form factor, with two amplitudes and one form factor participating to the cut. The

MHV form factor Fk,n has fermionic degree 2(k − 2) + 8, and hence one of the two

superamplitudes must be a three-point MHV superamplitude, so that the overall

fermionic degree is 2(k−2)+8+8+4−4×3 = 2(k−2)+8. Thus, at most two-mass

triangles can be present.

2. Only two-mass easy boxes can appear (or one-mass for n ≤ 3), similarly to the one-

loop MHV superamplitudes. The reason is the same as for the MHV superampli-

tudes: in order to obtain the correct fermionic degree there must be two three-point

MHV superamplitudes participating in the cut (the overall fermionic degree being

2(k−2)+8+4+4+8−4×4 = 2(k−2)+8), and these two three-point MHV super-

amplitudes must not be adjacent in order not to constrain the external kinematics.

Of course already at the NMHV case we expect to find two-mass hard, three-mass

and four-mass boxes as well as three-mass triangles, as indicated in (3.3.1).

The strategy we will follow will consist in computing the coefficient of the finite box

functions using quadruple cuts. The complete result for the one-loop MHV super form
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factor will then be given by the sum of these finite box functions with the one-mass

triangles accounting for the expected IR divergences.

In the remaining part of this section we will first derive the IR-divergent part of general

one-loop form factors. Next, we will consider the simplest case, that of k = n, which we

call Sudakov in analogy with T2 (we also call these form factors minimal), which we will

compute using two-particle cuts. Finally, we will derive the expression of MHV form

factors for general n and k using quadruple cuts.

3.3.1 General IR-divergent structure of form factors

As noted in [148], the IR divergences of generic one-loop amplitudes in N = 4 SYM are

captured by a particular two-particle cut diagram where on one side of the cut there is

a four-point amplitude.10 The same is true for form factors, and their IR divergences

Figure 3.5: The two-particle cut diagram which captures the IR divergences of general
one-loop form factor. The integration region responsible for the IR divergences is the
forward-scattering region, where `1 → −pi+1 and `2 → −pi.

are fully captured by a two-particle cut diagram where the participating amplitude is a

four-point amplitude. IR divergences arise from a particular region in the space of internal

momenta `1 and `2, namely the forward scattering region (see Figure 3.5). Indeed, when

`1 → −pi+1, the four-point kinematics also forces `2 → −pi, and this creates a simple pole

which is responsible for the IR divergence of the amplitudes. Following the same proof as

in [149], it is easy to show that in the limit `1 → −pi+1 and `2 → −pi, the two-particle

cut in question can be uplifted to a one-mass triangle integral multiplied by the tree-level

form factor. Summing over all the channels, we obtain the leading IR divergence of generic

form factors11

F IR
k,n = −F (0)

k,n

n∑
i=1

si i+1I
1m
3;i (si i+1) = F (0)

k,n

n∑
i=1

(−si i+1)−ε

ε2
. (3.3.2)

10See also [149] for an application of the same ideas to dual conformal anomalies at one loop.
11In writing the second equality we have dropped a factor of eγEε rΓ = 1 + O(ε2), where rΓ is defined

in (B.1.2).
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3.3.2 Three-point super form factor of T3

As a warm-up, we start by computing the simplest form factor at one loop, namely the

Sudakov form factor.

Figure 3.6: (q − p1)2 two-particle cut for the Sudakov super form factor of T3.

The cut of F (1)
3,3 across the (q − p1)2 channel, shown in Figure 3.6, is given by

∫
dLIPS(`1, `2;P )F3,3(1, `1, `2; q, γ+) AMHV(−`1, 2, 3,−`2)

=

∫
dLIPS(`1, `2;P )

(η−,1)2

〈`1 `2〉2
〈`1 `2〉4

〈23〉 〈3 `2〉 〈`2 `1〉 〈`1 2〉

=
(η−,1)2

〈23〉2
∫
dLIPS(`1, `2;P )

〈23〉 [3 `2] 〈`2 `1〉 [`1 2]

4(p3 · `2)(p2 · `1)
,

(3.3.3)

where P = q − p1, the MHV superamplitude is given in (3.2.57), and dLIPS(`1, `2;P )

stands for Lorentz Invariant Phase Space measure, which is in general defined as

dLIPS(`1, `2, . . . , `n;P ) ≡
n∏
i=1

d4`iδ
+(`2i )× δ(4)

( n∑
j=1

`i − P
)
. (3.3.4)

Using `1 + `2 = p2 + p3, the numerator of (3.3.3) can be written as 2s23(p2 · `1), thus the

result is a one-mass triangle with massive corner P , as shown in Figure 3.7. There is no

Figure 3.7: The result for the (q − p1)2 cut of the one-loop Sudakov form factor of T3.

ambiguity in lifting this cut to a full integral [150]. Summing over the contribution of all

cuts we arrive at the complete result for F (1)
3,3 ,

F (1)
3,3 = F (0)

3,3

3∑
i=1

(−si i+1)−ε

ε2
. (3.3.5)
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We mention that this one-loop Sudakov form factor of Tr
[
(φ12)3

]
was computed earlier in

[111] and our result agrees with theirs.

3.3.3 n-point MHV super form factors of T3

As stated earlier, we only need to compute the quadruple cut diagrams of the one-loop

MHV super form factor of T3. The final result will then be expressed as a sum of the

IR-divergent expression (3.3.2) plus finite two-mass easy boxes, whose coefficients we are

going to determine now using supersymmetric quadruple cuts [147].

The two-mass easy quadruple cuts we consider are shown in Figure 3.8, where for

convenience we label the massless legs 1 and r.

Figure 3.8: Quadruple cut of the super form factor FMHV(1)
3,n .

The coefficient of the corresponding box is given by

C(1, P, r,Q) =
1

2

∑
S±

∫ 4∏
i=1

d4ηi FMHV
3,r (2, . . . , r − 1, `3,−`2; q, γ+)×AMHV(−`3, r, `4)

×AMHV(−`4, r + 1, . . . , n, `1)×AMHV(−`1, 1, `2) ,

(3.3.6)

where the sum is over the solutions to the cut equations. Since only one solution to the

cut equations `21 = `22 = `23 = `24 = 0 contributes to (3.3.6), one can drop the sum over

S±, leaving an overall factor of 1/2. The form factor FMHV
3,r is given in (3.2.18), and

the MHV and MHV superamplitudes entering this expression are given in (3.2.57) and

(3.2.27), respectively. Because of the presence of MHV three-particle amplitudes on the

massless corners, we have

λ`3 ∝ λ`4 ∝ λr , λ`1 ∝ λ`2 ∝ λ1 . (3.3.7)

Using the delta-functions contained in the MHV and MHV amplitudes, together with

the conditions (3.3.7) one can quickly determine the fermionic variables associated to the
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internal supermomenta,

η`4 =
n∑

i=r+1

〈1 i〉
〈1 `4〉

ηi , η`1 = −
n∑

i=r+1

〈i r〉
〈`1 r〉

ηi , (3.3.8)

and

η`3 =
[`4 `3]

[`4 r]
ηr +

n∑
i=r+1

〈1 i〉 [`3 r]
〈1 `4〉 [`4 r]

ηi , (3.3.9)

η`2 =
[`2 `1]

[1 `1]
ηr +

n∑
i=r+1

〈1 r〉 [1 `2]

〈`1 r〉 [1 `1]
ηi . (3.3.10)

Integrating out the internal η variables produced the two expected supermomentum con-

servation delta-functions δ(4)(γ+ −∑n
i=1 λ

iη+,i) δ(4)(
∑n

i=1 λ
iη−,i) as well as a Jacobian

J = (〈`1 `4〉 [r `4][`1 1])4 = [1|`1 `4|r]4 . (3.3.11)

Let us now manipulate the Parke-Taylor prefactors coming from (3.3.6) together with

(3.3.11):

1

〈`2 2〉 . . . 〈r − 1 `3〉 〈`3 `2〉
× 1

[`3 r][r `4][`4 `3]

× 1

〈`4 r + 1〉 . . . 〈n `1〉 〈`1 `4〉
× 1

[`1 1][1 `2][`2 `1]
× (〈`1 `4〉 [r `4][`1 1])4

= PTn[1|`1 `4|r]3
〈n1〉 〈12〉 〈r − 1 r〉 〈r r + 1〉

〈r − 1|`3 `4|r + 1〉〈2|`2 `1|n〉[1|`2 `3|r]
,

(3.3.12)

where PTn ≡ 1/(〈12〉 〈23〉 · · · 〈n1〉). This expression can be considerably simplified by

using momentum conservation and the replacements (3.3.7) inside expressions which are

homogeneous functions of degree zero of the spinors associated to the cut loop momenta.

In this way one can rewrite this product of amplitudes as

−PTn
[1 `2] 〈`2 r〉 [`3 r] 〈`3 1〉 〈r r + 1〉

〈r r + 1〉 = PTn Tr+(`2 pr `3 p1) . (3.3.13)

Using again momentum conservation and (p1 · `2) = 0 we can rewrite the trace as

Tr+(`2 pr `3 p1) = Tr+(Qpr P p1) = 2(p1 · P )(pr ·Q) + 2(pr · P )(p1 ·Q)− s1r(Q · P ) .

(3.3.14)
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Introducing the kinematic variables

s ≡ (pr +Q)2 , t ≡ (pr + P )2 , (3.3.15)

we can write s1r = −(s+ t− P 2 −Q2). With that we can finally rewrite the trace as

Tr+(`2 pr `3 p1) = P 2Q2 − st . (3.3.16)

Substituting this back into (3.3.6), we arrive at the result for the supercoefficient,

C(1, P, r,Q) = FMHV(0)
2,n

(
P 2Q2 − st

)
δ
(1

2

r−1∑
i<j=2

(2− δij)
〈1 i〉 〈j r〉
〈r 1〉 η−,i · η−,j

)
. (3.3.17)

We note that the delta-function appearing above corresponds precisely to that of the form

factor entering the quadruple cut, where we conveniently singled out the two internal loop

legs `2 and `3 (the corresponding spinor variables being in turn proportional to the two

external momenta entering the adjacent massless corners, λ`2 ∝ λ1, λ`3 ∝ λr , cf. (3.3.7)).

We can therefore rewrite (3.3.17) as

C(1, P, r,Q) = FMHV(0)
2,n

(
P 2Q2 − st

)
f3,r(2, . . . , r − 1, r, 1) , (3.3.18)

where f3,r is defined in (3.2.40)12.

We are now ready to write down the full result for the one-loop MHV super form factor

FMHV(1)
3,n for general n. It is given by

FMHV(1)
3,n = FMHV(0)

3,n

n∑
i=1

(−si i+1)−ε

ε2

+ FMHV(0)
2,n

∑
a,b

f3(a+ 1, . . . , b− 1, b, a)Fin2me(pa, pb, P,Q) .

(3.3.19)

For clarity, we illustrate (3.3.19) graphically in Figure 3.9.

3.3.4 n-point MHV super form factors of Tk

The one-loop result for general k is not qualitatively different from that for k = 3 computed

in the previous section; the only undetermined coefficients are those of finite two-mass easy

box-functions, which we find using quadruple cuts. Indeed, once we know the result for

12We stress that, in (3.3.18), we should use the form of the quantity f3,r (defined in (3.2.40)) given in
(3.2.18) and not (3.2.16). The reason is that these two expressions are only equivalent on the support of
the delta-function δ

(∑r
i=1 pi − q

)
, which is not true in this case.

76



Figure 3.9: One-loop result for FMHV(1)
3,n . Here P and Q stand for the momenta of the

massive corners and, as usual, s ≡ (P + pa)
2, t ≡ (Q+ pa)

2 .

FMHV(1)
3,n , the generalisation for FMHV(1)

k,n is almost immediate. This is because the tree-

level result (3.2.45) for FMHV(0)
k,n has the same trivial dependence on legs n − 1 and n as

FMHV(0)
3,n . The answer is then an immediate generalisation of (3.3.19):

FMHV(1)
k,n = FMHV(0)

k,n

n∑
i=1

(−si i+1)−ε

ε2

+ FMHV(0)
2,n

∑
a,b

fk(a+ 1, . . . , b− 1, b, a) Fin2me(pa, pb, P,Q) .

(3.3.20)

This is our final, compact expression for the n-point form factor of Tk at one loop with

arbitrary k and n.

3.4 Two loops

In this section we proceed to computing the minimal form factors of Tk at two loops. The

first step consists in using generalised unitarity to construct the two-loop form factors in

terms of a basis of integral functions. Here we are in the fortunate situation where all the

required integral functions are known analytically from the work of [151, 152] in terms of

classical and Goncharov polylogarithms. Such expressions are typically rather long, but

past experience [85, 87, 153, 154, 97, 57, 94] suggests that for appropriate finite quantities,

the final result can be condensed to a much simpler and compact form.

Following this line of thought, and also inspired by the well-known exponentiation

of IR divergences, we will introduce finite remainder functions [75, 76, 82, 83]. These

remainders are defined in terms of two important universal constants, and our calculation

confirms that they coincide with the cusp anomalous dimension and collinear anomalous
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dimension which appear in the definition of remainders of amplitudes [82, 83] and form

factors of T2 [108, 115, 97].13

Finally, we use the symbol of transcendental functions and the related, refined notion

of the coproduct [96] to construct the remainders in an extremely compact form. For the

remainder of F3,3 we find a three-line expression containing only classical polylogarithms,

while the answer for Fk,k is a combination of universal, compact building blocks which

contain classical polylogarithms supplemented by just two Goncharov polylogarithms.

We now present a brief outline of the rest of the chapter. In §3.4.2 we define finite

remainder functions of the minimal two-loop form factors, and use the concept of the

symbol of transcendental functions, revised in §2.3.2, to rewrite the result in terms of

classical polylogarithms only. In §3.4.3 we work out the analytic results for form factors

of Tk with k > 3 and are able to express them in terms of a single universal building

block that depends on three scale-invariant ratios of Mandelstam variables. Again, using

the symbol and coproduct of transcendental functions we find a compact answer which, in

addition to classical polylogarithms, contains also two Goncharov polylogarithms. Finally,

in §3.4.4 we analyse in some detail the behaviour of form factors in collinear and soft limits,

and note that minimal form factors have unconventional factorisation properties compared

to amplitudes and non-minimal form factors.

Colour decomposition and planarity

In this section we briefly consider the colour decomposition of form factors and its impli-

cations for the calculation of two-loop form factors of Tk.
Following the same procedure as for scattering amplitudes, a planar n-point form factor

of a certain single-trace operator O can be expressed as

F a1···an
O,n =

∑
σ∈Sn/Zn

Tr(taσ(1)taσ(2) · · · taσ(n))FO,n(σ(1), σ(2), . . . , σ(n); q, γ+) , (3.4.1)

where ta are fundamental generators of SU(N), and the FO,n are colour-ordered form

factors.

An important remark is in order here. For the case of T2, the minimal (i.e. two-point)

form factor has the colour factor Tr(tatb), which is simply δab. As noticed in [97], this

simple fact has striking consequences for the two-loop calculations. Consider for instance

13This result disagrees with the findings of [111], where a different result for the collinear anomalous
dimension was obtained, see§3.4.2 for more details.
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a two-particle cut of the form

∫
dLIPS(`1, `2; p1 + p2) F (0)

2,2 (`1, `2; q, γ+)×A(1)
4 (−`1,−`2, 1, 2) . (3.4.2)

The colour factor δa`1a`2 arising from the form factor can contract with a double-trace

term from the complete one-loop amplitude A(1)
4 , generating extra powers of N . Hence,

these double-trace terms, which are normally subleading in colour, are lifted to leading

order in N . As a consequence, one has to keep double-trace contributions from A(1)
4 . This

is the reason why planar two-loop form factors of T2 receive contributions from non-planar

integral topologies [108]. In [97] it was shown that this also applies to non-minimal form

factors of T2.

Fortunately this is not the case for k > 2 at two loops. This is because now one can

only have three- or higher-point form factors entering the cuts, which are never dressed

with δab colour factors. This situation is very similar to the case of planar scattering

amplitudes, where only planar integrals contribute. We will make use of this fact in the

two-loop calculation of Fk,k in the following sections.

Note that form factors are still intrinsically non-planar quantities since the operators

are colour singlets. In particular, for form factors Fk,n non-planar integral topologies arise

starting at kth loop order. Moreover, even for one- and two-loop form factors of T2, where

only planar integrals contribute, one cannot define a consistent set of region momenta for

all integrals contributing to a certain form factor.

3.4.1 Minimal form factor of T3 at two loops

Unitarity cuts

In this section we calculate the two-loop form factor F
(2)
3,3 using generalised unitarity. In

particular we show that two-particle cuts combined with two different types of three-

particle cuts are sufficient to fix the result uniquely and express it as a linear combination

of planar two-loop master integrals.

We start by considering the two-particle cuts.

At two-loop level there are two such cuts as shown in Figure 3.10. First, we consider

the cut on the left-hand side of Figure 3.10, where a one-loop form factor is merged with

a tree-level four-point amplitude. The cut integrand is given by

C(1)
s23

=

∫
dLIPS(`1, `2;P )F

(1)
3,3 (1, `1, `2; q)A

(0)
4 (−`2,−`1, 2, 3) , (3.4.3)
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Figure 3.10: Two-particle cuts of F
(2)
3,3 in the kinematic channel s23 = (p2 +p3)2. There are

two possible factorisations: F (1) × A(0) (left) or F (0) × A(1) (right). Cyclic permutations
of the legs 123 generate the remaining two-particle cuts.

where P = p2 + p3 and, making the helicities explicit,

A
(0)
4 (−`φ34

2 ,−`φ34
1 , 2φ12 , 3φ12) =

〈`2 `1〉 〈23〉
〈3 `2〉 〈`1 2〉 =

s23

2(`1 · p2)
, (3.4.4)

F
(1)
3,3 (1φ12 , `φ12

1 , `φ12
2 ; q) = s23 I

1m
3 (`1, `2; p2 + p3) + (q − `2)2 I1m

3 (p1, `1; q − `2)

+ (q − `1)2 I1m
3 (`2, p1; q − `1) . (3.4.5)

Here I1m
3 (a, b; c) is a one-mass triangle integral,

From (3.4.4), it is clear that the effect of A
(0)
4 (−`φ34

2 ,−`φ34
1 , 2φ12 , 3φ12) is simply to attach

the following three-propagator object with numerator s23 to the one-loop form factor:

(3.4.6)

By attaching the structure in (3.4.6) to all the triangles appearing in the one-loop form

factor (3.4.5), we find that the cut integrand C(1)
s23 is given by the following sum,

.

(3.4.7)
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The straight dashed lines in the integrals above indicate that the momenta `1 and `2 are

cut. We now introduce a more concise notation for numerators which will be used in

the following. To indicate a factor of si1i2···in in the numerator of an integral, we draw a

curved dashed line passing through n propagators whose momenta sum to
∑n

j=1 pij . In

this notation, (3.4.7) can be represented as

Figure 3.11: Integrals detected by two-particle cuts in the two-loop form factor F
(0)
3,3 .

Note that at this stage we have also uplifted the cut integrals to full Feynman integrals

by replacing the cut legs by propagators. We stress that this procedure induces ambiguities

in the numerators, since on the cut `21 = `22 = 0, and hence we cannot distinguish s1`1

from 2(p1 · `1) or s1`2 from 2(p1 · `2). Such ambiguities will be eliminated later using

three-particle cuts.

The second two-particle cut, depicted on the right-hand side of Figure 3.10, is given by

C(2)
s23

=

∫
dLIPS(`1, `2;P )F

(0)
3,3 (1, `1, `2; q)A

(1)
4 (−`2,−`1, 2, 3) , (3.4.8)

where

F
(0)
3,3 (1φ12 , `φ12

1 , `φ12
2 ; q) =1 ,

A
(1)
4 (−`φ34

2 ,−`φ34
1 , 2φ12 , 3φ12) =

s23

2 (`1 · p2)

[
s23 (p2 − `1)2 I0m

4 (−`2,−`1, 2, 3)
]
,

(3.4.9)

where I0m
4 stands for the zero-mass scalar box integral,

(3.4.10)
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Uplifting C(2)
s23 to a full Feynman integral we obtain the contribution depicted in (3.4.11),

, (3.4.11)

which was already detected in the first two-particle cut. Therefore the integrals of Figure

3.11 alone comprises the full result for this cut.

Figure 3.12: A possible three-particle cut of F (2)
3,3 .

We now move on to investigate three-particle cuts. The first case we want to consider

is shown in Figure 3.12. This three-particle cut is given by

C(3)
s12

=

∫
dLIPS(`1, `2, `3;P )

∫
d12η F (0)

3,4 (3, `3, `2, `1; q, γ+)A
(0)
5 (1, 2,−`1,−`2,−`3) ,

(3.4.12)

where P = p1 + p2 and d12η = d4η`1d4η`2d4η`3 . Importantly, in order to perform the sum

over internal helicities efficiently we use the supersymmetric formalism for form factors

developed in [21], and adapted in [4] to the case of the operators Tk, see §3.2. At the end

of the calculation we will select all external particles to be φ12.

There are two distinct choices of R-charge sectors for the form factor and amplitude

participating in the cut, namely

FNMHV
3,4 ×AMHV

5 and FMHV
3,4 ×AMHV

5 . (3.4.13)

We consider first the case FNMHV × AMHV. The tree-level expressions entering (3.4.12)

are given by (omitting a trivial delta-function of momentum conservation)
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FNMHV
3,4 = δ(4)

(
γ+ −

∑
i

λiη+,i
)
δ(4)
(∑

i

λiη−,i
)[δ(4)

(
[`3 `2]η3 + [`2 3]η`3 + [3 `3]η`2

)
(η−,1)2

[`3 `2][`2 3][3 `3](s3`3`2)2

− (`1 ↔ `3)

]
,

(3.4.14)

AMHV
5 =

δ(8)
(
λ1η1 + λ2η2 − λ`1η`1 − λ`2η`2 − λ`3η`3

)
〈12〉 〈2 `1〉 〈`1 `2〉 〈`2 `3〉 〈`3 1〉 , (3.4.15)

where the NMHV form factor of T3 is given in (3.2.41). After performing the integrations

over the internal η`i ’s, we arrive at the result

C(3)
s12

∣∣∣
A

= F (0)
3,3

〈12〉
〈2 `1〉 〈`1 `2〉 〈`2 `3〉 〈`3 1〉

(
[3|q|`1〉2

[`3 `2][`2 3][3 `3]
− (`1 ↔ `3)

)
. (3.4.16)

The second case is FMHV ×AMHV. The expressions entering (3.4.12) can be written as

FMHV
3,4 =

1

〈3 `3〉 〈`3 `2〉 〈`2 `1〉 〈`1 3〉

[
(η3,−)2 〈3 `3〉 〈`1 3〉

〈`3 `1〉
− (η`2,−)2 〈`2 `3〉 〈`1 `2〉

〈`3 `1〉

]
,

(3.4.17)

AMHV
5 =

1

[2 `1][`1 `2][`2 `3][`3 1][12]9

3∏
i=1

δ(4)
(
[12] η`i + [2 `i] η

1 + [`i 1] η2
)
. (3.4.18)

After summing over internal helicities, we get

C(3)
s12

∣∣∣
B

= F (0)
3,3

(s12)2[12]

〈3 `3〉 〈`3 `2〉 〈`2 `1〉 〈`1 3〉 [2 `1][`1 `2][`2 `3][`3 1]

×
(〈3 `3〉 〈`1 3〉
〈`3 `1〉

− [`2|q|3〉2
(s12)2

〈`2 `3〉 〈`1 `2〉
〈`3 `1〉

)
.

(3.4.19)

Summarising, the total result for the cut (3.4.12) is the sum of (3.4.16) and (3.4.19),

C(3)
s12

= C(3)
s12

∣∣∣
A

+ C(3)
s12

∣∣∣
B
. (3.4.20)

Taking the purely scalar component of this cut amounts simply to performing the replace-

ment F (0)
3,3 → 1.
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Figure 3.13: A second possible three-particle cut of F (2)
3,3 .

The next cut we wish to consider is shown in Figure 3.13, and is given by

C(4)
s123

=

∫
dLIPS(`1, `2, `3;−q)

∫
d12ηF (0)

3,3 (−`1,−`2,−`3; q)A
NMHV(0)
6 (1, 2, 3, `1, `2, `3) .

(3.4.21)

Selecting the external particles to be all scalars φ12, we see that the only non-vanishing

form factor contributing to the cut is F
(0)
3,3 (−`φ12

1 ,−`φ12
2 ,−`φ12

3 ; q) = 1 (again omitting a

momentum conservation delta-function). This is the only internal helicity assignment we

need to consider, thus the single amplitude appearing on the right-hand side of the cut is

the following six-scalar NMHV amplitude,

ANMHV
6 (1φ12 , 2φ12 , 3φ12 , `φ34

1 , `φ34
2 , `φ34

3 ) =
〈`2 `3〉 [23]〈1|`2 + `3|`1]

〈`3 1〉 [3 `1]〈`2|`3 + 1|2]s1`2`3

+
〈`1 `2〉 [12]〈3|`1 + `2|`3]

〈3 `1〉 [`3 1]〈`2|`1 + 3|2]s3`1`2

.

(3.4.22)

Hence the result of this triple cut is given by

C(4)
s123

=

∫
dLIPS(`1, `2, `3;−q)ANMHV

6 (1φ12 , 2φ12 , 3φ12 , `φ34
1 , `φ34

2 , `φ34
3 ) . (3.4.23)

Two-loop result

The two-particle cuts employed earlier show that the full two-loop result contains the

combination of integrals shown if Figure 3.11. As discussed earlier, this set of cuts does

not uniquely determine the numerators of these integrals, and furthermore does not probe

the presence of any integral function which only has three-particle cuts.

Using the result of the three-particle cuts (3.4.20) and (3.4.23), we can fix all such

ambiguities. In particular, we have identified two additional integral topologies without

two-particle cuts contributing to the final result. The unique function with the correct

two- and three-particle cuts turns out to be

F (2)
3,3 =

3∑
i=1

[
I1(i) + I2(i) + I3(i) + I4(i)− I5(i)

]
, (3.4.24)
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where the integrals Ik are given by

Figure 3.14: Integral basis for the complete two-loop form factor F
(2)
3,3 .

Explicit expressions for most of the integrals that appear in Figure 3.14 can be found in

[152]. The ones that cannot be found there are I1 and I2, which have the same topology.

As an example we focus on I2, i.e. the second integral in Figure 3.14, and employ the

FIRE algorithm [155] in order to decompose it in terms of scalar two-loop master integrals,

with the result

(3.4.25)

The dashed line in the integral on the left-hand side of (3.4.25) represents the numerator

s1`2 (for simplicity, we divided the whole expression by s23 when compared to I2(1)).

A few comments are in order here.

1. The first integral on the right-hand side of (3.4.25) can naturally be combined with

I5(1) in Figure 3.14. This is important as it ensures that the contribution to the

final answer from this topology is a linear combination of multiple polylogarithms

with purely numerical, i.e. momentum-independent coefficients. The explicit ex-

pressions of the first and second integrals in terms of two-dimensional Goncharov

polylogarithms can be found in [152], Eqns. (4.32)–(4.37) and Eqns. (4.26)–(4.31),

respectively. Also note that the ε-dependent prefactor of the second integral en-

sures that the expanded result has homogenous degree of transcendentality. Finally,

the third integral in (3.4.25) multiplied with its ε-dependent coefficient turns out

be −(1/2) I4(2) which follows from Eqn. (5.15) of [151] which also has homogenous

degree of transcendentality.
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2. Once the reduction (3.4.25) is substituted into (3.4.24) the final result is expressed

as a linear combination of transcendental functions with numerical coefficients. We

refrain from writing explicitly the result at this stage because of its considerable

length. Instead in the next section we will identify its universal IR divergences and

construct the finite remainder function. This remainder is a transcendental function

of degree four and, as we will show, can be brought to an extremely compact form

that involves only classical polylogarithms.

3. As noted in [111], the elements of the integral basis of Figure 3.14 can be obtained

from dual conformal integrals upon taking certain external region momenta to infin-

ity. Consider for instance the simpler one-loop form factor, which may be obtained

by taking one of the region momenta xi of a box integral to infinity, as shown in

Figure 3.15,

x5
x3

x4

x1

x2

x3 x1
x4 → ∞

x5

x2

Figure 3.15: The one-mass triangle integral obtained from a zero-mass box under the limit
where one dual momentum variable is taken to infinity.

In this example, as x4 → ∞, the propagator marked in red is cancelled by the

numerator of the integral, and the box reduces to a triangle. If the external legs

were all massive, the above two integrals would be identical due to dual conformal

symmetry [156]. However, when there are massless legs as in the present case, both

integrals are IR divergent, and the symmetry is broken. Even though the symmetry

is generally broken, interestingly, one could still use this “pseudo” dual conformal

symmetry to fix unambiguously the numerators of each elements of the integral basis

of Figure 3.14. In what follows we show how this basis emerges from “pseudo” dual

conformal double-box and penta-box integrals,

However, beyond two loops we find that not all integrals can be obtained by using

this procedure. Furthermore, non-planar integrals (which do not transform covari-

antly under the symmetry even at the integrand level) start to appear at three loops.

4. We observe a disagreement between our result (3.4.24) and the result for the same

quantity as computed in Eqn. (4.44) of [111]. Specifically, in our derivation the

integral G3 of [111] is missing. Our cut analysis did not detect such an integral
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x

x

x x

x → ∞ x → ∞ x → ∞ x → ∞

Figure 3.16: All integrals in the basis of Figure 3.14 with appropriate numerators can be
obtained from dual-conformal integrals under a limit where one dual momentum variable
x is taken to infinity, similar to Figure 3.15.

topology and we also argue that it is in fact not allowed for form factors in N = 4

SYM, as it contains a triangle sub-integral which is not connected to the off-shell

leg q, thus violating the no-triangle property of N = 4 SYM, see also [118].

3.4.2 The three-point remainder function

In this section we construct a finite remainder function associated to the two-loop form

factor of the operators T3, similarly to what was done in [97] for the form factor of the

stress-tensor multiplet operator T2. The result expressed in terms of the explicit form of

the integral functions is very complicated, and in order to simplify it we determine its

symbol. From this we will finally derive a very compact form of the three-point remainder

containing only classical polylogarithms.

Defining a form factor remainder function

We begin by defining the remainder function. Its expression is given in complete analogy

with the amplitude remainder (2.3.10)14

R(2)
k,k ≡ G

(2)
k,k(ε) −

[
1
2

(
G(1)
k,k(ε)

)2 − f (2)(ε) G(1)
k,k(2ε)− C(2)

]
+O(ε) , (3.4.26)

where G(L)
k,k is the helicity-independent form factor L-loop ratio function, defined in the

same fashion as for amplitudes (2.3.6),

G(L)
k,k ≡

FMHV(L)
k,k

FMHV(0)
k,k

, (3.4.27)

14In our conventions the ’t Hooft coupling is defined as a ≡ λ/(eεγ(4π)2−ε) cf. (2.3.8).
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and f (2)(ε) ≡ f (2)
0 + f

(2)
1 ε+ f

(2)
2 ε2.

Using (3.4.24) for FMHV(2)
3,3 , we find that the 1/ε4 and 1/ε3 poles cancel between the

first two terms of (3.4.26). Next we require that the remainder is finite, and hence that

the remaining 1/ε2 and 1/ε poles vanish. This fixes two coefficients in the ε-expansion of

f (2),

f
(2)
0 = −2ζ2 , f

(2)
1 = −2ζ3 . (3.4.28)

We note that these results for f
(2)
0 and f

(2)
1 agree with the corresponding quantities found

in the case of the remainder function of the stress-tensor multiplet operator computed in

[97].15 At this stage, however, we cannot make any prediction for f
(2)
2 and C(2). In the

following we will set f
(2)
2 = −2ζ4 and C(2) = 0 so that

f (2) = −2ζ2 − 2ζ3ε− 2ζ4ε
2 . (3.4.29)

In this way f (2) matches a closely related quantity appearing in the definition of finite

remainders of MHV amplitudes in N = 4 SYM [82, 83] (see (2.3.11)) and form factors

with k = 2 [97]. In order to fix f
(2)
2 and C(2) individually we would have to calculate

also FMHV(2)
3,4 and impose that in a collinear limit, where two adjacent momenta pi, pi+1

become parallel, the four-point remainder morphs smoothly into the three-point remainder,

R(2)
3,4 → R

(2)
3,3, without any additional constant. We briefly note here that collinear (and

soft) limits of minimal form factors exhibit novel subtleties compared to amplitudes, and

we defer a detailed discussion to §3.4.4.

Finally, we notice that the n-point remainder function depends on 3n−7 simple ratios

of Mandelstam variables. For n = 3, we will choose the following variables:

u =
s12

q2
, v =

s23

q2
, w =

s31

q2
, u+ v + w = 1 . (3.4.30)

The three-point remainder: from symbols to simple functions

In the previous two sections we derived the three-point, two-loop form factor and defined its

corresponding remainder function. Using the results for the integral functions given in [151,

152] we find that the remainder is a complicated sum of functions of homogeneous degree of

transcendentality equal to four which include Goncharov polylogarithms. The expression

is rather lengthy and we refrain from presenting it here. However, past experience [87]

suggests that one can do much better by studying the symbol of the function. Indeed, this

15We observe a disagreement between our result f
(2)
1 = −2ζ3 and the computation of [111], where the

result f̃
(2)
1 = −14 ζ3 was found.
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is the strategy we will follow, and at the end we will be able to present a greatly simplified

result.

We find that the symbol of the remainder function is given by the following, strikingly

simple expression:

S(2)
3,3 (u, v, w) = u⊗v⊗

[ u
w
⊗S

v

w

]
+

1

2
u⊗ u

(1− u)3
⊗ v

w
⊗ v

w
+ perms (u, v, w) , (3.4.31)

where ⊗S in the expression above stands for the symmetrised tensor product

x⊗S y ≡ x⊗ y + y ⊗ x . (3.4.32)

Before reconstructing the remainder from its symbol (3.4.31), we wish to describe a few

general properties of this remainder and compare them with the properties of symbols of

other known remainders of amplitudes and form factors.

1. All entries are taken from the list {u, v, w, 1− u, 1− v, 1−w}. This is the same list

found for the three-point, two-loop form factor remainder of Tr(φ2) [97] but does

not include the square-root arguments yu, yv, yw present in the case of the two- and

three-loop six-point amplitudes in N = 4 SYM [87, 57, 157].

2. The first entries of the symbol describe the locations of discontinuities of the remain-

der and from unitarity we know that cuts should originate at P 2
J = 0 or P 2

J = ∞,

where P 2
J are appropriate kinematic invariants — in our case s12, s23, s31 and q2.

Hence, the first entry condition [158] implies in our case that the first entries must

be taken from the list {u, v, w}, which is obviously the case for (3.4.31).

3. In the literature on amplitudes various other conditions on e.g. the second and

final entries were put forward. However the symbol (3.4.31) does not follow the

pattern observed for two-loop amplitudes or two-loop form factors of Tr(φ2). For

the second entries we observe that if the first entry is u then the second entry is

taken from the list {u, v, w, 1 − u}, while the last entry is always an element of the

list {u/v, v/w,w/u}. We note that the same entry conditions are true for the building

blocks of the k-point, two-loop form factors of Tr(φk12), which we will discuss in the

next sections. A possible reason why these entry conditions deviate from those of

amplitudes and form factors of Tr(φ2
12) is related to the fact that the form factors we

study here have unconventional factorisation properties in collinear and soft limits,

as discussed in §3.4.4.
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We now move on to reconstructing the remainder from its symbol (3.4.31). In our case

the original expression of the remainder contains many Goncharov polylogarithms, as well

as classical (poly)logarithms. However, there is a sharp criterion proposed by Goncharov

[95, 87] that allows us to test if a function of transcendentality four can be rewritten in

terms of classical polylogarithms Lik with k ≤ 4 only. This criterion is expressed at the

level of the symbol as (2.3.27) and can be rephrased in terms of the symbol coproduct as

[96]

δ(S)
∣∣∣
Λ2B2

= 0 , (3.4.33)

where the Λ2B2 component of a symbol (coproduct) is defined as [96]16

δ(a⊗ b⊗ c⊗ d)
∣∣∣
Λ2B2

≡ (a ∧ b) ∧ (c ∧ d) , (3.4.34)

and ∧ stands for the anti-symmetrised tensor product (2.3.26). Interestingly, our symbol

S(2)
3,3 (u, v, w) (3.4.31) satisfies Goncharov’s constraint (2.3.27), or equivalently (3.4.33).

A strategy to accomplish this goal was outlined in [87] and starts by investigating the

symmetry properties of the symbol under pairwise (anti)symmetrisation of the entries. In

this fashion one can decompose the symbol into four terms,

S(2)
3,3 (u, v, w) = A⊗A + S⊗A + A⊗ S + S⊗ S , (3.4.35)

where e.g. S⊗A means symmetrisation of the first two entries and antisymmetrisation of

the last two entries. Next one scans the symmetry properties of the functions that may

appear in the answer, as shown in Table 3.1 (taken from [87]).

Function A⊗A S⊗A A⊗ S S⊗ S

Li4(z1) × × X X
Li3(z1) log(z2) × × X X
Li2(z1) Li2(z2) X X X X

Li2(z1) log(z2) log(z3) × X X X
log(z1) log(z2) log(z3) log(z4) × × × X

Table 3.1: Symmetry properties of the symbol of transcendentality four functions.

Remarkably, we find that our symbol (3.4.31) satisfies even more stringent constraints

than (2.3.27), namely its A⊗A and S⊗A components both vanish. Inspecting Table 3.1,

16To be more precise we should note that Λ2B2 is defined in [96] as a particular component of the
coproduct δ of a function, but here we will work always at the level of the symbol of the function. The
same comment applies to the B3 ⊗ C component of the coproduct introduced later.
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we see that Li2 functions are absent and only the following functions

{
Li4(z1), Li3(z1) log(z2), log(z1) log(z2) log(z3) log(z4)

}
(3.4.36)

can appear in the answer. Goncharov’s theorem does not predict what the possible argu-

ments of these functions should be. We find that with the following list of arguments

{
u, v, w, 1− u, 1− v, 1− w,−u

v
,− u

w
,−v

u
,− v

w
,−w

u
,−w

v
,−uv

w
,−uw

v
,−vw

u

}
, (3.4.37)

we can construct an ansatz for the result which reproduces the symbol of the remainder

(3.4.31).

Following this procedure we find that the result for the integrated symbol is a remark-

ably compact two-line function:

S(2) Int
3,3 =

3

4
Li4

(
−uv
w

)
− 3

2
Li4(u)− 3

2
log(w)Li3

(
−u
v

)
+

log2(u)

32

[
log2(u) + 2 log2(v)− 4 log(v) log(w)

]
+ perms (u, v, w) .

(3.4.38)

The appearance of the combination of Li4 functions in (3.4.38) with their particular ar-

guments can in fact be inferred by analysing the B3 ⊗ C component of the coproduct δ

[96]. At the level of the symbol, this component projects out terms which can be written

as symbols of products of functions of lower transcendentality. It is defined as

δ(a⊗ b⊗ c⊗ d)
∣∣∣
B3⊗C

≡ ((a ∧ b)⊗ c− (b ∧ c)⊗ a)⊗ d− ((b ∧ c)⊗ d− (c ∧ d)⊗ b)⊗ a ,

(3.4.39)

which is identical to the definition of the projection operator ρ introduced in [88] (see also

(2.3.28)). For our three-point remainder, which consists only of classical polylogarithms,

this implies that we project onto the Li4 part of the remainder. We find that

δ(S(2)
3,3 (u, v, w))

∣∣∣
B3⊗C

= −3

2
{u}3 ⊗ u+

3

4

{
−uv
w

}
3
⊗ uv

w
, (3.4.40)

where we introduced the shorthand notation:

{x}k ≡ {x}2 ⊗k−2 x , with {x}2 ≡ −(1− x) ∧ x . (3.4.41)
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Noting that

δ(Li4(x))
∣∣∣
B3⊗C

= {x}4 = {x}3 ⊗ x , (3.4.42)

we immediately infer from (3.4.40) that the remainder R(2)
3,3 is given by −3

2Li4(u) +

3
4Li4

(
−uv
w

)
, modulo products of lower transcendentality functions, in accordance with

(3.4.38).

The function (3.4.38) is not yet the full remainder because the symbol is blind to

transcendentality four functions containing powers of π (or ζi). In order to fix these

ambiguities, we subtract (3.4.38) from the full remainder function and inspect what is left

over. These so-called “beyond the symbol” terms are a linear combination of terms of

the form π2 log x log y, π2 Li2(x), ζ3 log x and ζ4 and their coefficients can be determined

numerically. In order to perform the numerical comparison with the original remainder

we have used the GiNaC software [159]. We find the following result for the beyond the

symbol terms:

R(2)bts
3,3 =

ζ2

8
log(u)

[
5 log(u)− 2 log(v)

]
+
ζ3

2
log(u) +

7

16
ζ4 + perms (u, v, w) . (3.4.43)

Summarising, the final result for the remainder function R(2)
3,3 is the sum of (3.4.38) and

(3.4.43),

R(2)
3,3 ≡ −

3

2
Li4(u) +

3

4
Li4

(
−uv
w

)
− 3

2
log(w) Li3

(
−u
v

)
+

1

16
log2(u) log2(v)

+
log2(u)

32

[
log2(u)− 4 log(v) log(w)

]
+
ζ2

8
log(u)[5 log(u)− 2 log(v)]

+
ζ3

2
log(u) +

7

16
ζ4 + perms (u, v, w) .

(3.4.44)

We plot the remainder function R(2)
3,3(u, v, 1− u− v) in Figure 3.17.

One important feature which stands out is that the remainder blows up at the bound-

aries of the Euclidean kinematic region u = 0, v = 0 and u+v = 1. We need to distinguish

here two types of limits:

1. The situation where we approach a generic point on one of the three edges corre-

sponds to a collinear limit. For instance, taking u→ 0 (and v+w → 1) is equivalent

to the collinear limit p1 || p2. In this situation the remainder diverges as log2(u). The

derivation of this result can be found in §3.4.4.

2. The case where we approach one of the corners, for instance u = w = 0, corresponds

to the soft limit p1 → 0. As will be discussed in §3.4.4, this soft limit can be

parametrised as u = x δ, v = 1 − δ, w = y δ with x + y = 1 and δ → 0 and
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Figure 3.17: Plot of the remainder function R(2)
3,3(u, v, 1− u− v), where u and v live in a

triangular region bounded by u = 0.01, v = 0.01 and u + v = 0.99. As we approach the
edges, for instance u = 0, the remainder diverges as log2 u, as explained in the text.

the remainder diverges as (1/4) log4(δ), explaining the spikes in Figure 3.17 in the

positive vertical direction.

This behaviour might appear unexpected for remainder functions, which usually have

smooth collinear and soft limits. However one has to appreciate that here we are consid-

ering a special form factor, with the minimal number of external legs. Hence we cannot

extrapolate the usual intuition about factorisation since there is no form factor with fewer

legs this minimal form factor could factorise on, as we discuss in more detail in §3.4.4.

3.4.3 The two-loop remainder function for all k > 3

Having obtained and described in detail the three-point remainder R(2)
3,3 of the form factor

of the operator Tr[(φ++)3] at two loops, we now move on to study the k-point form factors

F
(2)
k,k of Tr[(φ++)k] for arbitrary k > 3.

The k-point minimal form factors from cuts

The study of the cuts of these form factors proceeds in an almost identical way compared

to the k = 3 case, with one important exception, namely the appearance of a new integral

function which is the product of two one-loop triangle functions. Specifically, our result

for the minimal form factor of Tr[(φ++)k] for k > 3 at two loops is given by the following

simple extension of that of k = 3,

F
(2)
k,k =

n∑
i=1

[
I1(i) + I2(i) + I3(i) + I4(i)− I5(i) +

1

2

i−2∑
j=i+2

I6(i, j)
]
, (3.4.45)
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where the integral basis is the same as that of Figure 3.14 augmented by one new integral,

namely I6: The factor of 1/2 in front of I6 is present in order to remove double counting.17

Figure 3.18: Integral basis for F
(2)
k,k .

Note that the appearance of the extra integral function I6 can be inferred easily from

two-particle cuts, specifically by attaching the three-level amplitude (3.4.6) (with 2 and 3

replaced by i and i+ 1) to the following one-loop triangle integral,

q

ℓ1 ℓ2

j j+1

Figure 3.19: Integral present in the one-loop form factor F
(1)
k,k which produces the topology

I6 of Figure 3.18 under a two-particle cut.

Clearly, the integral of Figure 3.19 is present only when k > 3. With this additional

term, the basis shown in Figure 3.18 has all the correct two-particle cuts.

Let us now discuss how the following triple cuts might get altered when compared to

the k = 3 case studied earlier. To begin with, we note that I6 does not contribute to any

Figure 3.20: Triple cuts employed in the derivation of F
(2)
k,k .

triple cut. Since the remaining integrals in Figure 3.18 are identical to those contributing

to F
(2)
3,3 , we only need to confirm that the results of the above triple cuts are the same as

those of F
(2)
3,3 .

17A similar but not identical result for the same quantities was presented in [111]. As in the three-
point case discussed earlier, our result differs from theirs by the absence of the function G3 appearing in
Eqn. (4.44) of [111].
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This agreement is immediate for the diagram on the right-hand side of Figure 3.20

since the form factor appearing there is minimal, thus simply 1. For the diagram on the

left-hand side, a simple way to show this is to note that the tree-level form factors which

enter the cut are actually identical for k = 3 and for k > 3. They are (k+1)-point NMHV

form factors with one negative-helicity gluon, g−, or two fermions, ψ̄, which indeed take

the same form for any k, namely

FNMHV
k,k+1 (φ1, . . . , φi−1, g

−
i , φi+1, . . . , φk+1) =

[i−1 i+1]

[i−1 i][i i+1]
,

FNMHV
k,k+1 (φ1, . . . , φi−1, ψ̄i, ψ̄i+1, φi+2, . . . , φk+1) =

1

[i i+1]
, (3.4.46)

FNMHV
k,k+1 (φ1, . . . , ψ̄i−1, φi, ψ̄i+1, φi+2, . . . , φk+1) = 0 .

The above results (3.4.46) can be obtained simply by taking the conjugate of the (k+ 1)-

point MHV form factors of Tr(φk12).

In conclusion, compared to the case k = 3, the only difference in the result is that now

we need to include the double-triangle integrals I6(i, j).

The symbol of the k-point remainder

In this section we construct the two-loop remainder function and its symbol for the case

of general k. The remainder is defined in (3.4.26), where now k = n > 3. The ingredients

of this formula are the one-loop minimal form factor defined in (3.3.20), and the two-loop

form factor derived earlier in this section. A few comments are in order.

1. We find that the cancellation of the IR poles in ε proceeds exactly as in the three-

point case, and as a result the remainder function is defined with the same universal

function f (2)(ε) defined in (3.4.29).

2. As noticed earlier, the two-loop form factor contains an extra integral topology I6

if n = k > 3. This topology is exactly cancelled by the cross terms coming from

the square of the one-loop form factor appearing in the definition of the remainder.

There is an important consequence of this cancellation, namely all the remaining

integral topologies contributing to the remainder depend only on either triplets of

adjacent momenta pi, pi+1 and pi+2 (I1, I2, and I5) or pairs of adjacent momenta

(I3 and I4). As a result the remainder function can be written as a cyclic sum over
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universal sub-remainders which depend on three momenta,

R(2)
k,k =

k∑
i=1

r(2)(ui, vi, wi) , (3.4.47)

as we will show in detail below. Here the parameters ui, vi, wi are generalisations of

the u, v, w ratios of the k = 3 case, and are defined as

ui =
ui i+1

ui i+1 i+2
, vi =

ui+1 i+2

ui i+1 i+2
, wi =

ui+2 i

ui i+1 i+2
, (3.4.48)

with

ui i+1 i+2 ≡ ui i+1 + ui+1 i+2 + ui+2 i . (3.4.49)

Note that we have defined uij ≡ sij/q2, and ui+vi+wi = 1. For notational simplicity

we will in the following replace r(2)(ui, vi, wi) by r
(2)
i . We should stress at this point

that these are the basic building blocks of R(2)
k,k and do not depend on the value of

k.

Using the explicit expressions of the integral functions I1, . . . , I6 we have computed

the remainder function in terms of multiple polylogarithms. As in the three-point case,

this expression is quite lengthy and we will only present it after simplifying it using its

symbol.

Again it turns out that the symbol is extremely simple. As anticipated above, it is

written as a sum of building blocks which depend on ui, vi and wi:

S(2)
k,k =

k∑
i=1

s(2)(ui, vi, wi) ≡
k∑
i=1

s
(2)
i , (3.4.50)

where

s
(2)
i = ui ⊗ (1− ui)⊗

[
ui − 1

ui
⊗ vi
wi

+
vi
wi
⊗ w2

i

uivi

]
+ ui ⊗ ui ⊗

1− ui
vi

⊗ wi
vi

+ ui ⊗ vi ⊗
[
vi
wi
⊗S

ui
wi

]
+ (ui ↔ vi) . (3.4.51)

As was done earlier for the k = 3 case, it is useful to study the coproduct of the remainder

function. A key difference is that, unlike the case of the form factor of T3, the symbol

s
(2)
i does not obey Goncharov’s condition (2.3.27). Instead we find that the corresponding
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component of the coproduct is

δ(s
(2)
i )
∣∣∣
Λ2B2

=

{
−wi
vi

}
2

∧ {ui}2 + (ui ↔ vi) . (3.4.52)

We also quote its B3 ⊗ C component, given by

δ(s
(2)
i )
∣∣∣
B3⊗C

= {1− ui}3 ⊗
wi
vi

+ {ui}3 ⊗
ui
wi

+

{
− wi
uivi

}
3

⊗ wi
ui

+

{
−wi
vi

}
3

⊗ vi
uiw2

i

−
{

vi
1− ui

}
3

⊗ ui + (ui ↔ vi) . (3.4.53)

Because of the non-vanishing of the Λ2B2 component (3.4.52), s
(2)
i cannot be integrated

to purely classical polylogarithms. However, it is not difficult to recognise what multiple

polylogarithms can give rise to (3.4.52). For instance Li1,3

(
ui,−

wi
uivi

)
+ (ui ↔ vi), or

the cluster algebra inspired function L2,2

(
ui,−

wi
vi

)
+ (ui ↔ vi) defined in [96] can do

the job.

In the present case, it turns out to be more convenient to consider the following com-

bination of Goncharov polylogarithms, as we will explain shortly,18

r
(2)
nc,i ≡ −G ({1− ui, 1− ui, 1, 0} , vi) − (ui ↔ vi) , (3.4.54)

where the symbol of Gv ≡ G ({1− u, 1− u, 1, 0} , v) is given by

S[Gv] = v ⊗ w ⊗
[
w ⊗S u− u⊗ u

]
+ v ⊗ (1− v)⊗ u

w
⊗ u

w
− v ⊗ (1− u)⊗ (1− u)⊗ u

+
w

v(1− u)
⊗ (1− u)⊗ u⊗ w

u
+
v(1− u)

w
⊗
[
(1− u)⊗S

1− u
w

]
⊗ u .

(3.4.55)

As for the functions Li1,3 and L2,2 mentioned previously, the Λ2B2 component of the

coproduct of S[r
(2)
nc,i] is equal to (3.4.52). Hence we can decompose the symbol of the

remainder s
(2)
i into a non-classical and a classical contribution:

s
(2)
i = s

(2)
nc,i + s

(2)
cl,i , (3.4.56)

where s
(2)
nc,i is the symbol of r

(2)
nc,i. Hence s

(2)
cl,i has now a vanishing Λ2B2 component, or

equivalently satisfies Goncharov’s condition (3.4.33), and thus can be rewritten in terms

of classical polylogarithms only.

18These Goncharov polylogarithms already appear in the explicit expressions of the integrals I1(i) and
I2(i) belonging to the basis of Figure 3.18.
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We now move on to determining the classical part of the remainder. In order to do

so, it is convenient to first examine the B3 ⊗ C component of the non-classical remainder

r
(2)
nc,i. It is given by

δ(s
(2)
nc,i)

∣∣∣
B3⊗C

= {1− ui}3 ⊗
uiwi

(1− ui)2vi
+ {ui}3 ⊗

ui
wi(1− ui)

+

{
− wi
uivi

}
3

⊗ wi
ui

+

{
−wi
vi

}
3

⊗ vi
uiw2

i

−
{

vi
1− ui

}
3

⊗ ui + (ui ↔ vi) .

(3.4.57)

This is a somewhat complicated expression, however the particular choice of r
(2)
nc,i we made

in (3.4.54) is such that the B3 ⊗ C component of the coproduct of r
(2)
cl,i turns out to be

very simple — in fact this was the motivation behind choosing our particular form of

r
(2)
nc,i. Furthermore, r

(2)
nc,i does not develop any singularity in the soft or collinear limits

(this is shown explicitly in §3.4.4, see (3.4.71)). For the B3⊗C component of the classical

remainder r
(2)
cl,i we find on the other hand

δ
(
s

(2)
cl,i

)∣∣∣
B3⊗C

= {1− ui}3 ⊗
(1− ui)2

ui
+ {ui}3 ⊗ (1− ui) + (ui ↔ vi) . (3.4.58)

By applying the identity {1− 1/u}3 = −{1− u}3 − {u}3, this expression can be recast as

δ
(
s

(2)
cl,i

)∣∣∣
B3⊗C

= {1−ui}3⊗(1−ui)+{ui}3⊗ui−{1−
1

ui
}3⊗

(
1− 1

ui

)
+(ui ↔ vi) . (3.4.59)

From the above result, we see immediately that the classical part of the remainder r
(2)
cl,i is

given by Li4(1− ui) + Li4(ui)− Li4(1− 1/ui) + (ui ↔ vi) modulo products of functions of

lower degree of transcendentality, which can be fixed by following the same strategy as in

the k = 3 case. Doing so, we find that the classical part of the remainder is:

r
(2)
cl,i = Li4(1− ui) + Li4(ui)− Li4

(
ui − 1

ui

)
+ log

(
1− ui
wi

)[
Li3

(
ui − 1

ui

)
− Li3 (1− ui)

]
+ log (ui)

[
Li3

(
vi

1− ui

)
+ Li3

(
−wi
vi

)
+ Li3

(
vi − 1

vi

)
− 1

3
log3 (vi)−

1

3
log3 (1− ui)

]
+ Li2

(
ui − 1

ui

)
Li2

(
vi

1− ui

)
− Li2 (ui)

[
log

(
1− ui
wi

)
log (vi) +

1

2
log2

(
1− ui
wi

)]
− 1

24
log4 (ui) +

1

8
log2 (ui) log2 (vi) +

1

2
log2 (1− ui) log (ui) log

(
wi
vi

)
+

1

2
log (1− ui) log2 (ui) log (vi) +

1

6
log3 (ui) log (wi) + (ui ↔ vi) .

(3.4.60)
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k Estimated error

4 O(10−17)

5 O(10−14)

6 O(10−15)

Table 3.2: Numerical checks of the remainders R(2)
k,k for k = 4, 5, 6.

The beyond the symbol terms (obtained in the same way as for R(2)
3,3) are

r
(2)
bts,i = ζ2

[
log (ui) log

(
1− vi
vi

)
+

1

2
log2

(
1− ui
wi

)
− 1

2
log2 (ui)

]
− ζ3 log(ui)−

ζ4

2
+ (ui ↔ vi) .

(3.4.61)

Finally, the two-loop remainder function for general k is given by

R(2)
k,k =

k∑
i=1

[
r

(2)
nc,i + r

(2)
cl,i + r

(2)
bts,i

]
, (3.4.62)

where r
(2)
nc,i, r

(2)
cl,i and r

(2)
bts,i, and are defined in (3.4.54), (3.4.60) and (3.4.61), respectively.

We have also checked our result (3.4.62) against numerical evaluations of the remain-

der for several values of k and sets of kinematical data, finding excellent agreement (see

Table 3.2).

3.4.4 Collinear and soft limits

In this section we discuss some general properties of the form factors under soft and

collinear limits. This discussion is somewhat beyond the main line of the work presented

so far, but will be relevant for future studies of non-minimal form factors.

When discussing collinear or soft limits it is crucial to distinguish the cases of minimal

and non-minimal form factors. In the latter case, the number of external on-shell particles

is larger than the number of fields in the operator, and the factorisation properties are

identical to those of amplitudes. This follows from a slight generalisation of arguments

presented in [97] for form factors of Tr(φ2
12) with three or more external particles, which

in turn are inspired by the original proof for amplitudes given in [150]. For minimal form

factors, which are the main focus of this work, the story is more interesting since they

cannot factorise into form factors with fewer legs19. Hence, the argument of [150] does

19Technically there could exist sub-minimal form factors starting at two loops, as can be seen from the
three-particle cut Fk,k(1, . . . , k−3, `1, `2, `3; q)×A5(−`1,−`2,−`3, k−2, k−1). However, one can convince
oneself that this is not the case for Ok since there is no consistent helicity assignment that leads to a
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not apply and the factorisation properties deviate dramatically from those of amplitudes.

Minimal form factors

We begin by looking at minimal form factors, and specifically we wish to study the collinear

and soft behaviour of their remainder functions derived in the previous sections.

For non-minimal form factors, one can define a properly normalised n-point remainder

function20 such that, under a collinear limit one has

Rn → Rn−1 . (3.4.63)

Note that (3.4.63) is the usual behaviour of remainders of loop amplitudes in N = 4 SYM

as discussed in [82, 160], and confirmed for the case of form factors of Tr (φ2
12) in [97].

As already mentioned in §3.4.2 (see Figure 3.17), this is not possible for the case of a

minimal remainder function. This is caused by the simple fact that tree-level minimal form

factors are 1, and remain 1 under collinear/soft limits. In what follows we will quantify

the failure to obey conventional factorisation. It is worth stressing that this failure only

affects finite terms, while the universality of IR divergences also extends to the minimal

form factors. This is related to the fact that we were able to define a finite remainder

function for minimal form factors (3.4.26) in complete analogy with scattering amplitudes

in N = 4 SYM and non-minimal form factors of Tr(φ2) in [97].

We begin our study with the simplest remainder function, namely R(2)
3,3 given in

(3.4.44). We consider the collinear limit p1 || p2, which we parameterise as

p1 → zP , p2 → (1− z)P , P 2 = 0 . (3.4.64)

In terms of the u, v, w variables, this is equivalent to

u→ 0 , v → (1− z) , w → z . (3.4.65)

In the limit (3.4.64), an explicit calculation shows that

R(2)
3,3(u, v, w)

1‖2−−→
2∑

m=1

logm(u) C3;m(z) , (3.4.66)

non-vanishing result.
20At two-loop level the appropriate normalisation is obtained by introducing the n-independent,

transcendentality-four constant C(2) in the definition (3.4.26).
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where the coefficients C3;m(z) are given by

C3;2(z) =
1

4

[
log2

(
z

1− z

)
− 2ζ2

]
,

C3;1(z) = −C3;2(z) log [z(1− z)] +
3

2

[
Li3

(
z

z − 1

)
+ Li3

(
z − 1

z

)]
− ζ3 .

(3.4.67)

Next, we consider the soft limit p1 → 0, where we have to take z → 0 in addition to u→ 0.

Equivalently, one can parametrise the soft limit as

u = x δ , v = 1− δ , w = (1− x) δ , (3.4.68)

with δ → 0. In this limit we find

R(2)
3,3(u, v, w)

p1→ 0−−→
4∑

m=1

logm(δ) S3;m(x) , (3.4.69)

where the coefficients S3;m(x) at each order are given by

S3;4(x) =
1

4
,

S3;3(x) =
1

2
log
[
x(1− x)

]
,

S3;2(x) = [S3;3(x)]2 +
1

2
log(1− x) log(x) + ζ2 ,

S3;1(x) = 2
(
S3;3(x)S3;2(x)− [S3;3(x)]3 − ζ3

)
.

(3.4.70)

Now we turn our attention to the study of R(2)
k,k with k > 3, in particular we will analyse

the behaviour of the three-particle building blocks r
(2)
i defined in (3.4.47). For the collinear

limit p1 || p2 introduced in (3.4.64), both r
(2)
i and r

(2)
k contribute. Here we focus on r

(2)
1

only, since r
(2)
k behaves in a similar way.

We begin by observing that r
(2)
nc,i is regular as ui → 0, specifically

lim
ui→0

r
(2)
nc,i = 0−G ({1, 1, 1, 0} , vi)

=− 1

6
log2(1− vi)

[
log(vi) log(1− vi) + 3Li2(vi)

]
− log(1− vi) S1,2(vi) + S1,3(vi) ,

(3.4.71)

where Sn,p(z) denotes a Nielsen polylogarithm,

Sn,p(z) =
(−1)n+p−1

(n− 1)!p!

∫ 1

0

dt

t
(log t)n−1

[
log(1− zt)

]p
. (3.4.72)
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On the other hand, if we now consider the limit wi → 0 we observe that this function

develops a log2(wi) singularity. This singularity is required in order to cancel an identical

and opposite singularity arising from r
(2)
cl,i+r

(2)
bts,i. This is expected since wi → 0 corresponds

to two non-adjacent legs becoming collinear, which is not a physical singularity.

Setting in the collinear limit

u1 → 0 , v1 → (1− z) , w1 → z , (3.4.73)

we obtain

r
(2)
1

1‖2−−→
2∑

m=1

logm(u1)C
1‖2
k;m(z) , (3.4.74)

where

C
1‖2
k;2 (z) =

1

2

(
1

2
log2(1− z) + Li2(z)− ζ2

)
,

C
1‖2
k;1 (z) =

1

2
log2(1− z) log(z)− 1

3
log3(1− z) + 2 Li3

(
z

z − 1

)
+ Li3(1− z)− ζ3 .

(3.4.75)

Finally, we consider the soft limit for r
(2)
1 . Because of the lack of permutation symmetry,

r
(2)
1 behaves differently under the limits p1 → 0 and p2 → 0. In the limit p2 → 0, or

equivalently

u1 = x δ , v1 = (1− x) δ , w1 = 1− δ , (3.4.76)

with δ → 0, we have

r
(2)
1

p2→ 0−−→
4∑

m=1

logm(δ)Sp2

k;m(x) , (3.4.77)

with

Sp2

k;4(x) =
1

4
,

Sp2

k;3(x) =
1

2
log
[
x(1− x)

]
,

Sp2

k;2(x) = 2ζ2 + [Sp2

k;3(x)]2 +
1

2
log(x) log(1− x) ,

Sp2

k;1(x) = Sp2

k;3(x)
[
4ζ2 + log(x) log(1− x)

]
− 2ζ3 .

(3.4.78)

For p1 → 0, or equivalently

u1 = x δ , v1 = 1− δ , w1 = (1− x) δ , (3.4.79)
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with δ → 0, we have

r
(2)
1

p1→0−−→
4∑

m=1

logm(δ)Sp1

k;m(x) , (3.4.80)

where

Sp1

k;4(x) = Sp1

k;3(x) = Sp1

k;2(x) = 0 ,

Sp1

k;1(x) = ζ2 log

(
1− x
x

)
− ζ3 . (3.4.81)

Note that r
(2)
1 is less singular as p1 → 0 compared to the previous case where p2 → 0.

However, the full remainder is completely symmetric and should behave in the same way

for arbitrary pi → 0. Indeed it is the building block with external legs pk, p1, p2, namely

r
(2)
k , that carries the leading divergence when p1 → 0, and the behaviour is precisely the

same as (3.4.77).

Non-minimal form factors

In this section, we verify in an explicit example that n-point form factors of the operator

Tk (with k < n) obey the same universal factorisation properties that hold for scattering

amplitudes in general gauge theories [31, 161], as well as for form factors of the stress tensor

operator as shown in [97]. This relation states that under the limit where two adjacent

particles a and b with helicities σa, σb become collinear, the L-loop n-point colour-ordered

form factor (or amplitude) factorises into a sum of (n− 1)-point form factors of equal or

lower loop order, and the collinear divergences are encoded into the coefficients of each

term — the splitting amplitudes. For a general form factor we have

F (L)
O,n(1σ1 , . . . , aσa , bσb , . . . , nσn)

a‖b−−→
L∑
`=0

∑
σ

[
F (`)
O,n−1(1σ1 , . . . , (a+ b)σ, . . . , nσn)

× Split
(L−`)
−σ (aσa , bσb)

]
,

(3.4.82)

where σi denote physical polarisations, and the sum is over all possible internal helicities σ.

To confirm these factorisation properties, we will take as a representative example the

particular component form factor F
(1)
3,4 (1+, 2φ12 , 3φ12 , 4φ12 ; q), and will consider the collinear

limit p1 || p2 defined in (3.4.64). For this case, (3.4.82) predicts that

F
(1)
3,4 (1+, 2φ12 , 3φ12 , 4φ12 ; q)

∣∣∣
1||2

= F
(0)
3,3 (P φ12 , 3φ12 , 4φ12 ; q) Split

(1)
−φ12

(1+, 2φ12)

+ F
(1)
3,3 (P φ12 , 3φ12 , 4φ12 ; q) Split

(0)
−φ12

(1+, 2φ12) ,

(3.4.83)
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where the tree-level and one-loop splitting functions with the helicities specified above are

given by

Split
(0)
−φ12

(1+, 2φ12) =
1

〈12〉

√
1− z
z

, (3.4.84)

Split
(1)
−φ12

(1+, 2φ12) =
cΓ

ε2
(−s12)−ε

[
1− F

(z − 1

z

)
− F

( z

z − 1

)] 1

〈12〉

√
1− z
z

, (3.4.85)

and where we have introduced the shorthand notation F (x) ≡ 2F1(1,−ε, 1 − ε;x). The

form factors appearing on the right-hand side of (3.4.83) are given by

F
(0)
3,3 (P φ12 , 3φ12 , 4φ12 ; q) = 1 ,

F
(0)
3,3 (P φ12 , 3φ12 , 4φ12 ; q) = − cΓ

ε2
[
(−sP3)−ε + (−s34)−ε + (−s4P )−ε

]
.

(3.4.86)

In order to check (3.4.83), we use the general expression for the super form factors of T3

given in (3.3.19). For the case of F
(1)
3,3 (1+, 2φ12 , 3φ12 , 4φ12 ; q), (3.3.19) reduces to

F
(1)
3,4 (1+, 2φ12 , 3φ12 , 4φ12 ; q) = −cΓ

ε2
〈24〉
〈12〉 〈14〉

[
(−s12)−ε + (−s23)−ε + (−s34)−ε + (−s41)−ε

]
+
〈34〉
〈31〉 〈41〉Fin1m

4,3(s341; ε) +
〈24〉
〈12〉 〈14〉Fin1m

4,4(s412; ε) +
〈23〉
〈13〉 〈12〉Fin1m

4,2(s234; ε) ,

(3.4.87)

where Fin1m
4,i (P 2; ε) stands for the one-mass finite box function shown in Figure 3.21, and

is given by

Fin1m
4,i (P 2; ε) = −cΓ

ε2
[
(−s)−εh(a s) + (−t)−εh(a t)− (−P 2)−εh(aP 2)

]
,

s = si i+1, t = si+1 i+2, u = si i+2, P 2 = si i+1 i+2, a ≡ − u
st
,

(3.4.88)

where we have defined h(x) ≡ 2F1 (1,−ε, 1− ε, x)− 1 .

Figure 3.21: One-mass finite box function with massless corner with momentum P .

Under the collinear limit p1 || p2 given in (3.4.64), we first notice that the term
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〈34〉
〈31〉 〈41〉Fin1m

4,3(s341; ε) in (3.4.87) is subleading, and the remaining terms give

F
(1)
3,4 (1+, 2φ12 , 3φ12 , 4φ12 ; q)

∣∣∣
1||2

= −cΓ

ε2

√
1− z
z

1

〈12〉
[
(−s12)−ε + (−s3P (1− z))−ε + (−s34)−ε

+ (−s4P z)
−ε + (−s4P z)

−εh
(

(z − 1)
s4P

s12

)
+ (−s12)−εh

(z − 1

z

)
− (−s4P )−εh

(z − 1

z

s4P

s12

)
+ (−s12)−εh

( z

z − 1

)
+ (−s3P (1− z))−εh

(
− z s3P

s12

)
− (−s3P )−εh

( z

z − 1

s3P

s12

)]
.

(3.4.89)

From (3.4.89) we already see the tree-level splitting amplitude (3.4.84) appearing as an

overall prefactor. The terms with (−s12)−ε combine to give the one-loop splitting ampli-

tude (3.4.85) as expected,

F
(1)
3,4 (1+, 2φ12 , 3φ12 , 4φ12 ; q)

∣∣∣(−s12)−ε

1||2
=

cΓ

ε2
(−s12)−ε

√
1− z
z

1

〈12〉
[
1− F

(z − 1

z

)
− F

( z

z − 1

)]
= Split

(1)
−φ12

(1φ12 , 2φ12)F
(0)
3,3 (P φ12 , 3φ12 , 4φ12 ; q) ,

(3.4.90)

whereas performing an expansion in ε of the remaining terms shows that it matches pre-

cisely F
(1)
3,3 (P φ12 , 3φ12 , 4φ12 ; q) Split

(0)
−φ12

(1+, 2φ12). Thus we conclude that the universal

collinear factorisation structure (3.4.82) is obeyed for the particular one-loop form factor

we considered. Confirming the collinear factorisation at two-loop order would require the

calculation of the non-minimal form factor F
(2)
3,4 , which we leave for future investigation.
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Chapter 4

The dilatation operator and

on-shell methods

4.1 Introduction and motivation

So far we have studied the application of on-shell methods to form factors, which are

partially off-shell quantities. In this chapter we move on to the study of a completely

off-shell quantity: the one-loop dilatation operator in the SO(6) and SU(2|3) sectors in

planar N = 4 SYM.

The complete one-loop dilatation operator is known from the work of Beisert and

Staudacher [27, 28] and it has led to the discovery of integrability in the planar sector,

which allows for the computation of anomalous dimensions for finite values of the ’t Hooft

coupling. Such computations are of great importance as they produce results at strong

coupling which can be compared to string theory predictions and may shed some light

into the strong coupled regimes of field theories. In the scattering amplitudes context, it

is known that they are invariant under the Yangian of PSU(2, 2|4) [162] which arises from

the combination of superconformal and dual superconformal symmetries [70]. Therefore an

important question is what is the connection between the realisation of Yangian symmetry

on amplitudes and the integrability of the dilatation operator. In this chapter we perform

a few steps in connecting the two approaches and apply two on-shell methods to the

dilatation operator: MHV rules and generalised unitarity.

An additional motivation for our work is provided by the interesting papers [22, 23].

In particular, [22] successfully computes the one-loop dilatation operator Γ in the SO(6)

sector using N = 4 supersymmetric twistor actions [47, 46, 48]. It is known that such

actions, in conjunction with a particular axial gauge choice, generate the MHV rules in
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twistor space [46], and the question naturally arises as to whether one could derive the

dilatation operator directly using MHV diagrams in momentum space, without passing

through twistor space. The answer to this question is positive and this is the subject

of §4.2. Furthermore, we find that the calculation is very simple — it amounts to the

evaluation of a single MHV diagram in dimensional regularisation, leading to a single

UV-divergent integral, identical to that appearing in [99] and reviewed in §2.6.

The MHV diagram expansion can be obtained from the N = 4 SYM action using a

particular axial gauge choice, followed by a field redefinition [45, 163], thus its validity

not only applies to on-shell amplitudes, but also to off-shell quantities such as correlation

functions.

There are several reasons to pursue an approach based on MHV diagrams. Firstly,

it is interesting to consider the application of this method to the computation of fully

off-shell quantities such as correlation functions. Secondly, in the MHV diagram method

there is a natural way to regulate the divergences arising from loop integrations, namely

dimensional regularisation, used in conjunction with the four-dimensional expressions for

the vertices. In this respect, we recall that one-loop amplitudes were calculated with MHV

diagrams in [146], where the infinite sequence of MHV amplitudes in N = 4 SYM was

rederived. One-loop amplitudes in N = 1 SYM were subsequently computed in [164, 165],

while in [166] the cut-constructible part of the infinite sequence of MHV amplitudes in

pure Yang-Mills at one loop was presented. The N = 1 and N = 0 amplitudes have

ultraviolet (UV) divergences (in addition to infrared ones), which are also regulated in

dimensional regularisation. The two-point correlation function relevant for the dilatation

operator also exhibits UV divergences, which we regulate in exactly the same way as in

the case of amplitudes.1

In the second part of this chapter, §4.3, we move on and apply generalised unitarity

[33, 34] which, as we shall see, allows for an even more efficient calculation of the dilata-

tion operator. The use of generalised unitarity will further simplify the already remarkably

simple calculation of the dilatation operator performed with MHV rules and will allow us

to easily do the computation also in the SU(2|3) sector. The application of unitarity to

the derivation of the dilatation operator is welcome also from a conceptual point of view,

since the only ingredients of the calculation are on-shell amplitudes — with no off-shell

information being introduced. This supports the hope that using this approach one may

be able to connect directly the amplitudes and their hidden structures and symmetries

1The reader may consult [49, 50] for further applications of the MHV diagram method to the calculation
of loop amplitudes.
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to the integrability of the dilatation operator in N = 4 SYM. It is important to mention

that other applications of unitarity to the calculation of n-point correlators and correla-

tion functions of Wilson lines have appeared in [117, 167, 134], apart from the already

mentioned [23, 24] in the specific context of the dilatation operator.

General Strategy

Recall from §2.6 that the one-loop dilatation operator can be obtained by computing the

UV divergent part of the two-point function

〈
O(x1)Ō(x2)

〉 ∣∣∣one-loop

UV
(4.1.1)

of the appropriate operators belonging to the sector under study. For both MHV diagram

and generalised unitarity methods, the extraction of the UV divergent part of two-point

correlation functions lands on only one integral which is the same as (2.6.13) in the MZ

calculation, shown in Figure 2.9.

Since we will be using methods inspired on scattering amplitude, it is useful to present

this integral in momentum space, where it is a simple, single-scale integral — the double

bubble shown in Figure 4.1. It is given by

I(x12) =

∫ 4∏
i=1

ddLi
(2π)d

ei(L1+L2)·x12

L2
1 L

2
2 L

2
3 L

2
4

(2π)d δ(d)
( 4∑
i=1

Li

)

=

∫
ddL

(2π)d
eiL·x12

∫
ddL1

(2π)d
ddL3

(2π)d
1

L2
1 (L− L1)2 L2

3 (L+ L3)2
,

(4.1.2)

where L ≡ L1 + L2.

Figure 4.1: The double-bubble integral relevant for the computation of I(x12).

The integral over L1 and L3 is the product of two bubble integrals with momenta as in

Figure 4.1, which are separately UV divergent. In momentum space, the UV divergence

arise from the regions L1 → ∞ and L3 → ∞. The leading UV divergence of (4.1.2)

computed in dimensional regularisation (d = 4− 2ε) is equal to

I(x12)|UV =
1

ε
· 1

8π2
· 1

(4π2x2
12)2

, (4.1.3)
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where we have performed an inverse Fourier transform to position space using

∫
ddp

(2π)d
eip·x

(p2)s
=

Γ(D2 − s)
4s π

D
2 Γ(s)

1

(x2)
D
2
−s

. (4.1.4)

In all our computations only single-scale integrals appear. In the cases where they have

tensor numerators, we employ the Passarino-Veltman (PV) reduction method to write

them in terms of scalar integrals [72]. The reductions will be shown explicitly in Appendix

B.2.

For the MHV diagram computation, there is a single MHV diagram to compute, rep-

resented in Figure 4.2. It consists of one supersymmetric four-point MHV vertex,

Figure 4.2: The single MHV diagram contributing to the dilatation operator at one loop.

V MHV(1, 2, 3, 4) =

δ(4)

(
4∑
i=1

Li

)
δ(8)

(
4∑
i=1

`iηi

)
〈12〉〈23〉〈34〉〈41〉 , (4.1.5)

and four scalar propagators 1/(L2
1 · · ·L2

4) connecting it to the four scalars in the operators.

Here Li are the (off-shell) momenta of the four particles in the vertex. The off-shell

continuations of the spinors associated to the internal legs are defined using the prescription

of [30] (also shown in (2.2.9)), namely

`iα ≡ Liαα̇ξ
α̇ . (4.1.6)

Here ξα̇ is a constant reference spinor2. The final result must be independent of the choice

of ξα̇.

For the unitarity computation, we go one step further and consider the quadruple

cut of the two-point function (4.1.1), thus the four momenta L1, . . . , L4 are taken to be

on-shell, denoted as `1, . . . , `4 and represented in Figure 4.3.

2As we mentioned earlier, MHV diagrams were derived in [45, 163] from a change of variables in the
Yang-Mills action quantised in the lightcone gauge. The spinor ξα̇ is precisely related to this gauge choice.
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Figure 4.3: The single cut diagram contributing to the dilatation operator at one loop.
Notice that the amplitude is colour dressed.

At one loop, the no-triangle property [31] of the one-loop S-matrix of N = 4 SYM

implies that maximal cuts employed in [34] are enough to completely determine all ampli-

tudes of the theory. Similarly, we identify certain quadruple cuts which are sufficient to

determine the dilatation operator at one loop.

4.1.1 The one-loop dilatation operator in the SO(6) sector

Recall from §2.6 that operators in the SO(6) sector are of the form

OA1B1,A2B2,...,ALBL(x) ≡ Tr
(
φA1B1(x) · · ·φALBL(x)

)
, (4.1.7)

and at one loop and in the planar limit, only nearest neighbour scalar fields can be con-

nected by vertices. This simplifies the calculation to that of 〈(φABφCD)(x1)(φA′B′φC′D′)(x2)〉,
where colour indices are suppressed. The expected flavour structure of this correlation

function is

〈
(φABφCD)(x1)(φA′B′φC′D′)(x2)

〉
= A εABCDεA′B′C′D′ + B εABA′B′εCDC′D′ + C εABC′D′εA′B′CD .

(4.1.8)

These three terms are usually referred to as trace, permutation and identity as shown

in Table 2.6. We are only interested in the leading UV-divergent contributions to the

coefficients A, B and C, which we denote by AUV, BUV and CUV. According to [99] they

are expected to be

AUV =
1

2
, BUV = −1 , CUV = 1 . (4.1.9)

In the definitions of AUV, BUV, and CUV we omit a factor of λ/(8π2)×
(
1/(4π2x2

12)
)2×(1/ε)

arising from the UV-divergence (4.1.3) and the colour contractions. These factors will be
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reinstated at the end. This leads to the famous result of [99] for the one-loop dilatation

operator Γ in the SO(6) sector,

ΓSO(6) =
λ

8π2

L∑
n=1

(
1l − Pn,n+1 +

1

2
Trn,n+1

)
, (4.1.10)

where P and Tr are the permutation and trace operators, respectively, L is the number of

scalar fields in the operator, and λ the ’t Hooft coupling.

The strategy for both MHV diagram and unitarity computations amount to choosing

the SU(4) R-symmetry assignments such that only one term in ΓSO(6) survives (1l, P or

Tr). These representative assignments can be seen in Table 4.1. The computation of

ABCD A′B′C ′D′

Tr 1234 2413

P 1213 3424

1l 1213 2434

Table 4.1: R-symmetry assignments for each representative term in the SO(6) one-loop
dilatation operator.

ΓSO(6) using MHV diagrams is shown in §4.2 and using generalised unitarity in §4.3.1.

4.1.2 The one-loop dilatation operator in the SU(2|3) sector

The SU(2|3) sector is particularly interesting, as it involves also fermions. Indeed, op-

erators in this sector are formed by letters taken from the set
{
ψ1α, φ1A

}
, with α =

1, 2 transforming under one SU(2)L Lorentz group and A = 2, 3, 4 transforming under

SU(3) ⊂ SU(4)R R-symmetry group. We thus have one fermion and three scalar fields.

The dilatation operator in this sector was derived in [104]. Its expression is given by

ΓSU(2|3) =
λ

8π2

[{
AB

AB

}
−
{
AB

BA

}
+
{
Aβ

Aβ

}
+
{
αB

αB

}
−
({

Aβ

β A

}
+
{
αB

B α

})
+
{
αβ

αβ

}
+
{
αβ

β α

}]
.

(4.1.11)

Here A,B = 2, 3, 4 denote scalars and the notation
{
I J

K L

}
stands for the action of the di-

latation operator Γ 〈ΦI(x1)ΦJ(x2)〉 ∝ 〈ΦK(x1)ΦL(x2)〉 with each Φ being a field belonging

to the SU(2|3) sector. In §4.3.2 we will rederive (4.1.11) using generalised unitarity.
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4.2 ΓSO(6) from MHV Rules

In this section we apply the MHV diagram method to the computation of the one-loop

dilatation operator ΓSO(6). To do so, we compute the UV-divergent part of the coefficients

A, B, C defined in (4.1.8), representing the trace, permutation and identity flavour struc-

tures, respectively. Next we extract the relevant component vertices for the three flavour

assignments in Table 4.1. These turn out to be:

Tr : A(1φ12 , 4φ13 , 3φ24 , 2φ34) =
〈13〉〈24〉
〈12〉〈34〉

P : A(1φ12 , 4φ24 , 3φ34 , 2φ13) = −1

1l : A(1φ12 , 4φ34 , 3φ24 , 2φ13) =
〈13〉〈24〉
〈23〉〈14〉

Table 4.2: On-shell amplitudes corresponding to the R-symmetry assignments outlined in
Table 4.1.

Hence in the case of P the resulting loop integral is precisely the double-bubble integral

I(x12) of (4.1.2) (up to a sign), while in the other two cases the double-bubble integrand

is dressed with the vertex factors in Table 4.2. In the following we discuss the additional

contributions from the vertex for the three configurations Tr, P and 1l.

The Tr integrand

We begin our analysis with the vertex factor for the trace configuration shown in Table

4.2. Using the off-shell prescription for MHV diagrams we can rewrite it as

T ≡ [ξ|L1L3|ξ] [ξ|L2L4|ξ]
[ξ|L1L2|ξ] [ξ|L3L4|ξ]

. (4.2.1)

Using momentum conservation to eliminate L2 and L4, this can be recast as a sum of

three terms,

T = − [ξ|L1L3|ξ]
[ξ|L3L|ξ]

− [ξ|L1L3|ξ]
[ξ|L1L|ξ]

− [ξ|L1L3|ξ]2
[ξ|L1L|ξ] [ξ|L3L|ξ]

, (4.2.2)

where L ≡ L1 + L2. The first two terms correspond to linear bubble integrals in L1 and

L3, respectively. We will study separately the contribution arising from the last term. The

linear bubble integral can be written in terms of a scalar bubble as (see Appendix B.2 for

a derivation) ∫
ddK

(2π)d
Kµ

K2(K ± L)2
= ∓L

µ

2
Bub(L2) , (4.2.3)
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where

Bub(L2) ≡
∫

ddK

(2π)d
1

K2(K + L)2
. (4.2.4)

This is one of the two scalar bubbles comprising the MZ integral (4.1.2). In the following

we will then only quote the coefficient dressing the MZ integral. Doing so, the first term

in (4.2.2) becomes, after the reduction,

− [ξ|LL3|ξ]
[ξ|L3L|ξ]

· 1

2
=

1

2
. (4.2.5)

Similarly, the second term in (4.2.2) gives a result of +1/2. Next we move to the third

term. To simplify its expression, we first notice that the bubble integral in L1 is symmetric

under the transformation L1 → L − L1. The idea is then to simplify the integrand

by using this symmetry. Thus, we rewrite the quantity [ξ|L1L3|ξ] in the numerator as

[ξ|L1L3|ξ] = [ξ|(L1 − 1
2L)L3|ξ] + 1

2 [ξ|LL3|ξ]. Doing so, we get

− [ξ|L1L3|ξ]2
[ξ|L1L|ξ] [ξ|L3L|ξ]

= − [ξ|(L1 − L
2 )L3|ξ]2

[ξ|L1L|ξ] [ξ|L3L|ξ]
+

1

4

[ξ|LL3|ξ]
[ξ|L1L|ξ]

+
[ξ|(L1 − 1

2L)L3|ξ]
[ξ|L1L|ξ]

. (4.2.6)

We then notice that the first and the second term are antisymmetric under the transfor-

mation L1 → L− L1 and hence vanish upon integration. The third term is a sum of two

linear bubbles in L3, and the corresponding contributions are quickly seen to be equal to

−1/2 and zero, respectively.

Summarising, the trace integral gives a contribution of 1/2 times the dimensionally

regularised MZ integral. Thus AUV = 1/2.

The P integrand

In this case the vertex is simply −1 and the corresponding result is −1 times the MZ

integral, or BUV = −1.

The 1l integrand

The relevant vertex factor is written in Table 4.2. In this case we observe that

〈13〉〈24〉
〈23〉〈14〉 = 1 +

〈12〉〈34〉
〈23〉〈14〉 . (4.2.7)

The first term gives a contribution equal to the MZ integral, and we will now argue that

the second term is UV finite, and hence does not contribute to the dilatation operator.
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Indeed, we can write

〈12〉〈34〉
〈23〉〈14〉 =

[ξ|L1L|ξ][ξ|L3L|ξ]
[ξ|(L− L1)L3|ξ][ξ|L1(L+ L3)|ξ] . (4.2.8)

The UV divergences we are after arise when L1 and L3 are large. The integrand (4.2.8)

provides one extra power of momentum per integration, which makes each of the two

bubbles in the MZ integral finite.3 Thus CUV = 1.

We end this section with a comment regarding the independence of the integrals above

on the reference spinor ξ. Since MHV diagrams are obtained from a particular axial gauge

choice, combined with a field redefinition [45, 163], it is guaranteed that ξ-dependence

drops out at the end of the calculation. In the present case one can see this directly as

follows. Lorentz invariance ensures that the result of the L1- and L3-integrations can only

depend on L2, as the other Lorentz-invariant quantity [ξ|L2|ξ] vanishes (note that L · ξ
cannot appear as our integrands only depend on the anti-holomorphic spinor ξα̇).

4.3 Unitarity

We now proceed to the computation of the one-loop dilatation operator in the SO(6) and

SU(2|3) sectors using generalised unitarity.

The computation here simplifies that of MHV diagrams considerably. There is only

one quadruple cut to consider — that where the four propagators with momenta L1,

L2 ≡ L − L1, L3 and L4 ≡ −(L + L3) are set on shell. By computing these cuts we will

be able to identify the coefficient of the double bubble (4.1.2) in all relevant cases, once

again without having to perform any integral. The cut double bubble can then be lifted

to a full integral, and by picking its UV divergence (4.1.3) we can immediately write down

the dilatation operator.

4.3.1 ΓSO(6) from unitarity

In this section we will compute ΓSO(6) using generalised unitarity. This calculation is

essentially the same of §4.2 with the important change that we no longer need to use

off-shell continuations of amplitudes. The set up is shown in Figure 4.3.

For each case there is a single cut diagram to consider. The integrand is constructed

with four cut scalar propagators with momenta Li, i = 1, . . . , 4, and one on-shell ampli-

tude, as shown in Figure 4.3. The operators are connected to the amplitude via appropriate

3One may also notice that for large L1 and L3 the integrand becomes an odd function of these two
variables, and thus the integral should be suppressed even further than expected from power counting.
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form factors, which in the scalar case are simply

Fφaφ̃b(`
φa
′

1 , `φ̃
b′

2 ;L) ≡
∫
d4x eiL·x

〈
0 |(φaφ̃b)(x)|φa′(`1), φ̃b

′
(`2)

〉
= (2π)4δ(4)

(
L− `1 − `2

)
δaa
′
δbb
′
,

(4.3.1)

where we have used φ and φ̃ to denote two scalar fields having distinct R-symmetry indices

as is sufficient for our purposes cf. Table 4.1. Table 4.2 shows the relevant amplitudes

for the three flavour assignments considered in Table 4.1. Note that the `i represent the

on-shell (cut) versions of the loop momenta Li.

Three observations are in order here. First, we note that the same integrands as in the

approach of §4.2 appear, with the important difference that there the spinors associated

with the on-shell momenta are given by the appropriate off-shell continuation for MHV di-

agrams. Here the spinors for the cut loop momenta do not need any off-shell continuation.

Furthermore, for the case of the P integrand there is obviously no difference between the

two approaches, and the resulting integral is given by a double bubble where all the four

propagators are cut. In the other two cases, this integral is dressed by the appropriate

amplitude. Finally, we note that the colour factor associated with all diagrams is obtained

from the contraction

· · · (tbta)ij · · ·Tr(tatbtctd) · · · (tdtc)lm · · · = · · ·N2δimδ
l
j · · · , (4.3.2)

where the trace arises from the amplitude and the factors · · · (tbta)ij · · · and · · · (tdtc)lm · · ·
from the operators (and we indicate only generators corresponding to the fields being

contracted). We now proceed to construct the relevant integrands.

The trace integrand

In this case the relevant amplitude (which multiplies four cut propagators) can be rewritten

as

〈13〉 〈24〉
〈12〉 〈34〉 =

Tr+(`1 `3 `4 `2)

(`1 + `2)2(`3 + `4)2
= −2(`1 · `3)

L2
, (4.3.3)

where we have used `1 + `2 = −(`3 + `4) ≡ L and the trace expansion (A.0.11). Hav-

ing rewritten the amplitude in terms of products of momenta, we next lift the four cut

momenta off shell. The resulting integral has the structure of a product of two linear
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bubbles,

− 2

L2

∫
ddL1

(2π)d
Lµ1

L2
1 (L− L1)2

∫
ddL3

(2π)d
L3µ

L2
3 (L+ L3)2

. (4.3.4)

Using (4.2.3) we find that (4.3.4) is equal to 1/2 times a double bubble. Using (4.1.3) we

finally get AUV = 1/2.

The P integrand

No calculation is needed in this case, and the result is simply given by minus a cut double-

bubble integral. Lifting the cut integral to a full loop integral we get BUV = −1.

The 1l integrand

The relevant amplitude in this case is

〈13〉 〈24〉
〈23〉 〈14〉 = 1 +

〈12〉 〈34〉
〈23〉 〈14〉 . (4.3.5)

Thus the first term in (4.3.5) gives the cut double-bubble integral, whereas we can use

on-shell identities to rewrite the second term as

〈12〉 〈34〉
〈23〉 〈14〉 =

〈12〉 〈34〉 [34]

〈23〉 〈14〉 [34]
= − L2

2(`1 · `4)
. (4.3.6)

Lifting the cut propagators of the second integral to full propagators, it is immediate to

see that this term produces the integral represented in Figure 4.4. This integral is finite

in four dimensions and thus does not contribute to CUV. We then conclude that CUV = 1.

Figure 4.4: The finite integral corresponding to the second term in (4.3.6). This integral
is UV-finite and thus irrelevant for the calculation of the dilatation operator.

A comment is in order here. In principle an ambiguity is still present corresponding to

an integral such as that of Figure 4.4 but with one of the four propagators L1, . . . , L4

collapsed (say L4), which is UV divergent. This integral can be excluded by looking at a

triple cut corresponding to cutting the propagators L1, L3 as well as the middle propagator

in Figure 4.4.
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4.3.2 ΓSU(2|3) from unitarity

In this section we derive ΓSU(2|3) shown in (4.1.11) using generalised unitarity. As for

the SO(6) case, in the planar limit only contractions between nearest-neighbour fields in

O(x1) and Ō(x2) have to be considered. The first two terms on the right-hand side of

(4.1.11) denote the scalar identity 1l and permutation P structures already familiar from

the SO(6) case (the trace structure is absent given the restricted choice of scalar letters).

The novelty is that now we have to consider two additional types of contractions: scalar-

fermion → scalar-fermion, and two-fermion → two-fermion, as indicated in the remaining

terms in (4.1.11). We compute each of these processes separately in the following sections.

Scalar-fermion → scalar-fermion

In this case we are interested in a fermion field ψ1α and one of the scalars φ12, φ13, or φ14.

Without loss of generality we will consider φ12. There are two cases to consider,

U :
〈
(φa12ψ

b
1α)(x1)(ψc234 α̇φ

d
34)(x2)

〉
, (4.3.7)

and

S :
〈
(φa12ψ

b
1α)(x1)(φc34ψ

d
234 α̇)(x2)

〉
, (4.3.8)

where the letters U and S indicate whether the contractions between the two fields are

unswapped or swapped. The relevant form factor is

Fφa12ψ
b
1α

(`
φa
′

12
1 , `

ψb
′

1α
2 ;L) ≡

∫
d4x eiL·x 〈0|(φa12ψ

b
1α)(x)|φa′12(`1), ψb

′
1 (`2)〉

= (2π)4δ(4)
(
L− `1 − `2

)
λ2
α δ

aa′δbb
′
,

(4.3.9)

and similarly for Ō(x2).

We begin by considering the U case. By contracting the two form factors with the

four planar permutations of the full amplitude, we obtain4

λ2
αλ̃

3
α̇ δ

aa′δbb
′
δcc
′
δdd
′

×
[
A(1φ12 , 2ψ1 , 3ψ234 , 4φ34) Tr(ta

′
tb
′
tc
′
td
′
) +A(1φ12 , 2ψ1 , 4φ34 , 3ψ234) Tr(ta

′
tb
′
td
′
tc
′
)

−A(1φ12 , 3ψ234 , 4φ34 , 2ψ1) Tr(ta
′
tc
′
td
′
tb
′
)−A(1φ12 , 4φ34 , 3ψ234 , 2ψ1) Tr(ta

′
td
′
tc
′
tb
′
)
]
.

(4.3.10)

4Two out of the six possible contractions, namely those where particles 1 and 2 are not adjacent, do
not contribute at large N .
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At large N there is only one leading contribution, that with colour contractions given by

(4.3.2). The corresponding amplitude is

A(1φ12 , 4φ34 , 3ψ234 , 2ψ1) =
〈13〉 〈34〉
〈14〉 〈23〉 . (4.3.11)

Including the fermion polarisation spinors from the form factors (4.3.9) we get

−A(1φ12 , 4φ34 , 3ψ234 , 2ψ1)λ2
βλ̃

3
β̇

= −
(`2 ¯̀

1 `3)ββ̇
2(`1 · `4)

≡ Nββ̇ , (4.3.12)

where we use the notation

(`i ¯̀j`k)αα̇ ≡ λiα[ij] 〈jk〉 λ̃kα̇ , (¯̀
i`j ¯̀k)α̇α ≡ λ̃iα̇ 〈ij〉 [jk]λkα (4.3.13)

and so on. The cut integral to consider is thus

Iββ̇ ≡
∫
d4`1d

4`3 δ
(+)(`21) δ(+)(`23) δ(+)

(
(L− `1)2

)
δ(+)

(
(L+ `3)2

)
· Nββ̇ , (4.3.14)

where by Lorentz invariance Iββ̇ must have the form

Iββ̇ = ALββ̇ . (4.3.15)

A simple PV reduction (shown in Appendix B.2, see (B.2.10)) determines that the UV-

divergent part of the coefficient A is equal to AUV = 1/2.

For the S case, we get the single leading contribution to be

−A(1φ12 , 4ψ234 , 3φ34 , 2ψ1)λ2
βλ̃

4
β̇

= −
(`2 ¯̀

1 `4)ββ̇
2(`2 · `3)

≡ Ñββ̇ . (4.3.16)

The relevant integral is now

Ĩββ̇ ≡
∫
d4`1d

4`3 δ
(+)(`21) δ(+)(`23) δ(+)

(
(L− `1)2

)
δ(+)

(
(L+ `3)2

)
· Ñββ̇

= Ã Lββ̇ , (4.3.17)

where a PV reduction shows that Ã = −1/2. Note that in arriving at this result we have

discarded finite integrals, which do not contribute to the anomalous dimensions (more

precisely, in all calculations the only other finite integral appearing is the kite, depicted in

Figure 4.4).

Summarising, the scalar-fermion→ scalar-fermion case gives ±1/2Lββ̇ times a double-
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bubble integral, for the U/S case, respectively. This has to be compared to the tree-level

expression shown in Figure 4.5, which is given by (using L2 ≡ L− L1)

Itree
ββ̇
≡
∫

dDL1

(2π)D

L1ββ̇

L2
1(L− L1)2

=
1

2
Lββ̇ Bub(L2) . (4.3.18)

Thus for the two-scalar two-fermion case we get:

Figure 4.5: Tree-level planar contractions of two nearest neighbour fields of (4.1.1).

1l : 1 , P : −1 , (4.3.19)

and the corresponding contribution to the spin-chain Hamiltonian is5

λ

8π2

({
Aβ

Aβ

}
−
{
Aβ

β A

})
, (4.3.20)

in agreement with the corresponding terms in (4.1.11).

Two-fermion → two-fermion

In this case we consider the four-point correlator

〈
(ψa1αψ

b
1β)(x1)(ψc234 α̇ψ

d
234 β̇

)(x2)
〉
. (4.3.21)

The form factors of O(x1) are given by

Fψa1αψb1 β
(`
ψa
′

1α
1 , `

ψb
′

1 β

2 ;L) ≡
∫
d4x eiL·x

〈
0 |(ψa1αψb1β)(x1)|ψa′1 (`1), ψb

′
1 (`2)

〉
= (2π)4δ(4)

(
L− `1 − `2

)
· 1

2

(
λ1
αλ

2
β δ

aa′δbb
′ − λ1

βλ
2
α δ

ab′δba
′)
,

(4.3.22)

5Here we also reinstate powers of g2
YM from the tree-level amplitudes, of N , arising from colour con-

tractions, and a factor of 1/(8π2) arising from the UV singularity (4.1.3) of the double-bubble integral
(4.1.2).
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and similarly for the form factor of Ō(x2). Note the factor of 1/2 appearing because of

the presence of two identical particles in the state. Contracting the two form factors with

the four planar permutations of the full amplitude, we get

−1

4

(
λ1
αλ

2
βδ
aa′δbb

′ − λ1
βλ

2
αδ

ab′δba
′)(
λ̃3
α̇λ̃

4
β̇
δcc
′
δdd
′ − λ̃3

β̇
λ̃4
α̇δ

cd′δdc
′)

×
[
A(1ψ1 , 2ψ1 , 3ψ234 , 4ψ234) Tr(ta

′
tb
′
tc
′
td
′
)−A(1ψ1 , 2ψ1 , 4ψ234 , 3ψ234) Tr(ta

′
tb
′
td
′
tc
′
)

+A(1ψ1 , 3ψ234 , 4ψ234 , 2ψ1) Tr(ta
′
tc
′
td
′
tb
′
)−A(1ψ1 , 4ψ234 , 3ψ234 , 2ψ1) Tr(ta

′
td
′
tc
′
tb
′
)
]
.

(4.3.23)

In the large-N limit we only need to keep the following terms out of those in (4.3.23):

−1

4

[
A(1ψ1 , 2ψ1 , 3ψ234 , 4ψ234)λ1

βλ
2
αλ̃

3
β̇
λ̃4
α̇ +A(1ψ1 , 2ψ1 , 4ψ234 , 3ψ234)λ1

βλ
2
αλ̃

3
α̇λ̃

4
β̇

−A(1ψ1 , 3ψ234 , 4ψ234 , 2ψ1)λ1
αλ

2
βλ̃

3
β̇
λ̃4
α̇ −A(1ψ1 , 4ψ234 , 3ψ234 , 2ψ1)λ1

αλ
2
βλ̃

3
α̇λ̃

4
β̇

]
,

(4.3.24)

where the relevant four-fermion amplitudes are

A(1ψ1 , 2ψ1 , 3ψ234 , 4ψ234) = − 〈34〉2
〈23〉 〈41〉 ,

A(1ψ1 , 2ψ1 , 4ψ234 , 3ψ234) = − 〈34〉2
〈24〉 〈31〉 ,

A(1ψ1 , 3ψ234 , 4ψ234 , 2ψ1) =
〈34〉2
〈13〉 〈42〉 ,

A(1ψ1 , 4ψ234 , 3ψ234 , 2ψ1) =
〈34〉2
〈14〉 〈32〉 . (4.3.25)

Using (4.3.25), we can rewrite (4.3.24) as

1

4

[
(`2 ¯̀

1)αβ( ¯̀
4`3)α̇β̇ + (`1 ¯̀

2)αβ( ¯̀
3`4)α̇β̇

2(`2 · `3)
+ `1 ↔ `2

]
. (4.3.26)

The term with `1 ↔ `2 is simply a relabelling of the integration variables, and we conclude

that the one-loop integrand is given by

1

2

[
(`2 ¯̀

1)αβ( ¯̀
4`3)α̇β̇ + (`1 ¯̀

2)αβ( ¯̀
3`4)α̇β̇

2(`2 · `3)

]
≡ Nαβα̇β̇ . (4.3.27)

Thus we have to consider the cut-integral

Iαβα̇β̇ ≡
∫
d4`1d

4`3 δ
(+)(`21) δ(+)(`23) δ(+)

(
(L− `1)2

)
δ(+)

(
(L+ `3)2

)
· Nαβα̇β̇ . (4.3.28)
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It depends on only one scale L, hence it has the form

Iαβα̇β̇ = AL2εαβεα̇β̇ + B (Lαα̇Lββ̇ + Lαβ̇Lβα̇) . (4.3.29)

Contracting (4.3.28) and (4.3.29) with εαβεα̇β̇ and (L̄α̇αL̄β̇β+L̄β̇αL̄α̇β) we can solve for the

coefficients A and B. The result for the corresponding UV-divergent parts is (as computed

in (B.2.14))

AUV = 0 , BUV = 1/6 . (4.3.30)

At this point we lift the four cut propagators to full propagators, so that the cut dou-

ble bubble becomes a full double-bubble integral. The conclusion is then that the UV-

divergent part of the integral representing the two-fermion → two-fermion process is a

double bubble with coefficient

1

6
(Lαα̇Lββ̇ + Lαβ̇Lβα̇) . (4.3.31)

This result has to be compared with the planar contractions at tree level, shown in Figure

4.5,

Itree
αβα̇β̇

≡
∫

ddL1

(2π)d

L1αβ̇(L− L1)βα̇

L2
1(L− L1)2

. (4.3.32)

Here L1 and L2 are the momenta of each fermion and L = L1 + L2. After a similar PV

reduction of the L1 integration in (4.3.32), also found explicitly in (B.2.17) and (B.2.20),

we find that Itree
αβα̇β̇

is given by a scalar (single) bubble with coefficient

1

4

[
−L2 εαβεα̇β̇ +

1

3

(
Lαα̇Lββ̇ + Lβα̇Lαβ̇

)]
. (4.3.33)

This is the “identity” or
{
αβ

αβ

}
. The permutation is obtained by swapping α̇ and β̇, or{

αβ

β α

}
. Thus, we can write:

{
αβ

αβ

}
:

1

4

[
−L2 εαβεα̇β̇ +

1

3

(
Lαα̇Lββ̇ + Lβα̇Lαβ̇

)]
, (4.3.34){

αβ

β α

}
:

1

4

[
L2 εαβεα̇β̇ +

1

3

(
Lαα̇Lββ̇ + Lβα̇Lαβ̇

)]
. (4.3.35)

In this language, the tree-level contraction is represented as

{
αβ

αβ

}
. (4.3.36)
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Hence, reinstating powers of the ’t Hooft coupling, we obtain that the term in the spin-

chain Hamiltonian corresponding to the two-fermion → two-fermion process is

λ

8π2

({
αβ

αβ

}
+
{
αβ

β α

})
, (4.3.37)

in agreement with the corresponding terms in (4.1.11). In conclusion, putting together the

purely scalar result of §4.3.1, (4.1.10), as well as the results (4.3.20) and (4.3.37) for the

two-fermion two-scalar and four-fermion cases, we have confirmed the complete expression

(4.1.11) for the spin-chain Hamiltonian in the SU(2|3) sector.
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Chapter 5

On-shell diagrams: planar and

non-planar

5.1 Introduction and review of planar case

In this chapter we go back to the study of on-shell scattering amplitudes, but as opposed

to the vast majority of the N = 4 SYM literature, we focus on non-planar corrections.

Although there has been important progress in the study of non-planar amplitudes in

N = 4 SYM [168, 169, 170, 171, 172, 173], they are far less understood than amplitudes in

the planar sector. The purpose of the work presented here is to study non-planar on-shell

diagrams.

The methods presented in Chapter 1 already suggested that momentum space is not

the best way to represent amplitudes if one wants to make use of the large amount of

symmetries that underlie them. There are many ways one can study scattering amplitudes

which are not in ordinary momentum space. Here we will explore a dual formulation for

planar amplitudes proposed in [2, 174, 175, 176, 177], where all Nk−2MHV loop leading

singularities arise as residues of an integral over the Grassmannian Grk,n — the space

of k-dimensional planes in Cn. Underlying this description is the idea that to all loops

one only needs to consider on-shell data, and loop integration variables lie inside the

Grassmannian space. This idea is made manifest with the concept of on-shell diagrams —

graphs formed by nodes which are three-particle amplitudes conneted by edges which are

on-shell momenta.

On-shell diagrams arise naturally planar N = 4 SYM because the all-loop integrand

satisfy the all-loop BCFW recursion relation [71]. Each BCFW term can in turn be

represented as a planar on-shell diagram. Currently there exists a canonical definition of
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the planar integrand (see Figure 2.6) but there is no well-defined notion of loop integrands

for the amplitudes beyond the planar limit due to the lack of canonical variables. Non-

planar on-shell diagrams are, however, still worth studying since, to say the least, they

provide a description for computing non-planar leading singularities of loop amplitudes.

Leading singularities are important information which can be used to construct the full

loop amplitudes; it is in fact believed, and supported by many non-trivial examples, that

for special theories such as N = 4 SYM and N = 8 supergravity, the full loop amplitudes

can be completely determined by the knowledge of their leading singularities [63]. More

ambitiously, one could envision that a Grassmannian formulation of non-planar N = 4

SYM exists and, if so, it can perhaps be phrased in terms of non-planar on-shell diagrams.

Moreover, as we shall see, on-shell diagrams are the mathematical objects that naturally

provide the logarithmic singularities alluded to in [178, 179].

Before we begin the discussion on the Grassmannian formulation, it is useful to get

acquainted with this space. An element of Grk,n is the span of k vectors with n complex

components each, thus it can be parametrised by organising the components of these

vectors as rows of of a k × n matrix C,

C =



c11 c12 . . . c1n

c21
. . . c2n

...
. . .

...

ck1 ck2 . . . ckn


. (5.1.1)

Since any linear combination of the k vectors span the same plane, the parametrisation

above should be considered modulo a GL(k) action. The dimension of Grk,n is thus

dim (Grk,n) = k(n− k).

A suitable set of coordinates in Grk,n are the SL(k) invariant maximal minors of C,
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called Plücker coordinates. There are two common notations for these determinants,

(i1i2 · · · ik) = ∆i1,i2,...,ik ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1i1 c1i2 . . . c1ik

c2i1
. . . c2ik

...
. . .

...

cki1 cki2 . . . ckik

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.1.2)

Plücker coordinates are not all independent because they satisfy the Plücker relations:

(b1 · · · bk−1a1)(a2 · · · ak+1)− (b1 · · · bk−1a2)(a1 · · · ak+1)

+ . . . + (−1)k(b1 · · · bk−1ak+1)(a1 · · · ak) = 0 .
(5.1.3)

Due to the natural ordering of planar amplitudes (see Figure 2.2), the Grassmannian

formulation in this case can be simplified to a description in terms of the positive Grass-

mannian Gr+
k,n which is a subspace of Grk,n. Here positivity means that Gr+

k,n can be

parametrised by matrices C that admit a parametrisation of its entries such that all or-

dered minors ∆i1,i2,...,ik , i1 < i2 < · · · < ik are positive1. From a mathematical point of

view, the positive Grassmannian was extensively studied by Postnikov in [180] and ap-

pears in other Physical contexts apart from scattering amplitudes. In the Grassmannian

formulation, the study of the singularities of the S-matrix — which is the fundamental

guiding principle of the S-matrix theory — boils down to the study of cells and bound-

aries of Gr+
k,n. A cell in Gr+

k,n is characterised by which minors are non-zero and which

are zero. On-shell diagrams provide a bridge between cells in Gr+
k,n and terms that enter

the BCFW expansion of amplitudes, as will become clear later on.

To construct the Grassmannian formulation of scattering amplitudes, we start by en-

coding the external kinematic data {λiα, λ̃iα̇, ηiA} for the i = 1, . . . , n scattering particles

1Strictly speaking, we are considering the totally non-negative Grassmannian as the Plücker coordinates
can also be zero.
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as columns of the following matrices:

Λ =

λ
1
1 λ2

1 . . . λn1

λ1
2 λ2

2 . . . λn2

 , Λ̃ =

λ̃
1
1 λ̃2

1 . . . λ̃n1

λ̃1
2 λ̃2

2 . . . λ̃n2

 , η =



η11 η21 . . . ηn1

...
...

. . .
...

η14 η24 . . . ηn4


.

(5.1.4)

Both Λ and Λ̃ span a bosonic two-plane in Cn while η spans a fermionic four-plane in

Cn. Notice that The action of SL(2) on Λ, Λ̃ are Lorentz transformation and SL(4) on

η is an R-symmetry transformation. As a consequence of momentum (super-momentum)

conservation, the planes Λ and Λ̃ (Λ and η) are orthogonal, that is,

n∑
i=1

λiαλ̃
i
α̇ = 0 ⇒ Λ · Λ̃T = 02×2 ,

n∑
i=1

λiαη
iA = 0 ⇒ Λ · ηT = 02×4 .

(5.1.5)

The geometrical idea behind the Grassmannian formulation is to integrate over k-planes

in Cn, denoted by C, which satisfy

• The two-plane Λ̃ and the four-plane η are orthogonal to C, that is C ·Λ̃T = 0, C ·η =

0.

• The two-plane Λ is contained in C or, in other words, Λ is orthogonal to the or-

thogonal complement of C which is an (n − k) × n matrix C⊥. Thus we impose

C⊥ · ΛT = 0.

Using this, Nk−2MHV leading singularities with n external states in planar N = 4 SYM

is given by the following contour integral [2],

Lk,n =

∫
Γk,n

dk×nC

Vol(GL(k))

δ(2k)
(
C · Λ̃T

)
δ(2(n−k))

(
C⊥ · ΛT

)
δ(0|4k)

(
C · ηT

)
(1 · · · k)(2 · · · k + 1) · · · (n · · · k − 1)

, (5.1.6)

where Γk,n stands for the integration contour, namely a prescription for which particular

combination of k × k consecutive minors of the matrix C must be set to zero in order to

compute the residues. It is interesting to notice that the number of bosonic constraints in

(5.1.6) is always 2n−4 (the −4 corresponds to the momentum conservation delta-functions

which can always be factored out of the integral). For the MHV case, this is precisely the

number of degrees of freedom of Gr2,n and thus there is no need for a contour. In fact, one

can always choose two columns of C to coincide to the Λ plane. This gives rise to another
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Grassmannian formula in terms of momentum twistors2 where Nk−2MHV amplitudes are

a residue over an integral over Grk−2,n instead of Grk,n, with a prefactor corresponding

to an MHV superamplitude [176].

An interesting observation is that for k = 0, 1 there are more constraints than integra-

tion variables in (5.1.6), indeed it is not possible that a zero- or one-plane contains the

two-plane Λ (analogously for k = n− 1, n, C⊥ is a zero- or one-plane and cannot contain

Λ̃), hence it is immediate to see that these amplitudes are zero. A special case is when

n = 3. For the three-particle special kinematics already studied in (2.2.1), momentum

conservation admits a non-trivial solution for k = 1 and k = 2 when all momenta are

collinear. For the MHV case, all [ij] = 0 and thus λ̃1 ∝ λ̃2 ∝ λ̃3, so the Λ̃ plane is actually

a line. The same is true for the MHV case, except now all 〈ij〉 = 0 and λ1 ∝ λ2 ∝ λ3, so Λ

is a line. These amplitudes are precisely the building blocks of the on-shell diagrams which

are bicoloured graphs whose nodes are MHV (black) and MHV (white) superamplitudes

and whose edges are on-shell momenta. These are shown in Table 5.1.

=
δ(4)

(
λaλ̃a + λbλ̃b + λcλ̃c

)
δ(0|8)

(
λaηa + λbηb + λcηc

)
〈ab〉〈bc〉〈ca〉

=
δ(4)

(
λaλ̃a + λbλ̃b + λcλ̃c

)
δ(0|4)

(
ηa[bc] + ηb[ca] + ηc[ab]

)
[ab][bc][ca]

Table 5.1: Fundamental nodes of on-shell diagrams are MHV and MHV trivalent super-
amplitudes.

A generic on-shell diagram is obtained by gluing the fundamental nodes via the in-

tegration of the one-particle Lorentz invariant phase space of the particle with on-shell

momentum λI λ̃I shared by the two nodes (this is called the Nair measure [37]),

d2λId2λ̃Id4ηI

Vol(GL(1))I
=
(
〈λIdλI〉d2λ̃I − [λ̃Idλ̃I ]d2λI

)
d4ηI , (5.1.7)

where the integration over ηI amounts to summing over all possible helicites of the inter-

mediate particle. This is shown in Figure 5.1.

By gluing nodes one can generate arbitrary on-shell diagrams. Although from a math-

ematical point of view they are interesting objects in their own right (as will hopefully

2Momentum twistor variables, introduced in [181], are intrinsically associated to the region momentum
variables xi defined in (2.3.1), which are in turn well defined only for planar amplitudes. Given that this
chapter is devoted to non-planar amplitudes, it is more convenient to study the Grassmannian formula in
terms of spinor-helicity variables.
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Figure 5.1: Fundamental nodes can be merged upon integration over the one particle on-
shell phase space of the shared edge. Grey nodes in the figure can be either black or white.

become clear soon), for planar N = 4 SYM a very precise combination of planar on-shell

diagrams corresponds to tree amplitudes and loop integrands; that given by the all-loop

BCFW recursion relation [71]. The BCFW shift (2.2.2) in the on-shell diagram language

is simply the structure shown in Figure 5.2.

Figure 5.2: BCFW-bridge. The fact that the λ̃ (λ) variables are proportional around a black
(white) node fixes the momentum on the bridge to be proportional to λnλ̃1. Momentum
conservation implements a BCFW shift (2.2.2).

One can then deduce that the four point MHV tree level amplitude is simply given by a

box shown in Figure 5.3.

As vertices are glued together, the Grassmannians Gr1,3 and Gr2,3 associated to the

nodes give rise to a larger Grassmannian Grk,n, where k = 2nB + nW − nI for a trivalent

diagram with n external edges, nB black nodes, nW white nodes and nI internal edges.

The number of degrees of freedom d of a general on-shell diagram is obtained by asso-

ciating weights Xe to each edge and subtracting the GL(1) gauge redundancy associated

to every internal node (recall that dim(Gr1,3) = dim(Gr2,3) = 2). This means that for a

diagram with E edges and V internal vertices, we have

d = E − V . (5.1.8)

This expression is completely general. For a planar on-shell diagram with F faces, this is

equal to

dplanar = F − 1 . (5.1.9)

As a consequence, all edge weights can be expressed in terms of F − 1 independent ones.

A more efficient parametrisation of an on-shell diagram is in terms of face variables fi, i =
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1, . . . , F , which are subject to the constraint
∏F
i=1 fi = 1. They are given by the product

of all oriented edge weights around a face (closed or open) and, for concreteness, the face

boundaries can be taken to be oriented clockwise. In what follows, we will adopt the

convention in which oriented edge weights go from white to black nodes. As a result, some

edge weights will appear in the numerator or denominator of the previous expressions

depending on whether their orientation coincides or opposes that of the corresponding

path, respectively. An example of the map between face and edge variables for the planar

diagram of Figure 5.3 is

f0 =
X1,0X3,0

X0,4X0,2
, f1 =

X2,1X4,1

X1,0
, f2 =

X0,2

X2,3X2,1
, f3 =

X4,3X2,3

X3,0
, f4 =

X0,4

X4,1X4,3
.

(5.1.10)

Notice that
∏4
i=0 fi = 1.

04

1

2

3
4

1 2

3

X4,1

X1,0

X0,4 X0,2

X2,1

X3,0
X4,3 X2,3

Figure 5.3: On-shell diagram for the tree-level four-point MHV amplitude AMHV
4 . The

number of degrees of freedom is d = 4. Faces are labeled in green, external nodes in black
and edge weights in red.

In §5.3, we will generalise face variables to non-planar diagrams and discuss how the

counting of degrees of freedom (5.1.9) is modified.

To each on-shell diagram there is an associated differential form in the Grassmannian

in terms of the edge weights of the graph,

( ∏
int. nodes V

1

Vol(GL(1)V )

) ∏
edges Xe

dXe

Xe


× δ(2k)

(
C(X) · Λ̃T

)
δ(2(n−k))

(
C⊥(X) · ΛT

)
δ(0|4k) (C(X) · η) ,

(5.1.11)

where the first product is taken over all internal nodes and the entries of the matrix

C(X) ⊂ Grk,n is computed by studying paths in the graph that connect two external
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nodes3. This matrix is called the boundary measurement and will be discussed in more

detail in §5.2.1. We will refer to the form (5.1.11) excluding the delta-functions as the

on-shell form Ω corresponding to a given on-shell diagram. The on-shell form associated

to a d-dimensional planar on-shell diagram in terms of edge or face variables is of the

“d log” form [3],

Ω =
dX1

X1

dX2

X2
· · · dXd

Xd
=

df1

f1

df2

f2
· · · dfd

fd
. (5.1.12)

Note that the expression in terms of edge weights generalises straightforwardly to the

non-planar case, whereas the d log form the GL(1)V invariant way needs to be modified.

On-shell diagrams form equivalence classes and can be connected by reductions. Equiv-

alent on-shell diagrams parametrise the same region of Grk,n and are related by a sequence

of the equivalence moves shown in Figure 5.4 — merger and square moves. In the planar

case, to say that two diagrams are equivalent is the same as to say that their boundary

measurement C(X) has the same set of non-vanishing minors, but this is no longer the

case for non-planar graphs and we will come back to this question in §5.4.3.

Any on-shell diagram can be made bipartite by using the operations of Figure 5.4. In

the following we will thus focus almost exclusively on bipartite graphs.4 Mergers can be

used in both directions, to either increase or decrease the valency of nodes.

Figure 5.4: (Left) Merger move: two connected internal nodes of the same colour are
condensed and can also be expanded in a different kinematic channel. (Right) Square
move.

In addition to equivalence moves, there is an operation that reduces the number of

faces in the graph — the bubble reduction, shown in Figure 5.5. In terms of the on-shell

form, the variable associated to the deleted bubble factors out as a plain d log (that is, it

does not appear in the boundary measurement).

Bubble reduction reduces the number of degrees of freedom in the diagram by one while

preserving the associated region of the Grassmannian. A graph is said to be reduced if

3In the work presented here, following a standard approach in the combinatorics literature, we chose
to include external nodes at the endpoints of legs of on-shell diagrams. We would like to emphasise that
we are dealing with ordinary on-shell diagrams and that such external nodes have no physical significance.
They can become useful bookkeeping devices when performing certain transformations of the diagram. For
this reason we use the terms external nodes, edges or legs interchangeably.

4For this reason, we will use the terms on-shell diagram, diagram, bipartite graph and graph inter-
changeably.
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Figure 5.5: Bubble reduction.

it is impossible to remove an edge while preserving the cell in Grk,n it parametrises. For

planar diagrams it means that one cannot delete an edge without keeping the same set of

non-vanishing Plücker coordinates. For non-planar graphs this condition is too restrictive

and it is possible to obtain more general reductions, for instance generating identities

between Plücker coordinates. This question will be revisited in §5.4.3.

When the dimension of a reduced graph coincides with the dimension of Grk,n, i.e. d =

k(n−k), the on-shell form is said to be top-dimensional and (5.1.12) becomes equivalent to

(5.1.6) after including the delta-functions and the integral symbol [3]. If the dimension of

the graph is larger than the dimension of Grk,n, it indicates that there are some variables

which are redundant and the graph may be reduced into a graph of dimension d ≤ k(n−k).

If the dimension of the graph is smaller than the dimension of Grk,n, (5.1.12) arises as

certain residue of (5.1.6); the residue is taken around the vanishing of those minors which

disappear once those graphical degrees of freedom have been removed. The special case

is when a reduced graph has dimension d = n − 4 which is the number of bosonic delta-

functions in (5.1.11). In this case the value of the integrated on-shell form is a rational

function of the kinematics which corresponds to a leading singularity.

The singularity structure of (5.1.11) is inherited by amplitudes in planar N = 4 SYM,

for instance, the MHV loop integrand has only logarithmic singularities and no poles at

infinity. In some cases it is possible to find the same d log structure in momentum space,

leading to pure integrals discussed in §2.3.2. Recently, building on this observation, it

has been conjectured that non-planar amplitudes share the same property [178]. Further

evidence supporting this conjecture was provided in [179] and led to the conjecture of

the existence of an amplituhedron-like structure in the non-planar sector too [182]. This

provides another physical motivation to study non-planar on-shell diagrams.

The study of non-planar on-shell diagrams recently began to be explored in [183],5

primarily in the case of MHV leading singularities. This chapter is based on [8] where we

studied in detail general non-planar on-shell diagrams in N = 4 SYM.

Above we reviewed only a few features of planar on-shell diagrams. For a detailed

presentation, we refer the reader to the original work [3]. The remaining parts of this

chapter are organised as follows. Before studying non-planar on-shell diagrams in full

5See also [184, 185, 186, 187] for relevant work.
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generality, we discuss in §5.2 a concrete scenario in which non-planar on-shell diagrams

appear and are relevant, namely the computation of tree-level amplitudes using non-

adjacent BCFW shifts. In §5.2.1 we review some concepts which are common in the

study of bipartite graphs that will be used in the study of non-planar diagrams. §5.3

introduces canonical variables for non-planar graphs generalising the planar face variables.

Among other things, these variables amount for the most efficient way of packaging the

degrees of freedom of a graph and automatically make the d log structure of the on-shell

form manifest. We also discuss a systematic procedure for determining these canonical

variables, based on the embedding of on-shell diagrams into bordered Riemann surfaces.

Physical results are, of course, independent of the choice of embedding.

On-shell diagrams are mapped into the Grassmannian via the boundary measurement.

In [8] we proposed a boundary measurement for completely general on-shell diagrams.

So far, the boundary measurement was only known for graphs admitting a genus-zero

embedding [188, 189]. Needless to say, the boundary measurement is an essential ingredient

for developing a comprehensive theory of non-planar on-shell diagrams and the associated

region of Grk,n.

While going from an on-shell diagram to the corresponding on-shell form in terms of

face variables is straightforward, it is however much more challenging to directly obtain

its expression in terms of minors. In §5.4, we generalise the prescription introduced in

[183] beyond the MHV case, which allows us to directly write the on-shell form of reduced

diagrams as a function of minors starting from the graph. This prescription bypasses

the need to compute the boundary measurement. As a consistency check, we compare

the results of this method with those obtained using the boundary measurement, finding

agreement. An interesting new feature of non-planar on-shell diagrams we uncover is the

possibility of a new kind of pole in the on-shell form, not given by the vanishing of a

Plücker coordinate.

5.2 Non-planar on-shell diagrams and non-adjacent BCFW

shifts

Before embarking into a fully general investigation of non-planar on-shell diagrams in the

coming sections, we would like to collect a few thoughts about a concrete scenario in

which non-planar on-shell diagrams appear and are important, namely the computation

of tree-level amplitudes in N = 4 SYM via non-adjacent BCFW shifts [190].
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It is a well known fact that there is a one-to-one correspondence between the quadruple

cut of a planar two-mass-hard box integral6 and a BCFW diagram with adjacent shifts

[191], as shown in Figure 5.6. In fact, this is how the BCFW recursion relations for

tree-level amplitudes were originally derived in [38]. As emphasised in the figure, one can

further recursively express the tree-level amplitudes entering the two massive corners of

the box in terms of two-mass-hard boxes, obtaining a representation of the BCFW diagram

with adjacent BCFW shifts in terms of on-shell diagrams.

1̂2̂

3

i i+1

n ⇔

12

3

i i+1

n

Further Expand

Figure 5.6: A one-to-one correspondence between a BCFW diagram with an adjacent shift
and a leading singularity of a two-mass-hard box. The tree-level amplitudes in the two
massive corners can be further expanded into two-mass-hard boxes until reaching an on-
shell diagram representation of the BCFW diagram.

Since tree-level amplitudes can also be expressed in terms of BCFW diagrams with

non-adjacent shifts, it is natural to wonder whether there is a corresponding on-shell

diagram representation. Indeed, such a representation exists and the resulting objects are

precisely non-planar on-shell diagrams. Similarly to what happens for BCFW diagrams

with adjacent shifts, there is a one-to-one correspondence between a BCFW diagram with

non-adjacent shifts and a non-planar two-mass-hard box, as shown in Figure 5.7.7 Once

again, the tree-level amplitudes in the two massive corners can be further expanded into

two-mass-hard boxes, either planar or non-planar. Doing this recursively, we can express

any BCFW diagram with non-adjacent shifts in terms of non-planar on-shell diagrams.

It is possible to represent a given amplitude in terms of different on-shell diagrams

obtained via different BCFW shifts. This procedure thus generates interesting identities

between on-shell diagrams. We present an example of such an identity in Figure 5.8,

where we provide two alternative expressions for the tree-level five-point MHV amplitude

AMHV
5 . One of the expressions involves two non-planar diagrams and the other one involves

6A two-mass-hard box integral is a box integral with the two massive momenta entering two adjacent
corners, as opposed to the two-mass-easy box integral where the massive corners are diagonally opposite
to each other. The two-mass-easy box integral appears in Figure B.1.

7This type of non-planar diagrams can always be “planarised” by means of the Kleiss-Kuijf rela-
tions [192] which are satisfied by the tree-level amplitudes in the two massive corners. This allows one to
bring outside all the external legs that are originally inside the loop, giving rise to a planar two-mass box.
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Figure 5.7: A one-to-one correspondence between a BCFW diagram with non-adjacent
shifts and a non-planar two-mass-hard box. The tree-level amplitudes at the two massive
corners can be further expanded into either non-planar or planar two-mass-hard boxes until
reaching an on-shell diagram representation of the BCFW diagram.

a single planar diagram. Furthermore, it is known that there are additional relations

between BCFW diagrams with non-adjacent shifts due to the so-called bonus relations

[141, 193, 194]; it would be interesting to explore their application to non-planar on-shell

diagrams. Finally, it would be interesting to investigate how general the construction of

non-planar on-shell diagrams in terms of non-adjacent BCFW shifts can be.

13

2

4 5

13

54

2

1

2
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4

3

Figure 5.8: Two ways to determine the tree-level five-point MHV amplitude from recursion
relations. (Left) Non-planar on-shell diagrams obtained by a non-adjacent BCFW-shift on
legs 1 and 3. (Right) Planar on-shell diagram obtained by the adjacent BCFW-shift on
legs 4 and 5.

5.2.1 Bipartite graph technology and the boundary measurement

The main aim of this section is to explain how to obtain the boundary measurement. To

this end, it is useful to start by discussing a few concepts that are suitable for the analysis

of bipartite graphs, both planar and non-planar.

A perfect matching p is a subset of the edges in the graph such that every internal

node is the endpoint of exactly one edge in p and external nodes belong to one or no

edge in p. Given a bipartite graph, there exists an efficient procedure for obtaining its

perfect matchings based on generalised Kasteleyn matrices, certain adjacency matrices of
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the graph [195].

The next step is to assign orientations to edges in order to produce a perfect orientation;

an orientation such that each white vertex has a single incoming arrow and each black

vertex has a single outgoing arrow, as shown in Figure 5.9. Perfect orientations are

in one-to-one correspondence with perfect matchings: the single edge with a distinctive

orientation at each internal node is precisely the corresponding edge contained in the

perfect matching [180, 195].

Figure 5.9: Perfect orientation: each black node has a single outgoing arrow and each
white node has a single incoming arrow.

Given a perfect orientation, external nodes are divided into sources and sinks, as shown

in the example of Figure 5.10. We will now explain how bipartite graphs parametrise Grk,n.

In this map, k is the number of sources and n is the total number of external nodes in any

perfect orientation. This provides us with an alternative way for deriving k for general

graphs.

(a) (b) (c)
4

1 2

3 4

1 2

3 4

1 2

3

Figure 5.10: (a) The graph for AMHV
4 , (b) a choice of a possible perfect matching is shown

in red and (c) the perfect orientation associated to it. Here 3 and 4 are the sources while
1 and 2 are the sinks.

We now have all the necessary ingredients for constructing the boundary measurement,

which maps edge weights of the on-shell diagram to a k×n matrix C in Grk,n [180]. More

rigorously, the boundary measurement is constructed in terms of oriented edge weights.

The entries of the matrix C are given by

Cij(X) =
∑

Γ∈{i j}

(−1)sΓ
∏
e∈Γ

Xe , (5.2.1)

where i runs over the sources, j runs over all external nodes and Γ is an oriented path
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from i to j. For two sources i1 and i2, this definition results in Ci1i2 = δi1i2 . Here Xe

indicates oriented edge weights taken along the perfect orientation and (−1)sΓ is a crucial

sign depending on the details of each path. This sign prescription is discussed in detail in

[8], where a generalisation from graphs with genus zero embedding [188, 189] to any graph

was presented. This sign prescription ensures positivity in the planar case and allows a

classification in terms of matroid polytopes in the non-planar case. In the following we

will mostly focus on the on-shell form and recommend [8] for the details regarding the

general boundary measurement together with many additional examples.

In order to illustrate these ideas, let us consider the simple example shown in Figure

5.11, which is the same diagram of Figure 5.3 endowed with a perfect orientation such

that particles 3 and 4 are sources and particles 1 and 2 are sinks.

04

1

2

3
4

1 2

3

X4,1
X1,0

X0,4 X0,2

X2,1

X3,0
X4,3 X2,3

Figure 5.11: On-shell diagram for the tree-level four-point MHV amplitude AMHV
4 with a

perfect orientation. Particles 1 and 2 are sinks while particles 3 and 4 are sources.

The boundary measurement for this graph is:

C(X) =



1 2 3 4

3
X3,0X4,1

X2,3X0,4

X0,2

X2,3X2,1
+

X3,0X1,0

X2,3X0,4X2,1
1 0

4
X4,3X4,1

X0,4

X4,3X1,0

X0,4X2,1
0 1



⇒ C(f) =



1 2 3 4

3 f0f1f2 f2 + f0f2 1 0

4 f0f1f2f3 f0f2f3 0 1



(5.2.2)

As explained above, using the GL(1) gauge redundancies associated to the the internal
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nodes, the boundary measurement in terms of edge variables can be expressed in terms of

d = 4 independent parameters.

5.3 Generalised face variables

In this section we begin by introducing canonical variables capturing the degrees of freedom

of arbitrary graphs. Although many of these ideas have already appeared in the literature

in various forms [196, 189], their presentation as a set of tools for dealing with non-planar

on-shell diagrams is new.

We term these variables as generalised face variables because they have the nice prop-

erty of being invariant under the GL(1) gauge redundancies associated to all internal

nodes.

5.3.1 Embedding into a Riemann surface

A useful auxiliary step for identifying generalised face variables is embedding the on-shell

diagram into a bordered Riemann surface. While only the connectivity of an on-shell

diagram matters, we would like to emphasise that considering such an embedding is very

convenient. Given a graph, the choice of embedding is not unique. However we will later

see that, as expected, physical results are independent of it.

It is interesting to notice that a choice of embedding is already implicit in the usual

discussion of planar diagrams. Indeed, face variables are not an intrinsic property of

planar graphs, but arise when imagining them to be embedded on a disk. Similarly, the

discussion of zig-zag paths, which are tightly related to the concept of permutations, also

depends on assuming planar graphs are embedded on a disk [3]. In fact, as we will see in

explicit examples, other embeddings are possible, they lead to different variables, but the

final answers remain the same.

In the planar level, graphs embedded on a disk are accompanied by a trace of the gauge

group generators following the order of the external legs around the border of the disk,

as shown before in Figure 2.2. For non-planar graphs, one can similarly show that gluing

the structure constants inherent to the trivalent nodes and using the U(N) completeness

relation
∑N2

a=1(ta) ji (ta) l
k = δ li δ

j
k , one obtains multitrace contributions, with each trace

corresponding to the external legs ending on each boundary of the bordered Riemann

surface, in the clockwise direction.

In the coming sections, we will present several explicit examples of graph embeddings

and their applications.
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5.3.2 Canonical variables for non-planar diagrams: generalised faces

Generalising the result for planar graphs, the boundary measurement for generic on-shell

diagrams can be constructed in terms of oriented paths in an underlying perfect orien-

tation. Physical answers are independent of the particular choice of perfect orientation

as they correspond simply to different GL(k) gauge fixings. It is convenient to describe

such paths in terms of a basis, and this can be done by constructing the generalised face

variables introduced in this section. Here we will briefly review the ideas introduced in

[196]. The first step, as discussed in §5.3.1, is to embed the graph into a bordered Riemann

surface. Once this is done, we can associate to the the diagram F faces, B boundaries and

a genus g. These ingredients are sufficient to construct the basis as follows:

• Faces: A variable fi, i = 1, . . . , F , is introduced for every path going clockwise

around a face, either internal or external. Face variables satisfy

F∏
i=1

fi = 1 . (5.3.1)

Hence, one of the face variables can always be expressed in terms of the others.

• Cuts between boundaries: For B > 1, it is necessary to introduce B − 1 paths,

which we call ba, a = 1, . . . , B−1, stretching between different boundary components.

The particular choice of these B− 1 paths, i.e. how we chose the pairs of boundaries

to be connected by them, is unimportant. We will often refer to them as cuts.8

• Fundamental cycles: For genus g we need to consider αm and βm pairs of variables,

m = 1, . . . g, associated to the fundamental cycles in the underlying Riemann surface.

The paths ba, αµ and βµ are expressed as products of oriented edge weights in the same

way as for fi.
9 Furthermore, they are not unique and can be deformed.

These variables contain all of the degrees of freedom d of a general on-shell diagram,

which is simply determined by the generalisation of (5.1.9),

dgeneral = F +B + 2g − 2 . (5.3.2)

8These cuts have nothing to do with the familiar notion of cutting propagators. We hope the reader is
not confused by our choice of terminology.

9It is important to note that the definition of these variables, which correspond to oriented paths, does
not require an underlying perfect orientation. In fact, the orientation of edges in these paths typically does
not agree with the one in any perfect orientation.
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There is a simple way of understanding the origin of this expression. Consider an embed-

ding of the diagram with Euler characteristic χ and such that the diagram gives rise to F

faces. Since χ = F − E + V , then the general expression (5.1.8) precisely coincides with

d = F − χ , (5.3.3)

which in turn agrees with (5.3.2).

The dlog form

An important feature of on-shell diagrams is the d log on-shell form. This form arises

automatically when using generalised face variables, without the need for solving for the

GL(1) redundancies associated to internal nodes when using edge variables.10 For arbi-

trary diagrams, the planar d log form (5.1.11) generalises to

Ω =
dX1

X1

dX2

X2
· · · dXd

Xd
=

F−1∏
i=1

dfi
fi

B−1∏
a=1

dba
ba

g∏
m=1

dαm
αm

dβm
βm

. (5.3.4)

The general form in (5.3.4) is an embedding-independent statement, since ultimately it is

only the connectivity of the graph which is of importance.

Appendix D.1 illustrates embedding independence in a very simple example: a box

diagram embedded on a disk and on an annulus. By flipping an external leg, we lose the

internal face but give rise to an additional boundary, which in turn produces a new cut.

The independent set of generalised face variables would then go from {f1, f2, f3, f4} to

{f1, f2, f3, b1}. The on-shell form, in both sets of variables, becomes

df1

f1

df2

f2

df3

f3

df4

f4
=
df1

f1

df2

f2

df3

f3

db1
b1

. (5.3.5)

5.3.3 A genus-one, B = 2 example

In order to understand how generalised face variables work, it is instructive to study an

explicit example. Let us consider the on-shell diagram embedded on a torus with two

boundaries shown in Figure 5.12. This diagram does not admit any g = 0 embedding.

Moreover, it is reduced, as can be verified using the tools of [8].

This diagram is particularly interesting, since it exhibits the two new types of variables

we introduced: cuts and fundamental cycles. Since the diagram is embedded into a torus,

10The expression of the on-shell form in terms of edge variables (5.1.12) remains valid for non-planar
diagrams.
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X7,3
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Figure 5.12: A reduced on-shell diagram embedded into a torus with two boundaries. This
graph cannot be embedded on any surface with g = 0. Faces are labeled in green, external
nodes in black and edge weights in red.

there is a pair of variables α and β corresponding to its fundamental cycles. In addition,

there is a cut b connecting the two boundaries. Figure 5.13 shows a possible set of these

variables. As we mentioned earlier, the choice of these paths is not unique. In terms of

edges, they are given by

α =
X1,7X1,4

Y1,1X2,1
β =

X1,1X1,7

X6,1X2,1
b =

X7,3X2,5

X3,2
(5.3.6)
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X2,1

X1,4X1,7

Y1,1 Y1,1

X1,1
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5

X1,1

X2,1

X6,1

X1,7
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5

X3,2

X7,3

X2,5

α β b

Figure 5.13: Possible choices of the α, β and b variables.
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In addition, the ordinary faces are

f1 =
X2,1X5,1X6,1

X1,3X1,4X1,7
f2 =

X3,2X4,2

X2,5X2,1
f3 =

X7,3X1,3

X3,2X3,6

f4 =
X1,4

X4,2X4,5
f5 =

X4,5X2,5

X5,1
f6 =

X3,6

X6,1X7,6

f7 =
X1,7

X7,6X7,3

(5.3.7)

The faces satisfy
∏7
i=1 fi = 1 so, without loss of generality, we can discard f7. Interestingly,

this example also serves to illustrate some non-trivial feature. Face f1 overlaps with

itself over two edges, X1,1 and Y1,1. This implies that when we circle f1 completely in

the clockwise orientation, we transverse each of these edges twice, each time in opposite

directions. As a result, the contributions of both edges to f1 cancel out.

It is possible to gauge fix the GL(1) redundancies of the 6 internal nodes by setting

to 1 one edge for each of them. One consistent way of picking these edges corresponds to

setting

X7,6 = X3,6 = X4,5 = X4,2 = X1,3 = X1,7 = 1 . (5.3.8)

The remaining edges are

X1,1, X1,4, X2,1, X2,5, X3,2, X5,1, X6,1, X7,3, Y1,1 . (5.3.9)

We thus conclude that this on-shell diagram has d = 9 degrees of freedom. Following §5.3,

this counting of course agrees with the one based on generalised face variables; we have: 7

faces (6 of which are independent), an α and a β cycle from being on a torus and B−1 = 1

cut.

After this gauge fixing, the independent generalised face variables become

f1 =
X2,1X5,1X6,1

X1,4
f2 =

X3,2

X2,5X2,1
f3 =

X7,3

X3,2

f4 = X1,4 f5 =
X2,5

X5,1
f6 =

1

X6,1

α =
X1,4

Y1,1X2,1
β =

X1,1

X6,1X2,1
b =

X7,3X2,5

X3,2

(5.3.10)
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If desired, this map can be inverted, obtaining

X1,1 =
βf1f3f4f5

b
X1,4 = f4 X2,1 =

f1f3f4f5f6

b

X2,5 =
b

f3
X3,2 = f1f2f4f5f6 X5,1 =

b

f3f5

X6,1 =
1

f6
X7,3 = f1f2f3f4f5f6 Y1,1 =

b

αf1f3f5f6

(5.3.11)

Let us now translate the boundary measurement from the edge variables in (5.3.9) to

generalised face variables. It becomes

Ω =
dX1,1

X1,1

dX1,4

X1,4

dX2,1

X2,1

dX2,5

X2,5

dX3,2

X3,2

dX5,1

X5,1

dX6,1

X6,1

dX7,3

X7,3

dY1,1

Y1,1

=
f2

1 f2f
4
4 f5

α2f3
× α

bβf3
1 f

2
2 f

5
4 f

2
5 f6
× df1 df2 df3 df4 df5 df6 dα dβ db

=
df1

f1

df2

f2

df3

f3

df4

f4

df5

f5

df6

f6

dα

α

dβ

β

db

b

(5.3.12)

where, in the middle line, the first factor comes from the Jacobian of the variable transfor-

mation and the second factor comes from the product of edge variables. We see that the

on-shell form takes the general form in (5.3.4). In other words, generalised variables can

be used to directly write the on-shell form in a d log form without having to work through

the GL(1) gauge fixing that is necessary for arriving at (5.3.9).

It is also easy to verify that the d log form of the on-shell form is independent of the

explicit choice of generalised face variables. For example, we could trade α for another

path α′ also wrapping the torus along the horizontal direction, such as the one shown in

Figure 5.14. Once again, the Jacobian of the change of variables is such that the d log

form is preserved.

5.4 The non-planar on-shell form

We shall now study the differential form associated to each non-planar on-shell diagram.

As we have already seen in §5.3 there are multiple ways of expressing it:

1. Using edge variables as in (5.1.12), which straightforwardly extends to non-planar

graphs. This has the advantage of manifestly displaying the d log form of the on-shell

form and being independent of embedding. A slight disadvantage is that it depends
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α' 

Figure 5.14: An alternative choice for one of the fundamental cycles of the torus. The
Jacobian of the change of variables is such that the on-shell form preserves its d log in
terms of generalised face variables.

on the choice of GL(1) gauge at every internal node, which needs to be taken into

account to identify d independent edges.

2. Using generalised face variables as in (5.3.4). This approach has the advantage of

both displaying the d log form as well as being independent of the choice of GL(1)V .

The determination of generalised face variables naturally involves an embedding of

the diagram.

3. In terms of minors of C as in the planar integral (5.1.6), which is only possible for

reduced graphs. For generic diagrams it takes the form

Ω =
dk×nC

Vol(GL(k))

1

(1 · · · k)(2 · · · k + 1) · · · (n · · · k − 1)
×F , (5.4.1)

where the non-trivial factor F accounts for the non-planarity of the on-shell diagram.

While this representation hides the d log form and has a GL(k) redundancy, it has

the advantage having a more direct connection to the geometry of Grk,n, naturally

expressed in terms of Plücker coordinates.

In this section we will be primarily concerned with the third point. In particular, the on-

shell forms obtained in this section correspond to having non-trivial factors F in (5.4.1).

While the discussion in the previous sections applies to general on-shell diagrams, here

we focus on reduced ones. This is physically motivated by being interested in leading

singularities, which are represented by reduced diagrams. Formally, it is also required

by a dimensionality argument; in order to express the on-shell form in terms of minors,

its rank needs to match the number of independent Plücker coordinates, implying the
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diagram must be reduced.

5.4.1 From generalised face variables to minors

A possible way of obtaining the on-shell form in term of minors of C is to use generalised

face variables and the boundary measurement. More explicitly, starting with the form

in (5.3.4), we can use the boundary measurement to obtain the map between Plücker

coordinates and generalised face variables. Solving for the generalised face variables will

then yield the desired expression:

F−1∏
i=1

dfi
fi

B−1∏
j=1

dbj
bj

g∏
m=1

dαm
αm

dβm
βm

= |J | ddC
∏
i,j,m

1

fi(∆)bj(∆)αm(∆)βm(∆)
, (5.4.2)

where ∆ is the relevant set of Plücker coordinates, and J is the Jacobian for the trans-

formation between entries in the Grassmannian and generalised face variables.11

We shall now illustrate how this works in practice in a top-dimensional example in

Gr3,6 with two boundaries, shown in Figure 5.15.

6 5

1

2

3

4

5
6

7

8

9

3

41

2

Figure 5.15: A top-dimensional on-shell diagram in Gr3,6 embedded on an annulus. The
selected perfect orientation has source set {2, 3, 4}.

This example has 9 independent generalised face variables: 8 independent fi variables

11It is possible to do a similar thing starting from the on-shell form in terms of edge weights and using
the boundary measurement to connect it to Plücker coordinates. The advantage of using generalised face
variables is that they automatically produce the starting point (5.3.4).
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and one bj . In terms of oriented edge weights, the generalised face variables are given by

f1 =
X9,1

X1,2X1,4
, f2 =

X5,2X1,2

X2,3X2,9
, f3 =

X7,3X2,3

X3,4X3,5
, f4 =

X1,4X3,4

X4,7
,

f5 =
X6,5X3,5

X5,7X5,2
, f6 =

X7,6X9,6

X6,8X6,5
, f7 =

Y8,7X5,7X4,7X8,7

X7,6X7,3X7,9
, f8 =

X6,8

X8,7Y8,7
,

f9 =
X2,9X7,9

X9,6X9,1
, b1 =

X1,4X8,7

X7,9
.

(5.4.3)

Eliminating f4 using
∏9
i=1 fi = 1 we obtain the on-shell form

Ω =
db1
b1

9∏
i 6=4

dfi
fi

. (5.4.4)

Using the boundary measurement defined in [8], we obtain the following matrix

C =



1 2 3 4 5 6

2 f1(1 + f9) 1 0 0 b1f1f8f9 b1f1f9

3 −f1f2(1 + f5)f9 0 1 0 −b1f1f2(1 + f5 + f5f6)f8f9 −b1f1f2(1 + f5)f9

4 f1f2f3f5(1 + f6f7f8)f9 0 0 1 b1f1f2f3f5(1 + f6)f8f9 b1f1f2f3f5f9


.

(5.4.5)

The variable transformation from generalised face variables to elements of the above

matrix, i.e. to d9C, carries a Jacobian, which can also be expressed in terms of the gener-

alised face variables.

Using (5.4.5) we can express the Plücker coordinates in terms of generalised face vari-

ables. Solving for the generalised face variables, we obtain the following differential form:

Ω =
9∏
i 6=4

dfi
fi

db1
b1

= d9C
(246)2

(234)(345)(456)(612)(124)(146)(236)(256)
. (5.4.6)

An important remark is that the resulting expression in terms of minors is independent of

the chosen embedding. The simple example in Appendix D.1 illustrates this point.

5.4.2 A combinatorial method

In this section we present an alternative systematic procedure for computing the non-

planar on-shell form in terms of Plücker coordinates for any MHV degree k, which allows
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us to construct it without the need to compute the boundary measurement. This is

a generalisation of the method developed in [183] for general non-planar MHV leading

singularities. We begin by quickly reviewing the procedure in [183], and then propose

its generalisation to any k followed by examples in §5.4.3 and a proof in §5.4.4. As a

consistency check, all results in this section have also been obtained using the method of

§5.4.1 using generalised face variables.

MHV leading singularities

A general method for obtaining non-planar MHV leading singularities was recently in-

troduced in [183]. We now review this method with a simple example, shown in Figure

5.16.

1

2 3

4

5

Figure 5.16: A five-point MHV on-shell diagram with two boundaries.

A general feature of MHV leading singularities is that every internal black vertex

can be associated to a set of three external legs — those that are connected to the black

node either directly or through a sequence of edges and internal white nodes. The previous

sentence applies to non-necessarily bipartite on-shell diagrams. As explained earlier, every

on-shell diagram can be turn into a bipartite one. We will continue focusing on bipartite

diagrams, for which it is clear that there can only be at most one internal white node

connecting an internal black node to an external leg.

The procedure of [183] for obtaining MHV non-planar leading singularities is as follows:

1. For each internal black node, find the three external legs associated to it. Then

construct a nB×3 matrix T , where each row contains the labels of the three external

nodes associated to each black node (the order of the rows in T does not matter).
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For the example in Figure 5.16, T is given by

T =



1 2 3

1 3 5

1 3 4


. (5.4.7)

2. Next, construct an nB ×n matrix M in the following manner. For each row {i, j, k}
in T populate the corresponding row in M by inserting (i j) at position k, (j k) at

position i, (k i) at j, and zero for the remaining entries. For our example, we get

M =



(23) (31) (12) 0 0

(35) 0 (51) 0 (13)

(34) 0 (41) (13) 0


. (5.4.8)

3. Delete two arbitrary columns a and b from the matrix M , to obtain the square

matrix M̂a,b of size nB × (n − 2) = nB × nB. Compute next det(M̂a,b)/(ab). This

quantity is independent of the choice of a and b [183], as will become clear for any

k in §5.4.4. For the case at hand det(M̂a,b/(ab)) = −(13)2.

4. Finally, the on-shell form corresponding to a diagram for which

T =



i
(1)
1 i

(1)
2 i

(1)
3

i
(2)
1 i

(2)
2 i

(2)
3

...
...

...

i
(nB)
1 i

(nB)
2 i

(nB)
3


(5.4.9)

is given by

Ω =
d2×nC

Vol(GL(2))

(
det(M̂a,b)

(a b)

)2
1

PT(1)PT(2) · · ·PT(nB)
, (5.4.10)

where we denote by PT(i) the Parke-Taylor-like product corresponding to each row

i of T ; for instance in (5.4.9), PT(1) = (i
(1)
1 i

(1)
2 )(i

(1)
2 i

(1)
3 )(i

(1)
3 i

(1)
1 ). For the example
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in Figure 5.16, the differential form obtained from the above procedure is

Ω =
d2×5C

Vol(GL(2))

(13)4

(12)(23)(31)(13)(35)(51)(13)(34)(41)
. (5.4.11)

The original rules of [183] are formulated in terms of spinor brackets 〈i j〉. How-

ever, recall that for MHV leading singularities the dimension of the on-shell diagram is

d = 2n− 4 = dim(Gr2,n), thus each 〈i j〉 is equivalent to (i j) on the support of the kine-

matic constraints of (5.1.6). Writing the rules in terms of minors hints at an appropriate

generalisation to Nk−2MHV diagrams, for which the minors are k× k. This is the subject

we investigate next.

Generalisation to Nk−2MHV on-shell diagrams

Here we propose a generalisation of the procedure shown above to k > 2. The Subsequent

section §5.4.3 illustrates its inner workings with some non-trivial examples and a proof is

presented in §5.4.4.

MHV leading singularities only require us to take into account on-shell diagrams with

trivalent black vertices, but for k > 2 we will need to consider more general bipartite

graphs. The complications arising when k > 2 are twofold:

• In order to have k × k minors we need a matrix T with k + 1 columns. For k > 2 it

is possible that some internal black nodes do not connect to k + 1 external legs in

the way described for k = 2.

• The number of black nodes may exceed (n− k), forcing M̂ to have more rows than

columns, thus preventing us from taking its determinant.

The first point is related to the valency v of internal black nodes. There are two

possible reasons why internal black nodes might fail to connect to k + 1 external ones.

The first one is that the valency of the node is v > k + 1. Generally, performing a square

move changes the valency of nodes in a diagram. In what follows we will assume that it is

always possible to perform a series of equivalence moves to turn a diagram into one where

every black node has v ≤ k + 1. An example of this procedure is given in Figure 5.17.

If, on the other hand, the valency of an internal black node is v < k + 1, we assign

the first entries of the corresponding row in T to the external nodes to which the black

node connects to, i.e. {i1, . . . , iv}, and leave the remaining k+ 1− v entries free, which we
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14
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3
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65

3

2

Figure 5.17: On the left, an NMHV diagram where the black node attached to external
node 1 has valency v > k + 1. This is resolved by performing a square move, leading to
the diagram on the right, where all nodes have v ≤ k + 1.

denote by {∗v+1, · · · ∗k+1}. The (k + 1)-tuple associated to the given black node is then

(the order of the labels is irrelevant):

{i1, . . . , iv, ∗v+1, · · · ∗k+1} . (5.4.12)

We then fill these additional entries with external labels, chosen arbitrarily from the set

of nodes that do not already appear in the row, i.e. ∗j /∈ {i1, . . . , iv}. The final result is

independent of the choice of ∗j , as will be shown in §5.4.4.

The second complication listed above, regarding the total number of black nodes, typ-

ically arises when the diagram has internal white nodes which are completely surrounded

by black nodes. Notice that for bipartite graphs, this is always the case, unless when the

internal white nodes are directly connected to some external leg. In the examples we have

studied, it appears that12

nB = n− k + α , (5.4.13)

where α is the number of such white nodes in the diagram. This issue is resolved by adding

an auxiliary external leg to every internal white node contributing to α.13 Once the form

has been obtained, through the generalisation of the steps in §5.4.2 which we will outline

shortly, we integrate over the extra variables Cij , j = n+ 1, . . . , n+α around Cij = 0. We

will see this done in detail in several examples.

In summary, the procedure to obtain the differential form for general Nk−2MHV on-

12The use of this expression is inspired by Cachazo’s talk [197]. We stress that α has nothing to do with
the generalised face variable of graphs embedded on higher genus surfaces.

13It is interesting to notice that, when thinking in terms of an embedding, this operation can generate
new boundary components. In addition, if applied to a reducible graph it can turn it into a reduced one.
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shell diagrams is as follows:

1. If any internal black node is connected to more than k + 1 external nodes either

directly or through a succession of edges and internal white nodes, perform a series

of equivalence moves until all internal black nodes only connect to k + 1 or fewer

external nodes. Also, if nB > n−k, add auxiliary external legs to the internal white

nodes which are totally surrounded by internal black nodes, until nB = n− k.

2. Construct the nB×(k+1) matrix T where each row corresponds to an internal black

node. Every time there is an internal black node that connects to fewer than k + 1

external nodes, choose the remaining entries freely as described above.

3. Construct the nB×n matrix M in the same way as for the MHV case. For each row

{i1, . . . , ij , . . . , ik+1} in T populate the same row in M as follows. At each position

ij , insert the minor (−1)j−1(i1 · · · îj · · · ik+1) obtained by removing ij and all other

entries are zero.

4. Remove k columns from M , chosen arbitrarily, to form M̂a1,...,ak . Then compute

the ratio (−1)

k∑
i=1

ai
det(M̂a1,...,ak)/(a1 · · · ak). We emphasise that this quantity is

independent of the choice of {a1, . . . , ak}; as will be shown in §5.4.4 different choices

of a1, . . . , ak simply correspond to different GL(k) gauge choices.

5. The on-shell form corresponding to a diagram for which

T =



i
(1)
1 i

(1)
2 · · · i

(1)
k+1

i
(2)
1 i

(2)
2 · · · i

(2)
k+1

...
...

i
(nB)
1 i

(nB)
2 · · · i

(nB)
k+1


(5.4.14)

is given by

Ω =
dk×nC

Vol(GL(k))

(−1)

k∑
i=1

ai
det(M̂a1,...,ak)

(a1 · · · ak)


k

1

PT(1)PT(2) · · ·PT(nB)
, (5.4.15)

where we denote by PT(i) the Parke-Taylor-like product corresponding to each row

i of T , for instance in (5.4.14), PT(1) = (i
(1)
1 · · · i

(1)
k )(i

(1)
2 · · · i

(1)
k+1) · · · (i(1)

k+1 · · · i
(1)
k−1).
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If there was no need for introducing auxiliary external legs, i.e. α = 0 in (5.4.13),

this is the final answer.

6. In the presence of auxiliary legs, we now need to integrate over the extra variables

Cij , j = n + 1, . . . , n + α around Cij = 0. Below we present various examples in

which this is done.

An interesting observation is that for every row in T where we have undetermined

entries {i1, . . . , iv, ∗v+1, . . . , ∗k+1}, any minor involving the columns {i1, . . . , iv} vanishes.

This will be proven below in §5.4.4.

5.4.3 Examples

We now illustrate the rules introduced in the previous section with a few explicit examples.

Additional examples can be found in Appendices D.2 and D.3.

NMHV with low valency

The first example illustrates how to deal with cases where a black node has valency v < k+1

and as a result we need to introduce ∗ into the matrix T . The diagram we study is the

NMHV leading singularity shown in Figure 5.18. We will also show that this diagram is

decomposable into a sum of Parke-Taylor factors through the use of Kleiss-Kuijf relations

[192], thus independently confirming the answer.

3

41

2

6 5

Figure 5.18: NMHV leading singularity with (345) = 0.

Since nB = n−k and all internal black nodes connect to a maximum of k+1 = 4 external
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nodes, no manipulations of the diagram are required. The T matrix is given by

T =



1 2 6 4

2 3 5 6

5 3 4 ∗


, (5.4.16)

where we may choose ∗ = 1, 2 or 6. The final answer is independent of this choice, and

in the following we choose ∗ = 2. From the bottom row we can also immediately read off

that the minor (345) = 0. We now construct the matrix M ,

T =


1 2 6 4

2 3 5 6

5 3 4 2

 → M =


(264) −(164) 0 −(126) 0 (124)

0 (356) −(256) 0 (236) −(235)

0 −(534) −(542) (532) (342) 0

 .

(5.4.17)

Deleting columns 2, 3, and 4 we get

M̂2,3,4 =


(264) 0 (124)

0 (236) −(235)

0 (342) 0

 ⇒ det M̂2,3,4

(234)
= −(264)(235). (5.4.18)

Thus, the on-shell form corresponding to the leading singularity in Figure 5.18 is given

by

Ω =
d3×6C

Vol(GL(3))

(264)2(235)

(126)(641)(412)(356)(562)(623)(342)(425)(345)

∣∣∣∣
(345)=0

. (5.4.19)

For this particular example, (5.4.19) can be explicitly confirmed to be correct; this leading

singularity can be written in terms of planar leading singularities with the help of the

Kleiss-Kuijf relations [192] on the four-point nodes present in the diagram in Figure 5.18.

Explicitly, using Plücker relations (5.1.3) at the pole (345) = 0 one may rewrite the ratio
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in (5.4.19) as

(264)2(235)

(126)(641)(412)(356)(562)(623)(342)(425)(345)

∣∣∣∣
(345)=0

= I(1, 6, 2, 3, 5, 4) + I(1, 6, 2, 5, 3, 4) + I(1, 2, 6, 3, 5, 4) + I(1, 2, 6, 5, 3, 4) ,

(5.4.20)

where I(i1, i2, i3, i4, i5, i6) stands for the planar integrand in the Grassmannian formula

(5.1.6), with ordering indicated by their arguments:

I(i1, i2, i3, i4, i5, i6) =
1

(i1i2i3)(i2i3i4)(i3i4i5)(i4i5i6)(i5i6i1)(i6i1i2)
. (5.4.21)

It was shown in [183] that every MHV non-planar leading singularity can be re-

expressed as a sum of Parke-Taylor factors with coefficients +1. This is not a general

feature of Nk−2MHV leading singularities, as will become clear with the last example of

this section.

NMHV with too many black nodes

Let us now consider diagrams with nB > n − k. An example of this type is provided in

Figure 5.19, which is obtained by adding a BCFW bridge to legs 5 and 6 in Figure 5.18,

thus lifting it to a top-cell. Hence, the two examples must agree on the pole (345) = 0,

which provides us with an additional check of the validity of the procedure in §5.4.2.

6 5 7

3

41

2

Figure 5.19: NMHV leading singularity with nB > n − k. This requires the introduction
of an auxiliary leg, indicated by a dashed line and numbered 7.

This example has α = 1 in (5.4.13). Following §5.4.2, we must introduce an auxiliary

leg as shown in Figure 5.19. This new diagram yields the T matrix

153



T =



1 2 6 4

2 3 7 6

7 3 4 ∗

5 6 7 ∗


Choice of ∗−−−−−−−→ T =



1 2 6 4

2 3 7 6

7 3 4 2

5 6 7 2


. (5.4.22)

Notice how from the last two rows of T we learn that (734) = (567) = 0. This gives the

following matrix M :

M =



(264) −(164) 0 −(126) 0 (124) 0

0 (376) −(276) 0 0 −(237) (236)

0 −(734) −(742) (732) 0 0 (342)

0 −(567) 0 0 (672) −(572) (562)


, (5.4.23)

which results in the on-shell form

Ω =
d3×7C

Vol(GL(3))

(264)2

(126)(641)(412)(623)(234)(256)
× I|7 , (5.4.24)

where we separated the dependence on the auxiliary external node 7 on the factor I|7.

On the poles (347) = (567) = 0, I|7 can be recast as

I|7 =
(256)

(456)(347)(567)(725)
. (5.4.25)

The final step is to remove the effect of the auxiliary edge. This is done by taking

a generic element of the “extended” Grassmannian Grk,n+1 and integrating the extra

variables Ci7 around Ci7 = 0. To do so, we write a generic 3 × 7 matrix C and compute

the residues of I|7 around Ci7 = 0 for i = 1, 2, 3. We finally obtain

Ω =
d3×6C

Vol(GL(3))

(246)2

(234)(345)(456)(612)(124)(146)(236)(256)
. (5.4.26)

As expected, this result agrees with the leading singularity (5.4.19) on the support of

(345) = 0.

With the two previous examples, we have illustrated the full set of tools required to

use the method of §5.4.2. As an additional demonstration of the power of this procedure,

in Appendix D.2 we compute the on-shell form of an NMHV graph embedded on a genus-
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one surface and on Appendix D.3 we compute a highly non-trivial N2MHV example that

requires the addition of two auxiliary edges.

NMHV with a new type of poles

Having learned how to find the on-shell form in terms of minors for arbitrary graphs,

we now compute a top-dimensional example in Gr3,6 that displays a novel feature: a

differential form with a singularity which is not of the form (ijk) = 0. This fact is

intrinsically non-planar and ultimately prohibits the diagram from being able to be written

as a sum of planar terms. The on-shell diagram we study is shown in Figure 5.20.

2

3

4

5
6

1

7
8

2

3

4

5
6

1

Figure 5.20: (Left) An NMHV top-dimensional diagram in Gr3,6. (Right) this diagram
requires the addition of two auxiliary legs, here shown with dashed arrows and terminat-
ing on the external nodes 7 and 8. This example has a non-standard singularity when
(124)(346)(365)− (456)(234)(136) = 0.

The T matrix is

T =



1 8 6 7

5 6 7 ∗

6 8 3 ∗

8 2 4 ∗

7 3 4 ∗


Choice of ∗−−−−−−−→ T =



1 8 6 7

5 6 7 2

6 8 3 2

8 2 4 6

7 3 4 2


, (5.4.27)

from which we can immediately read off that

(347) = (567) = (368) = (248) = 0. (5.4.28)

From T , we construct the matrix M
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M =



(867) 0 0 0 0 (187) −(186) −(167)

0 −(567) 0 0 (672) −(572) (562) 0

0 −(683) (682) 0 0 (832) 0 −(632)

0 −(846) 0 (826) 0 −(824) 0 (246)

0 −(734) −(742) (732) 0 0 (342) 0


. (5.4.29)

The resulting on-shell form can be simplified on the poles (5.4.28) to

Ω =
d3×8C

Vol(GL(3))

(346)2(356)

(234)(345)(456)(561)(136)(236)
× I|7,8 , (5.4.30)

where I|7,8 encodes all the dependence on the extra legs 7 and 8,

I|7,8 =
1

(781)(567)(368)(248)(347)
. (5.4.31)

As in the previous examples, we now compute the residues of I|7,8 around Ci7 = Ci8 = 0

for i = 1, 2, 3 and obtain

I|7,8 →
1

(124)(346)(365)− (456)(234)(136)
. (5.4.32)

Thus we find that the on-shell form of the six-point diagram in Figure 5.20 is given by

Ω =
d3×6C

Vol(GL(3))

(346)2(356)

(234)(345)(456)(561)(136)(236) ((124)(346)(365)− (456)(234)(136))
.

(5.4.33)

The appearance of the factor

(124)(346)(365)− (456)(234)(136) (5.4.34)

in the denominator through this process is rather non-trivial and shows that this diagram,

unlike the NMHV leading singularity (5.4.19), cannot be written as a linear combination

of planar diagrams. This example thus provides concrete evidence for a behavior already

announced in [183], that starting from k = 3 and n = 6 not all leading singularities can

be expressed as linear combinations of planar ones.

This diagram was further studied in [8] using matching and matroid polytopes. In

this perspective, the appearance of this pole becomes clear as it is possible to identify
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an edge which when removed does not set any Plücker coordinates to zero but instead

relates Plücker coordinates to each other, i.e. it imposes the relation (124)(346)(365) −
(456)(234)(136) = 0. The leading singularity that arises through the removal of this edge

is also computed in [8].

We now expose the geometry of this singularity. Each column ~ci of C can be thought

of as a point in P2. A usual pole of the form (ijk) = 0 means that the three points ~ci, ~cj

and ~ck are on the same line. In contrast with this simple configuration, denoting by (ij)

the line defined by points ~ci and ~cj , the relation (5.4.34) between minors can be rewritten

in a more illuminating way,

(124)(346)(365)− (456)(234)(136) = (1, (34) ∩ (56), (24) ∩ (36)) . (5.4.35)

where (ij) ∩ (kl) stands for the point of intersection between the lines (ij) and (kl). The

geometrical configuration of points in P2 is shown in Figure 5.21.

Figure 5.21: Configuration of points in P2 corresponding to the singularity
(124)(346)(365)− (456)(234)(136) = 0.

5.4.4 Proof of the combinatorial method

In this section we present a proof of the method proposed in §5.4.2 for constructing the

on-shell form of Nk−2MHV in terms of Plücker coordinates. We consider the class of

on-shell diagrams with nB = n − k and hence without white nodes surrounded by black

nodes (α = 0 in (5.4.13)). Since the addition of an auxiliary edge on diagrams for which

nB > n− k leads to a graph with α = 0 we argue that the proof is valid for these cases as

well.

Top forms with nB = n− k

Let us consider first on-shell diagrams that are top forms in Grk,n and with α = 0, i.e.

nB = n − k. This means that the matrix T has no arbitrary entries ∗i, so every black

node has valency k + 1 and is associated to a local Grassmannian Grk,k+1. We denote

elements of the Grassmannian Grk,k+1 by C̃ to distinguish them from the elements of the
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Grassmannian Grk,n associated with the complete graph. The proof in this section follows

the same logic used for MHV leading singularities in [183]. In the following we will discuss

also the case for which T has arbitrary entries.

We start by studying the contribution of each black node to the on-shell form of the

full diagram (5.4.1). For an internal black node associated with the subset {i1, . . . , ik}
of external particles, the corresponding constraint δ(2)(C̃⊥ · λ) provides a linear relation

satisfied by the set {λi1 , . . . , λik} connected to the node. Grk,k+1 has k degrees of freedom,

which can be parametrised by the entries of the 1× (k + 1) matrix C̃⊥ modulo GL(1),

C̃⊥ =
(
αi1 · · · αik+1

)
. (5.4.36)

Then, we associate the following form to every internal black node

{i1, . . . , ik+1} ↔ 1

Vol(GL(1))

k+1∏
j=1

dαij
αij

δ(2)
( k+1∑
j=1

αijλ
ij
)
. (5.4.37)

Recalling that the matrices C̃ and C̃⊥ associated to the local Grk,k+1 are complementary

matrices, we may equivalently write

αij = (ij)
∣∣∣
C̃⊥

= (−1)j−1(i1 · · · îj · · · ik+1)
∣∣∣
C̃
, (5.4.38)

where (ij)
∣∣∣
C̃⊥

is a 1×1 minor of C̃⊥ and (i1 · · · îj · · · ik+1)
∣∣∣
C̃

is a k×k minor of C̃ obtained

by deleting the column ij . Using this, (5.4.37) may be recast as

{i1, . . . , ik+1} ↔
dk×(k+1)C̃

Vol(GL(k))

δ(2)
(∑k+1

j=1(−1)j−1(i1 · · · îj · · · ik+1)λij

)
(i1 · · · ik)(i2 · · · ik+1) · · · (ik+1 · · · ik−1)

. (5.4.39)

It is clear that the product of k × k minors in the denominators of the above expression

gives rise to the Parke-Taylor-like factors introduced in (5.4.15).

The next step is to consider the complete diagram instead of each internal black node

separately. We write the matrix C ∈ Grk,n as

C =
(
~c1 · · · ~cn

)
, (5.4.40)

where ~ci are k-vectors. At this point, we recall that the matrix M introduced on item 3
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of §5.4.2 provides a representative of the (n− k)× n matrix C⊥ since

~ci1(i2 · · · ik+1)− ~ci2(i1 · · · ik+1) + · · ·+ (−1)k ~cik+1
(i1 · · · ik) = 0 ⇒ M · CT = 0 ,

(5.4.41)

where at this point we identified

(i1 · · · ik)
∣∣∣
C̃

= (i1 · · · ik)
∣∣∣
C
. (5.4.42)

The next step is to relate C⊥ to M . In order to do so, we gauge fix the GL(k) redundancy

in C by writing each column as a linear combination of k columns {~ca1 , . . . ,~cak}. This fixes

columns a1, . . . , ak to the identity matrix. Denoting the matrix gauge fixed this way by

Cgf
a1,...,ak , the corresponding constraint δ(2k)(C ·λ̃) acquires a Jacobian factor of

1

(a1 · · · ak)k
.

This gauge fixing in C induces a gauge fixing in C⊥ for which all columns except a1, . . . , ak

are gauge fixed to the identity matrix, which we denote by C⊥gf
a1,...,ak . Relating C⊥gf

a1,...,ak to

M amounts to multiplying M by M̂−1
a1,...,ak

, the inverse of M̂a1,...,ak defined in item 3 of

§5.4.2. Thus, we finally arrive at the result

δ(2k)(C · λ̃) δ(2(n−k))(C⊥ · λ)

Vol(GL(k))
=

(−1)

k∑
i=1

ai
det(M̂a1,...,ak)

(a1 · · · ak)


k

× δ(2k)(Cgf
a1···ak · λ̃) δ(2(n−k))(C⊥gf

a1···ak · λ) .

(5.4.43)

Combining (5.4.43) with the Parke-Taylor denominators of (5.4.39) we obtain precisely

(5.4.15), upon omitting the delta-functions.

Diagrams with ∗

We now discuss diagrams for which one or more black nodes have valency v < k + 1 and

thus the matrix T has undetermined entries. This situation corresponds to the case where

the diagram is not a top-dimensional form, as will become clear soon.

A black node of valency v is associated to the Grassmannian Grv−1,v. Consider for

instance a black node for which the corresponding row in T is

{i1, . . . , iv, ∗v+1, . . . , ∗k+1} . (5.4.44)

The first step is to add auxiliary degrees of freedom until the diagram is lifted to a top-cell.

This is done by adding extra edges to the black nodes until all of them have valency k+ 1.
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As a result the analogue of the matrix (5.4.36) is

C̃⊥ =
(
αi1 · · · αiv α∗v+1 · · · α∗k+1

)
. (5.4.45)

The auxiliary edges may connect the black node with any other white node of the graph

which are not already connected to it (otherwise the graph would become reducible but

not a top-cell). The entries ∗i now become labels present in the graph. There are several

possible ways to lift the diagram to a top-dimensional cell in Grk,n. Consider for example

the diagram from Figure 5.22, where an auxiliary leg sets the unfixed entry ∗ = 2, however,

one could similarly add a leg in a way such that ∗ = 6 or ∗ = 1. The proof now proceeds

3

41

2

6 5

3

41

2

6 5

Figure 5.22: Addition of an auxiliary edge to a black node with valency v < k + 1. The
grey line fixes the arbitrary entry in the matrix T (5.4.16) to be ∗ = 2. We do not show
the new embedding surface since it is not relevant for the computation of the on-shell form
and the additional edge is to be deleted in the following step.

as if there were no undetermined entries and in the end we remove the auxiliary degrees

of freedom by taking residues around α∗v+1, . . . , α∗k+1
= 0. Notice that this implies that

the complementary minors of C vanish, in analogy with (5.4.38),

α∗i = (∗i)
∣∣∣
C̃⊥

= 0 ⇒ (i1 · · · ∗̂i · · · ∗k+1)
∣∣∣
C̃

= 0 . (5.4.46)

Taking the residue around all α∗i = 0 imposes that the columns ~c1, . . . ,~cv are linearly

dependent vectors after the identification (5.4.42).

The independence of the choice of the labels ∗i (or in other words how the lift to a top-

cell is made) can also be seen in a simple way. Take for instance the example on the left

of Figure 5.22 that has a row in T given by {5, 3, 4, ∗}. Since k = 3, we can choose three

linearly independent vectors to form a basis, thus a general redefinition of the column ~c∗

of C can be written, for instance, as

~c∗ → x~c∗ + y~c3 + z ~c4 . (5.4.47)
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Note that we could not choose ~c3, ~c4 and ~c5 to form a basis since (345) = 0. The depen-

dence of the general formula (5.4.15) on ~c∗ is through the minors

(∗53) → x (∗53) + z (453) , (34∗) → x (34∗) , (4 ∗ 5) → x (4 ∗ 5) + y (453) . (5.4.48)

Since (345) = 0 every minor involving ~c∗ simply gets rescaled. Is it clear that under such a

scaling (5.4.15) transforms as xk/xk which guarantees that it is independent of the choice

of ~c∗. This completes the proof of the procedure of §5.4.2 to any on-shell diagram.

We conclude this chapter by stating that the original work [8] contains more than what

was covered here, a short summary of our additional findings are:

• A characterisation of non-planar diagrams based on the generalised matching and

matroid polytopes [195, 196, 198, 189, 199]. In this classification, each perfect match-

ing is mapped to a point in the matching polytope, whereas perfect matchings that

give rise to the same source set (recall that perfect matchings and orientations are

in one-to-one correspondence, see Figure 5.10) lead to a point in the matroid poly-

tope. In this way the polytopes provide a characterisation of equivalence classes

of non-planar on-shell diagrams and, moreover, the question of reducibility in the

non-planar case can be phrased in terms of polytopes too. We have seen here that

the full Grk,n is far more complex than the Gr+
k,n associated to planar diagrams, for

instance, in (5.4.33) we found that the the boundary of a cell in Gr3,6 can be associ-

ated to a relation between minors which is beyond the Plücker relations, as opposed

to the planar case where all boundaries are of the form ∆i = 0. This example was

further studied in [8], where this boundary structure was seen to emerge from the

matching and matroid polytopes.

• A generalisation of the boundary measurement — previously defined for graphs ad-

mitting a genus-zero embedding with arbitrarily many boundaries [180, 188, 189] —

to graphs embedded on surfaces of any genus. This boundary measurement required

a refined sign prescription that allowed for a consistent characterisation using the

matroid polytope, namely a k×k Plücker coordinate ∆i1,i2,··· ,ik is expressed as linear

combinations of perfect matchings with the corresponding source set {i1, i2, · · · , ik}.

161



Chapter 6

Conclusions

This thesis consisted of three main parts. In the first two we presented applications of

on-shell methods to particular off-shell quantities in N = 4 SYM — form factors and

the dilatation operator — and in the third part we presented a generalisation of the on-

shell diagram formulation beyond the planar limit. In this final chapter we present a

short summary of our main findings, concluding remarks and an outlook of possible future

research.

In Chapter 3 we investigated supersymmetric form factors of an infinite class of half-

BPS operators which we called Tk — whose totally bosonic component is Tr(φk) — up

to two loops. At tree level, the BCFW construction using non-adjacent shifts produced a

boundary contribution which then led to a recursion relation involving MHV form factors

of Tk and Tk−1. We conjectured a solution for all MHV form factors of Tk for arbitrary

number of external legs n. As a consistency check, we observed that the solution satisfies

cyclicity for some values of k and n, however a general proof is still lacking. It would

be interesting to investigate whether form factors with higher MHV degree, or perhaps

different operators, satisfy similar recursion relations.

At one loop, the universal IR structure of form factors determines the part proportional

to the tree level result, and we computed the extra finite contributions in the MHV case

using quadruple cuts. This way we obtained all MHV super form factors of Tk at one loop

and found that they are formed by one-mass triangles and finite box functions.

Following the one-loop computation, we restricted ourselves to minimal form factors of

Tk (i.e. with k external states) and studied them at two loops using generalised unitarity.

After constructing the integrand in this way, we arrived at a basis of integral functions

which were available in the literature [151, 152], however, the results for the integrated ex-

pressions were complicated, containing various multiple polylogarithms. Using this result
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to define a finite two-loop remainder function, we observed that its symbol was consider-

ably simpler. For T3 we were able to integrate the symbol to obtain a compact remainder

function of uniform transcendentality four and containing only classical polylogarithms.

For higher k we decomposed the symbol into building blocks depending only on three vari-

ables each, and identified the part of the symbol that could not be integrated to classical

polylogarithms. Doing so, we obtained an analytic expression for all remainder functions

for the minimal form factors of Tk.
Beyond the BPS case, loop form factors have since been studied in [23, 24, 120]. In

particular, in [120] the authors found that the leading transcendentality part of the two-

loop remainder function of non-protected operators in the SU(2) sector is universal and

corresponds to our BPS result. It would be interesting to study non-minimal form factors

of non-protected operators and to perhaps find more connections with QCD results, in the

same spirit as the relations found between non-minimal form factors of T2 and Higgs plus

multi-gluon amplitudes [133, 97].

In Chapter 4 we obtained the one-loop dilatation operator in the SO(6) and SU(2|3)

sectors by applying on-shell methods to the the two-point correlation functions 〈O(x)Ō(y)〉
in each sector. Firstly, inspired by [22], we studied the dilatation operator in the SO(6)

sector using MHV diagrams. This computation was subsequently simplified by directly

applying generalised unitarity to the calculation of the two-point functions, which allowed

for a simple treatment of fermions in the SU(2|3) sector too.

It would be interesting to apply MHV diagrams to the calculation of the dilatation

operator in other sectors of N = 4 SYM, also containing fermions and derivatives. Appli-

cations to different Yang-Mills theories with less supersymmetry can also be considered,

given the validity of the MHV diagram method beyond N = 4 SYM. In the unitarity-

based approach, the use of gluon amplitudes remains a future direction of research, and

we expect these to be relevant for the study of the SL(2) sector as well as for single-trace

operators made of field strengths in QCD [200].

An obvious goal is the extension of our calculation to higher loops. This has proved

difficult for amplitudes using MHV diagrams, but addressing the calculation of just the

UV-divergent part of the two-point correlation function may simplify this task enormously.

At one loop the complete dilatation operator is known [27], while direct perturbative calcu-

lations at higher loops — without the assumption of integrability — have been performed

only up to two [101, 102, 103], three [104, 105, 106] and four loops [107] in particular

sectors. A simplified route to such a calculation would be greatly desirable, and would
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provide further verification of this crucial assumption. The expected structure remains

that of (4.1.2), with the double-bubble integral replaced by more complicated (but still

single-scale) loop integrals.

It is important to point out other works being carried out in the same spirit of con-

necting on-shell methods with the dilatation operator. Firstly, in [22], twistor-space MHV

diagrams were used to find the dilatation operator in the SO(6) sector at one loop di-

rectly from two-point correlators, leading to the position-space form of the correlator as

found by [99]. In [23] the complete one-loop dilatation operator was obtained by calcu-

lating form factors for generic single-trace operators using generalised unitarity, making

interesting contact with earlier work of [201]. In particular, the integral form for the di-

latation operator in [201] is mapped to a phase-space integral, which appears naturally

in a unitarity-based approach. The calculation of two-loop form factors using unitarity

was also employed to obtain the two-loop anomalous dimension of the Konishi operator

in [24]. A comprehensive summary of these methods appear in [29].

In comparing the two main lines of approach, using form factors or the two-point

correlators, one notices the following main points. In order to extract L-loop anomalous

dimensions from form factors, an L-loop calculation is required, while for the two-point

correlators in momentum space in principle 2L-loop integrals can appear. However, form

factors also have (universal) infrared divergences which need to be disentangled from the

UV divergences, and with increasing loop order one obtains integrals with an increasing

number of scales. In the case of two-point correlators, one has the advantage of only

having to consider single-scale integrals, albeit at higher-loop order in momentum space,

and one never encounters infrared divergences.

Finally, our result hints at a link between the Yangian symmetry of amplitudes in

N = 4 SYM [162] and integrability of the dilatation operator of the theory [99, 27, 202,

203, 28, 204]. This point was later explored in [205], where the commutation relations

between Yangian generators and the dilatation operator of [206] were rederived using the

realisation of the Yangian on tree level scattering amplitudes.

In Chapter 5 we studied a generalisation of on-shell diagrams in N = 4 SYM beyond

the planar limit. In our approach, we considered the embedding of on-shell diagrams on

Riemann surfaces with boundaries. This embedding allowed us to define a generalisation

of the efficient face-variable parametrisation of a cell in Grk,n associated to the on-shell

diagram. Following this, we developed a combinatorial method to determine the on-shell

form in terms of k×k minors. This method is a generalisation of the one presented in [183]
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for MHV leading singularities and its main advantage is that it allows the determination

of the on-shell form without the need to compute the boundary measurement for each

individual diagram.

The natural goal of this program is to achieve a level of understanding of non-planar

on-shell diagrams similar to the existing one for the planar case, and in particular if and

how they determine a notion of a non-planar integrand. It is also interesting to investigate

whether there are non-planar counterparts for some of the objects which followed on-shell

diagrams in planarN = 4 SYM, such as deformed on-shell diagrams [25, 26, 207, 208, 209]1

and on-shell diagrams for theories with N < 4 SUSY [3, 212]. Another question to

explore is whether there is a non-planar generalisation of the connection between scattering

amplitudes in ABJM theory [126] and the positive orthogonal Grassmannian [213, 214].

Finally, for planar amplitudes, on-shell diagrams are not the state of the art, in partic-

ular this program goes further and culminates in the complete geometrisation of scattering

amplitudes in terms of the amplituhedron [215, 216], where tree amplitudes and the loop

integrands are thought of as the volume of a polytope. A hint of an amplituhedron-like

structure beyond the planar limit was recently found in [182]. Is is known that the planar

Grassmannian formulation is a consequence of the Yangian symmetry of planar leading

singularities, thus an exciting question is what fixes the form of the non-planar Grassman-

nian integral. In this regard, the recent work [217] precisely finds Yangian-like symmetries

of non-planar on-shell forms.

1Deformed amplitudes have been studied in [210, 211].
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Appendix A

Spinor conventions

In this thesis we have extensively used the spinor-helicity variables introduced in §2.1.2.

The purpose of this appendix is to show the conventions we used to manipulate these

variables.

It is usual to use the following vectors of Pauli matrices:

(σµ)αα̇ = (1l, ~σ)αα̇ , (σ̄µ)α̇α = (1l,−~σ)α̇α , (A.0.1)

where the Pauli matrices are

σ0 =

1 0

0 1

 , σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (A.0.2)

In this notation, the SU(2) invariant tensors and their inverse are

εαβ = εα̇β̇ = iσ2 =

 0 1

−1 0

 , εαβ = εα̇β̇ = −iσ2 =

0 −1

1 0

 . (A.0.3)

Thus

εαβε
βγ = δγα , εα̇β̇ε

β̇γ̇ = δγ̇α̇ . (A.0.4)

According to (2.1.8), the on-shell momentum of a particle labeled by i is defined in terms

of spinors as

piαα̇ = piµσ
µ
αα̇ = λiαλ̃

i
α̇ , p̄iα̇α = piµσ̄

µα̇α = λiαλ̃iα̇ . (A.0.5)
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Spinor indices are raised and lowered according to

λα = εαβλ
β , λα = εαβλβ ,

λ̃α̇ = εα̇β̇λ̃
β̇ , λ̃α̇ = εα̇β̇λ̃β̇ ,

(A.0.6)

and the σ/σ̄-matrices are related via

(σ̄µ)α̇α = εαβσµ
ββ̇
εα̇β̇ , σµαβ = εα̇β̇(σ̄µ)β̇βεαβ . (A.0.7)

The spinor brackets (2.1.12) are given by

〈ij〉 ≡ 〈λiλj〉 = λiαλjα = εαβλ
iαλjβ, 〈ij〉 = −〈ji〉 ,

[ij] ≡ [λ̃i λ̃j ] = λ̃iα̇λ̃
jα̇ = εα̇β̇λ̃iα̇λ̃

j

β̇
, [ij] = − [ji] .

(A.0.8)

Note that in our conventions

εαβλ
iαλjβ = λiαλjα = −λiαλjα , (A.0.9)

and thus

2(pi · pj) = (p̄i)α̇αpjαα̇ = λiαλ̃iα̇λjαλ̃
j
α̇ = 〈ij〉 [ji] . (A.0.10)

Throughout the computations, we systematically use the following expansion for the trace

of four momenta:

〈ab〉 [bc] 〈cd〉 [da] = Tr+(a b c d) = Tr(1
2(1 + γ5)/a /b /c /d)

= 2 ((a · b)(c · d) + (b · c)(a · d)− (a · c)(b · d)− iεµνρσaµbνcρdσ) .
(A.0.11)
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Appendix B

Integrals

B.1 One-loop scalar integrals

In this appendix we give the explicit expressions for the integral functions used throughout

this thesis. We consider them in the context of dimensional regularisation, so d = 4− 2ε.

For the definition of the various momentum assignments we refer to Figure B.1 and we

use the conventions of [32].

Figure B.1: Scalar integrals which appear in the calculation of the dilatation operator in
Chapter 4 and loop-level form factors of half-BPS operators in Chapter 3 — (a) bubble
integral, (b) one-mass triangle, (c) two-mass triangle, (d) one-mass box and (e) two-mass-
easy box.

The bubble integral is defined as

I2(P 2) ≡ −i(4π)2−ε
∫

d4−2ε`

(2π)4−2ε

1

`2(`− P )2
=

rΓ

ε(1− 2ε)
(−P 2)−ε , (B.1.1)

where

rΓ ≡
Γ(1 + ε)Γ2(1− ε)

Γ(1− 2ε)
. (B.1.2)
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The one-mass and two-mass triangle integrals are given by

I1m
3;i (P 2) ≡ i(4π)2−ε

∫
d4−2ε`

(2π)4−2ε

1

`2(`− pi)2(`+ pi+1)2
=
rΓ

ε2
(−P 2)−1−ε , (B.1.3)

I2m
3;i (P 2, Q2) ≡ i(4π)2−ε

∫
d4−2ε`

(2π)4−2ε

1

`2(`− P )2(`+Q)2
=
rΓ

ε2
(−P 2)−ε − (−Q2)−ε

P 2 −Q2
.

(B.1.4)

The one-mass box is given by

I1m
4;i (s, t, P 2) ≡ − i(4π)2−ε

∫
d4−2ε`

(2π)4−2ε

1

`2(`− pi)2(`+ pi+1)2(`− pi − pi−1)2

= − 2rΓ

st

{
− 1

ε2
[
(−s)−ε + (−t)−ε − (−P 2)−ε

]
+ Li2

(
1− P 2

s

)
+ Li2

(
1− P 2

t

)
+

1

2
log2

(s
t

)
+
π2

6

}
,

(B.1.5)

where s ≡ (pi + pi−1)2 and t ≡ (pi + pi+1)2. For the two-mass-easy box integral,

I2me
4;i,j(s, t, P

2, Q2) ≡ −i(4π)2−ε
∫

d4−2ε`

(2π)4−2ε

1

`2(`+ pi)2(`+ pi + P )2(`−Q)2
, (B.1.6)

it is more useful to define the box function F 2me, which is related to I2me according to [31]

F 2me
4;i,j = − 1

2rΓ
(P 2Q2 − st)I2me

4;i,j . (B.1.7)

The two-mass easy box function is given by

F 2me
4;i,j (s, t, P 2, Q2) = − 1

ε2

[
(−s)−ε + (−t)−ε − (−P 2)−ε − (−Q2)−ε

]
+ Fin2me(s, t, P 2, Q2) ,

(B.1.8)

where s ≡ (pi + P )2 and t ≡ (pi +Q)2 and Fin2me stands for finite terms. The finite part

of the two-mass-easy box function, in the form of [218, 146], is

Fin2me(s, t, P 2, Q2) = Li2(1−aP 2) + Li2(1−aQ2) − Li2(1−as) − Li2(1−at) , (B.1.9)

where

a =
P 2 +Q2 − s− t
P 2Q2 − st . (B.1.10)

An analytic proof of the equivalence of (B.1.9) and the form given in [73] can be found in

[146].
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B.2 Tensor integrals and Passarino-Veltman reduction

In Chapter 4 there appear integrals which are not scalar but instead have a numerator

which depend on the loop integration variable. In this section we perform what is called

a Passarino-Veltman reduction [72], which makes use of the Lorentz invariance of the

integrated result to expand tensor integrals as a linear combination of scalar integrals, like

the ones presented above in §B.1.

The first example is the reduction of a linear bubble into a scalar bubble integral,

used in (4.2.3). Due to Lorentz invariance we can write the following ansatz for the linear

bubble integral

∫
ddK

(2π)d
Kµ

K2(K ± L)2
= ALµ

∫
ddK

(2π)d
1

K2(K ± L)2
. (B.2.1)

Contracting both sides of (B.2.1) with Lµ we get the following relation between the inte-

grands,

LµK
µ = AL2 . (B.2.2)

The next step is to expand the scalar product into full propagators,

LµK
µ = ±1

2

[
(L±K)2 − L2 −K2

]
. (B.2.3)

The factors (L ± K)2 and K2 cancel a propagator of (B.2.1) and thus lead to tadpole

integrals which are zero in dimensional regularisation. The only term that survives is L2,

which gives the result quoted in (4.2.3), namely A = ∓1/2.

The next set of reductions are the ones used in equations (4.3.14) and (4.3.17) that

feature in the fermion-scalar terms of the one-loop dilatation operator ΓSU(2|3). We repeat

them here for convenience

Iββ̇ ≡
∫
d4`1d

4`3 δ
(+)(`21) δ(+)(`23) δ(+)

(
(L− `1)2

)
δ(+)

(
(L+ `3)2

)
· Nββ̇ , (B.2.4)

Ĩββ̇ ≡
∫
d4`1d

4`3 δ
(+)(`21) δ(+)(`23) δ(+)

(
(L− `1)2

)
δ(+)

(
(L+ `3)2

)
· Ñββ̇ , (B.2.5)
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where the integrands are

Nββ̇ = −
(`2 ¯̀

1 `3)ββ̇
2(`1 · `4)

= −
λ2
β [21] 〈13〉 λ̃3

β̇

2(`1 · `4)
,

Ñββ̇ = −
(`2 ¯̀

1 `4)ββ̇
2(`2 · `3)

= −
λ2
β [21] 〈14〉 λ̃4

β̇

2(`2 · `3)
.

(B.2.6)

We are only interested in the UV-divergent part of Iββ̇ and Ĩββ̇. Using Lorentz invariance

we can write

Iββ̇

∣∣∣
UV

= ALββ̇ ×DB(L2)
∣∣∣
UV

, Ĩββ̇

∣∣∣
UV

= Ã Lββ̇ ×DB(L2)
∣∣∣
UV

, (B.2.7)

where DB(L2) stands for the double-bubble integral of Figure 4.1. After Fourier trans-

forming to position space, the UV-divergent part of the double-bubble integral is given by

(4.1.3).

In order to find A and Ã we will discard terms which lead to the kite integral of Figure

4.4 as it is not UV-divergent. We use L = `1 + `2 = −(`3 + `4) and the cut conditions

`21 = `22 = `23 = `24 = 0.

Contracting both sides of (B.2.7) with L̄β̇β we get

2AL2 = −Tr+(`2 `1 `3 L)

s`1`4
= −Tr+(`2 `1 `3 `1)

s`1`4
,

2ÃL2 = −Tr+(`2 `1 `4 L)

s`2`3
= −Tr+(`2 `1 `4 `1)

s`2`3
.

(B.2.8)

According to (A.0.11), the traces can be expanded as

Tr+(`2 `1 `3 `1) = s`1`2s`1`3 = L2(−s`1`2 − s`1`4) = −L4 − L2s`1`4 ,

Tr+(`2 `1 `4 `1) = s`1`2s`1`4 = L2s`2`3 .
(B.2.9)

The L4 term gives rise to a kite integral, whereas the −L2s`1`4 and L2s`2`3 terms cancel

the additional propagator of (B.2.8), leading to a double bubble. Thus we find

Iββ̇

∣∣∣
UV−divergent

= −1

2
Lββ̇ ×DB(L2)

∣∣∣
UV

⇒ AUV = −1

2
,

Ĩββ̇

∣∣∣
UV−divergent

=
1

2
Lββ̇ ×DB(L2)

∣∣∣
UV

⇒ ÃUV =
1

2
.

(B.2.10)

Next we compute the PV reduction of the integral (4.3.28) appearing in the four-fermion
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component of ΓSU(2|3).

Iαβα̇β̇ ≡
∫
d4`1d

4`3 δ
(+)(`21) δ(+)(`23) δ(+)

(
(L− `1)2

)
δ(+)

(
(L+ `3)2

)
· Nαβα̇β̇ , (B.2.11)

where

Nαβα̇β̇ ≡
1

2

[
(`2 ¯̀

1)αβ( ¯̀
4`3)α̇β̇ + (`1 ¯̀

2)αβ( ¯̀
3`4)α̇β̇

s`2`3

]

=
1

2

λ2
α[21]λ1

βλ̃
4
α̇ 〈43〉 λ̃3

β̇
+ λ1

α[12]λ2
βλ̃

3
α̇ 〈34〉 λ̃4

β̇

s`2`3

 .

(B.2.12)

It depends on only one scale L, hence it has the form

Iαβα̇β̇

∣∣∣
UV

=
[
AL2εαβεα̇β̇ + B (Lαα̇Lββ̇ + Lαβ̇Lβα̇)

]
DB(L2)

∣∣∣
UV

. (B.2.13)

Contracting (B.2.11) and (B.2.13) with εαβεα̇β̇ and (L̄α̇αL̄β̇β + L̄α̇βL̄β̇α) and using the

rules of Appendix A we get

εαβεα̇β̇ Nαβα̇β̇ = − L4

s`2`3

UV-divergent−−−−−−−−→ 0 = 4AL2 ⇒ AUV = 0 ,

(L̄α̇αL̄β̇β + L̄α̇βL̄β̇α)Nαβα̇β̇ = 2L4 +
L6

s`2`3

UV-divergent−−−−−−−−→ 2L4 = 12BL2 ⇒ BUV =
1

6
,

(B.2.14)

which is the result of (4.3.30).

The last PV reduction is that of the tree-level contraction of the correlator with two

fermions, whose momentum assignment is shown in Figure 4.5. The integral is a tensor

single bubble (4.3.32),

Itree
αβα̇β̇

≡
∫

ddL1

(2π)d

L1αβ̇(L− L1)βα̇

L2
1(L− L1)2

⇒ N tree
αβα̇β̇

≡ L1αβ̇(L− L1)βα̇ . (B.2.15)

In complete analogy with (B.2.13) we write

Itree
αβα̇β̇

∣∣∣
UV

=
[
AL2εαβεα̇β̇ + B (Lαα̇Lββ̇ + Lαβ̇Lβα̇)

]
Bub(L2)

∣∣∣
UV

, (B.2.16)

where Bub(L2) is the scalar single-bubble integral (4.2.4). Contracting (B.2.15) and

(B.2.13) with εαβεα̇β̇ we get the value of A,

εαβεα̇β̇ N tree
αβα̇β̇

= −L2 = 4AL2 ⇒ AUV = −1

4
. (B.2.17)
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Now contracting with (L̄α̇αL̄β̇β + L̄α̇βL̄β̇α) we get

(L̄α̇αL̄β̇β + L̄α̇βL̄β̇α)N tree
αβα̇β̇

= 2L4 − Tr+(LL1 LL1) = 2L4 − [4(L · L1)2 − L2L2
1]

(B.2.18)

We can rewrite the scalar product as

4(L · L1)2 = [−(L− L1)2 + L2 + L2
1]2 , (B.2.19)

Notice that terms with (L− L1)2 and L2
1 will delete propagators of (B.2.15), so the only

term that contributes is L4. Plugging this back in (B.2.18) we find the value of B,

(L̄α̇αL̄β̇β + L̄α̇βL̄β̇α)N tree
αβα̇β̇

= L4 = 12BL4 ⇒ BUV =
1

12
, (B.2.20)

which is the result of (4.3.33).
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Appendix C

Form factors

C.1 Cyclicity of FMHV
4,n

In this appendix we prove the cyclicity of the form factor FMHV
4,n . This is given in (3.2.44),

but for convenience we repeat its expression here:

FMHV
4,n = FMHV

2,n

n−3∑
1≤i≤j

n−2∑
j<k≤l

(2− δij)(2− δkl)
〈n i〉 〈j k〉 〈l n− 1〉
〈n− 1n〉 (η−,i · η−,j)(η−,k · η−,l) .

(C.1.1)

The procedure we will follow consists in eliminating η−,1 using supermomentum conserva-

tion in the Q− direction, and showing that the result one obtains in this way is the same as

the original expression but with all relevant indices shifted by one unit. After substituting

in the solution for η−,1 from supermomentum conservation, we consider contributions to

terms of different structure in the various η−’s separately. In what follows we will list all

possible structures and their corresponding coefficients:

• (η−,i · η−,j)(η−,n−1)2 :

(2− δij)
〈n 1〉 〈1 i〉 〈j n−1〉

〈n−1n〉
〈n−1n〉2

〈n 1〉2
= (2− δij)

〈1 i〉 〈j n−1〉 〈n−1n〉
〈n 1〉 . (C.1.2)

• (η−,i)2(η−,k)2, with i < k:

〈n i〉 〈i k〉 〈k n−1〉
〈n−1n〉 +

〈n 1〉 〈1 i〉 〈i n−1〉
〈n−1n〉

〈k n〉2

〈n 1〉2
+
〈n 1〉 〈1 k〉 〈k n−1〉

〈n−1n〉
〈i n〉2

〈n 1〉2

−2
〈i n〉 〈k n〉
〈n 1〉2

〈n 1〉 〈1 i〉 〈k n−1〉
〈n−1n〉 + 2

〈i n〉
〈n 1〉

〈n 1〉 〈i k〉 〈k n−1〉
〈n−1n〉 =

〈1 i〉 〈i k〉 〈k n〉
〈n 1〉 .

(C.1.3)
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• (η−,i · η−,j)(η−,k)2, with i < j < k :

2
〈n i〉 〈j k〉 〈k n−1〉

〈n−1n〉 + 2
〈n 1〉 〈1 i〉 〈j n−1〉

〈n−1n〉
〈k n〉2

〈n 1〉2
+ 2
〈n 1〉 〈1 k〉 〈k n−1〉

〈n−1n〉
〈i n〉 〈j n〉
〈n 1〉2

−2
〈j n〉 〈k n〉
〈n 1〉2

〈n 1〉 〈1 i〉 〈k n−1〉
〈n−1n〉 − 2

〈i n〉 〈k n〉
〈n 1〉2

〈n 1〉 〈1 j〉 〈k n−1〉
〈n−1n〉

−2
〈k n〉
〈n 1〉

〈n 1〉 〈i j〉 〈k n−1〉
〈n−1n〉 + 2

〈j n〉
〈n 1〉

〈n 1〉 〈i k〉 〈k n−1〉
〈n−1n〉 + 2

〈i n〉
〈n 1〉

〈n 1〉 〈j k〉 〈k n−1〉
〈n−1n〉

= 2
〈1 i〉 〈j k〉 〈k n〉

〈n 1〉 .

(C.1.4)

• (η−,i · η−,j)(η−,k)2, with k < i < j :

2
〈nk〉 〈k i〉 〈j n−1〉

〈n−1n〉 + 2
〈n 1〉 〈1 i〉 〈j n−1〉

〈n−1n〉
〈k n〉2

〈n 1〉2
+ 2
〈n 1〉 〈1 k〉 〈k n−1〉

〈n−1n〉
〈i n〉 〈j n〉
〈n 1〉2

−2
〈k n〉 〈j n〉
〈n 1〉2

〈n 1〉 〈1 k〉 〈i n−1〉
〈n−1n〉 − 2

〈k n〉 〈i n〉
〈n 1〉2

〈n 1〉 〈1 k〉 〈j n−1〉
〈n−1n〉

+4
〈k n〉
〈n 1〉

〈n 1〉 〈k i〉 〈j n−1〉
〈n−1n〉 = 2

〈1 k〉 〈k i〉 〈j n〉
〈n 1〉 .

(C.1.5)

• (η−,i · η−,j)(η−,k)2, with i < k < j :

2
〈n 1〉 〈1 i〉 〈j n−1〉

〈n−1n〉
〈k n〉2

〈n 1〉2
+ 2
〈n 1〉 〈1 k〉 〈k n−1〉

〈n−1n〉
〈i n〉 〈j n〉
〈n 1〉2

−2
〈k n〉 〈j n〉
〈n 1〉2

〈n 1〉 〈1 i〉 〈k n−1〉
〈n−1n〉 − 2

〈k n〉 〈i n〉
〈n 1〉2

〈n 1〉 〈1 k〉 〈j n−1〉
〈n−1n〉

−2
〈k n〉
〈n 1〉

〈n 1〉 〈i k〉 〈j n−1〉
〈n−1n〉 + 2

〈j n〉
〈n 1〉

〈n 1〉 〈i k〉 〈k n−1〉
〈n−1n〉 = 0 .

(C.1.6)

• (η−,i · η−,j)(η−,k · η−,l), with i < j < k < l :

4
〈n i〉 〈j k〉 〈l n−1〉
〈n−1n〉 + 4

〈n 1〉 〈1 i〉 〈j n−1〉
〈n−1n〉

〈k n〉 〈l n〉
〈n 1〉2

+ 4
〈n 1〉 〈1 k〉 〈l n−1〉

〈n−1n〉
〈i n〉 〈j n〉
〈n 1〉2

+4
〈j n〉
〈n 1〉

〈n 1〉 〈i k〉 〈l n−1〉
〈n−1n〉 + 4

〈i n〉
〈n 1〉

〈n 1〉 〈j k〉 〈l n−1〉
〈n−1n〉 − 4

[〈k n〉
〈n 1〉

〈n 1〉 〈i j〉 〈l n−1〉
〈n−1n〉

+
〈i n〉 〈k n〉
〈n 1〉2

〈n 1〉 〈1 j〉 〈l n−1〉
〈n−1n〉 +

〈j n〉 〈l n〉
〈n 1〉2

〈n 1〉 〈1 i〉 〈k n−1〉
〈n−1n〉

]
= 4
〈1 i〉 〈j k〉 〈l n〉
〈n 1〉 .

(C.1.7)
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• (η−,i · η−,j)(η−,k · η−,l), with i < k < j < l :

4
〈n 1〉 〈1 i〉 〈j n−1〉

〈n−1n〉
〈k n〉 〈l n〉
〈n 1〉2

+ 4
〈n 1〉 〈1 k〉 〈l n−1〉

〈n−1n〉
〈i n〉 〈j n〉
〈n 1〉2

+4
〈j n〉
〈n 1〉

〈n 1〉 〈i k〉 〈l n−1〉
〈n−1n〉 − 4

[ 〈l n〉
〈n 1〉

〈n 1〉 〈i k〉 〈j n−1〉
〈n−1n〉

+
〈k n〉 〈j n〉
〈n 1〉2

〈n 1〉 〈1 i〉 〈l n−1〉
〈n−1n〉 +

〈i n〉 〈l n〉
〈n 1〉2

〈n 1〉 〈1 k〉 〈j n−1〉
〈n−1n〉

]
= 0 .

(C.1.8)

Thus we have shown that all terms (η−,i · η−,j)(η−,k · η−,l) with the right ordering, namely

when i ≤ j < k ≤ l, have the correct coefficients, whereas when i, j, k, l are in a wrong

ordering the corresponding coefficients vanish. This completes the proof of the cyclicity

of F4,n.

C.2 Explicit computation of F
(1)
3 (1φ12, 2φ12, 3φ12, 4+; q)

In this section we compute a particular component of a four-point form factor of O3 at one

loop, namely F
(1)
3 (1φ12 , 2φ12 , 3φ12 , 4+; q). We show that, after many cancellations between

the IR divergent parts of one-mass triangles and box-functions, it matches the structure

(3.3.1). In order to do so, we will compute the discontinuity across all kinematic channels

and at the end lift the cut integrals off shell. We show every step of the computation in

detail as it might be useful for a reader who is learning how to do them for the first time.

However, we recommend the more experienced reader to skip to the summary of the cuts

shown §C.2.1.

(q − p1)
2-channel

We start by inspecting the (q − p1)2-channel, where there is only one contribution given

by

∫
dLIPS(`1, `2;P )F

(0)
3 (1φ12 , `φ12

1 , `φ12
2 ; q)AMHV(2φ12 , 3φ12 , 4+,−`φ34

2 ,−`φ34
1 ), P = q− p1 .

(C.2.1)

This is shown in Figure C.1, where the helicities are assigned assuming all particles out-

going.

We will look at the integrand and use the fact that we are on the cut, so

`1 + `2 = q − p1, `21 = `22 = 0 . (C.2.2)
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Figure C.1: Cut along the (q − p1)2-channel for F
(1)
3 (1φ12 , 2φ12 , 3φ12 , 4+; q).

Plugging in the tree level expressions for the form factor and amplitude, and factoring out

F (0) =
〈31〉
〈34〉 〈41〉 , we get

1

4
F (0) 〈23〉 〈41〉 [`1 2][4 `2] 〈`2 `1〉

〈31〉 (p2 · `1)(p4 · `2)
= −1

4

(〈23〉 〈14〉
〈24〉 〈13〉

)
Tr+(`1 `2 p4 p2)

(p2 · `1)(p4 · `2)
, (C.2.3)

where we used (A.0.11). On the cut, the trace can be written as

Tr+(`1 `2 p4 p2) = Tr+(`1 P p4 p2)

= (`1 · P )s24 + 2(`1 · p2)(p4 · P )− 2(`1 · p4)(p2 · P ) .
(C.2.4)

Noting that (`1 · P ) = (`1 · `2) = 1
2P

2 and writing the last term in (C.2.4) as

− 2(`1 · p4)(p2 · P ) = 2(`2 · p4)(p2 · P )− 2(P · p4)(p2 · P ) , (C.2.5)

we can recast (C.2.3) as

F (1)
∣∣∣
(q−p1)2-cut

=

1

2
F (0)

(〈41〉 〈23〉
〈13〉 〈24〉

)(
s23s34

(`1 − p2)2(`2 − p4)2
+

(q − p1)2 − s23

(`2 − p4)2
+

(q − p1)2 − s34

(`1 − p2)2

)
,

(C.2.6)

where we rewrote the numerators using

1

2
s24P

2 − 2(p2 · P )(p4 · P ) = −1

2
s23s34 ,

2(p4 · P ) = s24 + s34 = (q − p1)2 − s23 ,

2(p2 · P ) = s23 + s24 = (q − p1)2 − s34 .

(C.2.7)

We can immediately recognise (C.2.6) as a sum of a one-mass box with massive corners

q − p1 and two two-mass triangles with massless corners p4 and p2 respectively, as shown

in Figure C.2.

Notice that the overall factor of (C.2.6) is not the plain tree-level form factor, but there
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Figure C.2: One-loop result for the (q − p1)2-channel of F
(1)
3 (1φ12 , 2φ12 , 3φ12 , 4+; q).

is also a cross ratio
〈41〉 〈23〉
〈13〉 〈24〉 . If we had computed a form factor with different helicity

configuration, say we take F
(1)
3 (1φ12 , 2+, 3φ12 , 4φ12 ; q) then we would find that the result

is almost the same as the present one, except that the overall cross ratio is different. To

show this we need to look at the factorisation

∫
dLIPS(`1, `2;P )F

(0)
3 (1φ12 , `φ12

1 , `φ12
2 ; q)AMHV(2+, 3φ12 , 4φ12 ,−`φ34

2 ,−`φ34
1 ) . (C.2.8)

This time F (0) =
〈23〉
〈12〉 〈23〉 , so factoring this out we have that the integrand of (C.2.8) is

1

4
F (0)

(〈34〉 〈12〉
〈13〉 〈24〉

)
Tr+(`2 `1 p2 p4)

(p2 · `1)(p4 · `2)
. (C.2.9)

Since the contractions we get from Tr+(P `1 p2 p4) are identical to the ones we had before,

that is, Tr+(`1 P p4 p2), we know that the integrand we obtain is the same, but we have a

different overall cross ratio in comparison with (C.2.6).

Lastly, one can check that the form factor F
(1)
3 (1φ12 , 2φ12 , 3+, 4φ12 ; q) comes yet with

another cross ratio, in this case just “1”. In conclusion, the tree level expression cannot

be factored out in the one-loop correction of super form factor FMHV
3,n as happens for the

form factor of the chiral part of the stress tensor, T2 [21]. This is not unexpected since

for T2 the tree level formula has a much simpler numerator, namely just super-momentum

conservation. In our case, however, although we cannot pull out the tree-level super form

factor F (0)
3,4 from F (1)

3,4 , this can be done without too much effort provided we choose a

particular component, as we will see explicitly in §C.2.1.

Let us focus on the helicity configuration we started with, {1φ12 , 2φ12 , 3φ12 , 4+}, and

obtain the full one-loop result by examining all kinematic channels.
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(q − p2)
2-channel

In the (q − p2)2 there is only one factorisation

F
(0)
3 (2φ12 , `φ12

1 , `φ12
2 ; q)AMHV(3φ12 , 4+, 1φ12 ,−`φ34

2 ,−`φ34
1 ) , (C.2.10)

which is given by

F (0) 〈34〉 〈41〉
〈31〉

〈`1 `2〉2 〈13〉2
〈`2 `1〉 〈`1 3〉 〈34〉 〈41〉 〈1`2〉

=
1

4
F (0) 〈`1 `2〉 〈13〉 [`1 3][1`2]

(`1 · p3)(p1 · `2)

=
1

4
F (0) Tr+(p1 p3 `1 `2)

(`1 · p3)(p1 · `2)
=

1

4
F (0) Tr+(p1 p3 `1 P )

(`1 · p3)(p1 · `2)
, P = q − p2 .

(C.2.11)

The trace is given by

Tr+(p1 p3 `1 P ) = s13(`1 · P ) + 2(`1 · p3)(p1 · P )− 2(p1 · `1)(p3 · P ) . (C.2.12)

Using (`1 ·P ) = 1
2P

2 for the first term and (p1 · `1) = (p1 ·P )− (p1 · `2) on the last we get

F (1)
∣∣∣
(q−p2)2-cut

= −1

2
F (0)

(
s41s340

(`1 − p3)2(`2 − p1)2
+

(q − p2)2 − s34

(`2 − p1)2
+

(q − p2)2 − s41

(`1 − p3)2

)
,

(C.2.13)

where we simplified the numerator using

1

2
s13P

2 − 2(p1 · P )(p3 · P ) = −1

2
s41s34 ,

2(p1 · P ) = s13 + s41 = (q − p2)2 − s34 ,

2(p3 · P ) = s13 + s34 = (q − p2)2 − s41 .

(C.2.14)

(q − p3)
2-channel

In the (q − p3)2 there is only one factorisation

F
(0)
3 (3φ12 , `φ12

1 , `φ12
2 ; q)AMHV(4+, 1φ12 , 2φ12 ,−`φ34

2 ,−`φ34
1 ) , (C.2.15)

which is given by

F (0) 〈34〉 〈41〉
〈31〉

〈`2 `1〉 〈12〉
〈41〉 〈2 `2〉 〈`1 4〉 =

1

4
F (0) 〈34〉 〈12〉 〈`2 `1〉 [`1 4] 〈42〉 [2`2]

〈31〉 〈42〉 (p4 · `1)(p2 · `2)

=
1

4
F (0)

(〈12〉 〈34〉
〈13〉 〈24〉

)
Tr+(p4 p2 `2 `1)

(p4 · `1)(p2 · `2)
.

(C.2.16)
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As before, we use that on the cut P ≡ q − p3 = `1 + `2 to rewrite the trace as

Tr+(p4 p2 `2 P ) = s24(`2 · P ) + 2(p2 · `2)(p4 · P )− 2(p4 · `2)(p2 · P ) . (C.2.17)

Using (`2 ·P ) = 1
2P

2 for the first term and (p4 · `2) = (p4 ·P )− (p4 · `1) on the last we get

F (1)
∣∣∣
(q−p3)2-cut

= −1

2
F (0)

( 〈12〉 〈34〉
〈13〉 〈24〉

)(
s41s12

(`1 − p4)2(`2 − p2)2
+

(q − p3)2 − s12
(`1 − p4)2

+
(q − p3)2 − s41

(`2 − p2)2

)
,

(C.2.18)

where we simplified the numerator using

1

2
s24P

2 − 2(p4 · P )(p2 · P ) = −1

2
s41s12 ,

2(p4 · P ) = s41 + s24 = (q − p3)2 − s12 ,

2(p2 · P ) = s12 + s24 = (q − p3)2 − s41 .

(C.2.19)

(q − p4)
2-channel

The cut across the (q − p4)2-channel is identically zero as there is no consistent helicity

assignments for the internal momenta.

(q − p1 − p2)
2-channel

Here we compute the discontinuity of F
(1)
3 (1φ12 , 2φ12 , 3φ12 , 4+; q) across the (q − p1 − p2)2

cut. There are four cases one must consider:

F
(0)
3 (1φ12 , 2φ12 , `+1 , `

φ12
2 ; q)AMHV(3φ12 , 4+,−`φ34

2 ,−`−1 ) , (C.2.20)

F
(0)
3 (1φ12 , 2φ12 , `φ12

1 , `+2 ; q)AMHV(3φ12 , 4+,−`−2 ,−`φ34
1 ) , (C.2.21)

F
(0)
3 (1φ12 , 2φ12 , `ψ1

1 , `ψ2
2 ; q)AMHV(3φ12 , 4+,−`ψ341

2 ,−`ψ234
1 ) , (C.2.22)

F
(0)
3 (1φ12 , 2φ12 , `ψ2

1 , `ψ1
2 ; q)AMHV(3φ12 , 4+,−`ψ234

2 ,−`ψ341
1 ) , (C.2.23)

where above we ommited the integration over the phase space:

∫
dLIPS(`1, `2;P ), P = q − p1 − p2 . (C.2.24)

The four cases above are shown on Figure C.3.

We start with (C.2.20). Keeping in mind F (0) =
〈31〉
〈34〉 〈41〉 , we plug in the tree level
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Figure C.3: Four helicity configurations present in the cut across the (q− p1 − p2)2 cut of

F
(1)
3 (1φ12 , 2φ12 , 3φ12 , 4+; q).

expressions to get:

〈2 `2〉
〈2 `1〉 〈`1 `2〉

〈`1 3〉 〈`2 `1〉
〈34〉 〈4 `2〉

= F (0) 〈41〉 〈2 `2〉 〈3 `1〉
〈31〉 〈2 `1〉 〈4 `2〉

. (C.2.25)

Analogously, for (C.2.21) we obtain

〈`1 1〉
〈`1 `2〉 〈`2 1〉

〈3 `2〉2 〈`2 `1〉
〈34〉 〈4 `2〉 〈`1 3〉 = F (0) 〈41〉 〈3 `2〉2 〈1 `1〉

〈31〉 〈`2 1〉 〈4 `2〉 〈`1 3〉 . (C.2.26)

For (C.2.22) and (C.2.23), let us first investigate the tree level form factors with two

scalars and two fermions: F3(1φ12 , 2φ12 , 3ψ1 , 4ψ2 ; q) and F3(1φ12 , 2φ12 , 3ψ2 , 4ψ1 ; q). Starting

from the supersymmetric expression, which can be written as

−
2∏

a=1

δ(2)(λ1ηa,1 + λ2ηa,2 + λ3ηa,3 + λ4ηa,4)

(
η1

1η
2
1

〈23〉 〈34〉 〈42〉 +
η1

3η
2
3

〈12〉 〈24〉 〈41〉

)
. (C.2.27)

We are interested in the coefficients of−(η1,1η1,2η1,3 η2,1η2,2η2,4) and η1,1η1,2η1,4 η2,1η2,2η2,3,

so we can neglect the second term in the sum and set η1 → 0 in the δ-functions. Now we

can rewrite (C.2.27) as:

−
∏2
a=1 δ(η

a,2 〈23〉+ ηa,4 〈43〉)δ(ηa,2 〈24〉+ ηa,3 〈34〉)
〈34〉2

η1
1η

2
1

〈23〉 〈34〉 〈42〉 , (C.2.28)

so the term proportional to η1,1η1,2 η2,1η2,2 is given by
−η1,3η2,4 + η2,3η1,4

〈34〉 , thus we have

the result for the form factor with fermions:

F3(1φ12 , 2φ12 , 3ψ1 , 4ψ2 ; q) =
1

〈34〉 = −F3(1φ12 , 2φ12 , 3ψ2 , 4ψ1 ; q) . (C.2.29)
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Now we use this result to compute (C.2.22) and (C.2.23), which give identical results

(a minus sign from the form factor is compensated by a form factor coming from the

amplitude):

1

〈`2 `1〉

(
−〈3 `2〉 〈`2 `1〉〈34〉 〈4 `2〉

)
= −F (0) 〈41〉 〈3 `2〉

〈31〉 〈4 `2〉
. (C.2.30)

We can combine the two diagrams with fermions with the first two diagrams which do not

involve fermions. Consider first (C.2.25) summed with

F (0) 〈41〉
〈31〉 〈4 `2〉

(〈2 `2〉 〈3 `1〉 − 〈2 `1〉 〈3 `2〉
〈2 `1〉

)
= F (0) 〈41〉 〈23〉 〈`2 `1〉

〈31〉 〈4 `2〉 〈2 `1〉

=
1

4
F (0)

(〈41〉 〈23〉
〈31〉 〈42〉

)
Tr+(`2 `1 p2 p4)

(p2 · `1)(p4 · `2)
.

(C.2.31)

In the cut, `1 + `2 = p3 + p4, so

Tr+(`2 `1 p2 p4) = Tr+(p3 `1 p2 p4)

= s24(p3 · `1) + s34(p2 · `1)− s23(`1 · p4)

= (s24 + s23)(p3 · `1) + s34(p2 · `1)− 1
2s23s34 .

(C.2.32)

Here we used 2(`1 · p4) = −2(`1 · p3) + s34 which holds on the cut. Noticing that (p3 · `1) =

(p4 · `2), (C.2.31) becomes

1

2
F (0)

(〈41〉 〈23〉
〈13〉 〈24〉

)(
s24 + s23

(`1 + p2)2
− s34

(`2 − p4)2
+

s23s34

(`1 + p2)2(`2 − p4)2

)
=

1

2
F (0)

(〈41〉 〈23〉
〈13〉 〈24〉

)(
s23s34

(`1 + p2)2(`2 − p4)2
+

(q − p1)2 − s34

(`1 + p2)2
− s34

(`2 − p4)2

)
.

(C.2.33)

Again we used s23 + s24 = (q− p1)2. The first term is a one-mass box with massive corner

p1− q, the second term is a two-mass triangle with massive corners p3 + p4 and p1− q and

lastly the third term is a one-mass triangle with massive corner p1 + p2 − q (see Figure

C.4).

Now let us look at (C.2.26) summed with the other diagram with fermions:

F (0) 〈41〉 〈3 `2〉
〈31〉 〈4 `2〉

(〈1 `1〉 〈3 `2〉 − 〈`2 1〉 〈`1 3〉
〈`2 1〉 〈`1 3〉

)
= F (0) 〈41〉 〈3 `2〉 〈`2 `1〉

〈`2 1〉 〈`1 3〉 〈4 `2〉

=
1

4
F (0) 〈41〉 〈3 `2〉 〈`2 `1〉 [`2 1][4 `2]

〈`1 3〉 (`2 · p1)(`2 · p4)
=

1

4
F (0) 〈41〉 〈`2 `1〉 [`2 1][4 `1]

(`2 · p1)(`2 · p4)

=
1

4
F (0) Tr+(p4 p1 `2 `1)

(`2 · p1)(`2 · p4)
=

1

4
F (0) Tr+(p4 p1 `2 p3)

(`2 · p1)(`2 · p4)
.

(C.2.34)
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On the second line we used that 〈3 `2〉 [4 `2] = −〈3 `1〉 [4 `1]. The trace gives

Tr+(p4 p1 `2 p3) = s41(`2 · p3) + s34(`2 · p1)− s13(`2 · p4)

= 1
2s41s34 − (s41 + s13)(`2 · p4) + s34(`2 · p1) .

(C.2.35)

Once again we used that, on this cut, 2(`2 · p3) = −2(`2 · p4) + s34. Thus (C.2.34) is

−1

2
F (0)

(
s34s41

(`2 + p1)2(`2 − p4)2
+

s34

(`2 − p4)2
+

(q − p2)2 − s34

(`2 + p1)2

)
. (C.2.36)

The first term gives a a one-mass box with massive corner p2− q, the second term gives a

one-mass triangle with massive corner p1 + p2 − q and finally the last term is a two mass

triangle with massive corners p2 − q and p3 + p4.

Putting together (C.2.33) and (C.2.36) we get the result for the cut across the (q −
p1 − p2)2-channel. There is only one function present in both expressions, which is the

one-mass triangle with massive corner q − p1 − p2. The final expression is

F (1)
∣∣∣
(q−p1−p2)2-cut

=
1

2
F (0)

{(〈41〉 〈23〉
〈13〉 〈24〉

) (
s23s34

(`1 + p2)2(`2 − p4)2
+

(q − p1)2 − s34

(`1 + p2)2

)
−
(〈12〉 〈34〉
〈13〉 〈24〉

)
s34

(`2 − p4)2
− s34s41

(`2 + p1)2(`2 − p4)2
− (q − p2)2 − s34

(`2 + p1)2

}
.

(C.2.37)

The functions appearing in (C.2.37) are shown in order in Figure C.4.

Figure C.4: One-loop result for the (q − p1 − p2)2-channel of F
(1)
3 (1φ12 , 2φ12 , 3φ12 , 4+; q).

Comparing the results of the (q − p1)2 and (q − p1 − p2)2 cuts, (C.2.6) and (C.2.37), we

see that indeed the functions which are detectable on both channels appear with the same
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coefficient.

(q − p2 − p3)
2-channel

Here we compute the discontinuity of F
(1)
3 (1φ12 , 2φ12 , 3φ12 , 4+; q) across the (q − p2 − p3)2

cut. There are four cases one must consider:

F
(0)
3 (2φ12 , 3φ12 , `+1 , `

φ12
2 ; q)AMHV(4+, 1φ12 ,−`φ34

2 ,−`−1 ) , (C.2.38)

F
(0)
3 (2φ12 , 3φ12 , `φ12

1 , `+2 ; q)AMHV(4+, 1φ12 ,−`−2 ,−`φ34
1 ) , (C.2.39)

F
(0)
3 (2φ12 , 3φ12 , `ψ1

1 , `ψ2
2 ; q)AMHV(4+, 1φ12 ,−`ψ341

2 ,−`ψ234
1 ) , (C.2.40)

F
(0)
3 (2φ12 , 3φ12 , `ψ2

1 , `ψ1
2 ; q)AMHV(4+, 1φ12 ,−`ψ234

2 ,−`ψ341
1 ) . (C.2.41)

We start with (C.2.38). Keeping in mind that F (0) =
〈31〉
〈34〉 〈41〉 , we plug in the tree level

expressions to get:

〈3 `2〉
〈3 `1〉 〈`1 `2〉

〈1 `1〉2 〈`2 `1〉
〈`1 4〉 〈41〉 〈1 `2〉

= −F (0) 〈34〉 〈3 `2〉 〈1 `1〉2
〈3 `1〉 〈`1 4〉 〈1 `2〉 〈31〉 . (C.2.42)

Analogously, for (C.2.39) we obtain

〈`1 2〉
〈`1 `2〉 〈`2 2〉

〈1 `2〉 〈`2 `1〉
〈41〉 〈`1 4〉 = −F (0) 〈34〉 〈1 `2〉 〈`1 2〉

〈31〉 〈`2 2〉 〈`1 4〉 . (C.2.43)

The two factorisations with fermions, (C.2.40) and (C.2.41), give the same result as hap-

pened in the previous section

1

〈`2 `1〉

(
−〈1 `1〉 〈`1 `2〉〈`1 4〉 〈41〉

)
= F (0) 〈1 `1〉 〈34〉

〈`1 4〉 〈31〉 . (C.2.44)

We can combine the two diagrams with fermions with the first two diagrams which do not

involve fermions. Consider first (C.2.42) summed with (C.2.44):

F (0) 〈1 `1〉 〈34〉
〈`1 4〉 〈31〉

(−〈1 `1〉 〈3 `2〉+ 〈1 `2〉 〈3 `1〉
〈1 `2〉 〈3 `1〉

)
= −F (0) 〈1 `1〉 〈34〉 〈`2 `1〉

〈`1 4〉 〈1 `2〉 〈3 `1〉

= −1

4
F (0) 〈1 `1〉 〈34〉 〈`2 `1〉 [`1 4][3 `1]

(`1 · p4)(`1 · p3) 〈1 `2〉
.

(C.2.45)

Using that on the cut 〈`2 `1〉 [`1 4] = 〈`2 1〉 [14] we get

1

4
F (0) 〈1 `1〉 〈34〉 [14][3 `1]

(`1 · p4)(`1 · p3)
=

1

4
F (0) Tr+(p1 `1 p3 p4)

(`1 · p4)(`1 · p3)
. (C.2.46)
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The trace is

Tr+(p1 `1 p3 p4) = s41(`1 · p3) + s34(`1 · p1)− s13(`1 · p4) . (C.2.47)

Using that (`1 · p1) = −(`1 · p4) + 1
2s41, we get

−1

2
F (0)

(
s34s41

(`1 − p4)2(`1 + p3)2
+

s41

(`1 − p4)2
+

(q − p2)2 − s41

(`1 + p3)2

)
. (C.2.48)

The first term is a one-mass box with massive corner (q − p2), the second term is a one-

mass triangle with massive corner (q − p2 − p3) and finally the last term is a two-mass

triangle with massive corners (q − p2) and −(p4 + p1).

Now we sum (C.2.43) summed with (C.2.44) to get the second half of the answer:

F (0) 〈34〉
〈`1 4〉 〈31〉

(−〈1 `2〉 〈`1 2〉+ 〈1 `1〉 〈`2 2〉
〈`2 2〉

)
= F (0) 〈12〉 〈34〉 〈`2 `1〉

〈`1 4〉 〈31〉 〈`2 2〉

= −1

4
F (0)

(〈12〉 〈34〉
〈13〉 〈24〉

) 〈`2 `1〉 〈24〉 [`1 4][`2 2]

(`1 · p4)(`2 · p2)
= −1

4
F (0)

(〈12〉 〈34〉
〈13〉 〈24〉

)
Tr+(`2 `1 p4 p2)

(`1 · p4)(`2 · p2)
.

(C.2.49)

On the cut the trace gives

Tr+(`2 p1 p4 p2) = s41(`2 · p2) + s24(`2 · p1)− s12(`2 · p4) . (C.2.50)

We use that (`2 · p1) = (`1 · p4) and (`2 · p4) = −(`1 · p4) + 1
2s41, so (C.2.49) becomes

−1

2
F (0)

(〈12〉 〈34〉
〈13〉 〈24〉

)(
s12s41

(`1 − p4)2(`2 + p2)2
− s41

(`1 − p4)2
+

(q − p3)2 − s41

(`2 + p2)2

)
. (C.2.51)

Now we put together (C.2.48) and (C.2.51) to get the result for the cut

F (1)
∣∣∣
(q−p2−p3)2-cut

= −1

2
F (0)

{(
s34s41

(`1 − p4)2(`1 + p3)2
+

(q − p2)2 − s41

(`1 + p3)2

)
+

(〈12〉 〈34〉
〈13〉 〈24〉

)(
s12s41

(`1 − p4)2(`2 + p2)2
+

(q − p3)2 − s41

(`2 + p2)2

)
−
(〈41〉 〈23〉
〈13〉 〈24〉

)
s41

(`1 − p4)2

}
.

(C.2.52)
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(q − p3 − p4)
2-channel

We now look at the cut F
(1)
3 (1φ12 , 2φ12 , 3φ12 , 4+; q) across the (q − p3 − p4)2 cut. There is

only one factorisation given by

F
(0)
3 (3φ12 , 4+, `φ12

1 , `φ12
2 ; q)AMHV(1φ12 , 2φ12 ,−`φ34

2 ,−`φ34
1 ) . (C.2.53)

Plugging the tree level expressions we get

F (0) 〈34〉 〈41〉
〈31〉

〈3 `1〉
〈34〉 〈4 `1〉

〈12〉 〈`2 `1〉
〈2 `2〉 〈`1 1〉 =

1

4
F (0) 〈41〉 〈12〉 〈3 `1〉 〈`2 `1〉 [2 `2][4 `1]

〈31〉 〈`1 1〉 (p2 · `2)(p4 · `1)
. (C.2.54)

We simplify the expression above by noting that on the cut 〈`2 `1〉 [2 `2] = 〈`1 1〉 [12] and

also writing 〈3 `1〉 〈41〉 = 〈34〉 〈`1 1〉+ 〈31〉 〈4 `1〉, so we get

1

4
F (0) s12 〈41〉 〈3 `1〉 [4 `1]

〈31〉 (p2 · `2)(p4 · `1)
=

1

4
F (0) s12 〈34〉 [4 `1] 〈`1 1〉
〈31〉 (p2 · `2)(p4 · `1)

+
1

2
F (0) s12

(`2 · p2)
. (C.2.55)

The second term clearly gives a one-mas triangle, while we can manipulate the first term

a little further:

1

4
F (0) s12 〈34〉 [4 `1] 〈`1 1〉
〈31〉 (p2 · `2)(p4 · `1)

=
1

4
F (0)

(〈12〉 〈34〉
〈24〉 〈31〉

)
Tr+(p2 p4 `1 p1)

(p2 · `2)(p4 · `1)
. (C.2.56)

Using that on the cut (p2 · `1) = −(p1 · `1) + 1
2s12 and (p1 · `1) = (p2 · `2), the trace gives

Tr+(p2 p4 `1 p1) = (s14 + s24)(p2 · `2) + s12(p4 · `1)− 1
2s14s12 . (C.2.57)

Now collecting everything we obtain the result for this cut

F (1)
∣∣∣
(q−p3−p4)2-cut

=− 1

2
F (0)

(〈12〉 〈34〉
〈13〉 〈24〉

)(
s12s41

(`1 + p4)2(`2 − p2)2
+

(q − p3)2 − s12

(`1 + p4)2
− s12

(`2 − p2)2

)
− F (0) s12

(`2 − p2)2
.

(C.2.58)

(q − p4 − p1)
2-channel

Here we compute the discontinuity of F
(1)
3 (1φ12 , 2φ12 , 3φ12 , 4+; q) across the (q − p4 − p1)2

cut. There is only one factorisation:

F
(0)
3 (4+, 1φ12 , `φ12

1 , `φ12
2 ; q)AMHV(2φ12 , 3φ12 ,−`φ34

2 ,−`φ34
1 ) . (C.2.59)
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This is given by

F (0) 〈34〉 〈41〉
〈31〉

〈`2 1〉
〈`2 4〉 〈41〉

〈`2 `1〉2 〈23〉2
〈23〉 〈3 `2〉 〈`2 `1〉 〈`1 2〉 =

1

4
F (0) 〈`2 1〉 〈34〉 〈23〉 〈`2 `1〉 [`1 2][`2 4]

〈31〉 〈3 `2〉 (p4 · `2)(p2 · `1)
.

(C.2.60)

We simplify the expression above by noting that on the cut 〈`2 `1〉 [`1 2] = [23] 〈3 `2〉 and

also writing 〈`2 1〉 〈34〉 = 〈`2 3〉 〈14〉+ 〈`2 4〉 〈31〉, so we get

1

4
F (0) s23 〈`2 1〉 〈34〉 [`2 4]

〈31〉 (p4 · `2)(p2 · `1)
=

1

4
F (0) s23 〈`2 3〉 〈14〉 [`2 4]

〈31〉 (p4 · `2)(p2 · `1)
+

1

2
F (0) s23

(p2 · `1)
. (C.2.61)

The second term gives a one-mas triangle. Let us explore the first term:

1

4
F (0) s23 〈`2 3〉 〈14〉 [`2 4]

〈31〉 (p4 · `2)(p2 · `1)
= −1

4
F (0)

(〈23〉 〈41〉
〈24〉 〈13〉

) 〈`2 3〉 〈42〉 [23][`2 4]

(p4 · `2)(p2 · `1)

=
1

4
F (0)

(〈23〉 〈41〉
〈24〉 〈13〉

)
Tr+(`2 p3 p2 p4)

(p4 · `2)(p2 · `1)
.

(C.2.62)

Using that on the cut (p2 · `2) = −(p3 · `2) + 1
2s23 and (p3 · `2) = (p2 · `1), the trace gives

Tr+(`2 p3 p2 p4) = s24(p3 · `2) + s23(p4 · `2)− s34(p2 · `2)

= (s24 + s34)(p2 · `1) + s23(p4 · `2)− 1
2s34s23 .

(C.2.63)

Putting everything together we obtain the result for the cut:

F (1)
∣∣∣
(q−p4−p1)2-cut

=
1

2
F (0)

(〈41〉 〈23〉
〈13〉 〈24〉

)(
s23s34

(`1 − p2)2(`2 + p4)2
+

(q − p1)2 − s23

(`2 + p4)2
− s23

(`1 − p2)2

)
− F (0) s23

(`1 − p2)2
.

(C.2.64)

On the first line we have the functions which already appeared in other channels (and the

coefficient are consistent): one-mass box with massive corner q−p1 and two-mass triangle

with massless corner p4. On the second line we have a one mass triangle with massive

corner q − p1 − p4. There is no one-mass box with massive corner q − p4 as there is no

possible helicity assignment to the internal propagators.

C.2.1 Summary of the cuts

Here we collect the results of the cuts in all channels. One can check that the functions

that are detectable in different channels consistently appear with the same coefficient.
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F (1)
∣∣∣
(q−p1)2-cut

=
1

2
F (0)

( 〈41〉 〈23〉
〈13〉 〈24〉

)(
s23s34

(`1 − p2)2(`2 − p4)2
+

(q − p1)2 − s23
(`2 − p4)2

+
(q − p1)2 − s34

(`1 − p2)2

)
,

F (1)
∣∣∣
(q−p2)2-cut

=− 1

2
F (0)

(
s41s34

(`1 − p3)2(`2 − p1)2
+

(q − p2)2 − s34
(`2 − p1)2

+
(q − p2)2 − s41

(`1 − p3)2

)
,

F (1)
∣∣∣
(q−p3)2-cut

=− 1

2
F (0)

( 〈12〉 〈34〉
〈13〉 〈24〉

)(
s41s12

(`1 − p4)2(`2 − p2)2
+

(q − p3)2 − s12
(`1 − p4)2

+
(q − p3)2 − s41

(`2 − p2)2

)
,

F (1)
∣∣∣
(q−p4)2-cut

=0,

F (1)
∣∣∣
(q−p1−p2)2-cut

=
1

2
F (0)

{( 〈41〉 〈23〉
〈13〉 〈24〉

) (
s23s34

(`1 + p2)2(`2 − p4)2
+

(q − p1)2 − s34
(`1 + p2)2

)
−
( 〈12〉 〈34〉
〈13〉 〈24〉

)
s34

(`2 − p4)2
− s34s41

(`2 + p1)2(`2 − p4)2
− (q − p2)2 − s34

(`2 + p1)2

}
,

F (1)
∣∣∣
(q−p2−p3)2-cut

=− 1

2
F (0)

{(
s34s41

(`1 − p4)2(`1 + p3)2
+

(q − p2)2 − s41
(`1 + p3)2

)
+

( 〈12〉 〈34〉
〈13〉 〈24〉

)(
s12s41

(`1 − p4)2(`2 + p2)2
+

(q − p3)2 − s41
(`2 + p2)2

)
−
( 〈41〉 〈23〉
〈13〉 〈24〉

)
s41

(`1 − p4)2

}
,

F (1)
∣∣∣
(q−p3−p4)2-cut

=− 1

2
F (0)

( 〈12〉 〈34〉
〈13〉 〈24〉

)(
s12s41

(`1 + p4)2(`2 − p2)2
+

(q − p3)2 − s12
(`1 + p4)2

− s12
(`2 − p2)2

)
− F (0) s12

(`2 − p2)2
,

F (1)
∣∣∣
(q−p4−p1)2-cut

=
1

2
F (0)

( 〈41〉 〈23〉
〈13〉 〈24〉

)(
s23s34

(`1 − p2)2(`2 + p4)2
+

(q − p1)2 − s23
(`2 + p4)2

− s23
(`1 − p2)2

)
− F (0) s23

(`1 − p2)2
.

C.2.2 Summary of integrals with coefficients

In this section we will combine all the cuts summarised in §C.2.1 to obtain the result for

F
(1)
3 (1φ12 , 2φ12 , 3φ12 , 4+; q).

Firstly we examine the IR divergent terms coming of each scalar integral in multiples

of
rΓ

2ε2
F (0), where rΓ is defined in (B.1.2). These are shown in Table C.1 where we denote

qi ≡ (q − pi)2 and represent the cross ratios as

CR1 =
〈41〉 〈23〉
〈13〉 〈24〉 , CR2 =

〈12〉 〈34〉
〈13〉 〈24〉 , CR2 − CR1 = 1 . (C.2.65)

The result of the IR divergent terms is the sum of all terms of Table C.1:
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(i) = 2 CR1(s−ε23 + s−ε34 − q
−ε
1 ) (ii) = −2 (s−ε34 + s−ε41 − q

−ε
2 )

(iii) = −2 CR2(s−ε41 + s−ε12 − q
−ε
3 ) (iv) = CR1(q−ε1 − s

−ε
23 )

(v) = −CR1(s−ε34 − q
−ε
1 ) (vi) = −(q−ε2 − s

−ε
34 )

(vii) = (s−ε41 − q
−ε
2 ) (viii) = −CR2(q−ε3 − s

−ε
41 )

(ix) = CR2 (s−ε12 − q
−ε
3 ) (x) = (CR2 − 2) s−ε12

(xi) = −(CR1 + 2) s−ε23 (xii) = −(CR1 + 1) s−ε34

(xiii) = (CR2 − 1) s−ε41

Table C.1: IR divergent terms of F
(1)
3 (1φ12 , 2φ12 , 3φ12 , 4+; q).

F
(1)
3 (1φ12 , 2φ12 , 3φ12 , 4+; q)

∣∣∣
IR

= (i) + (ii) + · · ·+ (xiii) . (C.2.66)

Combining the terms depending on q1, q2, q3 and no q separately, we find that the all

dependence on q drops out,

q1 : (i) + (iv) + (v) = CR1(s−ε23 + s−ε34 ) ≡ (xiv) ,

q2 : (ii) + (vi) + (vii) = −(s−ε34 + s−ε41 ) ≡ (xv) ,

q3 : (iii) + (viii) + (ix) = −CR2(s−ε41 + s−ε12 ) ≡ (xvi) ,

No q : (x) + (xi) + (xii) + (xiii) = CR2(s−ε12 + s−ε41 ) + CR1(s−ε23 + s−ε34 )

− (2s−ε12 + 2s−ε23 + s−ε34 + s−ε41 ) ≡ (xvii) .

(C.2.67)
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Then, (C.2) becomes

F
(1)
3 (1φ12 , 2φ12 , 3φ12 , 4+; q)

∣∣∣
IR

= (xiv) + (xv) + (xvi) + (xii)

= −2(s−ε12 + s−ε23 + s−ε34 + s−ε41 ) .

(C.2.68)

So we conclude that the one-loop result for F
(1)
3 (1φ12 , 2φ12 , 3φ12 , 4+; q) is

−F (0)
4∑
i=1

si i+1I
1m
3;i (si i+1) + F (0)Fin

{(〈41〉 〈23〉
〈13〉 〈24〉

)
I1m

4;3 (s23, s34, (q − p1)2)

− I1m
4;3 (s34, s41, (q − p2)2)−

(〈12〉 〈34〉
〈13〉 〈24〉

)
I1m

4;1 (s41, s12, (q − p3)2)

}
.

(C.2.69)

The part proportional to the tree level expression contains all information about the IR

divergences and agrees with the expected result (3.3.20). Indeed, the only physical IR

divergences are soft and collinear and must be related to massless adjacent particles. For

this reason, all dependence on q dropped out.
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Appendix D

Non-planar on-shell diagrams

D.1 Embedding independence

Here we illustrate the independence on the embedding of the on-shell diagram with the

simple example shown in Figure D.1. It is clear that the non-planarity of this diagram is

fake, since it can be embedded on a disk by flipping X1,1.

4

1

2 3

X4,1
X2,4

X1,1
X1,2 X1,4

X2,3
X3,1 X4,3

2

4

1

3

Figure D.1: An on-shell diagram on an annulus. This particular graph can be planarised
by flipping the X1,1 edge. Faces are labeled in green, external nodes in black and edges in
red.

Here we have four face variables, three of which are independent, and one cut. In

terms of oriented edge weights, they are given by

f1 =
X3,1X4,1

X1,2X1,4
, f2 =

X1,2

X2,3X2,4
, f3 =

X2,3X4,3

X3,1
, b1 =

X4,1

X1,1X2,4
. (D.1.1)

Let us consider the perfect orientation corresponding to the reference perfect matching

pref = X1,4X2,3X2,4, which has source set {2, 3}. Using our prescription for the boundary
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measurement, we obtain the Grassmannian matrix

C =



1 2 3 4

2
X1,2

X2,3X2,4
+

X3,1X4,1

X1,4X2,3X2,4
1 0 −X1,1X3,1

X1,4X2,3

3 −X4,1X4,3

X1,4X2,4
0 1

X1,1X4,3

X1,4


=


1 2 3 4

2 f1f2 + f2 1 0 −f1f2
b1

3 −f1f2f3 0 1
f1f2f3
b1


.

(D.1.2)

The on-shell form becomes

Ω =
df1

f1

df2

f2

df3

f3

db1
b1
. (D.1.3)

In terms of minors, it can be rewritten as

Ω =
d2×4C

Vol(GL(2))

1

(12)(23)(34)(41)
, (D.1.4)

which is simply the form for the planar embedding, i.e. the ordinary square box in Figure

5.11. This illustrates the independence of the on-shell form on the embedding and shows

that the generalised face variables maintain a d log form regardless of its choice.

D.2 On-shell form for a genus-one NMHV diagram

To show that the method prescribed in §5.4.2 works just as well for graphs with higher

genus, we now consider a non-planarisable genus-one example shown in Figure D.2.

1

3

2

4

6

5

Figure D.2: An on-shell diagram embedded on a torus with two boundaries.

Following the prescription in §5.4.2, we find the matrices T and M to be
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T =


1 6 4 2

3 2 4 6

5 4 2 6

 , M =


(642) −(164) 0 (162) 0 −(142)

0 −(346) (246) (326) 0 −(324)

0 (546) 0 −(526) (426) −(542)

 .

(D.2.1)

It is easy to see that the simplest way to obtain the on-shell form is by deleting columns

{2,4,6},

M̂2,4,6 =


(642) 0 0

0 (246) 0

0 0 (426)

 ,
det M̂2,4,6

(246)
= (246)2 , (D.2.2)

which gives the on-shell form

Ω =
d3×6C

Vol(GL(3))

(246)3

(164)(421)(216)(324)(463)(632)(542)(265)(654)
. (D.2.3)

We have checked that this result coincides with the result obtained by using the boundary

measurement as described in §5.4.1, giving further evidence to both methods as well as to

the validity of the boundary measurement of [8].

D.3 N2MHV example with two auxiliary edges

Let us consider the N2MHV example in Figure D.3. The T matrix is given by

T =



6 1 9 ∗ ∗

1 7 9 ∗ ∗

8 10 9 ∗ ∗

10 3 5 9 ∗

5 3 8 1 4

2 3 10 ∗ ∗



Choice of ∗−−−−−−−→ T =



6 1 9 3 8

1 7 9 3 8

8 10 9 1 3

10 3 5 9 1

5 3 8 1 4

2 3 10 1 8


. (D.3.1)

This leads to the following matrix M ,
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14

6

5

2

3

7

8

910

Figure D.3: An N2MHV on-shell diagram for which nB = n − k + 2. In this case it is
necessary to add two auxiliary external nodes, 9 and 10, for determining the on-shell form.

M =



(9386) 0 (8619) 0 0 (1938) 0 (6193) (3861) 0

(7938) 0 (8179) 0 0 0 (9381) (1793) (3817) 0

(38109) 0 (81091) 0 0 0 0 (10913) (13810) (9138)

(10359) 0 (59110) 0 (91103) 0 0 0 (11035) (3591)

(4538) 0 (8145) (5381) (3814) 0 0 (1453) 0 0

(82310) (31018) (10182) 0 0 0 0 (23101) 0 (1823)


,

(D.3.2)

where we eliminated the minus signs on the entries of M by using the fact that an

equivalent way to write (5.4.41) for even k is ~ci1(i2 · · · ik+1) + cyclic(i1, i2, . . . , ik+1) = 0.

The result of the procedure in §5.4.2 gives

Ω =
d4×10C

Vol(GL(4))

(1358)3(1389)5(13810)2(13910)2

(1238)(12310)(12810)(1345)(1348)(1359)(13510)(1368)(1369)(1378)(1379)

× 1

(1458)(15910)(1689)(1789)(18910)(23810)(3458)(35910)(3689)(3789)(38910)
.

This can be simplified using the fact that the points {1, 6, 7, 9} are collinear, {8, 9, 10}
are collinear, {2, 3, 10} are collinear and {3, 5, 9, 10} are coplanar, as can be read off from

(D.3.1). After these simplifications, the dependence on nodes 9 and 10 is encoded in the

ratio

I|9,10 =
1

(38910)(12310)(1369)(1689)(18910)(23810)
, (D.3.3)
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which after the residues around Ci9 = Ci10 = 0 for i = 1, . . . 4 gives

I|9,10 =
1

(1368)2(1238)2
. (D.3.4)

Putting everything together, we obtain the following on-shell form

Ω =
d4×8C

Vol(GL(4))

(1358)3(1386)

(7812)(1345)(1348)(1356)(1458)(1568)(1376)(6781)(2345)(3528)(3568)(3782)
.

(D.3.5)

This differential form has been independently confirmed using the boundary measurement

procedure from §5.4.1.
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