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Abstract

This thesis investigates black holes in string theory through string amplitudes and

through gauge-gravity duality. The research presented in this thesis supports the

claim that string theory is capable of a consistent quantum-mechanical description

of black holes and develops techniques which may prove useful in testing this claim

in new scenarios.

The thesis comprises two parts. Part I describes novel disk amplitudes which

derive the supergravity fields sourced by a D-brane with a travelling wave, and

Part II describes free particle structures arising in a matrix model which is related

through gauge-gravity duality to asymptotically anti-de Sitter black holes.

The disk amplitudes calculated in Part I provide a direct connection between

the microscopic worldsheet description of a D-brane with a travelling wave and

its macroscopic supergravity description. A D-brane carrying a travelling wave

can be mapped via string dualities to the two-charge D1-D5 black hole and this

research opens up the possibility to use these techniques to study the three-charge

D1-D5-P black hole.

Part II of the thesis identifies free particle descriptions of non-holomorphic oper-

ators in a complex matrix model derived from dimensional reduction of N = 4

Super-Yang-Mills theory. This research generalizes the free particle description in

the half-BPS sector of this theory which was realized in supergravity and enabled

studies of the microscopics of singular geometries. The free particle descriptions

have been derived at zero gauge coupling; if these or similar structures are also

present at strong coupling this research could be used to study the microscopics

of non-extremal asymptotically anti-de Sitter black holes.
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Introduction

Black holes are among the most fascinating objects in Nature; they are abundant in

our universe, however certain fundamental aspects of their physics remain poorly

understood. Black hole physics includes phenomena whose descriptions require

the use of both of the two main pillars of theoretical physics, quantum mechanics

and general relativity. Famously, as currently formulated, quantum mechanics and

general relativity are mutually inconsistent theories. The challenge of constructing

a consistent quantum theory of gravity is one of the major outstanding problems

of theoretical physics today.

String theory is the leading candidate for a theory of quantum gravity and is thus a

natural arena in which to explore outstanding problems in black hole physics. One

such problem is the information paradox: black hole formation and evaporation

as described by quantum field theory on curved spacetime leads to a violation of

unitary or the formation of exotic remnant objects, either of which would require

modifications to basic principles of physics. We shall explore this in more detail

in Chapter 1.

A black hole is, roughly speaking, an extremely dark and compact object (we

will be more careful about terminology shortly). In string theory, models of such

objects may be constructed from strings and D-branes. We shall study these

objects directly in Part I of this thesis.

D-branes are fundamental objects on which open strings can end [3], and have

classical descriptions as solutions of the supergravity low-energy effective action.

Mixed open/closed string amplitudes give a way to connect these two descriptions,

in particular to derive information about the classical solution from the microscopic

description [4, 5].
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The research presented in Part I of this thesis investigates the gravitational descrip-

tion of bound states of strings and D-branes by calculating amplitudes for closed

string emission. We first review the calculation for a flat D-brane [6, 7, 8, 9] and

then describe research generalizing this to a wrapped D-brane carrying a travelling

wave. These amplitudes directly probe the physics of bound states of D-branes and

this research may lead to an improvement of our understanding of the three-charge

D1-D5-P black hole.

A second major outstanding problem in the physics of black holes is to explain

their entropy microscopically. The entropy of a black hole is proportional to its

area, while more familiar systems in physics have entropy proportional to their

volume. This suggests that black hole physics may have a holographic aspect.

Over the past 14 years, much research in string theory has been devoted to inves-

tigating conjectured holographic dualities, such as the duality between type IIB

string theory on AdS5 × S5 and N = 4 supersymmetric Yang-Mills theory in four

dimensions [10, 11, 12], which we shall refer to as the AdS5/CFT4 duality.

The research presented in Part II of this thesis investigates the physics of a matrix

model which plays an important role in the AdS5/CFT4 duality. Free particle

structures in the half-BPS sector, derived in [13] and investigated in [14], were

realized in supergravity in the LLM geometries [15] and this enabled studies of

obtaining singular geometries from coarse-graining over a family of smooth ge-

ometries [16, 17] (see also [18, 19]). In Part II we derive free particle structures in

non-holomorphic sectors of this matrix model using the Brauer algebra basis [20].

This generalizes the free particle description in the half-BPS sector.

The operators we study in Chapter 5 are in general not expected to be protected by

non-renormalization theorems, however it has been conjectured that certain heavy

operators may not receive large corrections [17]. If these or similar free particle

structures are also present at strong coupling, this research could be used to study

the microscopics of non-extremal asymptotically anti-de Sitter black holes.
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Part I

Disk Amplitudes for Black Holes

in String Theory
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Chapter 1

Black Holes in Nature,

General Relativity

and String Theory

1.1 Black holes

When we think of black holes and talk about black holes, we sometimes mean

rather different things. It can be helpful to draw distinctions between the black

holes we talk about in different contexts - without trying to be precise about

definitions, here we observe the following three distinctions:

• A ‘classical black hole’: a geometrical solution to the equations of motion

of a classical gravity theory, with a horizon causally dividing the spacetime

manifold into the external universe and compact ‘black hole’ regions. For

example: “Black holes have no hair” [21].

• A ‘quantum black hole’: a model of a bound state of matter in a theory of

quantum gravity which has properties of being very heavy, compact, and

extremely dark. For example: “As one increases the string coupling, the size

of a highly excited string state becomes less than its Schwarzschild radius,

so it must become a black hole” [22].

• A ‘physical black hole’: an object observed in nature which is very heavy,

compact, and extremely dark; in particular, an object whose physics is well

described by models based on classical black hole solutions. For example:

“Our Galaxy’s supermassive black hole” [23].
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Chapter 1. Review of Black Hole Physics

In what follows, we shall endeavour to be clear about what kind of black hole we

are referring to in each context. In particular, we shall often speak of “a quantum

mechanical model of a physical black hole”.

1.2 Dark, compact objects in nature

Most observations of physical black holes fall into two mass ranges, stellar mass

black holes and supermassive black holes of order 106-1010 solar masses (for reviews,

see e.g. [24, 25]). The best evidence we have for a physical black hole is given by

the observations of the compact radio source Sagittarius A* at the centre of our

galaxy [26, 27, 28, 29, 30, 23, 31].

There does not yet appear to be a consensus over whether a horizon is a necessary

feature of a model of a physical black hole; this would appear to depend on what

exactly is meant by horizon. The observations appear to rule out any physically

reasonable ‘surface’ where the classical event horizon should be located, favouring

a model in which matter is accreted extremely efficiently onto the central body

[31], however it has been argued that causality prevents a definitive detection of an

event horizon as defined in GR [32]. It appears fair to say that the Schwarzschild

and Kerr solutions form the basis of the best descriptions we have to date of

physical black holes; for further discussion see e.g. [33].

1.3 Black hole solutions in general relativity

We briefly review some features of the Schwarzschild, Reissner-Nordstrom and

Kerr solutions to general relativity (GR) highlighting only the features which are

of relevance to this thesis. We use units where the speed of light c = 1 and we

follow in places [34, 35, 36, 37, 38].

1.3.1 The Schwarzschild black hole

The Schwarzschild metric is the unique static, spherically symmetric solution to

the vacuum Einstein equations in four dimensions, our conventions for which are
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Chapter 1. Review of Black Hole Physics

given in Section A.1 of the Appendix. The line element is given by

ds2 = − f(r)dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θdφ2) , (1.3.1)

where

f(r) = 1− 2GM

r
. (1.3.2)

There is a coordinate singularity at f(r) = 0, i.e. r = 2GM . This does not present

a problem when describing an astronomical body of the size and mass of the Earth,

since the surface r = 2GM is far inside the body. To put this another way, well

before an object in free-fall towards the Earth encounters the surface r = 2GM ,

it will interact with the Earth’s atmosphere and we require more than geodesic

motion to describe this physics.

If we suppose that the matter content of a body was confined well within r = 2GM ,

and that the physics at r = 2GM was well described by geodesic motion, the

surface r = 2GM would be the location of an event horizon and no timelike

observer who fell beyond this surface could ever return. This is the Schwarzschild

black hole.

There is also a curvature singularity at r = 0 signalling that the Schwarzschild

metric is not a good description of any physics at this point. Thus, at some non-

zero critical radius r = rcrit, geodesic motion on the Schwarzschild metric ceases

to be a good description of physics (see e.g. [39]). It is an open question whether

rcrit should be the Planck length, the string length, the horizon, or some other

lengthscale; we will return to this question.

The Schwarzschild black hole has thermodynamic properties; by examining the

near-horizon region, one obtains a temperature (denoting by κ the surface gravity

at the horizon)

T =
~κ
2π

=
~

8πGM
. (1.3.3)

If the black hole satisfies the first law of thermodynamics in the form

dE = TdS (1.3.4)

with the mass M being identified with the energy E, then we deduce that the black
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Chapter 1. Review of Black Hole Physics

hole must have non-zero entropy. This is the Bekenstein-Hawking entropy [40]

which we denote SBek, and is given by

SBek =
A

4G~
=

4πGM2

~
. (1.3.5)

As an aside, restoring units of the speed of light c and Boltzmann’s constant kB,

the Schwarzschild radius becomes r = 2GM/c2 and we obtain the formulae

T =
κ

2π

~
kBc

=
~

8πGM

c3

kB
, (1.3.6)

SBek =
A

4G~
c3kB =

4πGM2

~
kB
c
. (1.3.7)

Historically, the conjecture that black holes should have entropy proportional to

their area was first made by Bekenstein [40] following from the result of Hawking

that the area of a black hole does not decrease with time [41], and by analogy with

the second law of thermodynamics.

This analogy was strengthened with the proposal of a ‘generalized second law of

thermodynamics’ [42], which says that the total entropy of black holes plus the

total entropy of matter external to black holes does not decrease with time. The

analogy between surface gravity and temperature was put on a firmer physical

footing by the discovery of Hawking that semiclassically, black holes radiate with

temperature T [43].

As a result, one should consider the above temperature and entropy to indeed be

the physical temperature and entropy of the physical object described by the clas-

sical black hole solution. Since classical black solutions appear to describe physical

black holes extremely well, any quantum mechanical model of a physical black hole

must reproduce these properties in the classical limit. One of the challenges for

any such quantum model is to obtain the entropy of black holes statistically, i.e. as

the logarithm of a degeneracy of quantum states.

1.3.2 The Reissner-Nordstrom and Kerr black holes

The Reissner-Nordstrom line element describes an electrically charged solution to

the Einstein-Maxwell equations in four dimensions, our conventions for which are
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Chapter 1. Review of Black Hole Physics

given in Section A.2 of the Appendix. The line element is

ds2 = − fRN(r)dt2 +
dr2

fRN(r)
+ r2(dθ2 + sin2 θdφ2) , (1.3.8)

where

fRN(r) = 1− 2GM

r
+
GQ2

r2
. (1.3.9)

As in the Schwarzschild solution, there is a coordinate singularity when fRN(r) = 0,

i.e. at

r± = M ±
√
M2 −Q2 (1.3.10)

which (for a body confined within r−) form two horizons, the outer and inner

horizons respectively. There is again a curvature singularity at r = 0.

In order to avoid a solution with a naked singularity (invoking the ‘cosmic censor-

ship hypothesis’ [44]), we consider only the ranges of parameters which satisfy the

bound

M ≥ |Q| (1.3.11)

which is saturated for the ‘extremal’ choice of parameters M = ±Q.

The temperature of the Reissner-Nordstrom black hole is given by

T =
κ

2π
=

√
M2 −Q2

8πM (r+ −Q2)
(1.3.12)

and the entropy is

S =
A

4
= πr2

+. (1.3.13)

Note that in the extremal limit we obtain

T = 0 , S = πM2 . (1.3.14)

Since there is a non-zero entropy in the limit of zero temperature, the extremal

Reissner-Nordstrom black hole is a system which violates the third law of thermo-

dynamics (which says that S → 0 as T → 0).

Since the extremal Reissner-Nordstrom black hole has zero temperature, it is a

stable state in isolation. The three-charge D1-D5-P black hole in string theory
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Chapter 1. Review of Black Hole Physics

which we will review shortly has an extremal Reissner-Nordstrom black hole as its

classical limit.

The Kerr solution is a rotating, stationary solution to the vacuum Einstein equa-

tions and it describes the gravitational field sourced by a rotating astrophysical

body [45]. We shall not need its explicit form in this thesis; we simply note that the

causal structure of a Kerr black hole is the same as that of a Reissner-Nordstrom

black hole and so physics which depends only on causal structure is common to

both the Kerr and Reissner-Nordstrom solutions. For such questions it is usually

easier to work with the Reissner-Nordstrom solution.

Since a black hole has a temperature and an entropy, it is natural to ask whether

one can build a quantum mechanical model of a black hole which explains these

properties via statistical mechanics. String theory is the leading theory of quantum

gravity, and we next review examples of quantum black holes in string theory.

1.4 Black holes in string theory

In this section we will review selected aspects of black holes in string theory,

focusing on examples which have relevance to this thesis.

In order to model a physical black hole, we are interested in constructing solutions

to string theory which reduce to classical black holes in an appropriate classi-

cal limit. As a result we are interested in constructing bound states of matter

with large degeneracies, in order to give a statistical explanation of the entropy

of classical black holes. These bound states will be built from the fundamental

building-blocks of matter in the theory, namely strings and D-branes.

As we shall review, the extra dimensions of string theory allow one to construct ob-

jects which are localized from the point of view of physics in lower dimensions, and

we shall construct states which are BPS in order to extrapolate certain quantities

from zero string coupling to large string coupling.

Since we are interested in BPS bound states, the configurations we study are bound

states at threshold, i.e. the energy of the bound state is the same as the sum of the

energies of its constituent parts. A threshold bound state is distinguished from
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Chapter 1. Review of Black Hole Physics

a configuration which is a simple superposition of non-bound constituents in the

following way: if the constituents solve the equations of the theory for arbitrary

relative separation then the solution is not a bound state; otherwise, one is indeed

dealing with a bound state.

1.4.1 Two-charge black holes in five dimensions

A simple example of a BPS configuration of string theory with a large degeneracy

of states is a fundamental string carrying large winding number nw and left (or

right) moving momentum np in a compact direction [46, 47].

Since there are no longitudinal oscillations of a fundamental string, the momentum

must be carried in the form of a transverse travelling wave along the string. The

wave travels at the speed of light and is thus described by an arbitrary profile

function f(v) depending on a light-cone coordinate v.

For a heterotic string, to leading order in the large charges, such a state has a

degeneracy (see e.g. [46])

dmicro ∼ e4π
√
nwnp (1.4.1)

and so to leading order the microscopic entropy of this system is

Smicro = log dmicro ∼ 4π
√
nwnp . (1.4.2)

The supergravity solutions sourced by such a string were first written down for

the heterotic string [48, 49] by solving the supergravity equations in the presence

of a delta-function source at the location of the string profile.

For our purposes, we will work with the analogous solutions of type IIB super-

gravity, our conventions for which are given in Section A.3 of the Appendix.

We study solutions with five non-compact directions, more specifically solutions on

R4,1×S1×T 4 using the light-cone coordinates u = (t+ y) , v = (t− y) constructed

from the time and S1 directions. The indices (I, J, . . .) refer collectively to the other

eight directions which we then split into the R4 directions x1, . . . , x4 labelled by

(i, j, . . .) and the T 4 directions x5, . . . , x8 labelled by (a, b, . . .) .

16



Chapter 1. Review of Black Hole Physics

We take the string to be wrapped nw times around y, and smeared along the T 4

and y directions [50, 51]. Letting the length of the y direction be 2πR, the brane

then has overall extent LT = 2πnwR and we use v̂ for the corresponding world-

volume coordinate on the D-brane, having periodicity LT . The non-trivial fields

are the metric, B-field and dilaton:

ds2 = H−
1
2dv

(
− du+Kdv + 2AIdx

I
)

+H
1
2dxIdxI , (1.4.3)

e2Φ = g2
sH , B(2)

uv = 1
2
(H−1 − 1) , B

(2)
vI = H−1AI ,

where the harmonic functions take the form

H = 1 +
QF1

LT

LT∫
0

dv̂

|xi − fi(v̂)|2
, AI = − QF1

LT

LT∫
0

dv̂ḟI(v̂)

|xi − fi(v̂)|2
,

K =
QF1

LT

LT∫
0

dv̂|ḟI(v̂)|2

|xi − fi(v̂)|2
, (1.4.4)

where fi(v̂ + LT ) = fi(v̂) and where ḟ denotes the derivative of f with respect to

v̂. In the above we have used the abuse of notation

|xi − fi(v̂)|2 =
∑
i

(xi − fi(v̂))2 , |ḟI(v̂)|2 =
∑
I

(xI − fI(v̂))2 . (1.4.5)

The functions fI describe classically the null travelling wave on the fundamental

string. QF1 is proportional to gs and to the string winding number nw and is given

by

QF1 =
(2π)4nwg

2
s(α

′)3

V4

. (1.4.6)

One can use S and T dualities to dualize these solutions to the D1-D5 duality

frame, as follows (for more details see e.g. [52]):

F1-P
S→ D1-P

T5678→ D5-P
S→ NS5-P

Ty5→ NS5-F1
S→ D1-D5 . (1.4.7)

In the D1-D5 duality frame, the corresponding supergravity solutions become ev-

erywhere smooth, non-singular horizonless geometries. This illustrates that the

property of whether or not a supergravity solution is everywhere smooth is not a

duality-invariant property. This observation was highlighted recently [53] and we

shall discuss this further in Chapter 3.
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Chapter 1. Review of Black Hole Physics

1.4.2 Three-charge black holes in five dimensions

A three-charge black hole in string theory may be constructed by adding left-

moving (or right-moving) momentum to a D1-D5 bound state and considering the

limit of large charges. We refer to this as a D1-D5-P bound state. There is an ex-

tremal Reissner-Nordstrom black hole with a macroscopic horizon in the reduced

five-dimensional supergravity with these charges, whose Bekenstein-Hawking en-

tropy agrees in the large charge limit with the microscopic entropy of the low

energy degrees of freedom of the D1-D5-P system [54].

This agreement between macroscopic and microscopic entropy is possible because

the degeneracy of BPS states is a protected quantity, meaning that it can be

calculated at weak coupling and extrapolated to strong coupling. This provided

the first example of the entropy of a black hole with a macroscopic horizon being

reproduced from a microscopic string theory calculation.

A general remark is in order at this point: given a bound state of N Dp-branes

without a momentum charge, we will see in the next chapter that the characteristic

size of the bound state of D-branes is set by the lengthscale Rp, which is given (for

p < 7) by

R7−p
p ∼ gsN

√
α′

7−p
. (1.4.8)

For the D1-D5 system, if there are n1 D1 branes and n5 D5 branes, then the

effective value of N is n1n5.

When one considers a momentum charge this also enters into the size of the bound

state. For the D1-D5-P black hole, the horizon size is [54]

R ∼ √gs(n1n5np)
1/6
√
α′ . (1.4.9)

So we see that it is only for the regime of parameters where g3
s(n1n5np)� 1 that

the horizon is large in string units and the curvature is small at the horizon, in

order that the classical black hole solution is a valid supergravity solution at the

horizon scale. We shall come back to this discussion in the next chapter when

we discuss the regime of validity of the disk amplitude calculations that we shall

present in this thesis.
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Chapter 1. Review of Black Hole Physics

1.4.3 Asymptotically anti-de Sitter Black Holes

The conjectured AdS/CFT duality [10, 11, 12] has been a major research theme in

string theory over the last 14 years, and has led to many studies of asymptotically

anti-de Sitter black holes. As for the examples mentioned above, one would like

to construct consistent quantum mechanical models which explain the entropy of

these black holes statistically.

We will focus on asymptotically AdS5 black holes, which are related to the research

presented in Part II of this thesis. Examples of such black holes are the ‘large’ [55]

and ‘small’ [56] Schwarzschild-AdS5 black holes, and the supersymmetric 1/16-

BPS black hole [57, 58] whose entropy remains to be fully understood.

Of particular interest in this thesis are the R-charged asymptotically AdS5 × S5

black holes [59, 60] obtained by uplifting asymptotically AdS5 solutions to N = 2

U(1)3 gauged 5D supergravity [61, 62]. The extremal limits of these black holes

produce supergravity solutions which have naked null singularities at the two-

derivative supergravity level. These solutions are known as ‘superstars’ [60] and

depending on the number of independent R-charges there are 1/2-BPS, 1/4-BPS,

and 1/8-BPS solutions. They have been interpreted as ‘incipient’ black holes, in

the sense that any small energy added above extremality produces a non-zero size

classical horizon [17].

Using AdS/CFT duality and an explicit free particle description [13, 14], the

microscopic entropy of the 1/2-BPS superstar has been studied quantitatively

both in the dual field theory and in gravity [17] where there is a family of smooth

supergravity solutions [15]. The dependence on N of the entropy of the large

Schwarzschild-AdS5 black hole [17] and near-extremal R-charged black holes [63]

has also been understood qualitatively using AdS/CFT , as we shall describe in

more detail in Chapter 4.

1.5 The information paradox

Having briefly reviewed some examples of black holes in string theory we now

review the information paradox. This has been a stubborn outstanding problem
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Chapter 1. Review of Black Hole Physics

in black hole physics for over three decades, since the seminal papers of Hawking

[43, 64]. As we shall see, the information paradox imposes constraints on the

properties of any quantum model of a physical black hole. In order to meaningfully

discuss the paradox, it is necessary to be rather specific in places and we ask for

the reader’s patience in this respect.

1.5.1 Mixed states and remnants

Before we discuss the precise statement of paradox, we introduce some of the

possible consequences of black hole formation and evaporation, namely evolution

into mixed states and production of remnants. We follow in places the treatment

in [35].

A mixed state arises in quantum mechanics when a system consists of two subsys-

tems, A and B, which have previously been in contact but are no longer interacting.

For our purposes we think of A as the external region to the black hole and B

the black hole region. The combined system has a wavefunction Ψ(α, β) where α

and β are commuting variables for the subsystems A and B. A is described by a

density matrix ρA, defined by

ρA(α, α′) =
∑
β

Ψ∗(α, β)Ψ(α′, β) (1.5.1)

however if the black hole system B evaporates completely without the information

content of the black hole escaping into region A, the combined system will have

evolved in a non-unitary fashion from a pure state to a mixed state [64] (see

also [65]).

A remnant is an object with finite bounded mass and size which may have an

arbitrarily large entanglement with systems far away from itself. Such remnants

are problematic for physics for the following reasons. Firstly, having an arbitrarily

large entanglement entropy means that remnants would necessarily violate the

Bekenstein entropy bound [66] and thus mergers of remnants with black holes

would violate the generalized second law of thermodynamics [67].

Secondly, if remnants are Planck-sized objects, in order to keep track of all the

possible states that can form an arbitrarily large black hole, the number of distinct
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species of remnant must be infinite, leading to possibly infinite rates of production

of remnants [68, 69].

In this thesis we shall take the point of view that non-unitarity and remnants are

unacceptable features of a physical theory, and investigate the alternative resolu-

tion of the information paradox offered by the fuzzball proposal.

1.5.2 The Hawking theorem

Similarly to the term ‘black hole’, sometimes people mean different things when

they use the term ‘information paradox’. Hawking’s original paradox is of the

following form:

(a) The formation and evaporation of a black hole as described by semi-classical

gravity (quantum field theory in the background of a black hole) leads to mixed

states or remnants.

However the following (related) statement of the problem is also often encountered:

(b) Supposing that black hole formation and evaporation is unitary, how does

the information about the matter which went into making up the black hole

actually get out? (See e.g. [70, 71]).

The first of these, (a), is in my opinion far more serious and we shall focus on this,

following the treatment in [72].

The precise statement of the Hawking theorem in the language of [72], is as follows:

To formulate the theorem, we assume that:

(A) There exists a ‘solar system limit’ in which physics can be described by known,

local, semiclassical physics up to Planck scale corrections. This limit is de-

scribed by ‘niceness conditions’ such as all curvatures being small compared

to the Planck length and all matter satisfying appropriate energy conditions.

(B) There is a configuration of matter in the theory whose physics is well described

by a classical black hole solution with an ‘information-free horizon’, where a

point on the horizon is called ‘information-free’ if the evolution of fields in the
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neighbourhood of the point is given by the semiclassical evolution of quantum

fields on ‘empty’ curved space, up to corrections controlled by the Planck scale.

Then it follows that:

1. To leading order, the emission of each Hawking quantum increases the en-

tanglement entropy of the black hole with the exterior by a fixed amount, so

the total entanglement entropy increases linearly for the lifetime of the black

hole for which the assumptions of the theorem hold.

2. The evaporation of the black hole then leads either to a mixed final state (in

the case that the black hole evaporates completely) or to a remnant.

3. Importantly, allowing for small corrections to Hawking’s calculation, the

results are robust [72].

This statement of the Hawking theorem forces us to either:

(i) accept loss of unitarity/remnants in black hole physics as a feature of quan-

tum gravity, and revise our physical laws accordingly;

(ii) violate the assumptions of the Hawking theorem by

• violating assumption A and revising the ‘solar system limit’ assumption

in some way, within the constraints of experimental tests of general

relativity to date.

• violating assumption B, either by modifying local quantum field theory

(see e.g. [73]) or by constructing a more refined description of a physical

black hole.

Resolving the information paradox by constructing a more refined description of

a physical black hole would avoid having to modify our current formulations of

quantum mechanics or local quantum field theory. This seems to me the more

conservative option, the option more likely to be correct, and a topic very much

worth pursuing. However it very much remains to be shown whether or not this

is the correct answer. In the next section we describe one such attempt to resolve

the information paradox within string theory.

22



Chapter 1. Review of Black Hole Physics

1.6 The fuzzball proposal for black holes

The fuzzball proposal [74, 52, 75] is the conjecture that:

1. Black hole formation and evaporation is unitary, and the Hawking theorem

is avoided by violating assumption B, i.e. claiming that the classical horizon

does not provide a good description of all physics in this region;

2. Physics at the location of the horizon should be affected by the bound state

of matter making up the black hole having a non-trivial size.

Note that the fuzzball proposal does not make any statement about whether the

classical black hole is a good description of the physics experienced by an infalling

classical observer; it is a proposal for the physics of Hawking radiation. This

has been described as “the separation of the information paradox and the infall

problem” [76]. It is an open question as to whether or not an explicit fuzzball model

of a black hole reproduces the gentle experience of a classical observer falling into

a large black hole; this is an important question for the program to address (see

also [77]).

If the fuzzball proposal gives the correct quantum mechanical model of a black hole,

then the awkward theoretical consequences of the Hawking theorem are avoided,

and the information in the black hole appears to come out in a similar way to

when a bowl of water evaporates, or a lump of coal is burned [78] (see also [79]).

Having stated the fuzzball proposal and its consequences if correct, we now briefly

review its status.

The fuzzball proposal grew out of studies of two-charge black holes in string theory

[50, 51, 80, 81, 74]. Recalling the model of the wrapped oscillating fundamental

string reviewed in Section 1.4.1, we saw that the string carried a large degeneracy

of states by vibrating in the transverse directions; this means that the system

occupies a non-trivial size.

Using the convenient fact that classical vibrations of the string can be well de-

scribed by the (horizonless) supergravity solutions in Section 1.4.1, an estimate was

obtained for the length scale at which geometries describing classical vibration pro-

23



Chapter 1. Review of Black Hole Physics

files start to differ from one another. This length scale was then extrapolated to

the generic vibration profile of the string to obtain an estimate for the length scale

at which generic states of the string give different physics. There is no classical

black hole geometry at the two-derivative level, however if one places a stretched

horizon (see e.g. [82]) at this length scale, the area of this horizon reproduces the

entropy coming from the microscopic count of states of the system [51].

It is important to note that the generic state of the system is not expected to be

well described by supergravity. Indeed, the name ‘fuzzball ’ is intended to give a

sense of the fact that certain physics around the horizon of the classical black hole

solution should require descriptions beyond smooth geometry. Here, the smooth

supergravity solutions are used as a (coarse) tool to probe the physics of the

generic, very quantum, state using the technically convenient description of states

in the Hilbert space which happen to have good classical descriptions.

The next main challenge is to extend this program to the three-charge D1-D5-

P extremal black hole reviewed in Section 1.4.2, and from there to other classes

of black holes, in particular non-extremal black holes. Following the progress in

the two-charge system, and since supergravity is often easier to deal with than

string theory, much effort has been focused on constructing smooth horizonless

three-charge supergravity solutions.

Various classes of smooth horizonless three-charge supergravity solutions are now

known [83, 84, 85, 86, 87, 88], and a class of non-extremal three-charge solutions

has also been constructed [89]. The ergoregion emission from these geometries has

been interpreted as Hawking radiation [90, 91, 92, 93, 94, 95], suggesting that even

non-extremal black holes may admit fuzzball descriptions.

The construction of these supergravity solutions then leads to the question: given

a horizonless supergravity solution with appropriate charges, how do we know

whether or not it corresponds to a microstate of a black hole? (See e.g. [53]). As

we shall see, the research presented in Chapter 3 addresses exactly this question

in the two-charge system, and opens the possibility to address this question also

in the three-charge system.
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In summary, the fuzzball proposal is a promising program which holds the potential

to resolve the information paradox by constructing a more refined model of a

physical black hole. It offers the possibility of doing so without sacrificing solar

system physics or even the physics of the infall of a classical observer into a black

hole, although this remains to be investigated. The fuzzball program is still at

an early stage and many questions remain, especially with regard to non-extremal

black holes; this is an exciting and active area of theoretical physics and will likely

continue to be so for some time.
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Chapter 2

The Supergravity Fields for a flat

D-brane from String Amplitudes

Outline of Chapter 2

In this chapter we review the derivation of the asymptotic supergravity fields

sourced by a flat D-brane from world-sheet disk amplitudes, using the boundary

state formalism. This allows us to set up the technology which forms the basis of

the research presented in Chapter 3.

The physics behind this calculation is that the regime of being at weak coupling and

at large distance from the D-brane is a regime in which both perturbative string

theory and supergravity are valid descriptions; this is because the interaction of

a D-brane with a probe far from the D-brane is dominated by the exchange of

massless closed strings, which can be thought of as an interaction between the

probe and the background fields generated by the D-brane [4].

The structure of this chapter is as follows:

In Section 2.1 we set out our conventions for the type IIB superstring world-sheet

theory, and derive the boundary conditions appropriate for a flat Dp-brane.

In Section 2.2 we review the construction of the boundary state for a flat D-brane,

and in Section 2.3 we review the application of the boundary state to the derivation

of the supergravity fields sourced by such a D-brane.
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2.1 World-sheet CFT and conventions

In this section we set out our notation and conventions for the type IIB superstring

world-sheet CFT, working in the Ramond-Neveu-Schwarz formalism.

2.1.1 Closed superstring

We start with a closed superstring in which the world-sheet metric has Euclidean

signature and we use complex coordinates z = exp(τ + iσ) where τ ∈ R and σ is

periodic with period 2π. We use the following action:

S =
1

2πα′

∫
d2z

(
∂Xµ∂̄Xµ + ψµ∂̄ψµ + ψ̃µ∂ψ̃µ

)
. (2.1.1)

Varying the action gives boundary terms which can be solved by imposing peri-

odicity conditions on the fields as follows: considering for simplicity the case of a

non-compact direction (and so ignoring winding modes) the bosons are periodic,

Xµ(e2πi z, e−2πi z̄) = Xµ(z, z̄) (2.1.2)

while the left and right-moving fermions may be periodic or antiperiodic:

ψµ(e2πi z) = e2πiνψµ(z)

ψ̃µ(e−2πi z̄) = e2πiν̃ψ̃µ(z̄) (2.1.3)

where for the left-moving fields ν = 0 gives the Ramond (R) sector and ν = 1
2

gives the Neveu-Schwarz (NS) sector, and similarly for ν̃, giving rise to four sectors:

NS-NS, NS-R, R-NS, R-R.

The action (2.1.1) is invariant under the supersymmetry transformations

δXµ = εψµ + ε̃ψ̃µ , δψµ = −ε∂Xµ , δψ̃µ = −ε̃∂̄Xµ . (2.1.4)

The equations of motion and boundary conditions are solved by the mode expan-
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sions

Xµ(z, z̄) = xµ − i
√
α′

2
αµ0 ln z − i

√
α′

2
α̃µ0 ln z̄ + i

√
α′

2

∑
m6=0

1

m

(
αµm
zm

+
α̃µm
z̄m

)
,

ψµ(z) =

√
α′

2

∑
r∈Z+ν

ψµr

zr+
1
2

, ψ̃µ(z̄) =

√
α′

2

∑
r∈Z+ν

ψ̃µr

z̄r+
1
2

, (2.1.5)

where we set αµ0 = α̃µ0 =
√

α′

2
pµ .

After canonical quantization, the non-zero commutation relations for the left-

moving fields and zero modes are:

[
αµm, α

ν
n

]
= mδm+n,0 η

µν ,
[
ψµr , ψ

ν
s

]
= δr+s,0 η

µν ,[
xµ, pν

]
= i ηµν (2.1.6)

and similar commutation relations hold for the right-moving fields.

The vacuum of the bosonic fields |0; kµ〉 is defined by

αm |0; kµ〉 = α̃m |0; kµ〉 = 0 for m ≥ 1 ,

pµ |0; kµ〉 = kµ |0; kµ〉 . (2.1.7)

The vacuum of the left-moving fermions is defined in the NS sector by

ψµr |0〉NS = 0 for r > 0 , (2.1.8)

and similarly in the R sector; in the R sector the ground state is degenerate due

to the fermion zero modes which satisfy the Clifford algebra with

Γµ ←→
√

2ψµ0 ⇒ {Γµ,Γν} = 2ηµν . (2.1.9)

We shall return to the R sector zero modes after introducing our conventions for

the open string.
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2.1.2 Open superstring

For the open superstring, we again consider a Euclidean world-sheet and use com-

plex coordinates z = exp(τ + iσ) where τ ∈ R and now σ ∈ [0, π]. The action

is otherwise unchanged; varying the action gives rise to boundary conditions at

σ = 0 and σ = π, i.e. at z = z̄. If we assume Neumann boundary conditions on

all spacetime coordinates, the boundary conditions on the world-sheet fields take

the form

(∂Xµ − ∂̄Xµ)
∣∣∣
z=z̄

= 0,

(ψµ − ηψ̃µ)
∣∣∣
z=z̄

= 0. (2.1.10)

By convention we set η = +1 at σ = 0; then at σ = π, setting η = +1 (η = −1)

gives the Neveu-Schwarz (Ramond) sector.

The presence of the world-sheet boundary breaks half of the world-sheet super-

symmetry, such that the action is now invariant only under the subset of transfor-

mations (2.1.4) for which

ε̃ = ηε . (2.1.11)

We can rewrite the fields appearing in (2.1.10) in modes using the expansions

in the closed string mode expansions (2.1.5), in terms of which the (Neumann)

boundary conditions identify the right and left-moving oscillators as follows:

α̃µn = αµn , ψ̃µr = η ψµr (2.1.12)

and pµ is unconstrained for Neumann boundary conditions.

The spectrum of the open string is the same as that of one side (e.g. left-movers)

of the closed string, reviewed in the previous section.

From these expressions one can derive the boundary conditions for a Dp-brane by

T-dualizing along the (9 − p) transverse directions, which we label by xi. This

sends

α̃in → −α̃in , ψ̃ir → − ψ̃ir . (2.1.13)
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We work only with strings of zero winding number; focusing on the σ = 0 endpoint

at attached to a Dp-brane located at yi in the transverse directions we have

X i|σ=0 = yi . (2.1.14)

Introducing the reflection matrix R to keep track of Neumann and Dirichlet direc-

tions,

Rµν = (ηαβ,−δij) , (2.1.15)

we thus have the following boundary conditions for an open string with the end-

point at σ = 0 attached to a flat Dp-brane:

α̃µn = Rµ
ν α

ν
n , ψ̃µr = η Rµ

ν ψ
ν
r , xi = yi . (2.1.16)

We shall be interested in mixed open/closed string amplitudes and a useful tool

is open-closed string duality. In order to explain this, consider the cartoon of the

process of emission of a closed string from a D-brane shown in Fig. 2.1.

Figure 2.1: Closed string emission from a D-brane. Source: physicsworld.com [96]

From the open string point of view, one can describe this process as the emission of

an on-shell closed string from an open string world-sheet, as sketched in Fig. 2.2.

Alternatively, one can think of this process as a closed string being created by the

D-brane and instead formulate the calculation in the closed string picture. The

technology of the boundary state enables us to do exactly this, as we shall see.
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W

|B>

Figure 2.2: Corresponding string Feynman diagram for disk amplitude.

Changing from the open string picture to the closed string picture involves ex-

changing the world-sheet coordinates σ and τ ; this is realized as a transformation

on the string oscillators as (see e.g. [9]):

αµn → − αµ−n , ψµr → iψµ−r ∀µ, n, r . (2.1.17)

This means that in the closed string picture, the boundary conditions for a closed

string being emitted from a flat Dp-brane at τ = 0 take the form

α̃µn = −Rµ
να

ν
−n , ψ̃µr = iη Rµ

νψ
ν
−r , pα = 0 , xi = yi . (2.1.18)

2.1.3 Spinor conventions

In order to deal with the Ramond sector zero modes, we here describe our spinor

conventions. As reviewed at the end of Section 2.1.1 the Ramond sector zero modes

realize the 10D Clifford algebra via

Γµ ←→
√

2ψµ0 ⇒ {Γµ,Γν} = 2ηµν . (2.1.19)

When required we use the basis used in [6], constructed as follows.

Let γi be the eight 16×16 γ-matrices of SO(8). We use these to construct a chiral

representation for the 32× 32 Γ-matrices of SO(1, 9), via

Γi =

(
0 γi

γi 0

)
= σ1 ⊗ γi ,
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Γ9 =

(
0 γ1 · · · γ8

γ1 · · · γ8 0

)
= σ1 ⊗

(
γ1 · · · γ8

)
, (2.1.20)

Γ0 =

(
0 1l

−1l 0

)
= i σ2 ⊗ 1l ,

where σa are the standard Pauli matrices. The chirality matrix and charge conju-

gation matrix are then

Γ11 = Γ0 . . .Γ9 = ΓtΓyΓ1 . . .Γ8 =

(
1l 0

0 −1l

)
= σ3 ⊗ 1l , (2.1.21)

C =

(
0 −i1l
i1l 0

)
= σ2 ⊗ 1l ,

where C satisfies

(Γµ)T = − C ΓµC−1 (2.1.22)

and we note that in our conventions CT = −C and C−1 = C.

In order to define the R sector vacuum, we next introduce the reparameterization

ghosts and superghosts.

2.1.4 Ghost and superghost fields

We now briefly review the ghost fields b, c of world-sheet reparameterization in-

variance and the superghost fields β, γ of world-sheet supersymmetry which arise

in the BRST quantization of the superstring. For the sake of brevity, we discuss

only the holomorphic ghosts; analogous expressions hold for the antiholomorphic

ghosts b̃, c̃ and superghosts β̃, γ̃. We follow in places [9, 97, 98].

The fields b and c are fermionic fields with conformal dimension equal to 2 and −1

respectively and have the action

Sg =
1

2πα′

∫
d2z b ∂̄c , (2.1.23)

giving the equations of motion

∂̄b = 0 , ∂̄c = 0 . (2.1.24)
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The fields have the mode expansions

b(z) =
∑
n∈Z

bn
zn+2

, c(z) =
∑
n∈Z

cn
zn−1

(2.1.25)

and canonical quantization gives the anticommutation relations

{bn, cm} = δn+m,0 . (2.1.26)

The superghosts β and γ are bosonic fields with conformal dimension equal to 3
2

and −1
2

respectively and their action has the same form as the bc ghosts,

Ssg =

∫
d2z β ∂̄γ . (2.1.27)

They are thus holomorphic with mode expansions

β(z) =
∑
r∈Z+ν

βr
zr+3/2

, γ(z) =
∑
r∈Z+ν

γr
zr−1/2

(2.1.28)

where ν = 0 gives the R sector and ν = 1
2

gives the NS sector, and canonical

quantization gives the commutation relations

[γr, βs] = δr+s,0 . (2.1.29)

The SL(2,R) invariant vacuum |0〉sg of the superghost Hilbert space is annihilated

by

βr for r ≥ −1
2
, γr for r ≥ 3

2
. (2.1.30)

The superghosts may be bosonized by introducing

γ(z) = eφ(z) η(z) , β(z) = e−φ(z) ∂ξ(z) (2.1.31)

where η, ξ are introduced because β and γ are bosonic; one finds that the ηξ CFT

decouples from the φ CFT (see e.g. [98]).

Due to the presence of superghost zero modes in the R sector which do not an-

nihilate the vacuum, the vacuum has infinite degeneracy which is accounted for

by introducing different ‘pictures’ in which one may work. Schematically we can
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write the left-moving superghost vacuum in the P picture by [99, 100]

|0〉P ≡ lim
z→0

: ePφ(z) : |0〉NS (2.1.32)

which is annihilated by

βm for m ≥ −(P + 1
2
) , γm for m ≥ (P + 3

2
) . (2.1.33)

Since the disk has a background superghost charge of 2, we must take the right-

moving sector to be in the P̃ picture, where

P̃ = − 2− P . (2.1.34)

In the NS-NS sector we shall work in the (−1,−1) picture, while in the R-R

sector we shall work in the (−1
2
,−3

2
) picture, in which the superghost vacuum is

annihilated by the zero modes β0 and γ̃0.

In order to define the (−1
2
,−3

2
) picture R vacuum more carefully we require spin

fields, as follows. Let A,B, ... be 32-dimensional indices for spinors in ten dimen-

sions, and let SA, S̃B be left and right-moving spin fields. Then the Ramond

vacuum in the left-moving sector is defined by

|A〉` ≡ lim
z→0

: SA(z)e`φ(z) : |0〉NS for ` = −1
2

or − 3
2

(2.1.35)

and similarly for the right-moving sector. In the above formula, the condition

` = −1
2

or −3
2

ensures that the operator acting on the NS vacuum has weight one.

In the (−1
2
,−3

2
) picture we thus have the Ramond vacuum

|A〉
−1

2
|B̃〉

−3
2
. (2.1.36)

The action of the Ramond oscillators ψµn and ψ̃µn on the above state is given for

r > 0 by (suppressing temporarily the subscripts):

ψµr |A〉|B̃〉 = ψ̃µr |A〉|B̃〉 = 0 (2.1.37)
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and for r = 0 by

ψµ0 |A〉|B̃〉 =
1√
2

(Γµ)AC (1l )BD |C〉 |D̃〉

ψ̃µ0 |A〉|B̃〉 =
1√
2

(Γ11)AC (Γµ)BD |C〉|D̃〉 . (2.1.38)

One can check that this action correctly reproduces the anticommutation prop-

erties of the ψ-oscillators, in particular that {ψµ0 , ψν0} = {ψ̃µ0 , ψ̃ν0} = ηµν , and

{ψµ0 , ψ̃ν0} = 0.

2.2 Boundary state for a flat D-brane

The boundary state |Dp〉 is a state of the closed string that inserts a boundary

on the world-sheet and enforces the boundary conditions appropriate for a Dp-

brane. Boundary states were studied originally in the context of world-sheet disk

amplitudes [101, 102, 103] before this physics was described in terms of D-branes

[3]. Other applications of boundary states may be found in [104, 105, 106, 107,

108, 109, 110, 111, 112, 113].

In this section we review the construction of the boundary state for a flat D-brane,

following the treatment in [6, 7, 9].

2.2.1 Oscillator part of D-brane Boundary state

For both the NS-NS and R-R sectors of the closed superstring, |Dp〉 can be written

as the product of matter and ghost parts,

|Dp〉 = |Dpmat〉 |Dpgh〉 , (2.2.1)

where the matter part can be written as a product of bosonic and fermionic matter

boundary states and the ghost part can be written as a product of reparameteri-

zation ghost and superghost parts:

|Dpmat〉 =
κτp
2
|DpX〉 |Dpψ〉 , |Dpgh〉 = |Dpg〉 |Dpsg〉 . (2.2.2)
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In the above, the constant κ is related to the 10D gravitational constant G
(10)
N via

2κ2 = 16πG
(10)
N ⇒ κ =

1

2
√
π

(2π
√
α′)4gs (2.2.3)

and τp is the tension of a Dp-brane,

τp =
1

(2π
√
α′)p
√
α′gs

. (2.2.4)

Our applications involve saturating the boundary state with a physical on-shell

state and so we shall not need the ghost boundary state for these calculations;

we will however use the superghost boundary state to make the GSO projection

shortly.

The matter part |Dpmat〉 is defined to be the state which solves the boundary

conditions of the closed superstring (2.1.18), i.e.

α̃µn = −Rµ
να

ν
−n , ψ̃µr = iη Rµ

νψ
ν
−r , pα = 0 , xi = yi . (2.2.5)

The oscillator part of the boundary state in each sector is a coherent state: for the

bosonic coordinates we have

|DpX〉 = exp

[
−
∞∑
n=1

1

n
α̃−n ·R · α−n

]
|DpX〉(0) , (2.2.6)

where we shall solve for the zero mode part |DpX〉(0) in the next section.

For the fermionic coordinates, in the NS-NS sector we have

|Dpψ, η〉NS = exp

[
iη

∞∑
m=1/2

ψ̃−m ·R · ψ−m
]
|0〉NS , (2.2.7)

and in the R-R sector we have

|Dpψ, η〉R = exp

[
iη

∞∑
m=1

ψ̃−m ·R · ψ−m
]
|Dpψ, η〉(0)

R (2.2.8)

where we shall solve for the zero mode part |Dpψ, η〉(0)
R in Section 2.2.4.
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2.2.2 Zero mode part of bosonic boundary state

The zero mode part of the bosonic D-brane boundary state, |DpX〉(0), is determined

by the zero mode boundary conditions

(x̂i − yi) |DpX〉(0) = 0 , p̂α |DpX〉(0) = 0 (2.2.9)

which are solved by a combination of zero mode states localized in position or

momentum,

|DpX〉(0) = |0〉α,α̃ |x̂i = yi〉 |pα = 0〉 (2.2.10)

where |0〉α,α̃ is the ground state of the α, α̃ oscillators.

While the solution above is fairly trivial for the case for a flat D-brane, the zero-

mode bosonic boundary state will play an important role in the next chapter when

we construct the boundary state for a D-brane with a travelling wave.

2.2.3 Superghost boundary state

As previously mentioned, for the amplitudes we are interested in calculating we

will not need the explicit form of the reparameterization ghost and superghost

boundary states. However in order to make the GSO projection in the next section,

we will use the superghost boundary state which we review here following [7], in

which the reparameterization ghost boundary state may also be found.

The boundary conditions for the superghosts follow from imposing that the bound-

ary state be BRST invariant and are [7](
γr + iη γ̃−r

)
|Dpsg, η〉 = 0 ,

(
βr + iη β̃−r

)
|Dpsg, η〉 = 0 . (2.2.11)

In the NS-NS sector in the (−1,−1) picture, the superghost boundary conditions

are solved by

|Dpsg, η〉NS = exp

[
iη

∞∑
r=1/2

(γ−rβ̃−r − β−rγ̃−r)
]
|0〉−1,−1 (2.2.12)

and in the R-R sector in the (−1
2
,−3

2
) picture, recalling that the superghost vacuum
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in this picture is annihilated by β0 and γ̃0, we have

|Dpsg, η〉R = exp

{
iη

[
γ0β̃0 +

∞∑
r=1

(γ−rβ̃−r − β−rγ̃−r)
]}
|A〉
−1

2
|B̃〉

−3
2
. (2.2.13)

2.2.4 Zero mode part of fermionic boundary state

For the fermionic part of the D-brane boundary state, there is a non-trivial zero

mode state |Dpψ, η〉(0)
R in the R-R sector, which requires some work to derive. We

now review this, following [6].

We now use these definitions to derive the R-R sector zero mode boundary state

|Dpψ, η〉(0)
R for a Dp-brane. Let us write

|Dpψ, η〉(0)
R = MAB |A〉−1

2
|B̃〉

−3
2
. (2.2.14)

Then the fermion boundary conditions (2.1.18) for r = 0 and the action of the zero

mode fields (2.1.38) imply that the 32 × 32 matrix M must satisfy the following

equation

(Γµ)T M− iη Rµ
ν Γ11MΓν = 0 . (2.2.15)

Using our previous definitions, one finds that a solution is1

M = i C Γ0 · · ·Γp 1 + iη Γ11

1 + iη
. (2.2.16)

2.2.5 GSO projected boundary states

Before using the boundary state to compute amplitudes involving D-branes we

must perform the GSO projection, which projects out the tachyon states of the

open string and closed string spectra and ensures space-time supersymmetry.

In the NS-NS sector the GSO projected boundary state is (see e.g. [7, 9]):

|Dp〉NS ≡
1− (−1)F+G

2

1− (−1)F̃+G̃

2
|Dp,+〉NS , (2.2.17)

1The overall phase of M is a matter of convention; see also [8].
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where F and G are the fermion and superghost number operators

F =
∞∑

r=1/2

ψ−r · ψr , G = −
∞∑

r=1/2

(γ−rβr + β−rγr) (2.2.18)

and similarly for F̃ , G̃. Their action on the NS-NS fermionic matter boundary

state (2.2.7) and superghost boundary state (2.2.12) gives:

(−1)F |Dpψ, η〉NS = |Dpψ,−η〉NS , (−1)F̃ |Dpψ, η〉NS = |Dpψ,−η〉NS ,

(−1)G |Dpsg, η〉NS = |Dpsg,−η〉NS , (−1)G̃ |Dpsg, η〉NS = |Dpsg,−η〉NS .

Using these expressions the NS-NS GSO projection (2.2.17) simplifies to

|Dp〉NS =
1

2

(
|Dp,+〉NS − |Dp,−〉NS

)
. (2.2.19)

In the R-R sector the GSO projected boundary state is

|Dp〉R ≡
1 + (−1)p(−1)F+G

2

1− (−1)F̃+G̃

2
|Dp,+〉R . (2.2.20)

where p is even for Type IIA and odd for Type IIB, and where now

(−1)F = Γ11(−1)

∞∑
m=1

ψ−m·ψm
, G = − γ0β0 −

∞∑
m=1

(γ−mβm + β−mγm) .

(2.2.21)

The action of these operators on the R-R fermionic boundary state given by (2.2.8),

(2.2.14) and the superghost boundary state (2.2.13) gives

(−1)F |Dpψ, η〉R = (−1)p |Dpψ,−η〉R , (−1)F̃ |Dpψ, η〉R = |Dpψ,−η〉R
(−1)G |Dpsg, η〉R = |Dpsg,−η〉R , (−1)G̃ |Dpsg, η〉R = − |Dpsg,−η〉R

and so the R-R GSO projection (2.2.20) simplifies to

|Dp〉R =
1

2

(
|Dp,+〉R + |Dp,−〉R

)
. (2.2.22)

It is natural to decompose the spinors of the R-R zero mode boundary state into

chiral and antichiral components (A = (α, α̇)) with sixteen-dimensional indices
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α and α̇ respectively. Following [6], we now illustrate this for type IIB chirality

where M is non-trivial only in the off-diagonal blocks, that is in the antichiral-

chiral sector and in the chiral-antichiral one. In the sixteen-dimensional notation,

we first introduce the state

|α〉` ≡ lim
z→0

: Sα(z)e`φ(z) : |0〉NS for ` = −1
2

or − 3
2

(2.2.23)

We then define

MAB ≡

(
Mαβ Mαβ̇

Mα̇β Mα̇β̇

)
=
(
C Γ0 · · ·Γp

)
AB

, (2.2.24)

and so the R-R zero mode boundary state (2.2.14) becomes

|Dpψ, η〉(0)
R = |ΩR〉(1) − i |ΩR〉(2) (2.2.25)

where

|ΩR〉(1) = Mα̇β |α̇〉−1
2
|β̃〉
−3

2
(2.2.26)

and

|ΩR〉(2) = Mαβ̇ |α〉−1
2
|˜̇β〉
−3

2
. (2.2.27)

We therefore find that for type IIB theory (where p is odd) the R-R matter bound-

ary state is

|Dpmat〉R = −iκτp
2
|DpX〉

{(
CΓ0Γ1 . . .Γp

)
α̇β

cos [Θ] |α̇〉
−1

2
|β̃〉
−3

2

+
(
CΓ0Γ1 . . .Γp

)
αβ̇

sin [Θ] |α〉
−1

2
|˜̇β〉
−3

2

}
, (2.2.28)

where

Θ =
∞∑
m=1

(
ψ−m ·R · ψ̃−m

)
(2.2.29)

and where we recall

|DpX〉 = exp

[
−
∞∑
n=1

1

n
α−n ·R · α̃−n

]
|0〉α,α̃ |x̂i = yi〉 |pα = 0〉 . (2.2.30)

In order to have a complete summary of the matter boundary states, we also record
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here the NS-NS matter boundary state:

|Dpmat〉NS = −iκτp
2
|DpX〉 sin

[ ∞∑
m=1/2

ψ−m ·R · ψ̃−m
]
|0〉NS (2.2.31)

with |DpX〉 as above.

2.2.6 Example: wrapped D5-brane bosonic zero modes

For later convenience we next write out explicitly the bosonic zero mode boundary

state for a single wrapped D5 brane.

As in Section 1.4.1, we work on R×S1×R4×T 4 parameterized by t, y, xi, xa. and

use light-cone coordinates u = (t+ y) , v = (t− y) . The D5-brane is taken to be

wrapped around S1 × T 4.

For an S1 direction with radius R we normalize the zero-mode momentum eigen-

states as 〈n|m〉 = 2πR δnm and the position eigenstates as 〈x|y〉 = δ(x− y).

The bosonic zero-mode boundary state for a such a D5-brane is then

|D5X〉(0)

T 4 = |x̂i = yi〉 |p̂α = 0〉 |p̂u = 0〉 |p̂v = 0〉 . (2.2.32)

We will find it convenient to write the Neumann directions u, v in position space

and the Dirichlet directions i in momentum space, as follows:

|D5X〉(0)

T 4 =

∫
du dv

dpi

(2π)4
e−ip

ixi |pi〉 |u〉 |v〉 |p̂α = 0〉 . (2.2.33)

We will refer to this form of the bosonic zero mode boundary state in the next

chapter.

41



Chapter 2. Supergravity Fields from String Amplitudes

2.3 Supergravity fields for a flat D-brane from

disk amplitudes

2.3.1 The calculation and its regime of validity

We next give an overview of the calculation of the long distance behaviour of the

classical massless fields generated by a generic D-brane bound state by computing

the amplitude for emission of the relevant string states from a disk with appropriate

boundary conditions.

The procedure for calculating the spacetime amplitude for a supergravity field at

a given point in the transverse directions is:

(i) Calculate the momentum-space amplitudeA(k) for the emission of a massless

closed string, as sketched for a flat D-brane in Fig. 2.1 and Fig. 2.2;

(ii) Extract the field of interest, e.g. graviton;

(iii) Multiply by a free propagator;

(iv) Fourier transform to obtain the spacetime amplitude.

The boundary state allows us to perform the calculation in step (i) in the closed

string picture, since it inserts a boundary on the closed string world-sheet and acts

as a source for all closed string fields.

Since the fields we are interested in are massless they have non-zero momentum

only in the four non-compact directions of the R4, i.e. they have spacelike mo-

mentum. The amplitude in step (i) above is defined by analytically continuing k

to complex values such that we impose k2 = 0, i.e. the emitted closed string is

treated as on-shell [6].

One can ask whether this procedure fails to capture any physics relevant to the

calculation. For example, one could add to the amplitude A(k) a contribution

proportional to any positive power of k2, which would vanish if k2 = 0. Suppose

we add a term proportional to k2; then multiplying by a free propagator 1/k2

and Fourier transforming gives a Dirac delta-function in position space. Similarly,
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higher powers of k2 correspond to derivatives of the delta-function in position

space. This signifies that these terms are relevant for physics very close to the

location of the D-brane and thus do not affect the large distance behaviour of the

supergravity fields.

We next discuss the regime of parameters for which our calculation can be trusted.

The calculation we consider is a disk level calculation, so we are working in per-

turbation theory and neglecting higher order diagrams in both open string and

closed string perturbation theory.

The next order in closed string perturbation theory corresponds to adding handles

to the closed string propagator, which we suppress by working at gs � 1. The next

order in open string perturbation theory corresponds to adding an extra border

to the string worldsheet; introducing r for the radial coordinate in the Dirichlet

directions, for our calculation adding an extra border brings a factor of

ε = gsN

(
α′

r2

)7−p
2

(2.3.1)

as we discuss below. Thus we work in the following regime of parameters:

gs � 1 , gsN

(
α′

r2

)7−p
2

� 1 . (2.3.2)

One can rephrase the second of these as saying that disk amplitudes give the

leading contribution to the fields at lengthscales r where r7−p � gsN
√
α′

7−p
, i.e.

lengthscales greater than the characteristic size of the D-brane bound state. We

shall see in the next section that this matches the large distance expansion of the

corresponding supergravity solutions. An analogous structure appeared long ago

in the field theory version of our calculation [114].

One can see that the quantity ε controls the open string perturbation expansion

as follows. Adding an extra border to the string worldsheet gives a factor of gsN

since there are N D-branes on which the open string can end. It also introduces a

loop momentum integral, two extra propagators, and also reduces the background

superghost charge by two units, requiring us to increase the picture of the vertex

operators into a picture two units higher.

43



Chapter 2. Supergravity Fields from String Amplitudes

Qualitatively, each of these contributes as follows: At large distances, the loop

momentum integral is dominated by the closed string channel, effectively resulting

in an integral over the Dirichlet directions,
∫
d9−pk. The two propagators bring

two factors of 1/k2, and the picture-changing procedure brings a factor of k2 as

we describe below. Thus all together we have an additional integral of the form∫
d9−pk

1

k2
∼ 1

r7−p (2.3.3)

and so restoring units of α′ we indeed find that ε is the appropriate dimensionless

expansion parameter.

The factor of k2 from the change of picture arises as follows. Without entering

into the full details of the picture-changing procedure, this involves acting with

the BRST charge [99]

QBRST(z) ∼
∮

dz

2πi

(
c(z)T (z) +

1

2
γ(z) j(z) + . . .

)
(2.3.4)

where ‘. . .’ indicates additional terms involving only the ghost and superghost

fields not relevant for our purposes. The BRST charge contains the worldsheet

supercurrent

j(z) ∼ ∂X(z) · ψ(z) (2.3.5)

and since this is multiplied by γ = η eφ, increasing the picture by one unit intro-

duces into the amplitude an additional factor of momentum. Since we need to

increase the picture by two units one gets an extra factor of k2.

Since our calculation requires us to take ε� 1, there is the possibility to simulta-

neously consider gsN � 1 which in the three-charge case is related to the regime

where there is a classical black hole solution with low curvature at the horizon,

as discussed in the previous chapter. Strictly speaking, there is the possibility

that there may be non-perturbative effects in gsN that we might missing when

considering this regime, but modulo this potential subtlety the disk amplitudes we

consider should give the leading contribution to the supergravity fields at distances

where r7−p � gsN
√
α′

7−p
, even if gsN � 1.

If this reasoning is correct, and if the calculations we present in this chapter and

the next can be successfully generalized to the three-charge D1-D5-P system, this
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offers the possibility to calculate the multipole moments of a D1-D5-P bound state

in the regime of parameters where there is a classical black hole.

A calculation of non-trivial multipole moments in this regime of parameters would

lend weight to the conjecture that a classical black hole solution should be regarded

as a thermodynamic average over microscopic states, where individual states would

have non-trivial long range supergravity multipole moments and the ensemble

average would erase these moments and obtain the ‘unique’ classical black hole

solution with horizon [52, 17, 115, 116].

In this context, it is expected that typical states should have very small mo-

ments [52] and it has been proposed that distinguishing typical states from the

ensemble average requires measurements of Planck-scale precision [115, 116]. As

we have discussed, in our calculation there is a potential subtlety regarding non-

perturbative effects but we regard our approach as a promising one which could

potentially be used to explore these ideas further.

We now move on to reviewing the calculation for a flat D-brane, before describing

its generalization to two-charge bound states in the D-brane/momentum duality

frame in the next chapter.

2.3.2 Dp-brane supergravity solutions

We now review the extremal p-brane solutions in supergravity, in order to show in

the next section how they are produced by the disk one-point functions.

The supergravity fields sourced by a flat Dp-brane localized in the Dirichlet direc-

tions xi include non-trivial metric (written in string frame), dilaton and the R-R

(p+ 1)-form gauge potential:

ds2 = H−
1
2

(
ηαβ dx

αdxβ
)

+H
1
2

(
δij dx

idxj
)
, (2.3.6)

e2Φ = g2
sH

3−p
2 , C

(p+1)
01...p = − (H−1 − 1) (2.3.7)

where the harmonic function H is:

H = 1 +
Qp

|xi|7−p
. (2.3.8)
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and where for np coincident Dp branes, the charge Qp is given (for p < 7) by

Qp = gsnp
(2π
√
α′)7−p

(7− p)ω8−p
. (2.3.9)

where ωn is the volume of the unit n-sphere (the unit sphere in Rn+1), given in

terms of the Euler Γ-function via

ωn =
2π

n+1
2

Γ
(
n+1

2

) . (2.3.10)

For later convenience we express the charge Qp in terms of the constant κ and the

Dp-brane tension τp introduced in (2.2.3) and (2.2.4):

Qp =
2κ2τp

(7− p)ω8−p
(2.3.11)

The disk amplitudes we now review reproduce the canonically normalized, lin-

earized form of these fields. In order to compare with the amplitudes we therefore

canonically normalize the metric, dilation and R-R fields so that they have kinetic

terms that lead to propagators of the form 1/p2:

g = η + 2κĥ , Φ =
√

2κ Φ̂ , C =
√

2κĈ (2.3.12)

and then expand the fields to linear order in ε as defined in (2.3.1), giving:

hµν =
Qp

2κ

1

|xi|7−p
diag

(
−1

2
, 1

2
, . . . , 1

2
,−1

2
, . . . ,−1

2

)
(2.3.13)

Φ̂ = (3− p) Qp√
2κ

1

|xi|7−p
(2.3.14)

Ĉ
(p+1)
01...p =

Qp√
2κ

1

|xi|7−p
. (2.3.15)

2.3.3 Classical fields from world-sheet disk amplitudes

We now describe the calculation of the long distance behaviour of the classical

massless fields generated by a Dp-brane as described in Section 2.3.1.
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The NS-NS one-point function thus takes the form (before the GSO projection)

ANS(k; η) ≡ 〈pi = ki| 〈ka = 0| Gµνψµ1
2

ψ̃ν1
2
|Dp; η〉NS (2.3.16)

= iη Vp+1
κτp
2
GµνRνµ (2.3.17)

where Vp+1 is the (divergent) volume of the D-brane, which we divide by to ensure

a finite amplitude. As reviewed in (2.2.19) the GSO projection has the effect of

ANS(k) =
1

2

(
ANS(k; +)−ANS(k;−)

)
(2.3.18)

which leaves

ANS(k) = i
κτp
2
GµνRνµ . (2.3.19)

Expanding in terms of canonically normalized supergravity fields, Gµν is given by

Gµν = ĥµν +
1√
2
b̂µν +

Φ̂

2
√

2
(ηµν − kµlν − kνlµ) , (2.3.20)

where kµ and lν satisfy

k2 = l2 = 0 , k · l = 1 . (2.3.21)

We thus read off the canonically normalized fields of interest via

ĥµν(k) =
1

2

δANS

δĥµν
for µ < ν , (2.3.22)

ĥµµ(k) =
δANS

δĥµµ
(no sum over µ) , (2.3.23)

b̂µν(k) =
δANS

δb̂µν
for µ < ν , (2.3.24)

Φ̂(k) =
δANS

δΦ̂
. (2.3.25)

The space-time configuration associated with a closed string emission amplitude

is obtained by multiplying the momentum-space amplitude for emission of the rel-

evant supergravity field by a free propagator and taking the Fourier transform [6].
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In general for a field aµ1...µn we have

aµ1...µn(x) =

∫
d4k

(2π)4

(
− i

k2

)
aµ1...µn(k) eikx , (2.3.26)

with aµ1...µn(k) given in terms of derivatives of A as in (2.3.22)-(2.3.25). Using the

identity ∫
d9−pk

(2π)9−p
eikix

i

|ki|2
=

1

(7− p)ω8−p

1

|xi|7−p
(2.3.27)

and the relation (2.3.11), i.e.

Qp =
2κTp

(7− p)ω8−p
, (2.3.28)

we obtain the non-zero fields

hµν =
Qp

2κ

1

|xi|7−p
diag

(
−1

2
, 1

2
, . . . , 1

2
,−1

2
, . . . ,−1

2

)
(2.3.29)

Φ̂ = (3− p) Qp√
2κ

1

|xi|7−p
(2.3.30)

in agreement with (2.3.13) and (2.3.14).

We next calculate the coupling between the R-R zero mode boundary state and

the on-shell R-R potential state [8, 6, 7]:

〈Ĉ(n)| = − 1
2
〈B̃, k

2
| − 3

2
〈A, k

2
|
[
CΓµ1...µn

1l− Γ11

2

]
AB

(−1)n

4
√

2n!
Ĉµ1...µn (2.3.31)

where the numerical factor contains an extra factor of 1
2

to account for the fact

that we are not using the full superghost expression (for the full expression, see

e.g. [8]). Using the fact (see e.g. [7]) that(
〈A| 〈B̃|

) (
|D〉 |Ẽ〉

)
= −〈A|D〉 〈B̃|Ẽ〉 = −(C−1)AD(C−1)BE , (2.3.32)

we find the coupling of the R-R potential to the (GSO projected) boundary state

to be

A(0)
R = 〈Ĉ(n)|Dpψ〉(0)

RR

=
−i

4
√

2n!
tr

[
Γµn···µ1Γ

01···p1 + Γ11

2

]
AB

Ĉµ1...µn . (2.3.33)
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We then extract the gauge field profile via

Ĉ(n)
µ1...µn

(k) =
δAR

δĈ(n)µ1...µn
(µ1 < µ2 . . . < µn) , (2.3.34)

and as for the NS-NS calculation we insert the propagator and perform the Fourier

transform. The only non-trivial potential is then

Ĉ
(p+1)
01...p =

Qp√
2κ

1

|xi|7−p
(2.3.35)

in agreement with (2.3.15). The result is consistent with the fact that a Dp-brane

is charged only under the (p+ 1) gauge field of the R-R sector.

This completes the link between the microscopic and macroscopic descriptions

of a Dp-brane via disk amplitudes. In the next chapter we describe research

generalizing these results to the derivation of the supergravity fields for a D-brane

with a travelling wave.
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The Supergravity Fields for a

D-brane with a travelling wave

from Disk Amplitudes

In this chapter we derive the supergravity fields for a D-brane with a travelling

wave from disk amplitudes with appropriate boundary conditions. This chapter is

based on research first presented in [1].

3.1 Introduction and discussion of results

We calculate the supergravity fields sourced by a D-brane carrying momentum

charge in the form of a null right (or left) moving wave, and show that the fields

sourced by this bound state reproduce the non-trivial features of the supergravity

solutions which are U-dual to the fundamental string solution of [48, 49]. In

particular we describe in detail the calculation in the D5-P duality frame.

The world-sheet calculation employs the fact that these D-brane configurations

admit an exact CFT description [117] in which the travelling wave on the D-brane

can be included in the world-sheet action for the open strings in a tractable way.

We use the boundary state describing a D-brane with a travelling wave [118, 119,

120] to compute the disk one-point functions for emission of massless closed string

states, and we read off the various supergravity fields.

In the D1-D5 duality frame [121], the analogous calculation has reproduced the

leading order terms in the (large distance) 1/r expansion of the supergravity fields,
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while here the world-sheet calculation yields the full integrals over the D-brane pro-

file appearing in the classical solutions. This is possible because the profile function

parameterizing the solutions arises as a condensate of massless open strings related

to the physical shape of the D-brane, which can be included exactly in the string

world-sheet action.

The direct link between microscopic D-brane configurations and supergravity so-

lutions might also shed further light on the entropy of two charge systems in string

theory. It was recently proposed [53] that the macroscopic entropy of a two-charge

configuration should be defined to be the sum of the contributions of small black

hole solutions and horizonless smooth classical solutions (see also [122]).

In this language the term ‘smooth classical solutions’ does not include solutions

which are singular due to delta-function sources, and the scaling arguments of [53]

applied to the D-brane/momentum duality frame show that α′-corrections to the

supergravity action cannot produce small black holes with a non-zero horizon area.

Here we observe that the supergravity solutions which are sourced by the micro-

scopic D-brane bound states are necessarily singular at the two-derivative level: the

one-point functions on the disk discussed in this chapter provide the asymptotic

behaviour of the solutions, and the nonlinear part of the standard supergravity

equations of motion determines the background in the interior, leading to the

singular backgrounds obtained by dualizing the fundamental string solution. Of

course, it might still be possible to recover a fully smooth field configuration start-

ing from the same data provided by the disk one-point functions if one includes

α′-corrections to the supergravity equations of motion.

In Section 3.5 we give an overview of research following on from the results pre-

sented in section 3.3.
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3.2 Two-charge system in D1-P and D5-P

duality frames

In this section we describe the two-charge supergravity solutions in the D1-P and

D5-P duality frame. As in Section 1.4.1, we work in type IIB string theory on

R4,1 × S1 × T 4 using coordinates

u = (t+ y) , v = (t− y) , (3.2.1)

i, j = 1, . . . 4 (R4) , a, b = 5, . . . 8 (T 4) , I, J = 1, . . . 8 .

The family of classical supergravity solutions in which we are interested describe

two-charge D-brane bound states [50, 51, 81, 123, 124] and are connected through

S and T dualities to the multi-wound fundamental string solution reviewed in

Section 1.4.1, as described in (1.4.7).

In the D1-P duality frame, we have a D1-brane wrapped nw times around y with

overall extent LT = 2πnwR and world-volume coordinate v̂. The non-trivial fields

are the metric, the dilaton and the R-R 2-form gauge potential:

ds2 = H−
1
2dv

(
− du+Kdv + 2AIdx

I
)

+H
1
2dxIdxI , (3.2.2)

e2Φ = g2
sH , C(2)

uv = − 1
2
(H−1 − 1) , C

(2)
vI = −H−1AI ,

where the harmonic functions take the form

H = 1 +
Q1

LT

LT∫
0

dv̂

|xi − fi(v̂)|2
, AI = − Q1

LT

LT∫
0

dv̂ḟI(v̂)

|xi − fi(v̂)|2
,

K =
Q1

LT

LT∫
0

dv̂|ḟI(v̂)|2

|xi − fi(v̂)|2
, (3.2.3)

where as before fi(v̂ + LT ) = fi(v̂) and we use the same abuse of index notation

described in (1.4.5). The D1-brane charge Q1 is proportional to gs and to the

D1-brane winding number nw and is given by

Q1 = gsnw
(2π)4(α′)3

V4

. (3.2.4)
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T-dualizing to the D5-P duality frame and using the symmetry of the IIB equations

of motion to reverse the sign of B and C(4), we obtain the fields:

ds2 = H−
1
2dv

(
− du+

(
K −H−1|Aa|2

)
dv + 2Aidxi

)
+H

1
2dxidxi +H−

1
2dxadxa ,

e2Φ = (g′s)
2H−1 , Bva = −H−1Aa , (3.2.5)

C
(4)
vbcd = −H−1Aaεabcd ,

C
(6)
vi5678 = −H−1Ai , C

(6)
uv5678 = − 1

2

(
H−1 − 1

)
,

where g′s is the string coupling in the new duality frame and εabcd is the alternating

symbol with ε5678 = 1. The effect of rewriting the functions in (3.2.3) in terms of

D5-P frame quantities is to substitute the D1 with the D5 charge,

Q1 → Q5 = g′snwα
′ . (3.2.6)

From now on, we drop the prime and refer to the string coupling in the D5-P frame

as gs.

From the large distance behaviour of the gvv component of the metrics above, one

can read off how the momentum charge is related to the D-brane profile function

f . For instance, in the D1-P frame we have

nw
LT

LT∫
0

|ḟ |2dv̂ =
gsnpα

′

R2
, (3.2.7)

where np is the Kaluza-Klein integer specifying the momentum along the compact

y direction. From a statistical point of view [52], the typical two-charge bound

state with fixed D1 and momentum charges has a profile f consisting of Fourier

modes of average frequency
√
nwnp. Then (3.2.7) implies that the typical profile

wave has an amplitude of order
√
gs. Despite this potential gs dependence, we

always keep track of f exactly and expand in the D-brane charges Qi. From the

point of view of the string amplitudes, this means that we are resumming all

diagrams with open string insertions describing the D-brane profile, but that we

are considering only the disk level contribution.

From now on, for concreteness we present the calculation in the D5-P frame and we
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focus on the field components that vanish in the absence of a wave; the calculations

of the remaining components are analogous. We canonically normalize the metric,

B-field and R-R fields:

g = η + 2κĥ , B =
√

2κb̂ , C =
√

2κĈ . (3.2.8)

We then expand the relevant components of (3.2.5) for small ε as defined in (2.3.1),

keeping only linear order terms, which yields the field components that we shall

reproduce from the disk amplitudes:

ĥvi =
Q5

2κLT

LT∫
0

−ḟi dv̂
|xi − fi(v̂)|2

, ĥvv =
Q5

2κLT

LT∫
0

|ḟ |2 dv̂
|xi − fi(v̂)|2

,

b̂va =
Q5√
2κLT

LT∫
0

ḟa dv̂

|xi − fi(v̂)|2
, (3.2.9)

Ĉ
(4)
vbcd =

Q5√
2κLT

LT∫
0

dv̂
ḟaεabcd

|xi − fi(v̂)|2
, Ĉ

(6)
vi5678 =

Q5√
2κLT

LT∫
0

dv̂
ḟi

|xi − fi(v̂)|2
.

Similar expressions are easily derived in the D1-P frame from (3.2.2).

3.3 World-sheet boundary conditions for a

D-brane with a travelling wave

The key ingredients of our string computation are the boundary conditions which

must be imposed upon the world-sheet fields of a string ending on a D-brane with

a travelling wave, which we now review. As in the previous chapter we consider

a Euclidean world-sheet with complex coordinate z = exp(τ + iσ) with τ ∈ R
and σ ∈ [0, π] . We first review the boundary conditions applicable for a D-brane

wrapped once around y and later account for higher wrapping numbers.

We begin with the following world-sheet action for the superstring coupled to a

background gauge field Aµ on a D9-brane following [102, 125, 119]:

S = S0 + S1 , (3.3.1)
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where S0 and S1 are the world-sheet bulk and boundary actions respectively,

S0 =
1

2πα′

∫
M

d2z

(
∂Xµ∂̄Xµ + ψµ∂̄ψµ + ψ̃µ∂ψ̃µ

)
, (3.3.2)

S1 = i

∫
∂M

dz

(
Aµ(X)

(
∂Xµ + ∂̄Xµ

)
− 1

2

(
ψµ + ψ̃µ

)
Fµν
(
ψν − ψ̃ν

))
(3.3.3)

and Fµν = ∂µAν − ∂νAµ is the abelian field strength.

As reviewed in the previous chapter, the action S0 is invariant under the super-

symmetry transformations

δXµ = εψµ + ε̃ψ̃µ , δψµ = −ε∂Xµ , δψ̃µ = −ε̃∂̄Xµ (3.3.4)

for which

ε̃ = ηε . (3.3.5)

When we include S1, the total action S0 + S1 preserves N = 1 supersymmetry

only up to appropriate boundary conditions at z = z̄ [125]. Defining

Eµν = ηµν + 2πα′Fµν , (3.3.6)

varying the above action yields the boundary conditions [125][
Eµνψ̃

ν = ηEνµψ
ν
]
z=z̄

, (3.3.7)[
Eµν ∂̄X

ν − Eνµ∂Xν − ηEνρ,µψ̃νψρ − Eµν,ρψνψρ + Eνµ,ρψ̃
νψ̃ρ
]
z=z̄

= 0 ,

where η takes the value 1 or −1 corresponding to the NS and R sectors respectively.

For the systems under consideration the gauge field takes a plane-wave profile and

so Aµ will be a function only of the bosonic field V = (X0 − X9), where X0 is

the string coordinate along time and X9 indicates the compact y direction. A

physical gauge field can be written as AI(V ), where we set to zero the light-cone

components. Then the non-vanishing components of Eµν take the form

Euv = Evu = −1

2
, EIJ = δIJ , EIv = −EvI = ḟI(V ) , (3.3.8)
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where we have defined fI = −2πα′AI .

We again write the fields appearing in (3.3.7) in modes by using the expansions

Xµ(z, z̄) = xµ − i
√
α′

2
αµ0 ln z − i

√
α′

2
α̃µ0 ln z̄ + i

√
α′

2

∑
m6=0

1

m

(
αµm
zm

+
α̃µm
z̄m

)
,

ψµ(z) =

√
α′

2

∑
r∈Z+ν

ψµr

zr+
1
2

, ψ̃µ(z̄) =

√
α′

2

∑
r∈Z+ν

ψ̃µr

z̄r+
1
2

, (3.3.9)

where ν = 0 and 1
2

for R and NS respectively. In this setup, the presence of a

non-constant field strength Fµν makes the boundary conditions nonlinear in the

oscillators. We will see however that for the amplitudes in which we are interested,

only the linear terms contribute.

As usual, we can change from the open string picture to the closed string picture,

and derive the boundary conditions describing a closed string emitted or absorbed

by the D-brane. This has the effect of

αµn → −α
µ
−n , ψµr → iψµ−r ∀µ, n, r . (3.3.10)

We can then obtain the boundary conditions for a lower dimensional D-brane by

performing a series of T-dualities; after these transformations, the components of

f along the dualized coordinates describe the profile of the brane. We perform

four or eight T-dualities in order to obtain the boundary conditions appropriate

for a D5 or a D1-brane, for instance in order to move from the D9 frame to the

D5-P frame we T-dualize along each xi which sends

α̃in → −α̃in , ψ̃ir → −ψ̃ir . (3.3.11)

By following the procedure outlined above, we can summarize the boundary con-

ditions for the closed string oscillators as follows

ψ̃µr = iη Rµ
νψ

ν
−r + . . . , α̃µn = −Rµ

να
ν
−n + . . . , (3.3.12)

where ‘. . .’ indicates that we ignore terms which are higher than linear order in

the oscillator modes. We shall justify this below (3.4.7). The reflection matrix R

is obtained from (3.3.7) by performing the transformations (3.3.10) and (3.3.11)
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and replacing V by its zero-mode v:

Rµ
ν(v) = T µρ(E

−1)ρσEνσ , (3.3.13)

where the matrix T performs the T-duality (3.3.11), i.e. it is diagonal with values

−1 in the xi directions and 1 otherwise. R has the lowered-index form

Rµν(v) = ηµρR
ρ
ν(v) =


−2|ḟ(v)|2 −1

2
2ḟ i(v) 2ḟa(v)

−1
2

0 0 0

2ḟ i(v) 0 −1l 0

−2ḟa(v) 0 0 1l

 . (3.3.14)

We refer the reader to [118, 119, 120] for a detailed discussion of the boundary state

describing a D-brane with a travelling wave. For our purposes it is sufficient to

know the linearized boundary conditions for the non-zero modes (3.3.12) that the

boundary state must satisfy, and to construct explicitly only the zero-mode struc-

ture of the boundary state. Addressing firstly the bosonic sector, the boundary

conditions on the zero modes are

pv + ḟ i(v) pi = 0 , pu = 0 , pa = 0 , xi = f i(v) (3.3.15)

where the first three equations follow directly from (3.3.12) and the fourth equation

must be included to account for the T-duality transformations. The first equation

in (3.3.15) may be represented as i ∂
∂v

= ḟ i(v)pi and similarly the last constraint

may be represented as i ∂
∂pi

= f i(v) . Then generalizing the bosonic zero-mode

boundary state for a flat D5-brane derived in (2.2.33), the boundary state zero-

mode structure in the t, y and xi direction is∫
dv du

∫
d4pi

(2π)4
e−ipif

i(v) |pi〉 |u〉 |v〉 . (3.3.16)

So far we have essentially discussed a D-brane with a travelling wave in a non-

compact space; we next generalize this description to the case of compact y and

higher wrapping number. One may view a D-brane wrapped nw times along the y-

direction as a collection of nw different D-brane strands with a non-trivial holonomy

gluing these strands together. This approach was developed in [126, 127] for the
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case of branes with a constant magnetic field.

In the presence of a null travelling wave with arbitrary profile f(V ), the individual

boundary states of each strand will differ in their oscillator part and not just in

their zero-mode part described above. However, we are interested in the emission

of massless closed string states, which have zero momentum and winding along all

compact directions. In this sector the full boundary state is simply the sum of the

boundary states for each constituent, along with the condition that the value of

the function f at the end of one strand must equal the value of f at the beginning

of the following strand. We label the strands of the wrapped D-brane with the

integer s; then restricting to the sector of closed strings with trivial winding (m)

and Kaluza-Klein momentum (k), the boundary state takes the following form:

|D5, f〉k,m=0 = −κ τ5

2

nw∑
s=1

∫
du

2πR∫
0

dv

∫
d4pi

(2π)4
e−ipif

i
(s)

(v) |pi〉 |u〉 |v〉 |D5, f(s)〉k,m=0

rem

(3.3.17)

We have written explicitly only the bosonic zero-modes along t, y and the xi direc-

tions and we denote by |D5, f(s)〉k,m=0

rem
the remaining part of the matter boundary

state for the strand with profile f(s). The range of integration over v = t−y follows

from the periodicity condition of the space-time coordinate y.

We next address the fermion zero modes in the R-R sector. Using the same

conventions as in Section 2.2.4, the R-R zero mode boundary state in the (−1
2
,−3

2
)

picture (before the GSO projection) takes the form

|D5ψ, f ; η〉(0)
R = MAB |A〉− 1

2
|B̃〉− 3

2
(3.3.18)

where M satisfies the following equation [6],

Γ11MΓµ − iη Rµ
ν (Γν)TM = 0 . (3.3.19)

A solution to this equation for the case of our reflection matrix R (3.3.14) is given

by

M = i C

(
1

2
Γvu + ḟ I(v)ΓIv

)
Γ5678

(
1l− iηΓ11

1− iη

)
. (3.3.20)
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where C is the charge conjugation matrix. As reviewed in (2.2.22) the R-R GSO

projection has the effect of

|D5, f〉R =
1

2

(
|D5, f ; +〉R + |D5, f ;−〉R

)
(3.3.21)

and so the fermionic zero mode part of the D5-P R-R boundary state for the strand

with profile f(s) is

|D5ψ, f(s)〉(0)
R = i

[
C

(
1

2
Γvu + ḟ I(s)(v)ΓIv

)
Γ5678 1 + Γ11

2

]
|A〉− 1

2
|B̃〉− 3

2
(3.3.22)

which we can insert into the relevant part of the boundary state (3.3.17).

3.4 Disk amplitudes for the supergravity fields

We now calculate the fields sourced by the D5-P bound state by computing the

disk one-point functions for emission of a massless state, starting with the NS-NS

fields. Since the states are massless they have non-zero momentum only in the

four non-compact directions of the R4, i.e. they have spacelike momentum (see

also [6]). The NS-NS one-point function thus takes the form (before the GSO

projection)

ANS(k; η) ≡ 〈pi = ki| 〈pv = 0| 〈pu = 0| 〈na = 0| Gµνψµ1
2

ψ̃ν1
2
|D5, f ; η〉k,m=0

NS (3.4.1)

where for an S1 direction with radius R we normalize the momentum eigenstates as

〈n|m〉 = 2πR δnm and the position eigenstates as 〈x|y〉 = δ(x− y). As in (2.3.20),

Gµν is given in terms of canonically normalized fields via

Gµν = ĥµν +
1√
2
b̂µν +

Φ̂

2
√

2
(ηµν − kµlν − kνlµ) , (3.4.2)

where k2 = l2 = 0, k · l = 1. The contribution to the zero mode part of the

amplitude from a single strand with profile f(s)(v) is

V4Vu
κ τ5

2

2πR∫
0

dv e−ikif
i
(s)

(v) , (3.4.3)
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where Vu represents the infinite volume of the D-brane in the u direction. Since we

have used a delocalized probe (pv = 0), the string amplitude contains an integral

over the length of the strand of the D-brane.

Importantly, the supergravity fields obtained from this amplitude can only be

trusted when the curvatures are small compared to the string and Planck scales.

Aside from the singularity at the location of the D-brane (when the geometrical

description breaks down in all cases), to obtain supergravity fields with small

curvatures we must consider a classical profile of oscillation, i.e. a long wavelength

profile. This should be contrasted with the typical profile of oscillation which

would lead to a supergravity solution with string scale fluctuations [52]; such a

supergravity solution must be discarded and we interpret this as the statement

that such quantum states of the D-brane do not have good classical descriptions.

In the classical limit nw is very large, the wavelength of the profile is much bigger

than R, and so f is almost constant over each strand [50, 51]. The contribution

to the value of each supergravity field is thus (3.4.3) divided by the volume of the

strand:

A(0)
X,(s)(k) =

κ τ5

2

1

2πR

2πR∫
0

dv e−ikif
i
(s)

(v) . (3.4.4)

The contribution from the nw different strands of the brane is therefore

A(0)
X (k) =

κ τ5

2

1

2πR

nw∑
s=1

2πR∫
0

dv e−ikif
i
(s)

(v) , (3.4.5)

and we combine the integrals over each strand to give the integral over the full

world-volume coordinate v̂, giving

A(0)
X (k) =

κ τ5

2

nw
LT

LT∫
0

dv̂ e−ikif
i(v̂) . (3.4.6)

Adding in the non-zero modes, the coupling of the boundary state to the NS-NS

fields is

ANS(k; η) = − iηκ τ5 nw
2LT

LT∫
0

dv̂ e−ikif
i(v̂)GµνRνµ(v̂) (3.4.7)
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where R(v̂) is the obvious strand-by-strand extension of the reflection matrix

(3.3.14).

We can now observe why we were justified in ignoring terms higher than linear

order in the oscillator boundary conditions (3.3.12). To arrive at the above result

we substitute ψ̃ν1
2

for an expression involving only creation modes using (3.3.12),

and only the linear term can contract with the remaining annihilation mode to

give a non-zero result. A similar argument holds for the R-R amplitude.

As reviewed in (2.2.19) the GSO projection has the effect of

ANS(k) =
1

2

(
ANS(k; +)−ANS(k;−)

)
(3.4.8)

and we read off the canonically normalized fields of interest via

ĥvi(k) =
1

2

δANS

δĥvi
, ĥvv(k) =

δANS

δĥvv
, b̂va(k) =

δANS

δb̂va
. (3.4.9)

The space-time configuration associated with a closed string emission amplitude is

obtained by multiplying the derivative of the amplitude with respect to the closed

string field by a free propagator and taking the Fourier transform [6]. In general

for a field aµ1...µn we have

aµ1...µn(x) =

∫
d4k

(2π)4

(
− i

k2

)
aµ1...µn(k) eikx , (3.4.10)

with aµ1...µn(k) given in terms of derivatives of A as in (3.4.9). Using the identity

∫
d4k

(2π)4

eik
i(xi−f i)

k2
=

1

4π2

1

|xi − f i|2
(3.4.11)

and the relation

Q5 =
2κ2 τ5 nw

4π2
, (3.4.12)

we obtain

ĥvi =
Q5

2κLT

LT∫
0

−ḟi dv̂
|xi − fi(v̂)|2

, ĥvv =
Q5

2κLT

LT∫
0

|ḟ |2 dv̂
|xi − fi(v̂)|2

,
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b̂va =
Q5√
2κLT

LT∫
0

ḟa dv̂

|xi − fi(v̂)|2
, (3.4.13)

in agreement with (3.2.9).

We next calculate the coupling between the R-R zero mode boundary state and

the on-shell R-R potential state

〈Ĉ(n)| = − 1
2
〈B̃, k

2
| − 3

2
〈A, k

2
|
[
CΓµ1...µn

1l− Γ11

2

]
AB

(−1)n

4
√

2n!
Ĉµ1...µn (3.4.14)

where as in (2.3.31) the numerical factor contains an extra factor of 1
2

to account

for the fact that we are not using the full superghost expression. Using again the

fact that(
〈A| 〈B̃|

) (
|D〉 |Ẽ〉

)
= −〈A|D〉 〈B̃|Ẽ〉 = −(C−1)AD(C−1)BE , (3.4.15)

we find the coupling of the R-R potential to the (GSO projected) boundary state

for an individual strand (3.3.22) to be

A(0)
R,(s) = 〈Ĉ(n)|D5ψ, f(s)〉(0)

R

=
−i

4
√

2n!
tr

[
Γµn···µ1

(
1

2
Γvu + ḟ I(s)(v)ΓIv

)
Γ5678 1 + Γ11

2

]
AB

Ĉµ1...µn .

(3.4.16)

This then combines with the bosonic zero mode part of the amplitude A(0)
X,(s) given

in (3.4.4) and we sum over strands to obtain the full R-R amplitude AR. We then

extract the gauge field profile via

Ĉ(n)
µ1...µn

(k) =
δAR

δĈ(n)µ1...µn
(µ1 < µ2 . . . < µn) , (3.4.17)

and we insert the propagator and perform the Fourier transform. The fields which

are non-trivial only in the presence of a travelling wave are then

Ĉ
(4)
vbcd =

Q5√
2κLT

LT∫
0

dv̂
ḟaεabcd

|xi − fi(v̂)|2
, Ĉ

(6)
vi5678 =

Q5√
2κLT

LT∫
0

dv̂
ḟi

|xi − fi(v̂)|2

(3.4.18)
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which agrees with (3.2.9). This completes the link between the microscopic and

macroscopic descriptions of a D5-brane with a travelling wave.

3.5 Summary and future research

One of the main motivations for studying disk amplitude for a D-brane with a

travelling wave was to understand how to go about extending this program to

three-charge D1-D5-P bound states. The three-charge system is of great interest

because of the macroscopic black hole reviewed in Section 1.4.2 and the outstanding

questions over the various families of smooth supergravity solutions reviewed in

Section 1.6.

At the time of writing this thesis, work is in progress in this direction which we

now briefly describe.

As mentioned in the introduction to this chapter, disk amplitudes for D1-D5 bound

states [121] have reproduced the leading order terms in the 1/r expansion of the

supergravity fields. Building on these results and the research presented in this

thesis on D5-P bound states, there are two ways to proceed for extending this

work to D1-D5-P bound states.

The first approach is to include the momentum of the D-branes perturbatively

by inserting the Wilson line (3.3.3) as a vertex operator on the boundary of the

world-sheet:

Vf ∼
∫
∂M

dz

(
fµ(V )∂Xµ + ḟµ(V )ψvψµ

)
. (3.5.1)

Since the term involving the fermions in the above expression does not bring any

power of momentum, inserting this term onto the boundary of a D1-D5 disk will

produce an amplitude which contributes at the same order in 1/r as the original

amplitude. The simplest non-zero amplitude of this kind involves inserting two

copies of Vf onto a D1-D5 disk.

The second approach is to analyze exactly the boundary conditions appropriate

D1-D5-P bound state, as done in this chapter for the D5-P case. As we saw in this

chapter, this approach yields the full functional form of the supergravity solutions

rather than the 1/r expansion, so one would expect that if this technique can be
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applied to three-charge bound states it would be more powerful than a perturbative

approach. Ultimately of course, the two approaches must give the same terms in

the 1/r expansion.

In conclusion, successfully applying the research presented in this chapter to the

D1-D5-P system will hopefully provide valuable further insight into the physics of

black holes in string theory.
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Chapter 4

Review of Free Particles and the

Brauer Algebra basis

Outline of Chapter 4

In this chapter we provide background material and motivations for the research

presented in Chapter 5 and review some necessary technical preliminaries.

The structure of this chapter is as follows:

In Section 4.1 we review the half-BPS sector of the AdS5/CFT4 duality, describing

the half-BPS bubbling geometries and their applications to the singular ‘superstar’

geometries and near-extremal black holes.

In Section 4.2 we review examples of the emergence of free particle descriptions in

hermitian, unitary and complex matrix models which arise in string theory.

In Section 4.3 we introduce from first principles the Brauer algebra and its repre-

sentations, and in Section 4.4 we review the construction of the Brauer basis for

complex matrix models.
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4.1 Superstars, black holes, and coarse-graining

4.1.1 Gauge-gravity duality and bubbling geometries

The conjectured AdS5/CFT4 duality [10, 11, 12] has been a major research theme

in string theory over the last 14 years. The strong version of the conjecture states

that type IIB string theory on AdS5 × S5 with radius RAdS and N = 4, SU(N)

supersymmetric Yang-Mills theory in four dimensions with coupling gYM are equiv-

alent at all values of the respective parameters, which are related by

gs ←→ g2
YM(

RAdS√
α′

)4
←→ 4πλ , λ = g2

YMN (4.1.1)

In Section 1.4.3 we reviewed asymptotically AdS5 black holes whose entropy and

microscopic structure we would like to understand quantum mechanically.

The half-BPS sector of the AdS5/CFT4 duality is one in which the relatively high

levels of technical control have led to many interesting results. In the field theory,

the degrees of freedom are encoded in a theory of free fermions [13] whilst in the

bulk there is an explicit family of supergravity solutions [15], as we now review.

We shall not distinguish between gauge groups SU(N) and U(N) and for conve-

nience we work with N = 4 Super Yang-Mills (SYM) with gauge group U(N).

N = 4 super Yang-Mills contains six real scalar fields in the adjoint of the gauge

group. The half-BPS operators constructed from these scalars lie in (0, l, 0) rep-

resentations of the SO(6) R-symmetry (see e.g. [13]). These may be combined

into three complex scalar fields X, Y, Z. Focusing on one of these fields, say Z,

each multi-trace holomorphic operator built from Z belongs to a distinct half-BPS

multiplet [13], and so these operators may be used to study the half-BPS sector of

the theory.

The truncation of the N = 4 Super Yang-Mills to this sector, when dimensionally

reduced onto S3 × R, can be mapped to a theory of N free fermions in a one-

dimensional simple harmonic oscillator potential [13, 14, 128]. The allowed energies

for the fermions are En = (n + 1
2
)~, and the ground state is the Fermi sea, when
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the fermions occupy the N lowest energy levels.

Each fermion occupies an area ~ in phase space, and no two fermions may occupy

the same region of phase space due to Fermi statistics. The system therefore takes

up an area N~ of phase space, and so its state can be described by a colouring of the

plane into regions of black and white, representing a fermion or a hole respectively.

The radius (squared) corresponds to energy, and so the ground state is a black disk

centred on the origin. Young diagrams label operators corresponding to excited

states of the system.

The dual supergravity solutions are determined by a single scalar function u0(x1, x2)

defined on the x1-x2 plane in the ten dimensional geometry. and the solutions are

regular if and only if u0 is piecewise 0 and 1. The map between the field theory

and the bulk consists of identifying this plane with the phase space of the fermions,

where the black and white regions correspond to u0 = 1 and u0 = 0 respectively.

4.1.2 Superstars and coarse graining of geometries

In the class of LLM geometries, there are no black hole solutions but there are

geometries which have naked singularities whenever u0 differs from being piecewise

0 and 1. If at any point u0 < 0 or u0 > 1, the resulting geometry has closed timelike

curves [129] and so we ignore these cases. For 0 < u0 < 1, the geometries have

naked null singularities at y = 0.

Although there are no true black hole solutions in this sector of IIB supergravity,

it is a useful toy model since the holographic duality enables us to make precise

calculations using the dual field theory. In particular, one can study statistical

ensembles of Young diagrams, and take a thermodynamic limit, defined by taking

~ → 0 with ~N fixed [17]. In this limit the overall size of the Young diagram

stays the same but the size of the boxes tends to zero and the Young diagram

approaches a continuous a ‘limit curve’. It has been shown that almost all Young

diagrams in the ensemble will be arbitrarily close to one particular limit curve [17],

suggesting a universal thermodynamic description of the underlying microscopic

states. Related studies were carried out in [18, 19, 130, 131, 132, 133].
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4.1.3 Near-extremal and non-extremal black holes

Although the high levels of technical control the half-BPS sector enabled detailed

studies of coarse-graining, ultimately one would like to apply these ideas to black

holes with macroscopic horizons in supergravity. One way to do this is to study

near-extremal R-charged black holes [63]. This motivates studying the field theory

in near-BPS and even non-BPS regimes.

In the half-BPS sector, the auxiliary description in terms of free particles plays a

key role in the holographic duality, and so it is natural to ask whether there may

be free particle descriptions also in non-BPS sectors. Non-BPS operators are not

protected by non-renormalization theorems and so there is no guarantee that the

results we find working at zero Yang Mills coupling will survive at strong coupling;

nevertheless, it has been conjectured that certain heavy non-BPS operators should

not renormalize strongly [17]. For an investigation of the renormalization of heavy

operators at one-loop and two-loop, see [134].

The research described in the next chapter finds free particle descriptions in non-

holomorphic sectors of complex matrix models. If renormalization effects indeed do

not spoil this free particle description for certain large operators, our findings may

be applicable to the microscopic physics of non-extremal asymptotically AdS5×S5

black holes.

4.2 Free particle descriptions in matrix models

and gauge-gravity duality

In this section we review examples of hermitian, unitary and complex matrix

models2 which arise in the context of string theory, in particular string theory in

two dimensions. This review is not intended to be complete in any sense but rather

to provide the reader with context for the research presented in Chapter 5.

2By ‘matrix models’ in D spacetime dimensions, we include random matrix models (D = 0),
matrix quantum mechanics (D = 1) or field theories.
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4.2.1 Hermitian matrix quantum mechanics

Let us consider the hermitian matrix quantum mechanics defined by the La-

grangian

L = tr

(
1

2
Φ̇2 − 1

2
Φ2

)
(4.2.1)

which is invariant under the U(N) action

Φ→ gΦg† , g ∈ U(N) . (4.2.2)

We follow the treatment in [135, 136, 137] restricting attention to the theory with

quadratic potential. The Hamiltonian of this model is

H = tr

(
−1

2

∂2

∂Φ∂Φ
+

1

2
Φ2

)
. (4.2.3)

Introducing the annihilation and creation operators

A =
1√
2

(
Φ +

∂

∂Φ

)
A† =

1√
2

(
Φ− ∂

∂Φ

)
(4.2.4)

and using the usual convention for matrix indices(
∂

∂Φ

)i
j

=
∂

∂Φj
i

(4.2.5)

we have [Aij, A
†k
l] = δkjδ

i
l and the Hamiltonian can be rewritten as

H = tr(A†A) +
N2

2
. (4.2.6)

The ground state has energy N2

2
and its wavefunction is

Φ0 = 〈Φ|0〉 = e−
1
2

tr Φ2

. (4.2.7)

U(N) singlet excited states are obtained by acting on Φ0 with U(N) invariant

functions of A†. Equivalently, if we absorb appropriate factors of
√

2, excited

states are obtained by multiplying the ground state by U(N) invariant functions

of Φ. A basis for such functions is given by the Schur polynomials, which are
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polynomials of degree n labelled by a representation R of Sn,

χR(Φ) =
∑
σ∈Sn

χR(σ)Φi1
iσ1
· · ·Φin

iσn
, (4.2.8)

where χR(σ) is the character of σ in the representation R. The associated wave-

function

ΨR = χR(Φ)e−
1
2

tr Φ2

(4.2.9)

has energy N2

2
+ n.

A hermitian matrix Φ may be decomposed as

Φ = UΛU †, Λ = diag(λ1, . . . , λN) , U ∈ U(N) (4.2.10)

under which one obtains

tr(Φ̇2) = tr(Λ̇2) + tr[Λ, U †U̇ ]2 . (4.2.11)

The anti-hermitian matrix U †U̇ may be expanded in generators of U(N). Intro-

ducing the variables αi, αij, βij and their time derivatives α̇i, α̇ij, β̇ij, we expand

U †U̇ =
∑
i

α̇iHi +
i√
2

∑
j<k

(α̇jkTjk + β̇jkT̃jk)

where Hi are the diagonal generators of the Cartan subalgebra, Tjk is the matrix

M such that Mjk = Mkj = 1 and all other entries are 0, and T̃ij is the matrix M

such that Mij = −Mji = −i and all other entries are 0. This gives

tr [Λ, U †U̇ ]2 =
∑
i<j

(λi − λj)2(α̇2
ij + β̇2

ij)

and so the Lagrangian becomes

L =
∑
i

(
1

2
λ̇i

2
+

1

2
λ2
i

)
+

1

2

∑
i<j

(λi − λj)2(α̇2
ij + β̇2

ij) . (4.2.12)
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Under the transformation (4.2.2) the measure becomes

DΦ = DΩ
∏
i

dλi∆
2(λ) (4.2.13)

where ∆(λ) is the Vandermonde determinant
∏

i<j(λi − λj) and where DΩ is the

Haar measure on U(N). The kinetic term for the eigenvalues becomes

− 1

2

∑
i

1

∆2(λ)

∂

∂λ i
∆2(λ)

∂

∂λ i
= − 1

2∆(λ)

∑
i

d2

dλi
2 ∆(λ) (4.2.14)

and so the Hamiltonian is

H =
1

2

∑
i

(
− 1

∆(λ)

∂2

∂λ2
i

∆(λ) + λ2
i

)
− 1

2

∑
i<j

1

(λi − λj)2

(
∂2

∂α2
ij

+
∂2

∂β2
ij

)
.

(4.2.15)

Wavefunctions which are singlet under (4.2.2) are symmetric functions of the eigen-

values, χsym(λ). On these wavefunctions the Hamiltonian simplifies to

H =
1

2

∑
i

(
− 1

∆(λ)

∂2

∂λ2
i

∆(λ) + λ2
i

)
. (4.2.16)

One may simplify further the analysis by defining the antisymmetric wavefunction

Ψf (λ) = ∆(λ)χsym(λ) (4.2.17)

and the modified Hamiltonian

Hf = ∆(λ)H
1

∆(λ)
=

1

2

∑
i

(
− d2

dλi
2 + λ2

i

)
(4.2.18)

which is a sum of one particle harmonic oscillator Hamiltonians. Then Hf has

eigenstates Ψf (λ) with the same eigenvalues as H:

HΨ(λ) = EΨ(λ) (4.2.19)

⇒ HfΨf (λ) = EΨf (λ) . (4.2.20)
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The ground state wavefunction of Hf is

Ψf
0 = ∆e−

1
2

tr Φ2

, (4.2.21)

excited states are given by Slater determinants

Ψf
~E

= det
i,j
λ
Ej
i e
− 1

2
tr Φ2

= ∆(λ)ΨR(U) (4.2.22)

and so the U(N) singlet sector is equivalent to N non-interacting fermions in a

harmonic oscillator potential, where the fermion energies Ei are related to the

integer row lengths ri of R by

Ei = ri + (N − i) . (4.2.23)

4.2.2 Unitary matrix quantum mechanics

We next review the unitary matrix quantum mechanics which arises in the study

of two-dimensional Yang-Mills, which is given by the Hamiltonian [138, 139]:

H = tr

(
U
∂

∂U

)2

=
∑
a

EaEa (4.2.24)

where Ea generate left rotations of U and are defined in terms of the generators

ta of the fundamental representation:

Ea = tr ta U
∂

∂U
(4.2.25)

The form of H means that acting on a wavefunction which is a matrix element of

an irreducible representation R,

(ψR)ij(U) = DR
ij(U) (4.2.26)

it measures the quadratic Casimir of the representation R,

HψR(U) = C2(R)DR
ij(U) . (4.2.27)
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Representations are classified by their characters, the Schur polynomials

χR(U) = trDR(U) (4.2.28)

which form an orthonormal basis for wavefunctions invariant under the U(N)

action

U → gUg†, g ∈ U(N) . (4.2.29)

This may be used to express any unitary matrix U as

U = gDg†, D = diag(eiθ1 , . . . , eiθN ), g ∈ U(N) . (4.2.30)

On functions invariant under (4.2.29), performing the change of variables (4.2.30)

the Hamiltonian becomes [138]:

H = −
∑
i

[
1

∆̃

d2

dθ2
i

∆̃

]
− 1

12
N(N2 − 1) (4.2.31)

where denoting the eigenvalues by ui = eiθi ,

∆̃ =
∏
i<j

sin
θi − θj

2
=

∆(u)∏
i u

N−1
2

i

=
∆(u)

(detU)
N−1

2

(4.2.32)

and where

∆(u) =
∏
i<j

(ui − uj) . (4.2.33)

Absorbing ∆̃ into the wavefunctions and the Hamiltonian,

ψf = ∆̃ψ , Hf = ∆̃H
1

∆̃
=
∑
i

∂

∂θ2
i

− 1

12
N(N2 − 1) (4.2.34)

the wavefunctions become antisymmetric under exchange of any pair θi ↔ θj. The

one-particle wavefunctions with quantized momentum p are ψp = eipθ and the

Slater determinants

ψ~p = det
i,j
u
pj
i (4.2.35)

are eigenfunctions of Hf with energy E =
∑

i p
2
i −N(N2 − 1)/12, so the sector of

this theory invariant under (4.2.29) is equivalent to a theory of N free fermions on

a circle. The ground state has fermions with momenta distributed symmetrically
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about n = 0, and energy zero, so the Fermi energy is nF = N−1
2

and there are Fermi

surfaces at ±nF . The Slater determinants are related to the Schur polynomials

via

ψ~p = ∆(u)χR(U) (4.2.36)

where the momenta pi are related to the integer row lengths ri of R by

pi = ri + (nF + 1− i) . (4.2.37)

4.2.3 Complex matrix models

Previous studies of complex matrix models have centred on models in which there

is enough symmetry to diagonalize the matrix. This can be achieved by studying

a normal matrix ([Z,Z†] = 0) with U(N) symmetry (see e.g. [140, 141])

Z → gZg† , g ∈ U(N) (4.2.38)

or by studying an unrestricted complex Z with U(N) × U(N) symmetry (see

e.g. [142])

Z → gZh† , g, h ∈ U(N) . (4.2.39)

In the following chapter, motivated by gauge-gravity duality we study an unre-

stricted complex matrix Z with a single U(N) symmetry (4.2.38). Unlike in the

hermitian and unitary single matrix models, the unitary group action (4.2.38) is

insufficient to diagonalize the matrix; the best one can do is use the Schur decom-

position

Z = UTU † (4.2.40)

where T is upper triangular, which we shall describe in more detail in Section 5.2.

Due to the off-diagonal degrees of freedom one would not expect a straightforward

transformation to a description in terms of free particles for complex matrix models

with unitary symmetry. Indeed, the free particle descriptions we shall describe in

Chapter 5 are emergent degrees of freedom arising from combinations of eigenvalues

and off-diagonal elements.

In passing we note that a complex matrix model with U(N) symmetry (4.2.38)
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may be written as a two-Hermitian matrix model [143] using

X =
1

2

(
Z + Z̄

)
, Y = − i

2

(
Z − Z̄

)
(4.2.41)

where Z̄ denotes complex conjugate of Z. Studies of complex matrix models in

terms of two hermitian matrices are done in [144, 145].

Many of the results presented in the next chapter are applicable to any Gaus-

sian complex matrix model3 in D spacetime dimensions xµ, where the two-point

function of the matrix Z(xµ), up to a trivial spacetime dependence, is

〈Zi
j Z
†k
l〉 = δil δ

k
j . (4.2.42)

As we have mentioned in our motivations, we are particularly interested in the

complex matrix harmonic oscillator quantum mechanics which arises from dimen-

sional reduction of N = 4 Super Yang-Mills on R× S3 in the zero coupling limit,

which we next review.

4.2.4 Complex matrix harmonic oscillator quantum

mechanics

We now review the complex matrix harmonic oscillator quantum mechanics which

arises from dimensional reduction of N = 4 Super Yang-Mills on R × S3 in the

zero coupling limit. As reviewed in Section 4.1, in order to study the half-BPS

sector we focus on a single complex scalar field Z.

Dimensional reduction of N = 4 SYM onto Rt × S3 yields a U(N) gauged matrix

quantum mechanics involving a complex matrix Z(t) in the adjoint coupled to a

gauge field A0(t). In radial quantization, a half-BPS operator corresponds to the

S-wave state on the S3, i.e. the constant mode [14].

The dimensionally reduced action takes the form

S =

∫
dt tr

(
D0Z(D0Z)† − ZZ†

)
(4.2.43)

3By ‘Gaussian’ we mean a theory with a quadratic Lagrangian.
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where D0Z = ∂0Z + i[A0, Z].

One may choose the A0 = 0 gauge while imposing Gauss’s Law, yielding the

quantum mechanics for the matrix Z(t) defined by the following action [146]:

S =

∫
dt tr

(
ŻŻ† − ZZ†

)
(4.2.44)

It is well known that the holomorphic sector of the theory is equivalent to a system

of non-interacting fermions in a one-dimensional harmonic oscillator potential [13,

14, 128]. As a subsector of N = 4 Super Yang-Mills extremal correlators in this

sector are protected by supersymmetry [147, 148] and the states of this sector are

dual to the LLM supergravity geometries [15].

Going beyond the holomorphic sector, we no longer have non-renormalization the-

orems so the connection to supergravity is not straightforward. Based on the

research presented in Chapter 5, we will infer properties of any candidate string

dual of the complex matrix model sector at zero coupling in Section 5.7.

We first review the previous analysis of the above theory [13]. The momenta

conjugate to Zi
j and Z†ij are

Πj
i ≡ ΠZij

=
∂L

∂Żi
j

= Ż†ji, Π†ji ≡ ΠZ†ij
=

∂L

∂Ż†ij
= Żj

i. (4.2.45)

The equal time canonical commutation relations are

[
Zp

q,Π
j
i

]
= i δjqδ

p
i

[
Z†pq,Π

†j
i

]
= i δjqδ

p
i (4.2.46)

so we can identify the conjugate momenta with matrix derivatives in the usual

way using (4.2.5). We define the creation and annihilation operators:

A† =
1√
2

(Z − iΠ†) =
1√
2

(
Z − ∂

∂Z†

)
A =

1√
2

(Z† + iΠ) =
1√
2

(
Z† +

∂

∂Z

)
B† =

1√
2

(Z† − iΠ) =
1√
2

(
Z† − ∂

∂Z

)
B =

1√
2

(Z + iΠ†) =
1√
2

(
Z +

∂

∂Z†

)
(4.2.47)

Importantly, the dagger on A† does not signify hermitian conjugate of A. It
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signifies purely that this is a creation operator. The hermitian conjugate of A†ij is

Aji. The canonical commutation relations become

[Aij, A
†k
l] = δilδ

k
j [Bi

j, B
†k
l] = δilδ

k
j. (4.2.48)

The Hamiltonian and U(1) current take the form

Ĥ = tr

(
− ∂2

∂Z∂Z†
+ ZZ†

)
= tr(A†A+B†B) +N2

Ĵ = tr

(
Z
∂

∂Z
− Z† ∂

∂Z†

)
= tr(A†A−B†B) (4.2.49)

where N2 is the zero point energy for N2 harmonic oscillators in two dimensions.

The ground state of this system satisfies A|0〉 = B|0〉 = 0. The corresponding

(non-normalized) wavefunction Ψ0 = 〈Z, Z̄|0〉 is

Ψ0(Z,Z†) = e− tr(ZZ†). (4.2.50)

Holomorphic gauge invariant excitations of this system are defined by the con-

straint B|O〉 = 0 and consist of operators built from A† acting on the ground

state. These may be written as

trn(σ(A†)⊗n)|0〉 (4.2.51)

where σ is an element of Sn, and controls how the indices are contracted to form

either a single or multi-trace operator as we shall illustrate in the next section. A

more convenient basis for operators of the form (4.2.51) is the Schur polynomial

basis [13] as introduced for the hermitian matrix model in Section 4.2.1:

|ΨR〉 = χR(A†)|0〉 (4.2.52)

where χR is the character of the U(N) representation R. Since

A†e− tr(ZZ†) =
√

2Ze− tr(ZZ†), (4.2.53)
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we may write

ΨR(Z,Z†) = χR(
√

2Z)e− tr(ZZ†). (4.2.54)

This state has E = m + N2 and J = m and is holomorphic in Z up to the

exponential factor.

Using the Schur decomposition (4.2.40) and redefining the wavefunction by ab-

sorbing the Jacobian of the transformation into the definition of the wavefunction,

it becomes a wavefunction for N fermions in one dimension, analogous to the Low-

est Landau Level of the Quantum Hall system [13, 14, 128, 149].

4.3 Introduction to the Brauer algebra

4.3.1 The Brauer algebra

In this section we introduce the Brauer algebra and its application to the construc-

tion of gauge invariant functions of a complex matrix Z and its complex conjugate

Z†.

The Brauer algebra was first constructed as the commuting algebra of the action

of GL(N,C) on certain tensor product representations [150]. More specifically, fol-

lowing the exposition in [151], let VR be a vector space furnishing a representation

R of some group G. Then one can consider the tensor product representation on

the space

V ⊗nR = VR ⊗ VR ⊗ · · · ⊗ VR (4.3.1)

and ask how this representation decomposes into irreducible representations of G;

in particle physics we are used to doing this e.g. with spin and SU(2).

For our purposes we will use U(N) rather than GL(N,C). Let the fundamental

representation of U(N) act on V and the complex conjugate of the fundamental

representation act on V̄ , the dual space of V . Let us consider the tensor product

space

V ⊗m ⊗ V̄ ⊗n . (4.3.2)
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The (walled) Brauer algebra BN(m,n) is then the commuting algebra of the action

of U(N) on this space.

The Brauer algebra may be represented diagrammatically as we now briefly review.

Full details of this construction may be found in the original paper [150].

We first introduce a diagrammatic representation of Sn, the symmetric group on n

objects, which is the commuting algebra of the action of U(N) on V ⊗n. Let { |ei〉}
be a basis of V . Then we define the action of σ ∈ Sn on a vector in V ⊗n via:

σ |ei1 ⊗ ei2 ⊗ · · · ⊗ ein〉 = |eiσ(1) ⊗ eiσ(2) ⊗ · · · ⊗ eiσ(n)〉 (4.3.3)

so for example, the action of (123) on a vector in V ⊗3 is

(123) |ei1 ⊗ ei2 ⊗ ei3〉 = |ei2 ⊗ ei3 ⊗ ei1〉 . (4.3.4)

The above action may be represented by diagrams: for example (123) is represented

by the diagram

1 32

1 2 3

and products are obtained by stacking diagrams: e.g. the product (12)(123) = (23)

is represented by:

1 32

1 2 3

1 2 3

1 2 3

=

The Brauer algebra contains the group algebra of Sm×Sn along with ‘contraction’

elements Cij̄ where i ∈ 1, . . . ,m and j ∈ 1, . . . , n, to be defined below, and is

generated by the generators of Sm × Sn along with a single contraction element.
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To define the contraction Cij̄, let { |ēi〉} be the basis of V̄ dual to the basis { |ei〉} of

V . Then the action of the contraction Cij̄ on V ⊗m⊗V̄ ⊗n is defined by (suppressing

⊗ symbols below)

Cij̄ |e1 · · · ei−1 ei ei+1 · · · en ē1 · · · ēj−1 ēj ēj+1 · · · ēm〉
= δji |e1 · · · ei−1 ep ei+1 · · · en ē1 · · · ēj−1 ēp ēj+1 · · · ēm〉 (4.3.5)

where there is summation over p.

For example, the contraction C11̄ ∈ BN(1, 1) has the following action on V ⊗ V̄ :

C11̄ |ei ⊗ ēj〉 = δji |ep ⊗ ēp〉 . (4.3.6)

Diagrammatically, contraction elements are represented by lines crossing a wall

separating the dots representing the vectors of V ⊗n from those of V̄ ⊗m, e.g. the

contraction element C31̄ ∈ BN(3, 2) is represented by:

1 2 3

321

1

1

2

2

In a product, a closed loop is replaced by multiplication by the parameter N , as

can be seen from

C11̄C11̄ |ei ⊗ ēj〉 = δjiC11̄ |ep ⊗ ēp〉
= δjiδ

p
p |er ⊗ ēr〉

= N δji |er ⊗ ēr〉
= N C11̄ |ei ⊗ ēj〉 (4.3.7)

which establishes that

C11̄C11̄ = N C11̄ . (4.3.8)

As a final example, the product

C31̄

[
(12)C31̄

]
= N (12)C31̄ (4.3.9)
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takes the diagrammatic form:

1 2 3

321

1

1

2

2

1 2 3 1 2

321 1 2

=   N 

4.3.2 Gauge invariant operators

The two gauge invariant operators trZ trZ† and trZZ† can both be constructed

by considering the action of Z ⊗ Z† on V ⊗ V [13]. Taking the trace4 in V ⊗ V
yields the operator trZ trZ† while a trace with an insertion of the permutation

element (12) yields trZZ†, as follows:

trV⊗V
(
Z ⊗ Z†

)
= 〈ei ⊗ ej|Z ⊗ Z† |ei ⊗ ej〉
= 〈ei ⊗ ej|Zp

i Z
†q
j |ep ⊗ eq〉 (4.3.10)

= δipδ
j
qZ

p
iZ
†q
j = trZ trZ†

and

trV⊗V
(
(12)Z ⊗ Z†

)
= 〈ei ⊗ ej| (12)Z ⊗ Z† |ei ⊗ ej〉
= 〈ei ⊗ ej| (12)Zp

i Z
†q
j |ep ⊗ eq〉

= 〈ei ⊗ ej|Zp
i Z
†q
j |eq ⊗ ep〉 (4.3.11)

= δiqδ
j
pZ

p
iZ
†q
j = trZZ† .

The above manipulations may be represented diagrammatically as follows. Focus-

ing on the case of trZZ†, consider the diagram:

Z Z†

4Our notation for traces is that tr is the trace in V , while the trace in another space W is
denoted trW . We use the shorthands trn for trV ⊗n and trm,n for trV ⊗m⊗V̄ ⊗n .
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The line coming out of the top of Z represents the first index of Z and the line

coming out of the bottom of Z represents the second index. The crossed lines

below Z and Z† represent the permutation (12), and the horizontal lines above

and below are identified, representing the trace. Following the lines we see that

the first index of Z becomes identified with the second index of Z† (and summed

over) exactly as in the above manipulations, so this diagram indeed represents the

gauge invariant operator trZZ†.

Alternatively, trZZ† can be constructed by considering the action of Z and Z∗ on

V ⊗ V̄ , and inserting a Brauer algebra contraction [20]. Similarly to the discussion

above, we have:

trV⊗V̄
(
C11̄Z ⊗ Z†

)
= 〈ei ⊗ ēj|C11̄ Z ⊗ Z∗ |ei ⊗ ēj〉
= 〈ei ⊗ ēj|C11̄ Z

p
i Z
∗ j
q |ep ⊗ ēq〉

= 〈ei ⊗ ēj| δqpZ
p
i Z
∗ j
q |er ⊗ ēr〉

= δirδ
r
jδ
q
pZ

p
iZ
∗ j
q (4.3.12)

= Zp
iZ
∗ i
p

= Zp
iZ
†i
p = trZZ† .

The above manipulation is then represented diagramatically as:

Z Z*

where we see that by following the lines, the first index of Z is identified with the

first index of Z∗ as in the penultimate line of (4.3.12).

Having treated both transpositions and contractions, it follows that any gauge

invariant operator may be written using Z,Z∗ and a Brauer algebra element b ∈
Bn(m,n) as

trm,n (bZ⊗ Z∗) (4.3.13)

which one may represent diagrammatically as follows:
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Z
m

Z*
n

b

4.3.3 Representations of the Brauer algebra

In this section we quote from the mathematics literature some facts about the

representations of the Brauer algebra. Details may be found in the references [152,

153, 154].

A representation of the Brauer algebra BN(m,n) is labelled by γ = (k, γ+, γ−),

where k is an integer in the range 0 ≤ k ≤ min(m,n) and γ+, γ− are Young

diagrams with m− k and n− k boxes respectively, with c1(γ+) + c1(γ−) ≤ N .

Since the Brauer algebra is the maximally commuting algebra of the action of

U(N), using Schur-Weyl duality the tensor product representation decomposes

into a sum over tensor products of all irreducible representations γ of U(N) and

BN(m,n), i.e.

V ⊗m ⊗ V̄ ⊗n =
⊕
γ

V U(N)
γ ⊗ V BN (m,n)

γ . (4.3.14)

The Brauer representation γ = (k, γ+, γ−) has an associated U(N) representa-

tion labelled by a composite Young diagram γc
5 which is defined as follows: Us-

ing the usual notation in which a Young diagram with row lengths ri is written

[r1, r2, . . . , rN ], let

γ+ = [r1, r2, . . . , rp], γ− = [s1, s2, . . . , sq] (4.3.15)

then providing p+ q ≤ N , γc is given by

γc = [r1, r2, . . . , rp, 0, 0, . . . , 0,−sq,−sq−1, . . . ,−s1] (4.3.16)

5For ease of notation we will often refer to the U(N) representation γc simply as γ, as above

in V
U(N)
γ . There should hopefully be no confusion in this respect.
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where there are N − (p + q) zeroes inserted. In the mathematics literature γc

has been referred to as an N -staircase with positive part γ+ and negative part γ−

[153, 152]; diagramatically, we have:

γ
+

γ
-

γ
c

As we have seen, the Brauer algebra BN(m,n) contains the subalgebra C[Sm×Sn].

As a consequence, an irrep γ of BN(m,n) may be decomposed into irreps

A = (α, β) (4.3.17)

of Sm × Sn, where α is an irrep of Sm (given by a Young diagram with m boxes)

and similarly β is an irrep of Sn.

In this decomposition the irrep A of Sm × Sn may appear in this decomposition

with non-trivial multiplicity. We write this integer multiplicity as Mγ;N
A and we

can express this decomposition as [20, 2]:

V BN (m,n)
γ =

⊕
A

V
C(Sm×Sn)
A ⊗ V BN (m,n)→C(Sm×Sn)

γ→A , (4.3.18)

where

dim V
BN (m,n)→C[Sm×Sn]
γ→A = Mγ;N

A . (4.3.19)

4.4 The Brauer algebra basis for complex matrix

models

In this section we introduce the Brauer algebra basis for gauge invariant polyno-

mials in a complex matrix Z,Z†, following the original paper [20].
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The Brauer basis is one of many orthogonal bases of operators in N = 4 Super-

Yang-Mills that has been developed in recent years. Following the half-BPS Schur

polynomials [13], a basis was constructed which diagonalizes 1/4 and 1/8-BPS

operators using the global U(3) symmetry [155]. This research was generalized to

multi-matrix operators with arbitrary global symmetry group in [156]. Recently

these bases have been applied to the problem of finding the 1/4 and 1/8-BPS

operators at one-loop level [157, 158, 159].

Another basis composed of operators constructed to study strings ending on giant

gravitons (spherical D3-branes [160]) called ‘restricted Schur polynomials’ [161,

162, 163] also provides a diagonal basis for multi-matrix models [164, 165]. This

basis has enabled many interesting studies of the physics of giant gravitons and

LLM geometries using correlators in N = 4 Super-Yang-Mills [166, 167, 168, 169,

170, 171].

The Brauer basis is constructed using the decomposition of irreducible represen-

tations of the Brauer algebra into irreps of the C[Sm×Sn] subalgebra. The reason

for this is that we are interested in building multi-trace operators built from m

Z’s and n Z†’s, and these operators will be left invariant under permutations of

the Z fields amongst themselves, and similarly the Z† fields.

The construction of the Brauer basis uses the technology of projectors and gen-

eralizations thereof, as follows. Consider an irrep γ of BN(m,n) which reduces

onto an irrep A of C[Sm × Sn] with multiplicity Mγ;N
A . Let i run from 1 to the

multiplicity Mγ;N
A , and take an orthonormal set of vectors in the irrep γ which

transform in the ith copy of the state mA of the irrep A, denoted by{
|γ;A,mA; i〉

}
. (4.4.1)

A projector to the ith copy of the irrep A of the subalgebra C[Sm×Sn] is therefore

P γ
A,i =

∑
mA

|γ;A,mA; i〉〈γ;A,mA; i| . (4.4.2)

The projector above belongs to a more general class of operators which commute

with the C[Sm×Sn] subalgebra, called symmetric branching operators: these map

a vector which transforms in the jth copy of the state mA to a vector which
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transforms in the ith copy of the state mA, and are defined as

Qγ
A,ij =

∑
mA

|γ;A,mA; i〉〈γ;A,mA; j| . (4.4.3)

A Brauer basis operator is constructed by viewing Z⊗m ⊗ (Z∗)⊗n as operators on

V ⊗m⊗V̄ ⊗n, acting with a symmetric branching operator Qγ
α,β;i,j and taking a trace

[20], as described in the diagram below (4.3.13). Expanding out A = (α, β) as in

(4.3.17), this definition is written as:

Oγα,β;i,j(Z,Z
†) = trm,n

(
Qγ
α,β;i,j(Z⊗ Z∗)

)
(4.4.4)

These operators diagonalize the two-point function for Z,Z† at zero Yang-Mills

coupling [20].

The same construction can be done with the creation operators of the matrix

quantum mechanics by replacing Z with A† and Z∗ with (B†)T where T denotes

matrix transpose. These operators diagonalize the Fock space inner product for

the states created by the A†, B† reviewed in Section 4.2.4.

To provide a simple example of the Brauer basis operators, taking (m,n) = (1, 1)

and suppressing non-essential labels, the Brauer basis is

Ok=0
[1],[1̄](Z,Z

†) = trZ trZ† − 1

N
trZZ† (4.4.5)

Ok=1
[1],[1̄](Z,Z

†) =
1

N
trZZ† . (4.4.6)

Details on the explicit calculation of these and other Brauer basis operators may

be found in [20].

Here we have suppressed γ+ and γ− since for a k = 0 operator it is always the

case that α = γ+ and β = γ−, and since for the above k = 1 operator, γ+ and γ−

are both the empty diagram. The multiplicity indices i, j are not relevant for this

example. Further examples of Brauer basis operators may be found in Appendix

A.4 of [20].

Since we discuss in particular the label k throughout the rest of this paper, we

make the following comment. In the construction of the Brauer basis, a term with
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a single ‘ZZ†’ inside the same trace, such as trZZZ†, involves a single ‘Brauer

contraction’. Terms such as trZZ† trZZ†Z† or trZZ†ZZZ† involve two such

Brauer contractions, etc.

The label k is related to the number of contractions as follows. If one writes a

Brauer basis operator as a sum of terms in order of increasing contractions, as

the two operators above are written, an operator with label k begins with a term

involving k Brauer contractions. We have not proved this, but we believe it to be

true from all the examples we know. Thus the leading term in a k = 0 operator

is the product of a purely holomorphic operator and a purely anti-holomorphic

operator, while all terms in a m = n = k operator involve k contractions.

The k = 0 operators are of particular interest in this thesis. When k = 0 the i, j

labels are trivial and we have α = γ+, β = γ−. Thus γ is given by (k = 0, α, β)

and so the k = 0 operators are thus determined by two Young diagrams α and β,

which we sometimes denote (α, β) by (R, S) to make contact with the notation of

the string theory of two-dimensional Yang-Mills theory [172].

For later use, we record that in the k = 0 case the projector (4.4.2) becomes simply

(with A = (R, S)):

PRS̄ = P γ
A =

∑
mA

|γ;A,mA〉〈γ;A,mA| . (4.4.7)

where RS̄ is the composite Young diagram formed from (R, S) in the same way

that γc was formed from (γ+, γ−) above.

We also note that there is an isomorphism between the k = 0 sector and the states

of the unitary matrix model [20]:

Ok=0
R,S (Z,Z†) ←→ χRS̄(U) (4.4.8)

which is obtained by replacing Z with a unitary matrix:

Ok=0
R,S (U,U †) = dRdSχRS̄(U) (4.4.9)

where dR is the dimension of the Sm representation R.
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The two point functions of both sets of operators are diagonal; up to a choice of

normalization,

〈O† k=0
R,S (Z,Z†) | Ok=0

R′,S′(Z,Z
†) 〉 = 〈χ†

RS̄
(U) |χR′S̄′(U) 〉 = δRR′δS̄S̄′ .

(4.4.10)

As we shall see in Section 5.3.4, when both R and S are nontrivial, the leading

order term in the expansion of Ok=0 begins with the product of the holomorphic

and antiholomorphic Schur polynomials:

Ok=0
R,S (Z,Z†) = χR(Z)χS(Z†) + · · · , (4.4.11)

where the dots denote terms with at least one ZZ† inside a trace. The reader

familiar with the ‘coupled characters’ studied in two-dimensional Yang-Mills will

notice that the structure of (4.4.11) is of the same form as the coupled character

χRS̄ (see e.g. [173]).

As a result of this isomorphism between the k = 0 sector and the states of the

unitary matrix model, the k = 0 states are in turn isomorphic to the states of

N free fermions on a circle via the map given in Section 4.2.2. This provides the

technical motivation to explore free particle descriptions in the Brauer basis; we

will return to this fact in the next chapter.
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Free Particles from Brauer Algebras

in Complex Matrix Models

Outline of Chapter 5

In this chapter we identify free particle descriptions of non-holomorphic operators

in the complex matrix models, in particular the complex matrix model derived

from dimensional reduction of N = 4 Super-Yang-Mills theory. We also present

results on counting of Brauer basis operators. This chapter is based on research

first reported in [2].

The structure of this chapter is as follows:

In Section 5.1 we introduce the research contained in this chapter; in Section 5.2 we

review the Schur decomposition, and describe our parameterizations of the matrix

coordinates.

In Section 5.3 we describe free particle operators as functions of differential oper-

ators at N = 2, including the conjectured k = 0 sector free fermion momenta on a

circle. In Section 5.4 we describe free particle operators at general N , both in the

k = 0 sector and in the m = n = k sector.

In Section 5.5 we present a conjecture and numerical evidence for the counting of

states of the Brauer basis at N = 2. Section 5.6 deals with the matrix quantum

mechanics obtained by dimensional reduction of N = 4 Super-Yang-Mills and

draws a connection with Ginibre’s D = 0 matrix model [174].
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5.1 Introduction to Chapter 5

In the previous chapter we presented physical motivations, based on gauge-gravity

duality and applications to black hole physics, for investigating free particle de-

scriptions in non-BPS sectors of N = 4 Super-Yang-Mills and the associated com-

plex matrix model derived from dimensional reduction on S3.

Using the Schur decomposition Z = UTU † introduced in Section 4.2.3, the space

gl(N ;C) may be decomposed into a parameter space of inequivalent orbits MN

and the orbits of the U(N) action. MN has real dimension N2+1 and is a fibration

over the symmetric product SymN(C):

MN

↓
SymN(C) = CN/SN (5.1.1)

The eigenvalues are however coupled to the off-diagonal triangular entries and so

cannot represent positions of free particles.

We show that free particle descriptions arise the k = 0 sector of the Brauer basis

by exploiting the map (4.4.9) between the k = 0 sector and the unitary matrix

model, providing in turn a map to N free fermions on a circle. In this chapter

we will give evidence for the following conjecture: that the N free fermions of the

k = 0 sector can be constructed from degrees of freedom which are composed of

eigenvalues as well as off-diagonal elements of the matrix Z.

We also observe a different emergence of free particles in the m = n = k sector6.

While we start with the gauge invariant sector of a Gaussian complex matrix

model, which is a system of N2 particles constrained by the gauge invariance

condition, the emergent particles are N free fermions without constraints.

In this chapter we work at finite N . There is an important distinction between

N ≥ m+ n and N < m+ n . (5.1.2)

6As the paper containing these results [2] was being written up, we became aware of [175]
which studies this sector and the associated free fermions using a matrix polar decomposition.
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The condition N ≥ m + n may be read as a condition that N be larger than the

lengths of operators one wishes to discuss; for example taking the planar limit

N → ∞ achieves this trivially. The opposite regime N < m + n is relevant to

studies of heavy operators in N = 4 Super Yang-Mills such as conjectured duals of

black holes in AdS5 × S5, where one is interested in m and n scaling like N2 [63].

The representation theory of Brauer algebras, and thus the construction of the

Brauer basis, is well understood for N ≥ m + n however there are interesting

subtleties for N < m+ n (see for example [176]); in this chapter we make various

studies at N = 2 where we can access the regime N < m+n with full explicit con-

trol. We also present results valid for general N - in particular the key point of free

particles emerging from matrix model from degrees of freedom beyond eigenvalues

is valid for any N .

As mentioned in Section 4.2.3, many of our results are applicable to any Gaussian

complex matrix model with two-point function

〈Zi
j Z
†k
l〉 = δilδ

k
j (5.1.3)

and with the adjoint U(N) action

Z → gZg†, g ∈ U(N). (5.1.4)

In particular we shall make connections to the D = 0 Gaussian complex matrix

model considered by Ginibre [174]; For some earlier works on complex matrix

models, see for example [177, 178, 179, 180].
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5.2 Orbits and parameter spaces

In this section we review the Schur decomposition, describe our parameterizations

of the matrix coordinates, and review the matrix Gauss’s Law in local and global

form. We also describe in detail the the ring of gauge invariant polynomials at

N = 2.

5.2.1 Orbits and the structure of MN

The relation between gl(N,C), the space of complex matrices Z and the spaceMN ,

of orbits under the adjoint action (5.1.4) is given by the Schur decomposition (see

e.g. [181]), which allows one to write any complex matrix Z as

Z = UTU † (5.2.1)

where U ∈ U(N) and T is upper triangular. It has been used previously in the

context of the complex matrix model in [182, 128]. The eigenvalues zi of Z become

the diagonal entries (and hence the eigenvalues) of T . There are also off-diagonal

elements tij for i < j. The equation (5.2.1) can be viewed as describing a map

from the pair (U, T ) to complex matrices. The map is onto, but not one-to-one.

Pairs (U, T ) and (eiθU, T ) describe the same Z. There is a U(1)N action

U → U ′ = UH, H = diag(eiθ1 , . . . , eiθN )

T → T ′ = H†TH (5.2.2)

which leaves Z unchanged. The diagonal eiθ acts trivially on T but the U(1)N−1

part defined by
∑
θj = 0 mixes non-trivially with the angles in T .

We can parameterize the coset U(N)\U(1)N using the variable L and decomposing

U = LH (as for example in [183]) leading to

Z = L(HTH†)L† = LT̃L† (5.2.3)

where T̃ ≡ HTH†. It is also convenient to use the U(1)N−1 part of (5.2.2) to set

the N − 1 entries on the superdiagonal of T (namely tj,j+1) to be real, and to use
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(U, T ).

There is also the freedom, for fixed Z, to rearrange the eigenvalues in any order

on the diagonal of T by altering U . This freedom exists because there is a Schur

decomposition for each possible ordering of eigenvalues on the diagonal of T . Given

Z = U1T1U
†
1 = U2T2U

†
2 (5.2.4)

where T1 and T2 have different orderings of diagonal entries, we have

T2 =
(
U †2U1

)
T1

(
U †2U1

)†
= U12T1U

†
12 (5.2.5)

where U12 ≡ U †2U1.

We have thus derived the construction mentioned in the introduction ofMN as a

fibration over the symmetric product SymN(C):

MN

↓
SymN(C) = CN/SN (5.2.6)

The set of eigenvalues z1, z2, . . . , zN of Z modulo permutations in SN forms the

space SymN(C). Local coordinates on the fibre ofMN over SymN(C) are obtained

from the upper triangular elements tij, with i < j, appearing in T .

The space of N ×N complex matrices gl(N,C) consists of orbits generated by the

U(N) action Z → UZU †. Due to the trivial U(1) action the real dimension of the

parameter space of orbits MN is N2 + 1 = 2N2 − (N2 − 1).

This suggests that the number of generators of ring of functions onMN should be

N2 + 1. This works in a straightforward way at N = 2, but in a nontrivial way at

N = 3. We will come back to this in Section 5.4.

Local coordinates on MN are given by zi and variables tij. At generic zi, tij the

orbits are topologically U(N)/U(1) = SU(N)/ZN . At tij = 0, the parameter

space MN becomes SymN(C). The orbit is then generically SU(N)/U(1)N−1.

Note that, when U(N) acts on its Lie algebra, the adjoint orbits are always Kähler
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(and hence even dimensional) [184]. This is no longer the case for orbits in the

complexified Lie algebra gl(N,C).

5.2.2 Differential Gauss’s law

As reviewed in Section 4.2.4, dimensional reduction of N = 4 SYM onto Rt × S3

yields a U(N) gauged matrix quantum mechanics involving a complex matrix Z(t)

in the adjoint coupled to a gauge field A0(t). The action takes the form

S =

∫
dt tr

(
D0Z(D0Z)† − ZZ†

)
(5.2.7)

where D0Z = ∂0Z + i[A0, Z].

We next review remarks contained in [185] and introduce notation we shall use

later. A convenient gauge fixing choice is to set A0 = 0. The equation of motion

for A0 must still be imposed, leading to Gauss’s Law:

Z†Ż + ZŻ† − ŻZ† − Ż†Z = 0 . (5.2.8)

Upon canonical quantization this leads to the differential form of Gauss’s Law,

which can be written as

G = G1 +G2 +G3 +G4 = 0 (5.2.9)

where Gi are defined as:

(G1)ij = Z†ik

(
∂

∂Z†

)k
j

(G2)ij = Zi
k

(
∂

∂Z

)k
j

(G3)ij = −Z†kj
(

∂

∂Z†

)i
k

(G4)ij = −Zk
j

(
∂

∂Z

)i
k

(5.2.10)

and we use the usual convention for matrix indices given in (4.2.5). Note that in

G1 and G2 the ordering of indices is that of usual matrix multiplication, while for

G3 and G4 the opposite is the case. The Gi correspond respectively to each of

the terms in (5.2.8). The operator G is the infinitesimal generator of the adjoint

action

Z → UZU †, Z† → UZ†U † (5.2.11)
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and invariance under this action restricts gauge invariant operators to be products

of traces of the matrices Z and Z†.

5.2.3 Geometry of M2: coordinates

In this section and in Section 5.3 we perform explicit calculations at N = 2. The

motivation for considering small values of N is to perform explicit calculations

which shed light on the harder (and more interesting) task of obtaining results at

arbitrary finite N , a task we return to in Section 5.4.

We start from the Schur decomposition as discussed in Section 5.2.1,

Z = UTU † = LT̃L†. (5.2.12)

In the N = 2 case U(2)/U(1) ∼= SU(2)/Z2
∼= SO(3). We can specify explicit

coordinates

U =

(
cos θ

2
e
i
2

(φ+ψ) sin θ
2
e
i
2

(φ−ψ)

− sin θ
2
e−

i
2

(φ−ψ) cos θ
2
e−

i
2

(φ+ψ)

)
(5.2.13)

T =

(
z1 t0

0 z2

)
. (5.2.14)

The angles θ, φ, ψ are the Euler angles of SU(2)/Z2
∼= SO(3). With these coordi-

nates L and T̃ take the form

L =

(
cos θ

2
e
i
2
φ sin θ

2
e
i
2
φ

− sin θ
2
e−

i
2
φ cos θ

2
e−

i
2
φ

)
(5.2.15)

T̃ =

(
z1 t0e

iψ

0 z2

)
. (5.2.16)

The ranges of the coordinates are

z1, z2 ∈ C, 0 ≤ t0 <∞, (5.2.17)

0 ≤ θ ≤ π, 0 ≤ φ < 2π, 0 ≤ ψ < 2π. (5.2.18)
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The Jacobian for the change of variables from Zij to those above is

J = |z1 − z2|2 t0 sin θ (5.2.19)

and so we have ∫ ∏
i,j

dZijdZ̄ij =

∫
dz1dz2dt0t0dU |z1 − z2|2. (5.2.20)

Note the factor of t0 here which is analogous to the
∫
rdr one gets when using plane

polar coordinates. Here dU is the Haar measure on SU(2) which we integrate out

and normalize to 1 in the definition of the measure.

The invariant line element on gl(2,C) is given by

ds2 = tr dZdZ†. (5.2.21)

We introduce the notation

ω = U−1dU =

(
ω11 ω12

−ω̄12 −ω11

)
, (5.2.22)

and using ω† = −ω we expand dZ = U (dT + [ω, T ])U †.

The line element is then expressible as

ds2 = tr
(
dT + [ω, T ]

)(
dT † + [ω, T †]

)
(5.2.23)

= |dz1 + t0ω̄12|2 + |dz2 − t0ω̄12|2

+ |dt0 + 2t0ω11 − (z1 − z2)ω12|2 + |(z1 − z2)ω12|2 . (5.2.24)

Using the Cartan one-forms ωi on SU(2) (see e.g. [186]),

ω = U−1dU = −ωiTi, Tj =
i

2
σj, (5.2.25)

one may read off the metric on the orbit; we shall do this in the next section.

As an aside, we note that U12 defined below (5.2.5) is not a standard permutation

matrix in U(N) (the reader may check that the standard permutation matrices in
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U(N) do not preserve the triangular form). For concreteness we now exhibit this

at N = 2. Consider the two matrices

T1 =

(
z1 t0

0 z2

)
(5.2.26)

T2 =

(
z2 t0

0 z1

)
(5.2.27)

where we have chosen t0 ∈ R.

Defining D =
√
t20 + |z1 − z2|2, we then have T2 = U12T1U

†
12 with

U12 =
1

D

(
t0 −(z̄1 − z̄2)

z1 − z2 t0

)
. (5.2.28)

Clearly this is not the standard permutation matrix ( 0 1
1 0 ), but it performs the

permutation transformation z1 ↔ z2 while preserving the triangular structure.

For N > 2 the analogous transformation does not just permute the zi entries but

transforms the tij nontrivially.

5.2.4 Differential Gauss’s law and orbits at N = 2

Using a change of variables, one may express the Gauss Law operator G (5.2.9-

5.2.10) in the coordinates defined in (5.2.13-5.2.14). This results in the following

form of the Gauss’s Law operator:

G =

(
−i ∂

∂φ
ieiψ(− ∂

∂θ
− i cot θ ∂

∂φ
+ i csc θ ∂

∂ψ
)

ie−iψ( ∂
∂θ
− i cot θ ∂

∂φ
+ i csc θ ∂

∂ψ
) i ∂

∂φ

)
.

(5.2.29)

This must vanish on gauge invariant wavefunctions, which must therefore be func-

tions only of zi, t0 as expected. We will show in Section 5.2.5 that the algebra of

gauge invariant polynomials has five generators.

The Gauss’s Law reduces the 8D space gl(2,C) to the 5D space parametrized by

(z1, z2, t0). We shall find it convenient to define

zc = z1 + z2, z = z1 − z2. (5.2.30)
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As we have seen, we can exchange z1, z2 while leaving t0 invariant; this means

mapping z → −z, and so the space of inequivalent orbits is

M2 = C× (C/Z2)× R+. (5.2.31)

From the metric (5.2.24) expressed in terms of zi, t0 we see that the nature of the

orbits changes as we move in the space (C/Z2)×R+. The centre of mass coordinate

zc does not affect the nature of the orbits and so we restrict our attention to a Z2

quotient of the z, t0 space. Let us define

X = (C/Z2)× R+

= X0 ∪X1 ∪X2 ∪X3 (5.2.32)

where X is the region in (z, t0) space where t0 ≥ 0, Re(z) ≥ 0, and the subregions

Xi are defined as follows:

• X0 is the subregion t0 > 0, z 6= 0

• X1 is the subregion t0 > 0, z = 0

• X2 is the subregion t0 = 0, z 6= 0

• X3 is the point t0 = 0, z = 0.

The metric on the gauge orbit is determined by fixing zi, t0 in (5.2.24). On X0 and

X1 the orbit is topologically SO(3); the metric is complicated in general but on

X1 it qualitatively resembles the round three-sphere metric. On X2 the orbit is a

round S2, while on X3 the orbit is a point. This completes the global description

of the parameter space and the orbits. Note that on X0 the metric is regular but

on X1, X2 and X3, the determinant of the metric is zero.

5.2.5 The algebra of functions on M2

The algebra of functions onMN is generated by single trace polynomials in Z,Z†.

In the N →∞ limit any word in the two letters Z,Z†, up to cyclic permutations,

corresponds to a single-trace gauge-invariant function and hence to a function on
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M∞. At finite N , traces of long words can be expressed in terms of products of

traces of shorter words and so the algebra of gauge invariant functions has a finite

set of generators.

In [20] this truncation of the generators was discussed in terms of degenerations of

Brauer algebra projectors. Here we investigate these finite N truncations in detail

at N = 2 and find that it suffices to apply the Cayley-Hamilton theorem to obtain

the necessary relations.

The Cayley-Hamilton theorem states that a matrix satisfies its own characteristic

polynomial. At N = 2 this means that

Z2 − (trZ)Z + (detZ)1l2 = 0. (5.2.33)

Taking the trace of this equation gives a relation between trZ2, trZ and detZ,

only two of which are thus algebraically independent as polynomials in the matrix

entries. We choose trZ2 and trZ to be independent, and write

detZ =
1

2

[
trZ trZ − trZ2

]
. (5.2.34)

We also have the corresponding equation for Z†.

We claim that the algebra of multi-trace gauge invariant operators in Z,Z† at

N = 2 is the polynomial ring in the five variables

B =
{

trZ, trZ2, trZ†, trZ†2, trZZ†
}
. (5.2.35)

In order to prove this, it is enough to show that all other single trace operators

are algebraically dependent on the operators above, i.e. can be expressed as poly-

nomials in the above five variables.

We prove this in an inductive fashion. Let W to denote any matrix word made

from Z and Z†, e.g. W = ZZZ†Z. Multiply (5.2.33) by W and take the trace.

This yields the relation

tr(Z2W )− (trZ) tr(ZW ) +
1

2

[
trZ trZ − trZ2

]
trW = 0. (5.2.36)
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This shows that tr(Z2W ) is algebraically dependent on tr(ZW ), trW and the

operators in B, and similarly, tr(Z†2W ) is algebraically dependent on tr(Z†W ),

trW and the operators in B.

Replacing Z by ZZ† in (5.2.33) and using detZZ† = detZ detZ† gives

tr(ZZ†)2 = (trZZ†)2 − 1

2

[
trZ trZ − trZ2

] [
trZ† trZ† − trZ†2

]
. (5.2.37)

This shows us that tr(ZZ†)2 is algebraically dependent on the operators in the

set B. Similarly, for any word W2 of length at least two, trW 2
2 is algebraically

dependent on trW2 and the operators in the set B.

We conclude that a single trace operator consisting of the trace of a word made

from Z and Z† is algebraically dependent on single trace operators of shorter length

iff it contains one of the following combinations as part of the word:

Z2W, Z†2W, or W 2
2 (5.2.38)

where as above W stands for any (non-zero length) word in Z and Z†, and W2

stands for such a word of length at least two.

Iterating the above results, a single trace operator containing one of the combina-

tions in (5.2.38) can be expressed as sums of products of shorter and shorter single

trace operators until it is expressed as a sum of products of single trace operators

containing none of the combinations in (5.2.38). A maximal set of algebraically

independent operators is therefore given by those single trace operators which do

not contain any of the expressions in (5.2.38). As claimed this is the set B.

It is worth remarking that we start with a description of the space gl(2,C) in terms

of polynomials in z1, z2, t0, θ, φ, ψ. The differential Gauss Law (5.2.29) removes the

angular variables leaving the polynomial ring in the remaining variables, which we

denote

〈z1, z2, z̄1, z̄2, t0〉. (5.2.39)

Invariance under large gauge transformations reduces the algebra of gauge invari-

ant polynomials to the polynomial ring generated by B. Recalling the definitions
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zc = z1 + z2, z = z1 − z2 and defining

Z = z2, Z̄ = z̄2, T0 = t20 +
zz̄

2
, (5.2.40)

the algebra of gauge invariant polynomials is equivalently the polynomial ring

〈zc, z̄c,Z, Z̄, T0〉. (5.2.41)

This is analogous to U(N) gauged Hermitian matrix quantum mechanics where

the differential Gauss Law reduces to polynomials in the eigenvalues

〈x1, x2, . . . , xN〉 (5.2.42)

and invariance under the SN residual Weyl transformations reduces the gauge

invariant polynomials to symmetric polynomials in x1, x2, · · · , xN , equivalently

polynomials in the variables

〈(x1 + x2 + · · ·+ xN), (x2
1 + x2

2 + · · ·+ x2
N), . . . , (xN1 + xN2 + · · ·+ xNN)〉. (5.2.43)

In the hermitian case, we are going from a ring to a sub-ring, which corresponds

to going from the space RN to its quotient space RN/SN . In our model, we are

going from the ring (5.2.39) to the sub-ring (5.2.41), and correspondingly from the

R4 × R+ = C2 × R+ parametrized by the five coordinates zi, t0 to M2. Because

of the off-diagonal degrees of freedom, M2 is not a straightforward quotient of

R4 × R+.

A full investigation of finite N relations for N > 2 is left for the future. We expect

it will be useful to combine the Cayley-Hamilton approach with the the vanishing

of the Brauer projectors, such as in equation (8.16) of [20].

5.3 Free particle structures at N = 2

In this section we find evidence of a ‘free fermions on a circle’ structure in the

k = 0 sector at N = 2. This generalizes to any N , as discussed in Section 5.4.1.

In these developments a crucial role is played by the structure of the ring of
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Casimirs; we also show that the momenta of the free fermions of the k = 0 sector

can be constructed from differential operators in variables which include both

eigenvalues and off-diagonal elements of Z. This leads us to observe that the

complex matrix model contains free fermions arising in a novel way, different from

the way they arise in hermitian or unitary models.

5.3.1 Casimir operators and a ring of degree-preserving

differential operators

The differential operators introduced in equation (5.2.10) were studied in [185] as

generalized Casimirs commuting with the scaling operator for Z,Z†, which is the

Hamiltonian for zero coupling SYM. This ring is analogous to the ring generated

by B in Section 5.2.5; at N = 2 the generating set is

D =
{

trG2, trG2
2, trG3, trG2

3, trG2G3

}
(5.3.1)

where G2, G3 were defined in (5.2.10)

(G2)ij = Zi
k

(
∂

∂Z

)k
j

(G3)ij = − Z†kj
(

∂

∂Z†

)i
k

. (5.3.2)

Defining

GL = G2 +G3 , (5.3.3)

we introduce the Hamiltonians

H1 = trG2 H2 = trG2
2

H̄1 = trG3 H̄2 = trG2
3 HL = trG2

L . (5.3.4)

Each of these operators commutes with the scaling operator for Z and Z†, which

is H = H1 + H̄1. The operators in D generate a ring of commuting Hamiltonians

related to the integrability of the system. We have definedHL for later convenience;

its name derives from the fact that the operator G2 + G3 is the infinitesimal

generator of the left action of U(N) [185]:

Z → UZ, Z† → Z†U †. (5.3.5)
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It was shown in [185] that the five operators defined in (5.3.4),

HA =
{
H1, H̄1, H2, H̄2, HL

}
(5.3.6)

measure respectively the Casimirs

CA =
{
C1(α), C1(β), C2(α), C2(β), C2(γ)

}
. (5.3.7)

Generalized Casimir operators such as tr(G2
2G3) were investigated in [185] and

were shown to be sensitive to the labels i, j of the Brauer basis. Since the matrix

elements of G2 and G3 commute, we may regard G2 and G3 as matrices of c-

numbers and apply the Cayley-Hamilton theorem as in Section 5.2.5 to show that

the set D is a maximal algebraically independent set of degree-preserving gauge

invariant differential operators.

5.3.2 The Casimirs as differential operators in zi, t0

In this section we express the Casimir operators from the previous section as

differential operators on M2.

Below are calculated expressions in the coordinates zi, t0 for the Hamiltonians

defined in (5.3.4). For convenience define

L1 = z1
∂

∂z1

L̄1 = z̄1
∂

∂z̄1

(5.3.8)

L2 = z2
∂

∂z2

L̄2 = z̄2
∂

∂z̄2

Lt =
t0
2

∂

∂t0
(5.3.9)

and recall the notation zc = z1 + z2, z = z1 − z2.

Recalling the definition GL = G2 + G3 from above (5.3.4), we find the following

expressions:

H1 = trG2 = L1 + L2 + Lt (5.3.10)

H̄1 = − trG3 = L̄1 + L̄2 + L̄t (5.3.11)
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H2 = trG2
2 = L2

1 + L2
2 +

(
1− 2z1z2z̄

zt20

)
L2
t

+
2

z
(z1L1 − z2L2)Lt +

zc
z

(L1 − L2) + Lt (5.3.12)

H3 = trG2
3 = tr(G2

2) (5.3.13)

HL = trG2
L = (L1 − L̄1)2 + (L2 − L̄2)2 +

zc
z

(L1 − L2) +
z̄c
z̄

(
L̄1 − L̄2

)
− 2

|z|2

{
t20(L1 − L2)(L̄1 − L̄2) +

1

t20
(z1z̄1 − z2z̄2)2L2

t

−(z1z̄1 − z2z̄2)
[
(L1 − L2) + (L̄1 − L̄2)

]
Lt − (z1z̄1 + z2z̄2)Lt

}
(5.3.14)

Some useful formulae in doing these calculations are now given. Recalling the

decomposition

Z = L T̃ L† (5.3.15)

and defining V = L†dL, one obtains the expression

dZ = L
(
dT̃ + [V, T̃ ]

)
L† . (5.3.16)

Defining

dX̃ = dT̃ + [V, T̃ ] and (G̃2)ij = T̃ ip

(
∂

∂X̃

)p
j

(5.3.17)

one may derive

dZi
j = LipdX̃

p
qL
†q
j(

∂

∂Z

)i
j

= LipL
†q
j

(
∂

∂X̃

)p
q

(G2)ij = LipL
q
j(G̃2)pq . (5.3.18)

The computation of (G̃2)pq shows that it contains angular derivatives. When we

calculate

trG2
2 = LipL

q
j(G̃2)pqL

i
rL

s
j(G̃2)rs (5.3.19)
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it is important not to neglect the terms obtained from the action of these angular

derivatives from (G̃2)pq on LirL
s
j .

The Casimirs as operators on polynomial rings

We observed in equation (5.2.41) that the multi-trace operators built from Z,Z†

form a polynomial ring whose generators we may take to be

zc, z̄c, Z = z2, Z̄ = z̄2, T0 = t20 +
zz̄

2
. (5.3.20)

The above differential operators H2, H3, HL map polynomials in these variables to

polynomials; we can make this manifest by changing to these variables. Defining

L = Z ∂

∂Z
, L0 = T0

∂

∂T0

, Lc = zc
∂

∂zc
(5.3.21)

we obtain the expression

H2 = 2L

(
L+

1

2

)
+

1

2
Lc(Lc + 3) + L0(L0 + 1) +

2z2
c

Z
L+

z2
c

Z
(2L− 1)L

+
Z

2z2
c

Lc(Lc − 1) +
Z̄

8T 2
0

(z2
c −Z)L0(L0 − 1)

+ 2

(
1 +

z2
c

Z

)
LL0 + 2L0Lc + 4LLc . (5.3.22)

H3 is obtained by complex conjugation and the same exercise can also be done for

HL to illustrate that they are operators that map polynomials to polynomials.

5.3.3 Eigenvalues of the Casimir operators

As reviewed in Chapter 4.2, a Young diagram R with non-negative row lengths ri

labels energies Ei of N fermions in a one-dimensional harmonic oscillator potential,

given by

Ei = ri + (N − i) (5.3.23)

and a Young diagram (N -staircase) R with arbitrary integer ri labels momenta pi

of N free fermions on a circle given in terms of the Fermi energy nF = N−1
2

by

pi = ri + (nF + 1− i) . (5.3.24)
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In this section we review the fact that equivalent data is contained in the values

of

• the N independent U(N) Casimirs Ci(R) of the representation R

• the N row lengths ri, and

• the N corresponding fermion momenta pi.

The same remark holds for non-negative ri with pi replaced by Ei.

In Section 5.3.1 we introduced differential operators studied in [185] which when

acting on a Brauer basis function Oγαβ(Z,Z†) measure the quadratic Casimir of the

Young diagrams α, β, γ. Given a U(N) Young diagram R, its linear and quadratic

Casimirs are

C1(R) =
∑
i

ri = n (5.3.25)

C2(R) = nN +
∑
i

ri(ri − 2i+ 1). (5.3.26)

Using the definition of pi (5.3.24) we can write C2 as

C2(R) =
N∑
i=1

p2
i −

N

12
(N2 − 1) (5.3.27)

which agrees with (4.2.34). Using the definition of Ei (5.3.23) we can also write C2

as

C2(R) =
N∑
i=1

E2
i − (N − 1)n− N

6
(N − 1)(2N − 1) . (5.3.28)

For general N , knowledge of the values of the N independent Casimir invariants

Ci determine the values of the power sum symmetric polynomials

Pa = pa1 + pa2 + .....+ paN (5.3.29)

which in turn for a = 1, . . . , N enables us to solve for pi or respectively Ei (see

e.g. [187]).
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We now demonstrate this in the N = 2 theory. The free fermions on a circle have

ground state with energy p1 = 1
2
, p2 = −1

2
and in general we have

p1 = r1 +
1

2
, p2 = r2 −

1

2
. (5.3.30)

Setting N = 2 in (5.3.26) gives

C2 = r1(r1 + 1) + r2(r2 − 1) (5.3.31)

and so we may express C1 and C2 in terms of pi as

C1 = p1 + p2

C2 = p2
1 + p2

2 −
1

2
. (5.3.32)

The resulting quadratic equations for pi in terms of C1 and C2 have solution

p1 =
C1

2
+

√
C2

2
− C2

1

4
+

1

4
p2 = C1 − p1. (5.3.33)

5.3.4 The k = 0 sector

Recall that in the k = 0 sector the Brauer basis labels are γ = (0, α, β) so operators

are labelled simply by α and β which are representations of Sm and Sn respectively.

To connect with the notation of the unitary matrix model, we write α = R and

β = S. If S = ∅, then the k = 0 operator is the holomorphic Schur polynomial

corresponding to the representation R:

Ok=0
R,∅ (Z,Z†) = χR(Z) . (5.3.34)

If R = ∅, then the k = 0 operator is the anti-holomorphic Schur polynomial

corresponding to the representation S̄:

Ok=0
∅,S (Z,Z†) = χS(Z†) (5.3.35)
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and if both α and β are nontrivial, the leading order term in the expansion of Ok=0

begins with the product of the holomorphic and antiholomorphic Schur polynomi-

als:

Ok=0
R,S (Z,Z†) = χR(Z)χS(Z†) + · · · , (5.3.36)

where the dots denote terms with at least one ZZ† inside a trace as discussed at

the start of Section 5.3.

As mentioned in Section 4.4 there is an isomorphism between the k = 0 sector and

the states of the unitary matrix model [20]:

Ok=0
R,S (Z,Z†) ←→ χRS̄(U) (5.3.37)

obtained by replacing Z with a unitary matrix:

Ok=0
R,S (U,U †) = dRdSχRS̄(U) . (5.3.38)

At N = 2, the label γc as defined in (4.3.16) may have at most two rows, rγ1 , r
γ
2 and

so the integers (k = 0, rγ1 , r
γ
2 ) are enough to specify an operator. By enumerating

all N = 2 operators for given (m,n), we next show that:

• If rγ1 > 0, rγ2 ≥ 0, then β = ∅ and we have a holomorphic Schur polynomial.

• If rγ1 ≤ 0, rγ2 < 0 then α = ∅ and we have an antiholomorphic Schur polyno-

mial.

• If rγ1 > 0, rγ2 < 0 then the operator is of the form (4.4.11). At N = 2 there is

a unique such operator.

Using the Young diagram notation introduced in Section 4.3.3, and using the

shorthand C2(γ) for the U(N) quadratic Casimir of the representation labelled by

γc, the N = 2 operators are as follows:
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List of γ+ and γ− when m ≥ n using d = m− n

γ+ γ− γc k C2(γ)

[m] [n] [m,−n] 0 m(m+ 1) + n(n+ 1)

[m− 1] [n− 1] [m− 1,−(n− 1)] 1 (m− 1)(m) + (n− 1)(n)
...

...
...

...
...

[d+ 1] [1] [d+ 1,−1] n− 1 (d+ 1)(d+ 2) + 2

[d] ∅ [d, 0] n d(d+ 1)

[d− 1, 1] ∅ [d− 1, 1] n (d− 1)(d)
...

...
...

...
...[ ⌈

d
2

⌉
,
⌊
d
2

⌋ ]
∅

[ ⌈
d
2

⌉
,
⌊
d
2

⌋ ]
n

⌈
d
2

⌉ ( ⌈
d
2

⌉
+ 1
)

+
⌊
d
2

⌋ ( ⌊
d
2

⌋
− 1
)

List of γ+ and γ− when m < n using d̃ = n−m

γ+ γ− γc k C2(γ)

[m] [n] [m,−n] 0 m(m+ 1) + n(n+ 1)

[m−1] [n− 1] [m−1,−(n−1)] 1 (m− 1)(m) + (n− 1)(n)
...

...
...

...
...

[1] [d̃+ 1] [1,−(d̃+ 1)] m−1 (d̃+ 1)(d̃+ 2) + 2

∅ [d̃] [0,−d̃] m d̃(d̃+ 1)

∅ [d̃− 1, 1] [−1,−(d̃− 1)] m (d̃− 1)(d̃)
...

...
...

...
...

∅
[ ⌈

d̃
2

⌉
,
⌊
d̃
2

⌋ ] [
−
⌊
d̃
2

⌋
,−
⌈
d̃
2

⌉ ]
m

⌈
d̃
2

⌉(⌈
d̃
2

⌉
+ 1
)

+
⌊
d̃
2

⌋(⌊
d̃
2

⌋
− 1
)

This establishes the classification of all Brauer operators at N = 2. Since row

lengths and fermion momenta are equivalent data in specifying a state, the above

classification may be rewritten in terms of fermion momenta pγi . In the next section

we use this to find explicit expressions for free particle momentum operators.
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5.3.5 Free particle momenta as functions of differential

operators

As noted in (5.3.6), when applied to an N = 2 Brauer basis operator Oγα,β, the

differential operators

HA =
{
H1, H̄1, H2, H̄2, HL

}
(5.3.39)

measure the values of the Casimirs

CA =
{
C1(α), C1(β), C2(α), C2(β), C2(γ)

}
(5.3.40)

respectively. We also have the fact that C1(γ) is measured by H1− H̄1. We define

fermion momentum operators

p̂A =
{
p̂1, p̂2, ˆ̄p1, ˆ̄p2, p̂γ1 , p̂γ2

}
(5.3.41)

whose eigenvalues are p1, p2, p̄1, p̄2, p
γ
1 , p

γ
2 respectively. We now repeatedly ap-

ply (5.3.33) to each of α, β, γ in turn which enables us to derive expressions for

these operators in terms of the basic gauge invariant operators HA.

Applying (5.3.33) to the label α and promoting to an operator equation we obtain

p̂1 =
H1

2
+

√
H2

2
− H2

1

4
+

1

4
p̂2 = H1 − p̂1. (5.3.42)

Applying (5.3.33) to the label β we obtain analogous expressions for ˆ̄p1, ˆ̄p2 in terms

of H̄1, H̄2.

Applying (5.3.33) to the label γ, promoting to an operator equation and defining

d̂ = H1 − H̄1 we obtain

p̂γ1 =
d̂

2
+

√
HL

2
− d̂2

4
+

1

4

p̂γ2 = d̂− p̂γ1 (5.3.43)
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As noted in Section 5.3.4, in the k = 0 sector a state is specified simply by

the values of the row lengths rγ1 , r
γ
2 , or equivalently by the values of the fermion

momenta pγ1 , p
γ
2 and so we now identify p̂γ1 , p̂

γ
2 as formal expressions for the momenta

of the k = 0 fermions on a circle. We shall extend this result to arbitrary N in the

next section.

Comparing to the explicit expressions for HA obtained in Section 5.3.2, we see

that these fermion momenta are functions of differential operators in both the

eigenvalues zi and the off-diagonal element t0. In hermitian matrix models and

unitary matrix models, the emergent fermions are the eigenvalues of the relevant

matrix. Here, however, the k = 0 emergent fermions have no such direct connection

to eigenvalues of Z.

5.4 Free particle structures at general N

In this section we extend aspects of our N = 2 discussion of the algebra of gauge

invariant functions and the rings of scale invariant and gauge invariant differential

operators to the case of general N .

Following our considerations for the k = 0 sector from Section 5.3, we show that

the momenta of the free fermions are determined in terms of differential operators

on MN .

We also study the m = n = k sector. This is the maximum possible value of k, in

contrast to our studies of k = 0 which is the minimum possible value. This sector

consists of traces and multi-traces of Z†Z and we show that it may be mapped

to N free fermions in a one-dimensional harmonic oscillator potential. This is a

second, distinct appearance of free particles in complex matrix models.

5.4.1 The k = 0 sector at general N

We first observe that our construction of free fermion momenta as functions of

differential operators in zi, tij may be extended to general N in a slightly weaker

form, as follows.

1. The construction in the previous section may be carried out for general N
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by identifying differential operators which measure higher order Casimirs.

These will be traces of higher powers of the Gi.

2. We have not found closed form expressions analogous to (5.3.32) for higher

N since this would require us to solve arbitrary order polynomials;

3. However, since the pi are integer or half-integer, they may always be de-

termined in terms of the eigenvalues of the Hamiltonians [187], and hence

implicitly in terms of differential operators in zi, tij.

We have thus identified an implicit map from k = 0 operators to fermions on a

circle for all finite N .

We next conjecture that the k = 0 sector may be described as the kernel of the

differential operator trG2G3. Let us recall from Section 5.3.1 that the differential

operator

tr(G2 +G3)2 = tr(G2
2 + 2G2G3 +G2

3) (5.4.1)

measures C2(γ), and so trG2G3 measures

1

2
(C2(γ)− C2(α)− C2(β)) . (5.4.2)

Since for a k = 0 operator γ = (0, α, β), we have that

C2(γ) = C2(α) + C2(β) (5.4.3)

and so

(trG2G3) Ok=0(Z,Z†) = 0. (5.4.4)

As a brief aside, note that the action of the Brauer contraction element C11̄ on

Zi
jZ
†k
l is as follows [20]:

C11̄

(
Zi
jZ

k
l

)
= δil(Z

†Z)kj. (5.4.5)

Since

(G2)pqZ
i
j = δiqZ

p
j and − (G3)qpZ

†k
l = δqlZ

†k
p (5.4.6)

we have

− trG2G3

(
Zi
jZ
†k
l

)
= δil(Z

†Z)kj (5.4.7)
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and since trG2G3 acts via the Leibniz rule, the action of − trG2G3 on

O = Zi1
j1
Zi2

j2
· · ·Zim

jm
Z†p1q1Z

†p2
q2
· · ·Z†pnqn (5.4.8)

is that of the sum over all individual contractions

C =
m∑
r=1

n∑
s=1

Crs̄. (5.4.9)

Similarly the action of the laplacian

� = tr

(
∂

∂Z

∂

∂Z†

)
(5.4.10)

on Zi
jZ
†k
l is given by

�
(
Zi
jZ
†k
l

)
= δilδ

k
j. (5.4.11)

which is a Wick contraction using the two point function (4.2.42), and as before

extends via the Leibniz rule. It was noted in [20] that the k = 0 operators have

no self Wick contractions and so we have

�Ok=0(Z,Z†) = 0 , (5.4.12)

a result we shall use later in Section 5.6.

While it is possible to construct simple examples which show that the k = 0

operators do not comprise the full kernel of �, we conjecture that the k = 0 sector

is the kernel of the differential operator trG2G3, i.e. that the converse of (5.4.4) is

true for any N :

tr(G2G3)O = 0 ⇒ O = Ok=0 (5.4.13)

As a differential operator, tr(G2G3) can be viewed as a modification of the laplacian

which is invariant under scalings of Z and Z†.

It is instructive to try and construct a counterexample to (5.4.13). From (5.4.2)

we know that tr(G2G3)O = 0 is equivalent to

C2(γ) = C2(α) + C2(β). (5.4.14)
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One could consider for example the operator with labels

α = [1, 1], β = [1, 1], γ = (k = 1, γ+ = [1], γ− = [1]) (5.4.15)

which has Casimirs

C2(α) = 2, C2(β) = 2, C2(γ) = 4 (5.4.16)

and so is a candidate counterexample since it appears to be a k = 1 operator

satisfying tr(G2G3)O = 0.

We shall see in Section 5.5 that the labels above fail to satisfy the constraint

c1(α) + c1(β) ≤ N + k (5.4.17)

which we shall conjecture to be necessary at N = 2. If this constraint is indeed

correct, the operator considered above in fact does not exist. This example shows

that the conjecture (5.4.13) is sensitive to finite N constraints of the Brauer basis.

5.4.2 The m = n = k sector: Operators and free fermions

We recall from the discussion at the start of Section 5.3 that the integer k is

directly related to the minimum number of Brauer contractions involved in the

terms which are summed to make up an operator in the Brauer basis.

For m = n = k, all terms in an operator involve the maximum number of contrac-

tions, which translates into the fact that these operators are multi-traces of the

matrix Y = Z†Z. Since Y is hermitian we find the N fermions of the hermitian

matrix model emerging in this sector, as follows.

In this sector we have γ = (k = m, γ+ = ∅, γ− = ∅) and α = β, so the projectors

Qγ
α,β (defined in Section 4.4) are in this sector labelled by α alone. We write

P k=m
α = Qγ

α,α with γ = (k = m, γ+ = ∅, γ− = ∅) . (5.4.18)
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The projector is written in terms of the k-contraction operator C(k) defined by

C(k) =
∑
σ∈Sk

Cσ(1)1̄ · · ·Cσ(k)k̄, (5.4.19)

and the projector pα which projects the holomorphic half of V ⊗k ⊗ V̄ ⊗k to the

representation α.

Introducing the notation Dimα for the dimension of the U(N) representation α,

and recalling the notation dα for the dimension of the Sk representation α, it is

proved in Section 5.4.3 that the projector takes the form

P k=m
α =

dα
k!Dimα

C(k)pα (5.4.20)

and that the operator satisfies the following required properties:

(P k=m
α )2 = P k=m

α and trk,k(P
k=m
α ) = (dα)2 . (5.4.21)

The operators in the m = n = k sector therefore take the explicit form:

trk,k(P
k=m
α Z⊗k ⊗ Z∗⊗k)

=
dα

k!Dimα
trk,k(C(k)pαZ

⊗k ⊗ Z∗⊗k)

=
dα

k!Dimα

∑
σ∈Sk

trk,k(σC11̄ · · ·Ckk̄σ−1pαZ
⊗k ⊗ Z∗⊗k)

=
dα

Dimα
trk,k(C11̄ · · ·Ckk̄pαZ⊗k ⊗ Z∗⊗k)

=
dα

Dimα
trk(pαY

⊗k) (5.4.22)

where Y = Z†Z. So operators in the m = n = k sector are Schur polynomials

constructed from Y .

We may understand these results in the following way. First observe that HL

annihilates (Z†Z)ij, since HL = G2 + G3 generates the U(N) action on the lower

index of Z† and the upper index of Z,

Z → UZ, Z† → Z†U † (5.4.23)

and that the product (Z†Z)ij is invariant under this action. Traces of powers of Y
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are thus also invariant under (5.4.23).

HL measures C2(γ) which implies that C2(γ) = 0 for all operators built from Y i
j.

This is consistent with the fact that in the m = n = k sector γ = (k = m, γ+ =

∅, γ− = ∅) and so C2(γ) = 0. We can consider a Casimir of the form tr(Y ∂
∂Y

)2

which measures the labels of the Young diagram.

By the map discussed in Section 4.2.1, Schur polynomials in a hermitian matrix

correspond to the states of N free fermions in a harmonic oscillator potential. The

harmonic oscillator fermions observed here are a second emergence of free particles,

distinct from those of the k = 0 sector.

5.4.3 Proofs for m = n = k projectors

In this section, we shall show the operator (5.4.20) satisfies the following properties:

(P k=m
α )2 = P k=m

α (5.4.24)

and

trk,k(P
k=m
α ) = (dα)2. (5.4.25)

The second equation follows from the Schur-Weyl duality;

V ⊗k ⊗ V̄ ⊗k =
⊕
γ

V U(N)
γ ⊗ V BN (k,k)

γ

=
⊕
γ,A

V U(N)
γ ⊗ V C[Sk×Sk]

A ⊗ V BN (k,k)→C(Sk×Sk)
γ→A . (5.4.26)

In the second line, we have decomposed each irreducible representation γ of the

Brauer algebra into irreducible representations A of the group algebra of Sm×Sn.

Acting with the projector P k=m
α on this equation and taking a trace in V ⊗k⊗ V̄ ⊗k,

we get

trk,k(P
k=m
α ) = d(α,α) = (dα)2 (5.4.27)

where we have used Dimγ = 1 and Mγ
A = 1 for γ = (∅, ∅, k = m).
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The k-contraction operator C(k) can be written in many ways, for example

C(k) =
∑
σ∈Sk

Cσ(1)1̄ · · ·Cσ(k)k̄

=
∑
σ∈Sk

σC11̄ · · ·Ckk̄σ−1

=
∑
σ̄∈S̄k

σ̄C11̄ · · ·Ckk̄σ̄−1 (5.4.28)

The second equality follows from

σCij̄ = Cσ(i)j̄σ (5.4.29)

In order to show (5.4.24), we first calculate (C(k))
2:

(C(k))
2 =

∑
ρ,σ∈Sk

ρC11̄ · · ·Ckk̄ρ−1σC11̄ · · ·Ckk̄σ−1

=
∑
ρ,σ∈Sk

trk(ρ
−1σ)ρC11̄ · · ·Ckk̄σ−1

=
∑
ρ,σ∈Sk

NCρ−1σρC11̄ · · ·Ckk̄σ−1

=
∑
τ,σ∈Sk

NCτ τσC11̄ · · ·Ckk̄σ−1

= NkΩkC(k) (5.4.30)

where Ωk is the Omega factor defined by

Ωk =
∑
σ∈Sk

NCσ−kσ (5.4.31)

where Cσ is the number of cycles in σ. Using the equation (5.4.30), we can easily

show that the projector (5.4.20) satisfies (5.4.24).

We also have another interesting equation for C(k):

C(k)pα = C(k)p̄α, (5.4.32)

which is a consequence of

C11̄ · · ·Ckk̄σ = C11̄ · · ·Ckk̄σ̄−1. (5.4.33)
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We finally prove (5.4.25):

trk,k(P
k=m
α ) =

dα
k!Dimα

trk,k(C(k)pα)

=
dα

k!Dimα

∑
σ∈Sk

trk,k(σC11̄ · · ·Ckk̄σ−1pα)

=
dα

Dimα
trk,k(C11̄ · · ·Ckk̄pα)

=
dα

Dimα
trk(pα)

=
dα

Dimα
dαDimα

= (dα)2. (5.4.34)

5.5 Counting of operators

In this section we study the counting of the operators of the Brauer basis. This

counting was known already at m+n < N [154], however for physical applications

one may be interested in ranges of parameters for which m and n are order N or

even order N2. We conjecture a solution for the counting of operators at N = 2,

for which we provide numerical evidence.

5.5.1 The Brauer basis labels at N = 2 in terms of five

integers

In Section 5.3.1 we observed that the generalized Casimir operators such as trG2
2G3

do not yield independent information about the wavefunctions at N = 2, i.e. that

all the information in the labels {α, β, γ, i, j} is in fact contained only in {α, β, γ}.
We can interpret this fact in terms of Brauer algebra representation theory as

follows.

As reviewed in Section 4.3, when decomposing an irrep γ of the Brauer algebra

into irreps A = (α, β) of C[Sm × Sn], we denote the integer multiplicity by Mγ;N
A ,

i.e.

dim V
BN (m,n)→C[Sm×Sn]
γ→A = Mγ;N

A . (5.5.1)

For large N , i.e. m + n < N , we denote this multiplicity by Mγ
A and using δ ` k
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to denote that δ is a partition of k, Mγ
A is given by the formula [154]

Mγ
A ≡ Mγ

α,β =
∑
δ`k

∑
δ

g(γ+, δ;α)g(γ−, δ, β) (5.5.2)

where g(γ+, δ;α) is a Littlewood-Richardson coefficient.

As reviewed in Section 4.4 the indices i, j on a Brauer operator range over the

values {1, . . . ,Mγ;N
A }, and so the redundancy of the i, j labels at N = 2 means

that Mγ;N=2
A is either 0 or 1 for all γ,A.

A direct proof of this by using the finite N constraints on the states of the Brauer

representation in [152] would be interesting to obtain. At this point we will take

a more pragmatic perspective, assume it is true, and will find that it leads to a

consistent counting of states of the complex matrix model at N = 2.

In Section 5.2.5 we described the states of the N = 2 theory as generated by a

finite set of traces. In this section we will obtain the corresponding description in

terms of the Brauer basis for multi-traces. For general N , we give a review of the

Brauer basis states in Section 4.4. For ease of notation we denote ri = ri(α) and

r̄i = ri(β).

We can choose different sets of five integers to parameterize the states, such as

r1, r2, r̄1, r̄2, r
γ
1 (5.5.3)

rγ1 , r
γ
2 , k, r1, r̄1 (5.5.4)

rγ1 , r
γ
2 , k, r1, r̄2. (5.5.5)

We will show that each of the above sets of five integers determines a state uniquely,

and we will give the constraints on the integers.

A state is determined uniquely at N = 2 by α, β, γ, containing the set of integers

{r1, r2; r̄1, r̄2; k, rγ1 , r
γ
2} . (5.5.6)

From the Brauer algebra representation theory briefly reviewed in Section 4.4, we
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have the following relations :

∑
i

ri = m,
∑
i

r̄i = n, (5.5.7)∑
i

ri(γ+) = m− k,
∑
i

ri(γ−) = n− k. (5.5.8)

Using the relationship between ri(γ), ri(γ+) and ri(γ−) we have

∑
i

ri(γ) =
∑
i

ri(γ+)−
∑
i

ri(γ−) = m− n (5.5.9)

which at N = 2 reads

rγ1 + rγ2 = m− n. (5.5.10)

Adding the two expressions in (5.5.8) we find that

∑
i

|ri(γ)| =
∑
i

ri(γ+) +
∑
i

ri(γ−) = m+ n− 2k (5.5.11)

which at N = 2 gives

k =
1

2
(m+ n− |rγ1 | − |r

γ
2 |) . (5.5.12)

We now show that each of (5.5.3)-(5.5.5) are enough to determine the state via

(5.5.6):

1. Starting from the five integers in (5.5.3), we deduce m,n from (5.5.7), rγ2

from (5.5.10) and k from (5.5.12).

2. Starting from (5.5.4) we read off ri(γ+) and ri(γ−) by inspecting whether rγ1

and rγ1 are positive or negative. We then deduce m and n from (5.5.8) and

r2 and r̄2 from (5.5.7).

3. Starting from (5.5.5) we proceed as in point 2 above.

This shows that each of the three sets of five integers identified are sufficient to

identify any state.
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5.5.2 Counting of states at N = 2 and Brauer basis labels

The ring of gauge invariant operators at N = 2 is generated by five single trace

operators (5.2.35). Hence the number of linearly independent multi-trace operators

QN=2
mt (m,n) for fixed (m,n) is counted by the generating function

1

(1− x)(1− y)(1− x2)(1− y2)(1− xy)
=
∑
m,n

QN=2
mt (m,n)xmyn. (5.5.13)

This is the Plethystic Exponential [188, 189] of the single trace generating function

∑
m,n

QN=2
st (m,n)xmyn = 1 + x+ y + x2 + y2 + xy (5.5.14)

derived from the independent single traces in the basis B (5.2.35).

Having found the N = 2 counting of multi-traces, we can express it in terms of

constraints on the large N Brauer counting. The constraint c1(γ+) + c1(γ−) ≤ N

turns out not to be sufficient. We have argued above that the multiplicities Mγ;N=2
α,β

are either 0 or 1. We first set

Mγ;N=2
α,β =

 1 if Mγ
α,β > 0

0 otherwise
(5.5.15)

where Mγ
α,β is given by (5.5.2). Having done this we also find it necessary to impose

extra constraints on the labels α, β for agreement with (5.5.13).

The constraints on α, β are as follows. Denoting the length of the pth column of a

Young diagram R by cp(R), we constrain:

1. c1(α) + c1(β) ≤ N + k

2. [c1(α) + c1(β)] + [c2(α) + c2(β)] ≤ 2N + k

...
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and in general for each p = 1, 2, . . . ,min(m,n) , constrain

p∑
r=1

(cr(α) + cr(β)) ≤ pN + k. (5.5.16)

We used the mathematics computer software SAGE7 to enumerate all possible

Brauer basis operators subject to the constraint (5.5.16) and to compare with

the N = 2 trace basis generating function (5.5.13). The two agree up to (m,n) =

(15, 15) which is the practical limit for a desktop computer. This conjecture gener-

alizes the ‘Non-chiral Stringy Exclusion Principle’ introduced in [20]. This count-

ing of operators at N = 2 implies a result for the reduction multiplicities Mγ,N=2
A ,

namely that

Mγ;N=2
α,β =

 1 if Mγ
α,β > 0 and (5.5.16) holds

0 otherwise
(5.5.17)

We will re-state this result after simplifying the condition (5.5.16).

5.5.3 N = 2 constraints in terms of five integers

Let us consider the case where k is one of our five integers. We rewrite the N = 2

constraint (5.5.16) as a lower bound on k:

k ≥
p∑
r=1

(cr(α) + cr(β))− 2p for each p = 1, . . .min(m,n). (5.5.18)

Note that as p increases the lower bound on k gets stronger only when

cp(α) + cp(β) > 2. (5.5.19)

Before presenting a general expression for the lower bound on k we examine in

detail the case

0 < r2 < r̄2 < r1 < r̄1. (5.5.20)

We observe that

7www.sagemath.org
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• For 1 ≤ p ≤ r2 we have cp(α) + cp(β) = 4

• For r2 < p ≤ r̄2 we have cp(α) + cp(β) = 3

• For p > r̄2 we have cp(α) + cp(β) ≤ 2

The strongest lower bound on k is therefore at p = r̄2 where we have

k ≥ 4r2 + 3(r̄2 − r2)− 2r̄2

⇒ k ≥ r2 + r̄2. (5.5.21)

Proceeding similarly we find a general expression for the lower bound on k. For

simplicity, wlog suppose r2 ≤ r̄2. There are three cases to consider:

1. r2 ≤ r1 ≤ r̄2 ≤ r̄1 ⇒ k ≥ r1 + r2

2. r2 ≤ r̄2 ≤ r1 ≤ r̄1 ⇒ k ≥ r2 + r̄2

3. r2 ≤ r̄2 ≤ r̄1 ≤ r1 ⇒ k ≥ r2 + r̄2.

Combining these we obtain the lower bound

k ≥ min(r2, r̄2) + min ( min(r1, r̄1), max(r2, r̄2) ) (5.5.22)

which is equivalent to (5.5.16). We can also express the constraint (5.5.22) in

terms of the five integers in (5.5.3) by substituting for k from (5.5.12) to find

1

2
(m+ n− |rγ1 | − |m− n− r

γ
1 |) ≥ min(r2, r̄2)+min ( min(r1, r̄1),max(r2, r̄2) ) .

(5.5.23)

We can now re-state the result (5.5.17) for the N = 2 reduction multiplicities:

Mγ;N=2
α,β =

 1 if Mγ
α,β > 0 and (5.5.22) holds

0 otherwise.
(5.5.24)
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5.6 Applications to harmonic oscillator quantum

mechanics

5.6.1 Non-holomorphic sector of harmonic oscillator QM

In this section we show that the results obtained in this chapter so far, presented

in terms of Z,Z†, apply equally to the matrix harmonic oscillator quantum me-

chanics obtained from dimensional reduction of N = 4 Super-Yang-Mills reviewed

in Section 4.2.4, in terms of the creation operators A† and B†. For convenience we

recall their definitions here:

A† =
1√
2

(Z − iΠ†) =
1√
2

(
Z − ∂

∂Z†

)
A =

1√
2

(Z† + iΠ) =
1√
2

(
Z† +

∂

∂Z

)
B† =

1√
2

(Z† − iΠ) =
1√
2

(
Z† − ∂

∂Z

)
B =

1√
2

(Z + iΠ†) =
1√
2

(
Z +

∂

∂Z†

)
.

(5.6.1)

A generic eigenstate of the harmonic oscillator quantum mechanics is constructed

by acting on the ground state with a generic gauge invariant operator O(A†, B†)

constructed from m A†’s and n B†’s, i.e.

|ΨO〉 = O(A†, B†) |0〉 . (5.6.2)

The wavefunction of such a state may be written as

ΨO(Z,Z†) = 〈Z,Z†|ΨO〉 = O(A†, B†) e− tr(ZZ†). (5.6.3)

The Brauer Algebra may be used to organize the states above. Such states are

analogous to those used in Section 5.3 and take the form

|Ψγ
α,β;i,j〉 = Oγα,β;i,j(A

†, B†)|0〉 (5.6.4)

where the labels are explained in Section 4.4. This state has E = m+n+N2 and

J = m− n.
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Unlike for the holomorphic sector wavefunctions, we have

O(A†, B†)e− tr(ZZ†) 6= O(
√

2Z,
√

2Z†) e− tr(ZZ†) (5.6.5)

because the derivative of Z inside A† acts on Z which comes from the action of

B† on the exponential factor. For example we have

tr(A†B†)e− tr(ZZ†) =
(
2 trZZ† −N2

)
e− tr(ZZ†) (5.6.6)

and in general the correct relation is

ΨO(Z,Z†) = O(A†, B†)e− tr(ZZ†) =
[
e−

�
2O(
√

2Z,
√

2Z†)
]
e− tr(ZZ†) (5.6.7)

where � is the laplacian tr ∂
∂Z

∂
∂Z†

and the brackets indicate that the derivatives

in � act only on O(
√

2Z,
√

2Z†) and not on the exponential. e−
�
2 is defined by

its series expansion; it was observed in (5.4.11) that the laplacian generates Wick

contractions and so here e−
�
2 performs a normal ordering, subtracting terms in

which pairs of
√

2Z and
√

2Z† have been contracted (c.f. [190]).

Note however that in a k = 0 operator we have from (5.4.12) that

�Ok=0 = 0 (5.6.8)

and so we can replace A† and B† with
√

2Z and
√

2Z† respectively without wor-

rying about the above subtlety.

We can define operators corresponding to the Gi in (5.2.10) as follows.

(Ĝ1)ij = (B†B)ij (Ĝ2)ij = (A†A)ij

(Ĝ3)ij = −B†kjBi
k (Ĝ4)ij = − A†kjAik (5.6.9)

Defining |Aij〉 = Aij|0〉 and so on, using the commutation relations we find

(Ĝ1)ij |B†pq〉 = δpj |B†iq〉 (Ĝ2)ij |A†pq〉 = δpj |A†iq〉

(Ĝ3)ij |B†pq〉 = − δiq |B†
p
j〉 (Ĝ4)ij |A†pq〉 = − δiq |A†

p
j〉 (5.6.10)

which is the same as the adjoint action of the operators Gi defined in (5.2.10) on
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the matrices Z,Z† (see equation (11) of [185]).

The result is that we can define harmonic oscillator Casimir operators

ĤA =
{
Ĥ1, Ĥ2,

ˆ̄H1,
ˆ̄H2, ĤL

}
(5.6.11)

by replacing Gi in (5.3.4) with Ĝi. The eigenvalues of hatted Casimirs acting on

Oγα,β;i,j(A
†, B†)|0〉 are the same as those of the corresponding unhatted Casimirs

acting on Oγα,β;i,j(Z,Z
†). This is because the same commutator manipulations

can be done to evaluate both, and the arguments which prove that Oγα,β;i,j(Z,Z
†)

are eigenstates of the Casimirs in (5.3.4) also prove that Oγα,β;i,j(A
†, B†)|0〉 are

eigenstates of the hatted versions.

We can take this one step further. Noting that[
Zi
j,−

�
2

]
=

1

2

(
∂

∂Z†

)i
j

(5.6.12)

⇒
[
Zi
j, e
−�

2

]
=

1

2

(
∂

∂Z†

)i
j

e−
�
2 (5.6.13)

and similarly

[
Z†ij, e

−�
2

]
=

1

2

(
∂

∂Z

)i
j

e−
�
2 (5.6.14)

then using (5.6.7) we derive

A†ij ΨO(Z,Z†) = A†ij O(A†, B†) e− tr(ZZ†)

= A†ij

[
e−

�
2O(
√

2Z,
√

2Z†)
]
e− tr(ZZ†)

=
[
e−

�
2

(√
2Zi

j

)
O(
√

2Z,
√

2Z†)
]
e− tr(ZZ†) (5.6.15)

where again the brackets indicate that the derivatives act only on O(
√

2Z,
√

2Z†)

and not on the exponential. Similarly

Aij ΨO(Z,Z†) =

[
e−

�
2

(
1√
2

(
∂

∂Z

)i
j

)
O(
√

2Z,
√

2Z†)

]
e− tr(ZZ†)(5.6.16)
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implying the following relation between Ĝ2 and G2:

(Ĝ2)ij ΨO(Z,Z†) =
[
e−

�
2 (G2)ij O(

√
2Z,
√

2Z†)
]
e− tr(ZZ†) (5.6.17)

Similar results apply to the remaining Ĝi, the Hamiltonians Ĥi as well as the

canonical Hamiltonian

Ĥ = Ĥ1 + ˆ̄H1 +N2 = tr(A†A+B†B) +N2 (5.6.18)

whose action on wavefunctions Ψ(Z,Z†) can be written in terms of the (first-order)

scaling operator H:

H = H1 + H̄1 +N2 = tr

(
Z
∂

∂Z
+ Z†

∂

∂Z†

)
+N2. (5.6.19)

Applying (5.6.17) and the corresponding relation for Ĝ3 we find that

ĤΨO(Z,Z†) =
[
e−

�
2 H O(

√
2Z,
√

2Z†)
]
e− tr(ZZ†). (5.6.20)

A similar manipulation in the holomorphic sector was performed in Appendix A

of [191]. Note that for a k = 0 operator we have �Ok=0 = 0 and so the above

analysis gives

Ĥ
[
Ok=0(A†, B†) e− tr(ZZ†)

]
=
[
H Ok=0(

√
2Z,
√

2Z†)
]
e− tr(ZZ†). (5.6.21)

The inner product on wavefunctions may be derived using∫
[dZdZ†] |Z,Z†〉〈Z,Z†| = 1 (5.6.22)

where [dZdZ†] =
∏

i,j dZijdZ
†
ij, as follows:

〈ΨO1|ΨO2〉 =
1

πN2

∫
[dZdZ†] 〈O1(A†, B†)|Z,Z†〉〈Z,Z†|O2(A†, B†)〉

=
1

πN2

∫
[dZdZ†] ΨO1(Z,Z

†)ΨO2(Z,Z
†) (5.6.23)

where the factor of πN
2

compensates for using non-normalized wavefunctions, and
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is found by imposing

〈Ψ0|Ψ0〉 = 1. (5.6.24)

Using (5.6.7), the above expression (5.6.23) becomes

〈ΨO1|ΨO2〉 =
1

πN2

∫
[dZdZ†]O1(A†, B†)e− trZZ†O2(A†, B†)e− trZZ†

=
1

πN2

∫
[dZdZ†]

(
e−

�
2O1(

√
2Z,
√

2Z†)
)(

e−
�
2O2(

√
2Z,
√

2Z†)
)
e−2 trZZ†

and rescaling factors of two we have the result

〈ΨO1 |ΨO2〉 =
1

(2π)N2

∫
[dZdZ†]

(
e−�O1(Z,Z†)

)(
e−�O2(Z,Z†)

)
e− trZZ† (5.6.25)

which is the non-holomorphic generalization of (A.12) of [191].

Thus we have shown that our general analysis of complex matrix models applies

equally well to the matrix harmonic oscillator quantum mechanics obtained from

dimensional reduction of N = 4 Super-Yang-Mills, with our analysis of Z, Z†

carrying over to the states built from the creation operators A†, B†.

5.7 Summary and outlook

In this chapter we described free particle structures in matrix models of an N ×N
complex matrix Z, and related these structures to the geometry of the configura-

tion spaceMN of gauge-inequivalent configurations, a space of dimension N2 + 1.

For any N the k = 0 sector has states in one-to-one correspondence with those of

N free fermions on a circle. For N = 2 we expressed the momenta of free fermions

on a circle as algebraic functions of differential operators, and discussed the gen-

eralization of this result to general N . Importantly, while the usual emergence of

free fermions in matrix models can be seen from a change of variables to eigenval-

ues, here the k = 0 sector depends on combinations of eigenvalues and off-diagonal

elements.

We also found a description in terms of free particles in the m = n = k sector, this

time in terms of free fermions in a one-dimensional harmonic oscillator potential.
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We observe that k appears to interpolate between radial and angular free particle

systems on a plane. It would be interesting to investigate this possibility further.

We studied in detail the Brauer basis operators at N = 2 and presented a con-

jecture for their counting, or equivalently for the reduction multiplicities of repre-

sentations of BN(m,n) to Sm × Sn for N = 2. We also presented computational

evidence for this conjecture.

We now discuss open questions and opportunities for further research.

An important question from the point of view of this thesis is whether the free

particle structures described in this chapter can be realized in the supergravity side

of the AdS5/CFT4 duality in a sector which has an SO(4)× SO(4) isometry, and

if so whether the free particle structures can be used to study non-supersymmetric

asymptotically AdS black holes in terms of heavy non-BPS operators in the field

theory.

Non-BPS deformations of LLM geometries have been studied in supergravity, and

the existence of smooth horizonless ‘solitonic AdS bubbles’ has been demonstrated

numerically [192]. In the most optimistic scenario, one could anticipate a non-BPS

generalization of the LLM [15] discovery of supergravity geometries corresponding

to the free fermions of the holomorphic sector of the complex matrix model [13, 14].

Aside from the applications to black hole physics there are a number of questions,

interesting in their own right, which arise from this research:

1. We obtained explicit expressions for the free fermion momenta for the k = 0

sector of the N = 2 matrix theories in terms of the original matrix variables.

It is an open problem to find explicit expressions for the dual coordinates

of the fermions, and the wavefunctions as Slater determinants. It is also

interesting to explore whether this would be useful for the computation of

field theory correlators.

2. We presented results on the counting of complex matrix model operators in

terms of Brauer algebras at N = 2. These are related to reduction multi-

plicities for BN=2(m,n) irreps into Sm × Sn irreps. What are these finite N

reduction multiplicities for general m,n,N , in particular for N < m + n at
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large N?

3. There is a substantial literature discussing consistent truncations of the Mal-

dacena duality. For example, it is known that the SU(2) sector defines a

consistent truncation to all orders in perturbation theory [193]. The Z,Z†

sector is a well-defined truncation at zero coupling. Assuming the strong

form of the Maladacena conjecture, and making the plausible assumption

that consistent quantum truncations of a quantum field theory with a string

dual have a string dual, we are led to ask: What is the gauge-string theory

dual of one free complex matrix in four dimensions? Similarly, what is the

dual of the quantum mechanics obtained from reduction on R× S3?

Such dualities are known for the large N Gaussian Hermitian matrix model

[136], double scaling limits of complex matrix models [142], the large N

hermitian matrix oscillator quantum mechanics [194] and the BFSS matrix

model for M-theory [195].

We do not have a clear answer to the last question, but based on the research

in this chapter we make the following tentative conjecture. We conjecture that

there exists a string dual of the matrix harmonic oscillator quantum mechanics

discussed in Section 5.6 which has a 2 + 1 dimensional space-time and whose

physics involves interacting strings and branes. The zi coordinates are positions of

N branes in 2 space dimensions. By analogy to the treatment in [196] we expect

the off-diagonal variables tij to describe strings connecting brane i to j; here the

triangular constraint (tij = 0 for i > j) will make the dual qualitatively different

from the standard system of strings and branes at weak coupling.

The Hamiltonian H contains terms t ∂
∂t

along with zi
∂
∂zi

. Excitations involving

polynomials in zi have energies comparable to excitations involving t. This means

that if this picture is correct the strings and branes have comparable masses.

Usually string states have masses of order 1 (with ls = 1) whereas branes have

masses of order 1/gs. In this sense, the conjectured model appears to have gs ∼ 1.

It would be interesting to see if such a model can be constructed and investigate

the physical interpretation of the Brauer algebra basis labels, in particular k, and

their constraints at finite N .
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Conclusions and Outlook

In this thesis we have presented research on black holes in string theory in two

different contexts.

In Part I we used disk amplitudes to derive the supergravity fields sourced by a

D-brane with a travelling wave, presenting the calculation in the D5-P duality

frame. We saw that this provided a direct link between a microscopic bound

state in string theory representing a very dark, compact, heavy object and its

gravitational description in supergravity.

We noted that, as described by the fuzzball program, only classical vibration

profiles on the D-brane have reliable supergravity descriptions in the region close

to the D-brane, and that for a generic vibration profile the microscopic bound state

is not geometrical in this sense. For states which have good classical descriptions,

the known two-charge supergravity solutions were identified with the microscopic

bound states.

We discussed the fact that the D5-P duality frame is one in which the supergravity

solutions sourced by the D-brane bound states are singular, and the scaling argu-

ments of [53] show that α′-corrections to the supergravity action cannot produce

small black holes with a non-zero horizon area. One can then ask whether this

is in contradiction with the proposal of [53] that the macroscopic entropy of a

two-charge configuration should be defined to be the sum of the contributions of

small black hole solutions and horizonless, everywhere smooth classical solutions.

We noted that a way out of such a contradiction is offered by the possibility that

α′-corrections lead to a family of everywhere smooth horizonless geometries.
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We also briefly mentioned work in progress on applying these techniques to the

three-charge D1-D5-P black hole. We discussed the importance of this development

because of the presence of an extremal black hole with a macroscopic horizon in

this setup, and the question of the interpretation of the many smooth horizonless

three-charge supergravity solutions reviewed in Chapter 1.

In Part II we presented free particle descriptions in non-holomorphic sectors of

complex matrix models, in particular the matrix quantum mechanics obtained

by dimensional reduction of N = 4 Super-Yang-Mills theory. We motivated this

research from the detailed investigations of black hole physics in the half-BPS

sector, and a desire to extend these results to near-extremal black holes.

Since the publication of the research contained in Part II of this thesis, there

have been further developments in applying the Brauer algebra basis to matrix

models. Firstly, the Brauer algebra basis was extended to multi-complex matrix

models [197]. Secondly, the Brauer basis has been applied to the SU(2) sector

of N = 4 Super-Yang-Mills (consisting of holomorphic operators in two complex

matrices X, Y ) and the k = 0 operators in this sector were shown to lie in the

kernel of the SU(2) one-loop dilatation operator, and so are 1/4-BPS operators at

one-loop [158].

The connection to black hole physics is less well developed in this context, and

there remain gaps to bridge before one can draw any conclusions about black holes

from this research. We described opportunities to make progress in this respect

and we look forward to understanding more about the physics of near-extremal

asymptotically anti-de Sitter black holes in the future.

In summary, string theory promises to provide a consistent quantum mechanical

description of physical black holes, an essential and non-trivial test of any theory of

quantum gravity, and the research contained in this thesis provides further evidence

that this promise can be realized. There are many interesting open questions

which remain to be investigated through string world-sheet amplitudes, through

the construction of supergravity solutions, and through gauge-gravity duality.
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Appendix A

Notation and Conventions

In this appendix we record our conventions for four-dimensional Einstein gravity

and Einstein-Maxwell theory, and ten-dimensional type IIB supergravity. In all

cases we use signature (−++ · · ·+) and we follow in places [36, 198, 199, 200, 98].

A.1 General relativity in four dimensions

In general relativity, spacetime is a differentiable manifold (M, g) and the line

element is given by

ds2 = gµνdx
µdxν . (A.1.1)

We denote by ∇ the Levi-Civita connection, which is metric preserving (∇g = 0)

and torsion-free, i.e. its components Γµ
νρ are symmetric, Γµ

νρ = Γ µ
(νρ).

The Riemann curvature tensor is defined by the commutator of ∇ acting on an

arbitrary vector field V :

[∇µ,∇ν ]Vρ = RµνρσV
σ . (A.1.2)

The Ricci tensor Rµν and the Ricci scalar R are defined by

Rµν = Rρ
µρν , R = Rµ

µ (A.1.3)

where indices are lowered and raised with gµν and its inverse gµν respectively.

The Einstein equations, without cosmological constant, are

Rµν −
1

2
Rgµν = 8πTµν (A.1.4)

where Tµν is the energy-momentum tensor. In vacuum Tµν = 0 which gives the
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equations of motion

Rµν −
1

2
Rgµν = 0 (A.1.5)

which may be derived from the four-dimensional Einstein-Hilbert action

SEH =
1

16πG

∫
d4x
√
−g R . (A.1.6)

The Schwarzschild line element takes the form (1.3.1)

ds2 = − f(r)dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θdφ2) , (A.1.7)

where

f(r) = 1− 2GM

r
. (A.1.8)

A.2 Einstein-Maxwell theory in four dimensions

Einstein-Maxwell theory describes gravity coupled to classical electromagnetism,

described by a U(1) vector potential Aµ with field strength

Fµν = ∇µAν −∇νAµ . (A.2.1)

The energy-momentum tensor is then

Tµν =
1

4π

(
FµρF

ρ
ν −

1

4
gµνFρσF

ρσ

)
(A.2.2)

and the Einstein equations (again without cosmological constant)

Rµν −
1

2
Rgµν = 8πTµν (A.2.3)

may be derived from the four-dimensional Einstein-Maxwell action

SEM =
1

16πG

∫
d4x
√
−g (R− FµνF µν) (A.2.4)

where the Maxwell term is normalized to measure charge in ‘geometrized units’,

i.e. the magnitude of the Coulomb force between point charges Q1, Q2 at separation
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r in flat space is [199]
G |Q1Q2|

r2
. (A.2.5)

The equations of motion for Aµ are, in the absence of sources,

∇µF
µν = 0 (A.2.6)

∇[µFνρ] = 0 . (A.2.7)

The Reissner-Nordstrom solution is obtained by solving for a point charge field

configuration,

At =
Q

r
⇒ Et ≡ Frt = − Q

r2
(A.2.8)

giving rise to the Reissner-Nordstrom line element (1.3.8)

ds2 = − fRN(r)dt2 +
dr2

fRN(r)
+ r2(dθ2 + sin2 θdφ2) , (A.2.9)

where

fRN(r) = 1− 2GM

r
+
GQ2

r2
. (A.2.10)

A.3 Type IIB supergravity

We next introduce our conventions for ten-dimensional type IIB supergravity.

The bosonic fields of the theory are the metric g, NS two-form B with field

strength H(3), dilaton φ, and RR potentials C(0), C(2), C(4) with corresponding

field strengths F (p+2) = dC(p+1).

Following the conventions of [98] we also introduce the modified field strengths

F̃ (3) = F (3) − C(0) ∧H(3) , (A.3.1)

F̃ (5) = F (5) − 1

2
C(2) ∧H(3) +

1

2
B(2) ∧ F (3) (A.3.2)

The five-form field strength F (5) must satisfy the self-duality constraint

F (5) = ∗ F (5) (A.3.3)

(one could also choose instead F (5) to be anti-self-dual), which obstructs the con-
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struction of a covariant action. The constraint (A.3.3) must be imposed in addition

to the equations of motion resulting from the action

SIIB = SNS + SR + SCS , (A.3.4)

where

SNS =
1

2κ2

∫
d10x
√
−g e−2Φ

(
R + 4∂µΦ∂µΦ− 1

2
|H(3)|2

)
, (A.3.5)

SR =
1

2κ2

∫
d10x
√
−g
(
−1

2
|F (1)|2 − 1

2
|F̃ (3)|2 − 1

4
|F̃ (5)|2

)
, (A.3.6)

SCS =
1

2κ2

∫ (
−1

2
C(4) ∧H(3) ∧ F (3)

)
(A.3.7)

and where for each n,

|F (n)|2 =
1

n!
F (n)
µ1···µn F

(n)µ1···µn . (A.3.8)
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