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Rationale: Abdominal aortic aneurysm (AAA) is a complex disease with both genetic and environmental risk 
factors. Together, 6 previously identified risk loci only explain a small proportion of the heritability of AAA.

Objective: To identify additional AAA risk loci using data from all available genome-wide association studies.
Methods and Results: Through a meta-analysis of 6 genome-wide association study  data sets and a validation 

study totaling 10 204 cases and 107 766 controls, we identified 4 new AAA risk loci: 1q32.3 (SMYD2), 13q12.11 
(LINC00540), 20q13.12 (near PCIF1/MMP9/ZNF335), and 21q22.2 (ERG). In various database searches, we 
observed no new associations between the lead AAA single nucleotide polymorphisms and coronary artery disease, 
blood pressure, lipids, or diabetes mellitus. Network analyses identified ERG, IL6R, and LDLR as modifiers of 
MMP9, with a direct interaction between ERG and MMP9.

Conclusions: The 4 new risk loci for AAA seem to be specific for AAA compared with other cardiovascular 
diseases and related traits suggesting that traditional cardiovascular risk factor management may only have 
limited value in preventing the progression of aneurysmal disease.     
(Circ Res. 2017;120:341-353. DOI: 10.1161/CIRCRESAHA.116.308765.)
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Nonstandard Abbreviations and Acronyms

AAA	 abdominal aortic aneurysm

CAD	 coronary artery disease

eQTL	 expression quantitative trait locus

GWAS	 genome-wide association study

IL	 interleukin

IPA	 ingenuity pathway analysis

LDLR	 low-density lipoprotein receptor

LRP1	 low-density lipoprotein receptor related protein 1

SMYD2	 SET and MYND domain containing 2 (SET domain-containing 
proteins, such as catalyze lysine methylation)

SNP	 single nucleotide polymorphism

TNF	 tumor necrosis factor

Abdominal aortic aneurysms (AAAs; MIM100070) are 
a significant cause of mortality and morbidity in the 

Western world. Although much less common than ischemic 
heart disease or stroke, AAA is responsible for ≈11 000 
deaths/y in the United States, with no clinical treatment oth-
er than expensive, high-risk surgery.1 The US Preventative 
Services taskforce recommends AAA screening by ultrasound 
for all men aged 65 to 75 years who have ever smoked.2 The 
UK NHS AAA Screening Program screens all men at the age 
of 65 years irrespective of smoking history yielding a preva-
lence of AAA (>29 mm) of 1.2%.3

Editorial, see p 259

AAA is an enigmatic complex disease. Although shar-
ing risk factors for, and often coexisting with atherosclerosis, 
AAA can be considered to be a distinct entity from atheroscle-
rosis. Smoking, a positive family history of AAA, and male 
sex have been consistently identified as the strongest risk fac-
tors for AAA. There is uncertainty over the influence of other 
traditional cardiovascular risk markers such as hypertension 

and hyperlipidemia. Furthermore, diabetes mellitus has been 
found to be negatively associated with AAA and is strongly 
protective against disease progression (AAA growth).1

Heritability of AAA is >0.7,4 and individuals with a first-
degree relative with AAA have a 2-fold higher risk of develop-
ing an AAA.5 Genome-wide association studies (GWAS) have 
identified 3 AAA risk loci on chromosomes 9 (DAB2IP6 [DAB2 
interacting protein]), 12 (LRP17 [low-density lipoprotein receptor 
related protein 1]), and 19 (LDLR8 [low-density lipoprotein re-
ceptor]). Further AAA risk loci on chromosomes 1 (SORT19 [sor-
tilin 1] and IL6R10 [interleukin 6 receptor]) and 9 (CDKN2BAS1/
ANRIL11 [also known as CDKN2B-AS1, CDKN2B antisense 
RNA 1]) were identified by candidate gene/locus approaches. 
Together, these explain only a small proportion of the heritability 
of AAA.

Overall, the high heritability estimates for AAA and the 
small number of loci identified suggest that there are further 
risk loci yet to be found. In the current study, we performed 
a meta-analysis of 6 available GWAS data sets for AAA on 
4972 cases and 99 858 controls and confirmed the findings 
within validation data sets of 5232 cases and 7908 controls. 
This resulted in identification of 4 novel validated loci for 
AAA. We followed up positive results with extensive bioin-
formatics analyses and used data available from various data-
bases to elucidate the potential biological significance of our 
findings to the pathobiology of AAA.

Methods
Detailed Methods are available in the Online Data Supplement.

Expanded Aneurysm Consortium
All known studies with AAA genome-wide genotyping (Online 
Methods; Online Table I) were invited to join the International 
Aneurysm Consortium. Additional samples (Online Methods; Online 
Table II) were used for the validation study. All AAA cases had an 
infrarenal aortic diameter of >30 mm. AAAs secondary to connec-
tive tissue diseases were excluded. The use of the samples in each 
study cohort was approved by local Ethics Committees or Institutional 
Review Boards.

What Is Known?

•	 Abdominal aortic aneurysm (AAA) has a prevalence of ≈1.5% in men 
aged >65 years.

•	 Positive family history of AAA is a strong risk factor for AAA; however, 
only 6 robust and independently validated AAA genetic loci have been 
identified to date.

What New Information Does This Article Contribute?

•	 Four novel genetic loci associated with AAA were identified.
•	 Pathway analysis highlighted the potential importance of lipoprotein 

metabolism, inflammation, and matrix metalloproteinases in AAA 
pathobiology.

•	 Potentially novel mechanisms, involving genes such as ERG, PLTP, and 
FGF9, were implicated.

AAA is a significant health burden, particularly among elderly 
males. It has a strong heritable component; however, previously 

identified risk loci explain only a small proportion of this effect. 
No current effective medical therapies that slow AAA growth 
exist, highlighting the need to better understand factors influ-
encing pathogenesis and disease progression. This study is 
the first meta-analysis of genome-wide association studies for 
AAA (10 204 cases). Four novel loci were identified and 5 of the 
6 previous AAA genetic associations were confirmed. The new 
loci showed no significant associations with other arterial disease 
phenotypes, potentially suggesting associations more specific to 
AAA than known loci (such as CDKN2BAS1, SORT1, and LDLR). 
Associations were consistent with known AAA pathobiology, im-
plicating lipoprotein metabolism, inflammation, and matrix me-
talloproteinases but also identified potentially novel mechanisms 
relating to genes such as ERG and FGF9. This study has identified 
novel, potentially disease-specific, genetic associations with AAA. 
Further functional studies, investigating the translational potential 
of these observations, will be required.

Novelty and Significance
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Meta-Analysis
The discovery phase of the meta-GWAS was conducted using the 
METAL (a tool for meta-analysis of genome-wide association scans) 
software package12 on the 6 cohorts detailed in Online Table I, com-
prising 4972 AAA cases and 99 858 controls. An effective sample 
number (N

eff
) weighted analysis12 was conducted because of case/

control asymmetry within some of the contributing cohorts. Quality 
control included assessments for population stratification in each data 
set and adjustment was performed if necessary. The analysis of each 
contributing GWAS had been performed independently, and there was 
therefore no uniform analysis plan across all data sets. The individual 
GWAS data sets from Iceland and the Netherlands were adjusted for 
genomic inflation before inclusion in the meta-analysis. The over-
all meta-analysis was then adjusted for genomic inflation (λ; Online 
Table I; Online Figure I). An initial (λ-adjusted) discovery threshold 
of P<5×10−6 was used to identify single nucleotide polymorphisms 
(SNPs) for subsequent validation genotyping. SNPs with high hetero-
geneity (P

het
 <0.005 or I2>70%) were not taken forward for validation.

The lead SNPs [or their proxies in high linkage disequilibrium], 
identified in the discovery analyses, were then genotyped in a further 
8 independent cohorts with 5,232 cases and 7,908 controls (Online 
Table II). Allele association analysis of each individual validation 
study cohort was carried out using the SHEsis (software platform 
for analyses of linkage disequilibrium, haplotype construction, and 
genetic association at polymorphism loci) web-based software pack-
age.13 A combined (discovery-validation) fixed effect meta-analysis 
was performed using a Maentel–Haenzel method with the genome-
wide P-value significance threshold being set at 5×10−8. Random-
effects (Han-Eskin method14) meta-analysis was also performed 
to determine whether any results were sensitive to between-study 
heterogeneity.

SNP Lookup in GWAS for Other Traits 
Associated With AAA
GWAS data sets for other traits were searched for associations 
with the AAA-associated SNPs to determine whether the associa-
tions were unique to AAA or related to generalized cardiovascular 
disease. Results were obtained from meta-analyses of multiple pri-
mary GWAS data sets for each trait. Summary data for each AAA 
associated SNP (P value and effect size) were extracted. P values 
<5×10−8 were considered to be significant. Results were available for 
type 2 diabetes mellitus15 (DIAGRAM [a consortium called DIAbetes 
Genetics Replication And Meta-analysis] consortium; http://www.
diagram-consortium.org/index.html), coronary artery disease 
(CAD; CARDIoGRAM consortium (a consortium called Coronary 
ARtery DIsease Genome wide Replication and Meta-analysis)16; 
www.CARDIOGRAMPLUSC4D.ORG), lipids (the Global Lipids 
Genetics Consortium17; http://csg.sph.umich.edu/abecasis/public/lip-
ids2013), and blood pressure (the International Consortium for Blood 
Pressure18; http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.
cgi?study_id=phs000585.v1.p1).

Search for Other Associated Traits and Diseases 
Using GWAS Databases
The Phenotype-Genotype Integrator19 (http://www.ncbi.nlm.nih.
gov/gap/phegeni#GenomeView), the GWAS catalog (http://www.
gwascentral.org/index), and the NHLBI GRASP (The Genome-
wide Repository of Associations between SNPs and Phenotypes) 
catalog (GRASP v2.0; http://grasp.nhlbi.nih.gov/Overview.aspx)20 
were searched for diseases and traits associated with the lead SNPs 
at the AAA loci.

Phenome-Wide Association Study Analysis
We performed a phenome-wide association study (PheWAS)21,22 
exploring associations between the 9 AAA-associated SNPs and an 
extensive group of diagnoses to identify novel associations and un-
cover potential pleiotropy. For the PheWAS, we used data from the 
eMERGE (electronic Medical Records and Genomics) Network23 
with a total of 27 077 unrelated patients of European ancestry aged 

>19 years. We divided these samples into 2 data sets by propor-
tional sampling based on eMERGE site, sex, and genotyping plat-
form (13 559 and 13 518 individuals in sets 1 and 2, respectively). 
We calculated associations between the 9 AAA-associated SNPs 
and case or control status based on the extensive set of 9th edition of 
the International Statistical Classification of Diseases and Related 
Health Problems diagnoses (2408 and 2385 in sets 1 and 2, respec-
tively) where for a specific diagnosis, individuals with the diagnosis 
are considered cases. Associations were adjusted for sex, site, geno-
typing platform, and the first 3 principal components to account for 
global ancestry.

Annotation of AAA Associated SNPs Using the 
University of California Santa Cruz  Genome 
Browser, Pupasuite, and GWAS3D
Confirmed AAA-associated loci were manually annotated using the 
University of California Santa Cruz Genome Browser (http://genome.
ucsc.edu/cgi-bin/hgGateway) on the hg19 human genome assembly. 
For the Pupasuite analyses SNPs in linkage disequilibrium (r2>0.5) 
and with lead SNPs at the novel AAA risk loci identified were ex-
tracted from the 1000 Genomes data and then entered into Pupasuite 
v3.1.24 In addition, all known (novel and previously identified) AAA-
associated SNPs were entered into the GWAS3D (bioinformatics 
tool detecting human regulatory variants by integrative analysis of 
genome-wide associations, chromosome interactions, and histone 
modifications)25 web-portal (http://jjwanglab.org/gwas3d) to identify 
functional SNPs.

Bioinformatic Identification of Candidate AAA 
Genes and Pathways Using DEPICT (Data-Driven 
Expression-Prioritized Integration for Complex 
Traits)
An integrated gene function analysis was performed using the 
DEPICT tool (version 1.1).26 Two separate runs were performed 
using either all independent SNPs with discovery meta-GWAS 
P<5×10−6 or just those 9 SNPs that reached P<5×10−8 in the com-
bined analysis. Both nominal P values and false discovery rates were 
calculated.

Experimental Evidence for Functional Variants 
at AAA Loci
SNPs at loci confirmed to be associated with AAA were examined 
for functional effects using multiple methods (Online Methods). 
(1) To search for evidence of functional effects of SNPs at AAA 
associated loci 2 expression quantitative trait locus (eQTL) data 
sets based on publically available data, and a broad range of tis-
sues with relatively large sample sizes were examined. First, in-
dex and proxy SNPs were queried in a collected database of 
published expressed SNP results. The collected expressed SNP 
results met criteria for statistical thresholds for association with 
gene transcript levels as described in the original publications. 
Second, additional eQTL data were integrated from online sources  
including ScanDB (SNP and CNV Annotation Database), the 
Broad Institute The Genotype-Tissue Expression browser, and the 
Pritchard Laboratory (eqtl.uchicago.edu). (2) To search for vascu-
lar tissue-specific effects, eQTL data were also obtained from the 
ASAP (Advanced Study of Aortic Pathology) data set27 and RNA-seq 
(whole-genome RNA-sequence generated by high-throughput meth-
ods) data were from the Stockholm-Tartu Atherosclerosis Reverse 
Network Engineering Task (STARNET) database28 (http://www.
mountsinai.org/profiles/johan-bjorkegren). (3) Because some genes 
at AAA loci were associated with monocyte function and AAA is 
known to be an inflammatory disease,29 data from an eQTL analysis 
of peripheral blood monocytes were obtained from the Cardiogenics 
Consortium (http://www.cardiogramplusc4d.org/). (4) Finally to 
search for effects in AAA tissue specifically, mRNA expression pro-
files of all the GWAS3D predicted distal targets, as well as SNP prox-
imity implicated genes, were examined using a previously published 
genome-wide expression data set on human aorta (GSE57691),30 
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from which 49 AAA samples were compared with 10 organ donor 
control aortic samples. Transcription factor (TF) binding data were 
also obtained from a previous study,31 which described chromatin-
immunoprecipitation (ChIP)-chip for TFs ELF1, ETS2, RUNX1, and 
STAT5 using human aortic tissue in AAAs and healthy control aorta.

Network Analysis
We investigated whether most of the loci could be connected into 
a single network through intermediate nodes and interactions. A 
network integrating most of the loci would suggest mechanisms 
by which the loci could act in concert, whether synergistically or 
antagonistically, to affect the phenotype. The network(s) would 
also provide hypotheses for future investigation. Using the genes 
harboring AAA-associated SNPs as a starting set, we analyzed po-
tential interactions between the proteins and known intermediates 
(proteins, noncoding RNA, and metabolites) using 2 independent 
analysis tools, Ingenuity Pathway Analysis (IPA) tool version 9.0 
(Qiagen’s Ingenuity Systems, Redwood City, CA; www.ingenu-
ity.com) and Consensus PathDB (http://cpdb.molgen.mpg.de/
CPDB).32,33 The analyzed gene set had 14 genes because 2 of the 
9 AAA loci included clusters of 3 genes and tumor necrosis factor 
(TNF) was added because of the recent literature demonstrating 
the strong effect of SMYD2 (SET and MYND domain containing 2 
[SET domain-containing proteins, such as catalyze lysine methyla-
tion]) on interleukin-6 (IL6) and TNF production34,35 (see Online 
Table XIV for SNP annotations and Online Methods).

Results
Meta-Analysis of 6 GWAS Data sets for AAA 
Followed by a Validation Study Reveals 4 New 
AAA Susceptibility Loci
The meta-analysis of 6 GWAS data sets (4972 AAA cases; 
99 858 controls; Online Table I) revealed 19 loci of interest 

(P<1×10−6, Online Tables III and IV; Figure 1). Lead SNPs 
from these loci, including the 6 AAA risk loci reported pre-
viously, were analyzed in a validation study of 5232 AAA 
cases and 7908 controls (Online Tables II, V, VI, and VII). 
Four new loci were independently significant (P<0.05) in the 
validation cohort, had a direction of effect consistent with the 
discovery cohort and when combined with the discovery co-
hort had a P value that surpassed a genome-wide significance 
(5×10−8): 1q32.3 (SMYD2), 13q12.11 (LINC00540 [long 
intergenic nonprotein coding RNA 540]), 20q13.12 (near 
PCIF1 [C-terminal inhibiting factor 1 of a protein called pan-
creatic and duodenal homeobox 1]/MMP9 [matrix metallo-
proteinase 9]/ZNF335 [zinc finger protein 335]), and 21q22.2 
(ERG [v-ets avian erythroblastosis virus E26 oncogene ho-
molog]; Table 1; Online Tables V, VI, and VII; Figure 2). All 
previously reported associations with AAA were confirmed at 
genome-wide significance (Table 1; Online Table VII; Online 
Figure II) with the exception of 12q13.3 (LRP1), where the 
lead SNP identified in this meta-analysis and tested in our 
validation study only demonstrated a borderline association 
with AAA in the combined analysis (P=6.4×10−7). There was 
evidence of significant heterogeneity in the results observed 
for rs1795061 (near SMYD2) and rs2836411 (ERG) (Online 
Table VII). A random-effects model sensitivity analysis (Han-
Eskin14 method) demonstrated minimal effect on the results 
for these 2 loci (Online Table VIII). The lead SNPs at 2 loci 
that were both below the threshold for genome-wide signifi-
cance under the fixed-effects model (rs6516091, 20p12.3, near 
FERMT1 and rs5954362, Xq27.2, SPANXA1) were significant 

Figure 1. Whole-genome association plot for the primary meta-analysis of genome-wide association studies of abdominal 
aortic aneurysm (AAA). Data represent a meta-analysis of 4972 AAA cases and 99 858 controls. The horizontal line indicates the P 
value threshold of 5×10−6 used to select loci for validation studies. The 9 subsequently validated AAA loci are indicated along with the 
previously identified LRP1 locus, which fell to P=6.4×10–7 in the combined discovery/ validation analysis (Online Tables III and IV). 
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in the random-effects model. However, because both demon-
strated extreme heterogeneity (I2 ≥ 0.7), we did not consider 
these to be newly identified loci for AAA and these were ex-
cluded from further analysis.

New AAA Loci Seem to be Specific for AAA
To assess whether the loci identified in our meta-analysis were 
specific to AAA or were also associated with diseases or risk 
factors known to be associated with AAA, we looked up re-
sults from GWAS of CAD,6 hypertension,18 and lipid traits.17 
We also obtained results for diabetes mellitus15 to determine 
whether there was a reverse effect at these loci because diabe-
tes mellitus is a negative risk factor for AAA and negatively 
influences AAA growth.1 Other than the known associations 
at 1p13.3 (SORT1), 9p21 (CDKN2BAS1/ANRIL) with CAD, 
1p13.3 (SORT1) with high-density lipoprotein/LDL, and 
19p13.2 (LDLR) with LDL, we observed no new associations 
between the lead SNPs at any of the AAA risk loci we had 
identified and these traits (Figure 3; Online Table IX). In par-
ticular, no association was observed between diabetes mellitus 
and these SNPs. Literature searching revealed an association 
between rs4845625 at 1q21.3 (IL6R) and CAD, but this was 
not in high linkage disequilibrium with the lead SNP geno-
typed in our study at this locus (R2=0.54).36

We also searched GWAS Central (database proving integra-
tive visualization of and access to GWAS data) and Phenotype-
Genotype Integrator and performed a GRASP37 analysis for 
any associations of the lead AAA SNPs with traits other than 
those listed above. We identified additional genome-wide sig-
nificant associations between 1q21.3/IL6R (rs4129267) and 
C-reactive protein/asthma, and nominal associations between 
1p13.3/SORT1 (rs602633), 21q22.2/ERG (rs2836411), and 
19p13.2/LDLR (rs6511720) and height (Online Tables X, XI, 
and XII), a potential risk factor for AAA.38

We also performed a PheWAS21,22 in the eMERGE 
data sets exploring the association between the 9 AAA-
associated SNPs and an extensive group of diagnoses to 
identify novel associations and uncover potential pleiotropy. 
We considered identification of previously known associa-
tions, such as rs602633 associated with hyperglyceridemia 
and rs10757274 associated with CAD, to be indications that 
the PheWAS approach was robust. The PheWAS results 
demonstrated the known associations with CAD and lipid 
levels but did not identify any novel disease associations 
(Online Table XIII).

Annotation of SNPs at AAA Loci
Annotation did not identify any nonsynonymous variants in 
high linkage disequilibrium (R2>0.5) with the lead SNPs at 
the AAA risk loci (Online Tables XIV and XV). Based on 
GWAS3D analysis, all 9 lead SNPs were associated with TF-
binding site affinity variants (Online Tables XVI and XVII). 
Eight SNPs had potential long-range interactions with distal 
genomic regions (Figure 4). GWAS3D analysis also provided 
potential mechanistic insight for intergenic AAA variants such 
as rs9316871 (13q12.11) that had significant predicted regu-
latory variant interaction with FGF9 (fibroblast growth fac-
tor 9; 13q12.11). In addition, although the AAA association 
with rs599839 (1p13.3) showed strong long-range chromatin 
interaction with SORT1 (as previously reported specifically 
in AAA9), it also had predicted distal interactions with other 
genes including BCAR3 (breast cancer antiestrogen resistance 
3; 1p22.1) and NOTCH2 (notch 2 member of type 1 trans-
membrane protein family; 1p12-p11).

DEPICT Gene Pathway Prediction
DEPICT identified 633 and 482 gene enrichment sets with 
nominal P<0.05 using the discovery meta-GWAS SNP set 

Table 1.  List of AAA Associated Loci Surpassing a Genome-Wide Significance Threshold After Combining GWAS data (4972 cases 
and 99 858 controls) and Validation Data (5232 cases and 7908 controls)

SNP

      Discovery Phase Validation Phase Combined

Chr Position Nearest Gene(s) Min_All* Maj_All* MAF OR P Value I2 OR P Value I2 OR 95% CI P Value I2

Previously reported AAA risk loci

 � rs602633
1 109821511

PSRC1-
CELSR2-SORT1

T G* 0.199 0.845 3.12×10−08 29.4 0.920 9.83×10−3 55.7 0.879 0.842–0.918 6.58×10−9 54.5

 � rs4129267 1 154426264 IL6R T C* 0.370 0.854 1.74×10−10 0 0.904 1.81×10−4 17.2 0.876 0.846–0.908 4.76×10-13 0.0

 � rs10757274
9 22096055

CDKN2BAS1/
ANRIL

A G* 0.462 0.832 2.71×10−13 10.0 0.774 1.02×10−21 64.2 0.806 0.778–0.834 1.54×10−33 55.6

 � rs10985349 9 124425243 DAB2IP T* C 0.195 1.185 2.01×10−7 18.1 1.155 2.30×10−5 3.9 1.171 1.118–1.226 2.40×10−11 9.2

 � rs6511720 19 11202306 LDLR T G* 0.096 0.743 8.60×10−13 0 0.868 6.02×10−4 68.2 0.804 0.759–0.851 7.90×10−14 61.0

Novel AAA risk loci

 � rs1795061 1 214409280 SMYD2 T* C 0.337 1.154 3.26×10−8 47.9 1.105 3.49×10−4 70.3 1.131 1.090–1.174 8.80×10−11 61.9

 � rs9316871 13 22861921 LINC00540 A G* 0.201 0.864 1.23 ×10−6 33.2 0.883 8.28×10−5 0.0 0.873 0.837–0.911 4.75×10−10 0.0

 � rs3827066
20 44586023

PCIF1-ZNF335-
MMP9

T* C 0.179 1.232 1.88×10−10 0 1.213 2.00×10−8 16.5 1.223 1.168–1.281 2.13×10−17 0.0

 � rs2836411 21 39819830 ERG T* C 0.369 1.149 2.51×10−8 30.1 1.072 1.13×10−2 28.3 1.113 1.074–1.154 5.80×10−9 42.2

For all loci shown the direction of effect was consistent across all studies in the discovery phase. Full details are shown in Online Tables III, IV, V, VI, and VII. Results 
shown for the discovery, validation and combined analyses are all Maentel–Haenzel fixed effect meta-analysis method. AAA indicates abdominal aortic aneurysm; CI, 
confidence interval; MAF, minor allele frequency; and OR, odds ratio.

*Effect allele.
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(P<5×10−6) and top 9 SNPs from the combined analysis, re-
spectively. Only one of the gene sets (decreased long bone 
epiphyseal plate size) had a false discovery rate of <0.2. Gene 
set descriptions included multiple functional classes relevant 
to vascular biology, ie, transforming growth factor-β regula-
tion, lipoprotein metabolism, inflammation-induced extra-
cellular matrix remodeling (regulatory factor X1), vascular 
smooth muscle cell function, vascular injury including hem-
orrhage, immune cell function (particularly T and B cells), 
acute phase response including IL6 secretion, apoptosis, hy-
perglycemia and the phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit alpha, c-Jun N-terminal kinase, and 
mitogen-activated kinase-like protein cascades. In addition, 
there were multiple gene sets associated with long bone size 
and epiphyseal plate formation (Table 2; Online Table XVIII 
and Online Data File).

Functional Effects of SNPs at AAA Loci
The lookup of SNPs at AAA loci in studies of functional effects 
included multitissue eQTL studies, vascular/monocyte-specif-
ic eQTL, and AAA-specific studies (mRNA expression and 
chromatin-immunoprecipitation-chip). These analyses revealed 
several potential functional associations (Online Tables XI, 

XX, XXI, and XXII; Online Figure III).27,39 Of most relevance 
to AAA, eQTLs were observed for rs3827066 (20q13.3) and 
PLTP (phospholipid transfer protein) expression in aortic tissue 
and for rs4129267 (1q21.3) and IL6R expression in mammary 
artery. RNA-Seq data also demonstrated independent eQTLs in 
mammary artery for 2 of the novel AAA associations we have 
identified: rs2836411 and ERG expression and rs9316871 and 
FGF9 expression. All eQTLs, with the exception of rs9316871 
and FGF9 were also seen in tissues other than arterial samples.

Several GWAS3D-predicted distal interacting genes had 
significantly different mRNA expression between AAA and 
control samples (Table  3; Online Table XXIII and Figure 
IV).30 For example, BCAR3 had decreased mRNA expression 
in AAA tissue (as did SORT1 itself). In addition, although the 
closest gene to rs9316871, a long intergenic noncoding RNA 
(LINC00540), was not part of the mRNA data set, the pre-
dicted distal target FGF9 had significantly increased mRNA 
expression in AAA tissue (Online Table XXIII).

Chromatin-immunoprecipitation-chip data from human 
AAA tissue31 revealed TF-binding sites in 5 genes (SMYD2, 
SORT1, CDKN2BAS1/ANRIL, ERG, and DAB2IP), which 
harbor AAA risk loci, but none of these binding sites included 

Figure 2. Regional association plots for 4 new abdominal aortic aneurysm (AAA) genome-wide significant loci at 1q32.3, 
13q12.11, 20q13.12, and 21q22.2. New AAA genome-wide significant loci at 1q32.3 (near SMYD2), 13q12.11 (LINC00540), 20q13.12 
(near MMP9/ZNF335), and 21q22.2 (ERG). −log10 (Pfixed) values for single nucleotide polymorphisms (SNPs) from the AAA discovery 
meta-analysis of 4972 cases and 99 858 controls were plotted against their genomic positions using LocusZoom (1000Genomes, EUR, 
November 2014). The peak SNP in each region is labeled (purple diamond), whereas the color indicates LD (r2) with the peak.
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the lead SNP tested for association with AAA (Online Table 
XXIV).

Network Analysis Reveals a Central Role for Matrix 
Metalloproteinase 9
Network analysis using both IPA and Consensus PathDB 
demonstrated similar results (Online Figures V and VI). Both 
analyses revealed a central role for MMP9 in AAA, with IPA 
identifying direct interactions (physical contact between 2 
molecules such as binding or phosphorylation) between ERG, 
IL6R and LDLR, and MMP9, and Consensus PathDB iden-
tifying a direct interaction between ERG and MMP9 with 
secondary interactions (interactions without physical contact, 

such as signaling events) between both SMYD2 and LDLR, 
and MMP9. On removing TNF from the analysis (which had 
been added based on the strong effect of SMYD2 on IL6 and 
TNF production34,35), the genes at AAA loci each remained in 
independent subnetworks. Inclusion of transforming growth 
factor-B1, implicated in thoracic aneurysms and Marfan syn-
drome, instead of TNF failed to coalesce the subnetworks. 
The long noncoding RNA ANRIL (CDKN2BAS1), our stron-
gest hit in the genome (Figure 1), has been reported in nu-
merous studies as a GWAS hotspot and a candidate gene for 
CAD, intracranial aneurysms, and diverse cardiometabolic 
disorders40; however, this was not represented in either the IPA 
or Consensus PathDB networks.

Discussion
The present study is the largest genetic association study of 
AAA performed to date, utilizing 6 GWAS data sets for AAA 
with a total of 4972 cases and 99 858 controls. Furthermore, 
we used an independent validation set of 5232 AAA cases 
and 7908 controls and then performed a pooled analysis of all 
10 204 cases and 107 766 controls. We confirmed the associa-
tion of 5 previously reported loci and identified 4 new loci as-
sociated with AAA at genome-wide levels of significance. In 
contrast to previously identified loci, lead SNPs at the newly 
identified loci did not demonstrate evidence of cross-pheno-
type association with other cardiometabolic phenotypes. In 
summary, the genetic evidence to date mirrors that seen in the 
epidemiological literature where it is clear that AAA and other 
forms of cardiovascular diseases are seen as distinct but over-
lapping phenotypes.

Previous genetic discoveries in AAA have pointed to in-
flammation and immune function (IL6R and CDKN2BAS1/
ANRIL) and low-density lipoprotein metabolism (SORT1 and 
LDLR) as important mediators of AAA development. The 
genes at the novel AAA loci identified here are relevant to 
aneurysm biology, but their precise roles require further in-
vestigation. MMP9 is within the 20q13.12 locus and matrix 
degradation via MMP9 is known to play a key role in the 
development of AAA, evidenced by the observation of high 
levels of MMP9 in end-stage disease specimens.41 This is also 
an important finding given the development of novel pharma-
cotherapies that target inflammation and matrix degradation 
pathways such as tofacitinib (a novel Janus kinase inhibitor). 
Although it is tempting to assume that MMP9 is the causal 
association at this locus, there are, however, other candidate 
genes at this locus. Examination of the region and the asso-
ciation pattern with AAA (Figure 2) shows that the strongest 
signals are seen upstream of MMP9 and are separated from 
MMP9 by a recombination hotspot. Closer to the strongest 
association signal are ZNF335 and PCIF1. There is no litera-
ture evidence for any potential link for ZNF335 to AAA and 
the only identified genetic association of ZNF335 is with ce-
liac disease.42 Although rs181914932 is upstream and more 
proximal to PCIF1, it has been associated with the activity of 
PLTP,43 an adjacent gene in the same locus. Our eQTL analy-
ses demonstrated an association between the lead SNP we as-
sessed at this locus (rs3827066) and PLTP expression in aortic 
tissue (Online Tables XX and XXI). We have also shown that 
PLTP expression is significantly higher in aneurysmal aortic 

Figure 3. Association between the lead single nucleotide 
polymorphisms (SNP) at the abdominal aortic aneurysm risk 
loci and association P values for other cardiovascular risk 
factors/traits (Online Table IX). CAD indicates coronary artery 
disease; DBP, diastolic blood pressure; DM, diabetes mellitus; 
HDL, high-density lipoprotein; LDL, low-density lipoprotein; SBP, 
systolic blood pressure; and TG, triglyceride.
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tissue than in control aorta (Online Table XXIII and Figure 
IV). PLTP plays a role in cholesterol transport. These data 
strengthen the evidence, particularly when taken together with 
the SORT1 and LDLR associations confirmed here, that aber-
rations of lipid metabolism play a key role in the development 
of AAA.

The other novel AAA loci identified here contain 
LINC00540, ERG, and SMYD2. LINC00540 is a long noncod-
ing RNA with no currently known function; however, both 
our GWAS3D and eQTL analyses independently suggested 
an association with FGF9, which was also differentially ex-
pressed within AAA tissue. ERG encodes a TF that is nor-
mally present in hematopoietic and endothelial cells. ERG has 
a role in vascular endothelial growth factor/mitogen-activated 
kinase-like protein–mediated vascular development,44 as well 
as regulating angiogenesis, which is known to play a role in 
the development of AAA.45,46 ERG also plays a role in the em-
bryonic development of the aorta,44 and it has been hypoth-
esized that in utero aortic development has a role in the later 
development of an AAA.47 In prostate cancer, ERG has been 
shown to regulate the expression of MMP9.48 Taken together 
this limited evidence points to several potential roles by which 
ERG may influence the development of AAA and, along with 
our significant eQTL observations, strongly suggest that fur-
ther work in this area is warranted.

The role of SMYD2 in AAA is less clear. SMYD2 regu-
lates HSP90 (heat shock protein 90) methylation,49 and the 
inhibition of heat shock protein 90 has been shown to reduce 
AAA formation in murine models,50 suggesting this as a pos-
sible link between SMYD2 and AAA. SMYD2 also plays a 

role in the differentiation of embryonic stem cells,51 again 
suggesting a possible role for aberrations of in utero aortic 
development influencing the risk of aortic disease later in life.

The integrated gene function analysis tool DEPICT 
identified numerous pathways that are potentially relevant 
to aneurysm pathogenesis (Table 2). In particular, we note 
with interest that the strongest predicted set was associated 
with long bone epiphyseal plate formation, which is pos-
sibly consistent with previous studies reporting tall stature 
as a risk factor for AAA52 and conversely short stature with 
occlusive CAD.53,54

Our network analyses using 2 different bioinformatics 
tools also revealed a central role for MMP9 in AAA, with IPA 
identifying direct interactions between ERG, IL6R and LDLR, 
and MMP9, and Consensus PathDB identifying a direct inter-
action between ERG and MMP9 with secondary interactions 
between both SMYD2 and LDLR and MMP9. These results 
suggest that the novel loci could act in concert, either syn-
ergistically or antagonistically, to affect the AAA phenotype, 
and provide hypotheses for future investigation using animal 
and cell culture models.

In this study, we did not replicate the association previ-
ously identified between LRP1 and AAA.7 The samples from 
the original study that identified this association were in-
cluded in this analysis, suggesting that this may have been 
a false-positive association. However, there is evidence sup-
porting LRP1 as a biologically plausible candidate pathway 
for AAA.55,56 Variants at, or close to, LRP1 are also associated 
with other vascular/related phenotypes (aortic dissection,57 
migraine,58 and lipid traits17). Because we observed a degree 

Figure 4. Circle plot showing the lead 
single nucleotide polymorphism (SNP) 
distal interaction regions based on the 
9 replicated abdominal aortic aneurysm 
genome-wide association study SNPs. 
Top variants with highest regulatory 
signals and distal interaction regions are 
shown on the outer circle (significant 
regulatory variants are labeled with I). The 
inner circle shows genes and genomic 
loci, whereas the distal interactive 
signals are shown with red lines (width 
corresponds to intensity of interaction). 
Note the long-range interactions, such 
as that between variants associated with 
IL6R (rs4845620, 1q21.3) and TYW1B 
(7q11.23).
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of heterogeneity at this locus in our analysis (Online Table 
VII), we consider that further investigation of this locus re-
mains warranted despite our findings.

Our GWAS3D genome analysis predicted potential nov-
el biological pathways in AAA pathogenesis. For example, 
FGF9 was shown to have a possible distal interaction with 
the intergenic SNP rs9316871. FGF9, although not previously 
considered a strong candidate in AAA pathogenesis, was nev-
ertheless at least partially validated by its increased mRNA 
expression in AAA tissue (Table 3). In AAA, both the medial 
and adventitial layers of the vessel wall are significantly more 
vascularized compared with nonaneurysmal tissue,59 and it 
is therefore interesting to note that FGF9 has been shown to 
enhance angiogenesis and neovascularization within mouse 
models of myocardial infarction.60

The main strength of this study is the inclusion of all cur-
rently available worldwide GWAS data sets for AAA and for-
mation of an expanded International Aneurysm Consortium. 
We acknowledge several limitations in our work. The over-
all numbers of samples included in our analysis are lower 
than for more common traits such as diabetes mellitus15 and 
CAD.16 We also did not have an adequate number of females 
in our sample set to perform sex-specific analyses that may 

Table 2.  DEPICT Gene Enrichment Sets Based on the Top 10 
Validated Loci

Original Gene Set ID
Original Gene Set 

Description
DEPICT Nominal P 

Value

MP:0006396* Decreased long bone 
epiphyseal plate size

1.14×10−9

GO:0034381 Plasma lipoprotein 
particle clearance

5.22×10−7

ENSG00000132005 RFX1 PPI subnetwork 2.28×10−6

MP:0005595 Abnormal vascular 
smooth muscle 

physiology
1.55×10−3

ENSG00000122641 INHBA PPI subnetwork 1.79×10−3

MP:0002764 Short tibia 1.79×10−3

ENSG00000169047 IRS1 PPI subnetwork 2.21×10−3

GO:0050431 Transforming growth 
factor beta binding

2.47×10−3

MP:0005590 Increased vasodilation 3.45×10−3

GO:0071813 Lipoprotein particle 
binding

3.51×10−3

GO:0005178 Integrin binding 4.08×10−3

ENSG00000133056 PIK3C2B PPI 
subnetwork

4.40×10−3

MP:0005095 Decreased T cell 
proliferation

4.84×10−3

ENSG00000149257 SERPINH1 PPI 
subnetwork

5.79×10−3

ENSG00000034152 MAP2K3 PPI 
subnetwork

6.58×10−3

ENSG00000017427 IGF1 PPI subnetwork 7.51×10−3

GO:0043406 Positive regulation of 
MAP kinase activity

7.65×10−3

MP:0000180 Abnormal circulating 
cholesterol level

7.71×10−3

MP:0001915 Intracranial 
hemorrhage

8.00×10−3

MP:0004883 Abnormal vascular 
wound healing

8.15×10−3

ENSG00000106992 AK1 PPI subnetwork 8.69×10−3

MP:0003419 Delayed endochondral 
bone ossification

8.98×10−3

MP:0000716 Abnormal immune 
system cell 
morphology

9.63×10−3

ENSG00000170581 STAT2 PPI subnetwork 9.79×10−3

GO:0043277 Apoptotic cell 
clearance

9.98×10−3

MP:0001828 Abnormal T—ell 
activation

0.01

ENSG00000141506 PIK3R5 PPI 
subnetwork

0.01

(Continued )

GO:0000989 Transcription factor 
binding/transcription 

factor activity
0.01

GO:0007254 JNK cascade 0.01

GO:0014910 Regulation of smooth 
muscle cell migration

0.02

MP:0001552 Increased circulating 
triglyceride level

0.02

MP:0001559 Hyperglycemia 0.02

ENSG00000105851 PIK3CG PPI 
subnetwork

0.02

GO:0050900 Leukocyte migration 0.03

MP:0003957 Abnormal nitric oxide 
homeostasis

0.03

GO:0006953 Acute-phase response 0.03

ENSG00000206240 HLA-DRB1 PPI 
subnetwork

0.03

GO:0043123 Positive regulation of 
I-kappaB kinase/NF-

kappaB cascade
0.03

ENSG00000145431 PDGFC PPI subnetwork 0.04

MP:0008706 Decreased 
interleukin-6 secretion

0.04

MP:0008688 Decreased 
interleukin-2 secretion

0.04

This table is a truncated version of the full list available in the Online Table 
XVIII. DEPICT indicates Data-Driven Expression-Prioritized Integration for 
Complex Traits.

*The gene sets that had a false discovery rate of <0.2.

Table 2.  Continued

Original Gene Set ID
Original Gene Set 

Description
DEPICT Nominal P 

Value
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have been informative given the strong sexual dimorphism 
exhibited by AAA.61 We recognize this limitation, but the 
current focus of AAA screening programs on men alone2,3 
and the much reduced prevalence of AAA in women means 
that collecting adequate samples for such analyses is likely 
to be challenging. Some of the contributing GWAS studies 
such as the Aneurysm Consortium GWAS were derived from 
multicenter sample collections that led to intercohort hetero-
geneity in clinical phenotyping of the case groups. Together 
with the limited covariate data available for the control 
groups in the GWAS studies that used population control 
samples, this led to an inability to reliably adjust for clinical 
covariates in our overall analysis. Given these limitations, 
and in particular about the numbers of samples available for 
analysis in AAA, alternative approaches for investigating the 
genetic cause of AAA need to be considered. The natural 
history of AAA with a long latent period (if detected early), 
during which patients are monitored by serial imaging stud-
ies, offers the opportunity to study disease progression as a 
continuous trait, leveraging additional power over discrete 
trait approaches for the limited sample sizes available.37

In conclusion, our meta-GWAS and the bioinformat-
ics analyses, applying multiple techniques, has highlighted 

several potentially novel mechanisms of AAA pathobiology. 
These will require direct investigation in future studies to con-
firm their role in the development and progression of AAA.
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mRNA P 
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AAA mRNA 
expression

Predicted distal 
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Predicted distal 
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Predicted distal 
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lead SNP at AAA locus
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Nonsignificant results (30 genes) are shown in Online Table XXIII, and box and 
whiskers plots on mRNA expression levels are presented in Online Figure IV. See 
Figure 4 for results from the GWAS3D analysis. AAA indicates abdominal aortic 
aneurysm; GWAS, genome-wide association studies; and SNP, single nucleotide 
polymorphism.
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