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Abstract

My supervisors lan Chiswell and Thomas Miiller have found a new class of
groups of functions defined on intervals of the real line, with multiplication
defined by analogy with multiplication in free groups. I have extended this idea
to functions defined on a densely ordered abelian group. This doesn’t give rise
to a class of groups straight away, but using the idea of exponentiation from a
paper by Myasnikov, Remeslennikov and Serbin, I have formed another class of
groups, in which each group contains a subgroup isomorphic to one of Chiswell
and Miiller’s groups.

After the introduction, the second chapter defines the set that contains the
group and describes the multiplication for elements within the set. In chapter
three I define exponentiation, which leads on to chapter four, in which I describe
how it is used to find my groups. Then in chapter five I describe the structure

of the centralisers of certain elements within the groups.
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Chapter 1

Introduction

1.1 Introduction.

In 2004. Tan Chiswell and Thomas Miiller attended a series of talks by Vladimir
Remeslennikov at Queen Mary, University of London, about possibly construct-
ing a new class of groups, RF(G), from the set of functions f : [0,a] — G
where & € RTU{0} and G is a given group. No proofs were given in these talks,
but some interesting problems were discussed and Chiswell and Miiller decided
to fill in the proofs to establish that these groups really did exist.

Once they had done this they went on to examine the groups in more detail
and found them to be a fascinating new branch of group theory, leading them
to write a book, [2].

My work was a natural extension of this class of groups. I started looking
at F(G, A), the set of functions f : [0,a]p — G where a € A, for A a given
ordered abelian group (which is open question 21 in appendix B at the end of

Chiswell and Miiller’s book [2]).



1.2 Ordered Abelian Groups and Lyndon Length
Functions.

An ordered abelian group is an abelian group A, with a total ordering < defined
on it such that for all a, b, ¢ € A, a < bimplies that a+c < b+c. Here we are using
the additive notation so 0 is the identity element. Let P = {A € A : A > 0}.
Then we have that A = P U P~! U {0}, the disjoint union of P, P~! and {0},
and P+ P C P. We call P the positive cone of A (see [1]). Ordered abelian
groups are useful for comparing different elements.

An ordered abelian group is called discretely ordered if it has a least positive
element otherwise it is said to be densely ordered (in which case inf {P} = 0).

Examples of such groups are given below:

(1) Additive groups Q and R are densely ordered abelian groups with their

usual order.
(2) Additive group Z is a discretely ordered abelian group with its usual order.

(3) Given n € N, if A,, are ordered abelian groups for all n, then the direct
sum @@, A, can be made into an ordered abelian group for each n by
letting (..., 2z2,21) < (...,y2,91) if and only if x; = y; for all ¢ > j, and

z; < y;. Hence R™ can be viewed as a densely ordered abelian subgroup

of the densely ordered abelian group €, R™.
(4) Z[t] with the usual ordering, where
ajtj+...+a1t+a0 Z bj_ltj71+...+b1t+bo

for all j € N and aj,...,a0,bj-1,...,bp € Z with a; > 0, is a discretely

ordered abelian group. This is isomorphic to &, Z.

The next definition can be found in Ian Chiswell’s book [1] on page 73.



Definition 1.2.1. Let G be a group and A an ordered abelian group. A mapping
L:G — A is called a Lyndon length function if

(1) L(1) =0,
(2) Forallg € G, L(g) = L(g™ 1),
(3) Let c(g,h) = (L(g) + L(h) — L(g~*h))/2, then for all g,h,k € G,

c(g,h) = min{c(g, k), ¢(h, k),

(4) Forallg € G, L(g) > 0,
(5) For all g,h € G, L(gh) < L(g) + L(h).

Note that 4 and 5 are implied by the first three.

There is an equivalence between actions of a group on A-trees and A-valued
Lyndon length functions defined on the group. At the end of Chapter 4 we
will prove that a length function that I define on elements of my new groups is

actually a Lyndon length function, linking them to the theory of A-trees.

1.3 Words, Free Groups and Pregroups.

In order to describe the elements of the new sets RF(G) we must first examine
the theory of words and free groups.

Let G be a multiplicative group generated by a subset S. The elements of
S and the set of formal inverses of S, S~™!, are called letters and make up the
alphabet S*. A word in G is a finite string of letters from the alphabet S*.
Two words represent the same element of G if there are relations on ST such
that one word can be converted to the other in a finite number of steps by
using these relations. When the number of letters in the word decreases in this
process we say that the word has been reduced. Since all these words are finite,

we can define the length of an element g € G to be the number of letters in the



shortest word that represents it. This word may not be unique, but the length
of every shortest word representing the same element is. A reduced word is a

word in which the subwords zz !

or 'z do not appear for any letter z € S.
The empty word (a word with no letters) is an allowed word and is the identity
element. In this case G is a discrete group.

From this we can define a free group. One way of looking at a free group
is as a group that is generated by a subset S with no relations other than the
trivial relations on it, so that every element g € G can be written uniquely as
a reduced word in the elements of S. This unique word does not contain any
subword of the form g~'g or gg~!. The definition below is a formal definition,

equivalent to my definition, taken from the start of Roger Lyndon and Paul

Schupp’s book [5]:

Definition 1.3.1. Let X be a subset of a group F. Then F is a free group with
basis X provided the following holds: if ¢ is any function from the set X into a
group H, then there ezists a unique extension of ¢ to a homomorphism ¢* from

F into H.

For example, (z), the infinite cyclic group generated by z, is a free group
with S = {z}. Here the length of g is the number of letters in the unique
shortest word as defined above, so for example the word z* has length 4, the
identity (the empty word) has length 0.

Multiplication of words in these groups is done in two steps: first the words
are concatenated, then they are reduced. For example let a,b € G be such that
a=ajxas and b = a;lybl with ay, as,b; words in G and x # y~! letters in S.
Then

ab = (alxag)(aglybl) = a1xyb;

and ajzyb; is reduced.
These words can be extended to countably infinite words by not limiting

the length of the words to a finite number. Tan Chiswell and Thomas Miller



have gone a step further and defined uncountably infinite words by defining a
function from compact intervals on the real line into a group G. These send
every point of the interval to an element in GG, but in this set, the only words
made up of a finite number of letters are the words of length 0. Note that here

they are using the whole group G as the set S.

Definition 1.3.2. A cancellative monoid is a set, M, with a multiplication on

it such that:
(1) It is closed under this multiplication,
(2) There is an identity,
(3) The multiplication is associative,
(4) Given a,b,c € M, ab = ac or ba = ca implies that b = c.

Chiswell and Miiller define a multiplication analagous to concatenation on
the set F(G) = F(G, A) of uncountably infinite words using the group operation
on G. This forms a cancellative monoid ( [2], Section 2.1). However it doesn’t
necessarily contain inverses to all elements and the elements may not be reduced.
Hence they use an analogue of reduction in the free group case together with
the monoid operation, but since R is densely ordered, the two points that join
the elements together must be amalgamated into one letter (their product in
Q).

In my work there are problems, even with these restrictions in place, so 1
turned to a paper by Alexei Myasnikov, Remeslennikov and Denis Serbin, [7].
Here they describe a new way of constructing a free Z[t]-group, FZI! that had
been defined and studied by Roger Lyndon in [4]. Lyndon used this group to
prove that only finitely many parametric words are needed to describe solutions
of one-variable equations over F', see [3].

More recently this group has been linked to algebraic geometry over groups

and the Tarski problem, which led to developments in fully residually free



groups, proving they are embeddable into FZ[* and allowing one to study them
using combinatorial group theory.

Myasnikov, Remeslennikov and Serbin’s work uses the idea of pregroups as
defined by John Robert Stallings. A pregroup is a set, defined below, that sits
inside a larger group, called its universal group, which can then be studied. The

definition from [8] and [9] is as follows:

Definition 1.3.3. Let P be a set, i : P — P be an involution, denoted x — x ™1
and 1 € P be a distinguished element. Then let D C P x P and m : D — P be
a set map, denoted (x,y) — wxy, whilst (x1,...,25)p means that (z;,2,41) € D

foralll <i<k.

Then P is a pregroup if it satisfies the following conditions:
(P1) For allz € P, (x,1),(1,z) € D and z1 = lz =z,
(P2) Forallz € P, (z,z71),(z7,2) € D and za~ ! =2 1o =1,

(P3) For all w,z,y € P, if (w,z,y)p, then if one of (w,xy)p or (wx,y)p is

true then they both are and (w,x,y) associates i.e. w(ry) = (wx)y,
(P4) For allw,x,y,z € P, (w,x,y,2)p tmplies (w,zy)p or (zy,z)p.

Pregroups are used by Myasnikov, Remeslennikov and Serbin in their paper
[7] to construct the Z[t]-exponentiation, FZ!, of a free group F, which, given
an alphabet X* of F, can be embedded into C DR(Z][t], X), a group they define
in their paper. In order to do this they introduce the idea of an A-group, as

used by Roger Lyndon in [4]. The definition of an A-group is as follows:

Definition 1.3.4. Let A be an associative unitary ring and let G be a group.

G is an A-group if it comes with an exponentiation function G x A — G
(9,a) — g°

that satisfies the following conditions, which are called Lyndon’s axioms:

10



(B1) g' =g, g°*7 = g%¢", g% = (¢*)°.
(E2) g~*h*g = (g~ ‘hg)".

(E3) If [g,h] = 1, then (gh)* = g*h®.
fora,be A, g,heq.

After this they define a Z[t]-exponentiation function on CDR(Z]t], X) that
they prove satisfies these axioms. They then prove that Lyndon’s Z[t]-completion
FZI embeds into this construction.

I have used this idea to construct a Z[t]/p(t)-exponentiation of an extension
of Chiswell and Miiller’s group RF(G), where p(t) is an irreducible integral
polynomial of degree n and Z[t]/p(t) is the ring of integral polynomials mod
p(t). The fact that Z[t]/p(t) is not an integral domain throws up some problems
as does the fact that my extension of RF(G) is not a discrete group, but these
are overcome and a new class of groups is constructed in this thesis. These
groups provide a link between the work of Chiswell and Miiller and that of
Myasnikov, Remeslennikov and Serbin.

In the final chapter of my thesis I look at the elements of my new group and
examine their centralisers. This chapter follows closely to Chapter 8 of Chiswell
and Miller’s book [2], but the higher dimensional elements (elements whose
lengths are not a closed interval in R) throw up some unexpected problems. I
found elements with properties not found in Chiswell and Miiller’s group. My
final theorem is therefore split into two, with the new type of element dealt with

separately.

11



Chapter 2
RF(G,A)

2.1 F(G,A)

In their book [2], Tan Chiswell and Thomas Miiller define a set, which they
call F(G). It is the set of all functions f : [0,a] — G, where o € R, sending
each point of [0, a] to an element of the group G. If L(f) > 0, this makes f an
uncountably infinite word in letters from the alphabet of G.

In the first section of this chapter I define, for each G, the set of all functions
f :[0,a]a — G, where A is a densely ordered abelian group and o € A. A
could be Q™ or R” for some n € N, with the lexicographic ordering. I decided to
look at densely ordered abelian groups because these groups are not complete

and yet they are not discrete either, so they are a link between the two extremes.

Definition 2.1.1. Let G be a group and A a densely ordered abelian group.
Consider functions f : [0,a]a — G defined on some closed interval [0, ] with
a >0 and a« € A. Let F(G,A) be the collection of all of these functions for

arbitrary . o will be called the length of the function f, denoted L(f).

Definition 2.1.2. Let Gg be the set of all elements of F(G) such that L(f) = 0.

12



I now define a multiplication on this set as it is defined in [2] at the beginning

of chapter 2.

Definition 2.1.3. For two functions f,g € F(G,A) of lengths a and 3 respec-

tively, let f x g be the function of length o + (3 defined via:

where x € [0, a0+ (]

We need (f * g)(a) = f(a)g(0) here because A is densely ordered. If A was
discrete there would be a different definition for (f*g), where (f*g)(a) = f(a).

Asin [2], this set does not form a group under *-multiplication since inverses
do not exist. For example, if f € F(G, A) is such that L(f) = « > 0, we must
have L(f x g) > « for all g € F(G, A), by the definitions of the length function
and s-multiplication, but L(1g) = 0 < o. However it does form a cancellative
monoid as Chiswell and Miiller prove for their set, F(G), at the start of Chapter

2 in [2]. Here is the proof.

Proposition 2.1.1. The set F(G,A), equipped with multiplication *, is a can-

cellative monoid.

Proof. There is an identity:
Let 1g : {0} — G be the function

1gtOI—>1(;.

13



Then for f:[0,a]y — G

(1g * f)(x) {

and

Then 1¢ is a double sided identity.
Now, let f be such that f = f1 % fo = f1 % f5 with L(f1) = o and
L(f2) = B, L(f3) = 8. Then
L(f) = L(f1) + L(f2) = L(f1) + L(f3)
which implies L(f2) = L(f5) = 8, and, for 0 < z < L(f), we have
fi(x) 0<zr<a
F@) =4 f1(@)f2(0) z=a
folr—a) a<z<a+p
fi(x) 0<zr<a
=\ f1(@)f2(0) =«

file—a) a<z<a+p

Comparing values gives:

fi(@) f2(0) = fi(e) f5(0)

14



which implies f2(0) = f4(0), and

fo(x —a) = ol — a)

for a < x < a+ (3. Hence
fa(x) = fa(2)

for 0 < z < .

Therefore f5 = fo.

Since f; was arbitrary, this shows that F(G, A) is left cancellative.

Now, let f be such that f = fi % fo = fl % fo with L(f1) = o, L(f2) = § and
L(f1) = o’

Then

L(f) = L(f1) + L(f2) = L(f{) + L(f2)

which implies L(f1) = L(f{) = o, and, for 0 < & < L(f), we have

Comparing values gives:
f1(@) f2(0) = fi(a)f2(0)
which implies f1(a) = f{(c), and
filz) = fi(z)
for0<z<a.

15



Therefore f; = f.
Since fo was arbitrary, this shows that F(G, A) is right cancellative.
Now the associativity needs to be checked:
Let f,g,h € F(G,A), L(f) = o, L(g) = B, L(h) = . Then for
0<z<a+f+y
f(x) 0<z<a
(f*(gxh)(@) =1 f(@)(g*h)(0) z=a
(gxh)(z—a) a<z<a+fB+7y

Now there are 2 cases to consider:

Case 1: L(g) #0

Case 2: L(g) =0

Case 1: L(g) # 0.

(f * (g h)(x)

a<zr<a+pf

Il
e}
—~

&
|
Q
~—

9(B)h(0) r=a+f3
hMe—a—-0) a+fB<z<a+p+7y
(f*g)(z) 0<z<a+p

=Y xg)la+B)h(0) z=a+p

h(z —a—0) atfB<z<a+f+y

=((f*g) *h)(z)

as required.

Case 2: L(g) =0.

16



(f*(g=h))(x) =14 f(a)g(0)h(0) z=a

((f * g) * h)(x)

as required.

Hence f x (g*h) = (f *g) * h, so F(G,A) is associative.

Therefore F(G, A) is a cancellative monoid.

(f xg)(x) 0<z<a

O

Within the above proof I have described an identity element, 1¢. Define

this element to be the identity element of F(G, A).

Following [2], Chapter 2, I now define the formal inverse of f € F(G,A).

This is clearly not an inverse with respect to the s-multiplication, but will be

useful later on in this Chapter.

Definition 2.1.4. Let f : [0,a]a — G be an element of F(G,A). The formal

inverse f~1:[0,a]n — G is defined via

fH @) = fla—z)7!
for0<z<a.

Now, by definition

Therefore



Also, for0 <z < «

=f().

Hence (f~')~! = f for all f € F(G,A).

2.2 RF(G,A)

In this section I define the set of reduced functions, RF(G,A), and a second
type of multiplication, called reduced multiplication. This is still following the
structure of [2], Chapter 2, but with an extra condition that I had to intro-
duce because A is not necessarily complete. The definition below, however, is

essentially the same as Definition 2.4 in [2].

Definition 2.2.1. Let f : [0,a]pn — G be a function in F(G,A). f is called
reduced if for all 0 < z < « with f(z) = 1lg and for all € € A such that

0 < e <min{a — z, 2}, there exists 0 < 6 < ¢ such that
o +6) 4 fla—0)
The set of all reduced functions in F(G,A) will be denoted RF (G, A).
Remarks: (see Remark 2.5 [2])
(i) Every element in F(G, A) of length 0 is reduced.

(ii) If f € RF(G,A), then f is not identically equal to 1g on any non-

degenerate subinterval of its domain. Therefore we have:

RF(la,A) ={1a}.

18



(iii) If f € RF(G,A), then so does its formal inverse, f~1.
(iv) If f € RF(G,A) with L(f) > 0, then f* f~! is not reduced.

From (i) and (iv), it is clear that we need a new type of multiplication
where the product of f,g € RF(G,A) is also reduced. I define this below,
adjusting Chiswell and Miiller’s definition because for my set this is only a

partial multiplication.

Definition 2.2.2. Let f,g € F(G, A) have lengths «, B respectively, then

E(f,g) = {5 € [0, min{a, 3} A

fla—=d)=g(0)~" }
for all § € [0,e]a

and let

0 fla) # 9(0)!
co=¢o(f,9) == {sup&(f,g9) fla)=g(0)~! and supE(f,q) is defined in A
unde fined otherwise

Now define fg on the interval [0, (o + 8 — 2e0)]a, for those functions where
eo(f, g) is defined, as
f(z) 0<zr<a-—¢
(fg)(x) =14 fla—ep)gleo) == —eg
glx—a+2) a—cg<z<(a+8—2e)
The function fg is called the reduced product of functions f,g € F(G,A)
Note: If A is not complete, go(f, g) can fail to exist. This is where my work
differs from Chiswell and Miiller’s. If eq(f,g) does not exist we say that the

reduced product is not defined. However when it is defined Lemma 2.7 from [2]

holds, as shown below:

Lemma 2.2.1. The reduced product fg of functions f,g € RF(G, A), if defined,

s again reduced.

19



Proof. Clearly, if f(a —eg)g(eg) # 1, then the claim holds, so suppose that

fla—e0)g(e0) = 1a-
If fg is not reduced, there exists € such that 0 < ¢ < min{(«a —¢g), (8 —¢c0)}

and
(fo)a—eo—0)(fg)(a—eo+0) =1g, forall 0 < § <e. (2.1)
From Equation (2.1) and the definition of fg, we have
fla=ngn) =1g, for all eg < < gg + €. (2.2)

From the hypothesis, fg is defined, so g = sup £(f, g) and f(a—eg)g(eg) =
1c, hence

fla=n)g(n) = 1¢, for all 0 <n < ey. (2.3)
Combining Equation (2.2) and Equation (2.3), we find that
fla=n)g(n) = 1g, forall 0 <n <egp+e.

This implies that eg + ¢ € E(f,g). But ¢ = sup&(f,g), so € <0, a contra-
diction.

Therefore fg is reduced as claimed.

O

The next Lemma shows the link between x-multiplication and reduced mul-

tiplication. It follows Lemma 2.8 from [2].

Lemma 2.2.2. For f,g € RF(G,A), the following are equivalent (See [2]):

(7’) EO(f,g) = 0;
(i) fg = f*g;

(#i1) f * g is reduced.

Proof. (i) = (it).

20



If eo(f,g) =0, then

L(fg) = L(f) + L(g) = L(f * 9),

and, by definition

g(z — L(f)) L(f) <z < L(f) + L(g)
=(f * g)(x).

So fg = f * g as required.

If fg = f * g, then, by Lemma 2.2.1, f % g must be reduced.

(idi) = ().

Let a = L(f), 8 = L(g). Suppose £9(f,g) > 0. Then a, 8 # 0, so

0<a<a+and
(f *g)(@) = f(a)g(0) = 1¢. (2.4)
Assume that go(f,g9) =sup&(f,g). So
fla=n)gn) =1  for 0 <n <eo. (2.5)
Using the definition of (f * g), we can rewrite Equation (2.5) as:
(fxg)a—n)(fxg)(a+n) =1g for 0 < n < &o. (2.6)

By Equation (2.4) and Equation (2.6) we see that (f x g) is not reduced,

contradicting assumption (7i7). Now note that if eq(f,g) is undefined, then

21



there exists &’ € £(f,g) such that ¢’ > 0, so we can use the above argument
again, using &’ instead of g, to get a contradiction.

Hence o(f,g9) = 0. O

Note: (i) = (4¢) holds for f,g € F(G,A).
The next operation, defined by Chiswell and Miiller in [2] (Definition 2.10)

emphasises this link when it occurs.

Definition 2.2.3. For f,g € F(G,A) write fog for fxg with the extra condition
that eo(f,g) = 0 so that fog= fxg = fg by the note above. This is another

partial multiplication.

From Proposition 2.1.1 and Lemma 2.2.2, the element 1¢ € F(G,A), as
defined in Proposition 2.1.1, is a 2-sided identity element with respect to the
reduced multiplication. Also, by the definition of reduced multiplication and of
F-1

fif=1g=ff"" for all f € F(G,A)

The following Lemma shows the relationship between the *-operation, the

o-operation and inversion. It follows Lemma 2.12 in [2] with added parts for

the cases when eo(f1, f2) or eo(fy ', fi* are undefined.

Lemma 2.2.3. If f = fi % fo with f1, fo € F(G,A), then f~* = f;'* fi!
and eo(f1, f2) = co(f5 L, i) or both are undefined. In particular, f = fi o fa

implies f~1 = fy'o fit.

Proof. Let L(f) = a, L(f1) = B, L(f2) = -
By definition of L and of f~1,

L(f™) = L(f) = L(fi) + L(f2) = L(fy ) + L(fT ) = L(fa " = f7)

Also, for 0 <z < L(f) =«

22



f3t(x) 0<z<y

=1 (RO)HAB)T =1
fit@ =) y<z<a
£ () 0<z<v

=V AN0) z=x

fii@=v) y<z<a

=(fy "+ fi (@)

So f~' = fy ' % fi! as required.
Next note that
F1(8)f2(0) = (f5 () fH(0) !
or

FULD) 2000 = (F2 (L))

To prove that go(f1, f2) = co(f5 *, fi ) there are 2 possibilities to possibili-
ties.

Either f1(L(f1))f2(0) # 1¢ and hence fy '(L(f;"))fi'(0) # lg, so that
o(f1,f2) = 0 = eo(fy ' fi'), or we have that fi(L(f1))f2(0) = 1g, which
implies fo (L(f5 1)) fi1(0) = 16

In the latter case we have that eo(f1, fo) = sup £(f1, f2) or is undefined, and
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ao(fgl, ffl) = sup 8(f{1,ff1) or is undefined. But then, for € € [0, min{8, v}]a,

e€&(fr,f2)) = fi(B—10)f2(0) =1 for0<d<e
= L) AB -0 =1 for0<d<e
= 7y =00 = 1g for0<d<e

=eel(fyh fih)

Hence £(f1, f2) = E(ffl,fgl), so either both sup £(f1, f2) and supE(f{l,ffl)
don’t exist, or they both do and

eo(f1, f2) =sup&(f1, f2) =sup&(f5 ' fi ) = eolfs L 1)

Hence either o(f1, f2) = Eo(fgl, ffl) or both are undefined as required.
The last part follows from the first two parts of the Lemma and the Definition

of o.

2.3 Cancellation Theory of RF(G,A)

In this section I prove that RF(G, A) is almost a pregroup, in the sense that it
only fails on the condition (P4), as in Theorem 2.3.1 (see below).
Recall from Definition 1.3.3 that a pregroup is a set with a multiplication

that satisfies the following:
(P1) For all z € P, (z,1),(1,z) € D and z1 = 1z =z,
(P2) Forallz € P, (z,27 %), (z7L,2) e Dand 2z~ =271z =1,

(P3) For all w,z,y € P, if (w,z,y)p, then if one of (w, zy)p or (wz,y)p is true

then they both are and (w, z,y) associates i.e. w(zy) = (wz)y,

(P4) For all w,z,y,z € P, (w,x,y,2)p implies (w,zy)p or (zy,2)p.
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Theorem 2.3.1. For every group G the set RF(G,A) satisfies the conditions

(P1) to (P3) for a pregroup with respect to the reduced multiplication.

This says nothing about condition (P4).

The results below will be crucial for the proof of Theorem 2.3.1. They follow
the equivalent results of [2] in Section 2.3.

First we prove that every function f € RF(G, A) can be split in two at every

point = € [0, a]a.

Lemma 2.3.1. Let f € RF(G,A) with length L(f) = a and let 3 € A be such
that 0 < B < a. Then there exists reduced functions f1 : [0,8]n — G and
f2 1[0, — B]p — G such that f = f1 0 fa.

Moreover, fi and fo with these properties are uniquely determined once one
of the values f1(0), f2(0) have been specified, and one of these may be arbitrarily

chosen in G.

Proof. Let f1 and f2 be functions in F(G, A) with L(f1) = 8,L(f2) = a —

and

fiz)=flx)  0<z<f
fale)=flz+p) O<z<a-p

and let f1(3)f2(0) = f(8).
Then f = f1 * fo, f1 and fo are defined on the specified domains and they

are uniquely determined once one of the values f1(3) or f2(0) have been chosen.
Moreover, this value can be chosen arbitrarily in G.
Also, f1 and fs are reduced since f is, and, since 8 € A, €o(f1, f2) = 0 holds,

as in Lemma 2.2.2. O

Next we prove that fg can be split in two at L(f) — eo(f,g), for f,g €
RF (G, A) such that fg is defined, so that the two parts are equal to f|(o,z.(f)—<o(f,9)]

and gz (f,9),L(9)]-
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Lemma 2.3.2. Let f,g € RF(G,A) such that fg is defined. Assume that
fi,u,91 € RF(G,A\) such that f = frou,g =u"tog, then fg = fig1. Also,
if L(u) = eo(f,9), then fg = f1 0g1 and there exists f1,g1,u € RF(G,A) such
that fg = fiog:.
Proof. First note that if 9(f,g) is undefined, then so is fg, so assume that
eo(f,g) is defined. Let eo(f,g) = €0 and eo(f1,91) = €.

Now prove that fg = fi1g1.

To do this we need first to show that L(fg) = L(f1¢91) and then to show
that

(f9)(@) = (fr91)() for 0 <z < L(fg) = L(f191)

But

L(fg) =L(f) + L(g) — 220
=L(f1) + L(u) + L(u") + L(g1) — 2&o
=L(f1) + L(g1) + 2L(u) — 2¢¢
and L(fig1) = L(f1) + L(g1) — 2}, so we need —2¢}, = 2L(u) — 2ep i.e.
0 = L(u) + &) (2.7)
Note: By the definition of £y and of w, it is clear that 0 < L(u) < &, so we
can split this into 2 cases:
(1) L(u) =0
(#3) L(u) >0
Case (i) L(u) = 0.
Since L(u) = 0, we have that L(f;) = L(f) and L(g1) = L(g), so
(f = g)(L(f)) =f(L(f))g(0)
=f1(L(f1))u(0)u"(0)g1(0)
=f1(L(f1))g1(0)
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Now, if (f * g)(L(f)) # 1¢g, then ej = 0 = g9 = L(u), so Equation (2.7)
holds.
If (f * 9)(L(f)) = 1g, then

o =sup&(f,g)
eo =sup E(f1, 1)
But for ¢ € [0, min{L(f), L(g)}]a
ec&(f,9) < f(L(f) = 0)g(d) = 1g 0<d<e
= fi(L(fi) = 0)91(0) = 1g 0<d<e

S 5(f1,91)

Hence E(f,g9) = E(f1,01).

Therefore eg = supE(f, g) = sup&(f1,91) = €. So Equation (2.7) holds in
Case (1).

Case (i1) L(u) >0

In this case, L(f1) < L(f), L(g1) < L(g) and

FIL(£))g(0) = u(L(u))u~'(0) = 1g

by definition of u™1, so g9 = sup £(f, g).

Now,
F(L(f) = 0)g(0) = 1 (2.8)
for 0 < ¢ < €,
and
FIL(f) = 6)g(8) = u(L(u) — §)u™"(6) = 1 (2.9)

for 0 < § < L(u) by definition of !, whilst

FL(f) = L(w)g(L(w) =f(L(f1))g(L(u))
=f1(L(f1))u(0)u™" (L(u))g1(0)
=f1(L(f1))91(0)
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So, if f1(L(f1))g1(0) # 1¢ we have e, = 0 and g9 = L(u) + &} as required,
but if f1(L(f1))g1(0) = 1l¢g, then Equation (2.9) holds for 6 = L(u) and by

definition of &,

fL(f1) —na(n) =1 0<n<¢g

Therefore Equation (2.8) holds also for the range L(u) < 6 < e( + L(u), which
implies that Equation (2.8) holds for 0 < ¢ < L(u) + €, so that 9 > L(u) + €,

and for L(u) < 0 < gg

JL(f) = 6)g(0) = fr(L(f1) — (6 — L(u)))g1(0 — L(u))
= fi(L(f1) —n)g1(n)

for 0 < n < eg — L(u).

So g > €9 — L(u), which means ¢ < e, + L(u). Hence g9 = L(u) + £}, and
Equation (2.7) holds in Case (7).

Hence Equation (2.8) holds in Case (i)

Hence Equation (2.8) holds for 0 < L(u) < eo(f, g).

Now all that remains for the first part is to show that (fg)(z) = (f191)(z)
for 0 <@ < L(fg) = L(f191)-

So

f(x) 0<z<L(f)—¢o
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but L(f) —eo = L(f1) + L(u) — L(u) — e, = L(f1) — €, so

fi(z) 0<x<L(f1)—ep

fi(x) 0<z<L(f1)—ep

=\ [1(L(f1) —€0)g(en) @ = L(f1) — &0

= (fi91)(x)

H(L(f) = €0)91(e0) €0 > 0and z = L(f1) — &5
FELF))u0)u™ (L(w)g1(0)  f =0 and = L(f1) —

gu(L(fr) —z)  L(f1) —ep <z < L(f1) + L(g1) — 2&0

g1(L(f1) — ) L(f1) —eo <@ < L(fi) + L(g1) — 259

Now, if L(u) = &g, then by (2.7), we have that j = 0 and so, by Lemma

2.22, fg = fiog.
For the final part there are two cases to consider:

Case 1: g9 = 0.

This means that fxg = fg = f og by Lemma 2.2.2, so let f1 = f,g1 = ¢

and © = 1g. Then we are done.
Case 2: g9 # 0.
Here, g9 = sup&(f,g) > 0.
By Lemma 2.3.1 we can find
Jro[0,L(f) — eola — G
w: [0,e0]lpn — G
91:[0,L(g9) —eo]a — G
v [0,80]1\ — G
such that f = fiou and g =v o ¢g;.
By the definition of €y and since ¢y > 0, we have

FL(f) =d)g(0) =1  0<6<ep
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hence f(L(f) — &) = (g(d))~! for all 0 < § < .
But f(L(f) —¢) = u(gg — 6) and g(d) = v(d) in this range. Hence

u(eg — 6) = (v(6)) ! 0<d<eg

We now need u(0) = (v(gg))~!, but by Lemma 2.3.1, we can choose u(0) and

v(gp) arbitrarily and independently of each other, hence we can arrange for

u(0) = (v(gg)) ™1, so we have that u = v1.

Finally, we have

L(fg) = L(f) + L(g) — 2g0 = L(f1091)

and for 0 < 2 < L(f) + L(g) — 2e0, using the fact that L(f1) = L(f) — o
and ¢1(0) = g(c),

f(x) 0 <z <L(f) —eo

(f9)(@) =9 F(L(f) = €0)g(c0) == L(f) &9

g(@ = L(f) +220) L(f) —c0 <@ < L(f) + L(g) — 2c0

fi(@) 0<z<L(f) e

= fi(L(f) —€0)g1(0) == L(f) — &g

gi(x — L(f) +e0) L(f) —eo <x < L(f) + L(g) — 2¢0

=(fiogq)(x)

since L(u) = &g, so €(, = 0 by the first part.

Hence f1, g1 and u exist.
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Suppose g is such that L(g) > 0. Then the next Lemma shows that the set
{flfg = fog} is the same set as {f|f(goh) = fo(goh)} for all h € RF(G,A)
with gh = g o h, and similarly, the set {h|gh = g o h} is the same set as
{h|(fog)h = (fog)oh} forall f e RF(G,A) with fg = f og. This needs a

little extra work to cover the case when f(gh) doesn’t exist.

Lemma 2.3.3. Let f,g,h € F(G,A) with L(g) > 0. Then
(a) If eo(f, g) = 0, then fg exists and

co(fg,h) =0 <= eolg,h) =0
(b) If (g, h) = 0, then gh exists and
eo(f,gh) =0 <= &o(f,9) =0
Proof. (a) Let £o(g,h) > 0. Then
9(L(g) = 8) = (h(8))™"  0< 8 <eolg.h) (2.10)

but

(f*g)(L(f) +L(g) —0) =g(L(g) —0)  0<6<L(g) (2.11)

From the note after Lemma 2.2.2, since eo(f, g) = 0, we have that (f*g) = fg
and L(fg) = L(f) + L(g) Therefore, using Equations (2.10) and (2.11) above,

(f9)(L(fg) —0) =g(L(g) — 9) 0 <6 <min{eo(g,h), L(g)}

=(h(3))~" 0 <4 <min{eo(g, h), L(g)}
hence, if (fg)h exists,
eo(fg, h) = sup&(fg,h) = min{eo(g,h), L(g)} >0

as €o(g,h) > 0 and L(g) > 0 by hypotheses.
If (fg)h doesn’t exist, then neither does eq(fg, h), in particular, eo(fg, h) # 0
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For the second part of (a), let eo(fg,h) > 0, so it exists. Then

(fo)(L(fg) = 0) = (h(8))™"  0<d<eo(fg,h)
but again £o(f,g) = 0, so from Equation (2.11) we have
9(L(g) = 8) = (h(8))"'  0< 6 <min{eo(fg,h), L(g)}
and hence, since (fg)h exists,
eo(g, h) = sup (g, h) = min{eo(fg, h), L(g)} >0

as L(g) > 0 and £¢(fg, h) > 0 by hypotheses.
If €0(fg, h) does not exist, then there exists 0 < ¢ < min{L(g), L(h)} such

that
(fo)(L(fg) — 6) = (h(5))~" for0<d <e

but since go(f,g9) =0,

(f9)(L(fg) —0) =g(L(g) —0) for0<d<e
(f9)(L(fg) — 0) =g(L(g) —9) 0<d<e
=(h(8))~! 0<d<e

and hence 0 < ¢ € £(g,h) so E(g,h) # 0 and £o(g, h) # 0 as required.
Part (b) is similar.

O

This implies that the o-product is associative when it exists, as shown by

the following Corollary:

Corollary 2.3.1. Let f,g,h € F(G,A). Then if one of fo(goh) or (fog)oh

exists, then so does the other, and
(fog)oh=fo(goh)
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Proof. There are 2 cases:

Case (i) L(g) > 0.
Assume

eo(f,9) =ceo(fog,h)=eo(fg,h) =0

so (fg)h exists and is equal to (f o g)oh. Then, since L(g) > 0, we can use part
(a) of Lemma 2.3.3 to get
EO(ga h) =

Hence gh =g o h.
But now, since L(g) > 0 and &¢(f,g) = 0, we can use part (b) of Lemma

2.3.3 to get
EO(fvg © h) = EO(fvgh) =0.

Hence
fo(gh)=Ffol(goh)

If we had assumed that eo(g,h) = eo(f,(g o h)) = eo(f,gh) = 0, so that
f o (goh) was defined, a similar argument can be used to show that (fog)oh
is also defined, using Lemma 2.3.3 part (a) where part (b) was used and part
(b) where part (a) was used.

Finally, since the x—operation is associative, so is the o—operation, hence,
once we know (f og)oh and fo(goh) are defined, they must be equal.

Case (i) L(g) = 0.

Let eo(fg,h) = 0 so that (fg) o h is defined.

Here eo(f,9) = €0(g,h) = 0 since, by definition, ¢(f,g) < L(g) = 0 and
eo(g,h) < L(g) =0. Hence fg = fog,so (fog)oh is defined, and gh = g o h.
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Now, if f(L(f))(go h)(0) # 1¢, we have that £¢(f, gh) = 0 by definition, so
assume f(L(f))(go h)(0) = 1¢ Then,

SO(f,goh) :Supg(f,goh)

and
FL(f))(g o h)(0) =F(L(f))g(0)h(0)
=(f 0 g)(L(f))h(0)
=1¢
Now

0=c¢co(fog,h)=sup&(fog,h)

Using the fact that (goh)(n) = h(n) and (fog)(L(f) —n) = f(L(f) —n) for all
0 <n <min{L(f),L(h)}, we have that

(f o ) (L(f) —m)h(n) =f(L(f) —m)h(n)
=f(L(f) —n)(g o h)(n)
for 0 <n < min{L(f),L(h)}.

But, since (fg) o h is defined, we have that for all 0 < n < min{L(f), L(h)}

such that
(f o) (L(f) —n)h(n) = 1c

there exists 0 < v < 7 such that

(fog)(L(f) = k() # 1c

and hence
FL(f) =)(goh)(v) # 1a

Therefore E(f,go h) = {0}, so sup&(f,goh) =eo(f,goh)=0.

Hence

flgoh)=fo(goh)
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So fo(goh) is defined if (f o g) o h is and the two elements are equal.
Similarly, if f o (g o h) is defined and L(g) = 0, then so is (f o g) o h, and
hence, as before, (f o g) o h = f o (goh) if both are defined.

We are now in a position to prove Theorem 2.3.1.

Proof. Proof of Theorem 2.3.1.

Recall the conditions of a pregroup:
(P1) For all z € P, (z,1),(1,2) € D and z1 = 1z = z,
(P2) Forallz € P, (z,27 '), (x7 ,2) e Dand za~ ' =271z =1,

(P3) For all w,z,y € P, if (w,z,y)p, then if one of (w, zy)p or (wz,y)p is true

then they both are and (w, x,y) associates i.e. w(zy) = (wx)y,
(P4) For all w,z,y,z € P, (w,z,y, z)p implies (w,zy)p or (zy, z)p.

Remember that we are not interested in (P4) at this stage.

Our set is RF(G, A), the distinguished element is 1g : {0} — G and the
subset D is the set of pairs of elements for which reduced multiplication is
defined.

(P1) Clear from the definition of 1g.

(P2) Clear from the definition of f~1.

(P3) We prove that when fg and gh are defined, either (fg)h and f(gh) are
both defined and (fg)h = f(gh) or both (fg)h and f(gh) are not defined.

Let f,g,h € RF(G,A) be such that fg and gh exist.

Then, by Lemma 2.3.2, there exists f1, g1,u € RF(G, A) such that f = fyou,
g=u"tog; and fg = f1 0 g1, and there exists go, h1,v € RF(G, A) such that

g=gaov,h=v"'ohy and gh = gs 0 hy.
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Here there are 3 cases to consider:

() : L(u) < L(g2)

(i0) : L(u) > L(g2)

Case (i): L(u) < L(ga).
Since L(u) < L(g2), by Lemma 2.3.1, we can decompose go into w o g3 with
L(w) = L(u), L(gs) > 0 and w, g5 € RF(G, A). So

g=ultog =gov=(wogz)ow

and hence
ut(x) =g(z) 0<z< L(u)
=ga(x) 0<z< Lu)
=w(z) 0 <z < L(w) = L(u)

Since we can choose w(L(w)) arbitrarily, we can set w(L(w)) = u=*(L(u)) to

1

get that w = u~ ", so we have

g=ultogs

Now, using Corollary 2.3.1, we get
g=gaov=(u"togz)ov=u"to(g300)

but since g = u~! o g1, we also have g; = g3 o v by Proposition 2.1.1.

So we now have

fg=fion

=f1o(g30ov)

this shows that €o(f1,93) = 0.
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Also, we know that eg(u1,g3) = 0 = ¢(g2,h1) = eo(u™! 0 g3,h1) so, by
Lemma 2.3.3 part (a), since L(gs) > 0 by the case assumption, we have that
eo(gs,h1) = 0. Then by Lemma 2.3.3 part (a) again, since o(f1,93) = 0, we

get eo(f1 093, h1) =0.

So now

(fo)h =(fio(gsov))(v™ ohi)
=((fiogs)ov)(v tohy) by Corollary 2.3.1
=(f1093)h
=(fiogs) o

Also

gh =g20hy
=(u"togs)oh
which shows that go(u~" o g3, h1) = 0.
We know that eq(u~!, g3) = 0, so, by Lemma 2.3.3 part (a), e9(gs, h1) = 0.

From before, eo(f1,93) = 0, so, by Lemma 2.3.3 part (b), eo(f1,930h1) =0.
So

flgh) =(frou)((u™" 0 gs) ohy)
=(fiou)(u"'o(g30hi)) by Corollary 2.3.1

=f1(g3 o h1)

=f1o(gzohy)

and again by Corollary 2.3.1

flgh) = fio(gsohi) = (fiogs)oh1=(fg)h

as required.

Case (11): L(u) > L(g2).
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Since L(u) > L(g2), by Lemma 2.3.1, we can decompose u~! into g4 o us

with u; € RF(G, A), L(g2) = L(g4) and L(uy) > 0. Then we get

ga(x) = ga(x) for 0 < a < L(g2)

and we can choose g4(L(g4)) arbitrarily to get g4(L(g4)) = g2(L(g2)), so that
gs =gz and u™' = gy ouy.
Now, using Lemma 2.2.3, Proposition 2.1.1 and Corollary 2.3.1, we get
f=hou
=fio(uitogy")
=(frouy")ogy"

which implies that o(f1,u; ') = 0.

Also, by Proposition 2.1.1 and Corollary 2.3.1, we get

=(gaour)o g
=g2 0 (u10g1)

=@g200
hence v = u;1 o g1, and

h=v"'oh
=(g; touyt) oy

=gi ' o (uy " ohy)

so that eo(uy*, h1) = 0.

Therefore, by Proposition 2.1.1, Corollary 2.3.1 and the fact eq( f1, ul_l) =0,
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we get

(fo)h =(fiog)(v™ o h)
=(fro91)((g7" our’) o ha)
=(fiog)(gr" o (uy ' oha))
=fi(u;t ohy)

=fio(u;t o)
and using Proposition 2.1.1, Corollary 2.3.1 and the fact that go(u; !, h1) = 0

flgh) =(f1ou)(g2 0 h1)
Jro(urt0g,"))(g2 0 ha)
(fiouyt)ogs ) (g2 0h)
=(frouy )
=(fiou;)om

=fro(u;"oh)

=
=

hence
flgh) = (fg)h
as required.
Case (iii): L(u) = L(g).

Here we have g =u"'og; = goov and L(u~?') = L(gs), so

u™ () 0<z< L(u)

39



Without loss of generality assume that u=!(L(u)) = go(L(u)) and therefore

g1(0) = v(0), so u=! = gy and g1 = v.

Then we get
(fg)h =(frog1)(v" "0 hy)
=(f1091)(g7 " o h1)
=f1h
and

f(gh) =(fiou)(gz0h)
=(f1095")(g2 0 1)

=fih

So (fg)h = fih1 = f(gh) as required if fih; exists, or if it does not exist
then both (fg)h and f(gh) are undefined.
Hence (fg)h = f(gh) in all cases, if (fg)h or f(gh) is defined. O

For (P4) we would need to prove that if ef, fg and gh are defined, either
e(fg) or (fg)h is defined. Looking at the last part of the proof above, (fg)h can
fail to be defined if fhq isn’t defined and also e(fg) can fail to be defined if the
equivalent e1g] is not defined. Hence RF (G, A) is not necessarily a pregroup.
This is proved by my example below.

Example 2.1:

Let e, f,g,h € RF(G,R?) be such that L(e) = L(f) = L(g) = L(h) = (3,0)

and a, b, c,d € G with none of a, b, c or d being inverses to each other and
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e(z,y)

f(z,y)

g(x,y)

(z,y) = (0,0)

(0,0) < (x,y) < (1,0)
(z,y) = (1,0)

(1,0) < (z,y),z=1
1<z <2

(z,y) < (3,0),2<x

(z,y) = (3,0),

(z,y) = (0,0)

(0,0) < (z,y),z <1
2<x <1

(z,y) < (2,0),2 =2
(z,y) = (2,0)

(2,0) < (z,y) < (3,0)

(z,y) = (3,0),

(z,y) = (0,0)

(0,0) < (z,y) < (1,0)
(z,y) = (1,0)

(1,0) < (z,y),z=1
1<z <2

(x,y) < (3,0),2 <z

(z,y) = (3,0),
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h(z,y) =

Then (e, f, g, h)p since

(ef)(z,y) =

1lg

(z,y) = (0,0)

(0,0) < (z,y),x < 1
1<z<?2

(z,y) < (2,0),2 =2
(z,y) = (1,0)

(2,0) < (z,y) < (3,0)

(m,y) = (37 0)'

(z,y) = (0,0)
(0,0) < (,y) < (1,0)
(z,y) = (1,0)
(1,0) < (z,y) <(2,0)

(z,y) = (2,0),
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lg (z,y) =(0,0)

b=t (0,0) < (z,y),z <1
al 1<z<?2

' (z,y) < (2,0),x =2
(f9)(x.y)=11¢ (x,9) = (2,0)

d=' (2,0) < (x,y),z =2
bl 2<x<3

a' (z,y) < (4,0),3 <

la ($7y) = (4’0)

and

]-G (.’E, y) = (07 0)
c (0,0) < (z,y) < (1,0)
(gh)(z,y) =< 1¢  (x.y) = (1,0)

d (1,0) < (z,y) < (2,0)

la (x7y) = (2’0)'

But neither e(fg) nor (fg)h exists. To visualise this see I have drawn a

diagram of the domains of e, f, g and h (see figure 2.1).
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Key: emmmmmanmmm Boundary not included

Xl—>a on this area

Xl—>b on this area

\<< xl—=a'on this area

-1 -
Xl—=b on this area XF—=>c on this area

1339

xl—>con this area XF—=d on this area

-1 .
x—>d on this line

This figure shows the domains of the functions e, f, g and h, from Example 2.1,

and what elements of G they are sent to on that domain.
Figure 2.1: How P4 fails.

2.4 Cyclically Reduced Elements

Since multiplication in the set RF(G, A) is not necessarily defined for every pair
of elements within it, I need to look at a subset of it where the multiplication
is always defined. In this section I look at the subset of RF (G, A) of all those
elements which have a certain property, defined below. These elements are
important later on since any subgroup of RF(G, A) must contain only them, as

proved in this section.
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Definition 2.4.1. An element f € RF(G,A) is called cyclically decomposable
if it can be written in the form f = cogoc™! for some g,c € RF(G,A) with

g(0) # g(L(g))~! (s0 o(g,9) =0). cogoc™! is the cyclic decomposition of f.

In [2] all of the elements of the authors’ subgroup RF (G, A) are cyclically
decomposable, but in my subset this is not the case. f will fail to be cyclically
decomposable if € (f, f) is undefined and I prove later that if f is not cyclically
decomposable, gq(f, f) is undefined (Lemma 2.4.2).

For example, looking at the case A = R? let h € G. Then eo(f, f) is

undefined for the element

f h for all (x1,xz¢) such that 1 < m
h=t for all (xq,7¢) such that x; > m

with L(f) = (2m,0), since E(f, f) = {(x1,z0)|z1 < m}, which has no supre-

mum. See the figure 2.2 below.

£ 4 - -
/ Bt
§% \ 8
&t 4

,

AN

f=h-! on the red lines and h on the orange lines. The problem
occurs at the two doubly Infinite red Iinmes.

Figure 2.2: An example of how ff can be undefined.

The following definition is the same as Definition 3.5 in [2].

Definition 2.4.2. For all f € RF(G,A), f is called cyclically reduced if and
only if eo(f, f) = 0.
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In the set RF(G,A) with reduced multiplication, this is still equivalent to
the condition that L(f?) = 2L(f), since f? is undefined if eo(f, f) is.

I now need to prove the following;:
Lemma 2.4.1. If f is cyclically reduced then =1 is cyclically reduced.

Proof. If L(f) = 0, L(f~!) = 0 by the definition of f=!. So go(f~ %, f~1) =0
since go(f L, f71) < L(f~1). Hence f~! is cyclically reduced.

So let L(f) > 0 and assume f is cyclically reduced, and hence eo(f, f) = 0.

We know that f = cogoc™! with L(c) = 0, so by Lemma 2.2.3 we have
that f~'=cog ltoc™l.

Since L(c) = 0, all we need is that g=*(0) # ¢ '(L(g9))~!. But by the
assupmtion that f is cyclically reduced and the definition of inverses, we have

that
971(0) = g(L(9)) ™" # 9(0) = g (L(9) ™"
so f~1 is also cyclically reduced. O

Now I define the two sets that I will be interested in for the rest of the thesis:

Definition 2.4.3. The set of all elements that are cyclically decomposable is
called CDF (G, A).

Definition 2.4.4. The set of all cyclically reduced elements is called CRF (G, A).

Clearly CDF(G,A) D CRF(G, A).
In [2], the authors have that all of their group RF(G) is cyclically decom-
posable, but if A # R there may be elements in the set RF (G, A)\CDF (G, A).

The reason that I am interested in the set CDF (G, A) is the following Lemma:
Lemma 2.4.2. For all f € RF(G,A)\ CDF(G,A), f? is not defined.

Proof. Tf f is not cyclically decomposable, then E(f, f) # (0 but supE(f, f) is
undefined in A.

Therefore eo(f, f) does not exist and f? is undefined as required. O
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Obviously, if f2 is not defined, then any set containing f is not going to be
a group. Hence I am not interested in these elements.

Note that, using the ordering defined in Example (3) in the introduction, for
A=R" if dim (L(f)) =1, f € CDF(G,R") automatically. For the rest of this
thesis, R™ has this ordering.

The next Lemma shows that a conjugate of a cyclically decomposable ele-

ment is again cyclically decomposable. It is similar to Lemma 3.7 in [2].

Lemma 2.4.3. If u € CDF(G,R"), c € RF(G,R") and v = ¢ tuc is defined,

but u does not cancel completely in ¢ tuc, then v € CDF(G,R™).
Proof. If u=d~! ouy od for some d € RF(G,R"), then
v=cHd " ousod)c
=(de) " uy (de)

Therefore we can assume that u € CRF(G,R").
This means that in the product ¢ 'uc we have that either uc = wo ¢ or

¢ tu = ¢~ ou. without loss of generality assume that uc = u o ¢ (otherwise we

-1

can look at v=! = c"lu~1e).

1

Since u does not cancel completely in ¢~ uc, we must have that

et =ctourt and u = uy ouy

- —1
so that ¢ tu = €] ou

and by Lemma 2.3.3 part (a)

ctue =(c;t oug)e

—1
=c; ougoc
_ 1
=C; OU20U10°C

but then us ouy is a cyclic permutation of u = w1 ous and so is also cyclically

reduced, hence we have found a cyclic decomposition of v = cfl O O U] OC].

O
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Now I show a link between commutativity of elements in CDF(G,R™) and
the lengths of their common initial segments. This will be useful in Chapter
3. Recall from Definition 1.2.1 that c(z,y) = (L(x) + L(y) — L(z~'y))/2. Also
for H ¢ CDF(G,R"™), let H < CDF(G,R™) mean that H is a subgroup of
CDF(G,R™).

Lemma 2.4.4. Let H < CDF(G,R"™) and let f,h € H be cyclically reduced. If
c(f™, h*) > L(f) + L(Rh) for some m,k > 0, then [f,h] = 1qg.

Proof. Without loss of generality, assume L(h) > L(f), so that ¢(f™,h*) >
L(h) + L(f) implies h = f! o hy for some hy; € RF(G,R™) and 0 < [ < m, and

f=hiofi
Looking at the initial segments of f™ and h* of length L(f!*1 o h;), we see

that
fflohy=flofohy=flohiof
But looking at the last segments of this of length L(f o hy), we get that
hiof=foh
So [h1, f] = 1g. This implies that
hof=flomof=flofoh=f*"oh=fofoh=foh
which implies that [h, f] = 1g as required. O

The final Lemma in this Chapter is an interesting result for elements in
CDF(G,AN).
Recall from Definition 2.1.2 that

Go ={f € FIL(f) = 0}.
Lemma 2.4.5. For all f € CDF(G,A), f = 1q, f*> # 1g or f is in a conjugate

Of Go
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Proof. Assume f € CDF(G,A) and f # 1g. We have that f = cogoc™! and
50(.9’9) = 0? S0, if L(g) > Oa

fP=(cogoc ) (cogoc™)
= (cog)(goc™)

:cog090071

and L(cogogoc™)>0=L(1g),socogogoc™t # 1g.
If L(g) = 0, then f is in a conjugate of Gy by definition.

Hence the only possibilities are the ones listed.
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Chapter 3

Exponentiation

3.1 Defining Exponentiation

In [4], Roger Lyndon introduced a Z[t]-completion, FZ, of a free group F
using the idea of an A-group.

Alexei Myasnikov, Vladimir Remeslennikov and Denis Serbin then described
in [7] how to find a Z[t]-exponentiation of C DR(Z[t], X ), which is a set similar to
CDF(G,R™), the cyclically decomposable elements of RF (G, R™). In this Chap-
ter I have used their ideas to find a Z[t]/p(t)-exponentiation of CDF(G,R"),
where p(t) = t" +p,_1t" "t +...+pit+po is a monic, irreducible polynomial in
Z[t] of degree n. I need to use Z[t]/p(t) in order to keep the elements produced
by this process within my original space, which has dimension n.

I am viewing Z[t]/p(t) as an ordered abelian group, using the lexicographic
ordering, where higher powers of ¢ are bigger. Addition is just the normal addi-
tion for polynomials, but multiplication is multiplication modulo the polynomial
p(t) defined above. From now on I am taking A = R™ unles I specify otherwise,
for example at the beginning of Chapter 5.

Now I define Z[t]/p(t)-exponentiation.
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Definition 3.1.1. Letu € CRF(G,R™) be such that L(u) = a = (0,...,0,a;,...
where a; > 0. Then w is (i + 1) dimensional. Also, any element of length zero

1s zero dimensional.

Note that the set of one-dimensional elements, uv € CRF(G,R"), is iso-
morphic to the set of cyclically reduced elements in Ian Chiswell and Thomas

Miiller’s group RF(G) in [2].

Definition 3.1.2. For f(t) = fo_1t" '+ ...+ fit + fo € Z[t]/p(t) and for
a=(0,...,0,a9), let

f)a = (aofn-1,-.-,a0fo).
Definition 3.1.3. For u € CDF(G,R"™) and m € N\{0}, u™ is defined as

expected, so for m > 0,

u(z) 0<z<l(u)=a

u(x —ka) ka<z<(k+1a

u(a) T =ma
where 0 < k <m, mL(u) >z € R, u=™ = (v 1) and u° = 1g.

To visualise this for a one-dimensional u, think of the domain of 4™ as being
the domain u repeated m times along a line, as shown at the top of Figure 3.1.
At the endpoints of each copy of u the function is sent to u(L(u))u(0), except
at the points © = 0 and © = mL(u). Between the endpoints of each copy of u
the function behaves like u. Now assume that w is one dimensional and define
ut as follows:

Let L(u') = ¢tL(u) = ta. Then for tL(u) > x € R",

o1
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u(0) z=0

u(z — ka) ko <z <(k+1)a, k>0
u(a)u(0) x=ka, k>0

u(lx—ka—tr) ka+tr<z<(k+a+tr
u(a)u(0) x =ka+tr

wx—(k+t)a) (k+tla<z<(k+1+t)a, k<0

u(a)u(0) xr=(t+k)a k<0

u(a) x=ta

where k € Z and 0 < r < a. We now need to check that (u')™ = (u™)":

ut(0) x=0
ul(z —lta) lta <z < (I+1)ta

ul(ta)ut(0) z=lta, 1 >0

ul(ta) x = mta

u(0) x=0

u(x — lta — ka) ka<xz—lta<(k+1)a, k>0
u(a)u(0) x—lta=ka, k>0

w(x —lta—ka—tr) ka+tr<az—lta<(k+1)a+tr
=14 u(a)u(0) x—lta =ka+tr

wrz—1lta— (k+t)a) (k+tha<z—lta<(k+1+t)a, k<0

u(a)u(0) x—1lta=(k+t)a, k<O
u(a)u(0) x=1lta, { >0
u(a) T = mta
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where 0 <1l <m, k € Z and 0 < r < a. But some of these cases are covered

twice, so we can rewrite this as

u(0) x=0
u(z — ka) ka<z<(k+1)ak>0
u(a)u(0) z=ka, k>0

u(x —lta —ka—tr) ka+tr <z —lta< (k+ 1Da+tr
u(a)u(0) x—lta =ka+tr
u(zr —lta— (k+t)a) ka<z—(I+1ta<(k+1)a, k<0

u(a)u(0) z—lta=(k+t)a, k<0

u(a) T = mta
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where 0 <l <m, k € Z and 0 < r < a, whilst

u™(0) x=0
u™(z — Ima) Ima <z < (+1)ma,l >0
u™(ma)u(0) Ima=2,1>0

u™(x —Ima—tr) Ima+tr<z<(+1)ma+itr
u™(ma)u™(0) Imag+1tr=x

u(xz—(l+t)ma) (+t)ma<z<(I+t+1)ma, 1 <0

u™(ma)u™(0) (l+tyma==z,1<0

u™(ma) x =tma

u(0) z=0

u(x — Ilma — ka) ka<z—Ima<(k+1)a, k>0,k+Im>0
u(a)u(0) ka=x—1Ilma, k>0,k+1m>0,1>0
u(a)u(0) Imag=2x,1>0

u(x —Ilma —tr —ka) ka<z—Ima—1tr<(k+1)a

=4 u(a)u(0) Ima+tr=x
u(a)u(0) ka =2 —lma —tr
u(a)u(0) (I+t)yma=2z,1<0

uwx— (I +t)ma—ka) ka<z—(+t)ma<(k+1a, I <0,k+Im<0

u(a)u(0) ka=xz— (l+t)ma, | <0,k+1Im <0

u(a) x =tma

where k,l € Z and 0 < r < a.

o4



But some of these cases are covered twice, so this can be written

u(0) x=0
u(x — Ilma — ka) ka<xz—Ima<(k+1)a, k>0,k+Im>0
u(a)u(0) ka=z—1Ima, k>0,k+1>0

u(x —Ilma —tr —ka) ka<zxz—Ima—tr<((k+1)a

u(a)u(0) ka =z —Ima—tr

uwlx—(+t)ma—ka) ka<z—(I+t)ma<(k+1)a, 1 <0,k+Iim <0
u(a)u(0) ka=xz— (I+t)ma, I <0,k+1Im <0

u(a) x =tma

where k,l € Z and 0 < r < a.

With some changes of variables these two elements are equal and hence

(ut)™ = (u™)* as required. So if v = u¥ for some k € Z, set vt = (u?)*.

We can now define u!” inductively for 0 < m < n, by letting u!" = (u!" ' )*
and replacing a with t™ 1'a and t with ¢t™.

To see this more clearly, let

ut" " (0) =0
"z — ktmLa) kt"la <z < (k+1)t"ta, k>0
u" T (= a)ut™ T (0) z=kt" g k>0

ut™ ! (v —ktm~la —t"r) ktmla+t"r <ax < (k+ 1Dt la+tmr
ut'm—l (tm_lg)utn171 (O) T = ktm_lg + th
W@ = (ki) (kT la <o < (k4 1+ lak <0

" (e a)ut™ T (0) r=(k+t)t" ta, k<0

utmil(tmflg) T = L‘mg,

where k € Z, t"a>x e R"and 0 <1 < a.

To visualise this, look at the second figure in Figure 3.1. This represents
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the domain of uf. It consists of the part of the plane between the two lines
(0,z) and (L(u),x) and includes the closed halflines from (0,0) in the positive
x direction and from (L(u),0) in the negative x direction. This plane is built
up of lines parallel to the z-axis that are copies of the top figure, extended to
infinity at either end. They all equal u(L(u))u(0) on the y-axis, except at u(0)
and u(tL(u)).

The final figure there is trying to show what the domain pf ut” would be like
in three dimensions. This is harder to visualise. The dotted lines are again open
boundaries of the domain. This time the space between the planes z = 0 and
z = L(u), the open half planes (z,y,0) with y > 0 and (x,y, L(u)) with y < 0
and the closed half lines (z,0,0) with > 0 and (z,0, L(u)) with 2 < 0 is the
space that the function is defined on. The space is built up of planes parallel to
the z, y-plane, which are in turn built up of lines parallel to the z-axis.

Then make

tn—l

ut” =t Pl — (u )Pt (ut)*Plu*pO

and define u*" inductively for m > n.

Finally we use linearity to define u/® for f(t) € Z[t]/p(t) as:

W@ = (utn_l)fn—l o (ut)flufo

where f(t) = f,_1t" 1 + ...+ fit + fo for some f; € Z.
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2L (u) 4Lfu)

0 L(u)  3L(a)  5L{u)

TN |

2O (0,L(u)) n

The top figure shows a picture of the domain of u’.

The second figure shows a picture of the domain of q;.
The third figure shows a picture of the domain of u®.

Figure 3.1: Visualisations of the Z[t]/p(t)-exponentiation of w.

3.2 Some Results of Exponentiation

Now I need to prove that this construction satisfies Lyndon’s axioms. I start
by proving that for v of one dimension, [vf (t),fu] = 1g. I then prove that for
u,v of one dimension and such that u = ¢ tve, uf® = ¢1of®¢. This then
leads me to being able to prove that u/® = v9®) implies [u,v] = 1@ and hence
[u,v] = 1g implies [uf() v] = 1g. It is then easy to prove that the axioms
(E1) — (E3) are satisfied. This follows what Myasnikov, Remeslennikov and
Serbin did in [7].

First I need to define a subgroup of RF (G, A) that will be useful in the rest
of the thesis.

Definition 3.2.1. Let Hy be the set of all cyclically decomposable elements in
RF(G,R™) that are one dimensional.
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This group is isomorphic to the group RF(G) in [2] since any element of
H; has one dimensional length and can therefore can be seen as an element of
RF(G), whilst the whole of RF(G) can be embedded into RF (G, R™) and all of
its elements are one dimensional and cyclically decomposable and hence would
be embedded into Hj.

The Lemma below needs to be proved in full here, which is not done in the

paper [7]

Lemma 3.2.1. Let v € Hy have L(v) > 0, and f(t) € Z[t]/p(t). Then we have
that v/ € CRF(G,R™), [v/®) v] = 1g and L(v/®) = f(t)L(v).

Proof. We have seen that vf(*) begins with the initial segment, say vy, of v and
ends with the terminal segment, say v, of v. Since v € CRF(G,R™) this means
that £o(vq,v1) = 0 and therefore, by Lemma 2.3.3, go(vf ), v7®)) = 0 and hence
v/ € CDF(G,RV).

Next, it can be seen that vf(Dy = fOFL = 1+FB) — /@ Hence
[0/ ®) v] = 1q.

Finally, there is no cancellation between the copies of v in vf(!) so the length
of L(v/®)) must be the combined length of all of them, which is, from Definition
3.1.2, f(t)L(v). O

The next Lemma follows Lemma 5.2 of [7].

Lemma 3.2.2. Let u,v € Hy be such that u = vy o vs and v = vy 0 vy, SO

u = vy "vvy. Then for all f(t) € Z[t]/p(t)

W = sy Oy,

Proof. First we prove that this works for f(¢) = ¢, and then we extend it to the
whole of Z[t]/p(t):

Since vov1 = w9 0 v1, we have that
(v1 0 v2)!(x) = (vg 0v1)"(z + L(v2))
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for 0 < z < L(u?) — L(u) = L(u'~!), since u is cyclically reduced.
Now

(v2 0 v1)"(x + L(v2)) = (v ' (v2 0 v1) v2) ()

for 0 <z < L(u'~1) as conjugating by vy removes the initial segment of length
L(vs) and can only effect the last segment of length L(vs) < L(u), which is not
in the given range.

Hence

(v1 0 v2)"(z) = (v ' (v2 0 v1)"v2)(2)

for 0 <z < L(u'™1).

For z = 0 and L(u'~!) < 2 < L(u'), we get that

v1(0) z=0
va(L(v1))v1(0) x = L(u'1)
. v1(z — L(ut™1)) L(u'=1) <2 < L(u!~1) + L(v)
(viov2)"(z) =
vy (L(v1))v2(0) x = L(u'~1) + L(vy)

vo(z — L(ut~Y) + L(v1)) L(u'~')+ L(v1) < o < L(u')

va(L(v2)) x = L(u?)
=0y (v 0 01)"v2 ()
So we get
(1 0v2)'(x) = (vy (20 vn) wa)(x)  0<a < L(u)

and hence (v3 0 v)" = vy (v 0 v1)tvy as required.
Now, u' and v? are still of the form u; o uy and ug o u;, so we can use this

construction to prove this works for f(t) = t* for 1 < k < n.
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Finally, extend this to f(t) = fo + fit + ... + fn_1t"~! by the following:

wl® —yfo (u)fr ... (ut"‘l)fnfl
=y twfovguy (vh) v, . .v;l(vtnfl)f"‘lvg
=vy ol (vh) 1 (vtnfl)f"‘lvg
:vglvf(t)vg
as required. O

Corollary 3.2.1. Letu,v € Hy be such that u = ¢~ tvc for some c € RF(G,R™).
Then we have that for all f(t) € Z[t]/p(t)

W@ = 1y

Proof. Since u and v are cyclically reduced, we get that u = v1 o vo = v1v9,

v =wvg ovy and ¢ = vo, as in Lemma 3.2.2. O

The statement of the next Lemma follows Lemma 5.3 in [7], though the

proof differs considerably..

Lemma 3.2.3. let u,v € H; be such that there exists f(t),g(t) € Z[t]/p(t)\ {0}

such that u/®) = 09" Then [u,v] is defined and equal to 1g.

Proof. By Lemma 3.2.1
[u, vg(t)} = [u, uf(t)] =1g = [v’vg(t)] _ [,Uvuf(t)]

If L(u) = L(v) then uf® = »9() implies the initial segment of length L(u)
of u/® coincides with the initial segment of length L(v) of v9(*), and therefore

u = v*!. Hence
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Therefore assume that L(u) < L(v) (and use symmetry for the argument
where L(v) < L(u)).
Without loss of generality assume that f(¢) > 0.

There are two cases:

Case (i) g(t) > 0

Since u/® = v9®) 4 and v have the same initial and terminal segments.
They are also cyclically reduced and uv9®) is defined, so uv and vu are both
defined with uv = v ov and vu = v o u.

Now, we know that w,v € Hy, but H; = RF(G) from [2], which can be
embedded as a group into the set RF (G, R™) with the partial reduced multipli-
cation (as shown after Definition 3.2.1). Therefore [u,v] is defined.

We have:

wvId® = o pI® = 9B 4 = 9By,
From this we see that the initial segments of uv9® and v9®y of length L(v)
are equal and the terminal segments of uv9®) and v9(*)y are also equal. Hence

V=1UO0OUV| =V30U

for some vy, vy such that L(vy) = L(va). Also vy = vq since, if g(t) > 1, the
terminal segments of length L(u)+L(v) of vov = vgouovyou and vou = uoviou
are equal, whilst if g(t) = 1, then v = v/®) and by Lemma 3.2.1, [u,v] = 1g

Sovi=u1lo vfl = vfl owu~!, and we find that

[u, v] =u(v;y o u)lfl(vf1 ) ufl)

=uvy (vytou™t)
1

=uu

:]_G

61



as required.
Case (i1) g(t) <0
Once again [u,v] is defined as u and v are one dimensional.
As u and v are cyclically reduced and u/) = v9®) 4 = g obo ¢ and

vl=aodoc, where L(c) >0,s0v=ctod toa! and

uv = (aoboc)(ctodtoa™t)#uow

Therefore uv = uy 0 v4 where u = ug o us, v = ugl ovy and v = v;l ous.

Note that u and v—' are cyclically reduced with the same initial and terminal

1 1

segments, so uv~ - = u o viand v lu=v"tou.

From this we see that
uv?®) = (ug o us) (v ous) "9 = (ug o us) o (v ouz) "I
and
Iy = (07  ous) "I (ug o us) = (vyt ous)™I® o (uy 0 us)

since g(t) < 0.
Now, the initial segments of uv9™® and v9®y of length L(v) are equal as are

the terminal segments of length L(v), hence

v_lzuov5=vsou

where L(vs) = L(vg), and as above, vy = vg.

Therefore v~ =wowvs = vs ou and v = U5_1 ou~ =gyt ov5_1.
So
[u, v] =u(u™t ovg Hu" (uowvs)
-1
=V5 Vs
as required O
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Again, here the statement of this Lemma is the same as Lemma 5.4 in [7],

but the proof differs greatly.

Lemma 3.2.4. Let u,v € Hy be such that [u,v] = 1g. Then [uf® v] = 1g for
all f(t) € Z[t]/p(t), provided [uf® v] is defined.

Proof.

[u,v] = 1g, so uvu v~ = 1g

which implies v = vuv ™.

1

Let u=clou;ocand v =d ! owv; od. Then set

v =(cd™') 0wy o (de™)

=cve?

1 1 1.—-1

oup ocv te™t = Vw0, but wy is

cyclically reduced, so by Corollary 3.2.1, uf ") = v/ y/—1

Now, u = vuv™" implies u; = cvc™

and hence [u{(t), V']
is defined. Since u; and v’ are conjugates of u and v respectively, we have that

[uf(®) v] is also defined and equal to 1, so we are done. O

We are now in a position to prove the Theorem below, as the authors do in

[7] in Theorem 5.5:

Theorem 3.2.1. The Z[t]/p(t)-exponentiation function exp : (u, f(t)) — u/®

defined above satisfies:
(E1) u' = u, (uf9) = (uf)9, uf*9 = ufud.

(E2) (v iww)f = v v if [u,v] = 1g oru =vow oru = w¥, v = w’ for

w € CDF(G,R™) and o, 8 € Z[t]/p(t).

(E3) [u,v] = 1g and u = w*,v = w’ = (wv)! = u/v/ for w € CDF(G,R")
and o, 8 € 21 p(t)

foru,v € Hy.
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Proof. (E1):

u! = u by definition.

Let f(t) = f_1t" ' 4 ...+ fit+ fo and g(t) = gn_1t"" ' +... + g1t + go be
in Z[t]/p(t), and let u = ¢t ou} o ¢ for some u; € CRF(G,R"), c € RF(G,R")
and k € N\ {0}.

Then

w9 =(c ouk o c)fot ittt " g0t grtt gt

_ t4o Ao t" Tt t4.dgn_1t" !
—c 1o (u{0+f1 +ot o1 +go+gitt+...+gn—1 )koc

_ t4o A frat" Tt t4..dgn_1t" 7!
1, (u{0+f1 +ot a1 )k gotgit+...4+gn—1 )k oc

=c occt o (uf

—

Now note that u(/9) = (u/)9 by definition, and we have proved (E1)

(E2):

If [u,v] = 1g we have that u = v~"luv and, by Lemma 3.2.4, we have that
ul = v~ ulv as required.

If u=wvow then (v uv)f = (wv)f and v~'ufv = v=!(v o w)/v, which are
the conditions of Lemma 3.2.2, so the result follows.

If w = w* and v = w?, then o and B must be constant functions, since
u,v € Hy, and so the result follows from the definition of exponentiation.

(E3) Again, a and 3 are finite, and

(w)? = (w*w®) = (Wt = WA = f Wbl = (W) (W) = ufov’
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Chapter 4

A Use For Exponentiation

4.1 A Use for Exponentiation

In this section I use exponentiation to find a pregroup within CDF(G,R"). I
start by finding a group with certain properties, analagous to properties defined
in [7], within the set CDF(G,R™). I then define a Lyndon’s set, R, of a group
and an R-form, which I then use to define a pregroup, P(Hy, R), as the authors
doinin [7].

Here are some definitions that are analagous to the definitions at the start
of section 6 in [7]. Note that when I say [u,v] # 1, I mean that when [u, v] is

defined it is not equal to 1.

Definition 4.1.1. Let H < CDF(G,R™). Then H is subword-closed if for
each f:[0,a] — G in H, fljo,5 € H for all0 <3 < a.

An example of a group that is not subword-closed is the group
H={9geCDF(G,R")|L(g) € Z}.

In such a group, for any f € H such that L(f) # 0, f|[0,%] ¢ H.
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On the other hand a group that is subword-closed is H7, as defined in the
previous chapter. This is because, if we choose some a € R, then for all f such

that L(f) = (0,...,0,a), fljo.0.....0,8) € Hi for all 0 < # < a since § € R.
Definition 4.1.2. Let a o5 b mean that £¢(a,b) < 4.

Definition 4.1.3. Let u = ¢ loujoc,v = d 1owv od € CDF(G,R") and
§ = 6(u,v) = max{L(c), L(d)}. u and v are separated if u™v* is defined for

any k,m € N and there exists r = r(u,v) € N such that for all m,k > r

umvk — M os (UT’UT) og Uk—r.

For example, if u? = v, w™* = w™u=?* = w"2¢ but for all r, if
m, 2k > r, c(u™,v"2¢ > (r +1)L(u) so that c(u™ ", u=2**") > L(u) > § and u
and v are not separated.

Also, if n =2 and L(u) = (3,0),

a 0<(z,y)r<2
u =

b L(u) > (z,y)lx > 2

and

b7t 0< (zy)lz <1
c L(v) > (z,y)|z > 1.

Then uv doesn’t exist, so u and v aren’t separated.
If however we have that u(L(u)) # v(0)~!, we have that uv = w o v and

therefore

k k

u™v" =u" ow

—mT og (UTUT) os ’Uk_r.

for r = 0 for all m,k € N\{0}. Hence u and v are separated.
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Definition 4.1.4. A subset M C CDF(G,R"™) is an S-set if any two non-
commuting elements of M with cyclic centralisers are separated. If M is also a

group, it is an S-subgroup.

The second example of non-separated elements shows us that we have ele-
ments in CDF(G,R™) that are not separated.
Recall that

H, = {v € CDF(G,R") such that v is of one dimension} = RF(G).
Lemma 4.1.1. H; is an S-subgroup of CDF(G,R™).

Proof. First, since Hy is a group, if it is an S-set of CDF(G,R™), it must be an
S-subgroup of CDF(G,R™). Now we prove that it is an S-set by assuming that
[u,v] # 1 for some u and v that are not separated, to find a contradiction.

Youioc, v=d !owv od with uy,v; cyclically

Let [u,v] # 1 where u = ¢~
reduced.

First let neither u; or vy be constant functions. Then we can assume that
u1,v1 are not proper powers and that L(c) > L(d).

Note that u™ = ¢! ou]* o ¢ and v* = d~! o v¥ o d by Corollary 3.2.1.

Assume that v and v are not separated, so that for all M > 0, r € N, there

exists m = m(M,r) > r and k = k(M,r) > r such that.
clu™™ W) > M (%)

Let
M > L(u) + L(v)

then ¢ = ¢1 o d for some ¢; € RF(G,R").
Note that if ¢(u™, v*) > M, then c(u™ ,v¥') > M for all k' > k, m’ > m.
If L(c1) > L(v1) let ¢; = ey ovy! for some I € N\ {0}, ¢ € RF(G,R™) with
L(c2) < L(wv1).
If L(c1) < L(vy) take ¢; = co.
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Therefore we find that ¢ = cyov; 'od for some I € NU{0} and ¢; € RF(G,R")
with L(ca) < L(vy).
There are three cases:
(1) L(c2) + L(u1) = L(v1)
() Licz) + L(ur) > L(vy)

(49) L(c2) + L(u1) < L(v1)
Case (i) :  L(c2) + L(uy) = L(v1).

u™vF =(cou ocyovytod)(d7t ol o d)

—( oul o cr) (v 0 d)
so by (%), letting M > L(u) + L(v), we find that v; = ¢;* ou; ' and

C292 L(Ul) < L(Cg), Cy = C21 O 052, L(Cgl) < L(CQQ)
uy =

csocy L(up) > L(c2), L(cs) < L(ez)
where ca1, €22, ¢35 € RF(G,R™).
If u; = c99, then v; = uy Socy ocyy . By (%), letting M > (14s)L(u)+ L(v),

Wt (e 0wl o ca 0 ud)((ur” 0 gt o up ) o d)

=(ct o) (uy o (up* o ey oy ) T o d)

=(c 0wy ) (e o up o (ur o ey oup )R o)

But L(c21) < L(uq), 80 ug = ca3 0 ¢y with L(ce3) < L(co1), and by (), letting
M > (3+ s)L(u) + L(v),

m, k _/ —1 m—2—s r — —1 —1 k—1—2
uv" =(c oy 030 Chy)(cyl ocy 0czy 0vg od)
—(cF 0w} 0 epy 0 ¢y 0 o) (e 0 e 0ok P 0d)

-3 v%+l7k

So the terminal segments of c ™1 ou]* **ocg30ca10c93 and d~to 00230C21

of length L(ca1) 4+ L(ce3) are equal, and hence ca1 0 ¢a3 = ¢a3 0 ¢21, which means
[ca1,c23] = 1@
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But then

[u1,v1] =(ca3 0 c5y)((cqy © 02_31)5 o Cz_ll_r o 02_31)

(1 © e )(caz 0 57" o (ea3 0 ¢hy)°)
If uy = ¢3 0 ¢, then by (%), letting M > (3 + s)L(u) + L(v) > 2L(u) + L(v),

k -1

u™v* =(c7 o (ezocy)™oea)((cgto(ezfoest))Fod)
=(c"to(ezocy)" (" oeg) T od)
=(cTto(egocy)" P oes)(ep oyl o Moy ) 0 d)

§+1)k—l—2

and the terminal segments of ¢ 1o(czocy)™ 20c3 and d~to(czoc ocgocy

are equal, so co 0 ¢3 = c3 0 ¢co and therefore
[c2,c3] = 1g
But then

[ur,v1] =(cs 0 c3)(c3 ' o) (cz® o )(esoc5™)

—1¢
So if L(cg) + L(u1) = L(vy), we get that v; = c; ' ouy ' and again [u,v1] = 1g.
Now
[u,v1] = 1g :ulvluflvfl
=uy(cy o urHuyH(ug o co)
=u (' oug e
=[u1,¢3 "]
so [u1, ¢y '] = 1g, which implies that
u:dflocgloulo@od
=dloujocytocygod

=dloujod
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and hence

[u,v] =uvutv!

=(dYouod)(dovod)(d ourt od)(d ovyt 0d)
=(d" our)vruy (vt 0 d)

=(d™ ouy)uy vy (v7 o d)

=d~'d

=1lg

Contradiction.
Case (i) :  L(co) + L(u1) > L(vy).
Again

um" = (c_1 oui' o cz)(v’f_l od)

and by (%), letting M > L(u) + L(v), the initial segment, of v* " is equal to the
initial segment of ¢ Lo uy; ™, so we get

s __ —1 —1
V] =Cy OUjy

Uy :u4OU5:u4ov1_s+1OU3

-1 -1 -1
V1 =Cy OUz =1U; OU

For some ug, uq, us,v2 € RF(G,R™) and some s € NU {0}.

So by (%), letting M > 2L(u) + (s + 2)L(v),

Wt =(u o 0 e) (0} )

+1 ’Uf_l_l

=(uy" " o (ug o vy " ouz) 0 ca)(cy " o uz ™)

:(UT_l ) u4)vf_l_s

:( m—1

ul" o ug)(uy towg)F IS

k—l—s—1 °

=up" vy ouyt) Vs



So for m' and k' large enough, we find that

’

e(ur™ (v 0uy)¥) M ~ L(d) — L(v}™*) — L(w)
=2L(cg) + 3L(d) + (20 + 5 + 2)L(v1) + L(uy) — L(v1TT1)
>L(U1) + L(’U1)

Therefore, since L(vg o uy') = L(vy), [u1,v2 0uy '] = 1g by Lemma 2.4.4.

Since u; and v; are not proper powers, and therefore neither is vy o uZl, we

have that

Uy ov2_1
uy =
() ou4_1

=U4 O Uy
If u; = vy ouy ' = ug ous and L(uy) > 0, then

L(u) =L((vz 0 uy")(ug 0 us))
=V2Us5

<2L(U1)

and hence u; is not cyclically reduced, contradicting the definition of u;.

If up = vgouy " = ugous and L(uyg) = 0, then L(v{) = L(uy) + L(cz), but
L(ca) < L(vy) = L(uy) so s =1, L(c2) = 0 and we are in Case (7).

So

Ul =Ug O U2_1

=U4 O Uy

and hence uz = vy '

Now v = ¢y ' oug !, with L(cg) < L(vy) and L(vy) = L(u1) = L(us)+L(us),
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implies that s = 1 and

VU1 :cgl o u;l
:ull 0 Vg

S R |
=Uy " oug

So by Proposition 2.1.1 and Definition 2.2.3, ¢ = uy4.
But then

u:d_loviocz_loul 0020U1_l°d
=(d Yol o) (ca 0us 0 )0 (vy! od)
=d ' o vl (us0cy) 0 (vt 0 d)
=d™' o ez  ous ") (us 0 ca)(cz ouz ) od
=A™ (¢ ouz ") eg oug ) od
=dlo (c2_1 ougl)f1 od
:dil 01}1_1 od

:’U_l

-1

and hence [u,v] = [v7!,v] = 1g. Contradiction with the initial assumption.

Case (i91) :  L(co) 4+ L(uy) < L(vy).

1

In this case, v1 =c¢5 ou;®o uz_l, with s > 0 and u; = u3 o us.

So by (%), letting M > L(u) + L(v) + L(u§™"),
™o (e o (ug 0 un)™ 0 e2) (e300 (uzt o uz!) " o uz! ) 0 )

=(cto(ugoup)™ *Loug)(wi " od)

—(c oz o (uz 0 ug)™ )Wk 0 d)
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But

’ ’

e((ug 0 uz)™ o) >e(u™,v*) — L(c) — L(u®*?)
>L(u) + L(v) + L(ui™) — L(c) — L(u*th)
=2L(c) 4+ 2L(d) + L(u1) + L(vy) — L(c)
>L(ug o uz) + L(vy)

as up = ug o Uy.

Since ug o ug is a cyclic permutation of cyclically reduced uq, it is also
cyclically reduced and therefore, by Lemma 2.4.4, [us o ugz,v1] = 1g.

Again, neither us o uz or vy are proper powers, so v1 € {usg o us, ugl o u;l}

s —1 -1

1
ouy = cy o (ug

Ifm:uzoz@:c;lo(u;;ouQ)* ougl)souz_l, then
L(uz) = 0 since vy is cyclically reduced. But then L(v1) = L(us) = L(u1), so
s =1, L(c2) = 0 and we are back in Case (i).

V= ¢yt our®ouyt, whilst L(u;) = L(vy). This implies

So vy = u;l o Uy
that either L(ca) = 0 = L(ug) or s = 0.

If L(ez) = L(ug) =0, L(vy) = L(uy) + 0 = L(uy) + L(e2), and we are back
in Case (i).

Therefore s = 0 and

vlzcglouglzuglougl

but then, by Proposition 2.1.1 and Definition 2.2.3, 02_1 = ug_l.
Hence
u=clo Uy 0cC
:d_loullocgl ouloczouflod
=d ' o (uz' ouz M) ouzt o (uzoug)ouso (ugous)od

1)l’1ouglouglou3_1o(U3ou2)OU3o(u2OU3)lod

=d'o (u?:1 ouy
But then we must have that

1

(uy " ouz)(uzoug) = (uy ' ouzt) o (ugous)
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and so, by the definition of o, L(uy ' o uz') = L(v1) = L(u1) = L(uz) = 0,
which means that L(uy) + L(c2) = 0 = L(v1) and we are in Case (i) again.

Hence Case (i4i) cannot occur either and we have a contradiction in all three
cases.

Now let u; be a constant function. We know that
u™ " = (¢t oul oc)(d7t o v od)

and we can assume that L(c) > L(d), so that ¢ = ¢; o d. But then

1

u™o® = (¢t ou o cp)(vF o d).

Now there exists a ¢ € N\{0} with qL(v1) < L(c1) < (¢ + 1)L(v1), so letting

M > qL(v) + L(u), we must have v! = ¢;* o ¢y and

W = o up o er)((ert o ea)ot 1 0 d)

=(ctou")((ez 00" "0 d)

=(ctoul)(caocrt oy 0vi M 0 d).

This time, let M > 2qL(v) 4+ L(u) to see that ¢y o ¢;' is a constant function,
and the letter it is constant on is the inverse of the letter that uy is constant
on. This implies that [u;,v1] = 1g and that ¢; is constant on the same letter

as uq, hence L(d) = L(c), ¢ = d and

1 1 -1

oujoc)(ctovoc)(ctoug Yoot

[u,v] =(c~ oc)(c  ovy oc)

=cto ulvluflvfl oc

This is a contradiction also.
Similarly if v; is a constant function we end up with a contradiction.
Therefore our initial assumption, that [u,v] # 1g, must be wrong and we

have an S-subgroup, as required.
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O
Now we can define a Lyndon’s set as they do in [7]. We do this in two parts:

Definition 4.1.5. Let M C CDF(G,R"). A set Ry C CDF(G,R™) is a set of

representatives of M if Ry; satisfies:
(i) Ry does not contain proper powers.
(ii) For all u,v € Ry, w# v~ L.

(i1i) For each uw € M there exists v € Ry, k € Z, ¢ € RF(G,R™) and a cyclic

1 k

permutation w(v) of v such that u=c~ ' om(v)® o c where v, c, k,m(v) are

unique.
Notes:
(a) This does not require Ry C M.
(b) (4i7) implies that every element of Ry, is cyclically reduced.

For Myasnikov, Remeslennikov and Serbin show in [7], these sets do exist. In
my situation the constant functions, f such that f(z) = a for L(f) > = > 0
and f(0) = 1g, have no maximal root, so I cannot have a aet of representatives
with them involved. If however my M does not contain these elements, the set
Rjs can be found using the steps from just after Definition 6.6 in [7] as shown
below:

First, for f € M, since it is cyclically decomposable, f = cogoc™! for some
c€ RF(G,R") and g € CRF(G,R"). Let Ry = {g|f =cogoc 1}

Next for each g € Ry, let M, = {g'|¢’ is a cyclic permutation of g and g~ '}.
These sets form a disjoint union of R;. Choose a single element g from each set
M, and let Ry = {g|lg € R1}.

Finally, for g € Ry let g* be the unique maximal root of § and let the set
Ry ={g"|g € Ra}.

(6]



For a group H, let the set
K(H) ={v e H|Cu(v) = (u)}

This is the set of all elements in H with cyclic centralisers. The elements of
these sets do not contain the constant functions as constant functions do not
have cyclic centralisers. Therefore a set of representatives does exist for K (H).

Recall from Definition 1.2.1 that ¢(f,g) = L(f) + L(g) — L(f~1g). This
function only exists when e9(~1, g) does as otherwise the element f~'g is not

defined. In fact it can be proved that e(f,g) = c¢(f,g7").
Definition 4.1.6. Let H < CDF(G,R"™), then a Lyndon’s set of H is a set
R = R my of representatives of K(H) such that:
(1) RC H.
(i) For allg € H, uw € R and o € Z[t]/p(t), c(u®,g) exists, and we have that
c(u®, g) < kL(u) for some k € N.
(i1i) No word in H contains a subword u® where u € R and « € Z[t]/p(t) with
deg(a) > 0.
Notes:
(a) If H is subword closed then (i1) = (iii).

(b) From (i) and (ii7) we see that u®g and gu® are defined for all g € H,
u € R and «o € Z[t]/p(t).

Now we must prove some results about Lyndon’s sets and S-subgroups of
CDF(G,R™). The Lemma below is analagous to Lemma 6.9 in [7], but the

proof is different.

Lemma 4.1.2. Let H be an S-subgroup of CDF(G,R"™) and let R be a Lyndon’s
set of H. Ifu,v € RT and g € H are such that either [u,v] # 1g or[u,g] # 1a,
then there exists r € N such that for all m,k > r the following holds:

m .k

um gk = u™" o (ugu”) o vF T

76



Proof. Assume that the Lemma fails for some u,v € R*! and ¢ € H. Note
that if the lemma fails for (u,g,v), then it also fails for (u,g,v'v) and hence
for (u,gv!,v), where | € Z. Since v € R*!, there exists some | € Z such that
(gv')v = (gv') o v and therefore we can assume that gv = g o v. Similarly we
can find an [ € Z such that u(u'g) = u o (u'g).

Now if g does not cancel completely in u'g, we find that

umgvk :umfl o (ulg)’Uk

m—l1 k—1

=u""bo (ulgv!) 0w

for any m, k > [, so the lemma holds. Contradiction.
Therefore the g must cancel completely in u'g so that we get g = u™7 o g;
for some j > 0, L(g1) < L(u).

There are two cases:

(a) [u,v] # 1a

(b) [’U,,U] = ]-Ga but [’U,,g] 7£ ]-G

(a) [u,v] # 1a:

Here u = uj 0 g7 ', s0

g =u~’ o g1

—(urog; ) 7 og
and therefore

u™gv" =(uy 0 g7 )" (w10 g7") T 0 gr)v
=(u1 09y )" 7 0 g1
m—j—1 k

=(up o g7 h) o ULV

=uj 0 (gl_1 o ul)mfjflvk.
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If the cancellation between (gf1 oup)™ 71 and v* is long enough, beacuse
m, k are sufficiently big, we get that c((g;* o u1)™™,v*) > L(u) + L(v). Now
91 Loy is a cyclic permutation of ™ = u; o 91 1 and is therefore cyclically
reduced, so by Lemma 2.4.4, [gf1 oup,v] = 1g. This implies that a conjugate
of u commutes with v. But this contradicts property (ii) of the definition of a
set of representatives by implying that the 7 (v) in the definition is not unique
since [u,v] # 1g by the case assumption, therefore it cannot happen.

(b) [u,v] = 1g, but [u,g] # 1a.

u,v € R*! so u and v are not proper powers and we have that [u,v] = 1g
implies u = v*!.

So L(g1) < L(u) and u = uy o g7 *. Therefore, if m > j

u™ gt =(ur 0 g7 ((ur 0 g7") 7 0 gr)o*
=((u1 097 )" 7 g1)v*
=((ur 0 gy )" o ur)o”
=(u1 0 (g " our)™ 7)o",
By our assumption that there is no r € Z with u™gv* = u™~" o (u"gv") o V¥~

for any m, k > r, u™gv* = (uyo(gy touy )™~ 1)vF implies that the cancellation

between (g; " oup)™ 71 and v* is L(v¥), so, for m', k" large enough

’

c((gr " o un)™™ M) > Ligy ' o wn) + L(v).
+1

Hence, by Lemma 2.4.4, [gl_l ouy,v] = 1g and 91_1 oup = vt but v = ut!,

SO

-1 +1 -1 -1
g1 cur=u" €{wrogy ,g10u }

If g7 ouy = ug 0 gy, then [ug, g7 '] = 1g and hence
[, 9] =(ur 0 97 ) (g1 0w 0 1) (g1 0 ug ) (gr ' o (w0 gy *))

:1G
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Contradiction of the case assumption.

If gy ' ous = g1 ouy* then gy 2 o u? = 1g, which means that u} = g7. But
this means that L(u?) = L(g}), which implies that 2L(u1) = 2L(g1), so that
L(u1) = L(g1), and also the initial and terminal segments of u; of length %
are equal to the initial and terminal segments, respectively, of g; of the same
length. This in turn implies that u; = g;. But then u =wu; o gl_l =uy 0 ul_l =
1g. Now 1g = 1(;_1, so this implies that u ¢ R. Contradiction.

So this case cannot occur either. Therefore if the Lemma fails for one triple
we get a contradiction.

Hence the Lemma is true for all triples (u, g,v).

O

The above Lemma can be extended to the next one, as in [7]. In my proof

I have expanded on what the authors of [7] wrote.

Lemma 4.1.3. Let H be an S-subgroup of CDF(G,R™) and R be a Lyndon’s
set of H. If uy,...,ux € R and g1,...,g9x41 € H are such that for any
i=2,...,k, either [u;_1,u;] # 1lg or [u;, g;] # la, then there exists r € N such
that:

m m T my—2r s T meo—2r mg—2r T
g1uy" g2 - gru " g1 = (grun)ouy™ T o(ulgaus)ouy ™ o, ow™ T o(up gk y1)

with 2r < m; € N.

Proof. We prove this by induction.

Case k = 1: giu" go = (gruf) o u" %" (u}ga).

By property (7i7) of a Lyndon’s set, g1 does not contain a subword u§, where
a € Z[t]/p(t) with deg o > 0. By property (ii) of a Lyndon’s set, gju$ exists for
all « € Z[t]/p(t). Therefore giuy"* exists for all my € N, and g1 = g11 0g120uy °
with L(g12) < L(u1), ug = gle o Uy so that g1ui+1 = g11 © U12.

Since u; € R, uy is cyclically reduced and hence uiou; = uq2 ouq. Therefore

Gru™ = (g11 0 uga) 0w 57! for all my > 54 1.
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I—t-1
1

Similarly u}gs = u o (uly 0 ga2) for all I > ¢+ 1 and for uf, such that

t

Uy =)y 0 g5y and go = u; " 0 ga1 0 goo. So if my —s — 1>t + 1, we get that

gru" g2 =(g11 0 ur2) (U "5 go)
=(g11 0 ug2)u" 5T (wly 0 gao)

s+1 mi—(s+t+2) ° (ut+1
1

=(g1uy" ) ouy 92)

and therefore, for » > max {s + 1,¢ + 1} and my > 2r, we get that

grul gz = (gruf) ouf™ " o (ufga)

as required. So the lemma is true for k = 1.

Now assume that this is true for k£ = [, so there exists r; € N such that

-2 —2
P17 o (uy' gauy') oo T

m m T T
g1uy tge ... quuy tgiy1 = (g1uy') o uf o (“llgH-I)

for all m; € N with m; > 2r;, i € {1,...,1}.

Prove that the lemma is true for k£ = { + 1.

Let w = (giuj') ou™ "> o (uj'goult) o...ou " 7' "o (u]"  guj*). Then
m my mi41 _ m;—2r; T mi41
g1uy g2 - g grru gire = (wo o (uy' gir1))up, | giee

As in the case k = 1, by properties (i7) and (i4i), there exists r;4; € N such

that
mi41 . mMi41—Ti+4+1 Ti+1
(“l+1 Jit42) = u o (uH_1 gi2) for all mypq > rppq
So
m mi41 _ m;—2r T Mi41—Ti4+1 Ti+1
91Uy g2 - gy g = (wo ™ T o () gig)) (ug o (U4 gi+2))

But by Lemma 4.1.2, there exists r > max {r;, r;4+1} such that

m;—2r; T mi41—"i41 __, omyp—2r r r Mi41—Ti41—T
Uy o (u' 1)Uy =1 o (U gra1upy1) 0 Uy
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for all m; > 2r,myy1 > 141 + 1, S0

gruttga ... uln_:_lflgHg =(wo u}'”_Z” o (u" gl+1)(u;:”_lflgl+2)
=wou" " o (ufgriufer) o w0 (ufy1gisa)
=(g1ul) oui™ " o (ufgaus) oug> > o
RN u;anT ° (Ulrgl+1u{+1> o ulnjrlfl_% o (u?+19l+2)

for all m; > 2r;i € {1,...,k + 1}, as required.
O

Now we define R-forms. These Definitions are analagous to Definitions 6.11

and 6.12 in [7].

Definition 4.1.7. Let H be an S-subgroup of CDF(G,R™) with a Lyndon’s set

R. A sequence:
p = (gla u?13927 ey 9m, utrlnm’ ngrl)

is an R-form with g; € H, u; € R, o; € Z[t]/p(t) and m > 1.

Definition 4.1.8. An R-form p is reduced if deg(a;) > 0 (1 <4 < m) and if

u; = u;—1 then [u;, g;] # g, or if m =1 and deg(a;) = 0.

Let P(H, R) = {R-forms over H}.

The partial function
w:P(H,R) - RF(G,R")
sends p = (g1, uT™", 92, -« -, G, UST™, Gmt1) tO
w(p) = (- ((g1ui™)g2) - - - g )" ) G121
for w(p) defined.

Definition 4.1.9. An R-form p is normal if it is reduced and

1

w(p) = g10u 0g20...0 gy OUL" O Gint1
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where g; does not have terminal segment uiil foralll <i<m and g;ou;" does

not have initial segment ufl forall2 <i<m.

In fact, for every R-form, p, w(p) is defined and in CDF(G,R"™), and p has
a unique normal R-form, ¢, associated to it such that w(p) = w(q), as proved

in the Lemma below (similarly to that in [7]).

Lemma 4.1.4. Let H be an S-subgroup of CDF(G,R™) with a Lyndon’s set R.

Then for every R-form p over H the following holds:
(i) w(p) is defined and does not depend on the placement of parentheses.
(ii) There exists a reduced R-form q over H such that w(p) = w(q).
(i1i) There exists a unique normal R-form ¢’ over H such that w(p) = w(q’).
(iv) w(p) € CDF(G,R™).

Proof. Let p = (hy,uf", hay ..., u&m hymy1). First I prove that (7) implies (i¢)
which implies (#4¢), then I prove (i) and finally I use this to prove (iv).

Assume (7) is true, so
w(p) = hiuThe ... Ao A1

Let {a,, iy, ..., a4, } be the set of all a; in the R-form above such that

deg(a;) > 0 with 41 < ig < ... <. Then set

@ gy —1
g1 :hlullhg...u ! hi1

i1—1
Q41
—h. J .
gj+1 _h2j+1uij+1 i 'h'lj+1
Qip 41
gk+1 :hikJrluikj-l e hm+1

for j € {1,...,k —1}. Then g; € H for all j € {1,...,k+ 1}, and by (i), we

have that

w(p) =hiufha .. Apun™ g

_ iy FXig
=01U;, 92 --- GkU;, " Gk+1
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Set u;; = v; and «;; = 3; to get:

w(p) = 9107 g2 - gk Gr 1
If we set
pr= (91,07 g2, s Gy V1 Ght)
we have a new R-form p; € P(H,R) such that w(p;) = w(p). If this is not
reduced, then there exists j € {2,...,k} such that v; = v;_1 and [g;,v;] = 1a.
Since v; € R, the centraliser of v; in H, Cy(v;), is cyclic and generated by v;,

we have that g; = v7" for some m € Z. Therefore

Bir By _  Bioatmts
vithgivy =vp
Let
By -1+me+B;
p2:(glavfla"'7gjflavjj L ]a9j+17~-~a9k711£k,9k+1)

Then p2 € P(H, R), with w(p2) = w(p1) = w(p) and the length of py is less
than that of p;, which is less than or equal to that of p, where the length of p
is the number of g; in p. Now if 3,1 +m + 3; € Z, repeat the first step to get
p3 € P(H, R) with length even less than py. Since the length of p is finite, by
induction we can repeat this until there are no more j such that both v;_; = v;
and [g;,v;] = 1g, and no §; such that §; € Z, leaving us with a new R-form,
qa=(fi,u1" fos- -, f1.9)", fis1) € P(H, R), which is now reduced and such that
w(q) = w(p).

So (i) = (i1), and we can now assume that our original R-form
b= (hla u?la h?a ey hmv u?nma hm+1)

is reduced. Next I show that this implies (7).

Since deg(a;) > 0 for all ¢, by Lemma 4.1.3 there exists r € N such that

w(p) =hiuTha ... Apup™ by

m
=(haui") o uf' " o (uythauy?) o us* 7 o

oo (U B ) o w2 o (Ul )
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where r; = sign(o;)r.
Let
T
g1 :hlul1
R BN
g5 =u;y hju;
Im+1 :’LL:’;’L hm+1

for j € {2,...,m}, then set §; = a; — 2r; to get a new R-form

q1 = (917U?1»92a e 7gmau£q,m7gm+1)

which satisfies (¢). Then w(q;) = ¢1 © u’fl 0G20...0Gmoulm ogniy.

By properties (i7) and (i47) of a Lyndon’s set, there exists a unique s; € Z
such that g; = f1 ouf' and f; does not have ulil as a terminal segment.

Also by properties (ii) and (iii) of a Lyndon’s set, there exists a unique

t1 € Z and f4 such that
g2 ou =ult o f5 o ul?

where f5 o u5? does not have ui' as an initial segment. This means that we

have a new form,
_ s1+Bitt1 g B -
qQ—(flaull ! 1,f2,U227g3,...,U§l agm-l-l)

with w(g2) = w(q1) = w(p).

Now if
Q= (fh ui1+51+t1 , f27 u;z-l‘ﬁr‘rtz7 o 7u<lsl_711+5l71+t171 7 fll> ulﬁl7gl+17 o 7u£3nm’ gm+1)
where
u:i7711+ﬁi71+ti—1 iufi"ﬁgi"rti _ ufifll"l‘ﬁi—l"l‘ti—l o fz o uf,‘,+ﬁi+ti

fi does not have terminal segment ulil and f;11 o u;41 does not have initial

segment u!, for 0 < i <1< m.
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Then, by properties (ii) and (iii) of a Lyndon’s set, there exists a unique
51 € Z such that f] = fyow]" and f; does not have ulil as a terminal segment,

and there exists a unique #; € Z and f;,_; such that

Biy1 _ t / Bis1
Grerouy =w'o fig 0wy

and f/,, o uffll does not have initial segment u;"'.

So, by induction, we end up with a normal R-form

+0B1+t m+LBm+im
qm—‘rl:(flauil - 1af27"'afmnufn +Bmtt 7fr/n+1)

such that w(¢m+1) = w(p). Uniqueness of this normal R-form follows from the
uniqueness of the s; and ;.

Now we prove (i) by induction on m.

First let m = 1.

If a1 € Z, hy,ul',hy € H, therefore (hiui*)hy = hy(ui*he) € H, so the
product (hquj*)ha does not depend on the placement of parentheses.

If degay > 0, then, by (i7) of the definition of a Lyndon’s set, we have
that c(u$',hy') and c(uj®', hy) exist and that c(u$*,hi') < kiL(u;) and

c(uy“t, ha) < kaL(uy), where k1, ks € Z. Hence
hauft =(hyuy) o ugt ™™
ufr Ry =ufr TR TR o (k2 )
and therefore
(hauf*)he =((haui") o uf* )y
=(hauf") o (ug* ™" hy)

=(hyuy*) o (ug" ™M 7" o (uf?hy))

But by axiom (P3) of a pregroup, which holds for RF(G,R"™), the product
(h1uf*)he does not depend on the placement of parentheses. Hence (i) holds

for m = 1.
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Now we can assume this holds for m = k£ — 1, so for all R-forms
Pk—1 = (hla u(lll ) hQ, ey ugiilv hk)

w(pr—1) is defined and doesn’t depend on the placement of parentheses.
By the first part of this proof, this means that there exists a unique normal

form qn_q = (fl,vlﬁl,fg, ... ,vlﬂi’ll,fl) such that

w(gr-1) = f1 Ovlﬁl ofao... Ovlﬁ_lil o fi = w(pr-1)

Let

[e] Qg1 Qg
pr = (hi,ult hoy oo u "7t R, ul ™ hggr)

‘We need to show that
w(pr) = ([(( - ((hauf™)he) - Jup ) heup* Vg

is defined and doesn’t depend on the placement of parentheses.

‘We know that

[ ((hauSha) - Jul™ V] =w(pr_1)

Zflovlﬁlofzo---ovlﬁi}lofl

which doesn’t depend on the placement of parentheses, so all we need to do is

prove that

w(pr—1)(ug" hi+1)

is defined and doesn’t depned on the placement of parentheses, as that would
mean that the same holds for (w(pr—1)up"®)hiy1.

If o, € Z, then u;* € H and

w(pr—1)(up* 1) = (f1 ov{31 ofyo...0 vlﬂfll o fi)(ugp* hiy1)

Now hyy1, ug, fi € H, therefore fiul*hri1 € H. So, since deg(fi—1) > 0

by the construction of gx_1, property (ii) of a Lyndon’s set tells us that there
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exists r € N such that vlﬂfll (frugFhgsr) = vlﬁi’ll_r o (v]_; fiug*hg41) and hence
w(pr) = w(pr—1)(uy*hiq1) is defined and doesn’t depend on the placement of
parentheses.
So assume that deg(ay) > 0.
If either [v;_1,ui] # 1lg or [vi_1, fi] # lg, then, by conditions (i) and
op—s2

(i17) of a Lyndon’s set, up*hypi1 = uy, o (up? hiy1) for some s, € N, and by

Lemma 4.1.2,

(0 o f) (ug* hgrn) =(u)" 7 o f) (w2 o (uf2hgin)

:vfi_llﬂn o (vj_y frug') oup® " 772 o (uy? hig)

for some 7, 51 € N, and again we have that w(py) = w(pr—1)(ug*hi41) is defined
and doesn’t depend on the placement of parentheses.

If both [v—1,ux] = 1g and [vi_1, fi] = 1g, then, by properties (i) and
(#4) of the definition of a set of representatives, v;—1 = wug. Also, since the
R-form (fl,vfl,fg, . ,vlﬁi‘ll,fl) is a normal form, f; doesn’t have vlﬁi‘ll as an

initial segment. But [v;_1, fi] = 1g, so by (i) of the definition of a set of

representatives and the fact that Cp(vi—1) = (u) for some u € RF(G,R"),

fi=1g.
Hence
Bi-1 ag _ B, ag
(057" o fi)(ug" huegr) =01 0y e
Br—1+ag
=V Pyt
_ Bioitag—s2 S0
=V—1 o (v} het1)

by conditions (i) and (zi) of a Lyndon’s set, so w(pr) = w(pr—1)(uy* hy1) is
again defined and doesn’t depend on the placement of parentheses.

Hence (1) is true and therefore (i7) and (7iz) are true.

Now we can prove (iv):

By Lemma 2.4.3, if g~ 'w(q)g € CDF(G,R") for some g € RF(G,R™), then

87



1

so does w(q) if w(q) does not cancel completely in g~ w(q)g, where

w(g) = frov o fao...0v)'7 o f)

Let g = f1 ov{ for some j € Z to get

(077 o frHYw(g)(frov]) = (Wi o fi ) (frovf o fao...0v) " o fi)(fi o))
If v1 # v;_q or [fif1,v1] # 1g, we get that
W7o frYw(g)(frov]) = W' o fro...ov " o fi)(fiov])

and if we choose j carefully, by Lemma 4.1.2 there exists m € Z such that

sign(B1) =sign(j — m) and
Bi-1 i\ Bioi—m m m j—m
(5" e fi)(frov)) = vy o (vZyfufivl") o vy

so that (v;? o fy Mw(q)(f1ovl) € CRF(G,R™) C CDF(G,R"™) and w(q) does
not cancel completely in (v;7 o 7 ) w(q)(f1 o v]) as required.

If, however, v1 = v;—1 and [fif1,v1] = 1g, we find that f;f1 = vf and

(o) fr =f7H f Oﬂfl o fa 0~~Ovlﬁ_l§2 o fi—1 0016171 o fi)fr

_.,01 Bi—2
=vito fao...ov o fi_jow

Bi—1+s
1
If sign(B1) = sign(Bi—1), then

fi'w(g) fr € CRF(G,R™)

and w(q) does not cancel completely in f; 'w(q) f1, as required.

If sign(31) # sign(B—1), then
! T w(g) (froy %) =0 o faoowg 0 fiy

Now we have reduced the number of elements with exponents of dimnesion

greater than one by one and can therefore use induction on .
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If I =2 and v1 = v—1 whilst [f], f1] = 1g, then w(q) = f1ov{" o fa,

fifo =" and

fTlw(@) fr =f7 (fronf o f2) fu
=" o0’

:,U,?l +m

which is clearly in CRF(G,R™), but w(q) = f1 o v}' o f2 is not completely
cancelled in f;'(f1 o v* o fa)f1, so we have that w(q) € CDF(G,R™). This
means that (f; ov]"' o fo) € CDF(G,R"™) in all cases for [ = 2, and therefore
the process of reducing the number of exponents of dimension greater than one
must end.

This proves (iv) and hence the lemma is true.

O

Let P(H,R) = {gu®h|a € Z[t]/p(t),9,h € H,u € R} for H < CDF(G,R")
and R a Lyndon’s set of H.

I can now prove that P(Hy, R) is indeed a Pregroup, as I stated at the start
of this Chapter. First I prove a more general result about P(H, R) as defined

above.

Proposition 4.1.1. Let H be an S-subgroup of CDF(G,R"™) and R a Lyndon’s
set for H. Then P(H,R) is a pregroup with respect to reduced multiplication.
This follows thNote that roof of Proposition 6.14 in [7].

Proof. Since the reduced multiplication is induced from RF(G,R"™), we already
have that it satisfies axioms (P1) to (P3), therefore we only need to prove that
it satisfies (P4), which is:

For every u,v,w, z € P, if uv, vw, wz are defined, then either uvw or vwz is
defined in P.

Here P = P(H, R).
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To prove (P4), first assume that g;c;*h; € P with deg («;) > 0¢=1,2 and
g1y hi = gacy®ho

Then a = (g1,¢, hihy b ;2,95 1) is an R-form and by Lemma 4.1.4, w(a) is
defined, but

w(a) = gicfthihy te; %2 gyt = 1g

Therefore a is not reduced and so ¢; = c¢g, whilst [co, h1hy 1] =1g.

Similarly, if b = (ha, 5%, g2gy *, 7, hyt), then b is an R-form, and
w(b) = hgcg‘Qgggl_lcl_O‘lhl_l =1g

s0 [c2,9297'] = 1g. But ¢a = ¢ and therefore [c1,9097 '] = 1g. Also
(9297 1)" = g1g5 ', which means that [c1, 9195 '] = 1g and hence g1g; ' and
hihy ' € (e1) = (ca).

Now let p = gpcgphp,q = gchqhq € Pand z = pg € P. 1 wil prove that
cp = cq and hpgq € (cp).

First, since « € P, there exists g, hy € H, ¢, € R and o, € Z[t]/p(t) such
that © = gyc5=h,.

Now

o (e% @ -1 —a, —1
C_(gp7cpp,hpgqacquhqhx 7Cx £7gz )

is an R-form, so
w(c) = gpepr hpgqacsthghy ey % gt
is defined, and w(c) = 1¢ therefore ¢ is not reduced.

If deg (a;) = 0, then by the first part of this proof, ¢, = ¢, and = € H, so

—ag ,—1

gpCpPhy = (xhq_l)cq .

and [cp, hpge) = 1, hence hpqq € (cp) as required.

If deg (cr;) > 0 then either deg (ay,) > 0 or deg (ay) > 0.
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Let deg («p) > 0, then

gpCphy = gzcgm(hzhglc;ang_l)

So deg (aq) = 0 means that (hxhq’lcq_%gq’l) € H, 50 hpgycq®hghs € (c,), but
then ¢, = ¢4 and hqhy, hpgg € (cp), since ¢, € R.

Also, deg (ag) > 0 means that ¢, = ¢, = ¢, and hyhg ' € (cp), s0 hohyt = ch
for some k € Z. But then g,cp"h, = gmc§”+k_aqg;1 with deg (az +k — ) >0
(since deg (o) > 0) and hence ¢, = ¢, and hpgq € (¢p) again.

If deg (ap) = 0, then deg (ay) > 0, so
(gpcﬁ”hpgq)cé"’ hq = gucg™ hy

and gpcp?hpg, € H. But then ¢, = ¢, and g 'gp,cp?hpgy € H, which implies
¢p = ¢g and hy,gy, 95 gp € (cq) as required.

Hence, if p = gpcp?hp,q = g4¢q*hg € P with deg () > 0 or deg (ag) > 0,
and pg € P, then ¢, = ¢, and hpgq € (cp).

Now let v = gucS*hy, v = gucy hy, W = gucoPhy, 2 = g,c3*h,, where
uv, vw,wz € P.

If deg (ap) > 0 for all p € {u,v,w, 2}, then by the above we must have that
Cy = Cy = Cy = ¢, and h,g, = cﬁ,hvgw = CL for some k,l € Z. Therefore
uw = g, cluthtavtitany e p.

If there exists a unique p € {u,v,w, z} such that deg(cy,) = 0, then either
u,v,w or v,w,z has two consecutive elements r, s with deg (), deg (as) > 0,
whilst the last one, ¢, has deg (ag) = 0. But then ¢ is clearly in H and since
rs € P, g € H, both (rs)q and ¢(rs) € P, so we are done.

If there exists q1,¢q2 € {u,v,w,z} such that deg(cg,) > 0, i = 1,2, and
the other two elements p1,ps € {u,v,w,z} are such that deg(«,,) = 0 for
1 = 1,2, then either one of u,v,w or v,w, z has two consecutive elements r, s
with deg (), deg (as) > 0 as in the case above, or one of u, v, w or v,w, z has
only one element ¢ such that deg (c,) > 0, but then both of the other elements

are in H, so all of rgs, (rs)q and ¢(rs) € P and we are done.
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If there exists a unique p € {u,v,w, z} such that deg(a,) > 0, then either
u,v,w or v,w,z has two consecutive elements r, s with deg (c,.),deg (as) = 0,
and we can use the arguement of the second part of the case above to see that
one of uvw or vwz is in P, or there are three consecutive elements in H so their
product is in H and hence in P

If for all p € {u,v,w,z}, deg () = 0, then w,v,w,z € H and we can use
the second part of the case above to prove that both uwvw and vwz are in P.

Hence (P4) holds in P and we are done.

O

Now, since Hj is an S-subgroup of CDF(G,R™), we have found a pregroup
P(Hy,R) C RF(G,R™) for any Lyndon’s set R of Hy. The next section is about
the universal group of this pregroup, which is in RF(G,R™), and an associated

length function that I will prove is a Lyndon length function.

4.2 The Universal Group of P(Hy, R) and the A-

tree X associated with P(Hy, R).

A pregroup P has a universal group, U(P), associated to it, defined by

U(P) = (pl{zylm(z,y)""|l(z,y € D)})

In the case of P(Hy, R), this group is the group generated by P(H;, R), with re-
duced multiplication. We have that (P(Hy, R)) C CDF(G,R™) C RF(G,R"),
so I have found a group within RF(G,R") that doesn’t only have one dimen-
sional elements, which I examine in more depth in the next chapter.

First I prove that the length function defined on CDF(G,R™) is a Lyndon
length function, which tells us that the group acts on an R™-tree, giving us a

link to the theory of A-trees (see [1]).
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Proposition 4.2.1. The length function L : (P(Hy, R)) — R™ such that for
f:[0,algr — G, L(f) = «, is a Lyndon length function. (See [1]).

Proof. Given a group H and an ordered abelian group A, recall from Definition

1.2.1 that a length function L : H — A is a Lyndon length function if:
() L(lg) =0
(ii) L(h) = L(h™Y), for all h € H

(iii) c(h1,h3) > min{c(hy, ha), c(ha, h3)}, for all hy, ha,hg € H

Where
clg,h) = S {L(g) + L) ~ Lg™ ')} g,he H

Let H = (P(H;y, R)) and A = R™. Then:

(¢) is true by definition of 1g

(ii) is true by definition of f~!

For (iii), first note that f~lg always exists, and we have that c(f,g) =
eo(f~1, g) by definition of the multiplication law in RF(G,R™).

Now let f,g,h € RF(G,R™). If ¢(f,g) = 0 or ¢(g, h) = 0 there is nothing to
prove as ¢(f, h) > 0 by definition.

So let ¢(f,g),c(g,h) > 0. By the above, we know that c(f,g) = eo(f~1,9)
and c(g,h) = eo(g~ ', h). Therefore go(f~1,h) > min{eo(f~1,9),e0(g7 L, h)}
implies that ¢(f, h) > min{c(f, g),c(g, h)}.

Let eo(f~1,9) = c¢(f, g) = €0, so the initial segments of f and g of length &g
are equal.

If eg(g~ 1, h) = c(g~t, h) = &), then the initial segments of g and h of length
e(, are equal.

Let ¢ = min {eg,e(}. then the initial segments of f and g of length e are
equal, but then this initial segment must also be equal to the initial segment of
h of length . Hence the initial segments of f and h of length & are equal and
therefore c(f, h) = eo(f~1, h) > e = min{c(f, g),c(g,h)} as required.
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Chapter 5

Periods

5.1 Centralisers of elements of CDF(G,R") with
non-zero lengths.

In [2] the authors prove that the centre of RF(G) is trivial for all groups G. This
is because elements of positive length can only commute with an element of zero
length if that element is 1g. Therefore they decide to look at the centralisers of
all f € RF(G) with positive length. These elements are hyperbolic, due to their
action on the R-tree corresponding to their work. Those elements with length
zero are called elliptic. For a detailed description of these terms see [1]. In
order to look at the centralisers of hyperbolic elements they introduce periods
and strong periods.

In RF(G,R™) the centre is also trivial, for the same reasons, so in this
Chapter I define periods and strong periods for elements f € RF(G,R") with
positive length, and then use them to describe the centralisers of f € (P(Hq, R))
with positive length. I will also call these elements hyperbolic and those of length
zero elliptic. I find that there are two types of hyperbolic element in this group:

those with periods, w, such that fl ) has non-trivial cyclic centralisers in H;,
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and those that don’t. In [2] the authors touch upon these two types of elements
at the end of their section on periods, but I must separate them at the start
because they behave significantly differently in higher dimensions.

First I need to define the sets of periods and strong periods, €2; and Q?c, for
f € RF(G,A), which I do in the following way:

Definition 5.1.1. Let f € RF(G,A) have length L(f) = a > 0. Then
(i) the set of periods of f € RF(G,A) is the set

Q The points w € [0, o] such that f(z) = f(y)
f =
for all x,y € (0,a]p with |z —y|=w

(ii) the set of strong periods of f € RF(G,A) is the set
Q(} = {w € Qf such that o« —w € Qy}
Notes:

(a) For f € (P(Hy,R)), if for w € Qy with w # 0, dim(w) = 4, then by the
definition of exponentiation we have that for all z,,_1,...,2,_;_1 € R

such that w + (xp—1,...,ZTp—i—1,0,...,0) < L(f).

f

0.0 = Flin1n i 1,0,.0) 0+ @n 10 @n i 1,0,...,0)]

_ 0
(b) Let @ = L(f). Then 0, € Q2.

(¢) Here we are looking at a general densely ordered abelian group again. For
the rest of this thesis we will go back to the example where A = R™. If we

let A = R in the above definition we get precisely Definition 8.3 from [2].

From now on assume that L(f) =« > 0.
In the group generated by P(H;, R) there are two types of element. They

are defined as follows:
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Definition 5.1.2. Type 1 elements are those f € (P(H1, R)) for which there
exists w € Q(} such that dim(w) = 1 and for which flj . has non-trivial cyclic
centralisers in the group Hy.

All other elements are of Type 2.

The Type 2 elements have centralisers like those of Chiswell and Miiller’s
hyperbolic elements, while those of Type 1 are slightly different, as I will now
prove.

The next Lemma gives an insight into where these differences occur.

Lemma 5.1.1. (i) If f € (P(Hy, R)) is of Type 1, there exists wy € Q} such
that dim(wy) = k for all 1 < k < dim(f)

(ii) If f € (P(Hy, R)) is of Type 2, then dim(w) = dim(f) for allw € Q?\{O}

Proof. (i) Let f be of Type 1.

Since L(f) > 0, dim(f) # 0.

If dim(f) = 1, any w € Q% \ {0} must be of dimension 1 and L(f) € Q%\{0},
so there exists w € Q?c such that dim(w) = 1, and we are done.

So assume that dim(f) =1 > 1.

By definition, there exists w € Q?e such that dim(w) = 1.

By Lemma 4.1.4, f is of the form g; o u$* o go o u§? ... 0 gm 0 u%™ 0 gpi1,
where m > 1, g; does not end in v, dim(ay) > 1, gi, gmy1 € Hi, u; € R for
all 1 <i < m and either [u;,u;11] # 1g or [u;, g;] # la.

Now dim(a;) > 1, so we have a segment of f, u', such that dim(uy") > 1

and a period w € Q} such that dim(w) = 1. Therefore
w = L(uy1 o u§ o uys)

where u; = uj; o uy = u1 o uj, for some a € Ng and f|, 2] = u11 0 uf o ua.

Let w12 be such that L(uj12) = 0 and u112(0) = u12(L(u12)). Then
Flionew) = (u11 0 uf 0 urg 0 upyh)™ = uay o uf® o uy
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for some wug such that L(ug) = nL(uiz) + (n — 1)L(u1q).
Looking at the initial segments of length L(u1y o u$ o u1p 0 Uy 0 Uy © u1),
we see that

uuutf oUui2 ° Uﬁlg oSuil1ou; = U11Ul11 ou1 ous

where uz = u§ o u1z, L(uz) = L(uiz 0 ujjy 0 u11), s € {0,1} and uy = w3 o u}s.
If L(ug) < L(ulgouﬁgouu), we have that s = 1 and U120U;1120U11 = U10U14,
where u; = uygoul, and L(u14) = L(u13). But then we can choose the terminal
point of w14 to be equal to that of ui3 to get u14 = w13 and therefore uj, = uf,.
Hence uj 0 w14 0 43 = 4y 0 uy 0 u14, which implies that [u;,u14] = 1g. But
since u; € R, uju1g = ug ougg and L(uy) > L(ugg) > 0, we must have u; = uqy.
So ulgouﬁgoun = uyouy. But then L(uy1), L(uiz) < L(up) and L(uyi2) = 0,

which implies that L(u1) = L(ui2) = L(u1) and uj = ufy o uh;. So

f|[0,2w] =U11 0 (U/n ouy)* ourz 0 Uy © (U/n oui1)® ourg

=(U11 o Uln)a OU11 ©U12° (Un o Uln)a O U1l ©U12

_ / ya+1 /—1 / ya+1 1—1
=(u11 0ujy)*" ouyy ourg o (urr ouyy)*T oupy o uge

_ !/ a+1 1—1 / a+1 1—1
=(u11 0ujy)" oury outy o (urr ouyy)*T 0wy o Uy

_ !/ \a+2 1—1 1—1 1 ya+2 /—1 1—1
=(u11 0 ujy) ouyy ouyy o (u11ouyy) Ol OUpg

+2 )a+2

— /! \a /
—(ull 0“11) O U112 © (u11 o Uy o U2

_ 2a+3
=u11 © Uy o U112

=(u11 0 U/11)2a+4 o Uuil2

But then
f(w) =ur1 (L(ui1))uh (0)u112(0)u11(0)
=u11(L(u11))uy; (0)u11(0)

and hence uj12 = 1g.
This in turn implies that f = (u1; o u},)?® for some g(t) € Z[t]/p(t), and

uyg ouly)t € Q‘} for all 0 <4 < dim(f). So we are done.
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If L(uy) > L(uis ouil2 ouyr), s =0and u; = ulgouﬁlzouu 0UL5 = U715 OUS3.

But

U1 O Upg O uf112 oui; ouf ouyg 0 uf112 ouipoufougo ufllz ouUyloU = uf“” o Uy

-1
for some w4 such that L(us) = 3L(u12 © tyys 0 U11)-
If a > 1, we have that u; ouy ou; = uy o uqg © uﬁlQ 0 U117 © Uy © U1g, Which

means that

Uy 0 Uy =z O Ujyy O Uy O Uy O Usg

-1
=U1 O U2 O Uyqp O UL O UILT

If L(uigouyyourr) > 0, ui(0) = (ui2 0upjhourr)(0), s0 u16(0) = up7(0), which
implies that [uy,u12 0 uf112 ouyi] = 1g, and since L(uy) = L(ujz o uf112 ouyp)
and u; € R, we must therefore have that L(ujgo0 U1_112 owuy1) = 0. Contradiction.

So let L(uqg 0 uf112 ouyr) =0. Then uj ouy = uj ougs 0 uf112 ouy1 o ug, and

hence u12 o ufllz ouy; = 1lg. But then

— 9(t) -1
f=uiouy " ourzougy,

—1 t
:(ull OoU1 ©U12 © U112)g( )

for some g(t) € Z[t]/p(t), and L(uyouy”oursousy) € QY for all h(t) € Z[t] /p(t)
such that h(t) < g(t), so, as above, we are done.
If a =0, (u11 o ugz u1112)’” owujg = uy for some r € N and w;g such that

L(ulg) < L(U11 O Uyg © u112) and

2 —1\2r
uy =(u11 0 u12 0 U3q5)“" O U8 O U

—1\r
=uy 0 (u11 0 U1 0 Upyy)" O ULy

_ —1\r
=(u11 ougg 0 Uuz) O Uy °Ulg

So [u11 O’LL120'LL1_112,U1] = 1g, and with u; € R and L(uj; ou12ou1_112) < L(uy), we

have that uy; o ug o uﬁlz = 1g, which implies that L(u1g) < 0. Contradiction.
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If L(uy) = L(uyz o uf112 o uyy) we have ujg o uf112 ouy; = uy. DBut this
implies that f = (u11 0 u1g 0 ujyh)9 W+ for some g(t) € Z[t]/p(t), and also that
L(uy ougg o ujys)"® € Q4 for all h(t) € Z[t]/p(t) such that h(t) < g(t) + 1.

So in each case we have ui; o ut;ﬁl oug € Q?e for all 1 < k < dim(f) which
is what we needed.

(ii) Let f be of Type 2.

Let w have dimension k¥ = min {dimw|w € Q?\{O}}

Again by Lemma 4.1.4, w must be of the form g7 ouj* 0gao...0gmm0ulm 0 g 41
for some u; € R, g; € Hy, with m > 1 and dim («;) > 1 for all 1 < i < m, unless
m = 1.

Now, if dim («7) > 1, by the minimality of w, tw is not defined, so f cannot
be of a higher dimension than w and hence cannot have any higher dimension
periods. Therefore the only possible periods are 0 and elements of the same
dimension as w, which are the same dimension as f.

If m = 1 and dim (o) = 1, then dim(w) = 1, but f is of Type 2, so
fljo,w) doesn’t have non-trivial cyclic centralisers in H;. Hence flj,] is one
of the Type 2 elements in [2] and f ¢ R, therefore tw is not defined. Hence
dim (f) = dim (w) = 1. So any «’ € Qf has dimension 0 or 1 = dim (f) as

required.

I now start to follow the structure of Chapter 8 of [2].
Definition 5.1.3. Let (Q?} be the subgroup of (R™,+) generated by the set Q?.

If we take n = 1 then this group is the same as <Q?c) in Chapter 8 of [2],
but I need to look at a different subgroup to take into account the Z[t]/p(t)-
exponentiation of one dimensional elements f|jo . for w € Q?, for f of Type 1.
Therefore I define the exponential of this subgroup as follows:

Recall from Definition 3.1.2 that for one dimensional (0, ...,0,a9) = a € R™,

given g(t) = gn_1t" " '+.. +g1t+g0 € Z[t]/p(t), g(t)o = (gn-10, - - -, G100, Joxo).
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Definition 5.1.4. Let

{g(t)wlw € QF, dim(w) = 1,9(t) € Z[t]/p(t)}.(Q}) if f is Type 1

<Q[]1> if f is Type 2

(@) =

This is a subgroup of R™.

By Lemma 5.1.1, all elements of <Q?>t are of the same dimension if f is of
Type 2, whereas elements of (Q?}t can have different dimensions when f is of
Type 1. This is where the different structures of the centralisers are seen.

The following Lemma gives us a general form for any w € <Q?>t for both
types of f, though (éii), (vi) and (vii) only apply to Type 1 elements, since
g(t)w is not defined for Type 2 elements. The non Type 1 parts are from [2],

Lemma 8.5.
Lemma 5.1.2. (i) wi,ws € Q5 and w1 + ws € [0,a] = w1 + ws € Q.
(i) wi,...,w, € Q(}, withr > 1 andwi+. . 4w, € [0,0] = wi+.. 4w, € Q?.

(iii) Let f be of Type 1, then w € QY dim (w) = 1, g(t) € Z[t]/p(t) and

0
g(t)w € [0,a] = g(t)w € Q.
(v) wi,ws € QS)C and w) —ws € [0,0] = w1 —wq € Q?(.

(v) wiy...,wr € QY withr > 1= w1 +...+w, = ka+w for some k € Ny

and w € Q?‘ \ {a}.

(vi) Let f be of Type 1, then for w € Q% such that dim (w) = 1, and for
g(t) € Z[t]/p(t), g(t)w = h(t)a+w’ for some h(t) € Z[t]/p(t) and ' € Qf

where a = (Qp—1,...,01,q0) and h(t)a is the vector

((ha)p—1,- .., (ha)i, (ha)y)
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associated to

h(t)a(t) =(hp_1t" '+ ...+ ho)(an_1t""" + ...+ ag) mod p(t)

n—1

=) " (ha)gt".

k=0

(vii) For f of Type 1, g1(t)w11 + ... + gr(t)wir +wa1 + ... + was = h(t)a + '
where r,s > 0 and r + s > 1 for some h(t), gi(t),...,g-(t) € Z[t]/p(t),
h(t)a as above, W', wi1, ... Wiy, wWa1, ... ,Was € Q? with dim (wy;) = 1 for

alll <i<r.
(viii) (Q9)' N [0,a] = Q5.

Proof. (i) wi,ws € Qp and wy +ws € [0, 0] = w1 +wy € Oy
Consider z,y € (0, a] such that |z — y| = wy + wa.

Without loss of generality, assume that x < y. Then

O<z<zt+w <zx+w +wy =y

But
flx) =f(x+w1) since w; € €y
=f((z+w1) +w2) since wo €
=f(y)

as required.

Hence wy + wy € Q.
(i) wi,...,wy € Q(}, with r > 1and wi+... 4w, € [0,0] = w1 +... 4w, € Q(J)e

We do this by induction on r
Case 1: r = 1.
w1 € Q% and w € [0, a] therefore this is true for r = 1.

Case 2: r = 2.
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wi,wy € Q(JJC implies wy,ws € Qf which implies wy + wo € Qy by (i), so we
just need to prove that o — (w1 + wa) € Q5.

Let z,y € (0, @] be such that |z — y| = o — (w1 + w2).

Without loss of generality assume that x < y. If £ > w1, z —w; € (0,a] and

therefore

fy) =f@+a— (w1 +w))
=f((z —w1) + (@ — w2))
=f(z —w) since wy € O}
=f(z) since wy € O}

as required.

If, however x < wy,

Yy=r+a—w —wr = —w; +ta—wy < a—wy

SO
O<yt+wr=z+a—w <«
and
fy) =f(y +w2) since wy € QY
=f(z+a—wr)
=f(z) since wy € Q(}

as required. Therefore oo — (w1 + w2) € Qf, S0 w1 +wa € Q(Jl.
Case s: r = s.
Assume that wi,...,ws € Q) and wi + ... +ws € [0,0], with s > 2. Then

by induction we know that
(wl —|—...—|—ws_1) S Q(J)c
so by Case 2, we see that

(W1 + .. +we—1) +ws € QY
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and we are done.

(tii)Let f be of Type 1, then w € Q?c, dim (w) = 1, g(t) € Z[t]/p(t) and
g(t)w € [0,a] = g(t)w € Q.

Given w € Q} with dim (w) = 1, let g(t)w € [0, a], and let dim (f) = I. First
we need to prove that, if [ > 1, the only possible w € Q?c of dimension 1 are
those of the form (u; o ug)® for some s € Z and (us ouy) € R.

By the proof of Lemma 5.1.1, f = (u1 o ug)"® for some h(t) € Z[t]/p(t),
(ug ouy) € R.

If w # L((uy ouz)®) for some s € N, then w = L((u1 o uz)" o uz) for some
r € Ny and ug such that u; o ugy = us o uy.

Looking at the initial segments of f and f[, 2.), we see that the initial

segments of u; and ug are the same, and we have
(u1 oug)" oug = (ugouq)” ous

for some us such that usg o uy = us o ug and L(us) = L(us), but looking at the
terminal segments of f|j.] and flj 2., we see that us = uz. Without loss of
generality assume that L(us) < L(uq).

This implies that u; = ug o u} for some uz € Hy, giving
(ug oufous)" ous = (u3oug)” ous

Looking at the initial segments of length L(ugou4), we find ugousous = ugouy,
SO U O Up = Ug.
Looking at the initial segment of f of length L((u3 o u} o uz)"™"! o u3), we

find that
! r /! / s /
(uz o ug oug)" ougousougous = (uzousoug) 0uzo Uz o Uy O U

But looking at the terminal segments of this of length L(uj o ug o ug), we see
that

(u3 o uz) 0 us = uj o (uz 0 us)
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and hence [ug, uj o us] = 1g.

But then wuz and uj o uy are powers of a common element, which makes
u10Uy = ugousous a proper power. Hence ugou; is a proper power, contradicting
the fact that us ou; € R.

Therefore we must have that w is of the form L((uq o uz)®) for some s € N.

Now, by the definition of exponentiation, we have that L(u') = ¢L(u), so if
w = L(u), then g(t)w = L(u9®). All we need to prove is that L(u9®) € Q? for
all g(t) such that L(u9®) < a. By the proof of Lemma 5.1.1 (i), this is true for
I > 1, so we only need to look at the case where [ = 1.

In this case we must have that g(t) € Z since otherwise dim (g(t)w) > I = 1,
which implies that g(t)w ¢ Q%. But g(t)w = gow € Qf by (i), so we are done.

(iv) wi,ws € Q(} and w; —ws € [0,a] = w; —wy € Q‘}

If wy,wy € Q?, then
a—(w —wy) = (0 —w1) +we € Qp

by parts (i) and (i), so we need only prove that w; —ws € Q.
Let z,y € (0, o] be such that | — y| = w1 —ws and without loss of generality
let x <.

If > woy, then  — ws € (0,a] and y — w; = — wa, so

f@) =f(z — ws2) since wy € Q?{'
=f(y —w1)
=f(y) since wy € Q(}

as required.

If, however, x < ws, then y < wy and

y+ta—wi=at+y—wi=a+zr—-—wr=r+a—ws
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and

fl@)=fz+a—w) since wy € Q(}
=fly+a—w)
=f(y) since wy € Q?c

as required.

Hence wy — wy € Qf and therefore wy — wy € Q?c.

(v) wi,...,wp € Q?c, withr > 1= wi +...+w, = ka+w for some k € Ny
and w € Q9 \ {a}.

Set

Solet p=1.
0a+w ifw #«
§1 =wy =
l.a+0 ifw =«
as required.
Let p = 2.
So = W1 + wa.
If wi + wy € (0, ] then wy + wy € Q(} and we are in the case p = 1 above.
If w; +we > @, then a < wy + wy < 2a with equality iff w; = wy = a.
If wy = ws = a, then wi + wy = 2a + 0 as required.

If not, then wy +ws = a + w’ with w’ > 0. But then
a>w—(a—wy)=w >0

So w' = wy — (@ —wa) € (0,al, and since w,wy € QO we find that w’ € Q% \ {a}
by part (ii1).

Hence w1 + wy = 59 = 1.a + w’ as required.
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Now

=Sp-1+wp

Assume s, 1 = ka +w’ for some k € No,w’ € Q% \ {a}.
Then s, = ka + w' + wp.
If w' = 0, then

ko + wp wp € Q4 \ {a}
(k+1)a+0 wy=a
as required.

If not then

o = 0. + (W' + wp) w'erpGQ?\{oz}

p =
1.a—|—w1’g w'—i—wpzaandw]’g:w’—i—wp—a

But wy, € Q9 \ {a} by case p = 2 since ', w, < a.

Hence

ka+ (W +wy) W +wp, e\ {a},keNy
sp=9 (k+1)a+0 (k+1) € Ng,0€ Q% \ {a}
(k+Da+w, (k+1)€No,w, € 9%\ {a}
as required.

(vi) Let f be of Type 1, then for all w € Q(} such that dim (w) = 1, and for all
g(t) € Z[t]/p(t), g(t)w = h(t)a+w’ for some h(t) € Z[t]/p(t) and ' € QY, where
a = (ap—1,...,01,a0) and h(t)a is the vector ((ha),—1,..., (ha)1, (ha)y) as-
sociated to

h(t)a(t) =(hp_1t" ' 4.+ ho)(an_1t" " + ...+ ag) mod p(t)

n—1

= (ha)t*

k=0
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If 0 < g(t)w < @, then we can take h(t) =0 and w’ = g(t)w or h(t) = 1 and
w’ =0, so assume that g(t)w > a.

We have that f is of Type 1, hence, if dim (f) > 1, by the proof of Lemma
5.1.1, f = (ugoug)?® for some uy, ug such that ugou; € R, and q(t) € Z[t]/p(t).

Let w1 = L(uj oug) € Q(}. Then

L(f) = a= L((u1 0 u2)"") = q(t) L(u1 0 uz) = q(t)wr

where q(t) € Z[t]/p(t).
Since dim (w) = 1, by the proof of part (#ii) we have that w = sw; for some
s € N. So g(t)w = sg(t)wy for all g(t) € Z[t]/p(t).

By Euclid’s algorithm and polynomial division

sg(t) = r(t)q(t) + h(t)

for some r(t), h(t) € Z[t]/p(t) such that h(t) < q(t).

This means that

g(t)w =(r(t)q(t) + h(t))w1
=r(t)q(t)wi + h(t)w;

=r(t)a +w’

but by part (v), W' = h(t)wr and h(t) < q(t), so w’ € Q} and we are done.

(vii) For f of Type 1, g1 (t)w11 + ...+ gr(H)wir +wo1 +. .. twas = A(t)a+w’
where r,s > 0 and 7 + s > 1 for some h(t), g1(t),...,g-(t) € Z[t]/p(t), h(t)a as
above, and W', w11, ...,WirWa1 . ..Was € Q(J)C with dim (wy;) =1 for all 1 < <.

By part (vi),

gi(t)wri = hi(t)o + Wi,

for some wy; € QF, hi(t) € Z[t]/p(t).
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So

D (gi(wn) + Y (way) = (ha()e) + Y (W) + Y (way)
i=1 j=1 i=1 i=1 j=1
=D ha(®)a+ (O (wi) + D (wsy))
i=1 i=1 j=1
:(i hi(t) + kK)o + o'
i=1

since by part (iv) Y27, (wi) + 327 (wa;) = ka+w’ for some k € N, o’ € QF.
But dim (h;(t)a) < n for all 1 <i <7 and dim (k) = 1, so

dim ((Z hi(t) + k)a) <n

So if we let >, hi(t) + k = h(t), we are done.

(viii) (Q%)' N[0, a] = Q5.

Let w € (23)' N[0,a]. Then w = g(t)a + ' for some g(t) € Z[t]/p(t), with
dim (g(t)a) < n, and W’ € Q(} \ {a}.

If " =0, w = g(t)a, therefore g(t) € {0,1} so w € {0, a}.

If W # 0, w > 0 and therefore g(t)a + ' € [0,a] iff g(¢) = 0. Hence
w = w4+ 0 =w’, which means that w € (0,«) and w € Q?c as required.

For the other direction, let w € Q(} Then w € [0, ] and hence, trivially,
w e (29 N[0,al.

O

The following Corollary explicitly defines the form of w € (le}t for both
types of element. It comes from Corollary 8.6 of [2], but with an extra part to

account for the Type 1 elements.

Corollary 5.1.1. Every element w of the group (Q‘})t can be written in the

form:

r(t)L(u) r(t) € Z[t]/p(t) if f =Y is Type 1

o(ka + w*) (k,w*) € Ny x Q(} \{a},o==%1 if f is Type 2
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Where u = hy o hy for some hy, ha € RF(G,R™) such that 1g # ha o hy € R.

Proof. If f is of Type 1, then there is a smallest positive element of (Q%t, which
is L(u). From Lemma 5.1.2, part (vii), we have that an element of (Q%)* is of
the form h(t)a 4 w’ for some h(t) such that dim (h(t)a) < n —1 and ' € Q.
Now f = u*®, so L(f) = a = s(t)L(u). Also, by the definition of R, we have
that any w € Q?« is of the form ¢(¢)L(u) for some 0 < ¢(t) < s(t). Hence we

have

w =h(t)s(t)L(u) + q(t)L(u)

=r(t)L(u)

where r(t) = h(t)s(t) + q(t) € Z[t]/p(t).

If f is Type 2, then all of the periods are of the same dimension as f by
Lemma 5.1.1. As we have noted above, in this case ()7 = (Q9).

First assume that w > 0.

If we let @« = (ap—1,...,00,0) and w = (wp—1,...,w1,wp), then we can
set polynomials a(t) and w(t) to be equal to a,_1t" 1 + ... + a1t + o and
Wno1t" 1+ ... 4 wit + wp respectively, with both leading coefficients positive.
Since f is of Type 2, deg (a(t)) = deg (w(t)) and so by the division algorithm
we can find a unique w*(¢) and r(¢t) € Z[t]/p(t) such that

w(t) = r(t)alt) + w* ()

with 0 < w*(t) < a(t). In fact, because deg (a(t)) = deg (w(t)), we have that
r(t) =r € Z.

Let w* = (w}_4,...,w],wj), where w is the ith coefficient of w*(¢). Then
w* =w—ra € (2})'N[0,a], since w,ra € (})" and 0 < w* < . Hence, by
Lemma 5.1.2 part (viii), w* € Q? and w = ra + w* is of the desired form with
o=+1.

If we let w < 0, then we find that —w = ra 4+ w* for some unique r € Z and

w* € Q9. But then w = —1(ra+w*), which is of the correct form, with o = —1.
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If w =0, then w = +1(0a + 0), which are both of the correct form.

This covers all possibilities for w, so we are done. O

Note that in the above Corollary, if we take 0 = (4+1)(0c + 0) and not
(—=1)(0a: + 0) for Type 2 elements, this form is unique for each w € <Q?>t where
f is of either Type

The next Lemma is the same as Lemma 8.7 in  [2].
Lemma 5.1.3. For w € Q, the following are equivalent (see [2]):
(i) we Q.
(i) For all " € Q% such that " > w, W' —w € Q.
(11i) There exists w' € Qf and W’ € Q? such that w4+ W' = Ww".

Proof. (i) = (ii) :

Let w € Qg’c. Then for all w” € Q?c such that w” > w, w” —w € [0,a], so by
Lemma 5.1.2 part (iv), w” —w € Q.

(i5) = (iid) :

If for all w”’ € Q?c such that w” > w, W’ —w € Qf, let W’ —w = W', so
W' =w+w'. Then v’ € Ny and v’ € Q‘} as required.

Assume there exists w’ € Qf and W” € Q?p such that w + &’ = w”. Then

a—w" € Qf since w” € QY but

a—w' =a—(w+w)
=(a—w)—w
soa—w=(a—w')+uw.

But a —w”,w’ € Qf, so by lemma 5.1.2 part (i), « —w € Qy, hence w € Q?c

as required. O
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5.2 O

The following Definition comes from Definition 8.1 in [2].
Definition 5.2.1. f is said to be normalised if f(0) = 1¢.

This means that f2(L(f)) = f(L(f)).

For the rest of this Chapter we can assume that f is cyclically reduced and
normalised, with length L(f) = a. In fact, every element g = a o bo a~! with
b cyclically reduced such that L(b) > 0, is conjugate to an element of this form
(See [2], Lemma 8.2).

Given f as above, we now define some more sets. These sets are the same

as those defined at the top of Section 8.4 in [2].

Definition 5.2.2. Let C; be the centraliser of f in (P(Hi1,R)). Then

C; ={g €Crl0 < L(g9) < o and &o(f, g) = 0}

Cf ={g €Cs|L(9) > a and &o(f,9) = 0}

Cp=C; UCT ={g €Clea(f,9) = 0} \ {1}

We first look at O, the elements of the centraliser of f € (P(Hi, R)) which
are shorter than f but not elliptic, and for which L(fg) = L(f) + L(g).

The following Lemma is the same as Lemma 8.8 of [2].

Lemma 5.2.1. The elements g € CJ? are in 1 — 1 correspondence with the

non-trivial w € Q?c via g — L(g) and inverses w — f|[07w]'

Proof. Let g € C}. Then gf = fg and, since eo(f,g9) = 0, we must have that
gf =gxf=fx*g. So,if L(g) =w >0 and L(f) =«

g@) = f@) O0<z<w



Therefore g = f|p.) and g is normalised.

Also,
f(z) 0<zr<a
Frg=14fla)g(0) z=a
glx—a) a<z<atw
=gx f
9(z) 0<z<w
=19W)f0) r=w
fr-w) w<zr<a+tw
50
fl@)=flz-w) w<z<a
and

fla—=w)=f(a)g(0)

=f(a) since ¢(0) = 1g

which implies f(z) = f(z + w) for 0 < 2z < o — w and hence w € .

Furthermore, for a < z < a + w,

fl@a—a)=gz—a)=fz-w) (%
So,fora—w<z<a
flea=(a-w)=flz+w-0a)

=flztw-w) by (¥

=f(x)

which implies f(z) = f(z + (@ —w)) for all 0 < z < w, so (& —w) € Qy and

hence w € Q9%, whilst since w > 0, w is non-trivial.
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Also, the map g — L(g) is injective as g = f|jo,., which is a unique element.

[0,w]-

For the reverse implication, let w € Q(} and define g := f

Since g(0) = f(0) = 1¢, g is normalised, L(g) = w and

50(gvf) =0= 60(fag)

since g € Q? and f is reduced. Therefore

since f(0) = 1¢, whilst

since f(0) = 1 again.

But since w € 9, we have
flz) = flz —w) w<z<a

and

flz—(a—w)) = f(x) a—w<zr<a
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So,fora<zr<a+4w

[z —w) =f((z —w) = (@ = w))

=f(z — )

Therefore

=9 f(x) w<z<a

flr—a) a<z<a+w

fog(x) as required

Therefore fg = gf and g € C;, which means that g — L(g) is surjective

and the proof is complete. O

From this we prove that C'; does not contain the inverses of any of its

elements. Again this Corollary comes directly from Corollary 8.9 of [2].

Corollary 5.2.1. For all g € C7, go(f,g~') > 0. In particular
Crn(Cy)t=0
Proof. By Lemma 5.2.1
C; = {flowlw € 25\ {0,a}}

Fix g € C} . Let L(g) = w. Choose € > 0 such that w > ¢ > 0. Then, for all 7
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such that 0 < n <e¢g,

Fla=n)g™" () =fla—n)flg,, ()
=fla=n)flw-m~"
=fla—(a—~w)=n)flw-n"" aswef
=flw—n)flw-m~"
=1g
Hence go(f,g71) =sup&(f,g~ ') > & > 0 as required.
For the last bit, CJ? contains only elements g such that eo(f, g) = 0, whilst

(CJ?)_1 contains only elements g~! such that eo(f,g~1) > 0, hence their inter-

section is empty. O

We now turn our attention to the set CJT. When looking at the whole set
RF(G,R™), there are elements that commute with f, but that are not in C;'
or (C;r)_l. For example:

Let dim (f) = 1. Define a function g € RF(G,R") as follows:

£(0) =0
flz—la) la<z<(l+1) [>0
f(0)f() z=la 120

) - fa—la—tr) (1—1/2a+tr<z<(+1/2)a+tr
1(0)f(a) v=(1—1/2a+1r
fa—(t-Da) (t-Da<z<(t—1-Da 1>0
f(0)f(a) r=(t-la 1>0
F(@) z=at

wherel € Z and r = (0,...,0,7) with0 <r < a € R.
Then we have that fg = gf since « is a strong period of g, but if f € R
we have that g ¢ (P(Hq, R)) and hence is not in C;“ or (C’;{)_l. This does not
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happen in the case n = 1, so Chiswell and Miiller do not have this problem.

The Lemma below relates the elements that are in C'JT to the elements of
(Q5)*\ Q% and is split into two parts for the two distinct types of elements. Part
(b) is the same as Lemma 8.11 of [2].

Let L(f) = a« = (an-1,...,a0) and L(g) = 8 = (Bn-1,--.,00). Then if
dim (f) = k + 1, we must have a,—1,..., a1 = 0 and ai > 0.

Recall that by the proof of Lemma 5.1.1, we have that for all f € (P(Hy, R))
such that f is of Type 1, f = (hyohy)*®), where hyohy € R and s(t) € Z[t]/p(t).

Define, for ay, # 0, L%J = max {z € Z|z < %};}

Lemma 5.2.2. (a) The elements g € CT, where f = (hy o hy)*® is of Type 1,
are in 1-1 correspondence with elements q(t) € Z[t]/p(t) such that q(t) > s(t),
via

g+ a(t), where g = (hy o hy)?®

with inverse

q(t) = (hy 0 hy)?®)

(b) The elements g € CT, where f is of Type 2, are in 1-1 correspondence
with elements (k,w) € N\ {0} x Q(} \ {a} via

g (125) L) - 125 L()
where dim (f) = k + 1, with inverse

(l,w) — fl [¢] fl[O,w]'

Note that in part (b) Lg—ZJ is defined since oy, # 0.
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Proof. First note that fg = gf so if L(f) = L(g), we have that

flzr—a) a<z<2a

so f(z) = g(x) for 0 < x < a, whilst f(a) = g(a)f(0) = g(«) since f(0) = 1¢.
Hence f = g, and g is of the required form for both Types of f.

If L(f) # L(g) then f € C. By Lemma 5.2.1, this means that f = g|(,q)
and a € QF).

I now prove part (b).

We know that o € Qg, so if dim (f) < dim (g), g is of Type 1 by Lemma
5.1.1, but g must be of Type 2 also, since f is. Contradiction.

Hence, if f is of Type 2, dim (f) = dim(g) for all g € C7. So assume
dim (f) = dim (¢) = k + 1.

Let | := L%J This is defined, since ay # 0, and G > ax > 0 since 8 > «
with dim (8) = dim () = k + 1, hence [ > 0.

We start, as in [2], by showing that f* = gliora) for 0 < A < [, using
induction on A.

Case A =0:

so the hypothesis is true for A = 0.

Assume the hypothesis is true for A = j, where 0 < j < [, so f/ = 9l[0.ja1-
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Then
i (x) =(f7 o f)(x) by Lemma 1.6, since f is cyclically reduced
fi(z) 0<z<ju
={ Fi(ja)f(0) @ = ja
fle—ja) ja<z<(j+1a
() 0<z<ja since f(0)=1¢g
flz—ja) ja<z<(j+1a
g(x) 0<z<ja by hypothesis

g(x —ja) ja<z<(j+1)a since f=g

[0,a]

But since ja < 3, Lemma 5.1.2 (i4) tells us that ja € Qg, so
9(@) =gz —ja) forja<z<(j+1)a<p
and therefore f711(x) = glo,(j+1)a)(®) for 0 <z < (j+1)a and 0 < j < I, and
g|[0,la] = fl

Next we note that L(g) = 8 = L(f' o fli0,8-1a)) and

fH(z) 0<z<la

(fl ° fli0,8-1a))(x) = fHx)f

[0,8—1c] 0) z=la

flog-ta)(z—la) la<z<p

flio,g=ta)(x —la) la<z <

g(x) 0<z<la since f' = g|ja

{fl(x) 0<z<la  since f(0) =1g

gz —la) la<x<p since f = g([0,q]

=g(x) 0<x<p
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since lae € Q4 by Lemma 5.1.2 (ii).

Hence g = f' o fl0,5-1a]-
Now we have to prove that 3 —lo € Q% \ {a}. But since [g, f] = 1g,

F1o flios—ta1 © f =F 0 f' 0 flio,5—1a]
=f"o fo flop-ia

which implies that [f, fljo 5-10)] = 1@, and L(f|j0,3-14]) < @, so we must have
that f|[0,5,la] € Cf_ U{le}.
Hence 3 —la € Q% \ {a} by Lemma 5.2.1.

To finish part (b), all we need to do is prove that the map
of: Cf — N\ {0} x 0%\ {a}

is surjective.

But for (I,w) € N\ {0} x Q?p \ {a}, let g := f"o flj.). Then

fg :foflof|[07w] since e(f,g) =e(f,f) =0
=f"ofoflow

=flo fliow) o f since f[jo) € C; by Lemma 5.2.1
=9f

and L(g) =la+w>aasl>1, sogGC;{.

Now I just need to prove part (a), so assume that f is of Type 1.

From the example given, it is clear that not all elements of RF(G,R™) that
commute with f are of the form required. I claim that if g € (P(H;, R)) and
[f,9] = 1q, then g is of the form (hy o hy)9®),

Proof of claim:

We know that g|j0.o) = f, and by induction, as in the argument used above,
9ljo,ja) = f7 for all j € N.

We also know that o € 9, so on each copy of R we have that g(z—a) = g(z).
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Now, by Lemma 4.1.4 there is a unique normal R-form p such that g = w(p),

sog=giouftogso...ogyoumogmtl.

By the fact that gljjo) = f7 for j € N and that f = (h1 o hy)*®), the

construction of g implies that
ulihgohl and91 :hl
Also since a € ), we must have that m < 1, so that

g =hio(hyohy)* ogo

=(h1 0 hg)* o hyogs

where L(g2) < L(uy1).
But

fg=(h10h2)*D o (hyo(hyohi)® ogy)
=(h1 0 hp)*IF 6 hy 0 gy
=(hy0hg)® o (hyohy)*® ohyogs
=9/
=(hy 0 (hy 0 h1)* 0 g3) o (hy 0 hy)*®

=((h1 0 h2)®* o hy 0 g) o (hy 0 hg)*®)

So [hy 0 ga, (hy 0 he)*®] = 1, but by [1], since this acts on an R™-tree, we
must have that hyogs and (hy o hg)s(t) are common powers of the same element.
Since ho o hy € R, by definition this means that this common element must be
hi o he, but as L(ga) < L(hq o ha), this implies that

h1 o h2 if L(hl o gz) >0
hiogs =
1c otherwise
If hy 0 go = hy o ho, by examining the terminal segments of length ho, we see

that go = ha. Hence g = (hy o hg)®* 1.
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If hiogs = 1g, then g9 = hfl, and L(g2) = L(h1) = 0 and g = (hy o hg)“!.

If we set

a;+1 1fL(h1 Ogg) >0
q(t) =

oy otherwise

then we have proved the claim. So for every g € CJT we have an element
q(t) € Z[t]/p(t) such that g = (hy o he)?®). Moreover, since L(g) > L(f), we
must have that ¢(t) > s(¢). All that is left to do is prove that

O CF — Z[t/pO\{r(B)Ir(t) < s(t)}

is surjective.
Given q(t) € Z[t]/p(t) \ {r(t)|r(t) < s(t)}, set g := (hy o hy)I®).
Then
£ =(h1 0 ha)*® (hy o ha)1®
=(hy o h2)s(t)+q(t)
=(hy o h2)q(t)<h1 o h2)s(t)
=9f
So [f,g] = 1. Also we have that eq(f,g) = 0, since eg(ha, h1) = 0, and if
we set u(t) = q(t) — s(t) >0,
L(g) =q(t)L(hi © h2)
=5(t)L(hy 0 ha) 4+ u(t)L(hy o hs)
=a + u(t)L(hy o ha)

>
So g€ C']T and hence @}" is surjective and we are done. O

Note that part (a) implies that for f of Type 1, g = f7® o flio,w], where
" = ((hy o he)*W)™® for some 0 < r(t) € Z[t]/p(t) and w € QY, since
f !
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if g = (hyohg)?® we can find r(t) > 1 and 0 < m(t) < s(t) such that
q(t) = r(t)s(t) + m(t) and fljgw = (hy o ha)™®. Also, part (b) implies that for
fof Type 2, g = f*® o fljg,.) With r(t) € Z, so f*® is defined.

Again we can now show that C)T does not contain the inverses of any of its
elements. This is similar to Corollary 8.12 in [2], but contains some adjustments

for Type 1 elements.

Corollary 5.2.2. For all g € CT, go(f,g%) > 0. In particular
cinEcH) =0
Proof. By the note after Lemma 5.2.2, we have that g = f"® o fljo,w) for some
0 <r(t) € Z[t]/p(t), w € Q. So g~' = f|[f)}w] o fr®,
Let w > 0and 0 < § < w. Then, since g|[61w] = f|[61w]7 w e Q% and flow = f
for 0 < z < w, we have that for 0 < z <6,
Fla— )9~ () =f(a— )15, (@)
=fla—2)fljo.u(w—2)""
=fla—(a=w) =) fljow(w—2)""
=f(w—2)flpw(w—2)""
If w = 0, then, since r(t) > 1, g = ') = fr®=1of so g~ = flof )+
and given 0 < § < «, we have that for all 0 <z < ¢
fla—2)g7 @) =fla—2)fx)  since glgl, = £
=fla—z)fla—=z)""
Hence in both cases go(f,g71) > § > 0.
For the final bit, since for all g € C;{, eo(f,9) =0, and for all g € (C?)’l,
eolf,g) > 0,if g € CJT then g ¢ (CJJ{)_1 and if g € (C;[)_1 then g ¢ Cf+. Hence
cin(cH)t=0o. O
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Putting the two sets together, we see that C'y does not contain the inverses of
any of its elements either. Moreover, every element of C; is cyclically reduced,
as proved below. The Corollary statement comes from Lemma 8.14 in [2], but

the proof of (b) is slightly different due to the Type 1 elements.

Corollary 5.2.3. (a) C; N (Cy)~1 = 0.
(b) If 91,92 € Cy, then e9(g1,92) = 0. In particular, every element of Cy is

cyclically reduced.

Proof. (a) This follows from Corollaries 5.2.1 and 5.2.2
(b) Let g1,92 € Cy. Then

9i = "D 0 flio.w) 0 <ri(t) € Z[t]/p(t),w; € Q%
Assume that £0(g1, g2) > 0, so there exists 0 < § < min {L(g1), L(g2)} such that
(*)  g(L(g1) —2)g2(z) =1 0<z <4
There are two cases here:

(Z) w1 > 0

(’LZ) w1 = 0

Case (i) w1 > 0.
Let

8o := min {0, w1, @ — wy }

Now, for all 0 < x < §g, we have that

g1(L(g1) — ) = f(w1 — )

and

so by (%) we get
flor—2)f(z) = 1¢
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But since wy is a period f(x) = f(x + w1), so we have

fw)f(0) = f(w1) = 1¢

and
flwr —z)f(wr +2) =1¢g

for 0 < z < dp.
This implies that f is not reduced. Contradiction.
Hence wy # 0
Case (i) wy; = 0.

Here g1 = f® and gy = f2Wo f

[0,0.12]'
Now if r3(t) > 0, set dp := min{d,a}. Then, since here we must have

r1(t) > 0, we find that for 0 < 2 < g,
91(L(g1) — ) =(f" O~ o f)(L(g1) — 2)
=f(a—x)

and

gQ(x) :(f o frz(t)_l o f|[0,w2])(x)
=f(z)

if ro(t) > 0, and therefore
fla=2)f(z)=1l¢ 0<x<d

which means that eo(f, f) > 0o > 0, and hence f is not cyclically reduced.
Contradiction.

So ra(t) # 0.

If, however, r3(t) = 0, we have that wg > 0.

Let 6g := 6 < wa. Then
91(L(g1) —z) = f(a —2)
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as above, and

g2(x) = f(x) for 0 <o < do
Again we get that
fla—z) = f(x) for 0 <z < gy

and therefore f is not cyclically reduced. Contradiction.
Hence e¢(g1,92) = 0 for all g1, 92 € Cy.

It follows that every element g € C is cyclically reduced because if g € C¥,

co(g,9) = 0. O

5.3 C(y, the Centraliser of f

In this Section I prove that the centrailser of f, Cy, is partitioned into three
parts: Cy, (Cy)~! and 1. This is still following Chapter 8 of [2] with changes
due to the Type 1 elements.

First I prove that every element g in Cy for which L(fg) < L(f) + L(g) is in

(Cp)~
Lemma 5.3.1. For all g € Cy such that go(f,g) >0, g € (Cy)~L.
Proof. fg = gf therefore o(g, f) = eo(f,9) :=¢e0 > 0 and

fla—xz)g9(z) = 1¢ forall 0 <z < ¢

So we have that f_1|[0,50) = 9l{0,c0)- Note that g9 < a.

Since €9 > 0, g # 1g. There are three cases:

(1))0< L(g) < «
(i) L(g) =2 «

(iii) L(g) = o
Case (1) 0 < L(g) < a
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Assuming that L(g) > e¢ and comparing the initial segment of fg and gf of
length L(g) — g, we find that f(z) = g(z) for 0 < z < L(g) — &9, so

flo,L(9)-20) = 9l10,2.(9)—=0)

Let 6o := min {eg, L(g) — €0}, then &y > 0 since L(g) > €9 > 0.
So
f

0,60) = F " [0,6)
which means that

f@)fla—z)=1¢g 0 <z <do

and therefore eo(f, f) > o > 0, so f is not cyclically reduced. Contradiction.
Therefore eg = L(g).
So

L(fg) =L(f) + L(g) — 220
=L(f) — L(g)  since g9 = L(g)
=a — L(g)
But o — L(g) € (0,) by the case assumption, (£)|j0.0-L(s) = fio.0-L(a)) 5O
that eo(f, fg) = 0, and fgf = ffgso [f, fg] = 1, all of which means fg € Cy .
Hence, by Lemma 5.2.1 o — L(g) € Q% \ {0,a}.
Therefore L(g) € 29\ {0,a} and f(a) = f(a — L(g)).

Looking at gf, we see that

g(L(9))f(0) =1g  since go(g, f) >0
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Therefore, since f is normalised, g(L(g)) = 1. Hence for 0 < 2 < L(g),

fla—z)™t 0<a < Lg)
lg z = L(g)
fla—(a—L(g)) =)' 0<x< L(g), since a — L(g) € QY
f)~! z = L(g)
=f(L(g) —2)~"
=flio.nien @

so g€ (CJT)_1 by Corollary 5.2.1.
Case (i1) L(g) > «:

If 8 > a, since [f, g] = 1 we have that f € C,. Therefore, by the first part

of this proof, a € Q4\{0, 5} and f = g\[f)’la}.

Let f = (h1ohy)*® be of Type 1. Then since o € Qg and 9‘[?)1@] = f, we must
have that g = ((hyoho)~1)4® ohs, where L(hyohy) > L(hs) = B—q(t)L(hyohs).

Now 3, q(t)L(hy o hy) € Q0

g’

s0 3 — q(t)L(hy o hy) € Q). But since L(hs) < a

and f = g7 '|j0,o) We must have that L(h3) € Q} and hence L(h3z) = 0. Also

fg=gf and a < 3, so

fa(L(fg)) =9(B)

since £(0) = 1. But g(8 — a) = g((q(t) — (&) (L(h1 0 h2))) = g(L(h1 o hs))

since L(hy o hg) € Qg. Hence h3 = 1g and

g =((hy 0 ha)~1)1®

=((hy o ha)?™™) "t e (CH)™t c (Cp)™
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by Lemma 5.2.2 part (a) as required.

If f is of Type 2, a € ), so if dim (f) > 1, f, and hence g, has no periods of
dimension 1. Therefore g is also of Type 2 with dim (f) = dim (g). If however
dim (f) = 1, assume g is of Type 1 to get a contradiction.

We know that a € QY
and o = ¢ (¢t)L(u) for some 0 < s1(t) € Z[t]/p(t), s1(t) > ¢1(t) € N\ {0} and

so, by Corollary 5.1.1 we have that § = s1(¢)L(u)

u = hy o he such that ho o hy € R and g = w (). But then

f=9"0.0
=u™ 10 4, (1)L (w)]

:ul—lh (t)

which is of Type 1. Contradiction.

Hence if f is of Type 2 then so is g with dim (g) = dim (f) = k + 1 for some
0 <k <n-—1, and we can use induction to prove this part of this Lemma.

Since 8 > « and dim (8) = dim («), we can set 3 = (0,...,0,Bk,...,Bo) and
a=1(0,...,0,ag,...,ap) with B # 0 # ai. Then we have [ := Lg—’zj e N\ {0}.

Now let w:= L(g) —la. Then 0 < w < o

Claim: L(gf’) = L(g) — ja for all 0 < j < [.

Proof of claim by induction:

Case j = 0: L(gf°) = L(g9) = L(g) — Oc - Trivially true

Assume this is true for j = j' < I, so
L(gf") =L(g) — j'a
=L(9) + L(f7") — 20(9, /7)
=L(g) +j'a — 2e0(g, ')

From this we see that o(g, f7') = j'o, but L(g) — j'a > L(g) — la+a > a
by our assumptions.

Hence gf7 |j0.0) = 9ljo.0) = fljgly, and

eo(f.gf”) = a=eolgf, f)
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SO

L(gf7 ) =L(gf’) + L(f) — 2e0(9f”", f)
=L(g) —ja+a—2a
=L(g) - (j' + D

Hence the hypothesis holds for 7 = j' + 1 as required.
It follows that

Ligf) =L(g) — lo = w
=L(g) + L(f") = 220(g, )
=L(g) + la — 2e0(g, )
which implies eo(g, f!) = la.
If w = 0, we have that [g, f!] = 1g and L(g) = L(f!), so g = f~'. But

f~te (C’;[)_l, so we are done.

If w > 0 we know that w < a, so

gil|[0,w] = f|[07w]

and hence, since L(gf') = w, a > w > eo(f,g9f") > w > 0, so eo(f,gf!) = w.

But [f,gf!] = 1q, so gf' € (C;)fl, hence

g = ("o flow
and therefore
9=(f"oflow) " e(CH!

by Lemma 5.2.2 part (ii) as required.
Case (4i7) L(g) = a:

Again we have that €9 = «, using the arguement in Case (i), so all we need
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to prove is that g(a) = f~(a). But [f,g] = 1q, so

f9(0) =f(0)g(a)

=9./(0)

=9(0)f(a)
but f(0) = 1g and g(0) = f~'(0) = f(a) ™', s0 g(a) = 1a = f(0) = f(a) as
required. Hence g = f~* € (Cf)~! and we are done. O

I can now prove the main result of this Chapter. Theorem 8.16 in [2] is
the special case of parts (ag) — (d2) when n = 1, so we see that the elements of

Chiswell and Miiller’s group behave like the Type 2 elements of my group.

Theorem 5.3.1. Let f € RF(G,R™) be cyclically reduced and normalised, with
L(f)=a>0.
Then if f = u*® is of Type 1, so u = (hy o hy) and hy o hy € R and
s(t) € Z[t] /p(t):
(a1) The set
C = {(h1 0 h2)™ = q(t) € Z[1]/p(t), q(t) > 0}

forms a positive cone for Cy, giving Cy the structure of an ordered abelian

group.
(b1) Every element of Cy is cyclically reduced; in particular, Cy is hyperbolic.
(c1) The mapping py : C; — <Qg’c>t given by

(hy 0 hy)™® — r(t)L(hy o hy)

where f = (hy o ha)*®, with s(t) € Z[t]/p(t) and hy,hy € RF(G,R™)
such that 1g # ho o hy € R, is an isomorphism of ordered abelian groups

satisfying

L(g) = |ps(9)l, g €Cs
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(dv) Cs has the presentation
(ot |t et ] = 1)
where f = uoust . umt" and m <n—1.
(e1) Let wo := inf {Q \ {0}}, then
(i) dim (wo) = 1
(id) £ = fo™" with fo = fljo.uo
(i) o = [ko(t)|wto for some ko(t) € Z{1/p(t)

(iv) Cr = {f V10 < k(t) € Z[t)/p(t)} and Cs = (fo)"

If diim (f) =1, then Q(} 18 finite.
If f is of Type 2:

(a2) The set
Cr={f"o flow : (kw) €No x O\ {a}, k +w > 0}

forms a positive cone for Cy, giving Cy the structure of an ordered abelian

group.
(b2) Every element of Cy is cyclically reduced; in particular, Cy is hyperbolic.

(c2) The mapping py : Cy — (Q?)t given by (kaf\[Ow])" — o(ka+w), o = =£1

is an isomorphism of ordered abelian groups satisfying
L(g) = lps(9)l, g € Cy

(d2) Cy has the presentation

wqitwsg
(zy(w e Q?)Hxa,xw] =lg(w < @), Ty, Ty = zh walggw(wl,wg < a)).
where
w1 + wo w1 +w2 <«
w1 Bwy :=

Wit w—a w w2«
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(e2) If f is such that dim (f) > 1, then

(i) dim (wo) > 1 and wy € Q5 \ {0}
(i) Q(;- is finite
(#i1) a = kowo for some ko € N\ {0}, f = féco with fo = fl[0.wo]

(tv) Cp =A{f5ls € N\ {0}} and Cy = (fo), which is cyclic

If dim (f) = 1 then wy = 0.

Proof. (a1) By the construction of C'y we have that C is abelian. From Lemma
5.3.1 we see that C; = Cy U C'f_1 U {1lg}, so Cy is abelian, and by Corollary
5.2.3, part (a), this is a partition.
Now, if g1,92 € Cy, then g1,92 # 1g as Cy N C;l = () by Corollary 5.2.3,
part (a). So
co(f,91) = 0= eo(f,92) = €0(91, 92)

by Corollary 5.2.3, part (b) and the definition of Cy.

L(g1) = 0 implies g, is elliptic which implies g1 = 1g ¢ Cy, so L(g1) > 0,
and by Lemma 2.3.3 we have that £o(f,g192) = 0 too. Hence g1¢92 € Cy and
therefore Cy is closed under taking products. The explicit formula follows from
Lemma 5.2.2 and Corollary 5.1.1.

(a2) The same applies here as in (a1), but with the different formulae as in
Lemma 5.2.2 and Corollary 5.1.1.

(b1) By Lemma 5.3.1, C; = Cy U C’f_1 U{lg}. Clearly 1¢ is cyclically
reduced.

By Corollary 5.2.3 we have seen that every element of Cy is cyclically re-
duced.

By Lemma 2.4.1, since every element of Cy is cyclically reduced we must
have that every element of C;l is cyclically reduced.

Hence every element of Cy is cyclically reduced.

From this we see that if g € Cy is such that L(g) > 0, it is hyperbolic
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(b2) This uses the same arguement as (by).
(c1) By Corollary 5.1.1, Lemmas 5.2.1 and 5.2.2 and part (a;) of this Theo-

rem, every element g € C¢ can be written uniquely in the form
9= (h10hy)™®

where r(t) € Z[t]/p(t). Hence p¢ is well-defined and, by the note after Corollary
5.1.1, it is a bijection.

By definition L(g) = r(t)L(h1 o ha) = |ps(g)| for g = (h1 o he)"®, and the
positive cone for (Q?)t is therefore identified with CY.

If we can prove that ps is a homomorphism, since it is bijective, it is an

isomorphism. To do this we need

pr(la) =0 (5.1)
ps(9192) =ps(g1) + ps(g2) for g1,g2 € Cf (5.2)
pr(9195 ") =ps(g1) — ps(g2) for g1, 92 € Cy (5.3)

By definition 1¢ = f° and so

pf(].(;) :OL(hl [©) hg)

-0
so (4.1) is true.
For (4.2), (4.3) assume that
g1 :fgl(t)
go =f2®

so that g5 ' = f=92(). Then

Grgs = fgl(t)-i-gz(t)
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by the definition of exponentiation, so

pr(9192) =(91(t) + g2(t)) L(ha 0 ha)
:gl(t)L(hl o hg) + gg(t)L(hl [e] hg)

=ps(91) + pys(g2)

and

9195 = fo1(0)=92(t)
by the definition of exponentiation, so
p(g195) =(91(t) = g2(t)) L(h1 © ho)

=g1(t)L(h1 0 ha) — g2(t)L(h1 o h2)
=ps(91) — ps(92)
as required.
So all three equations hold and py is an isomorphism.

(c2) By Corollary 5.1.1, Lemmas 5.2.1 and 5.2.2 and part (ag) of this Theo-

rem, every element g € Cy can be written uniquely in the form

g=(fFof

[O,w])a

where k € Ny, w € Q‘}\{a} and o = £1, with the convention 1g = (/% f|[,0) ™
not (0o f

5.1.1, it is a bijection.

[070])_1. Hence ps is well-defined and, by the note after Corollary

Now L(f) = a, so, for g as above

L(g) = (ka+w) = [p(9)]

by definition, and the positive cone for (Q%t is therefore identified with CY.
We prove that py is an isomorphism by proving (4.1) to (4.3) as in (¢1).

Again ps(1g) =0 so (4.1) is true.
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For (4.2) and (4.3) assume that

91 =" 0 flio.w]

g2 :sz © f|[0,wz]

Then
9192 =f517%2 0 flio.w,) © flio.ws)
B FF14%2 0 Flio wr 4] o> wy + wa
SRRt o fllg ptws—a] @ < w1+ ws
So
(k1 + ko) + wy + wo a<w;+w+2
pr(g192) =

(kit+ke+Datw+ws—a a>w +ws
:(k‘1 + k’g)a + w1 + wo
:(kla + wl) =+ (ICQO[ + (.UQ)

=ps(g1) + ps(g2)

as required.

Meanwhile

ie) L(g1) = L(g2)
9195 =1 fFs o F110,0] L(g1) > L(g2)

(fF2 0 f|[0,W3])_1 L(g1) < L(g2)

In the first case g1 = gs, so
ps(g1) = pr(g2)

as required.
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In the second case
g1 =g3° g2

fk3+k2 o f|[0,w3+w2] (6% > UJ3 + CUQ

flc3+k2+1 o f|[07w3+w2_a] a < ws+ wo
SO
(ks + ko, ws + wa) a > w3 + wo

(klawl):
(k34 ko+1lws+wr—a) a<ws+ws

which implies
(k1 — k2, w1 — wa) a > ws + w2

(k3,w3) =
(kl—kg—l,wl—wg—i—a) CVSWg—‘rWz

and therefore
i (k1 — ko) + (w1 —w2) o> w3+ ws
pr(g19: ) =
(k1 — ko —Da+ (w1 —ws +a) a<ws+ws
Z(k‘l — ]{/‘2)04 + w1 — w2
=(kia+ wi) — (ke + wo)
=ps(91) — ps(92)

as required.

Finally, if g3 = (f*2 o f|[0’w3])_17 then

92 =95 o g1

fk3+kl © f|[0,w3+w1] o> w3 +wp

fk3+k1+1 © f|[0,w3+w1704] a <ws+wp

137



0
(k3 + k1, ws +wy) o < ws 4w

(k’g,(.UQ):
(ks+ki+1lws+w —a) alws+w

which implies
(k‘g—k‘l,WQ—wl) a < ws + wq

(k3,w3) =
(kg*klfl,Wfo.«.)lﬁ*Oé) OZSW3+UJ1

and therefore
1 _((kZ_kl)a+W2—w1) a < wsg+ wp
pr(gigs ) =
—((k2a—k1 —Da4+ws—w1 +a) a<ws+w
=—((k2 = k1)a + w2 —w1)
=(k1a +w1) — (k2o + wa)
=ps(91) — ps(g2)

as required, so we are done.

(dl) Let

Ty = (uut,. . ut" |t u]

The mapping
{u" :0<i<n—1} — (Q))

defined by u’ — tiw where w = L(hy o hs), extends to a surjective homorphism
¢ : Ty — ()

. . n—1 .
Every word w € T’y can be written uniquely as u®u®®.. u%-1"" " since

[u!',u’] = 1, but this would be sent to

aow + artw + ...+ an_ 1" rw=(ag Fart+... +a,_1t" Hw
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which is a unique element of (Q%t by Corollary 5.1.1. Hence ¢y is injective,

and therefore bijective, and we have an isomorphism. By part (¢1) this implies

that Ff = Cf.
(dg) Let
0 |17
Ly = (r,(w € Qp)|[Ta, 0] = Hw < ), Tw, Twy, = Ta * Ty Bu, (W1, ws < @)

The mapping
{2, :we Q?c} — (Q%t
defined by z,, — w extends to a surjective homomorphism

¢y : Ty — (QF)°

witwy
Now, using the relators ., ., = xg “« walggw (w1,wy < ), we see that

T,To zmgxw

:xw
SO
Also
sz+w1J
Lwolw, =Ta « L woBw
|2t
=Tq ° L1 Bws
:.’L'wlwa
SO
Ty s Tigy] = 1 (5.5)
and

=
L1 —woLwy =Tq” Ly

=T Tw,y

:Jjwl
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xwﬂ:;gl = Twi—ws (5.6)
whilst
Torwly =15 20
:Jja
SO
T =24 0<w<a (5.7)

Now I claim that, as in [2], any word w € I'y can be written in the form (% z,,)"

with k € No, w € Q?c \ {a} and ¢ = £1. Using Corollary 5.1.1, this would imply
that ¢ is an injection and hence an isomorphism.

Proof of claim:

First, since [24,2,] = 1 for all w < a, we can collect up all of the z,’s on

the left hand side, so that we have

dlotl gt
with | € Z and w; € Q?c \ {a}.

+1
Wyt

Now we can use (5.4) and (5.6) to reduce z 2zt to 2z t! in finitely
many steps, so we have

_ l4+m o
W=z,

Ly

with [ +m € Z,w € Q% \ {a} and 0 = £1.
Ifl+m>0and o =1orl+m < 0and 0 = —1 we are done, so let

l+m >0>0. Then



using (5.5) and (5.7). Since I +m — 1 > 0, this is of the required form.

Ifl4+m <0< o, then

I4+m —1
Lo

w! =( Ty)

::E(le;(l-&-m)

_ = (4+m),.—1
_xa( )xw

- ~1
Ta (t+m) Torw w>0
x;(Hm)xo w=0
since x;(Hm)x;l is of the form of the case above.
Hence

(x;(“’m)_lxa,w)_l w>0

w =
—( _
(wa T ag) w=0
—1 1+(l+m)
To_ o w>0
xy talim w=0
0 a -
glfttme o w<0
:L’ijmxal w=0

using the case above and the fact that [z4,2,] = 1. Now if [+ m + 1 =0,

then w = 202" = (2%2,_,)~"! which is of the form required. If [ +m+1 < 0,
then w = (x;(HmH)xa_u)’l, so this too is of the required form.
Hence

w = (2870)

for some k € Ny, w € QS{ \ {a} and o = %1 as required.

Therefore ¢ is an isomorphism, and by part (cz) this means that I' = Cy.

(e1)
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(¢) If f is Type 1, then by Lemma 5.1.1 part (i) there exists w € Q? such
that dim (w) = 1. By the proof of part (iii) of Lemma 5.1.2, we find that
f = (u1 0 uz)"®, and for all w € O} such that dim (w) = 1, w = (ug © ug)* for
some s € N\{0}. But inf {(u; o u2)®|s € N\ {0}} = ujous and since ugou; € R,
we must have that L(uj ous) = L(ugz oug) > 0. Hence wy > 0, so dim (wp) = 1.

(#9) If we let uy oug = fo and ko(t) = h(t), then by Lemma 5.1.2 part (ii7)
we see that f = fg"(t), where fo = flj0.], since fljo,w,] = u1 © uz by the proof
of Lemma 5.1.1 part (7).

(#41) From the definition of exponentiation, part (i¢) above implies that
a = [ko(t)|L(fo), but L(fo) = wo, so o = [ko(t)lwo with |ko(t)| € Z[t]/p(t)
as required.

(tv) By part (aq) of this theorem we have that

Cp ={(h1 0 h2)"") - q(t) € Z[t)/p(t), a(t) > O}

={/5D10 < k(1) € Z[t] /p(t)}

since fo = u1 o ug = hy o he. By part (4i¢) of this theorem, Cy = (Q‘})t. But
(Q9) = (fo), so Cr = (fo)".

If dim (f) = 1, then L(f) = kowo, with k’o S N, s0 QY = {0, wo, 2(,007 ey kobuo},
which is finite.

(e2) (i) If f is Type 2 and dim (f) > 1 then by Lemma 5.1.1 part (2), any
w € Q(} \ {0} are such that dim (w) = dim (f) > 1, hence dim (wp) > 1 and
therefore wy € Q% \ {0}.

(i7) By Lemma 4.1.4 f = g1ouj* 0ge0...0¢mm0ulm 0gny41. Since by Lemma
5.1.2 part (iv), w1 —ws € QF if wy —ws € [0,a], any w € QF \ {0} is of the form
L(gioui* oggo...ogyoup® ohyyr), where giy1 = hpq1 © g1, and there are at
most m of these periods. Hence there are only finitely many w € Q?c.

(#4i) Since wy > 0, using the method in Corollary 5.1.1 we can find some

ko € N\ {0} such that a = kowo + w’ with 0 < &’ < wp and W’ € QS{. But by
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the definition of wy, this forces w’ = 0, hence a = kowy for some kg € N\ {0}.
If we set fo = fl[0,w,], We see that f& = f by part (cp) of this theorem.

(iv) By part (az) of this theorem
Cf = {fk Of|[0,w]|(kaw) € Np x Q(} \ {Oé},k+w > O}

By part (c2) and (ep) (i) above we see that f* = f¥* and fliow = fg for

some 0 < 7 < ko, so f*o fljgu = kot where kko +7 € N\ {0}. Hence

Cr={fols e N\ {0}}

and this forms a positive cone for Cy so Cy = (fy).

If dim (f) = 1, we see that f is an element of H; without cyclic centralisers
in H; and is therefore isomorphic to elements of RF(G) as in [2] which do not
satisfy (i) — (i#) in Theorem 4.11 of [2]. Hence, by that theorem, wy = 0.

O

Note that the centraliser of f in the whole set RF(G,R™) has other types

of elements that do not occur in (P(Hy, R)) at all.
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Chapter 6

Conclusion

In this thesis I have constructed a new group and started work on examining
its properties and the properties of its elements. There is much more work to
be done in this area. In particular there is a A-tree associated to RF(G,A).
This comes from the fact that there is a Lyndon length function associated to
it. This A-tree is not necessarily complete, though it should be transitive as it
is strongly regular as defined in Appendix A of Chiswell and Miiller’s book [2],
definition A31.

As can be seen from Appendix B of [2] there are already a number of open
questions from their work, and as my class of groups is a generalisation of their
class of groups, many of these questions could be generalised, solved and then
restricted to their situation to provide the proofs they are looking for.

Finally, I have had to restrict the dimension of A to n for the construction of
my group, but if we allowed n to go to infinity then we should find a non-discrete
version of Lyndon’s FZ! group. This would provide a clear link between the
work of Myasnikov, Remeslennikov and Serbin and Lyndon and that of Chiswell

and Miller.

144



Bibliography

1]

I. M. Chiswell Introduction to A-trees World Scientific Publishing Co. Pte.
Ltd. (2001)

I. M. Chiswell, T. W. Muller A Class of Groups Universal for Free R-tree
Actions Preprint, 2010

Roger C. Lyndon Fquations in Free Groups Trans. Amer. Math. Soc., 96
(1960) 445-457.

Roger C. Lyndon Groups with Parametric Exponents Trans. Amer. Math.
Soc., 9 no.6 (1960) 518-533

Roger C. Lyndon, Paul E. Schupp Combinatorial Group Theory Berlin
Heidelberg: Springer 1977

Alexei G. Myasnikov, Vladimir Remeslennikov Degree Groups. I. Foun-
dations of the Theory and Tensor Completions Siberian Math. J., 35 no.5
(1994) 986-996, translated from Sibirsk. Mat.Zh. 35 (1994), no.5, 1106-1118

Alexei G. Myasnikov, Vladimir N. Remeslennikov, Denis E. Serbin Regular
Free Length Functions on Lyndon’s Free Z[t]-group FZIfl Contemporary

Mathematics, Groups, Languages, Algorithms, 2003

145



[8] Frank Rimlinger A subgroup theorem for pregroups Combinatorial Group
Theory and Topology, Annals of Mathematics Studies, Princeton Univer-
sity Press, (1984)

[9] J. R. Stallings Group Theory and Three-dimensional Manifolds Yale Mono-
graphs 4, (1971)

146



Notation:

| 4]: This is the largest integer z such that z < ¢.

o: A partial multiplication which shows us when reduced multiplication is no

different to *-multiplication for given elements.

os: A partial multiplication that show us when reduced multiplication has at

most a cancellation of length 4.
P: The direct summand.
H: Addition modulo a.
«: Multiplication within F(G, A) consisting of concatenation.
0: The identity element of an additive ordered abelian group.
1g: The identity element of F(G, A) (and hence all of its subsets).
1g: The identity element of the group G in F(G, A).
c(f.9): c(f.9) = (L(f) + L(g) = L(f*9))/2.
Cs: The centraliser of f in CDF(G, A).

CJ?: Those elements,g, of C; that are shorter than f but longer than 1g and
for which go(f,g) = 0.

CJJ[: Those elements g of Cy that are at least as long as f and for which eo(f, g) =
0.

Cy: Cp = CJ; UC;F.
E(f,g): The set of lengths, e € A, for which f~!(z) = g(z) for all x < ¢.
eo(f,g): The supremum of £(f,g).

FZI: Lyndon’s free Z[t]-group.
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flja,3: The function f restricted to the interval [a, 3] for 0 < o, § < L(f) € A.
This function, once relabelled, exists in RF(G, A).

flja,3): The function f restricted to the interval [, 3) for 0 < o, 8 < L(f) € A.

This function does not exist in RF (G, A) as its endpoints are not in A.
Go: The set of all elements of (G, A) that have length zero.

Hy: The one dimensional elements of CDF (G, A), a subgroup of CDF(G, A)
that is isomorphic to the embedding of Chiswell and Miiller’s group,
RF(G) into my set RF (G, A).

A: In this thesis this always refers to an ordered abelian group.
L(f): The length of the domain of an element f € F(G,A).
Np: The natural numbers, including 0.

N\{0}: The natural numbers, excluding 0.

Qy: Periods of f, or the points, w, in [0, L(f)] for which f(z) = f(z +w) for all
z €0, L(f) — w].

QS{: Strong periods of f, or the points w as above, but for which L(f) — w has

the same property.
<Q?c>t: The group generated by Q‘} and, if f is Type 1, its Z[t]/p(t)-exponentiation.
Q: The rationals.
Q": The n-dimensional rational space.
R: The reals.
R"™: The n-dimensional real space.

w(p): The result of multiplying out an R-form.
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Z: The integers.
Z [t]: The ring of integral polynomials.

Z [t]/p(t): The ring of integral polynomials modulo p(¢), an integral polynomial

(in this thesis p(t) must also be irreducible).
F(G,A): The set of all functions f : [0,a]p — G.
RF(G,A): The set of all reduced functions in F(G, A).
CDF(G,A): The set of all cyclically decomposable functions in RF(G, A).
CRF(G,A): The set of all cyclically reduced functions in RF(G, A).

CDR (Z]t], X)): For X a generating set of a fre group, this is the set of cyclically

decomposed elements of the Z[t]-exponentiation of X.
P(H.R): The set of all R-forms over H.

P(H,R): The set of elements of RF(G, A) of the form gu®h for a € Z[t]/p(t),
g,h € H and u € R.

P(H;,R): As above using H; as the original subgroup.

A-group: G is an A-group if it comes with an exponentiation function that

satisfies certain properties.

Cancellative monoid: A set, M, that is closed under an associative multipli-
cation that has an identity, and such that for all a,b,c € M, ab = ac or

ba = ca inplies that b = c.

Cyclically decomposable functions: Functions, f, in RF(G, A) that can be
decomposed into three parts, ¢,g,c~* € RF(G, A), such that f =cogoc
and £¢(g,9) = 0.

Cyclically reduced functions: Functions, f, in RF(G,A) which have the

property that eo(f, f) = 0.
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Densely ordered abelian group: An ordered abelian group, A, where inf{ P} =

0 for P the positive cone of A.

Dimension of a function, f, in RF(G,R"): Let L(f) = (—1,...,%0). Then
the dimension of f is i + 1 if x; was the final non-zero entry, reading from

the right.

Discretely ordered abelian group: An ordered abelian group, A, where the

positive cone contains its least postive element.

(03

Exponentiation: A function G x A — G that sends (g, @) — g*.

Free group: A group that is generated by a set that has no relations on it

other than the trivial relations.

Hyperbolic elements: Here these are the elements that have length greater

than zero. They are related to hyperbolic elements in A-trees.

Lyndon length functions: A function L : G — A that assigns a length to
elements of an ordered abelian group in such a way that the length of the
identity equals zero, an element always has the same length as its inverse

and for ¢(g, h) as above, ¢(g, h) > min{c(g, k), c(h, k)}.
Lyndon’s set: A set of representatives that also satisfies some extra conditions.
Normal function: A function, f such that f(0) = 1¢.

Normal R-forms: A reduced R-form, p, such that w(p) = g1 ouf* ogao...o0
+

m © Up™ 0 gmy1 and g; does not end in u; 1 whilst g; © uff does not start

in uzil.

Normalised: A function that is a normal function is said to be normalised.

Ordered abelian group: An abelian group that has a total ordering defined

upon it.
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Periods and strong periods: See {2y and Qg’c.

Positive cone: All elements of an ordered abelian group that are greater than

Zero.

Pregroup: A set P with an involution, * — 2~ ', and identity, 1, defined

Land 7'z are

on it, along with a partial multiplication such that xz~
always defined and equal to 1, whilst 1 = 1z = = are always defined, the
multiplication always associates when defined and when wz, zy and yz

are defined, one of wxy or zyz are defined.

R-form: A sequence, p = (g1,u7, 92y -+ Gm, US™, gm+1) where g; € H, u; €

R, o; € Z[t]/p(t) and m > 1.
Reduced function: A function in F(G, A) with no degenerate subintervals.

Reduced multiplication: Multiplication on RF(G, A) which is done in two

steps, concatenation first, then reduction of the resulting element.

Reduced R-form: An R-form where deg{c;} > 0 and if u; and u;41 commute,

then neither of them commute with g;.

S-set: In this set any two non-commuting elements with cyclic centralisers are

separated.
S-subgroup: An S-set that is also a group.

Separated: Two elements u,v € CDF(G, A) are separated if when m and k
are high enough, u™v" starts in u and ends in v, and these two parts of

u™v* so not overlap.

Set of representatives of M: A set that does not contain proper powers or

inverses, but which can generate M using permutations and conjugation.

Subword closed: For a given word in a group, every subword of that word is

also in the group.
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Type 1 function: Those elements f € (P(H;, R)) which have a one-dimensional

period that has non-trivial cyclic centralisers in the group H;.
Type 2 function: An element in (P(Hy, R)) that is not Type 1.

Universal group of a pregroup: The smallest group that the pregroup em-

beds into.

Words: Elements of G defined by a string of letters in the alphabet S*, the

generating set og G.
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