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Abstract

This thesis investigates network properties of natural food webs. In particular, it focuses

on the effect that external disturbances have on their substructures and robustness. The

importance of a network-level methodology lies in its capacity to capture entangling

species interactions and identify inter-connecting properties in heterogeneous food webs.

The research first analysed the responses of freshwater food webs under the stress of

drought. A core/periphery structure was detected and its relative size was found to be

unchanged after drought despite a significant biodiversity loss. Species extinction trig-

gered extensive link rewiring and movement of species from the core to the periphery.

These results showed that the robustness was maintained indicating that the redundancy

in the core can effectively mitigate species level perturbations. Secondly, the research

further examined the effects of Genetically Modified Herbicide Tolerant (GMHT) man-

agement on food web properties and robustness. Network analysis showed that such

change in farming practice has no significant impact on the agro-ecosystems. However,

crop switching, a common practice in agriculture, was found to pose much more signif-

icant changes on network properties and robustness when compared to GMHT crops.

Thirdly, the research examined over 50 empirical food webs and demonstrated that the

relative core size is a much more effective indicator of food web robustness than the clas-

sical ecological measure connectance, as the latter was found to be insensitive to changes

in the interaction patterns. Lastly, the research established the relationships between

centrality measures and species ecological and/or functional role in food webs, and how

they impact on network robustness.

ii



TO MY FAMILY



Acknowledgments

First of all, I thank Athen Ma and Steve Uhlig who gave me an offer of this PhD

position. During which I have been given invaluable guidance from my main supervisor

Athen, who have taught me how to conduct research and write academic papers and

manage multiple tasks and handle problems. I also thank my co-supervisors Steve, Guy
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Chapter 1

Introduction

1.1 Food webs

1.1.1 The emergence of a network approach

Complex networks in ecology contain species (nodes) that exist within an ecosystem

and the interactions among them (links). Ecological networks recently have been high-

lighted as a useful tool for various purposes, including bio-monitoring [1] (Lu, 2014), con-

servation [2–5], and theoretical ecology advances [6, 7]. A network approach is important

for ecology: First, a network approach can help explain the switch of ecological status

of ecosystems [1, 8]. For example, external perturbations can switch lake ecosystems

from pelagic-dominated (i.e., consists of only those species that distributed in the open

water area) to benthic-dominated (i.e., consists of only those species that distributed

at the lowest level of freshwater systems) [9, 10]. This can be explained using energy

flow through trophic interactions, indicating that regardless of the incoming resource

types of the ecosystems, the consumers can survive as long as the interaction links are

preserved [1, 8, 11]. Second, by analysing multiple food webs from different ecosystems,

the stability of food webs has been found to depend more on the ‘weak interactions’

1
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[12–14]. Other features include the species interaction pattern [15] and the important

rewiring ability [16], both of which can be further correlated with how robust a food web

is. Finally, a network approach can help identify key species that are more important

than others in conserving the ecosystem stability and the robustness under perturbation

through the analysis of species interactions [17–21]. For example, the generalist predator

(i.e., with many prey) has a controlling effect on the food web structure, and the removal

of which will cause the ecosystem to break down [22]. Similarly, a prey species with a

large biomass can also be seen as a keystone species, the removal of which can cause

cascade effects on most of the consumers who lost their prey [23].

1.1.2 Existing network analysis on food webs

Community is an important concept in both network science and ecology, and it

can have very different meanings. In network science, a community usually represents

a subset of the network which is either densely connected or functionally related, or

both [24–28]. In ecology, a community is often referred to a group of species that are

geographically located in the same area during a specific time and therefore might have

direct or indirect interactions with each other [13, 18, 29, 30].

Finding suitable ways to measure and predict ecosystem stability and community

responses is a fundamental challenge in ecology. In order to study the ecosystem and its

functioning, a common way is to evaluate the properties of species that exist within the

ecosystem. Traditional food web properties include individual species biomass change

[31, 32], species interaction strength [33, 34], and the effect of keystone species removal

[3, 18]. For example, drought can significantly reduce the biomass production of relatively

large sized species, whilst the species that are small are able to adapt quickly [35]. It has

also been observed that not all of the large predators went extinct under stressors [36],

therefore, there must exist other factors that affect a species survivability apart from

individual species properties. The species level approaches to study ecosystem responses

to environmental stressors can only demonstrate the consequences, while the cascade
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effects or the stabilising factor from the other species cannot be detected only through

the analysis of individual species properties.

Network properties of a food web can be grouped into two aspects. First, the proper-

ties that associate with individual species, including the degree centrality, which rep-

resents its importance within an ecosystem [17, 37]; the generality, which describes

how many prey it has; and the vulnerability, which describes how many predators that

depend upon it [5, 38, 39]. Second, the network-level properties such as the connectance,

describes the link density [40–43]. The proportion of basal / intermediate / top-level

species indicates the balance among the number of resource, the intermediate energy

transmit hubs, and the top predators [38, 44], where basal species (those with only out-

going links) form the bottom layer of the network, top-level species (those with only

incoming links) form the top layer of the network, and the rest of the network consist of

intermediate level species (Figure 1.1).

Food webs in general are well connected, and display a hierarchical structure known

as a trophic level structure [12, 16, 18–20]. Trophic level describes the position of the

species in a food chain and their predatory behaviours [45, 46]. The trophic height of

a food web is also related to the efficiency of energy flow. A higher food chain lengths

generally indicates higher energy availability and productivity within systems [47, 48],

it also indicates the food web complexity, therefore has been used as an indicator of

species predation behaviour change under different environment conditions [36, 49]. For

example, drought caused top predators to go extinction which reduced the trophic height

of the food webs [36]. Another network property is a recently developed metric called

trophic coherence, which correlates food web stability with restrained species trophic

position diversity of the whole network, indicating that certain level of similarity in the

species trophic position can provide flexibility when perturbation happens [46].

Food webs are shown to have non-random network structures from various perspec-

tives [12, 15, 16, 18, 19, 19, 20], however, few studies explored the response of food web

under stress through the changes in their structures or species connectivity patterns.
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a b cOld Lodge

● ● ● ● ● ● ● ● ● ● ● ●

Afon Gwy

● ● ● ● ● ● ● ● ● ●

Broadstone

● ● ● ● ● ● ● ●

Figure 1.1: Three freshwater food webs (a - Old Lodge, b - Afon Gwy, c - Broadstone)
plotted in trophic levels. Black nodes are detritus, green nodes are producers, and the
rest are higher level predators. Predators, especially those from the second trophic level,
share similar connectivity patterns with their prey.

For example, recent studies on how climate change (i.e., drought) would affect food web

topology and functional properties captured significant biodiversity change and biomass

flux change [35, 36, 50]. However, the methods used in these studies cannot explain

why connectance of the food web was conserved while food web size shrunk significantly.

Also, questions such as what would be the species rewiring pattern under environment

change still remain to be answered. These examples show that there exist limited network

approaches to fully understand the community responses under environment perturba-

tions. It is important to cross-fertilise ecology and network science by utilising advanced

network metrics to help better understand food web structure and properties.

1.1.3 Network analysis on substructures

There have been an increasing interest on using substructure network analysing met-

rics to examine a network [24, 25, 27, 51–53]. A large and densely connected core allows

certain level of flexibility and adaptability when perturbations occur [54], whilst a smaller

core helps with controllability of the whole network [55, 56]. The core/periphery struc-

ture has been detected in many types of networks, such as the underground networks

[57], the brain networks [58], and social networks [59]. In all the cases, the core is stable
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through time and provides efficiency in communication with all the other nodes in the

network.

The reasons that network substructure analysis on food webs has become a rela-

tively uninvestigated area are twofold. First, food webs are much smaller compared

with other kinds of complex networks [60], such as human brain networks (up to billions

of nodes) and the World-wide-web (around billions of hyperlinks). Therefore, it is not

always possible to detect community structure using existing metrics that were more

suitable for larger networks [6, 61–64]. Food webs consist of species that can be grouped

based on different trophic levels, and the same level species always form very similar

connectivity patterns (e.g., Figure 1.1), which effectively makes most of the food webs

un-dividable into modules. Second, food web substructure analysis focuses on function-

ality of nodes and the interaction strength of links which neglect the actual connectivity

pattern [14, 15, 51]. For example, compartments can be detected in the Chesapeake Bay

food web that consist of different functional communities, such as the pelagic compart-

ment (in the water area) and the benthic compartment (in sediments) [51]. However,

this compartment method is only effective if the food webs contain different functional

communities [51]. Yet, community structures that explain the underlying mechanism

that buffers perturbations under environment stressors still remains to be identified.

1.2 Food web robustness

Attacks which involve the targeted removal of nodes are able to cause catastrophic

effects. This is inspired by the percolation theory, which describes the effect of node

removal is able to percolate through the network, with direct effect being the consequen-

tial removal of all the links associated with the removed node [62, 65–70]. The strategy

to trigger node or link removal varies. In this context, a node removal is a so called site

percolation, whereas a link removal corresponds to a bond percolation [67].

Consider a malicious attack on the most important node with the highest degree
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(e.g., the central server, which connects to the largest number of other computers in the

Internet infrastructure [71]), the effect of attacks is able to propagate quickly from this

highest degree node to all its neighbours. That same consequence would apply to an

attack caused by a virus, which will spread much faster than if a random node were to

be infected [67, 72, 73].

A key assumption when modelling food web robustness is to define the criteria for

secondary extinction. A unified assumption for all the varieties of robustness metrics is

the bottom-up effect. In ecology, bottom-up effect represents the status that bottom-level

resource can have an influence towards all the species from a higher level through the

connected links among them [5, 17, 74, 75], and it is defined as: if a predator loses all

its prey [17], then the predator goes extinct. Top-down effect reflects the pressure from

top predators on its prey survivability and eventually affects other predators that rely

on those lower level prey [5, 75, 76]. The top-down effect has found its application in

many population dynamics models, which consider various kinds of propagation effects

on population change [5, 75, 76].

Connectance as a network metric, is often used to obtain high level understanding

of the network composition. It represents the probability that a link exists between any

two selected species [38, 42, 77]. Connectance (C) ranges from 0.06 to 0.31 for most

food webs [6, 15, 42]. Within the range, webs with C < 0.07 are considered as extremely

low connectance webs, which are in general fragile to species extinctions [42]. While

0.07 < C < 0.14 are intermediate values of connectance, and food webs within this

range are much more robust to species extinctions [17, 42]. C > 0.15 is the boundary for

high connectance food webs, whose robustness to species extinction is among the highest

[42]. Theoretical and empirical studies showed that increasing the connectance led to

an increase in food web robustness, both from population dynamics view [78, 79] and

topological view [4, 16, 17, 42, 80].

Yet, connectance alone has limited power in detecting various environmental per-

turbations on food webs. When a perturbation presents itself upon the network, con-
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nectance fails to indicate any substructural changes that might occur as a result. For

example, food webs can respond to the stressors (i.e., pH [81] and drought [36, 50]) by

re-generating or establishing new links, yielding a similar level of connectance, whilst

changing its topology.

1.3 Node centrality metrics

Node centrality is an important aspect of network analysis, which aims to identify

the most important nodes. Many centrality measures exist because different applications

may find one set more suitable and logical than another. One major application area of

node centrality in food webs is to simulate species removal based on centrality ranking

and predict robustness [16, 17, 80, 82–84]. In ecology, a high degree species is important

to the whole food web since it governs the most energy flow through the network [20,

85, 86]. The removal of high degree species results in removing a large number of links,

which could cause a significant effect on the network. Apart from degree-based removal,

other types of centrality based removal exist. For example, recent studies evaluated

the consequences of targeted removal based on different centrality metrics on a set of

empirical food webs [17, 19, 80, 87]. The focus mainly is to compare and choose the

centrality metric that can break down the food web in the most effective way. Studies

that focus on how centrality can be used to characterise nodes with different ecological or

functional meanings remain scarce. For example, the node with the highest betweenness

in protein-protein interaction networks acts as an important agent between modules and

this node normally takes part in multiple tasks [88, 89]. But what are the common

properties of high betweenness nodes in food webs? Do they share similar properties?
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1.4 Research novelty

Firstly, a core/periphery structure has been identified in a set of freshwater stream

mesocosms food webs, and it has been shown that the core governs the energy flow against

perturbations. Drought reduced the link density within the core whilst the relative size

of the core was preserved. The preservation of the core size has buffered the effect of

drought and hence food web robustness is unaffected.

Secondly, a comprehensive network analysis has been applied on agroecosystem for

the first time to assess the impact of GMHT management. The results presented in

this thesis have shown that GMHT management does not significantly affect species

interactions in food webs, while switching crop, a common practice in farming, has much

more profound effect on network properties and robustness.

Thirdly, the relative core size has been shown as a more effective indicator of food

web robustness than connectance, as the core is key in providing food web redundancy

which was quantified by constructing spanning trees. The core has also been found to

be a fully functioned substructure, as the removal of all the peripheral nodes has little

impact on the network integrity.

Lastly, the effectiveness of centrality measures in characterising nodes with different

ecological properties was examined. It has been demonstrated that the degree, eigen-

vector and closeness centrality are linked to species with specific ecological properties,

which were previously unknown.

1.5 Thesis organisation

Chapter 2 consists of a detailed description of the methods that are relevant to or

used in this research. It includes food web analysis, network substructure analysis, food

web robustness measurements, statistical tools, and centrality metrics.
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Chapter 3 explores why food webs can preserve their network structure under stress

by analysing the substructure properties. A rich core structure is observed in all food

webs from both normal and stressed ecosystems, the core link density, species movement

and extinction from either core or periphery, and the food web robustness are examined

[90] (Lu, 2016).

Chapter 4 compares the community responses under two different stressors: crop

switching and GMHT management practices by analysing a set of agricultural food webs.

The responses are gauged from species level, substructure level, and the whole network

level respectively.

Chapter 5 utilises 53 food webs from different ecosystems to test the positive cor-

relation between the relative core size and robustness. Results are benchmarked with

the comparison between connectance and robustness. The relative core size is shown

to be a more reliable indicator of robustness, as this substructure property can better

characterise the extent of redundancy in a food web.

Chapter 6 applies four most widely used centrality metrics to the 53 food webs and

topologically important species are identified from different aspects. Targeted removal

based on those centrality rankings are examined and related robustness are calculated.

Chapter 7 closes the thesis with a general conclusion on the findings and implications

of the research, which is followed by an open discussion on the future directions.



Chapter 2

Data and Methods

Networks are often studied by referring properties at different scales. Local prop-

erties focus on the description of characteristics of individual nodes. Degree centrality

quantifies the number of connection of a node is a metric that has been widely used

[20, 73, 85, 91–95]. Betweenness centrality describes how many shortest paths pass

through a node [61, 88, 96]. Global properties examine the behaviour of the whole net-

work, such as the efficiency for flow [97], the integrity of the network in terms of stability

and robustness [5, 17, 74, 75, 98]. In ecology, connectance which means the density

of links in a network is often as seen an indicator of network robustness [38, 42, 77].

In addition, substructural properties can help reveal important cliques or subgroups in

networks. For example, the core represents a densely connected subgraph that is said to

be responsible for efficient information or energy exchange and linking all the periphery

nodes [53, 54, 58, 99–101].

In this thesis, the primarily focus was to explore food web substructures by profiling

a central and densely connected core-like structure [102] and examine how the substruc-

tures evolve in the face of external perturbations. In Chapter 3, the relative core size

and core link density were used to examine the impact of drought on stream food web

structures. In Chapter 4, the same core properties were studied between conventional

10
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and GMHT managed agricultural food webs to evaluate the impact of new management

practice. In Chapter 5, the relative core size was examined to show if it is a strong

indicator of food web robustness under node removal. The connectance was examined to

quantify the impact of perturbations at the global scale in Chapter 3 to 5. Specifically,

in Chapter 5, it was compared to the relative core size on their ability to characterise

robustness. In Chapter 6, local properties including node centrality metrics were exam-

ined to assess the impact of different node removal sequence on food web robustness.

2.1 Data

The food webs analysed in this thesis consist of nodes as species and links as predation

relationships. If species a is consumed by species b, the direction of the link is pointed

from a to b. A resource represents the species that has no incoming links, and a consumer

represents the species that feeds upon one or more species. In this thesis, food webs were

treated as undirected networks when their substructural properties were studied. Food

webs were only seen as directed networks when generating a spanning tree whereby the

direction represents the way in which energy is transfered.

Food webs are often represented in a trophic structure shown in Figure 2.1, in which

species are organised hierarchically to show how energy is transferred from the resource

species to the top consumers. The resource species are located at the bottom level, and

the consumers are located at a higher trophic levels.
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R R

C C
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Food web

Energy
transfer

1

2

Trophic
level

Figure 2.1: An example of a simple food web containing two resource species (labelled
as R) and two consumer species (labelled as C) that feed upon the two resource species.
Both the energy transfer direction and trophic level are labelled.

There are two main type of ecosystems from which food webs were sampled, namely

the aquatic ecosystem and terrestrial ecosystem. Specifically, the eight food webs used

in Chapter 3 were sampled from stream mesocosms under both control and drought

condition (Data provided by Dr. Mark E. Ledger [36, 103]), and the links were obtained

through the gut content analysis. The 502 food webs used in Chapter 4 were gener-

ated based on the data sampled from farmland across UK, which covers four types of

crops (beet, maize, spring oilseed rape, and winter oilseed rape). The data was provided

by Prof. David A. Bohan and Dr. Alireza Tamaddoni-Nezhad. The species interac-

tion information was generated based on the Abductive Inductive Logic Programming

(A/ILP), and the detail of how the method is developed is described in [104–106]. The

53 food webs used in Chapter 5 and 6 are all from water-based ecosystems, which covers

marine, freshwater, and lentic. The classic food webs including Benguela, Broadstone

stream, Skipwith Pond, Ythan Estuary, and Tuesday Lakes were from the Cheddar Pack-

age [107]. The 20 highly resolved stream food webs over a wide pH range was provided by

Dr. K. Layer [81, 108]. The 18 US riverine food webs were provided by Dr. C. Mulder.

The Kennet food web was provided by Prof. Guy Woodward and Dr. Clare Gray [109].

For the details of each food web, information including the ecosystem site name, species
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identity, and related literatures, please refer to the Data set section in each Chapter.

2.2 Food web analysis metrics

A food web with S species and L links is represented as G = (S,L). Aij represents

the adjacency matrix of graph G. G is treated as an un-weighted network if aij = 1

means there is a link between node ni and nj and aij = 0 otherwise. Topological based

properties are extensively used in food web studies, from the simplest metrics such as

the total number of nodes (S) or links (L) in a food web, towards some summarised

metrics such as the fraction of basal (B) / intermediate (I) / top-level (T) species, and

the number of links per species (L/S) [38, 44, 81, 110]. L/S also reflects food web

complexity, as it calculates the average number of interactions a species may have [111].

Connectance, as the most widely used metric, measures the probability that a link exists

between any two selected species [38, 42, 77] (Eq. 2.1).

C =
L

S2
(2.1)

Connectance normally ranges from 0.06 to 0.31 [6, 15, 42], whereby theoretically it

spans between 0 to 1 [43]. In reality, food webs always contain resource species which are

located at the bottom level of a trophic structure and they do not fed upon each other.

Therefore, the range of connectance is narrowed. Specifically, marine food webs [80]

normally have lower connectance than freshwater food webs, which results from marine

webs in general have more trophic levels than freshwater food webs and are likely to

encounter fewer and less severe perturbations than freshwater ecosystems [36, 50].
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2.3 Substructures

Recently, core/periphery profiling is gaining increasing attention as this structure

can reflect network properties that are not able to be detected using macroscopic or

microscopic network metrics. A working definition of core/periphery structure is that

the core contains all the central nodes and links while periphery nodes have links mostly

with the core (Figure 2.2) [54].

There exist various methods to identify whether a network contains a core/periphery

structure [52, 54, 57, 64, 99, 101, 112]. The method presented in [112] classified networks

into different subclasses based on the network spectrum, which can be applied to various

types of empirical networks. Specifically, most ecological networks have been classified as

a homogeneous network which contains no bottlenecks, and therefore, ecological networks

tend to exhibit higher robustness when compared to other types of empirical networks

[113]. Bottlenecks are high centrality species which are responsible to connect the rest

of the network together, therefore, the removal of which would cause devastating effect

to the network [113]. The heterogeneity of complex networks reflects the uniformity or

dissimilarity in the structure, i.e., the minority of nodes have high degree whilst the

majority of the nodes have very low degree [15, 114, 115].

Various types of core/periphery structures demonstrate the complex interaction pat-

terns among nodes, indicating the heterogeneity properties of the network. A typical

portrait of core/periphery structure is shown in Figure 2.2. Real-world examples include:

the core of the London underground network contains King’s Cross and Waterloo Sta-

tion which are both located in central London and being major train station as well

[57]. The core of the brain network (nodes represent cortical or subcortical areas and

links represent whether they are functional related or not) contains regions that are most

active in information change during learning process whilst being the most stable regions

when learning tasks are changed [58]. Examples on what are the core structures in real

world network and their implications are summarised in Appendix B.2. In summary,



Chapter 2. Data and Methods 15

the key function of the core is to govern most of the energy or information flow within

the network, as well as being stable both across time scale and different environment

scenarios.

Figure 2.2: A typical example of a core (formed by red nodes)/periphery (formed by the
rest of black nodes) structure. Red nodes also formed the rich-club in the network.

Since the first proposition of the existence and topological importance of a core/periphery

structure in social networks [99], it has attracted continuously attention with various core

detection algorithms being developed for different focuses [57, 58, 64, 101]. For the clas-

sical core/periphery partition method [99], it lacks a consistent quantifiable method to

prove what one suspects is the core is indeed the core. Later proposed method uses

core-periphery coefficient [64] to compare the closeness within the real network core and

that in random networks, which provides statistical significance to how well the core is

defined. However, this core-periphery coefficient only emphasises whether the core has

the similar link density as a clique while neglects the connectivity between the core and

the rest of the nodes [64]. A recently developed method using Core score [57], which

ranges from 0 to 1, to decide how well each node is qualified to be included in the

core. However, there are arbitrary parameters which are used to define the number of

core/periphery nodes and how well the partition to be expected, increases the uncertainty

and the complexity of this method. It requires long computational time and it is not

feasible for large-scale networks [57]. A more recent core profiling method significantly

reduces the computational complexity by using pre-defined node ranking according to a
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certain node weight (e.g., degree) [102]. The core is defined by computing each node’s

connectivity with nodes of a higher rank, enabling the comparison between the core and

the rest of the network, therefore eliminates the introducing of random networks [102].

Moreover, the core, which is profiled by this method, emphasises not only its central

position within the network (all the nodes in the core have significantly shorter paths to

every other node), but also its densely interconnected feature (the core is necessarily a

rich-club, defined in [116]).

2.3.1 Rich-core profiling

The rich-core profiling method exploited in this thesis incorporates the rich-club

coefficient and node connectivity behaviour to detect a core/periphery structure within

a network [102]. In a undirected and unweighted graph G, nodes are ranked based on

the degree. For each node r, kr represents its degree, k+r represents how many nodes

link with r that have a higher degree than r. For a network with N nodes, a resulting

k+r sequence is generated with length N . The core contains nodes whose k∗r
+ > kr

+

if r > r∗. That is, the boundary of the core is detected at the point after where k+r

reaches its peak and decreases afterwards. The advantage of applying this method to

detect the core is twofold. First, a pre-ranked node sequence makes the computation

faster for large networks. Second, the envelop of the k+r sequence is able to explicitly

show the transition point where the boundary of the core is defined. The core in the

context of the thesis refers to a densely connected clique among high degree nodes [102],

and this two-class partition method is always able to identify a core and a periphery in

non-random networks.

This method is also applicable on directed or (and) weighted networks. For a directed

network, node ranking r is defined by either in-degree or out-degree of each node. k+r

no longer represents how many links node r has with a higher degree, but represents

how many incoming/outgoing links r has with a higher degree node. Therefore, the

implication of the core becomes the original source of the information spreading or the
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terminal of the information receiving substructure. For a weighted network, node ranking

r is defined as the sum of weight from all its connected link, which is used to calculate the

k+r value. Therefore, the core not only represents the most connectivity in the network,

but also indicates most of the energy or information flow within and towards it.

A simple example of a synthetic food web under control condition is shown in Fig-

ure 2.3a, containing basal level (‘B’) species, intermediate level (‘I’) species, and the

top-level (‘T’) species. In order the calculate the k+r metric, species are first ranked in

the descending order of degree, shown on the x-axis of Figure 2.3b. The y-axis of Fig-

ure 2.3b indicates the number of interactions that particular node with those nodes of a

higher degree than itself. This gives an idea of the local connectivity among high ranking

nodes. A synthetic food web under drought condition (where large top predators ‘T1’,

‘T2’, ‘T3’ and ‘T4’ have gone extinct compared to the web in Figure 2.3a) is shown in

Figure 2.3c, and its core profiling is shown in Figure 2.3d. The core (peak value k+r ) is

at node ‘T3’ in Figure 2.3b, and node ‘B4’ in Figure 2.3d.
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Figure 2.3: a - Synthetic food web under control condition. b - Core profiling of the
control web a. c - Synthetic food web under drought condition. d - Core profiling of the
drought web c. B (circle) represents basal species, I (square) represents intermediate-
level species, and T (triangle) represents top-level species.

2.3.2 The rich-club coefficient

The Rich-club coefficient measures the density of connections (explained below)

between the high degree nodes [116]. It was first proposed to describe the connectivity

pattern among high degree nodes of Internet at the Autonomous System (AS) level: an

extremely large proportion of links are distributed within a small fraction of very high

degree nodes, forming a richly connected core. This rich core is able to maintain its

performance and connectivity under various perturbations due to its densely connected

behaviour, therefore helps maintain the whole network robustness. This rich core sub-

structure also ensures a high efficiency information flow from the central nodes to the

rest of the network.
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Rich clubs have been identified in many other types of networks as well, such as power

grid networks [117], transportation networks [118], scientific collaboration networks [117,

118], and brain networks [119]. The rich-club structure in the aforementioned networks

contains important nodes that are both with high degree properties and also connecting

to all the other low degree nodes in order to transfer energy, accessibility, information,

or exert control.

The quantitative representation of the rich-club coefficient is (φr ) is defined as [120]:

φr =
2

r(r − 1)

r∑
i=1

∆Ei =
2Er

r(r − 1)
, (2.2)

where r is rank of the descending order of the node degree, Er is the number of links

shared by the higher ranked nodes, and r(r− 1)/2 is the maximum number of links that

these nodes can share. The connectivity of a subnetwork consisting of chosen nodes is

given by φr∗ , whereby a fully connected subnetwork has a value of φr∗ = 1 and a fully

disconnected subnetwork gives φr∗ = 0.

2.3.3 Food web redundancy

Redundancy, in general, is defined as two or more components that share the same

functional role within a system, such that the malfunctioning of one of these compo-

nents will not affect the services provided by the whole system [121]. In ecology, it was

claimed that the robustness of ecosystem also relies upon certain level of redundancy

to prevent cascade species extinctions under disturbances [4, 81, 122–124]. The level of

redundancy was quantified by the number of species that are independent to each other

(i.e., there is no predation relationship) and share the same functional role within an

ecosystem, for example, there are two or more resource species consumed by the same

consumer, therefore, the extinction of any one of the resource species will not cause fur-

ther secondary extinction towards consumers [12, 82, 121, 125, 126]. Later studies also

shown that food webs in general are densely connected and the intertwined pathways
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can provide redundancy [54, 99], which is able to prevent potential secondary extinction

when various perturbation happens, such as environmental warming [122], acidification

[81, 123] and drought [4, 124]. In Chapter 3 and 4, redundancy was interpreted as the

alternative paths within the core, whereby the relative size of the core indicates the food

web robustness. In Chapter 5, substructure redundancy was introduced based on the

core/periphery partition of food webs. The core redundancy was defined as the pro-

portion of the alternative paths within the core against the total number of alternative

paths in the whole food web.

2.4 Food web robustness measurement

In network science, a common way to assess network robustness is to gauge the rate

in which a network collapses after a proportion of nodes being removed, and metrics

used to gauge the integrity of a network include efficiency [97] and the size of the giant

component [127]. For example, the robustness (Rx) among a set of networks is compared

by measuring the size of the giant component when x% of the nodes are removed [128],

where a giant component is the largest connected component of a network [92, 129–131].

Recently there has been a focus on quantifying food web robustness based on sim-

ulated species removal aiming to estimate the vulnerability of existing ecosystem to

possible perturbations [17, 60, 80, 82, 132–135]. The simulated species removal is either

based on randomly selection or certain node ranking methods [17, 80, 82]. Food webs are

remarkably robust to realistic extinction scenarios (i.e., those species with limited geo-

graphical distribution are likely to go extinct [133]), as opposed to the non-ecologically

informed scenarios usually employed (i.e., the random species loss), suggesting that food

web has the ability to adapt thereby minimises the negative consequences of realistic

species extinction. Ultimately the goal is often to investigate food web robustness under

different environmental perturbations as a way to evaluate the consequences to both the

structure and functions, which helps target conservation efforts toward those species and
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ecosystems that most need it [50, 81, 134–136].

In ecology, robustness is commonly referred to R50 which quantifies the amount of

secondary extinction [17] The measurement is described in the following way: 1) At

each iteration, one species is selected and is removed from the network, together with

its associated links. 2) The effect of species removal propagates towards the upper levels

of the network, and ‘bottom-up’ effects [5, 17, 74, 75] (i.e., predator lost all its prey),

if there is any, will be evaluated. 3) If this procedure causes any higher level species

to lose all its prey, secondary extinction will be triggered. The effect of any secondary

extinction is consecutively evaluated until no further extinction would happen within

this iteration. 4) Procedure 1 will repeat until the entire food web becomes half of the

original network size.

Simulated species removal can be based on different node ranking sequences. First,

perturbation is simulated by randomly removing species across the network [17]. Second,

perturbation is simulated by removing species with the highest degree, which represents

the worst case scenario [82]. Removal under the re-ranked procedure was claimed to be

able to achieve the most efficiency [71]. Therefore, before each targeted removal, nodes

were re-ranked based on the centrality method selected. Throughout the simulation,

neither isolated nodes nor predators that lose all its prey would exist in the web.

Finally, robustness is quantified as the amount of primary extinctions (Q) in order

to generate 50% of the total species loss:

R50 =
Q

N
, (2.3)

where N is the number of nodes in the original web.

This definition gives a maximum possible robustness of 0.5 (all extinctions come

from Q removals) and a minimum of 1/N (1/N happens if 1 removal causes ≤ 0.5N −

1 secondary extinctions). The cumulative secondary extinction caused by sequential
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removal is usually represented as Figure 3.8 or Figure 6.6. The greater the skew, the

more secondary extinctions occur and the less robust the food web will be.

The difference of R50 and the robustness measurement in general (Rx) lies in the

stopping point of the node removing iteration, i.e., when the certain remaining size

of the network is reached, or when the certain proportion of nodes is removed. Yet,

based on a recent study on the reliability of Rx applied to food webs where extinction

threshold x ranged from 5% to 95%, the relative proportion of secondary extinction did

not show significant changes when different proportion of species was manually removed

[98]. Also, when the collapse threshold was restricted within 50%±20%, Rx was found to

be relatively invariant. On the other hand, R50 has been shown to be a reliable measure

of food web robustness [17] which has been used in this thesis.

However, if the focus is to evaluate the importance of removing certain species in

a single food web, R50 exhibits two major limitations. First, it measures only binary

networks which neglected the effects of species with different abundance. Second, the

procedure is only based on the original snapshots of food webs which ignores the fact that

ecosystems are able to evolve according to perturbations. Later studies expanded this

binary model from different perspectives. Robustness model based on weighted networks

incorporates species abundance as a factor, which was proven to be able to capture more

realistic responses of natural ecosystem, i.e., fewer secondary extinctions are observed

when removing specialised species with a relatively low abundance [82, 135, 137]. Multi-

species removal is used to simulate habitat removal as a consequence of regime shifts and

human activities, i.e., the loss of a group of species that live in a certain habitat. This

can be applied to model the robustness of ecosystems which contain top predators that

depend heavily on species mostly from a single habitat [84, 138].
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2.5 Statistical evaluation methodology

2.5.1 Correlation (Pearson and Spearman)

Correlation is used to quantify the strength of association between two variables.

For the continuous and normally distributed numerical data, the Pearson correlation

coefficient (r) was used, while for the discrete ranked data or non-normal distributed

data, the Spearman correlation coefficient (ρ) was used. While r measures the strength

of the two data having a positive or negative linear relationship, ρ measures whether the

two data would increase or decrease monotonically with each other.

Suppose there are one dataset X = x1, ..., xn and another dataset with the same

length of X, Y = y1, ..., yn, the Pearson’s correlation coefficient r is defined as:

r =
cov(X,Y )

σXσY
(2.4)

where cov is the covariance, and σX is the standard deviation of dataset X.

The Spearman correlation coefficient ρ is defined as:

ρ =
cov(rgX , rgY )

σrgXσrgY
(2.5)

where cov(rgX , rgY ) is the covariance of the ranked data, and σrgX is the standard

deviation of the ranked data rgX .

In Chapter 4, the Pearson correlation was used to compare food web size between

conventional treatment and that from the new treatment. It was also applied to measure

the strength of correlation between food web robustness and the relative core size or

connectance in Chapter 5. In Chapter 6, the Pearson correlation method was used in

the same way as in Chapter 5, whilst food web robustness was also compared to other

properties such as the proportion of basal/intermediate/top level species in additional
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to the relative core size and connectance. The Spearman correlation was applied in

Chapter 6 to quantify the similarity among centrality ranking indices.

2.5.2 Null model

In network science, random networks are modelled with pre-defined topological fea-

tures that maintain a certain degree of randomisation among replicates [139]. This type

of null model conserves the total number of nodes and links compared to the original

network, as well as the degree of each node. The rewiring procedure ensures that all the

neighbors of each node is randomly assigned, therefore, the connectivity pattern of the

network is changed. By comparing an empirical web with its randomised networks, it

is possible to determine whether the pattern (i.e., assortativity, rich-club phenomenon)

observed in the real network would happen by chance (if no difference from the random

network) or are statistically significant (if huge difference from the random network).

This null model has applications in many areas. For example, Internets or World-

wide-webs are examples of “scale-free” networks that show a power-law degree distribu-

tion [140, 141] whilst food webs, on the other hand, have uniform or exponential degree

distributions [40, 42]. Those examples make a random graph with a Poisson degree

distribution not representable for real-world networks. In order to preserve the impor-

tant topological properties of the real networks while producing the appropriate random

networks, a null model is needed to generate corresponding random networks.

Through this thesis, null model was used to identify non-random topological features

of real networks by comparing them with random re-wired networks [139]. When applied

to food webs, random webs generated by this null model preserve properties of empirical

webs while also have links that are not able to be observed in reality. The more improb-

able a configuration of links is, the more re-organisation is required to be in place to do

so [44, 142, 143]. Therefore, important food web structural patterns can be unveiled.
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2.5.3 Z-score

Z-score (standard score) is the signed standard deviation (σ) between the actual data

and the mean [144]. If the actual data is larger than the mean, the z-score has a positive

sign, otherwise, it has a negative sign. In general, the z-score is defined as:

z =
x− µ
σ

, (2.6)

where µ is the mean of the null model [145].

In order to use z-score to testify the null hypothesis on the level of significance, the

critical value of the confidence level is used. For example, a 95% confidence level (i.e.,

p-value > 0.05) is associated with a critical z-score within ±1.96. Z-score higher than

1.96 or lower than −1.96 indicates the empirical data has the significant difference with

the null model [144].

2.5.4 Bray-Curtis dissimilarity

In ecology, Bray-Curtis dissimilarity is used to assess how taxon composition varies

between two different ecosystems based on the count of each species. The index is given

by:

bii′ =

∑J
j=1 |nij − ni′j |∑J

j=1 nij
, (2.7)

where i and i′ correspond to two comparing sites, nij and ni′j refer to the species count

for species j. (J refers to the union of all the species) in the two sites of interest. The

parameter b varies between 0 and 1, where 1 indicates the highest variability between two

sites, i.e., no common species found in both sites, and 0 indicates the lowest variability,

i.e., species are identical in identity and count number between both sites.
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2.6 Spanning tree

In mathematics, a tree is an undirected graph in which any two nodes can only be

linked with a single link. In other words, a tree is a type of graph with no loops and the

removal of any single link would break down the graph into disconnected components

[146]. A spanning tree is a subgraph in the form of a tree of the original graph, which

connects all the nodes with the minimum number of links.

In this thesis, the construction of a spanning tree structure is based on the above

definition. Here, the construction of a spanning tree takes into consideration the direction

of the predation relationships. In order to fulfil the requirement that 1) the spanning

tree contains minimal number of links such that the removal of any link would result in

isolated species or further secondary extinctions, and 2) each predator can be fed upon

one and only one prey; an additional node representing the environment that provides

energy to all the resource species was added to make sure the spanning tree of a food

web is a connected graph. Specifically, if Figure 2.4a represents a simple example of

a food web, Figure 2.4b represents all the possible constructions of the spanning tree

structure based on the original food web [12]. This type of reconstruction was applied

to empirical food webs in Chapter 5.
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Figure 2.4: a - Original food web G with two resource species (R, green) and two
consumer species (R, blue). b - Four possible construction of the spanning tree structures
(T1 to T4) based on G in a. Node E (orange) is the manually added node representing
the environment that provides energy to all the resource species. All the nodes are linked
with only one link. Each spanning tree structure represents a possible type of energy
flow from resource to consumers.

2.7 Centrality indices

Centrality aims to characterise which nodes are important and thus have a “central”

position in the network based on the network structure. Here only centrality metrics

that are linked to the robustness properties of ecological networks are selected and stud-

ied. Four well-known and widely applied centrality indices are summarised, including

the node-level degree centrality, the substructure-level betweenness centrality, and the

network-level closeness and eigenvector centrality.

• Degree centrality
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The degree centrality is the simplest and most frequently used metric to quantify the

importance of nodes that maintain the integrity of the network structure [20, 73, 85, 91–

95]. The degree of a node is the number of links that connects to it and it is defined

as

ki =
∑
j∈N

aij (2.8)

where aij is given in the adjacency matrix, and N is the number of nodes in the network.

The degree is a purely local centrality measure, as it considers only the number

(or weight) of the connections of the node to its connected neighbours. To obtain a

more macroscopic perspective, it is often insightful to look at the degree distribution,

which summarises the frequencies with which different degrees appear in the network.

For example, a power-law degree distribution enables a network to be robust against

random failures but vulnerable to attacks on high degree nodes [94, 95].

In ecology, high degree species are found with higher probability to be present in

more fragments (e.g., geometry niches) within a certain area, which is named nestedness

from the view of geographic occurrence pattern [147]. Species degree also reflects the

survivability of this species, therefore helps with the conservation purposes, the degree

change of a species could be consequences of climate change and could help predict its

survivability [20, 85, 148, 149].

• Betweenness centrality

Betweenness centrality counts the fraction of shortest paths going through a given

node [61, 88, 96], and it is defined as:

CB =

∑
s 6=n 6=t σst(n)/σst

(N − 1)(N − 2)/2
(2.9)

where σst is the total number of shortest paths from node s to node t and σst(n) is

the number of shortest paths σst passing through node n. Thus betweenness can be seen
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as a substructure level metrics.

In biology, nodes (or links) with the highest betweenness are often claimed to be

key nodes (or links) that have multi-functional properties [64, 89, 150–153]. In ecology,

the links with highest edge betweenness are also often considered as a bridge between

different communities within a single food web [61, 154]. For example, Girvan & Newman

proved the removal of the highest betweenness links in Chesapeak Bay food web resulted

in the splitting of pelagic and benthic sub-communities [61]. Food webs that lack high

betweenness nodes, which is named as “good expansion networks”, are more robust to

perturbations [19].

• Closeness centrality

Closeness centrality calculates the “distance” (dij) given by the average shortest path

between a given node i and all other nodes in the network [150], and it is defined as [155]:

CC =
N − 1∑
j∈G dij

(2.10)

It makes closeness centrality a macroscale network metrics. This measure is mean-

ingful only for connected graphs, otherwise dij = +∞ when there is no path between i

and j.

In food webs, species with a high closeness centrality are considered to spread (or

accumulating) energy faster within the network and are therefore deemed to be of higher

importance [20, 64, 85, 150, 154]. Specifically, in host-parasite networks, the parasites

with the highest closeness centrality consume the widest range of prey. Those parasites

form a highly connected central substructure in the network which is robust to external

perturbations [154, 156].

• Eigenvector centrality

Eigenvector centrality measures the level of influence of a node to all the other nodes
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in the network. The eigenvector centrality vi of node i is defined as [155] :

vi = λ−1
∑

j
aijvj (2.11)

where vi is the score for node i, λ is a constant and the sum is over all the nodes. Eq. 2.11

is expressed as the eigen–problem:

âv = λv (2.12)

The eigenvector centrality vi is given by the i entry of the eigenvector v corresponding

to the largest eigenvalue λ.

A node with a high eigenvector centrality shares most of its connections with other

important nodes [87, 157, 158]. It can be seen as a globalised version of degree centrality,

as the importance is not localised around the neighbors of this nodes, but considers how

its neighbors would locate in the network. For example, a node connecting to all the high

degree nodes has higher eigenvector centrality than the same-degree-node that connects

to low degree nodes. High eigenvector centrality nodes are further classified into two

categories: community core nodes (the removal of which would make the network fall

into many small isolated sub-communities) and bridge nodes (the removal of which would

separate different communities more clearly) [159] (Figure 2.5). If an attack happens,

the community’s core nodes would be more important as the removal of any would lead

to many isolated species leading to further secondary extinctions [4, 5, 20, 85, 148, 149].
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Figure 2.5: Node 1 & 8 are the community core nodes. Node 15 is the bridge core
node. The removal of node 1 & 8 will destroy the community structure and decrease the
efficiency of each node to reach every other node. The removal of node 15 will separate
two sub-communities while the connectivity within each sub-community remains the
same [159].

• Reliability of the node-ranking metrics

The effectiveness of targeted attack depends on the accurate measure of the afore-

mentioned centrality measures. In reality, a complete view of the topology of a certain

network is usually not available, for example, there exists missing species and its asso-

ciated predation links in almost all the food webs due to the sampling error. Thus it

is important to decide whether the centrality measures are able to return the desired

results with imperfect data [93]. Research in [93] has shown that the ranking accuracy

of the four centrality metrics listed above are all robust to errors up to 25% of missing

data, and this was shown using in random networks with 100 nodes, and the probability

that a link exists between any two nodes equals to 0.5 (i.e., connectance roughly equals

to 0.245).

From another perspective, the aforementioned network centrality metrics have been

proved to generate node ranking sequences with high similarity within different types of

networks, for example, in scale-free networks, the closeness ranking shares the most simi-

larity with eigenvector ranking, while degree shares the most similarity with betweenness
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[128, 160]. A recent study highlighted the effectiveness of betweenness-based attack on

a set of random scale-free networks as well as a few real world networks that follow a

scale-free degree distribution [153]. However, its effectiveness on other types of networks,

for example, food webs, are still unknown. In Chapter 6, those centrality metrics were

compared by analysing a set of empirical food webs, and their similarity in node ranking

will also be compared.



Chapter 3

Effect of drought on food web

substructures

3.1 Research background and overview

Drought is a major climate issue, and it is predicted to become more severe within

the next few decades [161]. Drought caused by intermittency in streams [162], declining

precipitation [163], and the extensive human activities [161, 164] result in changes in both

species composition and biodiversity in freshwater ecosystems. The consequences on food

webs from drought can be seen from two perspectives: whether species can survive under

drought; and if so, how will it adapt to the new environment [165]. Previous studies

showed that the response of individual species under drought (i.e., species’ presence or

absence, the change of species biomass production, etc.) varies significantly. In addition,

there exists synecological research on how network level properties, such as connectance

would fluctuate under climate change [166, 167], however, changes of species interactions

under different environmental stressors remain unclear. In network science, the presence

of a core/periphery structure is found to be responsible for maintaining the network

structure and faciliating flows in various kinds of non-ecological networks [53, 54, 58, 99–

33
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101]. The significance of presenting a core/periphery structure for food web responses

to an environmental perturbation - drought - is reported here for the first time.

In this chapter, network analysis methods were applied to provide a novel way to

examine the consequences of environmental perturbations on food webs. The previ-

ously unexplored substructural changes were assessed within the food webs by compar-

ing between food webs under control and drought conditions. For each food web, the

rich-core profiling technique was applied to detect if food webs have a clearly divided

core/periphery substructure [102]. Next, the link density within the core [116] was also

measured. The random networks were generated through the degree-preserving null

model in which links were random rewired [139]. The null model was used to show

if there exist unique patterns of species connectivity in empirical food webs compared

to random networks. Species extinction was either originated from core or periphery,

and the results can help identify the difference in substructure fragility. Species move-

ment between core and periphery was also examined as it is an indicator of network

adaptability. Finally, whether the presence of a core structure would contribute to the

maintenance of food web robustness was examined via simulating species loss in silico

both randomly and strategically in descending order of degree.

3.2 Methods

3.2.1 Data set

The set of food webs used in this chapter comprises of four pairs of food webs sampled

from stream mesocosm under control and drought conditions (Data provided by Dr.

Mark E. Ledger). The drought treatment was applied to the streams for two years, and

species were sampled at the end of the treatment. The interactions between species were

generated through gut content analysis (involving 3643 individual species) [50]. The

eight food webs are among the most highly resolved to date, comprising 783 pairwise
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trophic interactions and 74 trophic elements in total.

The eight mesocosm food webs are realistic representation of natural systems regard-

ing to their network complexity (i.e., number of species and their overall link density)

and their structural similarity by comparing to 82 natural river food webs [168]. Within

each of the individual food web, species were categorised into three trophic levels: basal

(B), intermediate (I) and top (T). A basal species was defined as a species with no prey;

a top-level species was referred to as a species with no predators; and the rest were

defined as intermediate species.

3.2.2 Core/periphery profiling and the rich-club coefficient

The details of how to profile a core is described in Methods, section 2.3.1. To sum-

marise its application to food webs: First, the nodes (representing the species) are ranked

in the decreasing order of their degree. For each node, the number of links this node

shares with nodes of higher degree (represented as k+r ) was recorded, where r is the rank

of a node. The highest degree node always has k+r = 0. In theory, the maximum k+r for

each node r is r− 1, if this node links with all the nodes with a higher rank. Along this

k+r profile, the peak r∗ was detected if k∗r
+ is always larger than k+r if r > r∗. All the

nodes before the peak were grouped in the core substructure and the rest to be in the

periphery.

Species turnover between substructures was analysed in two ways. The core (or

periphery) species in each of the control webs were compared with the species in its

corresponding drought web to get: 1) in which substructure (i.e., core or periphery) of

the control food web did the species extinction mostly happen; and 2) the proportion of

species movement from the core of control webs to the periphery of drought webs, and

vice versa.

The density of interactions within the core and across the web was measured using

the “rich-club” coefficient, φr, where r represents the ranking of the nodes, and φr mea-
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sures the actual number of links existed among selected nodes divided by the maximum

possible number of links [116] (section 2.3.2). The sequence of φr from the highest degree

node (r = 1) to the lowest degree node indicates changes of the subgroup (contains all

the nodes with rank > r) connectivity. A fully connected subgraph gives φr = 1. When

more lower degree nodes being included in the calculation, φr will decrease after reaching

its maximum value. The last value in the sequence of φr measures the density of the

whole network.

3.2.3 Null model comparison

The construction of an ensemble of null models is achieved by randomly rewiring

links among nodes [139]. The link rewiring procedure conserves the degree of each node,

therefore the overall degree distribution is unchanged [139]. For each of the random

networks, φrnull
is calculated and is compared with that of the empirical network, φr. Z-

score (Section 2.5.3) is a statistical metric that measures how far the actual value deviates

from the corresponding average φr among the null models (i.e., a z-score greater/lower

than 0 indicates the actual value is above/below the mean). The analysis was able to

benchmark how far the real food web assemblage pattern deviates from the random

networks, which gauges the level of organisation of predation links triggered by drought.

3.2.4 Statistical tests

One-tailed t-test was used to examine whether the proportion of extinction species

in the core and periphery, and whether the proportion of species movement from core to

periphery and vice versa showed any significant differences. Two tailed t-test was used

to examine whether the relative core size of control and drought webs, and whether the

robustness of control and drought webs showed any significant differences (Table 3-A).
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Table 3-A: Summary of two independent samples t-tests.

What has been tested? Dependent
variables

∗
Independent vari-
ables

H0
=

Has the relative core size
changed in response to
drought?

Relative
core size

Treatment with two
levels (control and
drought)

µ 6= µ0

Is species extinction greater in
the periphery than in core?

% of species
extinction

Substructure with two
levels (core and periph-
ery)

µ > µ0

Do more species move from
core to periphery than vice
versa?

% of species
movement

Substructure with two
levels (core and periph-
ery)

µ < µ0

Are control webs more robust
than drought ones under ran-
dom removal?

Robustness Treatment with two
levels (control and
drought)

µ 6= µ0

Are control webs more robust
than drought ones under tar-
geted removal?

Robustness Treatment with two
levels (control and
drought)

µ 6= µ0

∗
The original data in all comparisons were examined using Shapiro-Wilk test
and they all met the normality assumption. Data were on proportions and
therefore arcsine transformation was applied. The normality assumption held
after transformation.

= The null hypothesis H0 being µ 6= µ0 indicates a two-tailed t-test, while µ > µ0
or µ < µ0 indicates a one-tailed t-test. µ0 represents the mean of variables
related to the core or the control webs, while µ represents the mean of variables
related to the periphery or the drought webs.

3.2.5 Food web robustness

Food web robustness was studied by simulating nodes removal in silico, and the pro-

portion of secondary extinction against original web size (when species loss has reached

50% the total species) was measured [4, 16, 17, 42, 78] (Section 2.4). A secondary extinc-

tion happens if a predator loses all its prey (i.e., a node loses all its incoming links). This

robustness analysis provides estimates of how vulnerable the ecosystem would be when

facing species extinctions. The more iterations of primary species removal a web needs

to achieve a certain amount of secondary extinction, the higher robustness a web would

have. Different node removal strategies may have different implications when characteris-

ing robustness. For example, high degree node removal (i.e., the highest degree species is
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always the one to be removed in each iteration) is able to simulate a ‘worst-case’ scenario

on the consequences of species extinction while random removal (each iteration, a species

is randomly selected) simulates how species would behave against random perturbations

[82, 169].

3.3 The impact of drought on food web substructures

3.3.1 Cores in food webs

A clear core/periphery structure was shown in all eight food webs (Figure 3.1), with

a distinct peak in their core profiles (indicated by a vertical line, at which the number

of links k+r is at its maximum, and after which the k+r is always smaller than the peak).

The food web cores contained species from all trophic levels. The absolute core size

is always smaller in drought webs than that in control webs, as the web size is always

smaller under drought. However, food web cores are accounted for (on average) 50%

of the species in both control and drought webs (Table 3-B). The relative core size was

unchanged by drought (t-test on arcsine transformed proportion data, d.f.=3, p=0.16;

Table 3-C), despite absolute species losses of 25%.

Table 3-B: Summary on properties related to the core. The core size, species extinction
(E) found in the core and periphery, and the species re-alignment between the two regions
when comparing a control web (C) with its respective drought web (D).

Web Number of Core size Number of species Number of species

pair species (% of web size) lost from core lost from periphery

C D C D to E to periphery to E to core

1 59 47 30 (50%) 27(57%) 4(13%) 4(13%) 13(45%) 4(14%)

2 63 46 31 (49%) 20(43%) 8(26%) 7(23%) 12(38%) 3(9%)

3 61 49 36 (59%) 23(46%) 8(22%) 7(19%) 9(36%) 0(0%)

4 65 52 38 (58%) 22(42%) 7(18%) 11(29%) 8(30%) 0(0%)
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Figure 3.1: Core/periphery structure of control and drought food webs. Comparisons
of four blocks of control and drought core profiles (a-d for web pairs 1-4 respectively).
Nodes are ranked by their decreasing order of degree and plotted by the number of links
with nodes of a higher rank, k+r . The control web (dark thick line) is plotted alongside
its respective drought web (light thin line). Species were classified as basal (circles),
intermediate (squares) or top (triangles). The maximum of the curve k+r , defines the
boundary of the core for the control (dark thick line) and drought (light thin line) webs.
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Table 3-C: Statistics from two independent samples t-tests. The effects of drought on the
relative core (Table 3-B) and robustness (Table 3-E) were tested using one-tailed t-test on
arcsine transformed data. Two-tailed t-test on arcsine transformed data were applied to
examine if peripheral species are more susceptible to extinction and if more core species
realigned after drought (Table 3-B). Significant effects / differences are indicated in bold
(Further details described in Table 3-A).

Drought

df p

Relative core size 3 0.16
Robustness (random) 3 0.89
Robustness (targeted) 3 0.17

Drought impacted
substructures

df p

More extinction from periphery 3 0.01
More species realigned from core 3 0.01

Drought caused a significant drop in degree for most of the species (shown with a

positive bar length in Figure 3.2). Among the top 20 species with the largest degree

reduction, only 4 of them are invertebrates whilst all the rest 16 species are the resource

(i.e., detritus or producer). Among the top 5 species with the largest degree increase,

4 of them are invertebrates and only 1 of them is the producer. Results showed that

resource species in general have a lower degree under drought, which can be linked to

the extinction of many large predators (i.e., invertebrates); whilst the survived predators

under drought have a higher degree by establishing new predation links, in order to

survive under the stressed environment.



Chapter 3. Effect of drought on food web substructures 41

Tubificidae
Naididae

Ephemera danica
Cricotopus sp.

Staurosirella leptostauron
Surirella brebissonii

Planothidium lanceolatum
Synedra ulna

Gammarus pulex
Limnius volckmari
Macropelopia sp.

Oulimnius tuberculatus
Cymatopleura solea

Potamopyrgus antipodarum
Psammothidium lauenburgianum

Baetis sp.
Cryptochironomus sp.

Surirella minuta
Algal cysts

Microtendipes sp.
Tinodes waeneri

Spirulina sp.
Procladius sp.
Gyrosigma sp.

Encyonema minutum
Synorthocladius sp.

Diatoma vulgare
Hydropsyche sp.

Simuliidae
Amphora ovalis

Nitzschia dissipata
Nitzschia perminuta

Fragilaria vaucheriae
Hyphomycete fungal hyphae

Prodiamesa olivacea
Fungal spores

Chrococcus minor
Heterotrissocladius sp.

Navicula menisculus
Navicula gregaria

Navicula lanceolata
Pisidium sp.

Gomphonema olivaceum
Asellus aquaticus

Staurosira elliptica
Radix balthica

Gongrosira incrustans
Amphora pediculus

Rhoicosphenia abbreviata
Navicula tripunctata

Melosira varians
Cocconeis placentula

Sialis lutaria
Plant fragments

Amorphus detritus

−5 0 5 10 15

barlength: degree.C − degree.D

Degree in control webs – Degree in drought webs 
-5                        0 5 10                     15

Figure 3.2: The degree change for each species that presented in both control and drought
food webs. The bar is calculated as the degree of each species in control webs minus the
degree in drought webs. The degree change for species presence in two or more pairs of
webs were averaged.
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3.3.2 Species Extinction under drought

Species extinction in substructures caused by drought were observed in all four pairs

of webs. The peripheral extinctions mostly consist of invertebrate consumers located at

the higher level of the food chain (Table 3-D). Specifically, for each of the invertebrate

species, there is a higher chance for them to go extinct (comparing the Frequency in

periphery with Extinction in Table 3-D). The absent of basal species in the drought

webs was in fact caused by the extinction or diet switching of their original consumers

(Table 3-D). In Figure 3.3 web pair d, drought caused 15 species to go extinct and

2 species to invade into the ecosystem. Similar as web pair d, web pair a - c also

showed more species extinction from control webs than species invasion into drought

webs. A relatively large proportion of periphery species went into extinction under

drought (30% to 45%), compared to that of the core (13% to 26%, one tailed t-test on

arcsine transformed proportion data, d.f.=3, p=0.01; Table 3-C).
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Table 3-D: List of periphery species that went extinct under drought. Species were
found to be either an invertebrate or a producer. Their frequency found in the (control)
periphery and the number of times they went extinct in drought webs are listed. Species
were ordered by the number of times it went extinct from the periphery

Frequency in

Species Category periphery Extinction

Elmis aenea invertebrate 4 4

Ostracoda invertebrate 3 3

Polypedilum sp. invertebrate 3 3

Athripsodes sp. invertebrate 3 3

Haliplus lineatocollis invertebrate 3 3

Pentaneura sp. invertebrate 3 3

Polycentropus flavomaculatus invertebrate 3 3

Oulimnius tuberculatus invertebrate 4 2

Brychius elevatus invertebrate 2 2

Erpobdella octoculata invertebrate 1 1

Heterotrissocladius sp. invertebrate 1 1

Leuctra geniculata invertebrate 1 1

Cricotopus sp. invertebrate 2 1

Synorthocladius sp. invertebrate 4 1

Theodoxus fluviatilis invertebrate 1 1

Platambus maculatus invertebrate 1 1

Sialis lutaria invertebrate 2 1

Algal cysts producer 4 1

Amphora ovalis producer 4 1

Cymatopleura solea producer 4 1

Cymbella lanceolata producer 2 1

Diatoma vulgare producer 3 1

Fragilaria vaucheriae producer 4 1

Staurosirella leptostauron producer 3 1

Surirella minuta producer 4 1
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Controla

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Controlb

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Controlc

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Controld

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Controld

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Figure 3.3: Comparisons of four blocks of control and drought food web structures (a-d
for web pair 1-4 respectively). Drought caused species re-alignment in substructures.
Core species in the inner ring are surrounded by periphery species in the outer ring. In
web pair d, drought caused 15 species to go extinct (filled diamonds) and 11 core species
to shift to the periphery (light circles).

Figure 3.4 shows four scenarios under which basal species appeared in the control
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webs but not in the drought webs. Those basal species all locate in periphery, which are

consumed by only one or a few core species under the control condition. For example,

in Figure 3.4a, Cymbella lanceolata is consumed by a single core species, and the diet of

this core consumer was narrowed in the presence of drought. Similar trends are observed

in Figure 3.4b - d.

ControlControl

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Cymbella lanceolata:primary.producer
periphery.to.extinctionControlControl

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Amphora ovalis:primary.producer
periphery.to.extinction

ControlControl

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Diatoma vulgare:primary.producer
periphery.to.extinctionControlControl

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Fragilaria vaucheriae:primary.producer
periphery.to.extinction

ControlControl

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Cymbella lanceolata:primary.producer
periphery.to.extinction

ControlControl

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Diatoma vulgare:primary.producer
periphery.to.extinction

ControlControl

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Amphora ovalis:primary.producer
periphery.to.extinction

ControlControl

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Fragilaria vaucheriae:primary.producer
periphery.to.extinction

ControlControl

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Fragilaria vaucheriae:primary.producer
periphery.to.extinction

a b

c d

Cymbella lanceolata Diatoma vulgare

Amphora ovalis Fragilaria vaucheriae

Figure 3.4: Peripheral species extinction in food webs. Species in a - d are all primary
producers. A grey circle represents species moving from core to periphery, which indicates
a reduction in its degree. A grey triangle represents species moving from periphery to
core, which indicates an increase in its degree.

3.3.3 Species Movement under drought

Drought caused a larger proportion of species in the core to migrate into the periph-

ery of the web than vice versa (one tailed t-test on arcsine transformed proportion data,

d.f.=3, p=0.01, Figure 3.3 and Table 3-C). The movement between the two substruc-
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tures was due to the changes in species’ degree and the connectivity pattern among

them. Here three species that react differently under drought were selected to demon-

strate the link rewiring mechanism (Figure 3.5). The snail Radix balthica (Figure 3.5a)

is tolerant of drought conditions, reflected in its diet expansion after drought. There-

fore it was present in the core in both control and drought webs. The isopod Asellus

aquaticus (Figure 3.5b) moved from core to periphery as degree dropped significantly

after drought. The reduced number of resources likely reflects changes in the biotic habi-

tat and encounter rate under drought. The interactions between Asellus aquaticus and

some of its resources were destroyed by the drought stressor. For the midge Cricotopus

sp (Figure 3.5c), the movement was from periphery to core as its diet diversified under

drought, again, reflecting redistribution and likely altered encounter rate.
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ControlControl

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Radix balthica:herbivore
core

Drought

ControlControl

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Cricotopus sp.:herbivore
periphery.to.core

Drought

ControlControl

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Asellus aquaticus:detritivore
core.to.periphery

Drought

ControlControl

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Asellus aquaticus:detritivore
core.to.periphery

Drought

Radix balthica !

Asellus aquaticus!

Cricotopus sp.!

a 

b 

c 

Unaffected!
Control only!
Drought only!

Figure 3.5: Rewiring in food webs. Core species in the inner ring are surrounded by
periphery species in the outer ring. Focal species highlighted by circles. a - The snail
Radix balthica is tolerant of drought conditions. b - The isopod Asellus aquaticus moved
from core to periphery as degree dropped significantly after drought. c - The midge
Cricotopus sp diversified its diet under drought.

Rewiring happened not only within species that moved between substructures, but

the results also shown that it was a generic responses in the majority of the species.

Species that maintained their position in either core or periphery after drought were likely

to experience significant link re-establishment, despite the fact that their degree did not
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change dramatically. In Figure 3.6, three species that stayed in the same substructure

after drought were selected to demonstrate the link rewiring mechanism. Cocconeis

placentula is a primary producer that remained in the core, despite a large amount of

original interactions were lost. It kept the position within the core as new consumers

switched their diet to it (Figure 3.6a). The similar mechanism was shared by consumers

as well. Detritivore Ephemera denica kept its position within the core by generating

new links to new prey to compensate the loss of existing interactions (Figure 3.6b). The

decomposer Fungal spores (Figure 3.6c) stayed in the periphery under drought also with

the majority of links being rewired.
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ControlControl

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Fragilaria vaucheriae:primary.producer
periphery.to.extinction

a

b

ControlControl

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Cocconeis placentula:primary.producer
core

Drought

ControlControl

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Ephemera danica:detritivore
core

Drought

ControlControl

Unaffected core species
Unaffected periphery species
Core control to periphery drought
Periphery control to core drought
Extinction after drought
Invasion after drought

Drought

Fungal spores:decomposer
periphery

Droughtc

Cocconeis placetula (core species)
Primary producer

Ephemera danica (core species)
detritivore

Fungal spores (peripheral species)
decomposer

Figure 3.6: Species that stayed in the same substructure after drought. Core species
in the inner ring are surrounded by periphery species in the outer ring. Focal species
highlighted by circles. a - The primary producer Cocconeis placentula stays in the core
with large proportion of link rewiring took place. b - The detritivore Ephemera danica
stays in the core with a larger proportion of peripheral link lost and a larger proportion
of core links generated under drought. c - The decomposer Fungal spores stays in the
periphery under drought with the majority of links being rewired.
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3.3.4 Link density within the core

Drought greatly reduced the core link density (left panel of Figure 3.7 (a-d)). When

more peripheral nodes were included, the difference in φr between control and drought

webs became much smaller and finally becomes indistinguishable towards the tail of the

curve in 3 out of 4 comparisons (except the first pair of food webs). All food webs

showed a marked deviation in connectivity from their respective null models within their

cores (Figure A1), which revealed a systematic and non-random substructure. This was

shown by the significantly lower z-score at the beginning of the curve (i.e., within the

core, link density inside was significantly lower than what would be expected by chance,

Figure 3.7). The difference of the rich club coefficient and z-score between control and

drought web were shown within the core, indicating a higher level of organisation within

drought web as the response under stress. The result was consistent with previous

conclusions that non-ecological networks tend to reduce their core link density under

stress [170, 171].



Chapter 3. Effect of drought on food web substructures 51

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0

Normalised rank of species

R
ic

h−
cl

ub
 c

oe
ffi

ci
en

t φ
r

a

0.0 0.2 0.4 0.6 0.8 1.0

−3

−2

−1

0

Normalised rank of species

 z
−s

co
re

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0

Normalised rank of species

R
ic

h−
cl

ub
 c

oe
ffi

ci
en

t φ
r

b

0.0 0.2 0.4 0.6 0.8 1.0

−3

−2

−1

0

Normalised rank of species

 z
−s

co
re

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0

Normalised rank of species

R
ic

h−
cl

ub
 c

oe
ffi

ci
en

t φ
r

c

0.0 0.2 0.4 0.6 0.8 1.0

−3

−2

−1

0

Normalised rank of species

 z
−s

co
re

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0

Normalised rank of species

R
ic

h−
cl

ub
 c

oe
ffi

ci
en

t φ
r

d

0.0 0.2 0.4 0.6 0.8 1.0

−3

−2

−1

0

Normalised rank of species

 z
−s

co
re

0

4

8

12

0 10 20 30 40 50 60
Rank of species

N
o.

 o
f l

in
ks

 k
r+

a

Control
Drought

Figure 3.7: Drought reduced the link density in the core and caused further restructuring
in the core. The density of connections across the network measured by the rich-club
coefficient, φr, is shown for four blocks of control (dark thick line) and drought-disturbed
(light thin line) mesocosms (a-d for web pair 1-4 respectively). Nodes were ordered by
degree which were then normalised by the size of the network. Boundaries of the cores
are marked by vertical lines as in Figure 3.1. Comparisons of the web pair’s deviance in
connection density from their respective null models and more negative z-scores indicate
greater deviance from the null model.
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3.3.5 Food web robustness

Food web robustness under random species removal was measured repeatedly for 100

times [169] for each food web. The average robustness, µ, and the standard deviation,

σ, was shown in Table 3-E. Regardless of different experimental conditions, all the eight

food webs exhibited a high average robustness. Moreover, drought did not alter the

robustness significantly (t-test on arcsine transformed proportion data, d.f.=3, p=0.89;

Table 3-C).

Table 3-E: Robustness of control and drought webs under simulated species removal.
Proportion of species required in primary removal to generate a total of 50% species loss
in each case is shown. In the case of random removal, the average robustness, µ, and the
standard deviation, σ, obtained from 100 runs are shown for each empirical web.

Random removal

Web pair Control Drought

µ σ µ σ

1 0.43 0.04 0.46 0.03

2 0.45 0.03 0.46 0.05

3 0.46 0.02 0.43 0.03

4 0.46 0.02 0.44 0.03

Targeted removal

Web pair Control Drought

1 0.25 0.32

2 0.27 0.17

3 0.31 0.20

4 0.32 0.23
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When the highest degree species was removed in each iteration, food web exhibited

significantly lower robustness compared to random removal, as secondary extinctions

are more likely to happen after each targeted removal (Figure 3.8, Table 3-E). Similar

to robustness under random removal, drought webs were as robust to species removal

as control webs under targeted removal (t-test on arcsine transformed proportion data,

d.f.=3, p=0.17; Table 3-C).
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Figure 3.8: Network robustness against random and targeted species removal. Cumula-
tive secondary extinction against simulated random species removal (dashed) and tar-
geted generalist removal (solid) for four blocks of control (dark thick line) and drought-
disturbed (light thin line) mesocosms (a-d). The solid diagonal line represents a total
loss of 100% of species and the dashed diagonal line represents a total loss of 50% of
species

The unchanged robustness (both random and targeted removal) can be explained

by the preserved core/periphery structure. The relative core size, as a substructure
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level property, reflects how much perturbation the core can buffer through its densely

intertwined pathways [170, 171]. This suggests that although the density of connections

within the core was altered by drought, overall network integrity and the ability to

withstand further perturbations were conserved by species re-alignment.

3.4 Summary

Drought on mesocosms streams caused significant biodiversity loss on freshwater

ecosystems, among which large predators were the most vulnerable species [36, 50].

Species invasion was also observed in all the four replicates, indicating the potential dev-

astating consequences on the long term ecosystem stability and sustainability. Despite

the multiple factors that might destroy the original ecosystem, food webs within those

streams were able to adapt to the changing environment and to maintain the food web

structure.

Here, an important food web substructure is revealed using advanced network pro-

filing techniques [102]. The results showed that food webs contain a richly connected

core structure consisting of high degree species, which is surrounded by periphery species

with a lower degree (Figure 3.3). This substructure acts as a buffer towards environ-

mental stressors as the core contains interconnected pathways which increase the food

web robustness. The discovery of this food web structure helps explain why freshwater

food webs are able to persist through time when species turnover were taken place.

Specifically, the constitution of core species is more stable than periphery species

as the species extinction caused by drought happened mostly to the periphery. Also,

among those periphery extinctions, the invertebrates are the ones that are most vul-

nerable; whilst peripheral producers are relatively stable under drought. Most of the

resource species experienced a reduction in degree, which is closely related to the mas-

sive extinction of the predators. The remaining predators in general showed an increase

in degree, indicating that they have adapted to the stressed environment by establishing
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new predation links to potential prey. The conservation of robustness simulated by both

random species and targeted removal indicates that network level link density plays a

dominant role in determining the resilience of food webs under perturbations.

The research conducted is able to highlight that perturbations have an impact not

only on individual nodes, but also on the internal substructure of the web. The sub-

structure level changes cannot be detected using traditional analytical approaches, there-

fore the previously unknown compensatory dynamics are able to be explained, which is

important in maintaining the food web structure and functionality.



Chapter 4

Network analysis on

agroecosystems

4.1 Research background and overview

The increasing food demand across the globe [172] calls for a sustainable farm-

ing environment, to preserve farmland biodiversity and ecosystem stability. To solve

this problem, food web research on agrosystem has been proposed as one of the focus

areas [173]. Farming practices such as crop switching and the adoption of genetically-

modified-herbicide-tolerant (GMHT) crops have been proven to affect ecosystem biodi-

versity [174, 175]. Existing research mainly focuses on how new farming practices would

affect the abundance and diversity of arable plants and invertebrates. For example, non-

pest species that are the prey of most birds and butterflies showed a continued decline

in their abundance under the GMHT management [175–178]. However, existing stud-

ies only focused on the species level, for which is hard to quantify whether a change

in species biomass or abundance would further affect the whole ecosystem functionali-

ties. It is therefore not possible to measure or predict any cascade effects from species

extinction or invasion.

56
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Here, the first research goal was to construct food webs for each individual field

in order to measure the impact of farming practices on both the species level and the

network level properties. This research compared GMHT food webs with their corre-

sponding conventional food webs, and this was done for all four major types of crops (i.e.,

beet, maize, spring oilseed rape and winter oilseed rape). Species data used to construct

the network was sampled from 251 fields across the UK which covers the aforementioned

four crop types [104]. Each field was split into half conventional crop varieties and half

GMHT varieties of the same crop, resulting in 502 individual food webs in total.

Species level properties including the proportion of basal, intermediate and top-level

species and the connectance were used to test the effect of management practices. The

substructure properties such as the relative size of the richly connected core structure, the

core link density and the species composition within the core and periphery respectively

between management were also evaluated to gauge the variations. Finally, robustness

measurement was used to examine the influence of GMHT management practices [17].

Switching crop type could significantly affect farmland biodiversity [179, 180], and dif-

ferences in network properties arisen from switching crop type were used as a benchmark

to gauge the variations caused by the GMHT management.

4.2 Methods

4.2.1 Data set

The Farm Scale Evaluation (FSE) is the largest research project to date to investigate

the impact of GMHT on farmland biodiversity [181]. For details on the experiment design

and the sampling procedure for specific crops, please refer to [174]. To summarise, the

data involves 256 individual crop fields across the UK (Figure 4.1), which covers four

types of crops: 64 beet (B), 57 maize (M), 65 spring oilseed rape (SR), and 65 winter

oilseed rape (WR) crop fields. Within each field, two farming practices exist. Half of



Chapter 4. Network analysis on agroecosystems 58

the area grows the conventional crop and the other half grows the GMHT variety. Strict

regulations and guidelines have been applied to ensure the two halves share similar

environment conditions [175, 181]. Species were sampled using both vortis suction [182]

and pitfall traps [183].

a b c d 

Region 

Figure 4.1: The distribution of individual FSE sites based on crop type and region within
the UK [104, 177].

4.2.2 Individual and aggregated food web construction and analysis

The possible species interactions were generated based on Abductive Inductive Logic

Programming (A/ILP) which examined the changes of species abundance between the

half conventional and the other half GMHT field from each crop site (for details of the

method, please refer to [104, 106]). The method generated all possible predations links

among all the species identified (provided by Dr. David A. Bohan and Dr. Alireza

Tamaddoni-Nezhad), which were the used as a reference. To generate individual food

webs, the presence of a species in a given half field was determined by the species

abundance and interactions between pairs of species were inferred from the reference

links learnt from the A/ILP technique. The A/ILP technique is to date more accurate

than other probabilistic models when generating food webs. This is because the A/ILP

approach is abundance based, as opposed to most other body size based techniques [105].

For example, A/ILP can detect certain special interactions, including those that do not



Chapter 4. Network analysis on agroecosystems 59

follow the predator-prey body size scaling rules, such as spiders and their prey.

Food webs were divided into three trophic levels (i.e., B/I/T). Species distribution was

calculated as the proportion of total species contained in each level and this method was

applied to all the 502 food webs. Species trophic level distribution differences between

food webs were examined (i) between two treatments within the same crop type and

(ii) between conventional crop types. Food web connectance as a macroscopic food web

metric, was used as a ‘summary’ of how densely connected the food web is.

To examine species level properties from a broader prespective, for each crop type

and each treatment, individual food webs were aggregated into one web, resulting in a

total of eight aggregated webs. The weight of a node was calculated as how many times

a species appears in all the sites, and the weight was normalised by the total number of

individual fields.

4.2.3 Substructure analysis

First, for each individual food webs, core profiling method was applied [102] (Detail

in Section 2.3.1). The importance of the core was examined from three perspectives.

First, the relative size of the core as well as the link density within the core were used

to examine whether farming practices (both crop switching and GMHT management)

would affect the substructure of the food webs. Second, how many times a species was

found in core or periphery were summarised and compared based on aggregated food

webs, and the results could indicate if frequently appeared species are from the core.

Finally, species movement was measured by comparing either among crops or between

management.
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4.2.4 Food web robustness

The potential effect of perturbations on network robustness was measured by simu-

lating random removal and targeted removal, and the effect of GMHT management was

benchmarked by that of different crop types [17, 82]. The random removal simulation

was run for 100 times and results were averaged. For targeted removal, when a node was

removed from a food web, the degrees among the rest of the nodes were re-calculated

[71, 130, 184, 185].

4.2.5 Statistical analysis on network properties

The Bray-Curtis index [186] (Section 2.5.4), b, was applied to quantify the compo-

sitional similarity between any two aggregated webs with reference to the total counts

of each species. b was also used to quantify the compositional similarity between core

and periphery of each aggregated webs. When b = 0, it indicates the highest similarity

between the two webs such that each species has the identical appearance frequency, and

b = 1 as the most dissimilar, such that any species that appears in one aggregated web

is absent in the other one.

The GMHT management practices differ between crop types, that is, the influence of

the GMHT management on one type of crop is not the same with GMHT management on

another type of crop. Therefore, a nested Type I ANOVA, with crop management nested

within crop types, was used to examine if there is any significant difference on species

composition properties caused by management within the same crops. To account for

pseudo-replication, an error structure with each half field nested within each site was

used. To test the effects of different crop types on food web properties, a type II one-way

ANOVA was used on conventionally managed food webs only. Both models were applied

to food web properties (proportion of B/I/T, connectance, relative core size, core link

density, and food web robustness) and significant results were followed by Fisher's LSD

post hoc test to identify the corresponding factors.
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4.3 Impact of agricultural practice on species level prop-

erties

In each aggregated web (Figure 4.2), the variation was found across all the trophic

levels. Bray-Curtis index [186], b, showed that species were less similar across crop types

than that when comparing conventional with its GMHT counterpart of the same crop

type (Figure 4.3). The comparison showed that small variations were observed within

each site (i.e., between the conventional and GMHT crops), and cross-site dissimilari-

ties were more significant. This implies that variations in species composition observed

previously [177] between conventional and GMHT webs were localised effects and did

not transform into systematic changes in the wider food web, whereas crop type had far

more profound effects.
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Figure 4.2: Pairwise conventional and GMHT webs (a - beet; b - maize; c - spring
oilseed rape; d - winter oilseed rape) with the same species placement between each
conventional and GMHT pair. Node size and colour denote the proportion of times a
species was found in the given crop variety across all the sites. Nodes bounded by a dark
edge are unique to their respective webs.
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Figure 4.3: Comparisons of species dissimilarity between crop types and management
using the Bray-Curtis dissimilarity index. Colour denotes the degree of dissimilarity with
b = 0 as the most similar and b = 1 as the most dissimilar.

4.4 Impact of agricultural practice on food web network

properties

4.4.1 Food web properties

In this section, individual food webs (i.e., 502) were examined. Food webs of a

given crop variety (e.g., Conventional or GMHT) differed greatly in size across sites,

varying between 12 to 38 species. Yet food webs of the two varieties of a given crop

type were highly correlated in size (Figure 4.4). Linear regression was used to examine

the correlations in web size between individual conventional webs and their GMHT

counterparts, and they were shown to be significantly correlated (0.48 < R2 < 0.61).
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Figure 4.4: The size of conventional food webs was plotted against the size of the cor-
responding GMHT half-fields (a - beet; b - maize; c - spring oilseed rape; d - winter
oilseed rape). The dashed line denotes the linear regression, with its function and R-
square shown. ∗∗∗ Regression significant at P < 0.001.

The proportion of basal species and intermediate species were unaltered by manage-

ment, but the proportion of basal species (P = 0.030; Table 4-A) varied significantly

among crop types. Post hoc tests showed the significance was specifically caused by

the conventional beet has a much larger proportion of basal species than the conven-

tional winter oilseed rape (Table 4-A). However, the proportion of top predators varied

significantly between management (P = 0.020). This result was due to the significant

difference between beet and maize crops (GMHT beet > conventional beet, conventional

maize > GMHT maize, Table 4-A). Food web connectance was greater under GMHT,

and post hoc tests showed that this was caused by the connectance of GMHT beet webs

were larger than that of conventional beet webs (P = 0.023).
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Table 4-A: ANOVA on the effects of management and crop type on food web struc-
tural properties. Nested ANOVA on the effects of management within each crop
type. One-way ANOVA on the effects of crop type among conventional crops. Sig-
nificant ANOVA results were further analysed using Fisher's LSD post hoc tests.
%B, the proportions of basal species; %I, the proportion of intermediate species;
%T, the proportion of top predators; C, connectance.

Management Crop type

df SS MS F4,247 P df SS MS F3,247 P

%B 4 0.002 < 0.001 0.12 0.975 3 0.033 0.011 3.02 0.030‡

%I 4 0.010 0.002 0.68 0.608 3 0.024 0.008 2.39 0.069
∗§

%T 4 0.014 0.004 1.97 0.020‖ 3 0.005 0.002 1.01 0.390

C 4 0.006 0.002 2.85 0.023= 3 0.004 0.001 2.38 0.070
∗§

∗
Marginally significant (0.05 < P < 0.09)

‖ Conventional beet > GMTH beet, Conventional maize > GMHT maize.

= GMHT beet > conventional beet

‡ Conventional beet > conventional winter oilseed rape

§ Conventional winter oilseed rape > conventional beet

4.4.2 The core and its link density

For each individual food web, the core/periphery structure was identified and network

properties related to this substructure were examined. Here, the core was seen as a

rich-club which consists of high degree nodes that play a dominating role from both

topological view and functional view. The method used to profile the core firstly ranked

the species based on degree and examined the interconnectivity among high degree nodes

sequentially. The boundary of the core was detected when the core link density reaches

its peak and decreases afterwards. The details of how to profile a core is described

in Methods, section 2.3.1. This two-class partition would always identify a core and a

periphery in non-random networks. As a consequence, all the 502 food webs possessed
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a core surrounded by loosely connected peripheral species [102] (Figure 4.5), with the

conventional webs and their GMHT counterparts sharing a large proportion of the core

and periphery species. Relatively large cores were observed across all the food webs

compared to non-ecological networks, accounting for an average of 65-71% of the total

species (Figure 4.5).
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Figure 4.5: Core structure was highlighted as the inner circle, surrounded by peripheral
nodes. One of the selected site was plotted across four crop types (a - beet; b - maize; c -
spring oilseed rape; d - winter oilseed rape). For each node, the color and shape indicate
species movement patterns between conventional webs and their GMHT counterparts.
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The link density (the rich-club coefficient φr, see Section 2.3.2) within the core of

both conventional and GMHT food webs share similar trends (Figure 4.6). The larger

φr observed within the core indicates that higher link redundancy confers stability upon

the food webs in the face of external perturbations [170]. The similar trend of φr also

indicates the connectivity among high degree species contributes to the formation of

similar core size across all the individual webs.
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Figure 4.6: The rich-club coefficient (φr) between conventional (black thick line) and
GMHT (light thin line) was compared for one of the selected site across four crop types
(a - beet; b - maize; c - spring oilseed rape; d - winter oilseed rape). Nodes were ordered
by the decreasing order of degree and normalised in order to make webs with different
sizes comparable. The vertical lines represent the boundary of the core correspondingly.

ANOVA analysis showed no significant differences in the relative core size when

examining the effect of conventional and GMHT management (P = 0.521; Table. 4-

B), however, when the effect of different crop types was considered, marked difference

was observed (P = 0.002; Table. 4-B). The post hoc test (Fisher’s LSD) pointed out the

significance was caused by the maize crop whereby the related food webs have larger

cores than those of both beet and winter oilseed rape. The link density within the core

also showed a similar trend with the relative core size, where no significance was found

when comparing between management (Figure 4.6; P = 0.547; Table. 4-B) whilst marked

difference was found among crop types (P < 0.001; Table. 4-B). In this case, the post
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hoc test showed the significance was caused by the winter oilseed rape, with higher core

link density than maize and spring oilseed rape. As both the relative core size and core

link density are indicators of network robustness [56, 170] which reflects their resilience

against perturbations, a difference in either properties would potentially result in marked

difference in their ecosystem functionalities.

Table 4-B: Analysis of variance on the effects of management and crop type
on food web substructural properties and robustness. Nested ANOVA on
the effects of management within each crop type. One-way ANOVA on the
effects of crop type among conventional crops. The relative core size, core link
density (the φr), and robustness via random removal and targeted removal
are shown. Significant results were further analysed using Fisher's LSD post
hoc tests.

Management

df SS MS F4,494 P

Relative core size 4 0.032 0.008 0.81 0.521
Core link density (the φr) 4 0.010 0.002 0.77 0.547
Robustness via random removal 4 0.005 < 0.001 0.48 0.750
Robustness via targeted removal 4 0.007 0.002 0.62 0.649

Crop type

df SS MS F3,247 P

Relative core size 3 0.143 0.048 4.87 0.002 =

Core link density (the φr) 3 0.064 0.021 6.80 <0.001‡

Robustness via random removal 3 0.002 0.001 2.54 0.057
∗§

Robustness via targeted removal 3 0.024 0.008 2.93 0.034‖

∗
Marginally significant (0.05 < P < 0.09)

= Maize > beet; maize > winter oilseed rape, all conventional.
‡ Winter oilseed rape > maize; winter oilseed rape > spring oilseed rape,

all conventional.
§ Conventional spring oilseed rape > conventional beet.
‖ Conventional winter oilseed rape > conventional beet.

4.4.3 Substructure species composition and turnover

Taxonomic composition in core and periphery was compared via: 1) the conventional

and its GMHT counterpart and 2) different crop types. The common core (or periphery)
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species for each crop type represents the species that appears in both the conventional

and GMHT counterpart (Table 4-C). Most core species that appear in conventional webs

also appear in the GMHT core (average number was around 14, Table 4-C, I, row 1 & 2).

However, the number of common species in periphery of conventional and GMHT webs

was much smaller (average number was around 5), as very few species experienced large

degree changes between conventional and GMHT web (Table 4-C, I, row 3 & 4). Apart

from species movement, there also exist cases when species from the core (or periphery)

only appears in either the conventional or GMHT food web. The variations in species

composition are slightly higher in periphery, and this is consistent for both treatments

(Table 4-C, II, row 6 & 8). This indicates the species composition is much more stable

in core than in periphery in all the cases.
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Table 4-C: Comparisons on the species composition in the core and periphery. I: For
a given crop, the number of common core or periphery species was compared between
conventional and its GMHT counterpart. A small number of species were found in the
core of the conventional webs but in the periphery of the GMHT counterparts, and vice
versa. II: The number of species that was unique to either conventional or GMHT web
was similar, and the similarity hold when these unique species were further split into
core and periphery substructure. Regardless of conventional or GMHT web, the number
of unique species in core was in general larger than that in periphery.

I: B M SR WR

Common

core species
13.81± 2.86 14.46± 3.81 14.55± 3.16 14.48± 2.95

Common

periphery species
5.41± 2.51 4.12± 2.18 4.92± 2.02 5.54± 1.99

Conventional core &

GMHT periphery
0.86± 1.17 1.23± 1.64 1.29± 1.78 0.85± 1.20

Conventional

periphery &

GMHT core

0.95± 1.37 0.88± 1.23 0.98± 1.17 1.29± 1.73

II:

Core species in

conventional

web only

1.80± 1.51 1.95± 1.51 1.69± 1.41 1.57± 1.37

Periphery species

in conventional

web only

2.69± 1.77 2.19± 1.61 2.38± 1.81 2.25± 1.50

Core species in

GMHT web only
1.69± 1.25 2.00± 1.27 2.05± 1.45 1.42± 1.17

Periphery species

in GMHT web only
2.14± 1.68 2.47± 1.90 2.06± 1.50 1.77± 1.30

Species compositional similarity in the core and periphery were further examined
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using the Bray-Curtis index b. Within the core, crop type has greater impact on the

species composition, as the smallest b all result from management comparison (Fig-

ure 4.7a). The largest b appears when the core of conventional beet was compared to

the conventional winter oilseed rape. Similar trend of dissimilarity was shown when the

periphery is compared (Figure 4.7b). However, the overall b of periphery was consistently

higher than that when comparing among the core, indicating the rigidity of the core in

maintaining its components and the plasticity of species movement in the periphery.
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Figure 4.7: Similarity in the species composition among individual webs grouped by crop
types and management, quantified using the Bray-Curtis dissimilarity index, was overall
higher in a - core than b - periphery. Within the core and periphery substructure
respectively, the similarity is higher when comparing conventional with GMHT webs
than comparing across crop types.

4.4.4 Recurrent core substructures

There exists small unions of substructures, consisting the same species, that appear

at a significantly high frequency across all the individual webs within the same crop

category. The present of this recurrent substructure may have implications on what

dominant roles would a network exhibit [145, 187].

The recurrent substructure consists of species that always appear in the core of both

conventional and GMHT treatment (Figure 4.8). The union of this substructure is the

key for driving community and ecosystem properties given their central location (i.e.,
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Figure 4.8: Pairwise conventional and GMHT webs with the same species placement
between each conventional and GMHT pair (a - beet; b - maize; c - spring oilseed
rape; d - winter oilseed rape). Node size denotes the proportion of times a species
was found in the given crop variety across all the sites. Colour denotes the gradient
of core presence (white indicates absence). Species that were always found in the core
in both conventional and GMHT are in the inner ring, and similarly, species that were
consistently found in the periphery in both conventional and GMHT are in the outer
ring. The rest of the species are in the middle ring. Nodes bounded by an edge denote
absent species (unfilled) and species that were unique to their respective web (filled).
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core nodes with high degree) in the network and their prevalent appearance in all the

crops [188]. The middle circle consists of species that not always appear in the core. The

outer circle consists of species that never appears in the core. The larger the node, the

more times it was found in all the individual webs, the darker the node is, the higher

probability that the node was found in the core. The location of each species is fixed

between conventional and GMHT counterpart, therefore, it clearly shows which species

is absent from the current web while present in the other.

4.5 Impact of agricultural practices on food web robust-

ness

The architecture of food webs governs their stability and underpins their response to

perturbations [36]. To evaluate whether different farming practices would cause a differ-

ence in the fragility of ecosystems, food web robustness was measured for each individual

food webs, and results were compared. ANOVA analysis showed that management had

no effect on either robustness under random removal or targeted removal which can be

explained by their homologous network structures (Table. 4-B), while crop type has led

to marked differences (P = 0.057, P = 0.034, Table. 4-B). For the random removal, the

standard deviation σ of each 100 simulations within each crop type and crop variety is

around 0.076. All the results in Table. 4-B indicate clearly the effect from crop switching

is significantly stronger than that from different crop managements. The network-level

responses of GMHT are similar to that of conventional webs (Figure 4.9), comparing to

the distinct differences among crop types. Each metric studied in this chapter is sum-

marised in Figure 4.9, which is normalised by its overall range across all webs. The effects

of crop type can be visualised by comparing results horizontally. The more towards the

center, the smaller the metric is compared to that of other groups.
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Figure 4.9: Pairwise comparisons between Conventional and GMHT management vari-
eties (a,b - beet; c,d - maize; e,f - spring oilseed rape; g,h - winter oilseed rape). %B,
the proportions of basal species; %I, the proportion of intermediate species; %T, the pro-
portion of top predators; C, connectance; core size; φ, core link density; RR, robustness
via random removal; RT, robustness via targeted removal. Each metric is normalised by
its overall range across all webs. The effects of crop type can be visualised by comparing
results horizontally.

4.6 Summary

Along with climate change, land-use practices have been claimed to have the most

profound effect on the biodiversity loss of terrestrial ecosystems [189]. Indeed, land-

use results in severe damage to the habitat of species. Crop type is a known cause of

biodiversity change in farmland [180], and this was used as a benchmark to gauge the

relative effects of management regimes including the conventional treatment and the

GMHT treatment.

One of the widely believed ecological risks caused by GMHT crops, which was studied

here, is the impact on farmland biodiversity loss [190]. The underlying reasons that biodi-

versity disturbances observed previously in GMHT crops were largely due to the focus on
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the species level. Here, the importance of the core was reflected from the following three

perspectives: First, the core tends to resist change, while the periphery is active during

adaptation, reflected in the common higher proportion of core species between the two

counterparts. Aggregated food webs also showed that low degree peripheral species share

a larger dissimilarity. Core species were more commonly found than peripheral species

and formed highly recurrent substructures involving fixed species members (Figure 4.8).

Second, the relative size of the core does not differ significantly between treatment, indi-

cating a similar level of core redundancy. This contributes to the same level of tolerance

under perturbations. Finally, the core connectivity (the rich-club coefficient) between

conventional and its GMHT counterparts vary similarly within the same crop, solidifying

the fact that the unchanged core size is not an artefact of overlap farmland species, but

instead is due to the similar connectivity pattern among high degree species.

The network based analysis presented here suggests that the changes in species abun-

dance presented in previous works should not have been interpreted as a potentially

important risk to the agricultural ecosystem. New farming practices on GMHT crops

exert a relatively small effect on both the food web substructure (relative core size, core

link density) and robustness (under both targeted and random removal) compared with

the switching of crop types which is already widely accepted in farming (Figure 4.9).

The study provides insights for applying novel network measurements and techniques to

better assess food webs under different agroecological environments.



Chapter 5

Core redundancy governs food

web robustness

5.1 Research background and overview

Complex network research across many disciplines has revealed the importance of the

network topology [54, 58, 66, 95, 116]. In particular, network topology is strongly linked

to its robustness in the face of perturbations, such as removal of the central hub in scale-

free networks can lead to large-scale cascading effects, whilst the removal of the other

lower degree nodes can only cause minor local effects which do not propagate through

the whole network [71, 95, 191].

In ecology, robustness has been used as a metric to quantify the level of perturbations

a network can withstand before it collapses [17]. The most widely used network level

metric which links to robustness is connectance [38, 42, 77]. In general, an increase

in the food web connectance is caused by the increase of the average number of prey

per consumer, which results in a lower probability that the survival of the consumer is

dependent on a specific prey [17, 43, 79]. However, the predictive power of connectance

is limited, because the connectivity of individual species could be different even when

77
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different networks have the same connectance [42]. For example, a food web contains only

a few basal species providing resources to support all higher level species, the extinction

of which would destroy the network [37, 133]. Different environmental conditions (e.g.,

pH level, drought) can lead to distinct trophic-level structures among food webs, yet the

difference cannot be indistinguishable through connectance [11, 15, 36, 81, 192].

In food webs, redundancy is defined as one or more resource species being able to

fulfil the role (i.e., energy transfer) of an existing resource if it was removed [12, 82, 121,

125, 126], which minimises the potential secondary extinction of a predator when the

system is perturbed, such as environmental warming [122], acidification [81, 123] and

drought [4, 124]. Despite the fact that food web redundancy is important to maintain

robustness, no topological based measurement for food web redundancy has been defined

so far. Therefore the amount of redundancy within a food web and its effects towards

maintaining robustness are still unknown. Here, the notion of a spanning tree [12]

was applied to characterise the level of redundancy in food webs. The spanning tree

structure was also used to describe the distribution of the energy or information flow,

and the proportion of redundant links in the core/periphery substructures.

5.2 Methods

5.2.1 Data set

This set of data (containing 53 individual food webs) were sampled from different

ecosystems, including classic food webs which are extensively studied (e.g., Benguela,

Broadstone stream [193], Skipwith Pond, Ythan Estuary, and Tuesday Lake sampled in

1984 and 1986 respectively), mesocosms food webs treated under different environment

conditions (e.g., 8 Mill Stream food webs under drought and control conditions), Kennet

food web experienced the environmental stress caused by pesticide, UK stream food webs

exposed to different degrees of acidification (e.g., 20 highly resolved food webs over a
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wide pH range [81, 108]), and 18 US riverine food webs sampled within the ecoregion

near Ohio states, resulting in 53 food webs in total (Table A1). The ecosystems cover

streams, rivers, lakes, ponds, and marine. The 20 pH food webs were provided by Dr.

K. Layer. The US riverine food webs were provided by Dr. C. Mulder. The Millstream

food webs were provided by Dr. M. E. Ledger. The classic food webs were from the

Cheddar Package [107]. Food webs in this chapter are considered as un-weighted graphs.

And unlike previous chapters, for the generation of spanning trees, edges in the graphs

are directed.

5.2.2 Constructing a spanning tree

In graph theory, a spanning tree is a sub-network of the original network, which

connects all the nodes with the minimum number of links. When applied to food webs,

the spanning tree is a directed and acyclic graph originating from the bottom-level of

the food web and reaches all the top-level species with every two nodes being connected

by only one link [146]. If there are two or more species providing resource to a predator,

one of the links is randomly selected to be part of the tree structure and the rest to be

redundant (Algorithm 1). The links in the spanning tree structure reflect the plausible

paths through which energy flow is delivered to each species [12]. Different trees can

be constructed from the same network; therefore 1000 trees were generated for each

empirical food web and results were averaged.

With this type of re-construction, the complexity caused by ‘loops’ is reduced, and

the focus is then shifted towards the the minimal number of links that are needed to

maintain the food web structure while making sure all the species are connected. The

resultant tree can be seen as a typical topological structure of networks that has zero

redundancy, since the functional property of redundant links is to provide alternative

paths between species. In most of the real networks, predators tend to have more than

one prey within the ecosystem, thus they should contain certain level of redundancy.
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Input : Directed binary food web G consists of N species and E links.

Output: One possible construction of spanning tree Gs consists of Ns species

(Ns = N + 1) and Es links. The set of links is represented as Es.

initialisation:

Ns = 1 (Nroot is added);

Es← [Nb ← Nroot];

Ns = 1 +Nb;

while Ns < N + 1 do

Randomly select a predator nnon.b from N ∩Ns consuming an arbitrary species

(na) in current set of Ns;

Select the link Es connecting nnon.b and na (Es = [nnon.b ← na]);

Es← Es;

Ns = Ns + 1;

end

Algorithm 1: Spanning tree generation algorithm [12].

A synthetic network is used to demonstrate how a spanning tree structure is con-

structed. The synthetic network Ga = (N,E) (where N = 10, and E = 15) was plotted

in trophic diagram in Figure 5.1a, and the trophic level of each species was shown

on the left axis. Figure 5.1b shows one possible layout of the derived spanning tree

Gs = (Ns, Es), which was constructed based on Algorithm 1. The construction of the

spanning tree began with one root node manually added to the network. Directed links

were generated from the root node pointing to the basal level species (n1, in-degree:

kin = 0), which indicates the energy flow from the environment (root) to the producers

within this ecosystem. Next, a non-basal species was randomly selected from the preda-

tors, and one of the predation link was randomly selected and added to set {Es}. For

example, for n5 that feeds upon n1, n2, n3 and n4, the link between n5 and n1 were ran-

domly selected to be included in the tree structure. This procedure was repeated until all

the species were linked to one of their prey in Gs. Empirical links e2−5, e2−3, e2−4, e3−5
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and e4−5 were considered to be topologically redundant thus removed. Finally, the set

{Ns} contains all the species that were shown in the original graph G. If G contains N

nodes, {Ns} = N + 1 = 11 (all the original nodes plus the root node) and 10 links. For

each food web, 1000 spanning tree structures were generated in order to achieve statisti-

cal significance [194]. Figure 5.1a can be re-organised into Figure 5.1c, which highlights

the core structure (the inner ring) surrounded by peripheral nodes.
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5.2.3 Quantifying core and periphery redundancy

In this thesis, the number of redundant links in a network is defined as:

E′ = E − (Es − Eroot) (5.1)

where Eroot is the number of links in the spanning tree structure that connects root

node with basal species. Since the root links do not represent real predation relationship

between species but only used to represent the energy flow from the outside environment
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to basal species, they are not considered in the calculation of food web redundancy.

Thus, E − (Es − Eroot) calculates all the redundant links in the original food web.

Based on Eq. 5.1, redundant links can be further grouped into E′core as the number of

redundant links within the core of a food web, E′between as the number of redundant links

connecting core and periphery, and E′periphery as the number of redundant links only in

the periphery. Each in-between link connects a core species with a periphery species,

thus the weight of in-between links was further divided such that half of the link weight

is assigned to the core and half to the periphery [58].

Core redundancy:

Rcore is calculated as the number of redundant links within the core (E′core) and half

of the weight of the in-between links (E′between), and normalised by the total number of

redundant links (E′).

Rcore =
E′core + 0.5E′between

E′
(5.2)

Periphery redundancy:

Rperiphery is calculated as the number of redundant links within the periphery (E′periphery)

and half of the weight of the in-between links (E′between), and normalised by the total

number of redundant links (E′).

Rperiphery =
E′periphery + 0.5E′between

E′
(5.3)

Rcore and Rperiphery add up to 1. Redundancy R ∈ [0, 1) because in theory it is

possible to have a food web with no redundant link, therefore, R = 0, whilst all the food

webs contain one or more branch links, therefore, R 6= 1.

The core links and periphery links, and the links between the two substructure can

be clearly seen from Figure 5.1c. There are in total 6 redundant links E′ (E′core = 6,

E′between = 0,and E′periphery = 0) resulting in the core redundancy Rcore = (E′core +
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0.5E′between)/E′ = 1 and periphery redundancyRperiphery = (E′periphery+0.5E′between)/E′ =

0.

For each food web, the final core and periphery redundancy was calculated by taking

an average on the 1000 trees.

5.2.4 Food web robustness

Robustness was again measured in two ways: targeted removal of high degree nodes

and random removal [4, 16, 17, 42, 78]. Specifically, targeted removal of a single high

degree species each iteration provides estimation of how much perturbation a food web

can withstand, which also indicates the importance of redundant links among high degree

nodes. The targeted removal of the core substructure as a whole can show if the periph-

eral on its own can be a fully functional substructure (i.e., contains energy flow from prey

to predators). The results were compared with randomly removing the same number of

nodes. Similarly, by performing targeted removal of the periphery as a whole, it can

show whether the core substructure can fully function on its own. Again, the results

were compared against randomly removing the same number of peripheral nodes.

5.3 Redundancy in substructures

5.3.1 Spanning tree in empirical food webs

An empirical food web (Benguela) was selected from the 53 food webs to illustrated

the calculation of core and periphery redundancy (Figure 5.2a), and its re-constructed

spanning tree is shown in Figure 5.2b. The Benguela food web contains 29 nodes and

196 links, within which the core consists of 23 nodes and 168 links and the periphery

consists of 6 nodes and 6 links. The rest 18 in-between links connect core nodes with

peripheral nodes.
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Based on the spanning tree structure in Figure 5.2b which contains 27 branch links

that belong to the original food web and 2 branch links that connect root node with

the basal species, Rcore = (E′core + 0.5E′between)/E′ = (151 + 0.5 × 15)/169 = 0.93 and

Rperiphery = (E′periphery + 0.5E′between)/E′ = (3 + 0.5 × 15)/169 = 0.07 (Eq. 5.2 and

Eq. 5.3).
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A core/periphery structure was detected in all the 53 empirical food webs, with the

relative core size shown in Table A1 [54, 99]. Within the 53 food webs, the core size dis-

tributes evenly from 0.2 to 0.9 in Figure 5.3, with the relative size of the core of each food

web highly correlated with the core redundancy (Figure 5.3, y = 0.47+0.54x, r = 0.905).

The larger the core is, the higher proportion of redundancy the core would contain.

Although the core and periphery is similar in size, and the relative size of the core

is only slightly larger than that of periphery (Figure 5.4a), the substructure redun-

dancy showed marked differences (Figure 5.4b). The highest/lowest core redundancy

are the Cuyahoga River (Rcore = 0.955), the Coneyglen Burn and Kennet food web

(Rcore = 0.55, Figure 5.5), showing the lowest core redundancy is even greater than the

highest periphery redundancy.
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5.3.2 Stream food webs under different pH levels

The relative core size of all the 20 pH streams ranges from 0.227 to 0.917, which

covers 86% of the maximum range of core size among 53 food webs, whilst the con-

nectance of all the 20 pH streams ranges from 0.114 to 0.275, which only covers 48%

of the connectance range (from 0.026 to 0.037, Table A1). Previous studies found no

relationship between connectance in stream food webs with different pH levels [81], here,

it has been demonstrated that the relative core size is a more effective indicator for

describing network properties.

Figure 5.6 shows that stream food webs with the lowest pH tend to have relatively

large cores therefore higher redundancy within the cores. Here, 6 individual pH food webs

(three with lowest pH and three with highest pH) were selected to show that food webs

with lower pH tend to have a larger core. Food webs with lowest pH are: the Old Lodge

(cs = 0.87, Rcore = 0.926, pH = 5.0), the Lone Oak (cs = 0.917, Rcore = 0.953, pH =

5.2), and the Beagh’s Burn (cs = 0.867, Rcore = 0.936, pH = 5.3, Figure 5.6a-c). While

streams that have the highest pH tend to have smaller cores and lower redundancy, for

example, the Mill stream (cs = 0.6, Rcore = 0.705, pH = 8.4), the Bere Stream (cs =

0.7, Rcore = 0.778, pH = 7.5), and the Hardknott Gill (cs = 0.682, Rcore = 0.803, pH =

6.0), and Narrator Brook (cs = 0.508, Rcore = 0.656, pH = 6.0, Figure 5.6d-f). Food

webs with highest pH also have more peripheral nodes and more in-between links than

those with lower pH.
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Figure 5.6: a-c Three food webs with lowest pH compared against another three food
webs d-f with highest pH. The relative size of the core is larger among low pH food
webs, and the in-between links are more prevalent among high pH food webs. The thick
lines represent the branch links, while the thin lines are the redundant links.

5.4 The importance of core substructure to robustness

5.4.1 Correlation between core size and robustness

In this section, the worst-case scenario of food webs undergoing perturbations was

simulated by removing species with highest degree and examined the consequences. This

simulation was repeated for each of the food web, and it was found that robustness in

general increases with rising relative core size. The linear fit between robustness and

the relative core size is y = 0.06 + 0.38, with r2 = 0.5, and correlation r = 0.7044



Chapter 5. Core redundancy governs food web robustness 89

(Figure 5.7a). The correlation with robustness using relative core size is noticeably higher

than that of connectace (y = 0.15 + 0.68x , with r2 = 0.28, and correlation r = 0.526,

Figure 5.7b). The stronger correlation between robustness and the relative core size

indicates the effectiveness of using substructures to characterise food web functional

properties.

Relative core size 

Connectance 

R
ob

us
tn

es
s  

a 

b 

R
ob

us
tn

es
s  

c ●

● ●
● ● ● ●

● ●
● ●

● ● ●
● ● ●

●

●
● ●

● ● ●

●
●

●

● ● ● ●

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

correlation coefficient

food web size

co
rre

la
tio

n

92 87 83 65 63 61 59 52 51 50 49 47 46 44 40 39 38 36 35 30 29 27 25 24 23 22 21 20 19 18 13 12

● relative core size
connectance

Food web size 

C
or

re
la

tio
n  

0.2

0.3

0.4

0.4 0.5 0.6 0.7 0.8

site
Big Darby Creek Blanchard River

Buck Creek Cuyahoga River

Duck Creek Hocking River

Hocking River 2 Little Miami River

Little Miami River 2 Little Miami River 3

Mahoning River Paint Creek

Paint Creek 2 Sandusky River

Scioto Brush Creek Walhonding River

West Branch Mahoning River West Branch Mahoning River 2

●

●

●

●
●

●

●

●

0.15

0.20

0.25

0.30

0.4 0.5

site

● ● ● ●

● ● ● ●

c1 c2 c3 c4

d1 d2 d3 d4

Kennet

Classic food webs UK mesocosm streams 

UK streams 
US streams (Ohio) 

0.1

0.2

0.3

0.4 0.6 0.8

Benguela Broadstone Stream

Skipwith Pond Tuesday Lake 1984

Tuesday Lake 1986 Ythan Estuary

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8

Afon Gwy Afon Hafren

Allt a'Mharcaidh Allt na Coire nan Con

Beagh's Burn Bere Stream

Broadstone Coneyglen Burn

Dargall Lane Duddon Beck

Duddon main channel Duddon Pike Beck

Etherow Hardknott Gill

Lone Oak Mill Stream

Mosendale Beck Narrator Brook

Old Lodge Wrynose Pass Beckcor :

0.00

0.25

0.50

0.75

0.0 0.2 0.4 0.6 0.8
coreSize

ro
b site

Kennet

●
●

●● ●

●

●●

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.0

0.1

0.2

0.3

0.4

0.5 y =  0.06  +  0.38 x

r = 0.704  

●
●

●● ●

●

●●

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.0

0.1

0.2

0.3

0.4

0.5 y =  0.15  +  0.68 x

r = 0.526  

Figure 5.7: Correlation between robustness and a - connectance b - relative core size
for all the 53 food webs. Both the linear regression and Pearson correlation analysis were
performed and results are shown in each subfigure. Relative core size shows a stronger
correlation with robustness than connectance. c - The change in the correlation between
robustness and the two network properties (relative core size and connectance) when
smaller webs were sequentially included in the analysis. The drop in the correlation is
much more susceptible for connectance (grey, square) than the relative core size (black,
circle) when lower threshold of the web size drops.

The 53 food webs studied range from large marine food webs (92 species - Ythan

Estuary) to relatively small stream webs (12 species - Hocking river, Table A1). For
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such a diverse range of food webs, it is important to further examine the influence

of food web size to the correlation strength between robustness and the two network

properties (relative core size and connectance). The inclusion of smaller food webs

reduces the correlation with robustness for both core size and connectance (Figure 5.7c),

and this is a result of lower taxonomic resolution in smaller webs, as they are comprised of

aggregated nodes rather than individual species [44, 115]. Nevertheless, the relative core

size achieves almost a consistently high correlation across all web sites and is therefore

a more effective measure to gauge robustness than connectance.

Table A1 provides a summary of network properties of all 53 food webs, ranked by

increasing order of network size (N). Five network properties include 1) N , 2) con-

nectance, 3) the relative core size, 4) core redundancy, and 5) robustness. All the food

webs are connected graphs, with no isolated species included in the analysis.

5.4.2 Robustness under random removal

Previous studies on measuring robustness showed that food webs in general experi-

ence significantly fewer secondary extinctions from random removal when compared to

targeted removal [17, 83, 133, 135]. Robustness under random removal was measured 100

times for each food web, with both the mean and the distribution (boxplot) of Rrandom

shown in Figure 5.8. The results were ranked based on the relative core size, where Lone

Oak food web ranked first (largest core presented), and so forth.

Most food webs exhibited an extremely robust behaviour under random perturba-

tions. This is reflected in the fact that a few or no secondary extinction took place

(shown as the median of Rrandom ranges between 0.45 and 0.5 in Figure 5.8). In addi-

tion, Rrandom was unaffected by the difference in the relative core size, exhibiting a

consistently high average value and small variances across different permutations of ran-

dom removal for each food web. Only three food webs (i.e., Benguela, Skipwith Pond,
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Figure 5.8: The targeted removal (blue, Rtarget, from the highest degree node) causes
more secondary extinction than its equivalent random removal (red, Rrandom). The gray
bar attached to each red node represents the upper and lower boundary of the random
removal. Food webs were ranked based on the decreasing order of the relative core size.

and Ythan Estuary) have Rrandom < 0.4, since they have the fewest number of basal

level species. Indeed, possessing relatively few number of basal level species increases

the chance of their removal and result in cascading effects towards higher level species.

The results indicate most of the food webs are highly tolerant to random perturbations,

regardless of their web size and their robustness under targeted removal.

5.4.3 Substructure removal

For each food web, the consequence of substructure removal was recorded as the

number of secondary extinction (NSE). The proportion of secondary extinction (ÑSE =

NSE/N) shows the impact that removal of species within a specific substructure would

cast. ÑSE = 0 means that the removal of species did not cause any further extinction

or isolation of species. The larger ÑSE indicates the removal of species would cause a

larger effect. Results were compared against randomly removing the same number of

core and periphery species, and the randomisation was performed 100 times for each

food web. Figure 5.9 shows that the secondary extinction was significantly high when
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the core species were removed. The significance was demonstrated by comparing the

result with randomly removing the same number of species in order to eliminate the bias

caused by the variances in the number of core species. The equivalent random removal

was performed for both core and periphery.
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Figure 5.9: The removal of core (dark blue) causes more secondary extinction (higher
ÑSE) than its equivalent random removal (light blue). The median is represented as the
black line within each boxplot, and the average of each group is shown as the horizontal
line in corresponding colours.

The removal of all the periphery species caused almost no secondary extinction

(median at 0, average around 0), while the peripheral equivalent random removal showed

further collapse to the network. Both random removals generate similar level of sec-

ondary extinction, which indicates the relative size of core or periphery does not have

an significant effect to the results (Figure 5.9). For ÑSE of individual food webs, please

refer to Figure 5.10.

The food web core contains most of the interactions and is responsible for energy

exchange with periphery, therefore the removal of the core would cause devastating

effects to the network. The removal of the core disconnects the whole network, resulting

in that the remaining periphery nodes on its own cannot sustain a network structure.

On the other hand, the periphery has links mostly to the core rather than linking with
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Figure 5.10: For each of the food web, the re-calculated robustness Ro is overall the
lowest when performing the core removal (dark blue), whilst Ro being the highest when
performing the periphery removal (red). Results were benchmarked by the equivalent
random removal for both cases (light blue and orange). Food webs were ordered by
decreasing order of relative core size (green dots), the left most food web has the largest
core whist the right most one has the smallest core.

each other, therefore, the removal of the periphery would not affect the connectivity of

the rest of the network. As such, the highly redundant and densely interconnected core

can buffer the perturbations.

5.5 Summary

The importance of having a large relative core size to maintain system robustness has

been shown in various types of food webs [55, 90, 170] (Lu, 2016). Here, the redundancy

which is the key to buffer perturbations was found to be largely preserved within the

core, and the size of the core is shown to reflect the level of redundancy in a food web.

The importance of core redundancy was further explored by generating a relationship

between the relative core size and robustness. Compared with connectance, the relative

core size showed a much stronger correlation with robustness, and the strength of this

correlation is not affected by the size of the food webs.
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The dominant effect of the core was proved to be significant regardless the relative

size of the core. The core is not only densely connected within the substructure, but also

responsible for connecting all the periphery nodes together. The removal of the core as a

whole can destroy the whole network, whilst the removal of the periphery almost results

in no secondary extinction. The perturbation originated from periphery is mitigated

when it reaches the core, which prevents further propagation to the rest of the network.



Chapter 6

Centrality and food web

robustness

6.1 Research background and overview

Species and the interactions between them form food webs, which always contain one

or more key species that have either higher abundance or unique trophic position that is of

importance to maintain the stability and sustainability of an ecosystem [21, 22, 108, 195].

The extinction of a key species can seriously affect the survival of other species, which

might ultimately lead to the collapse of the ecosystem [17, 22, 84, 195]. A way to quantify

node importance using a network approach is via centrality [19, 20, 85, 196]. There are

many ways to define whether a species is of importance to the whole food web, for

example, high degree species are those that have many interactions with other species,

therefore, the removal of high degree species is able to cause more secondary extinctions

compared to removing low degree ones [17, 80]. High degree species are also found with

higher probability to be presented in more fragments (e.g., geometry niches) within a

certain geographical area [147]. On the other hand, high betweenness species are those

that lie on the majority of the shortest paths and they are often considered as bridges

95
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between different subcommunities within a single food web [61, 154]. Girvan & Newman

proved that the removal of the highest betweenness species in Chesapeak Bay food web

resulted in the splitting of pelagic and benthic sub-communities [61]. High closeness

species are those that have a short distance to all the other species in terms of the

number of hops between them. In host-parasite networks, the parasites with the highest

closeness centrality possess the best location to accumulate resources [154]. Eigenvector

centrality measures whether a node is connected to a more influential node, therefore

can be seen as a global indices compared to the local degree centrality [87, 158].

Identifying keystones for conservation in ecology has been focused on rare species

[197, 198]. There have been numerous studies trying to find important species in food

webs in a topological way [17, 19, 61, 83, 144, 196]. Degree centrality has been the first

and most widely accepted metric to identify key species [17, 148]. Later studies expand

this idea by also considering the neighborhood degree when finding the keystone species

[20, 85]. However, there is no linkage between the key species identified using these

methods and species ecological properties.

53 food webs sampled from three types of ecosystems (marine, freshwater, and lentic)

were analysed. This is also the same dataset used in Chapter 5. Four most well-studied

centrality metrics were applied to these food webs, including degree, betweenness, close-

ness and eigenvector centrality. For each species, the node rankings based on the four cen-

trality metrics were compared in order to see their similarity. Specifically, this research

aims to assess the effectiveness of different centrality metrics in differentiating species

with different ecological and functional properties. Furthermore, food web robustness

was measured by simulating species removal based on the four centrality metrics. Previ-

ous chapters found a strong correlation between robustness (targeted high degree species

removal) and the relative core size. Here, the analysis was expanded to study the cor-

relation among additional food web properties (i.e., proportion of basal / intermediate

/ top-level species, maximum trophic height, connectance, relative core size, etc.) with

food web robustness under the four centrality targeted removal. The research presented
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in this chapter provides a better understanding on centrality measurements to ecological

networks, and the results can help identify key species from multiple perspectives.

6.2 Methods

6.2.1 Cumulative node centrality

Consider a graph, whereby each node has a certain centrality value cj , and the nodes

are ranked in descending order of centrality value. The cumulative centrality was pro-

posed as the sum of all previous ranked centrality values and normalised by the sum of

centrality of all the nodes:

Cn =

∑n
n′=1C

′
n∑

j Cj
(6.1)

where n is the centrality rank of the node.

The cumulative indice is useful when the purpose is to compare the data below or

above a certain numerical threshold, for example, the proportion of nodes with degree

over a certain value [199, 200]. Here the cumulative centrality was used to illustrate the

distribution of centrality indices across all the nodes. For example, if the cumulative

centrality reaches its maximum, it indicates that afterwards the nodes have centrality

indices of zero. On the other hand, if the curve has a constant slope within certain

segment, it means the nodes within the range have identical centrality indices, which

also indicates the ineffectiveness of certain centrality metrics. Therefore, the cumulative

centrality gives a clear view on the effectiveness of the particular centrality ranking. In

order to compare whether different centrality metrics would generate the similar node

ranking sequences, the Spearman correlation coefficient was applied in a pairwise manner.
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6.2.2 Comparing robustness under different node removal sequences

Robustness was measured under the decreasing order of four centrality ranking sequences

(degree, betweenness, closeness and eigenvector). Results were compared against random

removal (1000 iterations for each food web). Existing research [17, 82, 138] and previous

chapters in this thesis showed that targeted degree removal can break down food webs

much faster than random removal. Therefore, if the robustness of any other types of

centrality based removal is also significantly smaller than that of random removal, it

can reflect the specific centrality ranking is also able to identify the species that are

important to maintain the food web structure. Otherwise, if certain targeted removal

generates similar results with random removal, it indicates that the related centrality

metric is not effective in identifying key species that are responsible for maintaining the

network structure.

6.3 Network properties and centralities for food webs

The 53 food webs were summarised with their network properties shown in Table A2.

The size of the food webs ranges from 12 nodes to 92 nodes, with number of links ranges

from 39 to 1644. The proportion of basal / intermediate / top-level species also varies

hugely, and Table 6-A shows the network properties of the 8 selected food webs. Ythan

Estuary food web only contains 4.3% of the basal level species, while for Broadstone

Stream food web, %B is 66.7%, and for Coneyglen Burn food web, %B is 77.3%.
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Table 6-A: A summary of the 8 food webs, including site name, which ecosystems they
belong to, web size (N), link numbers (E), proportion of basal (B) / intermediate (I) /
top-level species (T), connectance (C), and maximum trophic height (max TH). Food
webs were ordered based on ecosystem types (1: freshwater streams; 2: lentic; 3: marine).

site N E B I T C max TH

c4 1 65 422 0.492 0.154 0.354 0.100 3.599
d4 1 52 263 0.596 0.019 0.385 0.097 2.815
Broadstone Stream 1 27 111 0.667 0.296 0.037 0.152 3.700
Skipwith Pond 2 36 338 0.056 0.889 0.056 0.261 6.779
Tuesday Lake 1984 2 50 262 0.500 0.480 0.020 0.105 5.315
Tuesday Lake 1986 2 51 230 0.569 0.392 0.039 0.088 4.510
Ythan Estuary 3 92 414 0.043 0.630 0.326 0.049 6.517
Benguela 3 29 186 0.069 0.862 0.069 0.221 6.869

6.3.1 Distribution of node centrality metrics

Four most widely used centrality metrics were applied to the 53 food webs (degree,

betweenness, closeness and eigenvector centrality, Figure 6.1). Nodes were ranked by

the descending order of centrality metrics respectively, and normalised by the sum of

centrality metrics for all the nodes.

In Figure 6.1, betweenness shares the most disparity with the rest of the three central-

ity metrics, as the curve is highly skewed towards the first few high betweenness nodes.

Most of the food webs contain a large proportion of nodes with zero or approximately

zero betweenness, especially for Ythan Estuary, d4, and c4. Networks always contain

certain proportion of zero betweenness nodes which are not located on any shortest path.

For example, in a star network, where all the nodes are connected to a central node, only

the central node has betweenness larger than zero whilst all the other nodes have zero

betweenness. In a chain network, the two nodes at the end of the chain always have zero

betweenness. The proportion of zero betweenness nodes could increases significantly if

the network becomes directed, because nodes at the start or the end of each directed

chain will always have zero betweenness [201], for example, the resource species and the
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Figure 6.1: Normalised centrality ranking, including degree, betweenness, closeness and
eigenvector centrality of 8 food webs. Nodes are ranked by the decreasing order of
degree ranking, whose indices are shown on x-axis. Y-axis is the normalised accumulative
centrality of each web. Food web names are shown at the bottom right corner.

top level predators that located at both ends of the food chain.

On the other hand, closeness centrality shows the most straight cumulative curve for

most of the food webs, indicating that many species have identical closeness centrality
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values (except for Benguela food web, within which the top four nodes have much higher

closeness). Therefore, both betweenness and closeness are not effective metrics to differ-

entiate nodes. Degree centrality is effective in differentiating species as the cumulative

curve increases sharply for the highest ranking species and grow steadily for nodes with

lower number of links. Eigenvector centrality behaves similarly with degree centrality.

6.3.2 Implications of different centrality metrics to food webs

For each node, the variations of node centrality metrics were examined by comparing

across the centrality indices Cj . The centrality metrics was normalised by the peak

value (Figure 6.2 to 6.4). Each sub-figure (e.g., Figure 6.2a) consists of four panels

(column I to IV), which illustrates the aforementioned different centrality indices. A

clear distinguishability in the colour gradient indicates each node has different centrality

value from each other. Based on this criteria, both betweenness (column II) and closeness

(column III) centrality centralities are ineffective measures, because most nodes have

either similar or identical centrality values.
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Figure 6.2: Centrality measurements were anlayzed on three stream food webs: a - Mill-
stream control web (c4), b - Millstream drought web (d4), c - Broadstone stream. Species
were coloured based on different centrality rankings, including I - Degree centrality, II -
Betweenness centrality, III - Closeness centrality, IV - Eigenvector centrality.
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Figure 6.3: Centrality measurements were anlayzed on three lentic (e.g., lakes or ponds)
food webs: a - Skipwith Pond, b - Tuesday Lake sampled in 1984, c - Tuesday Lake
sampled in 1986. Species were coloured based on different centrality rankings, includ-
ing I - Degree centrality, II - Betweenness centrality, III - Closeness centrality, IV -
Eigenvector centrality.
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Figure 6.4: Centrality measurements were anlayzed on two marine food webs: a -
Benguela, b - Ythan Estuary. Species were coloured based on different centrality rank-
ings, including I - Degree centrality, II - Betweenness centrality, III - Closeness centrality,
IV - Eigenvector centrality.
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On the other hand, nodes were evenly distributed based on degree and eigenvector

centralities (Figure 6.2 to 6.4). The ranking sequence of degree and eigenvector centrality

were also similar with each other (based on the colour gradient). The results echo the

fact that eigenvector centrality is a measurement of global degree centrality, since linking

with a relatively higher degree nodes is able to add positive weight to the indices of its

eigenvector centrality. Closeness measures how close a node to every other node, and

therefore nodes in food webs with lower trophic height are expected to have a higher

closeness. Results demonstrated that relatively low closeness centrality was observed

in Skipwith Pond, Ythan Estuary, and Benguela food webs. Those webs also have a

relatively high maximum trophic level (shown both in Table 6-A and in the Figure 6.3a,

Figure 6.4). The trophic level plot for all the 53 food webs with nodes coloured by

centrality indices can be found in Appendix Figure A2.

The Spearman correlation (ρ) between two centrality metrics highlighted the highest

similarity between degree centrality and eigenvector centrality among all the food webs

(Figure 6.5). Betweenness centrality also correlates strongly with degree and eigenvector

centrality in stream food webs (c4, d4, and Broadstone Stream). Among the lentic food

webs (Skipwith Pond and Tuesday Lakes), the correlation between betweenness and

degree/eigenvector centrality is also strong, but slightly less than that among stream

food webs. Closeness centrality, within all the food webs, correlates very weakly or even

negatively with the other three indices. The correlation analysis for all the 53 food webs

can be found in Appendix from Figure A3.
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Figure 6.5: Comparisons of the correlation between centrality metrics using the Spear-
man correlation coefficient. Colour and size denotes the degree of covariation with larger
blue (ρ = 1) as the most similar and small red (ρ = 0) as the least similar.

6.4 Robustness - removal sequences

In food webs, cascade failures happen when the extinction of certain species (simu-

lated node removal in food webs) results in secondary extinction of other species. Here

secondary extinctions only occur when species loose all its resources (Details in Sec-

tion 2.4).
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6.4.1 Comparison between targeted removal and random removal

All food webs showed a significant decrease in robustness under degree removal com-

pared to that of random removal, with only Benguela food web showed a very slightly

decrease in degree removal (Table 6-C). This finding is linked with Benguela food web

has a much higher relative core size (0.793, Table A1), whilst other food webs have a

relative core size that only ranges from 0.228 to 0.528. Betweenness is not an effective

metric in detecting topologically important species, given targeted betweenness removal

generates similar magnitude of secondary extinction compared to random removal. Even

for some food webs, targeted betweenness removal generates less secondary extinction

than random removal (Broadstone Stream, Skipwith Pond). Targeted closeness centrality

removal is only effective in specific cases (Skipwith Pond, Ythan Estuary, and Benguela),

with corresponding robustness much smaller than any other centrality removal as well

as random removal. This can be explained by the fact that closeness centrality is able to

identify basal level species accurately when the proportion of basal species is small (Fig-

ure 6.2 to 6.4, column III). Indeed, a small proportion of basal species (Skipwith Pond,

B% = 0.056, Benguela, B% = 0.069. Table 6-A) increases the weight of dependence

from higher level species on them, therefore the removal of any basal species can cause

a severe collapse on the food web structure. The robustness under eigenvector removal

is either the same or slightly higher than degree removal, as eigenvector centrality shows

the strongest correlation with degree centrality (Figure 6.5). For robustness under the

four centrality ranking removal of all the 53 food webs, please refer to Table A3.

6.4.2 Secondary extinction gradient through species removal

Figure 6.6 illustrates the common way of describing food web secondary extinction

against simulated species removal based on centrality rankings. Each centrality is rep-

resented by its own respective curve which shows the cumulative secondary extinction

against the proportion of species removed. As shown previously, degree and eigenvector
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Table 6-C: Robustness under four centrality ranking sequences. Nodes were ordered in
the decreasing order of centrality indices: Degree (DC), Betweenness (BC), Closeness
(CC), and Eigenvector (EC) centrality. Results were compared with random removal,
which run 100 iterations for each food web.

Site DC BC CC EC Random (Avg.)

c4 0.323 0.369 0.323 0.338 0.471
d4 0.212 0.365 0.346 0.250 0.471
Broadstone Stream 0.185 0.500 0.407 0.222 0.463
Skipwith Pond 0.306 0.500 0.028 0.333 0.380
Tuesday Lake (1984) 0.240 0.160 0.280 0.200 0.460
Tuesday Lake (1986) 0.098 0.314 0.314 0.157 0.436
Ythan Estuary 0.049 0.239 0.011 0.054 0.376
Benguela 0.310 0.241 0.034 0.276 0.330

centrality are effective in achieving a more rapid rate of network collapse than the other

two centrality measures. This is certainly true for d4, Broadstone stream, and Tuesday

lake food webs. In the c4, Skipwith Pond, Ythan Estuary, and Benguela food webs,

closeness centrality was as effective as degree and eigenvector centrality removal.

Yet, for Benguela, the random removal generates a similar level of secondary extinc-

tion compared to all the four types of targeted removal (Figure 6.6 and Table 6-C).

Benguela food web is of a homogeneous nature which does not contain bottleneck species

[19, 113] (i.e., the species that is responsible to connect different subgroups together),

therefore it shows similar robustness under random removal and high centrality node

removal. Food webs in which targeted removal resulted in a much smaller robustness are

heterogeneous networks containing bottleneck species, as the removal of which can either

break the network into small subnetworks or result in a larger number of isolated species

[42]. In almost all of the cases, betweenness is not as effective as the other centrality

measures and in the case of Broadstone stream and Skipwith Pond, it performs worse

than the average of the random removal process (Figure 6.6 and Table 6-C).
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6.5 Correlation between centralities and network proper-

ties

Robustness was used under different centrality measurements to analyse how impor-

tant species would influence the overall network structure, which is followed by the Pear-

son correlation in a pairwise manner between the different robustness and corresponding

network properties (Figure 6.7).
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Those highlighted in the black box in Figure 6.7 represent the correlation between

robustness and network properties. Specifically, the proportion of basal level (B%)

species was found to be strongly correlated with robustness under closeness based target

removal, labeled as RCC (dark blue, r = 0.744). This indicates that the smaller propor-

tion the of basal species present in a food web, the more certain that the basal species

are ranked top in the closeness centrality indices, which consequently leads to a smaller

RCC. In other words, RCC ≈ B%, as RCC = Nrm/N and B% = Nbasal/N), and in this

case, the removed nodes (Nrm) are almost the same with basal species (Nbasal). The

relative core size (CS) and connectance (C) both have strong correlations with degree

(r = 0.704, and r = 0.526 respectively), echoing the findings in Chapter 5.

Those highlighted in the orange triangle represent the correlation among different

robustness metrics (Figure 6.7). Strongest correlation was found when robustness under

degree removal was compared with robustness under eigenvector removal (r = 0.978).

Robustness under betweenness removal (RBC) failed to show a relatively strong correla-

tion with any other robustness metrics.

In addition, the correlation analysis showed a number of network properties of food

webs also have strong correlations. For example, the maximum trophic level (TL) was

found to negatively correlate with the proportion of top-level species, meaning that the

higher level a food web reaches, the fewer top-level species it could have.

6.6 Summary

Whether a food web shows homogeneous or heterogeneous structural pattern can

strongly affect its robustness under species removal. For example, homogeneous net-

works lack strategically located nodes known as bottlenecks that link densely connected

subgroups together. Therefore, homogeneous networks show similar robustness under

both random and targeted removal (e.g., Benguela food web) [113]. Whilst in heteroge-

neous networks, centrality metrics help to identify important species which are the key
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to maintain robustness, therefore, the removal of these high centrality species can cause

much more impact than random removal.

Degree centrality identifies key species with the most interactions, therefore the

remove of which can cause the most devastating effect on the network, resulting in the

smallest robustness. Betweenness centrality is less effective given that food webs tend

to contain many zero betweenness nodes. This is caused by a large proportion of basal

and top-level species which never lie on the shortest paths between nodes. Food webs

in general have large closeness centrality indices for all the nodes, given its densely con-

nected features and small average shortest path lengths [60, 202]. If a food web contains

very few basal species, and it has links to the majority of the higher level predators, then

those basal species are considered to be located in the “center” of the network with the

highest closeness. Therefore, closeness is extremely effective to identify key basal species.

This leads to the strongest correlation between the proportion of basal level species and

robustness based on targeted high closeness node removal.

The results presented in this chapter filled the void in current research, as not only

degree centrality was used to identify important species in food webs [17, 80, 192, 203],

other centrality metrics were also used to explore key species from novel perspectives.

These results demonstrate that whilst the aspects of identifying key species are multi-

dimensional and complex [20, 196, 204], the centrality metrics can shed light on better

understanding the unique topological feature of food webs.



Chapter 7

Conclusions and Future work

7.1 Conclusions

The key contribution of this research is the discovery of the core substructure pre-

sented in food webs, which is responsible in governing food web robustness under vari-

ous kinds of perturbations such as environmental stressors [36, 81, 103] or management

practices [84]. Network properties related to the core substructures can help unveil hid-

den adaptive behaviours of food webs under perturbations, which explain the species

level properties (i.e., species extinction or invasion, abundance or biomass changes, con-

nectance changes, etc.) and their connections with food web functional properties (i.e.,

robustness).

In the first part of the thesis (Chapter 3), the results show that the freshwater food

webs under drought stress conserve their richly connected core structure and the relative

core size despite sharp decreases in their biodiversity and biomass production [36, 50].

The underlying mechanism is a movement of core species to the periphery, which pre-

serves the relative core size. As a consequence, food web robustness is also maintained.

This new way of analysing food webs provides a more comprehensive understanding on

the impact of perturbations at the substructure level, which leads to new directions for

112
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future research on community response under climate change.

In the second part of the thesis (Chapter 4), the results show the importance of food

web substructure in relation to how different farming practices would affect ecosystem

biodiversity and robustness. New farming practices on Genetically Modified Herbicide

Tolerant (GMHT) crops are claimed to have long-term influence on sustainable agricul-

ture as well as the wider ecosystem stability [177, 205–207]. By studying 502 farmland

food webs across the UK on different crop types, the results demonstrate that despite

GMHT management exerts significant effect on species level properties, both substruc-

ture level properties and the robustness are not significantly affected by it. On the

contrary, crop switching causes significant disturbances, which alters both the species

level, substructure properties, and robustness. Furthermore, the most common species

appear more frequently in the core structure, and the conservation of a core structure

across all the agricultural food webs is associated with the fact that the species com-

position within the core is much more stable than periphery. The empirical food web

studies on both freshwater and agricultural ecosystem (Chapter 3 and Chapter 4) imply

the stabilising effect of a core structure, as both studies show that species composition

is more stable in the core, which governs the most of the energy flow and interactions

within the system.

The underlying reasons why a core structure can act as an indicator of food web

robustness is further elaborated in Chapter 5. The presence of a core acts as a stabilis-

ing factor for networks: a large core is often associated with more alternative pathways

among nodes [54, 55, 170, 171]. As a result, the core can mitigate the effects of exter-

nal perturbations. By incorporating over 50 food webs from different ecosystems, the

research reported in this thesis is one of the first analysis of the importance of the core

structure in food webs. Specifically, the relative size of the core among food webs strongly

correlates with their robustness. Connectance was previously shown to be positively cor-

related with robustness [17, 43, 79]. Here the relative core size is shown as a stronger

indicator of robustness compared to connectance. This is true especially for small food
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webs, as the correlation between relative core size and robustness was consistently strong

whilst the correlation between connectance and robustness dropped significantly when

smaller webs were taken into consideration. Indeed, most of the redundancy was con-

served within the core, and the core redundancy covaries with the relative core size.

Results demonstrated that the distribution of redundancy is important in characterising

food web robustness, while connectance as a network level measurement, cannot capture

this substructure level properties.

Further analysis of the food webs is performed in Chapter 6, and it is done so from the

perspective of robustness in the face of targeted removals based on different centrality

rankings and random removals. The random extinction sequence removal indicates the

average resilience level of a food web, and the decreasing order of degree sequence removal

measures the worst-case scenario of a food web under perturbations [17, 82, 84]. Existing

works have evaluated how various types of targeted node removal would result in different

robustness [71, 153, 191], yet the underlying reasons why certain centrality ranking works

better than others was not fully explained. Here different removal sequences based on

various centrality indices are examined on over 50 food webs and more importantly,

the implication of each centrality ranking was linked with specific species properties.

For example, species with high closeness centrality are mostly basal species from the

bottom level of the food webs, indicating that as the resource provider of the food

web, basal species locate in the central of the network thus can provide energy to the

higher level species efficiently. However, not all centrality metrics can effectively profile

and distinguish species, for example, betweenness only highlights a small proportion

of species to have high centrality, whilst for the rest of the nodes, betweenness cannot

clearly distinguish them based on centrality indices.

This research also examined how the ranking of each species varies according to

different centrality metrics. High degree species is shown not only to be able to break

down the food web in the fastest way [191], but also able to distinguish nodes more clearly

based on the spectrum of the degree distribution. Node ranking based on eigenvector
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centrality shares the highest similarity with degree ranking, whilst closeness centrality

shares almost no similarity with all the other centrality rankings. This finding contradicts

previous work showing that closeness centrality strongly correlates with degree centrality

on random graphs and non-ecological networks [153], indicating food webs in general

possess unique topological structures. However, closeness centrality is strongly associated

with basal species, and as such, the targeted removal of high ranking closeness species is

able to break down the food web. In summary, it is vital to select the most appropriate

centrality indices when analysing food webs.

The network analysis methods presented in this thesis can be applied to other net-

works from three aspects. First, if the focus is to evaluate the external perturbations

on ecosystems, it is possible to compare the network substructure properties before

and after the perturbation in order to quantify the level of impact using the method-

ology presented in the thesis. Second, if the focus is to study the food web structural

robustness, different node removal methods can be applied and its effectiveness can be

evaluated. Finally, the network analysis methods are generic and can be applied to other

non-ecological networks, given that the nodes representing the components in a system

and the links representing their interactions. In summary, the network analysis methods

provided here explored empirical networks from a new substructure perspective, and the

focus on exploring the self-organising behaviour of the node-link interactions provides

insights on better understanding on system robustness.

7.2 Future work

Food webs have been shown to possess a richly-connected core structure, regardless

of their type and residing ecosystems (see Chapters 3 to 6). In this thesis, food webs

were studied in their unweighted form and it is important to further expand current

research to consider weighted food webs. Yet it is not immediately obvious what approach

of weighting makes sense. In general, if the weight of a link is w, then an exponent
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wα (α = {0, 1}) has been shown to be an effective way to adjust the contribution of

weights [208], so that a balance exists between distinguishing the number of links and

the weight of links. An emphasis on the weighting approach (α = 1) will allow one

to better understand the key energy flow in a food web, but it will risk obscuring the

importance of diversity (i.e., the number of links with significantly lower weights) and

suppress subgraph structures. In terms of methodology, there are various ways to weight

a food web, for example, nodes can be weighted by species body size (M), abundance

(N), or biomass (B = f(M,N)) [209, 210], and links can be weighted by biomass or

energy flow [211]. From a dynamic perspective, a weighted food web contains more

detailed information than unweighted one, as the changing of weight might indicate how

climate change would affect the interaction strength between species. For example, the

production of dominant invertebrate species in a post-flood stream increased significantly,

which directly resulted in increasing in the trout biomass, as trout mainly feeds on those

invertebrates [211]. Since the perturbation mostly affects the link weight, the unweighted

version of the food web shows almost no change on food web structure before and after

flood, therefore cannot detect those dynamics in the interaction strength changes. Future

research can focus on investigating how the core structure would change with or without

node/link weight. The inclusion of weight focuses on the energy flow instead of the actual

linkages, which might be able to uncover previously unfound community responses when

perturbation happens. With advances in community detection methods being introduced

to analysing biological networks [169, 212], the substructure analysis on food webs can

be enlightened from new perspectives, in order to better understand the community

response under environment stressors.

Real-world complex networks are highly dynamic not only because they grow [94,

213, 214], but also the links can re-wire in face of perturbations [215–219]. For example,

biological networks, such as the protein-protein interaction networks are believed to pos-

sess high degree of adaptability under many iterations of the evolutionary process [220].

In food webs, despite various types of both biotic or abiotic perturbations, they are able
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to persist by adapting to the changing environment, i.e., establishing new predatory links

in order to prevent them from extinction [1, 36, 50, 81, 168]. Simulated species removal

based on adaptive behaviour has been applied to better evaluate food web robustness

by re-wiring links according to theoretical modelling [14, 16, 77, 78]. However, the way

adaptation was modelled is either body-size based, which assumes larger predators are

all expected to switching to prey within a size range, or topological based, which assumes

species from a higher level are expected to prey on the species from lower levels [16].

An important step to achieve realistic re-wiring modelling is to better understand how

species would switching diet under real world observations. It is important to identify the

more preferable links when adaptation occurs. A recent microcosms experiment showed

functional redundant links between predatory invertebrates and its prey can help main-

tain the functions of heterotrophs under the stress of prey extinction caused by herbicide

[221]. The predators mainly relied on consuming non-predatory invertebrates (occupying

up to 80% of the proportion in their diet) under control treatment, and after 8 weeks

of herbicide application, the sensitive invertebrates died out, forcing the predators to

shift their diet towards consuming detritus (occupying 100% proportion in diet under

the highest herbicide concentration). This finding suggests re-wiring to new resources

only happens if the preferable type of resources died out.

Attaching new links can also be achieved based on preferential attachment from a

topological perspective, for example, in social networks, if two nodes share many common

neighbours, then the two nodes are very likely to be linked with each other in the future

[222]. Similar ideas might be applied to food webs: a rewired link can be preferred than

another if the selected new prey shares more similarity than the one that the predator

lost.

A key feature of food webs is that they always contain certain level of redundancy in

order to function properly, as redundancy not only maintains the ecosystem functionality,

but also enhances certain functions that cannot be achieved without redundancy. For

example, in a experiment where the abundance of a pest needs to be controlled by
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introducing its predator (ant species) into the ecosystem, the co-existence of different

predators effectively reduced the abundance of the pest whilst only introducing one ant

species did not perform effectively [223]. This can be explained by the multiple predator

effects on their common prey. This study reveals that the synergistic effects within

ecosystem act as an important factor when characterising the consequences from various

stressors upon food webs, which can only be assessed through a network approach.

Future research need to investigate the functional importance of redundant links, which

can be applied to food web modelling and to better evaluate ecosystems.
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Supplementary data and results

B.1 Z-score evaluation on the rich-club coefficient with

random networks

In chapter 3, z-score is used to compare the rich-club coefficient of empirical food webs

with random networks generated by the null model in order to show the significance of

food web having certain kind of connectivity feature among high degree species.

Specifically, z-score (Eq. 2.6) is calculated as:

zφi =
φi −

∑N
j φji
N√

V ar(φji)
(B.1)

where φji is the rich-club coefficient of the jth random graph at node i where the null

model is run for N times. Figure A1 plots the comparison between φr and φrnull
of each

food webs.
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Figure A1: φrnull (black box plot, with mean and standard deviation) is compared with
φr (red) for both control (left) and drought webs (right).
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B.2 Core/periphery examples

Examples listed below show how the core/periphery concepts are applied to different

networks.

World trade web

In the world trade web [224], which contains 160 involved countries (as nodes) and

business relationship (as links), the core detected using the core profiling algorithm

contains over 100 nodes. If link weight is included, the core only contains seven

nodes. Unweighted network has an focus on the relationship among countries,

therefore, the resultant core contains all the major EU countries and the US; while

weighted network focuses on the business frequency and strength, resulting in the

core with only world’s top importers and exporters.

London underground network

In the London underground network, which contains 257 stations and lines between

them (Figure A2a), there are sixty stations belong to the core, shown in Fig-

ure A2b. The core stations locate in central London and are connected to major

train stations. For example, the King’s Cross Station and the Waterloo Station

rank top in the core nodes profiling, and they are also hubs for both trains and

boats [57].

Brain network

Brain networks contain nodes as cortical and subcortical regions and links as func-

tional relations among the nodes. Around 20 out of 120 brain regions are identified

as core nodes. The core nodes are also identified as the least flexibility regions

when learning tasks are changed one after another sequentially. Similar results are

obtained under various type and intensity of training [58]. Results suggest the core

is the most stable substructure under perturbations.

Table A1 summarises the significance of the core/periphery structure in above networks.
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Figure A2: (a) The increasing order of the importance of core nodes for all the tub
stations. (b) Geographical plot of all the tube stations, with core highlighted in pink
symbols [57].

Network type size of the core Significance of

Nc/Nall core nodes

World trade web 100/160 US and most European countries

(weighted)

World trade web 7/160 World’s top importers

(unweighted) and exporters

London tube 60/257 Located in central London,

connected with major train/ferry stations

Brain network 20/120 Least flexibility compared

with periphery nodes

Table A1: The significance of the core nodes in real-world networks.
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Food web data

C.1 53 standard food web data

Site Ecosystem N Connectance Core size Rcore robustness

Cuyahoga River stream 12 0.319 0.833 0.955 0.333

Mahoning River stream 13 0.367 0.692 0.797 0.385

Sandusky River stream 13 0.231 0.615 0.861 0.231

Buck Creek stream 18 0.191 0.444 0.726 0.167

Duddon main

channel

pH stream 19 0.186 0.842 0.949 0.21

Duddon Beck pH stream 20 0.27 0.8 0.888 0.4

West Branch

Mahoning River 2

stream 20 0.335 0.7 0.831 0.4

Dargall Lane pH stream 21 0.213 0.762 0.881 0.286

Mosendale Beck pH stream 21 0.234 0.81 0.893 0.333

Allt na Coire nan

Con

pH stream 22 0.184 0.727 0.89 0.318

125
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Site Ecosystem N Connectance Core size Rcore robustness

Coneyglen Burn pH stream 22 0.114 0.227 0.55 0.091

Duck Creek stream 22 0.275 0.591 0.796 0.273

Old Lodge pH stream 23 0.251 0.87 0.926 0.348

Afon Gwy pH stream 24 0.227 0.875 0.936 0.375

Lone Oak pH stream 24 0.271 0.917 0.953 0.417

Paint Creek 2 stream 24 0.177 0.458 0.755 0.125

West Branch

Mahoning River

stream 24 0.292 0.667 0.854 0.25

Hocking River 2 stream 24 0.247 0.583 0.818 0.208

Blanchard River stream 24 0.274 0.583 0.791 0.292

Afon Hafren pH stream 25 0.21 0.84 0.909 0.4

Broadstone pH stream 25 0.275 0.72 0.809 0.44

Broadstone Stream stream 27 0.172 0.444 0.74 0.185

Benguela stream 29 0.233 0.793 0.935 0.31

Wrynose Pass Beck pH stream 29 0.22 0.828 0.929 0.379

Hocking River stream 29 0.25 0.621 0.851 0.241

Beagh’s Burn pH stream 30 0.204 0.867 0.936 0.267

Scioto Brush Creek stream 30 0.262 0.567 0.78 0.233

Duddon Pike Beck pH stream 35 0.229 0.771 0.851 0.371

Big Darby Creek stream 35 0.231 0.486 0.74 0.257

Skipwith Pond lake 36 0.286 0.528 0.725 0.306

Paint Creek stream 38 0.186 0.395 0.693 0.184

Little Miami River stream 39 0.254 0.513 0.747 0.256

Walhonding River stream 39 0.262 0.513 0.734 0.256

Little Miami River 3 stream 39 0.238 0.513 0.76 0.231

Allt a’Mharcaidh pH stream 40 0.204 0.65 0.772 0.4

Little Miami River 2 stream 40 0.236 0.45 0.827 0.275

Etherow pH stream 44 0.218 0.523 0.613 0.386
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Site Ecosystem N Connectance Core size Rcore robustness

Hardknott Gill pH stream 44 0.197 0.682 0.803 0.386

d2 Millstream 46 0.088 0.435 0.729 0.152

d1 Millstream 47 0.125 0.574 0.795 0.319

d3 Millstream 49 0.099 0.469 0.761 0.204

Tuesday Lake 1984 lake 50 0.106 0.4 0.682 0.24

Tuesday Lake 1986 lake 51 0.091 0.314 0.63 0.098

d4 Millstream 52 0.097 0.423 0.714 0.212

c1 Millstream 59 0.086 0.508 0.809 0.271

c3 Millstream 61 0.112 0.541 0.789 0.312

Narrator Brook pH stream 61 0.201 0.508 0.656 0.328

c2 Millstream 63 0.081 0.492 0.784 0.254

c4 Millstream 65 0.1 0.492 0.762 0.323

Bere Stream pH stream 65 0.222 0.692 0.778 0.431

Kennet Kennet 83 0.131 0.325 0.552 0.265

Mill Stream pH stream 87 0.218 0.598 0.705 0.425

Ythan Estuary marine 92 0.049 0.228 0.57 0.044

Table A1: A summary of all 53 food webs, including food web name, which ecosystems
(or groups) they belong to, web size, robustness, connectance, the relative core size
and overall network redundancy. Food webs are ordered by the decreasing order of the
network size.

index site N E B I T C max TH

1 c1 59 300 0.492 0.102 0.407 0.086 3.308

2 c2 63 323 0.460 0.048 0.492 0.081 2.857

3 c3 61 418 0.492 0.098 0.410 0.112 3.254

4 c4 65 422 0.492 0.154 0.354 0.100 3.599

5 d1 47 277 0.553 0.021 0.426 0.125 2.636
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6 d2 46 186 0.652 0.022 0.326 0.088 2.769

7 d3 49 238 0.633 0.020 0.347 0.099 2.885

8 d4 52 263 0.596 0.019 0.385 0.097 2.815

9 Ythan Estuary 92 414 0.043 0.630 0.326 0.049 6.517

10 Tuesday Lake 1984 50 262 0.500 0.480 0.020 0.105 5.315

11 Tuesday Lake 1986 51 230 0.569 0.392 0.039 0.088 4.510

12 Broadstone Stream 27 111 0.667 0.296 0.037 0.152 3.700

13 Benguela 29 186 0.069 0.862 0.069 0.221 6.869

14 Skipwith Pond 36 338 0.056 0.889 0.056 0.261 6.779

15 Afon Gwy 24 131 0.417 0.500 0.083 0.227 3.626

16 Afon Hafren 25 129 0.400 0.400 0.200 0.206 3.353

17 Allt a’Mharcaidh 40 325 0.350 0.500 0.150 0.203 4.043

18 Allt na Coire nan

Con

22 89 0.409 0.409 0.182 0.184 3.761

19 Beagh’s Burn 30 184 0.633 0.300 0.067 0.204 3.845

20 Bere Stream 65 931 0.400 0.446 0.154 0.220 5.220

21 Broadstone 25 158 0.320 0.600 0.080 0.253 4.189

22 Coneyglen Burn 22 55 0.773 0.182 0.045 0.114 3.500

23 Dargall Lane 21 92 0.429 0.476 0.095 0.209 4.009

24 Duddon Beck 20 96 0.400 0.450 0.150 0.240 3.574

25 Duddon main chan-

nel

19 65 0.526 0.316 0.158 0.180 3.857

26 Duddon Pike Beck 35 274 0.371 0.457 0.171 0.224 4.259

27 Etherow 44 421 0.409 0.341 0.250 0.217 3.506

28 Hardknott Gill 44 375 0.341 0.614 0.045 0.194 4.711

29 Lone Oak 24 152 0.417 0.458 0.125 0.264 3.410

30 Mill Stream 87 1644 0.379 0.506 0.115 0.217 7.595

31 Mosendale Beck 21 99 0.476 0.429 0.095 0.224 3.965

32 Narrator Brook 61 738 0.311 0.525 0.164 0.198 4.718
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33 Old Lodge 23 129 0.522 0.391 0.087 0.244 3.926

34 Wrynose Pass Beck 29 183 0.448 0.414 0.138 0.218 3.802

35 Kennet 83 901 0.602 0.313 0.084 0.131 5.879

36 Scioto Brush Creek 30 236 0.533 0.433 0.033 0.262 7.885

37 Little Miami River 39 387 0.513 0.462 0.026 0.254 10.064

38 Little Miami River 40 378 0.600 0.375 0.025 0.236 9.020

39 Buck Creek 18 62 0.611 0.333 0.056 0.191 4.444

40 Big Darby Creek 35 283 0.571 0.400 0.029 0.231 8.461

41 Paint Creek 38 269 0.658 0.316 0.026 0.186 7.207

42 Paint Creek 24 102 0.667 0.292 0.042 0.177 5.171

43 West Branch

Mahoning River

24 168 0.417 0.542 0.042 0.292 7.989

44 West Branch

Mahoning River

20 134 0.450 0.500 0.050 0.335 6.766

45 Mahoning River 13 62 0.385 0.538 0.077 0.367 5.100

46 Walhonding River 39 399 0.564 0.410 0.026 0.262 9.306

47 Hocking River 29 210 0.517 0.448 0.034 0.250 8.349

48 Hocking River 24 142 0.500 0.458 0.042 0.247 7.266

49 Duck Creek 22 133 0.455 0.500 0.045 0.275 6.956

50 Cuyahoga River 12 46 0.417 0.500 0.083 0.319 4.949

51 Sandusky River 13 39 0.462 0.462 0.077 0.231 4.621

52 Blanchard River 24 158 0.458 0.500 0.042 0.274 7.444

53 Little Miami River 39 362 0.538 0.436 0.026 0.238 9.519

Table A2: A summary of the 53 food webs, including food web name, which ecosystems
(or groups) they belong to, web size (N), link numbers (E), proportion of basal (B) /
intermediate (I) / top-level species (T), connectance (C), and maximum trophic height
(max TH). Food webs were ordered based on ecosystem types (1: freshwater streams; 2:
lentic; 3: marine).
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C.2 Food web robustness under different centrality rank-

ings
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Figure A1: Robustness curve for all the food webs. Secondary extinction is shown on
y-axis, which is the consequence of simulated species removal. Each removal step is
displayed using a dot. Different removal strategies are shown in different colours, shown
at the top-right of each plot.
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Index Site DC BC CC EC Random (Avg.)

1 c1 0.271 0.339 0.271 0.271 0.456

2 c2 0.254 0.286 0.270 0.286 0.468

3 c3 0.312 0.361 0.311 0.311 0.471

4 c4 0.323 0.369 0.323 0.338 0.470

5 d1 0.319 0.404 0.383 0.319 0.484

6 d2 0.152 0.413 0.370 0.196 0.461

7 d3 0.204 0.367 0.367 0.224 0.457

8 d4 0.212 0.365 0.346 0.250 0.473

9 Ythan Estuary 0.049 0.239 0.011 0.054 0.346

10 Tuesday Lake 1984 0.240 0.160 0.280 0.200 0.462

11 Tuesday Lake 1986 0.098 0.314 0.314 0.157 0.440

12 Broadstone Stream 0.185 0.500 0.407 0.222 0.469

13 Benguela 0.310 0.241 0.034 0.276 0.312

14 Skipwith Pond 0.306 0.500 0.028 0.333 0.386

15 Afon Gwy 0.375 0.417 0.375 0.417 0.500

16 Afon Hafren 0.4 0.360 0.360 0.360 0.499

17 Allt a’Mharcaidh 0.400 0.400 0.325 0.400 0.500

18 Allt na Coire nan

Con

0.318 0.409 0.364 0.364 0.484

19 Beagh’s Burn 0.267 0.433 0.500 0.267 0.500

20 Bere Stream 0.431 0.400 0.385 0.415 0.496

21 Broadstone 0.440 0.440 0.280 0.440 0.499

22 Coneyglen Burn 0.091 0.091 0.500 0.091 0.479

23 Dargall Lane 0.286 0.286 0.381 0.286 0.495

24 Duddon Beck 0.4 0.400 0.350 0.400 0.496

25 Duddon main chan-

nel

0.210 0.211 0.474 0.211 0.480
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26 Duddon Pike Beck 0.371 0.400 0.343 0.429 0.499

27 Etherow 0.386 0.432 0.386 0.432 0.499

28 Hardknott Gill 0.386 0.364 0.318 0.386 0.490

29 Lone Oak 0.417 0.500 0.375 0.458 0.500

30 Mill Stream 0.425 0.402 0.368 0.402 0.497

31 Mosendale Beck 0.333 0.333 0.429 0.333 0.494

32 Narrator Brook 0.328 0.393 0.295 0.344 0.494

33 Old Lodge 0.348 0.435 0.478 0.348 0.499

34 Wrynose Pass Beck 0.379 0.414 0.414 0.414 0.491

35 Kennet 0.265 0.398 0.434 0.277 0.466

36 Scioto Brush Creek 0.233 0.467 0.333 0.267 0.496

37 Little Miami River 0.256 0.487 0.308 0.282 0.472

38 Little Miami River 2 0.275 0.500 0.375 0.300 0.489

39 Buck Creek 0.167 0.500 0.389 0.222 0.439

40 Big Darby Creek 0.257 0.500 0.343 0.257 0.472

41 Paint Creek 0.184 0.474 0.368 0.211 0.468

42 Paint Creek 2 0.125 0.500 0.375 0.167 0.466

43 West Branch

Mahoning River

0.250 0.417 0.208 0.292 0.484

44 West Branch

Mahoning River

2

0.400 0.500 0.350 0.450 0.499

45 Mahoning River 0.385 0.462 0.308 0.462 0.483

46 Walhonding River 0.256 0.500 0.359 0.282 0.499

47 Hocking River 2 0.208 0.500 0.276 0.241 0.483

48 Hocking River 0.250 0.417 0.250 0.250 0.487

49 Duck Creek 0.273 0.500 0.273 0.318 0.472

50 Cuyahoga River 0.333 0.333 0.250 0.417 0.486

51 Sandusky River 0.231 0.500 0.231 0.231 0.398
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52 Blanchard River 0.292 0.458 0.292 0.333 0.467

53 Little Miami River 3 0.231 0.436 0.308 0.256 0.488

Table A3: Robustness under four centrality ranking sequences. Nodes were ordered in
the decreasing order of centrality indices: Degree (DC), Betweenness (BC), Closeness
(CC), and Eigenvector (EC) centrality. Results were compared with robustness under
random removal.
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C.3 Species centrality in colour gradient
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Figure A2: Centrality measurements were anlayzed on empirical food webs. Species
were coloured based on different centrality rankings, including I - Degree centrality, II -
Betweenness centrality, III - Closeness centrality, IV - Eigenvector centrality.
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C.4 Correlation analysis among node centrality rankings
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Figure A3: Comparisons of the correlation between centrality metrics using the Spear-
man correlation coefficient. Colour and size denotes the degree of covariation with larger
blue (ρ = 1) as the most similar and small red (ρ = 0) as the least similar.
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