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Abstract

The pricing of options is one of the key problems in mathematical finance. In recent

years, pricing models that are based on the continuous time random walk (CTRW), an

anomalous diffusive random walk model widely used in physics, have been introduced.

In this thesis, we investigate the pricing of European call options with CTRW and gen-

eralized CTRW models within the Black-Scholes framework. Here, the non-Markovian

character of the underlying pricing model is manifest in Black-Scholes PDEs with frac-

tional time derivatives containing memory terms. The inclusion of non-zero interest

rates leads to a distinction between different types of “forward” and “backward” op-

tions, which are easily mapped onto each other in the standard Markovian framework,

but exhibit significant differences in the non-Markovian case. The backward-type options

require us in particular to include the multi-point statistics of the non-Markovian pricing

model. Using a representation of the CTRW in terms of a subordination (time change)

of a normal diffusive process with an inverse Lévy-stable process, analytical results can

be obtained. The extension of the formalism to arbitrary waiting time distributions and

general payoff functions is discussed. The pricing of path-dependent Asian options leads

to further distinctions between different variants of the subordination. We obtain ana-

lytical results that relate the option price to the solution of generalized Feynman-Kac

equations containing non-local time derivatives such as the fractional substantial deriva-

tive. Results for Lévy-stable and tempered Lévy-stable subordinators, power options,

arithmetic and geometric Asian options are presented.
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Chapter 1

Introduction

The fundamental purpose of any financial theory is the investigation of the behaviour of

economic agents in allocating and deploying their resources, both over time and across

places, in an uncertain condition [107]. The elements of time and uncertainty play an

important role in influencing these financial behaviours. Due to the inherent complexity

of the interactions between such agents, a sophisticated mathematical framework is re-

quired to quantify the effect of their interactions on the observed behaviour of markets,

thus leading to the field of mathematical finance. The origin of modern mathematical

finance could be traced back to Louis Bachelier’s magnificent dissertation, which marks

the birth of option pricing theory, using a stochastic process in continuous time. In

analysing the problem of option pricing, Bachelier derives a mathematical model now

known as the Wiener process or Brownian motion. However, Bachelier’s work has re-

mained unknown in finance for a long time. Indeed, during most of this period, the

stochastic description of financial markets has been studied and discussed but mathe-

matical models seem to have had little influence on practice.

Later, a variant of Brownian motion, known as geometric (economical) Brownian

motion (GBM), has been put forward by Osborne [121] and Samuelson [143,144], even-

tually becoming an important model in finance. The GBM provides a reasonable pricing

model, since its predicted share price values remain always positive avoiding the draw-

back of Bachelier’s original model, as Samuelson asserts. Undoubtedly, the most vital

development imposing impact on practice is the Black-Scholes (BS) theory for option

pricing based on GBM which brings the field to closure on the subject [106]. For the con-

tribution of the Black-Scholes model to the theory of option pricing, Robert Merton and
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Myron Scholes were awarded the Alfred Nobel Memorial Prize in Economical Sciences

in 1997 [16]. It was a great pity that Fischer Black could not receive the award since

he died in 1995. Virtually almost at that time, the Chicago Board Options Exchange

(CBOE) started trading the first options on individual stocks in the United States [80].

Moreover, Texas Instruments even introduced a hand-held calculator to specially pro-

duce BS option prices. Such a complete and rapid acceptance of financial theory into

financial practice has been unprecedented. Then the BS approach has been extended to

a wide variety of options such as caps, floors, collars, collateralized mortage obligations,

knockout options, swaptions, lookback options, barrier options and so on [34]. Nowa-

days, with the creation of many kinds of new mathematical models and options, the

options market has become one of the most attractive areas in the financial markets.

Even though the BS model achieved a great success, however, empirical studies on fi-

nancial time series indicate that a simple Markovian process, namely geometric Brownian

motion serving as the underlying asset pricing model in the BS theory, can not capture

the complex behaviour of asset prices [87]. Indeed, there are some common proper-

ties across different markets and time periods, known as stylized empirical facts [31],

including absence of autocorrelations, heavy tails, gain/loss asymmetry, aggregational

gaussianity, intermittency, volatility clustering, conditional heavy tails, slow decay of

autocorrelation in absolute returns, leverage effect, volume/volatility correlation, asym-

metry in time scales, and so on. Since the accurate modelling of financial time series can

greatly affect the evaluation of the option price, these empirical studies indicate that the

empirically observed differences between actual asset prices and existing models should

be taken into account and hence result into departing from the BS model in finance.

In 1963, Benoit Mandelbrot proposed one of the earliest alternatives to the GBM

underlying the BS model, known as Lévy stable processes [97]. In his paper “The Varia-

tion of Certain Speculative Prices”, Mandelbrot stated that “the empirical distributions

of price changes are usually too ‘peaked’ to be relative to samples from Gaussian pop-

ulations.” He also claimed that “The tails of the distributions of price changes are in

fact so extraordinarily long that the sample second moments typically vary in an erratic

fashion.” Although Mandelbrot’s initial study examined the price changes of cotton and

wool prices, the Lévy stable process was also assumed to be a possible model for the

distribution of stock price returns. That assumption was confirmed by Fama when he

examined the random nature of stock prices in 1965 [38]. In his research, Fama claimed

that Lévy stable processes seem to fit the data better than GBM [95].
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Later in 1995, from the study of a particular economic index (the Standard Poor’s

500), a truncated Lévy stable distribution was proposed by Mantegna and Stanley to de-

scribe the price changes. More precisely, their work indicated that the central part could

be predicted very well by a Lévy stable process but for the tails there is an exponential

fall off [99]. Mantegna and Stanley claimed that truncated Lévy distributions could be

used to model a broad spectrum of phenomena ranging from turbulence to financial

markets. Then Koponen was inspired to derive an analytical form for the characteristic

function of a truncated Lévy distribution with an exponential cutoff in the tails [81].

Some empirical studies support the claim that the truncated Lévy distribution is a

simple and effective model of financial data [59,100].

Overall, these alternative models include fractional Brownian motion, generalized

hyperbolic models, models based on Lévy processes, stochastic volatility and GARCH

models, constant elasticity of variance (CEV) model, jump-diffusion models, a numerical

procedure called “implied binomial trees”, time changed processes, affine stochastic-

volatility and affine jump-diffusion models [83]. Of course, the corresponding effect on

option pricing has been studied with the advent of these models at the same time. For

instance, the evaluation of options based on the truncated Lévy stable process has been

studied in [19,77,103] and based on fractional Brownian motion in [28,29,36,163].

Recently, financial data has been found to exhibit constant values or very small

fluctuations during some long time periods [48,65,66]. This kind of behaviour is charac-

teristic of subdiffusive phenomena in physics, which arise due to trapping events when

the particle gets immobilized. Fig 1.1 indicates the subdiffusive characteristics in a fi-

nancial time series. Since the continuous time random walk model (CTRW) introduced

in the physics literature by Montroll and Weiss [117] is widely used to study subdiffusive

dynamics [13, 18, 58, 76, 108], some effort has been made to solve the problem of option

pricing with a subdiffusive CTRW model.

In 2003, Stanislavsky put forward a Black-Scholes model under subordination, which

introduces long-term memory effects in the classical BS model [155]. In 2008, Montero

proposes a CTRW model for option pricing [114,115]. Then Magdziarz gives an explicit

expression for the BS formula in the subdiffusive regime and introduces later more

general time-changed BS models under subordination [88, 90]. Then Orze l and Weron

solve the problem of calibrating the parameters of the subdiffusive Black-Scholes model

to real data [120]. Formulas for European put and call option prices are presented for

the subdiffusive Bachelier model [91].

12



Figure 1.1: Subdiffusive data in financial market: the examined datasets of the 1-
monthly Warsaw Interbank Offered Rate (top panel), Budapest Interbank Offered Rate
(middle panel) and Prague Interbank Offered Rate (bottom panel) rates. The data and
the figure is obtained in Ref. [66].

Hence, one could expect that such sophisticated mathematical models are the key to

provide pricing formulas that match the behaviour of real data. In spite of several works

in the literature probing the subdiffusive option pricing problem, as far as we know, no

work has addressed the option price dependence on past time points. Although this

is not a problem in the classical Black-Scholes theory which depends on a Markovian

process, it is of great importance for the option pricing based on a non-Markovian model

such as the CTRW. More importantly, it seems that all current subdiffusive option

pricing formulas are discussed case by case and there is no formula which could unify

these results together. Furthermore, previous works have focused on subdiffusive vanilla
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options .There is no discussion of exotic options in the subdiffusive regime. The reason

might be that it is not easy to find analytical solutions for such subdiffusive option

prices, especially for subdiffusive path-dependent options (such as Asian call options).

Aside from these issues, much of the literature on option pricing has successfully applied

Fourier analysis to determine option prices [9, 11, 25, 27, 56, 151], but no one used it to

study subdiffusive options. Inspired by tackling these problems, we start to investigate

them in our work.

In this thesis, we investigate the option pricing problem beyond the BS formula with

an anomalous asset pricing model based on the CTRW. In particular, we are mainly

concerned with the following topics: (1) Establishing different types of subdiffusive Eu-

ropean call option formulas and deriving the corresponding partial differential equations

(PDEs) that take into account memory effects. This elucidates the effect of multiple

time points on the option price; (2) Generalizing these results to arbitrary waiting time

distributions and payoff functions; (3) Deriving the PDEs for path dependent options

in the presence of a subdiffusive pricing model.

The rest of this thesis consists of seven chapters. Chapters 2–3 present the necessary

background material which is frequently used in the subsequent chapters. Even though

some of them are well discussed in the literature, we give the main derivations for the

purpose of making the content self-contained. The remaining five chapters are our own

work.

In Chapter 4, we discuss the possible subdiffusive European call option pricing for-

mulas with a CTRW. In particular, we propose two types of subdiffusive options: A

“forward” (type A) and “backward” (type B) type option with non-zero interest rates

based on a formulation of the subdiffusive pricing model in terms of a subordination.

The standard BS formula is recovered in a well defined limit. We show that these two

types of subdiffusive formulas could also be derived from corresponding fractional partial

differential equations generalizing the celebrated BS PDE.

In Chapter 5, we investigate the subdiffusive European call option pricing formulas

with general waiting times which is essentially a generalization of the results presented

in Chapter 4.

In Chapter 6, we provide an option pricing formula based on a general payoff function

in the anomalous regime, which could be used to derive the corresponding published

subdiffusive option formulas in Refs. [88, 90, 91, 120, 155]. As the model used in this

option pricing problem contains more parameters, it could be easily adapted to many

14



different scenarios. As an application of our general formula, we discuss the special case

of the anomalous power option formula. The fractional equations which could be used to

describe this kind of new subdiffusive power option formula are derived. A comparison

between classical and anomalous power options is made.

In Chapter 7, we provide a discussion of path dependent call options with general

waiting times. In particular, we take Asian call options as an example and derive

three types of formulas in the anomalous regime which provide us with more choices for

practical applications.

In Chapter 8, some concluding remarks are made on the previous chapters. Finally,

we discuss some interesting future topics.
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Chapter 2

Fundamentals of stochastic

processes

The main goal of this chapter is to review some fundamental material regarding stochas-

tic processes. In particular we present Brownian motion both from physical and eco-

nomical sides, which results into the classical approaches of studying general diffusion.

In fact, stochastic expression of diffusion processes combined with classical hypotheses

in Economics led to the further development of the theory of option pricing. The dis-

covery of anomalous diffusion is believed to be useful to characterise new phenomenon

in economics. Finally, the presentation of the Black-Scholes theory, on the one hand,

provides us with a mathematical approaches in option’s pricing. On the other hand, it

greatly facilitates to understand future chapters.

2.1 Brownian motion in physics

Since Brownian motion plays an important role in the development of mathematical

models and option pricing, it will serve as a starting point of our discussion.

“The story of Brownian motion is one of confused experiment, heated philosophy,

belated theory, and, finally, precise and decisive measurement” [54]. As early as in

1785 Jan Ingenhousz found the irregular motion of coal dust particles on the surface

of alcohol, but this kind of observed phenomenon took the name Brownian motion

because of another fundamental pioneering work. In 1827, Scottish botanist Robert

16



2.1. Brownian motion in physics

Brown observed that when suspended in water, small pollen grain of the plant Clarkia

pulchella were found to be in a very animated and irregular state of motion under his

one lens microscope [20]. The image of Clarkia pulchella grains under a microscope is

illustrated in Fig. 2.1. At first he thought this motion was a manifestation of life, but

after systematically investigation he concluded that this kind of phenomenon existed

apparently in any suspension of fine living or non-living particles.

Figure 2.1: Left panel: Clarkia pulchella pollen imaged by an electron microscope. Right
panel: Clarkia pulchella pollen with the ruler scale of 2 µm per unit. Both of the figures
are adapted from Ref. [122].

At about the same time, in 1822, Joseph Fourier proposed the heat conduction equa-

tion, on the basis of which Adolf Fick presented the diffusion equation in 1855 [40].

However, a satisfactorily mathematical explanation of Brownian motion did not come

until 1905, when Albert Einstein published the paper under the title “Über die von

der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden

Flüssigkeiten suspendierten Teilchen” [35], which meant that “On the motion, required

by the molecular-kinetic theory of heat, of particles suspended in fluids at rest” [75].

Einstein came up with two major points for the problem of Brownian motion as fol-

lows [49]

• The motion of the pollen grain is caused by the frequent force driven by the

incessantly moving molecules of liquid in which it is suspended.

• The effect on the pollen grain from the motion of these molecules can only be

described probabilistically by frequent statistically independent impacts due to

the complexity of the motion of these molecules.

It seemed that a statistical explanation of these these fluctuations was inevitable. Maxwell

17



2.1. Brownian motion in physics

and Boltzmann had previously used statistics for their famous gas theories, but only de-

scribed possible states and the likelihood of their achievement. Rayleigh was actually

the first one who considered a statistical description in this context [133], but Einstein

was the first to establish the link between the erratic Brownian motion of individual par-

ticles and the thermodynamic laws of diffusion already known since the mid of the 19th

century. Einstein’s theory was based on the case of the free particle, that is, a particle

on which only the forces due to the molecules of the surrounding medium are acting. His

reasoning can be briefly summarized as follows [49,70,119]. Let us start with a discrete

Figure 2.2: Schematic representation of a random walk in two dimensions. The walker
jumps to a randomly chosen site with a fixed step length ∆x.

time random walk in one dimension (1D) and assume that the walker’s initial position

is at the origin at time 0. The extension of these results to the n-dimensional case is

straightforward. The walker jumps at each time step t = 0,∆t, 2∆t, · · · , n∆t, · · · ran-

dom with a constant step width ∆Xi = ∆x. Each jump is independent of the previous

one. After N steps, the position X(N) of the walker is

X(N) =
N∑
i=1

∆Xi (2.1)

A discrete random walk with initial position X(0) = 0 at time t = 0 is illustrated in

Fig. 2.2 in a two-dimensional lattice. Supposing that the motion of the free particle is

on a straight line and Pj(tn) is the probability density that a Brownian particle is at

position j at time tn = n∆t, then such a process can be characterised by the master

equation

Pj(tn + ∆t) =
1

2
Pj−1(tn) +

1

2
Pj+1(tn) (2.2)
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2.1. Brownian motion in physics

since the process is local in both space and time. Taylor expansions assuming small ∆t

and ∆x indicate

Pj(t+ ∆t) = Pj(t) + ∆t
∂Pj
∂t

+O(∆t2) (2.3)

and

Pj±1(t) = P (x, t)±∆x
∂P

∂x
+

(∆x)2

2

∂2P

∂x2
+O(∆x3) . (2.4)

Substituting Eqs. (2.3) and (2.4) in Eq. (2.2) and taking the continuum limit ∆t → 0

and ∆x→ 0 yields the diffusion equation [108]

∂

∂t
P (x, t) = D

∂2

∂x2
P (x, t) (2.5)

where D is the continuum limit of

D = lim
∆x→0,∆t→0

(∆x)2

2∆t
. (2.6)

D is called the coefficient of diffusion. Note that P (x, t) is now a probability density

function (PDF) normalized to one∫ ∞
−∞

dxP (x, t) = 1 . (2.7)

Here the Dirac delta function δ(x) is introduced as

δ(x) =

{
0, x 6= 0

∞, x = 0
(2.8)

satisfying the identity ∫ ∞
−∞

dx δ(x) = 1 , (2.9)

and the property ∫ ∞
−∞

dx f(x)δ(x− x0) = f(x0) (2.10)

for any real or complex valued continuous function f(x). If the particle is at position

x0 at time t0 so that P (x, t0|x0, t0) = δ(x− x0), then by Fourier transform method, the
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2.1. Brownian motion in physics

solution to Eq. (2.5) could be found as follows [136]

P (x, t|0, 0) =
1√

4πDt
e−

x2

4Dt (2.11)

and P (x, t|0, 0) is called the propagator. The average and the second moment can be

derived as follows

〈X(t)〉 =

∫ ∞
−∞

dxxP (x, t|0, 0) = 0

〈
X2(t)

〉
=

∫ ∞
−∞

dxx2P (x, t|0, 0) = 2Dt . (2.12)

In fact, the diffusion equation obtained by Einstein is a special case of the Fokker-Planck

equation (also known as Kolmogorov’s equation) which could describe a large class of

stochastic processes in which the system exhibits a continuous sample path. In this

case, that implies that the particle’s position, if thought of as a solution of the diffusion

equation, in which time is continuous (not discrete, as assumed by Einstein), can be

written as X(t), where X(t) is a continuous function of time but a random function.

This leads us to consider the possibility of describing the dynamics of the system in a

direct way by a stochastic differential equation for the path. Indeed, this was initiated

by Langevin’s treatment of Brownian motion with the assumption of an external erratic

force [85] which was a kind of Itô’s stochastic differential equation [62]. He derived the

equation of motion for a Brownian particle as follows [49]

m
d2X(t)

dt2
= −6πηa

dX(t)

dt
+ ξ(t) (2.13)

where m is the mass of the particle, η is the viscosity of the fluid, a is the diameter of the

spherical particle, and ξ(t) is a random force, which we further specify later. Starting

with this equation, one could find that

〈
X2(t)

〉
= [kT/(3πηa)]t (2.14)

This corresponds to Eq. (2.12) as derived by Einstein, provided we identify

D = kT/(6πηa), (2.15)

where T is absolute temperature and kB is Boltzmann’s constant (or, equivalently, Avo-

gadro-Loschmidt number N), which nowadays is called Stokes-Einstein relation. Al-
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2.1. Brownian motion in physics

Figure 2.3: Overview of Perrins work on Brownian motion. Left panel: three sample
trajectories of individual mastic granules obtained by tracing the segments at 30 seconds
intervals. Right panel: distribution of 365 observations relating to granules of mastic.
The mastic, used in the preparation of varnish, is obtained by making incisions in the
bark of the Pistacia lentisciis (Chios Island). Both of these figures are adapted from
Ref. [125]

though the notion of Boltzmanns constant k was not yet fully established at the time,

this relation established a link between the macroscopic kinetic coefficients and the

microscopic molecular world [45]. Einstein’s work inspired Jean Perrin and his stu-

dents [123–125] to perform a series of experiments to determine the value of Avogadro-

Loschmidt number which won him the Nobel Prize in 1926. Some results of Perrin were

displayed in Fig. 2.3. In Fig. 2.4, the data obtained by Kappler [72] with high-accuracy

set-up using an optical detection method was showed and from his data he also got the

Avogadro-Loschmidt number. Einsteins predictions could be elegantly verified for the

Avogadro-Loschmidt number N in the range (6.4÷ 6.9)× 1023/[mol] [52]. As a physical

subject, Brownian motion was investigated extensively both from theory and experiment

by Fokker [44], Planck [127], Smoluchowski, Klein, Kramers, Ornstein, Uhlenbeck, Chan-

drasekhar, Montroll and others. On the other hand, besides Albert Einstein, Thorvald

Nicolai Thiele and Louis Bachelier were earliest ones who attempted to model Brownian

motion mathematically [68]. However, it was Norbert Wiener who first demonstrated

the construction of Brownian motion in a rigorous mathematical way [4] and showed that

its trajectory was continuous everywhere but nowhere differentiable with self-similar in

law which meant if one zooms in or zooms out on a Brownian motion it was still a

Brownian motion. This kind of observation was related to the self-affine nature of the

diffusion process. Due to his contribution, the Brownian motion sometimes was also

known as Wiener process. Further important mathematical contributions were made by
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2.1. Brownian motion in physics

Figure 2.4: Erroneous behaviour of Brownian motion observed in a highprecision mea-
surement obtained by Kappler in 1931 [72]. Both of these figures are adapted from
Ref. [108].

Joseph Doob, Mark Kac, William Feller, and others.

2.1.1 General diffusion processes

Inspired by Brownian motion in physics, Brownian motion is defined mathematically as

follows

Definition 1 (Brownian motion) A stochastic process {W (t), t ≥ 0}, also called a dif-

fusion in physics as it can be used to model diffusions, is said to be a standard Brownian

motion process(or Wiener process) if [111, 140]

1. W (0) = 0.

2. {W (t), t ≥ 0} has independent increments, in that for all t1 < t2 < · · · < tn,

W (tn)−W (tn−1),W (tn−1)−W (tn−2), . . . ,W (t2)−W (t1),W (t1) are independent.
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2.1. Brownian motion in physics

3. {W (t), t ≥ 0} has stationary increments, in that the distribution of W (t+s)−W (t)

does not depend on t.

4. For every t > 0, W (t) is normally distributed with mean 0 and variance t.

An equivalent definition could be the solution to a stochastic differential equation (SDE)

as follows

Ẇ (t) =
dW (t)

dt
= ξ(t) (2.16)

with the initial condition W (0) = 0, where ξ(t) is the random force of Eq. (2.13). From

Def. 1, we thus see that ξ(t) is a Gaussian random variable with zero mean

〈ξ(t)〉 = 0 , (2.17)

and δ correlation

〈
ξ(t′)ξ(t′′)

〉
= δ(t′ − t′′) . (2.18)

It is clear that integrating both sides of Eq. (2.16) could result into

W (t) = W (0) +

∫ t

0
ξ(t′)dt′ . (2.19)

Thus, one has that

〈W (t)〉 =

〈
W (0) +

∫ t

0
ξ(t′)dt′

〉
=

∫ t

0

〈
ξ(t′)

〉
dt′

= 0 , (2.20)
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2.1. Brownian motion in physics

〈
(W (t)−W (0))2

〉
=

〈(∫ t

0
ξ(t′)dt′

)2
〉

=

〈∫ t

0
ξ(t′)dt′

∫ t

0
ξ(t′′)dt′′

〉
=

∫ t

0
dt′
∫ t

0

〈
ξ(t′)ξ(t′′)

〉
dt′′

=

∫ t

0
dt′
∫ t

0
δ(t′ − t′′)dt′′

= t ,

and

〈
(W (t+ τ)−W (t))2

〉
=

〈(
W (0) +

∫ t+τ

0
ξ(t′)dt′ −W (0)−

∫ t

0
ξ(t′)dt′

)2
〉

=

〈(∫ t

0
ξ(t′)dt′ +

∫ t+τ

t
ξ(t′)dt′ −

∫ t

0
ξ(t′)dt′

)2
〉

=

∫ t+τ

t
dt′
∫ t+τ

t

〈
ξ(t′)ξ(t′′)

〉
dt′′

= τ . (2.21)

In particular, for small τ , it follows

〈
(dW (t))2

〉
=
〈
(W (t+ dt)−W (t))2

〉
= dt . (2.22)

Since W (t) is actually not differentiable, Ẇ (t) = ξ(t) does not really exist. However, the

notation ξ(t) is preferred by physicists whereas dW (t) is usually used in mathematics.

Fig. 2.5 illustrates five sample paths of Brownian motion. In general the spectral density

of a process X(t) is defined by the Fourier transform of the correlation function as

S(v) =

∫ ∞
−∞

eivt 〈X(t)X(0)〉 dt . (2.23)

Thus for the noise ξ(t), it follows that

S(v) =

∫ ∞
−∞

eivt 〈ξ(t)ξ(0)〉 dt

=

∫ ∞
−∞

eivtδ(t)dt = 1 , (2.24)
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Figure 2.5: Sample paths of Brownian motion

which does not depend on v. That is , all frequencies contribute equally in the correlation

function, which means by analogy, all colours contribute equally to make white light.

Therefore, ξ(t) is called Gaussian white noise. If the spectral density depends on v, the

noise is termed coloured noise.

The methods of Einstein and Langevin represent the two main approaches in the

theory of stochastic processes, which will be used to investigate general diffusion process.

A general diffusion process X(t) could be defined by a SDE

Ẋ(t) = µ(X(t)) + σ(X(t))ξ(t), (2.25)

where Ẋ(t) = dX(t)/dt, the functions µ(X) is continuously differentiable, σ(X) is twice

continuously differentiable [37], and ξ(t) is Gaussian white noise with the properties

Eqs. (2.17)–(2.18) as before. The initial condition is assumed to be X(0) = x0. In order

to specify the multiplicative term σ(X(t))ξ(t), it is necessary to consider a discretized

version of Eq. (2.25) by introducing a time step ∆t:

Xn+1 −Xn = µ(Xn)∆t+ σ(Xn)ξn (2.26)
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2.1. Brownian motion in physics

where Xn = X(n∆t) and the increment ξn of the white noise ξ(t) is defined as

ξn =

∫ tn+∆t

tn

ξ(t′)dt′ (2.27)

where tn = n∆t.

It should be remarked that the definition of the discretization of term σ(X(t))ξ(t) in

Eq. (2.26) corresponds to Itô’s stochastic integral and forms the basis of Itô’s stochastic

calculus. Different definitions of the discretization could result in different stochastic

integrals, such as Stratonovich’s definition.

As ξ(t) is a Gaussian random variable, it follows that ξn are Gaussian with the

average and variance as follows

〈ξn〉 =

〈∫ tn+∆t

tn

ξ(t′)dt′
〉

= 0 , (2.28)

and

Var(ξn) =
〈
ξ2
n

〉
− 〈ξn〉2

=
〈
ξ2
n

〉
=

∫ tn+∆t

tn

dt′
∫ tn+∆t

tn

〈
ξ(t′)ξ(t′′)

〉
dt′′

=

∫ tn+∆t

tn

dt′
∫ tn+∆t

tn

δ(t′ − t′′)dt′′

= ∆t . (2.29)

Because of the statistical independence of increments over different non-overlapping time

periods, one could immediately obtain that

〈ξiξj〉 = δij∆t (2.30)

where δij denotes the Kronecker delta defined as

δij =

{
0, if i 6= j

1, if i = j .
(2.31)
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It is known that for a Gaussian random variable Y with average µ and variance σ2,

Y could be written as Y = µ + σW , where W here indicates a Gaussian variable with

zero average and variance 1. As 〈ξn〉 = 0 and Var(ξn) = ∆t, it is clear that

ξn =
√

∆tζn (2.32)

where ζn is a Gaussian random variable with zero average and variance 1. Thus

Eq. (2.26) could be expressed as

Xn+1 −Xn = µ(Xn)∆t+ σ(Xn)
√

∆tζn . (2.33)

As the diffusion Eq. (2.25) is a stochastic equation, which means that its solution are

random trajectories that are different in each realization, it is convenient to know the

probability that the trajectory reaches a certain position at a given time. If P (x, t|x0, 0)

denotes the probability density function of the stochastic process X(t) determined by

Eq. (2.25) with initial condition P (x, 0|x0, 0) = δ(x − x0), it could be derived from a

PDE like in the Einstein approach. This PDE is known as the Fokker-Planck equation

(or the Kolmogorov’s equation) which will greatly help to understand the dynamics of

the process X(t). In order to derive the corresponding Fokker-Planck equation for the

SDE (2.25), we start with the discussion of Itô’s formula [37].

Let us define the increment of the process X(t) as

∆X = X(t+ ∆t)−X(t) , (2.34)

then we could obtain the Taylor expansion of a function u(X(t), t) up to quadratic order

in ∆X and linear in ∆t as

u(X(t+ ∆t), t+ ∆t) = u(X(t), t) + ∂u(X(t),t)
∂x ∆X + ∂u(X(t),t)

∂t ∆t

+1
2
∂2u(X(t),t)

∂x2 ∆X2 + ∂2u(X(t),t)
∂x∂t ∆t∆X . (2.35)

With the help of Eq. (2.33), ∆X could be written as

∆X = X(t+ ∆t)−X(t)

= Xn+1 −Xn

= µ(Xn)∆t+ σ(Xn)
√

∆tζn . (2.36)
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Therefore, one obtains that

(∆X)2 = (µ(Xn)∆t)2 + 2(µ(Xn)∆t)(σ(Xn)
√

∆tζn) + (σ(Xn)
√

∆tζn)2

≈ σ(Xn)2∆t+O(∆t3/2) . (2.37)

In the last step, ζ2
n is approximated by its expected value

〈
ζ2
n

〉
= 1. Substituting

Eq. (2.37) into Eq. (2.35) and keeping only terms linear in ∆t and ∆X leads to

u(X(t+ ∆t), t+ ∆t) = u(X(t), t) +
∂u(X(t), t)

∂x
∆X +

∂u(X(t), t)

∂t
∆t

+
σ(X(t))2

2

∂2u(X(t), t)

∂x2
∆t, . (2.38)

Dividing by ∆t and taking the limit ∆t→ 0, one derives that

d

dt
u(X(t), t) =

∂u(X(t), t)

∂t
+
∂u(X(t), t)

∂x
Ẋ(t) +

σ(X(t))2

2

∂2u(X(t), t)

∂x2

=
∂u(X(t), t)

∂t
+
∂u(X(t), t)

∂x
(µ(X(t)) + σ(X(t))ξ(t))

+
σ(X(t))2

2

∂2u(X(t), t)

∂x2
, (2.39)

which is usually known as Itô’s formula. Comparing this formula with the usual chain

rule, one finds that an additional term appears which is caused by the stochastic term.

Now supposing that u(x) is an arbitrary smooth function, based on Itô’s formula, it

follows

d

dt
u(X(t)) = u′(X(t))(µ(X(t)) + σ(X(t))ξ(t)) +

σ(X(t))2

2
u′′(X(t)) (2.40)

where u′(x) = du(x)/dx and u′′(x) = d2u(x)/dx2. Taking the expectation for both sides

of Eq. (2.40) with the condition X(0) = x0, it yields〈
d

dt
u(X(t))

〉
=
〈
u′(X(t))(µ(X(t)) + σ(X(t))ξ(t))

〉
+

〈
σ(X(t))2

2
u′′(X(t))

〉
. (2.41)
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With the density function P (x, t|x0, 0) and the definition of the average value, this

equation could be expressed explicitly as

∂

∂t

∫ ∞
−∞

dxu(x)P (x, t|x0, 0)

=

∫ ∞
−∞

dxP (x, t|x0, 0)

(
u′(x)µ(x) +

σ(x)2

2
u′′(x)

)
. (2.42)

The term 〈u′(X(t))σ(X(t))ξ(t)〉 disappears since we have in discretized form

〈
u′(X(t))σ(X(t))ξ(t)

〉
≈
〈
u′(Xn)σ(Xn)ξn

〉
=
〈
u′(Xn)

〉
〈σ(Xn)〉 〈ξn〉 = 0 , (2.43)

which is due to the fact that in our Itô’s discretization Xn depends only on all ξi with

i ≤ n − 1. As a consequence Xn and ξn are statistically independent. As a result, the

average in Eq. (2.43) could be factorized and the zero comes from the property 〈ξn〉 = 0.

By imposing some natural decay assumptions on P (x, t|x0, 0): P (x, t|x0, 0) → 0 and

∂P (x, t|x0, 0)/∂x→ 0 as x→ ±∞, and performing integration by parts, the right hand

side of Eq. (2.42) becomes∫ ∞
−∞

dxP (x, t|x0, 0)

(
u′(x)µ(x) +

σ(x)2

2
u′′(x)

)
=

∫ ∞
−∞

dxu(x)

(
− ∂

∂x
(P (x, t|x0, 0)µ(x)) +

1

2

∂2

∂x2
(P (x, t|x0, 0)σ2(x))

)
. (2.44)

On the other hand, the left side of Eq. (2.42) could be written as

∂

∂t

∫ ∞
−∞

dxu(x)P (x, t|x0, 0) =

∫ ∞
−∞

dxu(x)
∂

∂t
P (x, t|x0, 0) . (2.45)

Thus we obtain that∫ ∞
−∞

dxu(x)
∂P (x, t|x0, 0)

∂t
=

∫ ∞
−∞

dxu(x)

(
− ∂

∂x
(P (x, t|x0, 0)µ(x))

+
1

2

∂2

∂x2
(P (x, t|x0, 0)σ2(x)

)
. (2.46)

Since the above integral holds for every smooth function u, this indicates that

∂

∂t
P (x, t|x0, 0) = − ∂

∂x
(P (x, t|x0, 0)µ(x)) +

1

2

∂2

∂x2
(P (x, t|x0, 0)σ2(x)) (2.47)
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with initial condition P (x, 0|x0, 0) = δ(x−x0) which indicates that the process starts at

the fixed position x0 at time 0. Eq. (2.47) is exactly what we are looking for and called

Fokker-Planck equation [136].

2.2 Anomalous diffusion

Despite the success of models dependent on Brownian motion and diffusion processes,

over the last two decades it seems that many dynamical systems in a wide variety

of fields, ranging from biology to physics, can not properly be described within this

framework [18,109,152]. Deviating from the well known Ficks law of purely thermalized

systems [75, 108], anomalous diffusion, known since Richardson’s study in turbulent

diffusion in 1926 [134], is typically defined in terms of the the mean square displacement

(MSD)

〈
x2(t)

〉
∝ Ktα, α ∈ (0,∞) . (2.48)

Different from normal diffusion with the linear time dependence of the MSD
〈
x2(t)

〉
∝

Kt for α = 1. Based on the the value of the anomalous diffusion index α, for 0 <

α < 1, the process is called subdiffusion whereas for α > 1 it is superdiffusion [108].

Various generalizations of diffusion processes have been proposed to account for such

anomalous diffusion, such as fractional Brownian motion, CTRW models, generalised

master equations and so on. The approach to anomalous kinetics which we are going to

present is given in terms of CTRWs.

2.2.1 The continuous time random walk

The CTRW, which was first introduced by Montroll and Weiss [117], became one of the

most widely discussed methods for investigating anomalous diffusion. The CTRW has

been successfully applied to model anomalous diffusion in various fields [13,18,58,76,108].

These applications include transport in amorphous materials [150], random networks [14]

, earthquake [55], and so on. In particular, the CTRW formalism has also been extended

to study phenomena occurring in financial markets [101,102]. In what follows, we present

the essential ideas underlying a CTRW .

Different form the discrete time random walk formulation, the CTRW assumes that

the waiting times between two successive jumps and the length of a given jump can be
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Figure 2.6: Schematic representation of a CTRW in two dimension. The waiting times
are symbolised by the waiting circle and the diameter of the each circles is proportional
to the waiting times spent on a fixed position until the next jump happens. The jump
lengths are assumed to keep constant here.

drawn from a joint PDF ρ(ξ, η) with the normalization condition
∫∞
−∞ dξ

∫∞
0 dη ρ(ξ, η) =

1. By this assumption, the PDF of the waiting times

ψ(η) =

∫ ∞
−∞

dξ ρ(ξ, η) (2.49)

as well as the PDF of the jump lengths

ϑ(ξ) =

∫ ∞
0

dη ρ(ξ, η) (2.50)

can be derived. The probability of the waiting times in the interval (η, η+ dη) could be

calculated by ψ(η)dη and the probability of the jump length in the interval (ξ, ξ + dξ)

is from ϑ(ξ)dξ. If the waiting times and the jump lengths are independent random

variables, the joint probability density ρ(ξ, η) can be factorized in terms of the marginal

probability densities for jump lengths ϑ(ξ) and waiting times ψ(η) as ρ(ξ, η) = ψ(η)ϑ(ξ),

which is known as a decoupled CTRW. For the coupled case, one finds that ρ(ξ, η) =

p(ξ|η)ψ(η) or ρ(ξ, η) = p(η|ξ)ϑ(ξ). The correlations between jumps and waiting times

depend on the physical context [132]. In the present discussion, we consider only the

decoupled case. An illustration of the CTRW with initial position X(t0) = 0 at time

t0 = 0 is given by Fig. 2.6 for a two-dimensional lattice.

Although the CTRW was originally introduced as a natural generalization of a ran-

dom walk on a lattice, a convenient stochastic representation of these processes can be
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given in terms of coupled Langevin equations [41–43]

Ẋ(s) = ξ(s), (2.51a)

Ṫ (s) = η(s), (2.51b)

where ξ(s) is a white Gaussian noise with properties 〈ξ(s)〉 = 0 and 〈ξ(s2)ξ(s1)〉 =

δ(s2 − s1), and η(s) is a one-sided Lévy process of order α with 0 < α < 1. The two

processes ξ(s) and η(s) are assumed to be statistically independent. The CTRW could

then be derived as a time-changed (or subordinated) process

Y (t) = X(S(t)) (2.52)

where the process S(t), the inverse of T (s), can be defined as a collection of first passage

times

S(t) = inf{s > 0 : T (s) > t} . (2.53)

In this formulation, the CTRW as a subordinated normal diffusive processes can be re-

garded as the continuum limit of the original renewal picture of Montroll and Weiss [117].

In the CTRW, the number of steps N made by the walker in a time interval (0, t) is

a random variable. Starting on the origin at time 0, a random walker stays fixed to

its position until time t1, and then it makes a random jump to ξ1. The walker is

keeping at the same place ξ1 until time t2 > t1 when it jumps randomly to a new po-

sition ξ1 + ξ2. The process is then renewed. If Y (t) denotes the position of a random

walker at time t, ξi = Y (ti) − Y (ti−1) denotes a random jump occurring at a ran-

dom time ti and ηi = ti − ti−1 is the waiting time between two successive jumps, then

the position Y (t) of a CTRW could be characterised by two sets of random variables

{(ξi, ηi)}i,··· ,N(t) [23, 50,145,146,159]

Y (t) =

N(t)∑
i=1

ξi , (2.54)

where t0 = 0, Y (0) = 0 and N(t) represents the number of jumps occurred up to

time t. Here we suppose that the waiting times {η1, η2, · · · } and the jumps {ξ1, ξ2, · · · }
are independent identically distributed (i.i.d.) random variables and that each ηi is

independent of ξi.
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On the other hand, direct integration of Eqs. (2.51a)–(2.51b) yields

Y (t) = X(S(t))

=

∫ S(t)

0
Ẋ(τ)dτ

=

∫ S(t)

0
ξ(τ)dτ . (2.55)

Comparing with Eq. (2.54), we see that Fogedby’s approach [41] leads to the resulting

trajectory of the random walk in the continuum limit by parametrizing both the path

of the walker X(·) and the time elapsed T (·) with an arbitrary continuous arc length s.

The stochastic process S(·), the inverse of T (·), measures the arc length as a function of

the physical time. The continuum limit of the random variable N(t) thus is represented

by S(t) that counts the number of steps in the renewal picture [23]. We will continue

our discussion of CTRW further in next chapter.

2.3 Brownian motion in finance

As we have seen, the physical term Brownian motion describes the erratic motion of

small particles suspended in a liquid due to the random bombardment by surrounding

liquid molecules. A similar random phenomena is observed in the erratic fluctuations

in the price of certain financial assets, in which case the “microscopic” fluctuations are

brought by a vast amount of individual financial transactions happening during the stock

exchange. For all of these phenomena a statistically identifiable collective behaviour

arises because of the large number of individual random events happening independently

of each other. Thus it was not surprising to see that a probabilistic analysis equivalent

to Einsteins Brownian analysis, had actually already been applied to a range of the

kind of financial transactions on the Paris stock market by a French doctoral student

named Louis Bachelier, who was recognized nowadays as the founder of the modern

mathematical finance [6, 7, 156]. In fact, 5 years earlier than Albert Einstein, dating

back to 1900, Bachelier first derived the Brownian motion mathematically to study the

pricing of shares and European options. He introduced the idea of the relative value of

a share as [49]

X(t)−X0 (2.56)
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which means the difference between its value X(t) at time t and the the known value

X0 at time 0. He then deduced that X(t) follows a process known as Brownian motion

today. Furthermore, by dividing time into discrete intervals and considering discrete

jumps in the share prices, he arrived finally at the heat equation (2.5). Despite the

fundamental importance of Bachelier’s process as Brownian motion, his work was ignored

and forgotten until it was rediscovered by Jimmie Savage in 1955, who reminded Paul

Samuelson [15]. Samuelson [98, 143, 144, 158] pointed out the deficiency of Bachelier’s

method for taking negative value for prices of shares, and further put forward a correct

quantity, known as the return on the share price, given by

X(t)

X0
. (2.57)

The return is the fractional gain or loss in the share price, which results into a formulation

in which

ln

(
X(t)

X0

)
(2.58)

is regarded as the quantity that undergoes Brownian motion. It is evident that this

formulation sets up the natural range (0,∞) of the price. The improvement over Bache-

lier’s result is so successful that it is the preferred model for share prices to this day.

Samuelson termed the new process GBM which will be presented in the following section.

2.3.1 Geometric Brownian motion

Since GBM was accepted as a reasonable price model, it was used to simulate assets

prices in real life. Figs. 2.7 demonstrate the similarity of geometric Brownian motion

sample paths and real asset prices.

Before we define geometric Brownian motion mathematically, we first introduce

Brownian motion with drift.

Definition 2 (Brownian motion with drift) A stochastic process {B(t), t ≥ 0} is said

to be a Brownian motion process with drift µ and variance σ2 if [140]

1. B(0) = 0.

2. {B(t), t ≥ 0} has independent and stationary increments.

3. B(t) is normally distributed with mean µt and variance σ2t.
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2.3. Brownian motion in finance

Figure 2.7: Top panel: The monthly data of the Dow Jones Industrial Average over
the period from October 1928 to August 2011. Bottom panel: The price simulation
by geometric Brownian motion in Eq. (2.64). Both of these figures are adapted from
Ref. [135].

A Brownian motion with drift could also be defined as the solution to a SDE as follows

dB(t) = µdt+ σdW (t) (2.59)

35



2.3. Brownian motion in finance

where {W (t), t ≥ 0} is standard Brownian motion and the initial condition is that

B(0) = 0. This is how Louis Bachelier specified stock prices in his PhD dissertation.

An equivalent version of this equation can be written as

Ḃ(t) = µ+ σξ(t) (2.60)

with the same initial conditionB(0) = 0, where ξ(t) is the Gaussian white noise as before.

We shall, unless otherwise stated, use this kind of notation for stochastic differential

equations throughout this thesis.

According to the Fokker-Planck equation (2.47), it is rather straightforward to find

the corresponding Fokker-Planck equation for Brownian motion with drift as

∂P (x, t|x0, 0)

∂t
= −µ∂P (x, t|x0, 0)

∂x
+
σ2

2

∂2P (x, t|x0, 0)

∂x2
(2.61)

where P (x, t|x0, 0) is the density function of Brownian motion with drift and the initial

condition is that P (x, 0|x0, 0) = δ(x− x0).

Definition 3 (Geometric Brownian motion) If {B(t), t ≥ 0} is a Brownian motion pro-

cess with drift µ and variance σ2, then GBM process {X(t), t ≥ 0} with drift parameter

µ and variance parameter σ2 is defined by [139]

X(t) = eB(t) = eσW (t)+µt . (2.62)

If X(0) = x, then GBM could be written as

X(t) = xeB(t) (2.63)

where B(t) is Brownian motion with drift and {W (t), t ≥ 0} is standard Brownian mo-

tion.

It is not hard to deduce that the process lnX(t) is normally distributed with mean

lnx + µt and variance σ2t. A Geometric Brownian Motion {X(t), t ≥ 0} could also be

defined as the solution of an SDE of the type of Eq. (2.25) with a linear drift µ(x) = µx

and a linear x-dependent diffusion coefficient σ(x) = σ x

Ẋ(t) = µX(t) + σX(t)ξ(t) (2.64)

with initial value X(0) = x0. Here we interpret the multiplicative term σX(t)ξ(t) in
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Itô’s sense.

Now by using Itô’s formula, we can also find the solution to the geometric Brownian

motion described by Eq. (2.64). Let us introduce a new process Z(t) as

Z(t) = lnX(t) . (2.65)

Applying Itô’s formula to the function u(x) = lnx, we obtain

d

dt
Z(t) = u′(X(t))

(
µ(X(t)) + σ(X(t))ξ(t)) +

σ(X(t))2

2
u′′(X(t)

)
=

1

x
(µx+ σxξ(t))− 1

x2

σ2x2

2

= (µ+ σξ(t))− σ2

2

=

(
µ− σ2

2

)
+ σξ(t) . (2.66)

This equation could now be directly integrated, so we obtain

Z(t) = Z(0) +

(
µ− σ2

2

)
t+ σ

∫ t

0
ξ(τ)dτ , (2.67)

which means that

lnX(t) = lnX(0) +

(
µ− σ2

2

)
t+ σ

∫ t

0
ξ(τ)dτ , (2.68)

and hence we derive

X(t) = x0e
(µ−σ2/2)t+σ

∫ t
0 ξ(τ)dτ . (2.69)

By the relation dW (t) = ξ(t)dt, it could also be written as

X(t) = x0e
(µ−σ2/2)t+σW (t) . (2.70)

With Eq. (2.47) the Fokker-Planck equation for geometric Brownian motion follows

immediately as

∂P (x, t|x0, 0)

∂t
= −µ∂(P (x, t|x0, 0)x)

∂x
+
σ2

2

∂2(P (x, t|x0, 0)x2)

∂x2
(2.71)
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where P (x, t|x0, 0) is the density function of geometric Brownian motion and the initial

condition is that P (x, 0|x0, 0) = δ(x− x0).

Using a Fourier transform, it is straightforward to solve Eq. (2.71):

P (x, t|x0, 0) =
1

x
√

2πσ2t
exp(−(lnx− lnx0 − (µ− σ2/2)t)2

2σ2t
) . (2.72)

With the help of Mathematica software, applying the Laplace transform with respect

to t, we could find that the Laplace transform of the probability density function

P (x, t|x0, 0) of GBM given in Eq. (2.72), which will be used later, P̃ (x, λ|x0, 0) takes

the form as follows

P̃ (x, λ|x0, 0) =
1

xσ
√

2λ+ µ̂2

σ2

exp

(lnx− lnx0)

(
µ̂− σ

√
2λ+ µ̂2

σ2

)
σ2

 , x > x0

P̃ (x, λ|x0, 0) =
1

xσ
√

2λ+ µ̂2

σ2

, x = x0

P̃ (x, λ|x0, 0) =
1

xσ
√

2λ+ µ̂2

σ2

exp

(lnx− lnx0)

(
µ̂+ σ

√
2λ+ µ̂2

σ2

)
σ2

 , x < x0

(2.73)

where µ̂ = µ− 1
2σ

2. These result will become useful later in Ch. 4.

2.3.2 Black-Scholes option pricing theory

Although a description of market processes in terms of stochastic processes was put

forward, it was not clear how it could be applied to investment decisions. The key

breakthrough came with the advent of the BS option pricing formula, for which Robert

Merton and Myron Scholes were awarded the Alfred Nobel Memorial Prize in Economic

Sciences in 1997 [16]. Then the Black-Scholes approach has been extended to a wide

variety of exotic options such as caps, floors, collars, collateralized mortage obligations,

knockout options, swaptions, lookback options, barrier options and so on [34].

An option is a financial contract which gives the holder the right to buy or sell an

asset with certain conditions within a specified period of time. A call option gives the
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holder the right to purchase shares of a stock at a specified price (strike price), on or

before a specific date (expiration time). For instance, a call option on IBM stock provides

its holder the right to buy the IBM shares that underlie the option at the exercise price.

An European option means that it can be exercised only on the expiration time.

A key challenge in mathematical finance is to determine the fair price of a financial

contract. The central concept underlying theories of asset pricing is the condition of

no arbitrage : The price should be such that it is not possible to make a profit by a

self-financing strategy without any probability of an intermediate loss. In other words,

there is no “free lunch”. Mathematically, this statement has been made precise as the

Fundamental Theorem of Asset Pricing: A market model defined on a probability space

(Ω,F ,P) with asset prices X(t) is arbitrage-free if and only if there exists a probability

measure Q equivalent to P such that the discounted asset prices are martingales with

respect to Q [32]. The probabilities Q are also called risk-neutral probabilities. A

risk-neutral asset pricing model thus requires that

〈
e−rtX(t)

〉Q
= X(0) (2.74)

during a given time interval [0, t], where r represents a nominal interest rate [60] and

〈...〉Q denotes an expected value with respect to the risk-neutral probabilities. Eq. (2.74)

indicates that the expected value of the asset price at time t is just that of a risk-free

investment under continuous compounding. So we see that it is not possible to make a

risk-free profit by either (i) borrowing money from a bank account and investing into

the share or (ii) shortselling the share and investing the money into a bank account.

As an example, we can consider GBM. Recall that equivalent probability measures

are those that define the same set of possible scenarios, i.e., let A denote a set of possible

events then P and Q are equivalent if [153]

P(A) = 1 ⇐⇒ Q(A) = 1 (2.75)

Equivalent probability measures can thus always be generated by reweighting the original

probability measure with a process Z(t) that satisfies 〈Z(t)〉P = 1, since in this case

Q(A) = 〈Z(t)1A〉P = 1 if P(A) = 1. If we now choose for Z(t) the process

Z(t) = exp

{
−1

2
θ2t− θW (t)

}
, θ =

µ− r
σ

(2.76)

then the GBM X(t) of Eq. (2.70) for a general drift parameter µ and volatility σ can
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be likewise expressed as

X(t) = x0 exp

{(
r − 1

2
σ2

)
t+ σ W̃ (t)

}
, W̃ (t) = W (t) + θ t, (2.77)

where it can be shown that W̃ (t) is a Brownian motion under the measure Q [153].

Under the risk-neutral measure, the process X(t) thus satisfies the SDE

Ẋ(t) = rX(t) + σX(t)ξ̃(t) (2.78)

with initial value X(0) = x0. As before we interpret the multiplicative term σX(t)ξ(t)

in Itô’s sense and ξ̃(t) is Gaussian white noise under the risk-neutral measure. We see

that the expected value under the measure Q now satisfies the property Eq. (2.74), since

〈X(t)〉Q = 〈Z(t)X(t)〉P

= x0

〈
exp

{
−1

2
θ2t− θW (t) + (r − σ2/2)t+ σ W̃ (t)

}〉P

= x0e
rt

〈
exp

{
−1

2
θ2t+ θσ t− σ2t/2− (θ − σ)W (t)

}〉P

= x0e
rt. (2.79)

Having obtained the risk-neutral probabilities of asset prices, we can express the price

of a financial contract under the condition that no arbitrage is possible as

C(x, t) =
〈
e−r(T−t)Q(X(T ))

〉Q
X(t)=x

(2.80)

where Q(X(T )) is the general payoff function at the expiration time T and 〈. . .〉QX(t)=x

denotes the expected value under the risk-neutral measure conditional on X(t) = x.

The payoff denotes the value of the financial contract at T , e.g., the value of the option.

Eq. (2.80) essentially means that the fair price of the contract (option) at a time t < T is

the expected value of the contract at the expiration time under the risk-neutral measure

discounted to the time t.

Another important concept is market completeness : A market is said to be complete

if any financial contract can be replicated by a self financing strategy (perfect hedge).

The Second Fundamental theorem of Asset Pricing then states that a market is complete

if and only if there is a unique risk-neutral measure Q equivalent to P. For the risk-

neutral GBM discussed above one can indeed show that this measure is unique and thus
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market models based on it are complete [153].

The classical Black-Scholes theory derives a closed pricing form of the European call

option. The standard Black Scholes formula for the option price, first put forward by

F. Black and M. Scholes [17, 49], and by Merton in a different way [105], is based on

some essential assumptions [17], namely

1. The short-term interest rate is known and is constant through time

2. The stock price follows the geometric Brownian motion.

3. The stock pays no dividends or other distributions.

4. The option is “European”, that is, it can only be exercised at the expiration time.

5. There are no transaction costs in buying or selling the stock or the option.

6. It is possible to borrow any fraction of the price of a security to buy it or to hold

it, at the short-term interest rate

7. There are no penalties to short selling. A seller who does not own a security will

simply accept the price of the security from a buyer, and will agree to settle with

the buyer on some future date by paying him an amount equal to the price of the

security on that date

The payoff of a plain European call option is given by

(X(T )−K)+ =

{
X(T )−K, if X(T ) ≥ K

0, if X(T ) < K
(2.81)

where K ≥ 0 the strike price. With the above assumptions, the European call option

price at time t < T under the no arbitrage condition in the Black-Scholes (BS) framework

is

CBS(x, t) =
〈
e−r(T−t)(X(T )−K)+

〉Q
X(t)=x

. (2.82)

The expectation value, Eq. (2.82), can be evaluated in analytical form leading to the

classical Black-Scholes formula [139]

CBS(x, t) = xΦ(ω)−Ke−r(T−t)Φ(ω − σ
√

(T − t)), (2.83)
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where ω is given by

ω =
r(T − t) + σ2(T − t)/2− ln(K/x)√

σ2(T − t)
(2.84)

and Φ denotes the cumulative distribution function of a standard normal random vari-

able Φ(x) =
∫ x
−∞ exp(−u2/2)du/

√
2π.

The classical Black-Scholes formula Eq. (2.83) can also be found as a solution of

a PDE. In order to derive this equation we require the Feynman-Kac formula, which

means that we will find a PDE for the general discounted final time payoff

u(x, t) =
〈
e−

∫ T
t r(X(τ))dτQ(X(T ))

〉
X(t)=x

(2.85)

where X(τ) is defined in Eq. (2.25), r(x) is some specified function and Q(x) is the

payoff at maturity time T > t with the condition X(t) = x . Now let

z1(s) = e−
∫ s
t r(X(τ))dτ

z2(s) = u(X(s), s) (2.86)

where u(x, t) solves the equation

∂u(x, t)

∂t
+ µ(x)

∂u(x, t)

∂x
+
σ2(x)

2

∂2u(x, t)

∂x2
− r(x)u(x, t) = 0 , (2.87)

with final time condition u(x, T ) = Q(x). Taking the derivative of z1(s)z2(s) with

respect to s one obtains

d

ds
(z1(s)z2(s)) = ż1(s)z2(s) + z1(s)ż2(s) . (2.88)

Here there is no additional term compared to the derivative of normal functions as

no correlations exist between functions z1(s) and z2(s). Although the function z1(s)

contains the underlying stochastic process, it is actually an integral of X(τ) which leads

to the loss of higher order terms during the calculation of d
ds (z1(s)z2(s)). By Itô’s
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formula, it follows that

ż1(s) = −r(X(s))z1(s)

ż2(s) =

(
∂u(X(s), s)

∂s
+
∂u(X(s), s)

∂x
(µ(X(s)) + σ(X(s))ξ(s))

+
σ(X(s))2

2

∂2u(X(s), s)

∂x2

)
. (2.89)

Then d
ds (z1(s)z2(s)) in Eq. (2.88) becomes

d

ds
(z1(s)z2(s)) = (−r(X(s))z1(s)) z2(s) + z1(s)

(
∂u(X(s),s)

∂s

+∂u(X(s),s)
∂x (µ(X(s)) + σ(X(s))ξ(s))

+σ(X(s))2

2
∂2u(X(s),s)

∂x2

)
. (2.90)

Taking the conditional expected value on both sides of Eq. (2.90) and noticing that

u(x, s) is the solution of Eq. (2.87), we obtain

d

ds

〈
e−

∫ s
t r(X(τ))dτu(X(s), s)

〉
X(t)=x

=

〈
d

ds
(z1(s)z2(s))

〉
X(t)=x

=

〈
z1(s)

∂u(X(s), s)

∂x
σ(X(s))

〉
X(t)=x

〈ξ(s)〉

= 0 . (2.91)

Here the right hand side can be factorized again because there is no correlation among

these terms. Therefore one derives that 〈z1(s)z2(s)〉X(t)=x is constant for all s ≥ t and

thus

〈z1(T )z2(T )〉X(t)=x = z1(t)z2(t) = u(x, t), (2.92)

where u(x, t) satisfies Eq. (2.87). Eq. (2.87) is known as the Feynman-Kac formula [79].

Let r(x) = r and Q(X(T )) = (X(T ) − K)+ in Eq. (2.85), and we consider the

expected value of GBM under the risk-neutral measure 〈...〉Q. We will find that the

European call option CBS(x, t) in Eq. (2.82), according to the Feynman-Kac formula, is

the solution of the equation(
∂

∂t
+
σ2x2

2

∂2

∂x2
− r + rx

∂

∂x

)
CBS(x, t) = 0 (2.93)
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with the initial and boundary conditions

CBS(x, T ) = max{x−K, 0}, x ≥ 0 (2.94a)

CBS(0, t) = 0, t ≤ T (2.94b)

CBS(x, t)→ x, x→∞ (2.94c)

which is known as the Black-Scholes PDE.

If we let t = 0 and set T = t in the expectation value Eq. (2.82), then we could get

the expression

C
(A)
BS (x, t) =

〈
e−rt(X(t)−K)+

〉Q
X(0)=x

(2.95)

which can be likewise evaluated by the Black-Scholes formula Eq. (2.83). Moreover,

C
(A)
BS (x, t) satisfies the PDE

∂

∂t
C

(A)
BS (x, t) =

(
σ2x2

2

∂2

∂x2
− r + rx

∂

∂x

)
C

(A)
BS (x, t) (2.96)

with the initial and boundary conditions

C
(A)
BS (x, 0) = max{x−K, 0}, x ≥ 0 (2.97a)

C
(A)
BS (0, t) = 0, t ≥ 0 (2.97b)

C
(A)
BS (x, t)→ x, x→∞ (2.97c)

Eq. (2.96) follows directly from the observation that the BS formula Eq. (2.83) implies

∂

∂t
CBS = − ∂

∂T
CBS (2.98)

for CBS given by the expected value Eq. (2.82). In the remainder, we will generally

distinguish between options defined by expected values as in Eq. (2.95) (we shall call

it type A or forward option in our discussion) and in Eq. (2.80) (we shall call it type B

or backward option). Even though there is no essential difference in the standard BS

theory in view of Eq. (2.98), taking into account non-Markovian effects in the underlying

asset pricing model requires us to distinguish the two. The type B option then exhibits

an additional dependency on the initial time 0 and price X(0) (see Ch. 4).
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Chapter 3

Generalized CTRW models

3.1 Introduction to fractional calculus

Since fractional operators are used in our later work, it is necessary to recall some

results on the fractional calculus firstly. The theory of derivatives of non integer order

goes back to Leibniz in 1695. Regarding the notation dny
dtn for the nth derivative of a

function y with respect to t, L’Hospital wrote in a letter to Leibniz: “What if n = 1/2?”

In a response, Leibniz said, “This is an apparent paradox from which, one day, useful

consequences will be drawn” [33]. After more than three century’s effort made by the

scientists, different possible ways are proposed to extend the ordinary calculus to define

fractional derivatives, but we will focus on the Riemann-Liouville definition.

3.1.1 Special functions: Gamma and Mittag-Leffler functions

One of the basic functions of the fractional calculus is Euler’s gamma function Γ(z),

which extends the factorial n! and allows n to take non integer and even complex values.

The Gamma function Γ(z) is defined by the integral [130]

Γ(z) =

∫ ∞
0

e−ttz−1dt , (3.1)

which converges in the right half of the complex plane when Re(z) > 0. Indeed, it
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follows

Γ(x+ iy) =

∫ ∞
0

e−ttx−1+iy

=

∫ ∞
0

e−ttx−1eiy ln(t)

=

∫ ∞
0

e−ttx−1[cos(y ln(t)) + i sin(y ln(t))]dt (3.2)

The expression in the square brackets above is bounded for all t, convergence at infinity

is provided by e−t, and for the convergence at t = 0, we require x = Re(z) > 1.

Some properties of the Gamma function are listed as follows [130]

• One of the basic properties of the Gamma function is

Γ(z + 1) = zΓ(z) , (3.3)

which could be easily proved by integrating by parts

Γ(z + 1) =

∫ ∞
0

e−ttzdt

= [−e−ttz]t=∞t=0 + z

∫ ∞
0

e−ttz−1dt

= zΓ(z) . (3.4)

Obviously, Γ(1) = 1 and by the relation above we have

Γ(n+ 1) = nΓ(n) = n(n− 1)Γ(n− 1) = · · · = n! . (3.5)

While the exponential function ez, plays a very important role in the theory of integer

order differential equations, its one parameter generalization defined as [130]

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, (3.6)

was introduced by Mittag-Leffler [112, 113] and investigated also by Wiman [162]. For

special values of α, the following special cases of the Mittag-Leffler function can be

obtained

• for α = 0, E0(z) = 1
1−z , |z| < 1
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• for α = 1, E1(z) = ez

• for α = 2, E2(z) = cosh(
√
z), where cosh(x) is defined as

cosh(x) =
ex + e−x

2
. (3.7)

Now let us introduce one special case of Mittag-Leffler function as

Eα(atα) =
∞∑
k=0

(atα)k

Γ(αk + 1)
(3.8)

and we are interested in its Laplace transform as we will need it in our later discussion.

As we know that

L{tα−1} =

∫ ∞
0

e−λttα−1dt (3.9)

by letting u = λt we could get

L{tα−1} =
1

λα

∫ ∞
0

e−uuα−1du =
1

λα
Γ(α) . (3.10)

As one could see that

Eα(atα) =
1

Γ(1)
+

atα

Γ(α+ 1)
+

(atα)2

Γ(2α+ 1)
+

(atα)3

Γ(3α+ 1)
+ · · · (3.11)

Applying Laplace transform to each term, as well as L{1} = 1/λ and the result from

Eq. (3.10), it follows that

L{Eα(atα)} =
1

λ
+

a

λα+1
+

(a)2

λ2α+1
+

(a)3

λ3α+1
+ · · ·

=
1

λ

(
1 +

a

λα
+

(a)2

λ2α
+

(a)3

λ3α
+ · · ·

)
=

λα−1

λα − a
, if Re(λ) > |a|1/α . (3.12)

3.1.2 The Riemann-Liouville fractional integral

Let us now turn to the theory of derivatives of arbitrary order, known as fractional

derivatives which have generalized the notions of integer-order differentiation. Through-
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3.1. Introduction to fractional calculus

out our work, the Riemann-Liouville fractional integral [130] is defined through

aD
−α
t f(t) =

1

Γ(α)

∫ t

a

f(τ)

(t− τ)1−αdτ (3.13)

where α > 0 and the subscripts a and t denote the two limits related to the operation

of fractional differentiation. The Riemann-Liouville fractional integral will be used to

construct a fractional derivative or the derivative of arbitrary real order as

aD
β
t f(t) =

dn

dtn
aD

β−n
t f(t) (3.14)

with β > 0 and n−1 ≤ β < n. The Riemann-Liouville type derivative is not the only way

to define the derivative of arbitrary real order, and there are other possible definitions,

such as the Caputo derivative, where the order of differentiation and integration is

changed compared with Eq. (3.14). But we will only consider Riemann-Liouville type

derivative in our discussion. It could be observed that the definition of the fractional

differentiation is non local due to the presence of the integral.

The Laplace convolution of two function f(t) and g(t) is defined as

f(t) ∗ g(t) =

∫ ∞
0

f(t− τ)g(τ)dτ

=

∫ ∞
0

f(τ)g(t− τ)dτ (3.15)

with the assumption that both function are equal to zero for t < 0. The Laplace

transform of the convolution is equal to the product of the Laplace transforms of the

functions

L{f(t) ∗ g(t)} = F (λ)G(λ) (3.16)

under the assumption that both L{f(t)} = F (λ) and L{g(t)} = G(λ) exist. As a

consequence, we observe that the Riemann-Liouville integral with a = 0 can be written

as

0D
−α
t f(t) =

1

Γ(α)

∫ t

0

f(τ)

(t− τ)1−αdτ =
1

Γ(α)
tα−1 ∗ f(t) . (3.17)

Therefore, the Laplace transform is a useful tool in solving fractional order differential

equations. Since the Laplace transform of the function tα−1 is given in Eq. (3.10) as [130],
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3.1. Introduction to fractional calculus

using the formula for the Laplace transform of the convolution, the Laplace transform

of the Riemann-Liouville fractional integral with a = 0 is found as

L{0D−αt f(t)} = λ−αF (λ) (3.18)

Another useful formula is the Laplace transform of the derivative of an integer order n

of the function f(t)

L{f (n)(t)} = λnF (λ)−
n−1∑
k=0

λn−k−1f (k)(0) = λnF (λ)−
n−1∑
k=0

λkf (n−k−1)(0) (3.19)

which could be obtained from the definition by integrating by parts under the assumption

that the corresponding integrals exist.

3.1.3 The Riemann-Liouville fractional operator

The Riemann-Liouville fractional operator, 0D
1−α
t , is defined through [130]

0D
1−α
t f(t) :=

1

Γ(α)

d

dt

∫ t

0

f(τ)

(t− τ)1−αdτ (3.20)

where 0 < α < 1. Finally, the use of the formula for the Laplace transform leads to [130]

L{0D1−α
t f(t)} = λ1−αf̃(λ) (3.21)

where f̃(λ) is the Laplace transform of f(t).

When α = 0, the Riemann-Liouville derivative becomes a normal derivative.

As an example, we consider the fractional Riemann-Liouville derivative 0D
1−α
t of the

power function given by

0D
1−α
t tµ =

Γ(1 + µ)

Γ(µ+ α)
tµ+α−1 . (3.22)

When µ = 0, the equation above becomes

0D
1−α
t 1 =

Γ(1)

Γ(α)
tα−1 , (3.23)

which indicates that the fractional derivative of a constant does not vanish. Indeed, this

49



3.2. CTRW with x–dependent drift and diffusion

is a difference between the fractional derivative and a standard derivative. But if we let

α→ 0 first, we will find that the result is zero, so the limits α→ 0 and µ→ 0 can not

be interchanged.

3.2 CTRW with x–dependent drift and diffusion

The stochastic representation of a force-free CTRW in terms of coupled Langevin equa-

tions has already been given in Eqs. (2.51a)–(2.51b). In the following, we consider the

generalization to arbitrary drift and diffusion terms in the sense of the general SDE

Eq. (2.25). We thus introduce a generalized CTRW model as

Ẋ(s) = µ(X(s)) + σ(X(s))ξ(s) (3.24a)

Ṫ (s) = η(s). (3.24b)

Here, µ(x) and σ(x) satisfy the same conditions as in Eq. (2.25) and ξ(s) is white

Gaussian noise with properties 〈ξ(s)〉 = 0 and 〈ξ(s2)ξ(s1)〉 = δ(s2 − s1). The term

σ(X(s))ξ(s) is still defined in Itô sense so that Eq. (3.24a) defines a normal diffusive

process X(s) in the operational time s. The process T (s) is a one-sided Lévy process

assumed to be statistically independent from X(s). The generalized CTRW is again

defined as the subordinated process Y (t) = X(S(t)), where S(t) is the inverse of the

Lévy subordinator, see Eq. (2.53). Note that the description of T (s) in terms of an

equation of motion drive by the associated noise η(s) is not necessary in principle.

However, the introduction of the Lévy noise is useful when discussing functionals of

Y (t) [22].

To understand the generalized CTRW process, it is important to highlight the non-

Markovian nature of the process due to possibly long waiting times in T (s). Therefore,

single-time or conditional PDFs alone are not sufficient to characterize the process. The
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3.2. CTRW with x–dependent drift and diffusion

one- and two-point PDFs of Y (t) follow in a straightforward way [12]

fY (x, t) = 〈δ(x− Y (t))〉

= 〈δ(x−X(S(t)))〉

=

〈∫ ∞
0

δ(x−X(s))δ(s− S(t))ds

〉
=

∫ ∞
0
〈δ(x−X(s))〉 〈δ(s− S(t))〉 ds

=

∫ ∞
0

fX(x, s)h(s, t)ds (3.25)

and

fY (x2, t2, x1, t1)

= 〈δ(x2 − Y (t2))δ(x1 − Y (t1))〉

= 〈δ(x2 −X(S(t2)))δ(x1 −X(S(t1)))〉

=

〈∫ ∞
0

ds2

∫ ∞
0

δ(x2 −X(s2))δ(s2 − S(t2))δ(x1 −X(s1))δ(s1 − S(t1))ds1

〉
=

∫ ∞
0

ds2

∫ ∞
0
〈δ(x2 −X(s2))δ(x1 −X(s1))〉 〈δ(s2 − S(t2))δ(s1 − S(t1))〉 ds1

=

∫ ∞
0

ds2

∫ ∞
0

fX(x2, s2, x1, s1)h(s2, t2, s1, s1)ds1 (3.26)

which can be extended to n-point by analogy. Here, fX(x, s) and fX(x2, s2, x1, s1) are

the one- and two-point PDFS of X(s) defined in Eq. (3.24a), respectively, and h(s, t) and

h(s2, t2, s1, s1) are the one- and two-point PDFs of S(t). Before we discuss the properties

of S(t) and its associated PDFs in more detail, we provide a basic introduction into Lévy

processes.

3.2.1 Lévy processes

Lévy processes are named after the French mathematician Paul Lévy whose work plays

an instrumental role in bringing together an understanding and characterization of pro-

cesses with stationary independent increments. Generally speaking, a Lévy process is

a continuous time stochastic process with independent and stationary increments. Its

strict definition is given as [32,84]

Definition 4 (Lévy process) A stochastic process {X(t), t ≥ 0} defined on a probability
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3.2. CTRW with x–dependent drift and diffusion

space (Ω,F ,P) is said to be a Lévy process if

1. The paths of X(t) are right continuous with left limits P-almost surely.

2. X(0) = 0.

3. For 0 ≤ t1 ≤ t2, X(t2)−X(t1) is equal in distribution to X(t2 − t1).

4. For 0 ≤ t1 ≤ t2, X(t2)−X(t1) is independent of {X(u), u ≤ t1}.

Comparing with the definition of Brownian motion in Definition 1, one could find that

Brownian motion falls indeed into the class of Lévy processes. However, it contains

many more processes.

As the notion of an infinitely divisible distribution has an intimate relationship with

Lévy process, it is necessary to spend a little time on infinite divisibility.

Definition 5 (Infinitely divisible distribution) A real valued random variable X has an

infinitely divisible distribution if for each positive integer n, there exist a sequence of

independent identically distributed random variables X1, · · · , Xn such that the equality

X1 + · · ·+Xn = X (3.27)

holds in distribution.

Usually the infinitely divisible distribution is characterised by its characteristic exponent

Ψ which is known as the Lévy-Khintchine formula.

Theorem 1 (Lévy-Khintchine formula). [84] A real valued random variable X that is

infinitely divisible has a characteristic exponent Ψ for every real number v

〈
eiXv

〉
=

∫ ∞
−∞

eixvf(x)dx = e−Ψ(v) (3.28)

where f(x) is the PDF of X and

Ψ(v) = iav +
1

2
σ2v2 +

∫ ∞
−∞

(
1− eivx + ivx1|x|<1

)
Π(dx) . (3.29)

Here, Π(dx) is a so called Lévy measure satisfying
∫∞
−∞max(1, x2)Π(dx) < ∞, and

σ ≥ 0 and a are real valued numbers.

According to the definition of a Lévy process it could be found that for any t > 0, X(t)

is a random variable with the property of infinite divisibility. This could be derived
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3.2. CTRW with x–dependent drift and diffusion

from the fact that for any positive integer n

X(t) = X(t/n) + (X(2t/n)−X(t/n)) + (X(3t/n)−X(2t/n))

+ · · ·+ (X((n− 1)t) +X((n− 2)t/n)) + (X(t)−X((n− 1)t/n)) (3.30)

as well as the fact that X has stationary independent increments. Now we can define

for any real number v and t > 0

Ψt(v) = − ln
〈
eiX(t)v

〉
. (3.31)

Then using Eq. (3.30) as well as stationary increments of X, it follows that for any two

positive integers m, n

X(m) = X(1) + (X(2)−X(1)) + (X(3)−X(2)) + · · ·+ (X(m− 1)

−X(m− 2)) + (X(m)−X(m− 1)) = mX(1) , (3.32)

and

X(m) = X(m/n) + (X(2m/n)−X(m/n)) + (X(3m/n)−X(2m/n)) + · · ·

+ (X((n− 1)m) +X((n− 2)m/n)) + (X(m)−X((n− 1)m/n))

= nX(m/n) , (3.33)

which immediately result into

Ψm(v) = − ln
〈
eiX(m)v

〉
= − ln

〈
eimX(1)v

〉
= −m ln

〈
eiX(1)v

〉
, (3.34)

and

Ψm/n(v) = − ln
〈
eiX(m)v

〉
= − ln

〈
einX(m/n)v

〉
= −n ln

〈
eiX(m/n)v

〉
. (3.35)

Here
〈
eimX(1)v

〉
and

〈
einX(m/n)v

〉
can be factorized because of the independent incre-

ments of X. Hence

mΨ1(v) = Ψm(v) = nΨm/n(v) (3.36)
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3.2. CTRW with x–dependent drift and diffusion

which indicates that for any rational t = m/n > 0

Ψt(v) = tΨ1(v) . (3.37)

The same property also holds for irrational t. Hence any Lévy process has the property〈
eiX(t)v

〉
= e−tΨ(v) (3.38)

where Ψ(v) = Ψ1(v) represents the characteristic exponent of X1, which has an infinite

divisible distribution. Next we will discuss special cases.

• Taking Brownian motion with PDF given in Eq. (2.11), one could obtain that∫ ∞
−∞

eixvf(x, t)dx = e−Dtv
2
. (3.39)

It is immediately derived that the characteristic exponent Ψ(v) = Dv2.

• For Brownian motion with drift defined by Eq. (2.60), its PDF could be derived

as

f(x, t) =
1√

2πσ2t
e−

(x−µt)2

2σ2t , (3.40)

Hence, its characteristic function can be found as∫ ∞
−∞

eixvf(x, t)dx = eiµtv−
1
2
σ2tv2

(3.41)

with characteristic exponent Ψ(v) = −iµv + 1
2σ

2v2.

• A compound Poisson process with intensity λ > 0 and jump size distribution F is

a stochastic process X(t) defined as

X(t) =

N(t)∑
i=1

ξi (3.42)

where jump sizes ξi are i.i.d with distribution F and N(t) is a Poisson process

with intensity λ, independent from ξi. Recall that a random viable X is said to be

a Poisson random variable with some parameter λ > 0 if P{X = k} = e−λλk/k!
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3.2. CTRW with x–dependent drift and diffusion

for k = 0, 1, 2, · · · . Then it could be found that

∑
k≥0

eivk
e−λλk

k!
= e−λ

∑
k≥0

eivkλk

k!
= e−λeλe

iv
= e−λ(1−eiv) , (3.43)

from which we see that in the Lévy-Khintchine formula a = σ = 0 and Π =

λδ(x− 1).

A Poisson process {N(t), t ≥ 0} is a Lévy process which is Poisson distributed

with parameter λt at time t > 0. By Eq. (3.43) it follows that〈
eivN(t)

〉
= e−λt(1−e

iv) (3.44)

and hence the characteristic exponent of the Poisson process N(t) is Ψ(v) = λ(1−
eiv). For the compound Poisson process, one could see that〈

eivX(t)
〉

=
〈〈
eiv

∑n
i=1 ξi |N(t) = n

〉〉
. (3.45)

As we could derive that〈〈
eiv

∑n
i=1 ξi |N(t) = n

〉〉
=
∑
n≥0

〈
eiv

∑n
i=1 ξi |N(t) = n

〉
P (N(t) = n)

=
∑
n≥0

〈
eivξ1

〉n e−λt(λt)n
n!

= e−λt
∑
n≥0

〈
eivξ1

〉n (λt)n

n!

= e−λt exp
(
λt
〈
eivξ1

〉)
= exp

(
−λt

(
1−

〈
eivξ1

〉))
= exp

(
−λt

∫ ∞
−∞

(
1− eivx

)
F (x)dx

)
. (3.46)

Hence by introducing Π(dx) = λF (x)dx, in the Lévy-Khintchine formula for a

compound Poisson process, its characteristic exponent has the following form

Φ(λ) =

∫ ∞
0

(
1− e−λx

)
Π(dx) . (3.47)
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3.2. CTRW with x–dependent drift and diffusion

Comparing with Eq. (3.29), we see that a Lévy process can be intuitively interpreted

as a stochastic process containing continuous fluctuations in the form of a Brownian

motion with drift and, in addition, jumps occurring at Poissonian time points with

a certain jump PDF Π. However, the mathematical framework also allows for non-

normalizable functions Π. An important example are stable distributions, which are

infinitely divisible distributions defined as: [39, 84]

Definition 6 (Stable distribution) A random variable, X, is said to have a stable dis-

tribution if the distributional equality

X1 + · · ·+Xn = anX + bn (3.48)

holds for all n ≥ 1, where X1, . . . , Xn are independent copies of X, an > 0 and bn.

By subtracting bn/n from each term on the left hand side of Eq. (3.48), one could see

that this definition indicates that any stable random variable is infinitely divisible. It

has been found that necessarily an = n1/α for α ∈ (0, 2] by Feller [39]. If a stable

distribution observes Eq. (3.48) but with bn = 0, it becomes one smaller class known as

the α-Stable distribution observing

X1 + · · ·+Xn = n1/αX . (3.49)

When α = 2, it corresponds to zero mean Gaussian random variables. Stable random

variables with α ∈ (0, 1) ∪ (1, 2) observing the relation Eq. (3.48) have characteristic

exponents of the form

ψ(v) = c|v|α
(

1− iβ tan
πα

2
sgnv

)
+ ivη (3.50)

where η is real number, β ∈ [−1, 1], and c > 0. Stable random variables with α = 1

observing the relation Eq. (3.48) have characteristic exponents of the form

ψ(v) = c|v|
(

1 + iβ
2

π
ln |v|sgnv

)
+ ivη (3.51)

where η is real number, β ∈ [−1, 1], and c > 0. The connection with the Lévy-Khintchine

formula is established if we note that these characteristic exponents arise from the power-
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3.2. CTRW with x–dependent drift and diffusion

law jump amplitudes σ = 0 and

Π(dx) =

{
c1x
−1−αdx, if x ∈ (0,∞)

c2|x|−1−αdx, if x ∈ (−∞, 0)
(3.52)

where c = c1 + c2, c1, c2 ≥ 0 and β = (c1 − c2)/(c1 + c2) if α ∈ (0, 1)∪ (1, 2) and c1 = c2

if α = 1.

Now let us introduce increasing Lévy processes, which are also known as subordina-

tors because such processes can be used as time changes for other process. Subordinators

are very important ingredients for forming subordinated models in finance [26]. For the

convenience of our discussion of subordinators, we present the Laplace exponent Φ.

Theorem 2 (Lévy-Khintchine formula). If Φ is the Laplace exponent of a subordinator

X(t), then there exist a unique pair (k, d) of nonnegative real number with
∫∞

0 (1 ∧
x2)Π(dx) <∞, such that for every λ ≥ 0〈

e−λX(t)
〉

=

∫ ∞
0

e−λxf(x, t)dx = e−tΦ(λ) (3.53)

with the PDF f(x, t) of X(t) and

Φ(λ) = k + dλ+

∫ ∞
0

(
1− e−λx

)
Π(dx) . (3.54)

In the special case when
∫∞

0 Π(dx) <∞, X(t) is of finite activity which could be written

as a compound Poisson process. In cases where this does not hold, X(t) is an infinite

activity process as it has an infinite number of very small jumps in any finite time

interval which include the one sided Lévy-stable process and the tempered Lévy-stable

process.

The one side Lévy stable distribution Lα with 0 < α < 1 can be represented by

k = d = 0 and

Π(dx) =

{
cx−1−αdx, if x ∈ (0,∞)

0, if x ∈ (−∞, 0)
(3.55)
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3.2. CTRW with x–dependent drift and diffusion

The associated Laplace exponent Φ is thus

Φ(λ) = lim
ε→0

∫ ∞
ε

(
1− e−λx

)
cx−1−αdx

= lim
ε→0

c

[
− x−α

α
(1− e−λx)

∣∣∣∣∞
ε

+
λ

α

∫ ∞
ε

x−αe−λxdx

]
=
cλ

α

∫ ∞
0

x−αe−λxdx. (3.56)

By the variable transform y = λx, it leads to∫ ∞
0

(
1− e−λx

)
cx−1−αdx =

cλα

α

∫ ∞
0

y−αe−ydy

=
cλα

α
Γ(1− α) (3.57)

In particular, by choosing

c =
α

Γ(1− α)
, (3.58)

we see that Lα(x) with 0 < α < 1 has a simple Laplace exponent given by

Φ(λ) = λα. (3.59)

Hence, Lα(x) could be characterized in terms of Laplace transform [10,82]∫ ∞
0

e−λxLα(x)dx = e−λ
α
. (3.60)

We see that Lα(x) is associated with power-law jump amplitudes in the Lévy-

Khintchine formula. In a physics context, it is sometimes desirable to truncate power-

laws at large scales in order to obtain finite moments. A mathematically convenient way

to introduce such a truncation is by exponential tempering. A tempered distribution

has the Laplace exponent

Φ(λ, ζ) =

∫ ∞
0

(
1− e−λx

)
e−ζxΠ(dx)

=

∫ ∞
0

(
1− e−(λ+ζ)x

)
Π(dx)−

∫ ∞
0

(
1− e−ζx

)
Π(dx)

= Φ(λ+ ζ)− Φ(ζ) . (3.61)
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3.2. CTRW with x–dependent drift and diffusion

In particular, the tempered Lévy-stable distribution has the Laplace exponent

Φ(λ, ζ) = (λ+ ζ)α − ζα . (3.62)

Note that in the case, the jump amplitudes Π are still non-normalizable, i.e., the

associated process is of infinite activity. After the simple calculation, one could find

that

Φ(λ, ζ) = (λ+ ζ)α − ζα

= λα
(

1 +
ζ

λ

)α
− ζα

= λα
(

1 +
ζ

λ
α+ · · ·

)
− ζα

≈ λα, λ −→∞ (3.63)

and

Φ(λ, ζ) = (λ+ ζ)α − ζα

= ζα
(

1 +
λ

ζ

)α
− ζα

= ζα
(

1 +
λ

ζ
α+ · · ·

)
− ζα

≈ αζα−1λ, λ −→ 0 , (3.64)

which indicate that for small times (large λ) Eq. (3.62) recovers a Levy-stable process,

while for large times (small λ) it recovers a normal one with exponential waiting times.

This is the whole point of the tempering. The pure subdiffusive CTRW is recovered

when ζ = 0, whereas the normal diffusion is obtained when ζ −→ ∞. Therefore the

tempered Lévy-stable case exhibits crossover scaling between subdiffusive and normal

diffusive regime.

3.2.2 The inverse one-sided Lévy stable process S(t)

The introduction of the intermediate process S(t) in Eq. (2.51a–2.51b), greatly affects

the Markovian process X(s) defined in Eq. (3.24a). Unlike the process X(s), the new

subordinated process Y (t) exhibits non Markovian characteristics when the process T (s)

is of infinite activity, e.g., in the Lévy-stable or tempered Lévy-stable case. We will
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3.2. CTRW with x–dependent drift and diffusion

first focus on the case of T (s) given as a one-sided Lévy-stable process with parameter

0 < α < 1 and characteristic function [41]

〈e−λT (s)〉 = e−λ
αs . (3.65)

The inverse process S(t) can be defined as

S(t) = inf{s > 0 : T (s) > t} , (3.66)

i.e., as a collection of first passage times. By the monotonicity of the process T (s) and

S(t)

s2 > s1 ⇒ T (s2) > T (s1) , (3.67)

one could get the relationship [12]

Θ(s− S(t)) = 1−Θ(t− T (s)) . (3.68)

where Θ(x) is the Heaviside step function

Θ(x) =


1, if x > 0

1/2, if x = 0

0, if x < 0

(3.69)

Eq. (3.68) allows us to derive an evolution equation for the single time PDF of the

the process S(t) as follows. Taking derivative with respect to s in both side of Eq. (3.68),

one could obtain

δ(s− S(t)) =
∂

∂s
Θ(s− S(t)) = − ∂

∂s
Θ(t− T (s)) (3.70)

Let h(s, t) denote the PDF of the process S(t), then by taking the average in Eq. (3.70),

we get

h(s, t) = 〈δ(s− S(t))〉 = − ∂

∂s
〈Θ(t− T (s))〉 (3.71)

As by the definition of the process we have S(0) = 0, see [12], the density function

obeys the initial condition h(s, 0) = δ(s) and thus can be viewed as a special case of a

conditional probability.
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3.2. CTRW with x–dependent drift and diffusion

If we apply the Laplace transform to h(s, t), then Eq. (3.71) results in

h̃(s, λ) =

∫ +∞

0
dte−λth(s, t)

= − ∂

∂s

∫ +∞

0
dte−λt 〈Θ(t− T (s))〉

= − ∂

∂s

〈∫ +∞

0
dte−λtΘ(t− T (s))

〉
= − ∂

∂s

〈
1

λ

∫ +∞

0
dte−λtδ(t− T (s))

〉
= − ∂

∂s

〈
e−λT (s)

λ

〉
= λα−1e−λ

αs . (3.72)

when using the moment generating function Eq. (3.65). From the computation above,

we know that ∫ +∞

0
e−λt〈Θ(t− T (s))〉dt =

1

λ
〈e−λT (s)〉 . (3.73)

Clearly the derivative of the Laplace transform obeys

− ∂

∂s
h̃(s, λ) = λαh̃(s, λ) . (3.74)

After performing the inverse Laplace transform, a fractional equation for h(s, t) is ob-

tained as [12]

∂

∂t
h(s, t) = −0D

1−α
t

∂

∂s
h(s, t) (3.75)

where the operator 0D
1−α
t is the Riemann-Liouville fractional differential operator de-

fined in Eq. (3.20). The fractional evolution equation Eq. (3.75) will play an important

role in our discussion later. On the other hand, according to Eq. (3.71), one can obtain

h(s, t) = − ∂

∂s

∫ t

0

〈
δ(t′ − T (s))

〉
dt′ (3.76)

Denoting by p(t, s) = 〈δ(t− T (s))〉 the PDF of the one sided Lévy-stable process T (s),
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3.2. CTRW with x–dependent drift and diffusion

it could derived that

h(s, t) = − ∂

∂s

∫ t

0
p(t′, s)dt′

= − ∂

∂s

∫ t

0

1

s1/α
Lα

(
t′

s1/α

)
dt′ (3.77)

Here we use the fact that

〈e−λT (s)〉 =

∫ ∞
0

e−λtp(t, s)dt = e−λ
αs = e−(λs1/α)α , (3.78)

as well as Eq. (3.60), so we could derive that

p(t, s) =
1

s1/α
Lα

(
t

s1/α

)
. (3.79)

Then by the variable transformation x = t′/s1/α, Eq. (3.77) results into [10]

h(s, t) = − ∂

∂s

∫ t

s1/α

0
Lα(x)dx

=
t

αs1+1/α
Lα(

t

s1/α
) (3.80)

Alternatively h(s, t) can be found in the form of a series as [12]

h(s, t) =

∞∑
n=0

(−stα)n

Γ(1 + nα)
. (3.81)

3.2.3 The two-point PDF of the process S(t)

Due to the jumps in T (s) representing large waiting times, the inverse process S(t) is non-

Markovian. As such, only specifying the one-point PDF is not sufficient to characterize

the process. The complete multi-point structure has been characterized in [12], which

is briefly summarized here.

If we denote by h(s2, t2, s1, t1) the two point PDF of S(t), then it could be expressed

as

h(s2, t2, s1, t1) = 〈δ(s2 − S(t2))δ(s1 − S(t1))〉

=
∂

∂s2

∂

∂s1
〈Θ(s2 − S(t2))Θ(s1 − S(t1))〉 (3.82)
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3.2. CTRW with x–dependent drift and diffusion

As the result of the monotonicity of T (s) and S(t), see Eq. (3.68), it could be found

that

〈Θ(s2 − S(t2))Θ(s1 − S(t1))〉 = 〈(1−Θ(t2 − T (s2))) (1−Θ(t1 − T (s1)))〉

= 〈1−Θ(t2 − T (s2))−Θ(t1 − T (s1))

+ Θ(t2 − T (s2))Θ(t1 − T (s1))〉 (3.83)

If we take derivatives with respect to s2 and s1 on both sides of Eq. (3.83) as well as

use Eq. (3.82), we find

h(s2, t2, s1, t1) =
∂

∂s2

∂

∂s1
〈Θ(t2 − T (s2))Θ(t1 − T (s1))〉 (3.84)

Applying the two-time Laplace transform to h(s2, t2, s1, t1)

h̃(s2, λ2, s1, λ1) =

∫ +∞

0

∫ +∞

0
dt2dt1e

−λ2t2e−λ1t1h(s2, t2, s1, t1)

=
∂

∂s2

∂

∂s1

∫ +∞

0

∫ +∞

0
dt2dt1e

−λ2t2e−λ1t1 〈Θ(t2 − T (s2))Θ(t1 − T (s1))〉

=
∂

∂s2

∂

∂s1

〈
e−λ2T (s2)e−λ1T (s1)

λ2λ1

〉
(3.85)

By the independence of the increments of T (s), and for the two cases s2 > s1 and

s1 > s2, we can calculate the expected value as follows〈
e−λ2T (s2)e−λ1T (s1)

〉
=

∫ ∞
0

dt2

∫ ∞
0

dt1 e
λ2t2−λ1t1p(t2, s2, t1, s1)

=
〈
e−λ2

∫ s2
0 η(s)dse−λ1

∫ s1
0 η(s)ds

〉
= Θ(s2 − s1)

〈
e
−λ2

∫ s2
s1

η(s)ds−(λ1+λ2)
∫ s1
0 η(s)ds

〉
+ Θ(s1 − s2)

〈
e
−λ1

∫ s1
s2

η(s)ds−(λ1+λ2)
∫ s2
0 η(s)ds

〉
= Θ(s2 − s1)

〈
e
−λ2

∫ s2
s1

η(s)ds
〉〈

e−(λ1+λ2)
∫ s1
0 η(s)ds

〉
+ Θ(s1 − s2)

〈
e
−λ1

∫ s1
s2

η(s)ds
〉〈

e−(λ1+λ2)
∫ s2
0 η(s)ds

〉
= Θ(s2 − s1)e−(s2−s1)λα2 e−s1(λ1+λ2)α

+ Θ(s1 − s2)e−(s1−s2)λα1 e−s2(λ1+λ2)α (3.86)

where p(t2, s2, t1, s1) is two-point PDF of T (s). By performing the inverse Laplace
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3.2. CTRW with x–dependent drift and diffusion

transform, Eq. (3.86) results into

p(t2, s2, t1, s1) =Θ(s2 − s1)
1

s
1/α
1

Lα

(
t1

s
1/α
1

)
1

(s2 − s1)1/α
Lα

(
t2 − t1

(s2 − s1)1/α

)
+ (3.87)

Θ(s1 − s2)
1

s
1/α
2

Lα

(
t2

s
1/α
2

)
1

(s1 − s2)1/α
Lα

(
t1 − t2

(s1 − s2)1/α

)
, (3.88)

which indicate that p(t2, s2; t1, s1) factorizes and is thus a Markovian process. In par-

ticular, when s1 < s2, the conditional PDF p(t2, s2|t1, s1) is

p(t2, s2|t1, s1) =
1

(s2 − s1)1/α
Lα

(
t2 − t1

(s2 − s1)1/α

)
. (3.89)

Coming back to the process S(t), we can evaluate Eq. (3.85) by performing the deriva-

tives with respect to s1 and s2 in Eq. (3.86). We obtain

h̃(s2, λ2, s1, λ1) = δ(s2 − s1)
λα1 − (λ1 + λ2)α + λα2

λ2λ1
e−s1(λ1+λ2)α

+ Θ(s2 − s1)
λα2 [(λ1 + λ2)α − λα2 ]

λ2λ1
e−s1(λ1+λ2)αe−(s2−s1)λα2

+ Θ(s1 − s2)
λα1 [(λ1 + λ2)α − λα1 ]

λ2λ1
e−s2(λ1+λ2)αe−(s1−s2)λα1 , (3.90)

Obviously, Eq. (3.90) is the analytical expression for the Laplace transform of the two-

point PDF. Unfortunately, an exact result for the Laplace inversion is not known and

thus h(s2, t2; s1, t1) needs to be evaluated numerically. The extension from two to n

points can be performed in complete analogy [12].

It is also possible to derive a fractional evolution equation for the two-point PDF.

Starting from the Eq. (3.90), it is evident that(
∂

∂s2
+

∂

∂s1

)
h̃(s2, λ2, s1, λ1) = −(λ1 + λ2)αh̃(s2, λ2, s1, λ1) (3.91)

After performing the inverse Laplace transform in Eq. (3.91), we derive the FDE for

h(s2, t2, s1, t1) as(
∂

∂t2
+

∂

∂t1

)
h(s2, t2, s1, t1) = −

(
∂

∂t2
+

∂

∂t1

)1−α( ∂

∂s2
+

∂

∂s1

)
h(s2, t2, s1, t1) (3.92)

64



3.2. CTRW with x–dependent drift and diffusion

where the fractional operator
(

∂
∂t2

+ ∂
∂t1

)1−α
of two times is defined as

(
∂

∂t2
+

∂

∂t1

)1−α
g(t2, t1) :=

(
∂

∂t2
+

∂

∂t1

)(
∂

∂t2
+

∂

∂t1

)−α
g(t2, t1) (3.93)

and the fractional operator
(

∂
∂t2

+ ∂
∂t1

)−α
in Laplace space is given as

L

{(
∂

∂t2
+

∂

∂t1

)−α
g(t2, t1)

}
=

1

(λ2 + λ1)α
. (3.94)

Noting that L{ρ(t2)δ(t2 − t1)} = ρ̃(λ1 + λ2) for an arbitrary one-parameter function g,

one could obtain ∫ ∞
0

dt2

∫ ∞
0

dt1 e
−λ2t2−λ1t1 1

Γ(α)
tα−1
1 δ(t2 − t1)

=

∫ ∞
0

dt1 e
−(λ2+λ1)t1 1

Γ(α)
tα−1
1 =

1

(λ2 + λ1)α
. (3.95)

as it has been shown that L
{
tα−1

}
= Γ(α)/λα holds. Hence, we see that the fractional

operator in Eq. (3.93) can also be expressed as(
∂

∂t2
+

∂

∂t1

)−α
g(t2, t1) =

1

Γ(α)

(
∂

∂t2
+

∂

∂t1

)∫ min(t2,t1)

0
τα−1

× g(t2 − τ, t1 − τ)dτ . (3.96)

3.2.4 The fractional Fokker-Planck equation for the PDF of Y (t)

The stochastic differential equation in Eq. (3.24a) describes the normal Markovian pro-

cess X(s) and its PDF is given as the solution of the associated Fokker-Planck Equa-

tion [136] as discussed in Sec. (2.1.1)

∂

∂t
fX(x, s) = LFPfX(x, s) , (3.97)

where

LFP = − ∂

∂x
µ(x, s) +

1

2

∂2

∂x2
σ(x, s)2 , (3.98)

and fX(x, s) is the single-point PDF of the process X(s).
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3.2. CTRW with x–dependent drift and diffusion

As usual the initial condition fX(x, 0) determines the distribution of the initial condi-

tions X(0). We now aim at deriving a similar equation for the density function fY (x, t)

of the process Y (t). If we take the derivative with respect to t, we get

∂

∂t
fY (x, t) =

∫ ∞
0

ds
∂

∂t
h(s, t)fX(x, s)

= −0D
1−α
t

(
h(s, t)fX(x, s)|∞0 −

∫ ∞
0

ds h(s, t)
∂

∂s
fX(x, s)

)
= 0D

1−α
t

(∫ ∞
0

ds h(s, t)
∂

∂s
fX(x, s)

)
(3.99)

Here we have used the fact that h(s, t) satisfies the Eq. (3.75) and we have taken into

account the boundary condition h(0, t) = h(∞, t) = 0 into account, which follows, e.g.,

from the Laplace transform Eq. (3.72). Since fX(x, s) obeys the usual Fokker-Planck

equation (3.97) we find that Eq. (3.99) becomes

∂

∂t
fY (x, t) = 0D

1−α
t

(∫ ∞
0

ds h(s, t)LFPfX(x, s)

)
= 0D

1−α
t

(
LFP

∫ ∞
0

ds h(s, t)fX(x, s)

)
= 0D

1−α
t LFPfY (x, t) (3.100)

Hence we end up with the fractional Fokker-Planck equation of the PDF of Y (t) as

follows

∂

∂t
fY (x, t) = 0D

1−α
t

(
− ∂

∂x
µ(x, t) +

1

2

∂2

∂x2
σ(x, t)2

)
fY (x, t). (3.101)

It is of course rather straightforward as well to calculate moments of the process Y (t).

For instance the definition for the expectation value yields

〈Y (t)〉 = 〈X(S(t))〉 =

∫ ∞
0

ds 〈X(s)〉h(s, t) (3.102)

Also, we could calculate the second moment 〈Y 2(t)〉 by

〈
Y 2(t)

〉
= 〈X(S(t))〉 =

∫ ∞
0

ds
〈
X2(s)

〉
h(s, t) . (3.103)

In particular, letting µ(x) = 0 and σ(x) = const in Eq. (3.24a), one could immediately

find that

66



3.3. Subordinated process with general waiting times

〈
X2(s)

〉
= σ2s and obtain

〈
Y 2(t)

〉
= σ2

∫ ∞
0

ds sh(s, t) . (3.104)

By applying Laplace transform, one could find that L{
〈
Y 2(t)

〉
} = σ2/λα+1. Now per-

forming inverse Laplace transform, one obtains a subdiffusive mean-square displacement

〈
Y 2(t)

〉
=

σ2

Γ(α+ 1)
tα . (3.105)

3.3 Subordinated process with general waiting times

In the general case, the waiting time process T (s) is characterized by the characteristic

function 〈
e−λT (s)

〉
= e−Φ(λ)s (3.106)

where Φ(λ) is the Laplace exponent as before, with the representation Eq. (3.54). As

the result of many possible choices for the jump amplitudes Π(dx) and thus Φ(λ), a lot

of different waiting time statistics could be studied. For Φ(λ) = λα with 0 < α < 1, we

recover the CTRW [41,46,160]. If Φ(λ) = λ, this means T (s) = s and the subordination

simply replaces s with t, such that Y (t) describes a normal Brownian diffusion [22].

Following similar steps as above, it is then straightforward to obtain the generaliza-

tions of the n-point PDFs and fractional Fokker-Planck equation for a Laplace exponent

Φ(λ).

3.3.1 Single point PDF and fractional Fokker-Planck equation

Suppose that h(s, t) denotes the probability density function of the process S(t). By

Eqs. (3.67)–(3.70), we likewise have the relation

h(s, t) = 〈δ(s− S(t))〉 = − ∂

∂s
〈Θ(t− T (s))〉 (3.107)
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3.3. Subordinated process with general waiting times

As in Laplace space we know that
∫ +∞

0 e−λt 〈Θ(t− T (s))〉 dt =
〈
e−λT (s)

λ

〉
, then Eq. (3.107)

results in

h̃(s, λ) = − ∂

∂s

〈
e−λT (s)

λ

〉
=

Φ(λ)

λ
e−Φ(λ)s (3.108)

where the property in Eq. (3.106) is used. Taking the derivative of h̃(s, λ) with respect

to s, it is clear that

− ∂

∂s
h̃(s, λ) = Φ(λ)h̃(s, λ) . (3.109)

Multiplying λ/Φ(λ) to both sides of the equation above, it could become

− λ

Φ(λ)

∂

∂s
h̃(s, λ) = λh̃(s, λ) . (3.110)

After performing the inverse Laplace transform, a fractional equation for h(s, t) is de-

rived as

∂

∂t
h(s, t) = −Ft

(
∂

∂s
h(s, t)

)
(3.111)

where the operator Ft is defined as

Ft (g(t)) =
∂

∂t

∫ t

0
K(t− τ)g(τ)dτ (3.112)

with the memory kernel K(t)

K̃(λ) =

∫ ∞
0

e−λtK(t) =
1

Φ(λ)
. (3.113)

We see that when Φ(λ) = λα, the operator Ft becomes the Riemann-Liouville fractional

differential operator 0D
1−α
t as defined in Eq. (3.20).

After the fractional equation governing the dynamics of h(s, t) is obtained, we could

make a step further to derive the fractional Fokker-Planck type equation for the density

function of the subordinated process with general waiting times Y (t) = X(S(t). Also for

general Φ(λ) Eq. (3.25) holds, i.e., fY (x, t) =
∫∞

0 dsfX(x, s)h(s, t). Taking the derivative
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of fY (x, t) with respect to t, we will get

∂

∂t
fY (x, t) =

∫ ∞
0

ds
∂

∂t
h(s, t)fX(x, s)

= −Ft
(
h(s, t)fX(x, s)|∞0 −

∫ ∞
0

ds h(s, t)
∂

∂s
fX(x, s)

)
= Ft

(∫ ∞
0

ds h(s, t)
∂

∂s
fX(x, s)

)
. (3.114)

Here, we use the fact that h(s, t) satisfies Eq. (3.111) and the boundary conditions

h(0, t) = h(∞, t) = 0. As fX(x, s) satisfies the standard Fokker-Planck equation (3.97),

we find that Eq. (3.114) could be converted into

∂

∂t
f(x, t) = Ft

(∫ ∞
0

ds h(s, t)LFPfX(x, s)

)
= Ft

(
LFP

∫ ∞
0

ds h(s, t)fX(x, s)

)
= Ft

(
− ∂

∂x
µ(x, t)fX(x, t) +

1

2

∂2

∂x2
σ(x, t)2fX(x, t)

)
. (3.115)

Clearly, when K(t) = 1, Eq. (3.115) becomes the normal Fokker-Planck equation (3.97).

It is evident that Eqs. (3.102) and (3.103) still hold for calculating the moments of the

process Y (t) here.

3.3.2 The two-point PDF of the process S(t)

Once again let us denote the two time PDF of the process S(t) as h(s2, t2, s1, t1). We

know that in Laplace space, h̃(s2, λ2, s1, λ1) can be expressed as (see Eq. (3.85))

h̃(s2, λ2, s1, λ1) =
1

λ2λ1

∂

∂s2

∂

∂s1

〈
e−λ2T (s2)e−λ1T (s1)

〉
(3.116)

For the two cases s2 > s1 and s1 > s2, we can calculate as in Eq. (3.86)〈
e−λ2T (s2)e−λ1T (s1)

〉
= Θ(s2 − s1)e−s1Φ(λ1+λ2)e−(s2−s1)Φ(λ2)

+

Θ(s1 − s2)e−s2Φ(λ1+λ2)e−(s1−s2)Φ(λ1)
(3.117)

because of the independence of the increments of T (s) as well as the moment generating

function Eq. (3.106). Taking the derivative with respect to s2 and s1 in the equation

69



3.3. Subordinated process with general waiting times

above, Eq. (3.116) results in [22]

h̃(s2, λ2, s1, λ1) = δ(s2 − s1)
Φ(λ1)− Φ(λ1 + λ2) + Φ(λ2)

λ2λ1
e−s1Φ(λ1+λ2)+

Θ(s2 − s1)
Φ(λ2)[Φ(λ1 + λ2)− Φ(λ2)]

λ2λ1
e−s1Φ(λ1+λ2)e−(s2−s1)Φ(λ2)+

Θ(s1 − s2)
Φ(λ1)[Φ(λ1 + λ2)− Φ(λ1)]

λ2λ1
e−s2Φ(λ1+λ2)e−(s1−s2)Φ(λ1) (3.118)

Clearly h̃(s2, λ2, s1, λ1) satisfies(
∂

∂s2
+

∂

∂s1

)
h̃(s2, λ2, s1, λ1) = −Φ(λ1 + λ2)h̃(s2, λ2, s1, λ1) . (3.119)

By the inverse Laplace transform, we could derive a fractional equation for the density

function h(s2, t2, s1, t1)(
∂

∂t2
+

∂

∂t1

)
h(s2, t2, s1, t1) = −Ft2+t1

(
∂

∂s2
+

∂

∂s1

)
h(s2, t2, s1, t1) (3.120)

where the fractional operator Ft2+t1 of two times is defined as

Ft2+t1g(t2, t1) =

(
∂

∂t2
+

∂

∂t1

)∫ t2

0

∫ t1

0
K2(τ2, τ1)g(t2 − τ2, t1 − τ1)dτ2dτ1 (3.121)

The kernel K2(t2, t1) is formally given in Laplace space as

K̃2(t2, t1) :=
1

Φ(λ2 + λ1)
. (3.122)

Like Eq. (3.96), the fractional operator in Eq. (3.121) can also be expressed as

Ft2+t1g(t2, t1) =

(
∂

∂t2
+

∂

∂t1

)∫ min(t2,t1)

0
K(τ)g(t2 − τ, t1 − τ)dτ, (3.123)

where the kernel K is given by Eq. (3.122).

The fractional time derivative in Eq. (3.120) reveals the non-Markovian character-

istics of the processes S(t) and Y (t). With similar steps, the equations governing the

probability density function of the process S(t) for the n times times can be derived,

but we omit details here. Readers could refer to Ref. [22] for more details.
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3.4 Asset pricing models beyond geometric Brownian mo-

tion

The classical Black Scholes theory is based on geometric Brownian motion. Here, by

subordination, we will extend the analysis to two larger classes of processes. For the

convenience of the reader we will give a short review of the definition and some basic

properties of such non-Markovian processes.

3.4.1 Subdiffusive geometric Brownian motion

The first model, which we will investigate has been introduced in Ref. [88] as subdiffusive

geometric Brownian motion. In a nutshell, subdiffusive geometric Brownian motion is

given by Y (t) = X(s(t)), where X(s) is a normal geometric Brownian motion T (s) a

one-sided Lévy-stable process with parameter 0 < α < 1. It can be represented by the

coupled Langevin equations (cf. Eq. (2.51))

Ẋ(s) = µX(s) + σX(s)ξ(s) (3.124a)

Ṫ (s) = η(s), T (0) = 0 (3.124b)

where again µ is the drift parameter , σ is the volatility and ξ(s) a white Gaussian

noise. The two processes ξ(s) and η(s) are assumed to be statistically independent.

The process defined by Eq. (3.124) is a natural extension of the standard risk-neutral

geometric Brownian motion incorporating waiting times with a power-law distribution

as in the CTRW. As a hands on illustration Figure 3.1 shows numerical realisations of the

paths of the processes X(s), Y (t) = X(S(t)), and S(t), respectively. In what follows we

will summarise in more detail the required analytical properties of subdiffusive geometric

Brownian motion.

The Fokker-Planck Equation (2.71) greatly helps us to understand the normal ge-

ometric Brownian motion as it governs the corresponding probability density function

fX(x, t). As usual the initial condition fX(x, 0) determines the distribution of the initial

conditions X(0). We now aim at deriving a similar equation for the density function

fY (y, t) of the process Eq. (3.124) assuming that the density h(s, t) of the stochastic

transformation is given, see Eq. (3.75). Obviously the subdiffusive GBM is a special

case of the process in Eq. (3.24) when µ(X(s)) = µX(s) and σ(X(s)) = σX(s) with

µ, σ = const in Eq. (3.24a). Hence using Eq. (3.101), we end up with the fractional
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Figure 3.1: Sample realizations of the Geometric Brownian motion X(t), subdiffusive
Geometric Brownian motion Y (t) = X(S(t)), and the inverse process S(t), according
to Eq. (3.124) with parameters σ = 1, X(0) = 1, µ = 0.5 and α = 0.7, as obtained
by the algorithms [78, 93] (see also Sec. 3.6). The constant intervals of X(S(t)) show
the heavy-tailed waiting times. It is obvious that the subdiffusive Geometric Brownian
motion is quite different from the Geometric Brownian motion due to the inverse process
S(t). The most evident phenomenon is the appearance of the flat path sections during
some time periods.

Fokker-Planck equation of the PDF of the subdiffusive GBM as follows

∂

∂t
fY (x, t) = 0D

1−α
t

(
(−µ ∂

∂x
x+

σ2

2

∂2

∂x2
x2)fY (x, t)

)
(3.125)

which is the same as that found by Magdziarz [88].

In fact we could solve this equation to get the probability density function fY (x, t)

of subdiffusive GBM by Laplace transform, but considering the redundancy of the pro-

cedure, we resort to another method to derive its solution. According to Eq. (3.25), we

know that the solution of Eq. (3.125) can be expressed as

fY (x, t) =

∫ ∞
0

dsfX(x, s)h(s, t) (3.126)

where fX(x, s) is the probability density function of GBMX(s) in determined in Eq. (3.124a),

and h(s, t) is the density function of S(t) given by Eq. (3.71).
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3.4. Asset pricing models beyond geometric Brownian motion

In Laplace space, we could obtain that

f̃Y (x, λ) =

∫ ∞
0

dt e−λtfY (x, t)

=

∫ ∞
0

ds fX(x, s)h̃(s, λ)

= λα−1

∫ ∞
0

dsfX(x, s)e−λ
αs

= λα−1f̃X(x, λα) (3.127)

where f̃X(x, λ) is the Laplace transform of the probability density function of GBM

given in Eq. (2.73). Using Eq. (3.127), then the exact expression of fY (x, t) in Laplace

space is derived as

f̃Y (x, λ) =
λα−1

xσ
√

2λα + µ̂2

σ2

exp

(lnx− lnx0)

(
µ̂− σ

√
2λα + µ̂2

σ2

)
σ2

 , x > x0

=
λα−1

xσ
√

2Φ(λ) + µ̂2

σ2

, x = x0

=
λα−1

xσ
√

2λα + µ̂2

σ2

exp

(lnx− lnx0)

(
µ̂+ σ

√
2λα + µ̂2

σ2

)
σ2

 , x < x0

(3.128)

By performing the inverse Laplace transform to f̃Y (x, λ) in Eq. (3.128), the exact so-

lution fY (x, t) of Eq. (3.125) could be obtained numerically. Fig. 3.2 shows the change

of the density fY (x, t) with t and x. It is of course rather straightforward as well to

calculate moments of the process Y (t). Again calculations considerably simplify if the

Laplace transform

〈Ỹ (λ)〉 =

∫ ∞
0

exp(−λt)〈Y (t)〉dt (3.129)

is used. Then Eq. (3.129) results in〈
Ỹ (λ)

〉
=

∫ ∞
0

dt e−λt 〈X(S(t))〉 =

∫ ∞
0

ds h̃(s, λ) 〈X(s)〉 . (3.130)
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Figure 3.2: The density function of subdiffusive geometric Brownian motion [See
Eq. (3.128)] with respect to t with parameters σ = 0.2, x0 = 1, x = 2 and µ = 0.15 (left
panel) and to x with parameters σ = 0.2, x0 = 1, t = 5 and µ = 0.15 (right pane).

It is pretty straightforward to derive 〈X(s)〉 = x0e
µs directly from Eq. (3.124a) where

we assume the initial condition X(0) = x0. With the help of Eq. (3.72) we can then

compute the integral to result in 〈Ỹ (λ)〉 = x0λ
α−1/(λα − µ). Performing the inverse

Laplace transformation, with the help of the one-parameter Mittag-Leffler function (see

Eq. (3.6)) we obtain

〈Y (t)〉 = x0Eα(µtα) . (3.131)

With the same procedure as above, we can calculate the second moment 〈Y 2(t)〉 as well

if we take
〈
X2(s)

〉
= x2

0e
2µs+σ2s into account

〈
Y 2(t)

〉
= x2

0Eα((2µ+ σ2)tα) . (3.132)

Obviously, by Eq. (3.132), one could find that the subdiffusive GBM does not actually

represent a subdiffusive process, but for the convenience of our later discussion we still

stick to this name as this price model has already been termed as subdiffusive GBM in

previous literature [88].
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Figure 3.3: Sample realizations of the standard Geometric Brownian motion X(t) (left
panel) with Euler method [57], and the subordinated Geometric Brownian motion
Y (t) = X(S(t)) with Φ(λ) = (λ + ζ)α − ζα (right panel), according to Eqs. (3.124)
and (3.106) with parameters σ = 1, X(0) = 1, r = 0.5, ζ = 0.001 and α = 0.7, as
obtained by the algorithms [8,78,90] (see Sec. 3.6). It is obvious that the subordinated
Geometric Brownian motion is quite different from the standard Geometric Brownian
motion due to the process S(t). The constant intervals of X(S(t)) show the effect of the
heavy-tailed waiting times, which is typical characteristic for subdiffusion.

3.4.2 Subordinated geometric Brownian motion

We now consider the coupled Langevin equations (3.124a)–(3.124b), but generalize the

waiting time process as in Eq. (3.106), i.e., we consider a Laplace exponent Φ(λ). With

Eq. (3.115) we could derive the fractional Fokker-Planck equation for the PDF of the

subordinated GBM immediately as follows

∂

∂t
fY (x, t) = Ft

(
(−r ∂

∂x
x+

σ2

2

∂2

∂x2
x2)fY (x, t)

)
(3.133)

In order to obtain the PDF fY (x, t) of the subordinated GBM, we have to solve this

fractional equation in principle. However, as in the CTRW case, we know already that

the solution is given by the integral transformation Eq. (3.25).
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By analogy with Eq. (3.127) it is clear that in Laplace space

f̃Y (x, λ) =

∫ ∞
0

dt e−λtfY (x, t)

=

∫ ∞
0

ds fX(x, s)h̃(s, λ)

=

∫ ∞
0

ds fX(x, s)
Φ(λ)

λ
e−Φ(λ)s

=
Φ(λ)

λ
f̃X(x,Φ(λ)) (3.134)

where f̃X(x, λ) is the Laplace transform of the probability density function fX(x, s) of

GBM given in Eq. (2.73). By Eq. (2.73), the exact expression of fY (x, t) in Laplace

space is derived as

f̃Y (x, λ)

=
Φ(λ)

λ

1

xσ
√

2Φ(λ) + µ̂2

σ2

exp

(lnx− lnx0)

(
µ̂− σ

√
2Φ(λ) + µ̂2

σ2

)
σ2

 , x > x0

=
Φ(λ)

λ

1

xσ
√

2Φ(λ) + µ̂2

σ2

, x = x0

=
Φ(λ)

λ

1

xσ
√

2Φ(λ) + µ̂2

σ2

exp

(lnx− lnx0)

(
µ̂+ σ

√
2Φ(λ) + µ̂2

σ2

)
σ2

 , x < x0

(3.135)

By performing the inverse Laplace transform of f̃Y (x, λ) in Eq. (3.135), the exact solution

fY (x, t) of Eq. (3.133) could be obtained for general Φ(λ). This allows us to investigate

in particular the effect of the exponential tempering on the waiting times by considering

the tempered Lévy-stable Laplace exponent, Eq. (3.62). Fig. 3.4 indicates the changes

of the density function of subordinated geometric Brownian motion fY (x, t) according

t and x for different α at fixed µ. Fig. 3.5 shows the changes of the density function

fY (x, t) of the subordinated geometric Brownian motion according t and x based on

different value of µ.

With Eqs. (3.102)–(3.103) and (3.108), the first moment of subordinated geometric
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Figure 3.4: The density function f(x, t) of subordinated geometric Brownian motion
with Φ(λ) = (λ + ζ)α − ζα with respect to t with parameters σ = 0.2, x0 = 1, x = 2,
ζ = 0.005 and r = 0.15 (left panel) and to x with parameters σ = 0.2, x0 = 1, ζ = 0.005,
t = 5 and r = 0.15 (right panel).
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Figure 3.5: The density function of subordinated geometric Brownian motion with
Φ(λ) = (λ + ζ)α − ζα with respect to t with parameters σ = 0.2, x0 = 1, x = 2
α = 0.7 and r = 0.15 and to x with parameters σ = 0.2, x0 = 1, α = 0.7, t = 5 and
r = 0.15.
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Brownian motion in Laplace space could be derived as follows

〈Ỹ (λ)〉 =

∫ ∞
0

exp(−λt)〈Y (t)〉dt

=

∫ ∞
0

exp(−λt) 〈X(S(t))〉 dt

=

∫ ∞
0

h̃(s, λ) 〈X(s)〉 ds

=

∫ ∞
0

x0 exp(rs)
Φ(λ)

λ
exp(−Φ(λ)s)ds

= x0
Φ(λ)

λ

∫ ∞
0

exp(−[Φ(λ)− r]s)

=
x0Φ(λ)

λ(Φ(λ)− r)
. (3.136)

With the similar steps, the second moment of subordinated geometric Brownian motion

in Laplace space is found as〈
Ỹ 2(λ)

〉
=

∫ ∞
0

dt e−λt
〈
X2(S(t))

〉
=

∫ ∞
0

ds h̃(s, λ)
〈
X2(s)

〉
=

∫ ∞
0

ds
Φ(λ)

λ
e−Φ(λ)sx2

0 e
2rs+σ2s

= x2
0

Φ(λ)

λ

∫ ∞
0

ds e−(Φ(λ)−2r−σ2)s

= x2
0

Φ(λ)

λ

1

Φ(λ)− 2r − σ2
(3.137)

as we know that for normal geometric Brownian motion given by Eq. (3.124a),
〈
X2(s)

〉
=

x2
0e

2µs+σ2s and 〈X(s)〉 = x0e
µs.

3.5 Evidence for CTRW-type pricing models from finan-

cial data

Stochastic models expressed in terms of a subordination have been proposed early on

for the modelling of asset prices in financial markets [30, 96, 131]. Approaches based

on a CTRW description as outlined in Sec. 2.2.1, focusing on waiting times between

price changes that do not follow an exponential distribution, have become popular more
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3.5. Evidence for CTRW-type pricing models from financial data

recently at the turn of the millennium. In a financial interpretation of a CTRW the

particle jumps will be represented by the log-returns ξi = lnX(ti+1)− lnX(ti) and the

waiting times by the delay ηi = ti+1 − ti between transactions, where N(t) transactions

take place in a given time interval [0, t], see Eq. (2.54). In Ref. [129], using this approach,

1000 US stocks have been analyzed in a two-year period 1994-95. The cumulative

distribution of N(t) has indeed been shows to follow a power-law Pr(N(t) > x) ∼
x−β with a mean-value β = 3.4 ± 0.05, see Fig. 3.6. From an investigation of the

correlation function of N(t) the existence of long-range correlations in time has also

been demonstrated.

Figure 3.6: The cumulative distribution of N(t). This figure is adapted from Ref. [129].

A substantial amount of work on waiting times in financial data has been performed

by Scalas et al. [51, 94, 132, 145–149]. Assuming that ξi and ηi are independent and

identically distributed random variables, one can consider the survival probability as [51]

Ω(η) = 1−
∫ η

0
ψ(η′)dη′ =

∫ ∞
η

ψ(η′)dη′, ψ(η) = − d

dt
Ω(η) (3.138)

where ψ(η) is the PDF of the waiting times. The integral
∫ η

0 ψ(η′)dη′ gives the prob-

ability that the price changes at some instant in the interval [0, η). Thus Ω(η) is the

probability that the price does not change during a time interval of duration η after a
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3.5. Evidence for CTRW-type pricing models from financial data

jump [51]. In particular, for Markovian process, one could derive that

ψ(t) =
1

T
e−η/T , η ≥ 0 , (3.139)

where T is the average waiting time and consequently

Ω(η) = e−η/T . (3.140)

On the other hand, a CTRW with power-law distributed waiting times corresponds to

a survival probability [148]

Ω(t) = Eα(−tα) (3.141)

given as a Mittag-Leffler function generalizing the simple exponential decay of the

Markovian case.

In Ref. [94], the anomalous non-exponential behaviour of the survival probability

has indeed been observed for BUND future prices. Using a two-parameter fit with the

function

Ω(η) = Eα(−(γη)α) , (3.142)

where γ is a time-scale factor depending on the time unit excellent agreement with

the empirical data can be observed, see Fig. 3.7 . In Ref. [132] the survival proba-

bility obtained from high-frequency data of General-Electric shares has been shown to

follow a stretched exponential exp(−(η/η0)α/Γ(1 + α)), see Fig. 3.8. Since the Mittag-

Leffler asymptotically converges to a stretched exponential for small times, this study

also provides evidence for power-law waiting times in financial data. The same phe-

nomenon is also found by the empirical analysis of 30 New York Stock Exchange (NYSE)

stocks [147]. In Ref. [149] the authors argue that the waiting times between consecutive

trades are non-exponentially distributed after carefully examining nearly 800,000 orders

and 540,000 trades of Glaxo Smith Kline and Vodafone stocks.

The anomalous non-exponential behaviour of the waiting time distribution manifest

in the survival probability has been corroborated by the market analysis of other groups

as well. A study of two completely different financial markets, namely the Irish stock

market during the 19th century over the period 1850 to 1854 and the Japanese yen

currency fluctuations during the latter part of the 20th century (1989–1992) have been

performed in Ref. [141]. Both of the data sets confirm power law tails in the survival
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Figure 3.7: Survival probability for BUND futures with delivery date:June 1997. The
line (——) indicates the Mittag-Leffler function with parameters α = 0.96, γ = 1/12.
The figure is adapted from Ref. [94].

Figure 3.8: Survival probability for the high-frequency data of General-Electric shares.
The solid line (——) indicates the stretched exponential with parameters α = 0.7, η0 =
6.6. The figure is adapted from Ref. [132].

probability. However, only the Irish stock market data follows also the Mittag-Leffler

decay over a considerable range, see Fig. 3.9 A decay following a stretched exponential

has been observed for bond futures in the Korean Futures Exchange market [73].
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Figure 3.9: Average survival probability function for Irish stock market data between
1850 and 1854. Fit parameters for Mittag-Leffler function with parameters α = 0.4, γ =
0.025. The figure is adapted from Ref. [141].

A power-law behaviour of the waiting times between successive price changes has

been directly observed in Ref. [86] for the Korean stock market index KOSPI. The

quantitative investigation of the calm–time intervals of price changes for 800 companies

listed in the Tokyo Stock Exchange also support that the interval distribution obeys a

power law decay [71] .

After analysing the sequence of time intervals between consecutive stock trades of

thirty companies representing eight sectors of the US economy over a period of four

years, the authors in Ref. [63] point out that their results “ support the hypothesis that

the dynamics of transaction times may play a role in the process of price formation, and

may have implications for financial modelling based on continuous time random walks

and subordinated-processes.”

Recently, there has been an increasing interest on the CTRW formalism which are

used to describe the price processes [48, 65, 66]. All these studies establish that the

CTRW with either power-law distributed waiting times or waiting times following a

more complicated distribution is a useful model to explain the statistical properties of

82



3.6. Numerical simulation of sample path

financial data. The investigation of other problems based on CTRW have been put

forward, such as mean exit times of asset prices [116] and option pricing [91]. In Ch. 4

the problem of pricing options with CTRW-type asset pricing models is discussed in

detail.

3.6 Numerical simulation of sample path

Finally, let us introduce a algorithm for numerical simulation sample path of subordi-

nated GBM Y (t) = X(S(t)) given by Eq. (3.124). The algorithm for subordinated GBM

has been given by authors [78,93]. Here we present a summary. With Euler scheme, we

can obtain the discrete analogy of Eq. (3.124) as

Xk = Xk−1 +Xk−1(r∆s+ σ
√

∆sζk) (3.143a)

Tk = Tk−1 + ηk (3.143b)

where ζk is a standard Gaussian random variable with zero average and variance 1. The

variable ηk a random variable, which can be derived as

ηk = (∆s)1/α sin[α(Vk + π
2 )]

[cos(Vk)]1/α

(
cos[Vk − α(Vk + π

2 )]

Wk

)(1−α)/α

(3.144)

where Vk is uniformly distributed on [−π/2, π/2] and Wk has exponential distribution

with mean 1, which could be generated as follows

Vk = π(ζ1 −
1

2
)

Wk = − ln(1− ζ2) . (3.145)

To get the numerical simulation of trajectories X(S(t)) at discrete times tj = k∆t, j =

0, · · · , N , the following algorithm can be applied

• Initialization of X(0) = 1 and T (0) = 0, set s = 0.

• For each j, increase s by ∆s (we choose ∆s < ∆t), and increase Xk and Tk by

Eq. (3.143a)–(3.143b) while Tk < tj .

• Set X(S(tj)) = Xk.
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As far as for subordinated GBM, the procedure is quite similar. The different is that

here the random variable ηk in Eq. (3.143b) is required to generated as follows [8,78,90]

• Generate exponential random variable W with man 1/λ.

• Generate a random variable η by Eq. (3.144).

• Let ηk = η when W > η, otherwise go to step 1.

We use the simulation method above to study the mean and the second moment of subd-

iffusive and subordinated GBM, respectively. It is obviously that the theoretical results

agree well with the simulation results. Fig. 3.10 shows the mean and the second mo-

ment of subdiffusive geometric Brownian motion for different α, respectively. Fig. 3.11
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Figure 3.10: Mean (left panel) [see Eq. (3.131)] and second moment (right panel) [see
Eq. (3.132)] of subdiffusive geometric Brownian motion with parameters σ = 0.01, x0 =
1 and µ = 0.02. Ensembles of 1000 trajectories of X(S(t)) are simulated with the
algorithms [78,93]. Lines correspond to the analytic expressions of Eqs. (3.131)–(3.132)
and the simulation results (markers) agree well with the exact expressions.

shows mean and the second moment of the subordinated geometric Brown motion for

different α. Fig. 3.12 clearly indicates mean and the second moment of the subordinated

geometric Brown motion with Φ(λ) = (λ+ ζ)α − ζα for different ζ.
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Figure 3.11: Sample mean [see Eq. (3.136)](left panel) and second moment [see
Eq. (3.137)] (right panel) of subordinated geometric Brownian motion with Φ(λ) =
(λ + ζ)α − ζα as well as the parameters σ = 0.01, x0 = 1, µ = 0.02 and ζ = 0.005.
Ensembles of 1000 trajectories of X(S(t)) are simulated with the algorithms [8, 78, 90].
Lines correspond to the analytic expressions of Eqs. (3.136)–(3.137) and the simulation
results (markers) agree well with the exact expressions.
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Figure 3.12: Sample mean [see Eq. (3.136)] (left panel) and second moment [see
Eq. (3.137)] (right panel) of subordinated geometric Brownian motion with Φ(λ) =
(λ + ζ)α − ζα as well as the parameters σ = 0.01, x0 = 1, µ = 0.02 and α = 0.5.
Ensembles of 1000 trajectories of X(S(t)) are simulated with the algorithms [8, 78, 90].
Lines correspond to the analytic expressions of Eqs. (3.136)–(3.137) and the simulation
results (markers) agree well with the exact expressions.
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Chapter 4

European call option pricing

formula

The key issue in relating option pricing and financial market is appropriate construction

of price model. The lack of prediction of price in the future makes it impossible to form

a fair price for an option. As a result we cannot impose any efficient analysis on option

pricing and assets’ price. Moreover, there is no way to consider how far the price of an

option can go in next months, since we only have the history of the assets price and no

mathematical analysis can be performed to exploit the future price. To circumvent this

problem, an effective modelling solution is necessary and required. In the next chapter

a more general model for the assets’ price will be presented, describing the prices as

a subordinated process with general waiting times. Before going through this process

however, let us start with European call option pricing with generalised CTRW model.

Supposing that the assets price model follows subdiffusive GBM Eq. (3.124), which is

no longer a Markovian processes, new characteristics for this model may arise. Fig. 4.1

gives illustrations of Markovian and non-Markovian processes, respectively. For Marko-

vian processes, the conditional probability p(x, t|x0, t0) at time t is entirely determined

by the initial position x0 at time t0 shown by the left one of Fig 4.1. However, for

non-Markovian processes, conditional probabilities have a more intricate structure. For

instance, the conditional probability p(x, t2|x1, t1, x0, t0) at time t2 now explicitly de-

pends on the entire history. As a result of non-Markovian properties, the subdiffusive

processes Y (t) is much more complex than the simple assets processes X(t), which gives

new feature to our new assets price model.
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Figure 4.1: Illustration of the difference between Markovian and non-Markovian pro-
cesses. The conditional probability density function p(x, t|x0, t0) of a Markovian pro-
cesses at time t only depends on the initial position x0 at time t0. However, for non-
Markovian processes, the conditional probability p(x, t2|x1, t1, x0, t0) at time t2 not only
depends on the initial position x1 at time t1 but also on the starting position x0 at time
t0

In the classical Black Scholes setup the expiration date t together with the initial

data x0 at t = 0 determines the cost of the option. The picture is entirely unchanged if

given data x0 at t = 0 we start the trading at t1 = t with data x1 and expiration time

T . Because of the assumed Markovian property of the asset price the information x0 at

t = 0 drops from the expression and we can still apply the Black Scholes theory with

expiration time T − t.

In the case considered here, i.e., assuming a non Markovian asset price the situation

is fundamentally different, and both types of options will differ. We call an option to be

of type A if, along the lines of the traditional Black Scholes theory, given initial data x0

at time t = 0 the expiration date is given by t. However, if we start trading at t with

initial data x1 and expiration time T then the additional knowledge of the asset at t = 0

with value x0 can make a difference. We will call the corresponding option an option of

type B.

An additional layer of complexity is added by the way how to take the interest rate,

i.e., the discounting into account. We can set the discounting and the trading dates

according to the subordinated time, i.e., at S(0) = 0 and S(t) or at the real time t = 0

and t. We will call these different types of options cost 1 and cost 2.

As discussed in Ch. 2 an important requirement for option pricing is that it should

not include arbitrage chances, or equivalently that a risk-neutral measure can be found.
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In order to find a risk-neutral measure we need to show that there exists a probability

measure Q equivalent to P such that Eq. (2.74) holds. For a complete model, this mea-

sure also needs to be unique. For the pricing model considered here, namely subdiffusive

geometric Brownian motion Y (t) given by Eq. (3.124), one needs to distinguish the cases

of r = 0 and 6= 0.

The case r = 0 has been discussed in detail in Ref. [89]. In this case, a risk-neutral

measure is given by replacing Z(t) of Eq. (2.76) by

H(t) = Z(S(t)) = exp

{
−1

2
θ2S(t)− θW (S(t))

}
, (4.1)

with θ = µ/σ. It is straightforward to show that then

〈Y (t)〉Q = 〈Y (t)H(t)〉P

= 〈X(S(t))Z(S(t))〉P

=

∫ ∞
0

ds h(s, t) 〈X(s)Z(s)〉P

= x0

∫ ∞
0

ds h(s, t)

= x0. (4.2)

Therefore Y (t) is a martingale under Q, i.e., it satisfies Eq. (2.74) for r = 0. The key

is to recognize that 〈X(s)Z(s)〉P with Z given by Eq. (2.76) is just GBM under the

risk-neutral measure satisfying Eq. (2.79).

Moreover, it has been shown in Ref. [88] that this risk-neutral measure is not unique,

indicating the incompleteness of the market according to the second fundamental theo-

rem of asset pricing [32]. Thus it is not possible to find a self-financing strategy. Because

of the incompleteness of the market, different probability measures will result into differ-

ent prices. But the probability measure Q defined in Eq. (4.1) has its own advantage. It

is clear that in the Brownian limit, where S(t)→ t, Q becomes the probability measure

of the classical Black-Scholes model, which is arbitrage free and complete. Therefore it

can be used to compare the obtained prices of of the subdiffusive and classical models.

However, for r 6= 0, the situation is more complicated. In Ref. [120] it has been

suggested that by using Eq. (4.1) with θ = (r + µ)/σ as an equivalent measure, Y (t)

will satisfy Eq. (2.74) even for r 6= 1. Assuming that there might have been a typo in

Ref. [120] and instead θ should be chosen as θ = (µ − r)/σ as in Eq. (2.76), we obtain
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for the expected value under Q

〈Y (t)〉Q =

∫ ∞
0

ds h(s, t) 〈X(s)Z(s)〉P

= x0

∫ ∞
0

ds ers h(s, t)

= x0Eα(rtα) (4.3)

using the result Eq. (2.79). Clearly, multiplying both sides by e−rt will not result in a

martingale and Eq. (2.74) is violated. It is still an open question whether an equivalent

measure can be found for the r 6= 0 case such that Eq. (2.74) holds. At this point it

is difficult to see how the properties 〈Z(t)〉P = 1 and Eq. (2.74) can be simultaneously

satisfied.

On the other hand, we see that Y (t) under the equivalent measure Eq. (4.1) and

θ = (µ− r)/σ satisfies the property〈
e−rS(t)Y (t)

〉Q
=

〈
e−r S(t)X(S(t))Z(S(t))

〉P
=

∫ ∞
0

ds h(s, t)e−r s 〈X(s)Z(s)〉P

= x0

∫ ∞
0

ds h(s, t)

= x0. (4.4)

Therefore a modified no arbitrage statement holds: Rather than discounting in the

physical time t, the asset price needs to be discounted with respect to the auxiliary time

S(t). As for the case r = 0 we do not expect the resulting market model to be complete

although this has not been proven.

For the rest of the thesis, we will investigate the subdiffusive option pricing for these

two different types of discounting. For the type A option we have the two versions with

option prices being determined by

C
(A)
1 (x, t) =

〈
e−rS(t)(X(S(t))−K)+

〉Q
X(0)=x

(4.5)

and

C
(A)
2 (x, t) =

〈
e−rt(X(S(t))−K)+

〉Q
X(0)=x

(4.6)

respectively, where 〈· · · 〉Q denotes the conditional expectation values with respect to the
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4.1. Type A option cost in subdiffusive regime

risk-neutral measure Q of Eq. (4.1) with θ = (µ − r)/σ. The same considerations can

be applied for type B options which take the additional information from the memory

into account. A type B cost 1 option is thus determined by

C
(B)
1 (x, T, t) =

〈
e−r(S(T )−S(t)) (X(S(T ))−K)+

〉Q
X(S(t))=x

(4.7)

and the price for the cost 2 option reads

C
(B)
2 (x, T, t) = e−r(T−t)

〈
(X(S(T ))−K)+

〉Q
X(S(t))=x,X(0)=x0

(4.8)

The last expression clearly displays a dependence on the additional information available

at time t = 0. This additional constraint drops from the type B cost 1 option as the

time points and the discounting is based on the subordinate time and the process X(s),

i.e., the asset price on the time scale S(t), is still Markovian.

Crucially, all four option prices reduce to the ones of the standard Black-Scholes the-

ory when the subdiffusive GBM reduces to conventional GBM for S(t)→ t. The precise

way how this limit is achieved depends on the model for S(t) expressed by the Laplace

exponent φ. In the conventional power-law case φ(λ) = λα, this limit is simply α → 1.

Even though none of the option prices Eqs. (4.5)–(4.8) satisfies a no arbitrage condition

in the traditional sense, we still expect to be able to obtain useful information due to

the correspondence with the standard Black-Scholes option prices in the appropriate

limit. In fact, pricing models violating the no arbitrage condition Eq. (2.74), such as

fractional Brownian motion, have been widely discussed in the mathematical finance

literature. For convenience we will drop in the remainder of this thesis the superscript

Q. All expected values are implicitly assumed with respect to the measure Q of Eq. (4.1)

with θ = (µ− r)/σ.

This chapter is organized as follows. We begin by showing the difference of two kinds

of subdiffusive type A options with generalised CTRW model. Subsequently, we will

study subdiffusive type B options. Finally, the summary and conclusion are given.

4.1 Type A option cost in subdiffusive regime

First we will investigate the subdiffusive cases for type A option cost in the following

sections. The two different versions of costing will be discussed separately.
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4.1. Type A option cost in subdiffusive regime

4.1.1 Subdiffusive type A option cost 1

Let us assume that the asset price follows the subdiffusive geometric Brownian motion.

If we assume that the discounting takes place on the subordinated timescale the price

of the option is given by Eq. (4.5) and can be thus written as

C
(A)
1 (x, t) =

〈
e−rS(t)(X(S(t))−K)+

〉
X(0)=x

=

〈∫ ∞
0

dse−rs(X(s)−K)+δ(s− S(t))

〉
=

∫ ∞
0

ds
〈
e−rs(X(s)−K)+

〉
h(s, t)

=

∫ ∞
0

dsCBS(x, s)h(s, t) (4.9)

where CBS(x, s) denotes the classical Black Scholes expression, Eq. (2.95) and the den-

sity of the inverse one-sided Lévy stable process of order α, h(s, t), is determined by

Eq. (3.71). The other parameters have their usual meaning, i.e., r is the risk free rate,

t is the exercise date, and K the strike price. Such an expression can be fairly easily

dealt with if we apply the Laplace transform to Eq. (4.9)

C̃
(A)
1 (x, λ) =

∫ ∞
0

dsCBS(x, s)h̃(s, λ)

=

∫ ∞
0

dsCBS(x, s)λα−1e−λ
αs

= λα−1

∫ ∞
0

dsCBS(x, s)e−λ
αs

= λα−1C̃BS(x, λα) (4.10)
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4.1. Type A option cost in subdiffusive regime

The Laplace transform C̃BS(x, λ) of the Black-Scholes formula can be for instance found

in [110] as follows,

C̃BS(x, λ) =

(
m2(λ+ r)

λ+ r
+

1−m2(λ+ r)

λ

)
K1−m1(λ+r)

(m1(λ+ r)−m2(λ+ r))

× xm1(λ+r), x ≤ K (4.11a)

C̃BS(x, λ) =

(
m1(λ+ r)

λ+ r
+

1−m1(λ+ r)

λ

)
K1−m2(λ)

(m1(λ+ r)−m2(λ+ r))

× xm2(λ+r) +
x

λ
− K

r + λ
, x ≥ K (4.11b)

where we have introduced the abbreviations

m1/2(Λ) =
−(r − σ2/2)±

√
(r − σ2/2)2 + 2σ2Λ

σ2
. (4.12)

Replacing λ with λα in Eq. (4.11) and substituting it into Eq. (4.10), yields the final

result. It is however difficult to perform the inverse Laplace transform by analytical

methods and to obtain an explicit analytic formula for the option price in the time

domain. Alternatively we can use the Talbot method [2, 3, 157] to compute the option

value in the time domain, by numerical inversion of the Laplace transform with the help

of the Mathematica software package [1].

When r = 0, our subdiffusive option cost in Eq. (4.9) becomes Black-Scholes formula

in subdiffusive regime [88].

While Eq. (4.10) gives the solution in the Laplace space and we will used this result

to illustrate as well the use of fractional BS equations for the computation of the option

price. For that purpose let us first derive the equation of motion for the quantity

Eq. (4.5). By differentiating C
(A)
1 (x, t) in Eq. (4.9) with respect to t, we get

∂

∂t
C

(A)
1 (x, t) =

∫ ∞
0

dsCBS(x, s)
∂

∂t
h(s, t) . (4.13)
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4.1. Type A option cost in subdiffusive regime

Using Eq. (3.75) this can be rewritten as

∂

∂t
C

(A)
1 (x, t) = −0D

1−α
t

(∫ ∞
0

dsCBS(x, s)
∂

∂s
h(s, t)

)
= −0D

1−α
t

(
h(s, t)CBS(x, s)|∞0 −

∫ ∞
0

ds
∂

∂s
CBS(x, s)h(s, t)

)
= −0D

1−α
t

(
−
∫ ∞

0
ds(

σ2x2

2

∂2

∂x2
CBS(x, s)− rCBS(x, s)

+rx
∂

∂x
CBS(x, s))h(s, t)

)
= −0D

1−α
t

(
−σ

2x2

2

∂2

∂x2
+ r − rx ∂

∂x

)
C

(A)
1 (x, t)

= 0D
1−α
t

(
σ2x2

2

∂2

∂x2
− r + rx

∂

∂x

)
C

(A)
1 (x, t) (4.14)

where we have again used the appropriate boundary conditions for h(s, t) at t = 0 and

t = ∞. The resulting fractional BS equation has to be supplemented with the initial

and boundary conditions

C
(A)
1 (x, 0) = max((x−K), 0), x ≥ 0 (4.15a)

C
(A)
1 (0, t) = 0, t ≥ 0 (4.15b)

C
(A)
1 (x, t)→ x, x→∞ (4.15c)

which follow immediately from Eq. (4.5) if we use S(0) = 0 and the positivity of the

process defined by Eq. (3.66). Of course in the special case α = 1, the fractional equa-

tion (4.14) becomes the normal Black-Scholes equation Eq. (2.96). The result computed

previously in Eq. (4.10) can be obtained as well from the fractional BS equation if

we follow the similar procedure described in [110]. Applying the Laplace transform to

Eq. (4.14) we obtain an ordinary differential equation (ODE)

σ2x2

2
C̃
′′(A)
1 (x, λ) + rxC̃

′(A)
1 (x, λ)− (λα + r)C̃

(A)
1 (x, λ) = −C

(A)
1 (x, 0)

λ1−α . (4.16)

The inhomogeneous part is given by the initial condition, Eq. (4.15), and we will discuss

the two cases x ≤ K and x > K separately. For x ≤ K the inhomogeneous part vanishes

and the general solution of Eq. (4.16) is given by the homogeneous solution

C̃
(A)
1 (x, λ) = Axm1(λα+r) +Bxm2(λα+r) (4.17)
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4.1. Type A option cost in subdiffusive regime

where we have used the abbreviations introduced in Eq. (4.12). Obviously we have

m1 > 0 > m2. In order to ensure for a nonsingular solution in the limit x→ 0 we need

to require that B = 0. Hence we are left with

C̃
(A)
1 (x, λ) = Axm1(λα+r), x 6 K . (4.18)

In the case x > K the inhomogeneous part of Eq. (4.16) is given by C
(A)
1 (x, 0) =

max((x−K), 0) = x−K and with a suitable particular solution of the nonhomogeneous

equation the general solution then reads

C̃
(A)
1 (x, λ) = Axm1(λα+r) +Bxm2(λα+r) +

x

λ
− K

λ1−α(λα + r)
, x ≥ K . (4.19)

Here boundedness of C̃
′(A)
1 (x, λ) requires that A = 0 and we are left with

C̃
(A)
1 (x, λ) = Bxm2(λα+r) +

x

λ
− K

λ1−α(λα + r)
, x > K . (4.20)

When x = K, the option function given by Eqs. (4.18) and (4.20) is required to be

continuous and differentiable. The corresponding matching conditions result in

B =

(
m1(λα + r)

λ1−α(λα + r)
+

1−m1(λα + r)

λ

)
K1−m2(λα+r)

(m1(λα + r)−m2(λα + r))
(4.21a)

A =

(
m2(λα + r)

λ1−α(λα + r)
+

1−m2(λα + r)

λ

)
K1−m1(λα+r)

(m1(λα + r)−m2(λα + r))
(4.21b)

and we finally obtain

C̃
(A)
1 (x, λ) =

(
m2(λα + r)

λ1−α(λα + r)
+

1−m2(λα + r)

λ

)
K1−m1(λα+r)

(m1(λα + r)−m2(λα + r))

× xm1(λα+r), x ≤ K, (4.22a)

C̃
(A)
1 (x, λ) =

(
m1(λα + r)

λ1−α(λα + r)
+

1−m1(λα + r)

λ

)
K1−m2(λα+r)

(m1(λα + r)−m2(λα + r))

× xm2(λα+r) +
x

λ
− K

λ1−α(λα + r)
, x ≥ K. (4.22b)

It is obvious that the C̃
(A)
1 (x, λ) in Eq. (4.22) is the same as the result obtained in

Eq. (4.10).
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4.1. Type A option cost in subdiffusive regime

4.1.2 Subdiffusive type A option cost 2

We now focus on the evaluation of the option price for a subdiffusive type A option cost

with discounting on the physical time scale. The corresponding expression, Eq. (4.6),

differs from the previous case and that becomes evident if we express the conditional

expectation value in terms of the classical Black Scholes formula, Eq. (2.95)

C
(A)
2 (x, t) =

〈
e−rt(X(S(t))−K)+

〉
X(0)=x

= e−rt
〈∫ ∞

0
ds(X(s)−K)+δ(s− S(t))

〉
= e−rt

∫ ∞
0

ds
〈
(X(s)−K)+

〉
h(s, t)

= e−rt
∫ ∞

0
dsersCBS(x, s)h(s, t) . (4.23)

We can use such an expression to derive the corresponding equation of motion by taking

the derivative with respect to t

∂

∂t
C

(A)
2 (x, t) = −re−rt

∫ ∞
0

dsersCBS(x, s)h(s, t)

+ e−rt
∫ ∞

0
dsersCBS(x, s)

∂

∂t
h(s, t) . (4.24)
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4.1. Type A option cost in subdiffusive regime

With the help of Eq. (4.23), Eq. (3.75) and Eq. (2.96), the equation above becomes

∂

∂t
C

(A)
2 (x, t) =− rC(A)

2 (x, t)− e−rt0D1−α
t

(∫ ∞
0

dsersCBS(x, s)
∂

∂s
h(s, t)

)
=− rC(A)

2 (x, t)− e−rt0D1−α
t (h(s, t)CBS(x, s)ers|∞0

−
∫ ∞

0
ds

∂

∂s
(ers ×CBS(x, s))h(s, t))

=− rC(A)
2 (x, t)− e−rt0D1−α

t

(
−r
∫ ∞

0
dsersCBS(x, s)h(s, t)

−
∫ ∞

0
dsers × ∂

∂s
CBS(x, s)h(s, t)

)
=− rC(A)

2 (x, t)− e−rt0D1−α
t

(
−r
∫ ∞

0
dsersCBS(x, s)h(s, t)

−
∫ ∞

0
dsers

(
σ2x2

2

∂2

∂x2
CBS(x, s)− rCBS(x, s)

+rx
∂

∂x
CBS(x, s)

)
h(s, t)

)
=− rC(A)

2 (x, t)− e−rt0D1−α
t

(
ert(−σ

2x2

2

∂2

∂x2
− rx ∂

∂x
)C

(A)
2 (x, t)

)
(4.25)

and we finally arrive at a modified fractional BS equation

∂

∂t
C

(A)
2 (x, t) = −rC(A)

2 (x, t) + e−rt 0D
1−α
t

(
ert(

σ2x2

2

∂2

∂x2
+ rx

∂

∂x
)C

(A)
2 (x, t)

)
. (4.26)

As in the previous case the initial and boundary conditions are given by

C
(A)
2 (x, 0) = max((x−K), 0), x ≥ 0 (4.27a)

C
(A)
2 (0, t) = 0, t ≥ 0 (4.27b)

C
(A)
2 (x, t)→ xe−rtEα(rtα), x→∞ (4.27c)

Eqs. (4.14) and (4.26) differ in the way the discounting is embedded in the option

pricing. If discounting takes place on the subordinated timescale then a plain fractional

BS equation governs the dynamics, while the discounting at the real timescale adds an

additional complexity to the problem, turning the equation of motion in a true non

autonomous system.

With the same method mentioned as above, we can easily compute the solution as
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4.1. Type A option cost in subdiffusive regime

follows

C̃
(A)
2 (x, λ) =

(
m2((λ+ r)α)

λ+ r
+

1−m2((λ+ r)α)

((λ+ r)α − r)(λ+ r)1−α

)
× K1−m1((λ+r)α)

(m1((λ+ r)α)−m2((λ+ r)α))
xm1((λ+r)α), x ≤ K (4.28a)

C̃
(A)
2 (x, λ) =

(
m1((λ+ r)α)

λ+ r
+

1−m1((λ+ r)α)

((λ+ r)α − r)(λ+ r)1−α

)
× K1−m2((λ+r)α)

m1((λ+ r)α)−m2((λ+ r)α
xm2((λ+r)α)

+
x

((λ+ r)α − r)(λ+ r)1−α −
K

λ+ r
, x ≥ K . (4.28b)

Of course we can as well apply the Laplace transform directly to Eq. (4.23), to derive

the same result, namely

C̃
(A)
2 (x, λ) =

∫ ∞
0

dsersCBS(x, s)h(s, λ+ r)

=

∫ ∞
0

dsersCBS(x, s)(λ+ r)α−1e−((λ+r)α−r)s

= (λ+ r)α−1

∫ ∞
0

dsCBS(x, s)e−((λ+r)α−r)s

= (λ+ r)α−1C̃BS(x, (λ+ r)α − r) (4.29)

Replacing λ with (λ+r)α−r in Eq. (4.11) and substituting it into Eq. (4.29), we recover

Eq. (4.28).

The value of option prices C
(A)
1 (x, t) and C

(A)
2 (x, t) are expected to be quite close

while the small interest rate is taken as it is evident that these two formulas are the

same when interest r = 0. As for the large interest rate, the situation will become

different. The formulas C
(A)
1 (x, t) and C

(A)
2 (x, t) will give different value. In order to

confirm whether this is right or not, we plot C
(A)
1 (x, t) and C

(A)
2 (x, t) with interest rate

r = 0.02 and r = 0.5, respectively. Fig. 4.2 shows a comparison of the time dependence

of the option prices C
(A)
1 (x, t) and C

(A)
2 (x, t) for parameter values K = 2, x = 1, σ = 1,

and two different values for the interest rate r = 0.02 and r = 0.5. It turns out that

when r = 0.02 which is quite close to 0, the value of C
(A)
1 (x, t) and C

(A)
2 (x, t) are nearly

the same whereas when r = 0.5 the value is completely different. To some extent, these

result confirms our expectation.
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Figure 4.2: Analytic expression of subdiffusive type A option cost formula C
(A)
1 (x, t)

[see Eq. (4.22a)] and C
(A)
2 (x, t) [see Eq. (4.28a)] with parameter values K = 2, x =

1, σ = 1 for different interest rates: (a)(c) r = 0.02 and (b)(d) r = 0.5. We use

simulation to confirm the result of C
(A)
2 (x, t). Ensembles of 105 trajectories of X(S(t))

are simulated with the algorithms [78,93]. Lines correspond to the numerical inversion of
the Laplace transform of Eq. (4.28a) with implementation the Talbot method [2,3,157].
The simulation results (markers) agree well with the exact expressions.
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4.1. Type A option cost in subdiffusive regime

We focus in particular on the impact of the subdiffusive behaviour, controlled by the

parameter α. Fig. 4.2 (a) and 4.2 (b) display the option C
(A)
1 (x, t) with discounting

on the subordinated time scale. It is clearly visible that the classical Black-Scholes

European call option formula overvalues the option when the asset prices follows a

subdiffusive dynamics where our new expression would provide a more reasonable pricing

model. Of course the classical Black-Scholes behaviour is recovered in the limiting

case α → 1. Furthermore the results indicate that the option price is increasing with

increasing values of α for large times, while that behaviour is reversed on short time

scales. Fig. 4.2 (c) and 4.2 (d) shows that the subdiffusive formula C
(A)
2 (x, t) which takes

the discounting on the real time scale into account exhibits a similar characteristics as

the C
(A)
1 (x, t) for small interest rates. Both of the subdiffusive formulas C

(A)
1 (x, t) and

C
(A)
2 (x, t) give a qualitatively similar result for r = 0.02. It is remarkable that the shape

of C
(A)
2 (x, t) changes considerably when larger interest rates r are considered. There

seems to be a complete reverse of the α dependence of the option price on longer time

scales, but to some extent such a behaviour could as well be an artifact of the pricing

model.

Evaluation of the subdiffusive type A option cost 2 by Fourier method

As Fourier analysis has been successfully used to evaluate the option pricing in many lit-

erature [25,61,74,151,164], we would like to use this method to evaluate our subdiffusive

type A option cost 2 determined by Eq. (4.6) in this part. If we let

Z(t) = lnX(S(t)) ,

k = lnK , (4.30)

where X(S(t)) is the subdiffusive GBM defined by Eq. (3.124), then by definition,

C
(A)
2 (x, t) in Eq. (4.6) could be expressed as

C
(A)
2 (x, t) =

〈
e−rt(X(S(t))−K)+

〉
X(0)=x

= e−rt
∫ ∞
k

dz(ez − ek)ft(z) , (4.31)

where ft(z) is density function of Z(t).

By modifying the option cost C
(A)
2 (x, t), we obtain a square integrable function ct(k)
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4.1. Type A option cost in subdiffusive regime

defined as

ct(k) = ebkC
(A)
2 (x, t), (4.32)

where b > 0 helps to ensure the integrability of the modified option value ct(k). Appro-

priate choice of parameter b has been discussed in [25].

Now applying the Fourier transform to ct(k) with respect to k , we could find that

ĉt(v) =

∫ ∞
−∞

eivkct(k)dk

=

∫ ∞
−∞

eivkebkC
(A)
2 (x, t)dk

=

∫ ∞
−∞

eivkebk
(∫ ∞

k
e−rt(ez − ek)ft(z)dz

)
dk

= e−rt
∫ ∞
−∞

dzft(z)

∫ z

−∞
dkek(iv+b)(ez − ek)

= e−rt
∫ ∞
−∞

dzft(z)

[
ez
ek(iv+b)

iv + b

∣∣∣z
−∞
− ek(iv+b+1)

iv + b+ 1

∣∣∣z
−∞

]

= e−rt
∫ ∞
−∞

dzft(z)

[
ez(iv+b+1)

iv + b
− ez(iv+b+1)

iv + b+ 1

]

= e−rt
∫ ∞
−∞

dzft(z)
ez(iv+b+1)

b2 + b− v2 + i(2b+ 1)v

=
e−rt

〈
eiZ(t)[v−(b+1)i]

〉
b2 + b− v2 + i(2b+ 1)v

=
e−rtϕt(v − (b+ 1)i)

b2 + b− v2 + i(2b+ 1)v
(4.33)

where ϕt(u) is the characteristic function of Z(t), which could be derived as

ϕt(u) =
〈
eiuZ(t)

〉
=
〈
eiu lnX(S(t))

〉
=

∫ ∞
0

ds
〈
eiu lnX(s)

〉
h(s, t)

=

∫ ∞
0

dseiu(lnx0+µ̂s)−σ
2u2

2
sh(s, t)

= eiu ln(x0)

∫ ∞
0

dsesg(u)h(s, t) (4.34)

101



4.1. Type A option cost in subdiffusive regime

where g(u) = iuµ̂ − 1
2σ

2u2 and µ̂ = (µ − 1
2σ

2). Here we use the fact that lnX(s)

represents a normal process with mean lnx0 + µ̂s and variance σ2s.

With the help of Eq. (3.72), we could obtain ϕt(u) in Laplace space as

ϕ̂λ(u) =

∫ ∞
0

dte−λtϕt(u)

= eiu ln(x0)

∫ ∞
0

dsesg(u)h(s, λ)

= eiu ln(x0)

∫ ∞
0

dsesg(u)λα−1e−λ
αs

= λα−1

∫ ∞
0

dse−(λα−g(u))s

=
λα−1

λα − g(u)
. (4.35)

After performing the inverse Laplace transform, via one parameter Mittag-Leffler func-

tion, ϕt(u) could be expressed as

ϕt(u) = eiu ln(x0)Eα (g(u)tα) . (4.36)

Therefore, ĉt(v) in Eq. (4.33) could be written as

ĉt(v) =
e−rtei(v−(b+1)i) ln(x0)Eα (g(v − (b+ 1)i)tα)

b2 + b− v2 + i(2b+ 1)v
(4.37)

The closed form of the ĉt(v) in Eq. (4.37) facilitates us to get the value of ct(v). Finally

by performing the inverse Fourier transform, we could get the value of ct(k) as

ct(k) =
e−bk

2π

∫ ∞
−∞

e−ivkψt(v)dv (4.38)

Thereafter from the Eq. (4.32) it is evident that

C
(A)
2 (x, t) = e−bkct(k)

=
e−bk

2π

∫ ∞
−∞

e−ivk ĉt(v)dv

=
e−bk

2π

∫ ∞
−∞

e−ivk
e−rtei(v−(b+1)i) ln(x0)Eα (g(v − (b+ 1)i)tα)

b2 + b− v2 + i(2b+ 1)v
dv (4.39)

However, it seems unlikely to get the closed form for the option value C
(A)
2 (x, t), so
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Figure 4.3: Analytic expression of subdiffusive type A option cost formula C
(A)
2 (x, t)

[see Eq. (4.28a)] with parameter values K = 2, x = 1, σ = 1 and b = 0.1 for different
interest rates: r = 0.02 (left panel) and r = 0.5 (right panel). Lines correspond to the
numerical inversion of the Laplace transform of Eq. (4.28a) and points to be numerical
Fourier transform evaluation of Eq. (4.39).

we use Mathematica software to get its numerical value. Figure 4.3 shows that the

expressions Eq. (4.28a) and Eq. (4.39) give the same results, as expected.

4.2 Type B option cost in subdiffusive regime

We are now going to analyse type B options which take in addition information from the

history of the price evolution into account. For such models the non Markovian nature

of the asset price has the potential to turn out to be crucial.

4.2.1 Subdiffusive type B option cost 1

Let us begin with by considering the costing on the subordinated time scale. In this case

the effective dynamics is still markovian and the historical information drops from the

corresponding conditional expectation vale, Eq. (4.7). Following the previous reasoning

and using the two time density function (cf. Eq. (3.82)) the option price can be again
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4.2. Type B option cost in subdiffusive regime

expressed in terms of the classical Black Scholes expression (2.95)

C
(B)
1 (x, T, t) =

〈
e−r(S(T )−S(t)) (X(S(T ))−K)+

〉
X(S(t))=x

=

〈∫ ∞
0

ds2

∫ ∞
0

ds1e
−r(s2−s1)(X(s2)−K)+

× δ(s2 − S(T ))δ(s1 − S(t))

〉
=

∫ ∞
0

ds
〈
e−r(s2−s1)(X(s2)−K)+

〉
h(s2, T, s1, t)

=

∫ ∞
0

ds1

∫ ∞
0

ds2CBS(x, s2 − s1)h(s2, T, s1, t)

=

∫ ∞
0

ds1

∫ ∞
0

dτCBS(x, τ)h(s1 + τ, T, s1, t) . (4.40)

Applying the two-time Laplace transform with respect to T and t we end up with

C̃
(B)
1 (x, λ2, λ1) =

∫ ∞
0

ds1

∫ ∞
0

dτCBS(x, τ)h̃(s1 + τ, λ2, s1, λ1)

=

∫ ∞
0

ds1

∫ ∞
0

dτCBS(x, τ)
((λ1 + λ2)α − λα2 )λα2

λ1λ2

× e−s1((λ1+λ2)α−λα2 )e−(s1+τ)λα2

=
((λ1 + λ2)α − λα2 )λα2
λ1λ2(λ1 + λ2)α

∫ ∞
0

dτCBS(x, τ)e−τλ
α
2

=
((λ1 + λ2)α − λα2 )λα2
λ1λ2(λ1 + λ2)α

C̃BS(x, λα2 ) (4.41)

and using Eq. (4.11) we can easily write down the expression in closed analytical form.

4.2.2 Subdiffusive type B option cost 2

If we perform the costing according to the physical timescale then the corresponding

conditional expectation value, Eq. (4.8), depends explicitly on the historical information.

Hence at this stage the non markovian character of the underlying asset price will turn

out to become crucial. As usual, we denote by by PY (y, T |x, t, x0, 0) the conditional

probability of subdiffusive GBM [53], i.e., the conditional probability of the asset price.

Similarly, as before, joint probabilities are denoted by f(y, T ;x, t;x0, 0) and f(x, t;x0, 0)
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4.2. Type B option cost in subdiffusive regime

with x0 > 0. Then Eq. (4.8) can be simply rewritten as

C
(B)
2 (x, T, t) = e−r(T−t)

〈
(X(S(T ))−K)+

〉
X(S(t))=x,X(0)=x0

= e−r(T−t)
∫ ∞
−∞

(y −K)+PY (y, T |x, t, x0, 0)dy

= e−r(T−t)
∫ ∞
−∞

(y −K)+ f(y, T ;x, t;x0, 0)

f(x, t;x0, 0)
dy

= e−r(T−t)
∫ ∞
K

(y −K)
f(y, T ;x, t;x0, 0)

f(x, t;x0, 0)
dy

=
e−r(T−t)

f(x, t;x0, 0)

∫ ∞
K

(y −K)f(y, T ;x, t;x0, 0)dy . (4.42)

The joint probabilities of the non Markovian process, Eq. (3.124), can now again be

expressed by properties of the process X and one and two time distribution functions.

Let us denote by PX(x, s|x0, 0) the conditional probability of GBM, as obtained in

Eq. (2.72), and by P̃X(x, λ|x0, 0) its Laplace transform given in Eq. 2.73. The joint

probabilities of the process Y can now be written in terms of the conditional probabilities

of the Markovian dynamics and the one and two point distribution functions of the

subordination (see Eq. (3.26))

f(y, T ;x, t;x0, 0) =

∫ ∞
0

ds1

∫ ∞
s1

ds2PX(y, s2|x, s1)PX(x, s1|x0, 0)

× PX(x0)h(s2, T, s1, t) (4.43)

and

f(x, t;x0, 0) =

∫ ∞
0

dsPX(x, s|x0, 0)PX(x0)h(s, t) (4.44)

with PX(x) denoting the stationary distribution of GBM.

With the help of Eq. (4.43) and Eq. (4.44), we find that C
(B)
2 (x, T, t) in Eq. (4.42)

can be written as

C
(B)
2 (x, T, t) =

e−r(T−t)

Π1(x, t)
Π2(x, T, t) (4.45)
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4.2. Type B option cost in subdiffusive regime

if we introduce the abbreviations

Π1(x, t) =

∫ ∞
0

dsPX(x, s|x0, 0)h(s, t) (4.46a)

Π2(x, T, t) =

∫ ∞
0

ds1

∫ ∞
s1

ds2PX(x, s1|x0, 0)h(s2, T, s1, t)

×
∫ ∞
K

(y −K)PX(y, s2|x, s1)dy . (4.46b)

With the substitution τ = s2 − s1, Π2(x, T, t) in Eq. (4.46b) simplifies to

Π2(x, T, t) =

∫ ∞
0

ds1

∫ ∞
0

dτPX(x, s1|x0, 0)h(s1 + τ, T, s1, t)e
rτCBS(x, τ) . (4.47)

The above equation holds as we know that e−r(s2−s1)
∫∞
K (y−K)PX(y, s2|x, s1)dy is actu-

ally the expression of e−r(s2−s1) 〈(X(s2)−K)+〉X(s1)=x which is equivalent to CBS(x, τ)

in Eq. (2.95) with expiration time τ = s2 − s1 and initial price X(0) = x.

Applying the two time Laplace transform to Π2(x, T, t) in Eq. (4.47) and with the

help of Eq. (3.90) , we get

Π̃2(x, λ2, λ1) =

∫ ∞
0

∫ ∞
0

e−λ2T e−λttΠ2(x, T, t)dTdt

=

∫ ∞
0

ds1

∫ ∞
0

dτPX(x, s1|x0, 0)h̃(s1 + τ, λ2, s1, λ1)erτCBS(x, τ)

=

∫ ∞
0

ds1

∫ ∞
0

dτPX(x, s1|x0, 0)
((λ1 + λ2)α − λα2 )λα2

λ1λ2
e−s1((λ1+λ2)α−λα2 )×

e−(s1+τ)λα2 erτCBS(x, τ)

=
((λ1 + λ2)α − λα2 )λα2

λ1λ2

∫ ∞
0

ds1PX(x, s1|x0, 0)e−((λ1+λ2)α)s1×∫ ∞
0

dτe−τ(λα2−r)CBS(x, τ)

=
((λ1 + λ2)α − λα2 )λα2

λ1λ2
P̃X(x, (λ1 + λ2)α|x0, 0)C̃BS(x, λα2 − r) . (4.48)
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4.2. Type B option cost in subdiffusive regime

Similarly the Laplace transform of Π1(x, t) in Eq. (4.46a) is found as follows

Π̃1(x, λ1) =

∫ ∞
0

e−λ1tΠ1(x, t)dt

=

∫ ∞
0

dsPX(x, s|x0, 0)h̃(s, λ1)

= λα−1
1

∫ ∞
0

dsPX(x, s|x0, 0)e−λ
α
1 s

= λα−1
1 P̃X(x, λα1 |x0, 0) (4.49)

as the expression of h̃(s, λ1) has been found in Eq. (3.72).

Let us recall that the Black-Scholes formula and the conditional probability of GBM

in Laplace space C̃BS(x, λ) and P̃X(x, λ|x0, 0) have been found in Eq. (4.11) and Eq. (2.73),

respectively. Therefore, the exact analytic expressions of Π2(x, T, t) in Eq. (4.48) and

Π1(x, t) in Eq. (4.49) in Laplace space could be derived straightforwardly. Moreover,

their closed forms could be derived if the inverse Laplace transform is applied and the

expression of C
(B)
2 (x, T, t) in Eq. (4.45) could then be easily obtained. However, consid-

ering the difficulty and complexity of this job, we resort to the numerical methods. We

get Π2(x, T, t) numerically by using a two dimensional version of the algorithm proposed

in [161] and Π1(x, t) by the Talbot method. As well as the help of Eq. (4.45), finally we

could evaluate C
(B)
2 (x, T, t) numerically.

It is well known that in the frame of the classical Black-Scholes theory, the option

value can be evaluated by CBS(x, t) in Eq. (2.95) with the initial price x and expiration

time T − t without considering the concrete time t as long as we know the asset price x

at the current time t and the expiration time T . Fig. 4.4 shows that how type B option

C
(B)
1 (x, T, t) and C

(B)
2 (x, T, t) change with respect to the remaining time to expiration

T − t based on r = 0.02 and r = 0.5 respectively with parameters K = 2, σ = 1, x0 =

2, x = 1. It is clearly shown that all the type B option takes the same value as the

corresponding type A option when α → 1, which is exactly the classical Black-Scholes

case. However, this fact does not hold any more for subdiffusive option with α 6= 1 as

we could easily find the type B option and the corresponding type A option give different

values, which might be greatly due to the non-Markovian properties of the new asset

model X(S(t)). From the definition in Eq. (4.40) and Eq. (4.42), it is evident that

the type B option C
(B)
1 (x, T, t) and C

(B)
2 (x, T, t) will give the the same when interest

rate r = 0. Thus when r = 0.02, pretty close to 0, from Fig. 4.4 (a) and 4.4 (c), it is

observable that these two formulas give the similar value, but when r = 0.5, a larger
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Figure 4.4: Analytic expression of subdiffusive type B option cost formula C
(B)
1 (x, T, t)

[see Eq. (4.41)] and C
(B)
2 (x, T, t) [see Eq. (4.45)] with parameter values K = 2, x =

1, x0 = 2, σ = 1, t = 0.3 for different interest rates: (a)(c) r = 0.02 and (b)(d) r = 0.5.
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Figure 4.5: Analytic expression of subdiffusive type B option cost formula C
(B)
2 (x, T, t)

[see Eq. (4.45)] with parameter values K = 2, σ = 1, x = 1, r = 0.5 for different initial
and expiration times: (a) t = 0.1, T = 5.1 and (b) t = 5, T = 10.

interest rate, it is not difficult to found from Fig. 4.4 (b) and 4.4 (d) that different values

are reached by these two formulas.

Meanwhile, we could find that the classical Black-Scholes European call option for-

mula usually gives higher value than the subdiffusive option formulas whereas they could

take a low value, which can also be found for the type A option. It indicates that the

subdiffusive formula provides more reasonable price. All of the Fig. 4.4 have the same

trend that when α → 1, the subdiffusive option prices tend to the classical value. It

could be observed that the smaller the value of indicator α takes, the lower the value

of the subdiffusive option takes for large time T − t. From Fig. 4.4 (c) and 4.4 (d), we

could observe that the subdiffusive formula C
(B)
2 (x, T, t) also exhibit the similar char-

acteristics as the C
(B)
1 (x, T, t). The shape of C

(B)
2 (x, T, t) changes a lot when different

interest rate r is taken whereas C
(B)
1 (x, T, t) seems little change for different interest

rate for large time scale, which has already found for type A option. We could conclude

that the subdiffusive formula C
(B)
2 (x, T, t) is more sensitive to interest than the subdif-

fusive formulas C
(B)
1 (x, T, t) for the same expiration time T − t, which is quite similar

to the type A option. However, compared with corresponding type A option, the type

B option usually give a different value except the case when α = 1 for the same time

to expiration. This phenomenon is most evident for C
(A)
2 (x, t) and C

(B)
2 (x, T, t). It is
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also interesting to consider how the subdiffusive type B option cost C
(B)
2 (x, T, t) changes

with different value of starting price x0 as our asset price follows the non-Markovian

processes. Fig. 4.5 shows how C
(B)
2 (x, T, t) changes with respect to x0. From the figure,

it’s easy to find that the subdiffusive option value C
(B)
2 (x, T, t) is higher than x0 = x

when x0 < x as well as x0 > x. It indicates that the larger value α takes, the higher

value the subdiffusive option reach. It is obvious that when α→ 1 the starting price x0

has no impact on C
(B)
2 (x, T, t) any more as the classic Black-Scholes case appear again.

However, C
(B)
2 (x, T, t) is always affected by the value of x0 for small and large time t,

which is quite different from the normal idea.

4.3 Summary of chapter

In this chapter, we put forward different subdiffusive type A and B option costs. For

the subdiffusive type A option costs, they are found to be as the solutions to their

corresponding fractional differential equations. Based on the starting time t = 0 and

t 6= 0, we differentiate the type A and type B option. Comparison between different

subdiffusive type A and B option costs are made. Due to the new subdiffusive model

for the price process which exhibit non Markovian properties, great differences appear

between subdiffusive option cost and classical option cost. We find that subdiffusive

option formulas provide lower value than classical option which is more acceptable when

the prices processes show the characteristics of subdiffusive dynamics. However, the

subdiffusive model cannot guarantee the risk-neutral property, which is pretty important

in the real market. It needs to be studied further. Our discussion of the subdiffusive

option formulas would help to study subdiffusive phenomenon in other fields.
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Chapter 5

Subdiffusive European call option

pricing formula with

subordinated GBM

In this chapter, we continue our study of European call options but with subordinated

GBM. Our goal is to extend the pricing model from subdiffusive GBM to more complex

subordinated GBM. We will show that the two categories namely, type A and type B can

be generalised to cases with more general waiting times. Consequently, the results of

the previous chapter can be recovered in special cases. The structure of this chapter is

as follows. In Sec. 5.1, subdiffusive type A option cost 1 is investigated. In Sec. 5.2, the

other subdiffusive type A option is studied. In Sec. 5.3, subdiffusive type B option cost

1 is discussed. In Sec. 5.4, the second subdiffusive type B option is presented. Finally,

the summary is made in Sec. 5.5.

5.1 Subdiffusive type A option cost 1

Instead of subdiffusive GBM used in the previous chapter, we shall assume that the

asset price follows subordinated GBM in the following sections. By analogy, we could

still get four different types of option costs as described in Chap. 4. In this section we

will first take a look at the first one of the type A option costs which is described by

Eq. (4.5). With the same procedure used in the previous chapter, the subdiffusive type
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5.1. Subdiffusive type A option cost 1

A option cost 1 could be expressed as

C
(A)
1 (x, t) =

〈
e−rS(t)(X(S(t))−K)+

〉
X(0)=x

=

∫ ∞
0

dsCBS(x, s)h(s, t) (5.1)

where here h(s, t) is the PDF of the process S(t) characterized by a Laplace exponent

Eq. (3.106). The other parameters have the same meaning, i.e., CBS(x, s) denotes the

classical Black Scholes expression given by Eq. (2.95), r is the interest rate, t is the

expiration time, and K is the strike price. Applying the Laplace transform to Eq. (5.1)

with respect to t leads to

C̃
(A)
1 (x, λ) =

∫ ∞
0

dsCBS(x, s)h̃(s, λ)

=

∫ ∞
0

dsCBS(x, s)
Φ(λ)

λ
e−Φ(λ)s

=
Φ(λ)

λ

∫ ∞
0

dsCBS(x, s)e−Φ(λ)s

=
Φ(λ)

λ
C̃BS(x,Φ(λ)) , (5.2)

which could be easily evaluated by replacing λ with Φ(λ) in Eq. (4.11) and substituting

it into Eq. (5.2). Numerical inversion of the Laplace transform with the help of the

Mathematica software package [1] is used here again to investigate its behaviour.

When Φ(λ) = λα, our subdiffusive option cost in Eq. (5.2) becomes the subdiffusive

type A option cost 1 in Eq. (4.10).

We are also interested in obtaining a fractional differential equation for the quantity

C
(A)
1 (x, t) as in the previous chapter. Differentiating C

(A)
1 (x, t) in Eq. (5.1) with respect

to t results into

∂

∂t
C

(A)
1 (x, t) =

∫ ∞
0

dsCBS(x, s)
∂

∂t
h(s, t) . (5.3)
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5.1. Subdiffusive type A option cost 1

As h(s, t) satisfies Eq. (3.111), it follows that

∂

∂t
C

(A)
1 (x, t) = −Ft

(∫ ∞
0

dsCBS(x, s)
∂

∂s
h(s, t)

)
= −Ft

(
h(s, t)CBS(x, s)|∞0 −

∫ ∞
0

ds
∂

∂s
CBS(x, s)h(s, t)

)
= −Ft

(
−
∫ ∞

0
ds (

σ2x2

2

∂2

∂x2
CBS(x, s)− rCBS(x, s)

+rx
∂

∂x
CBS(x, s))h(s, t)

)
= −Ft

(
−σ

2x2

2

∂2

∂x2
+ r − rx ∂

∂x

)
C

(A)
1 (x, t)

= Ft

(
σ2x2

2

∂2

∂x2
− r + rx

∂

∂x

)
C

(A)
1 (x, t) (5.4)

where again we have used the appropriate boundary conditions for h(s, t) at t = 0 and

t = ∞. It is obvious that the same initial and boundary conditions for the fractional

BS equation is derived as

C
(A)
1 (x, 0) = max((x−K), 0), x ≥ 0 (5.5a)

C
(A)
1 (0, t) = 0, t ≥ 0 (5.5b)

C
(A)
1 (x, t)→ x, x→∞ (5.5c)

One could find that for the special case Φ(λ) = λα, the fractional equation (5.4) becomes

the subdiffusive BS Eq. (4.14). The solutions to Eq. (5.4) can be derived explicitly by

the procedure described in Sec. 4.1.1. Performing the Laplace transform, we can obtain

an ODE

σ2x2

2
C̃
′′(A)
1 (x, λ) + rxC̃

′(A)
1 (x, λ)− (Φ(λ) + r)C̃

(A)
1 (x, λ) = −Φ(λ)

λ
C

(A)
1 (x, 0) . (5.6)

The inhomogeneous part is given by the initial condition, Eq. (5.5), and two cases x ≤ K
and x > K will be discussed separately.

For x ≤ K the inhomogeneous part vanishes and Eq. (5.6) becomes

σ2x2

2
C̃
′′(A)
1 (x, λ) + rxC̃

′(A)
1 (x, λ)− (Φ(λ) + r)C̃

(A)
1 (x, λ) = 0 . (5.7)
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5.1. Subdiffusive type A option cost 1

The general solution of Eq. (5.7) is given by

C̃
(A)
1 (x, λ) = Axm1(Φ(λ)+r) +Bxm2(Φ(λ)+r) (5.8)

where we have used the abbreviations introduced in Eq. (4.12). Obviously the relations

m1 ≥ 0 ≥ m2 still hold and B = 0 is required to ensure for a nonsingular solution in

the limit x→ 0 here. Hence the expression becomes

C̃
(A)
1 (x, λ) = Axm1(Φ(λ)+r), x 6 K . (5.9)

For the case x ≥ K the inhomogeneous part of Eq. (5.6) is given by C
(A)
1 (x, 0) =

max((x−K), 0) = x−K and with a suitable particular solution of the nonhomogeneous

equation the general solution then reads

C̃
(A)
1 (x, λ) = Axm1(Φ(λ)+r) +Bxm2(Φ(λ)+r) +

x

λ
− Φ(λ)

λ

K

Φ(λ) + r
, x ≥ K . (5.10)

Here boundedness of C̃
′(A)
1 (x, λ) implies that A = 0 and it follows that

C̃
(A)
1 (x, λ) = Bxm2(Φ(λ)+r) +

x

λ
− Φ(λ)

λ

K

Φ(λ) + r
, x ≥ K . (5.11)

When x = K, the option function given by Eqs.( 5.9) and ( 5.11) is required to be

continuous and differentiable. The corresponding matching conditions result in

B =

(
Φ(λ)

λ

m1(Φ(λ) + r)

Φ(λ) + r
+

1−m1(Φ(λ) + r)

λ

)
× K1−m2(Φ(λ)+r)

(m1(Φ(λ) + r)−m2(Φ(λ) + r))
, (5.12a)

A =

(
Φ(λ)

λ

m2(Φ(λ) + r)

Φ(λ) + r
+

1−m2(Φ(λ) + r)

λ

)
× K1−m1(Φ(λ)+r)

(m1(Φ(λ) + r)−m2(Φ(λ) + r))
. (5.12b)
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5.2. Subdiffusive type A option cost 2

and hence the solution to Eq. (5.6) is derived as

C̃
(A)
1 (x, λ) =

(
Φ(λ)

λ

m2(Φ(λ) + r)

Φ(λ) + r
+

1−m2(Φ(λ) + r)

λ

)
× K1−m1(Φ(λ)+r)

(m1(Φ(λ) + r)−m2(Φ(λ) + r))

× xm1(Φ(λ)+r), x ≤ K, (5.13a)

C̃
(A)
1 (x, λ) =

(
Φ(λ)

λ

m1(Φ(λ) + r)

Φ(λ) + r
+

1−m1(Φ(λ) + r)

λ

)
× K1−m2(Φ(λ)+r)

(m1(Φ(λ) + r)−m2(Φ(λ) + r))

× xm2(Φ(λ)+r) +
x

λ
− Φ(λ)

λ

K

Φ(λ) + r
, x ≥ K. (5.13b)

One can check that the C̃
(A)
1 (x, λ) in Eq. (5.13) is the same as the result obtained in

Eq. (5.2).

5.2 Subdiffusive type A option cost 2

In this section, we will consider the evaluation of the subdiffusive type A option cost 2

with discounting on the physical time scale. The corresponding expression, Eq. (4.6),

can be also expressed in terms of the classical BS Eq. (2.95) as

C
(A)
2 (x, t) =

〈
e−rt(X(S(t))−K)+

〉
X(0)=x

= e−rt
∫ ∞

0
ds ersCBS(x, s)h(s, t) . (5.14)

Once again by taking the derivative with respect to t on both sides of Eq. (5.14), we

obtain

∂

∂t
C

(A)
2 (x, t) = −re−rt

∫ ∞
0

ds ersCBS(x, s)h(s, t)

+ e−rt
∫ ∞

0
ds ersCBS(x, s)

∂

∂t
h(s, t) . (5.15)
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5.2. Subdiffusive type A option cost 2

Considering Eq. (5.14), Eq. (3.111) and Eq. (2.96), the equation above becomes

∂

∂t
C

(A)
2 (x, t) =− rC(A)

2 (x, t)− e−rtFt
(∫ ∞

0
ds ersCBS(x, s)

∂

∂s
h(s, t)

)
=− rC(A)

2 (x, t)− e−rtFt (h(s, t)CBS(x, s)ers|∞0

−
∫ ∞

0
ds

∂

∂s
(ers ×CBS(x, s))h(s, t))

=− rC(A)
2 (x, t)− e−rtFt

(
−r
∫ ∞

0
ds ersCBS(x, s)h(s, t)

−
∫ ∞

0
ds ers × ∂

∂s
CBS(x, s)h(s, t)

)
=− rC(A)

2 (x, t)− e−rtFt
(
−r
∫ ∞

0
ds ersCBS(x, s)h(s, t)

−
∫ ∞

0
ds ers

(
σ2x2

2

∂2

∂x2
CBS(x, s)− rCBS(x, s)

+rx
∂

∂x
CBS(x, s)

)
h(s, t)

)
=− rC(A)

2 (x, t)− e−rtFt
(
ert(−σ

2x2

2

∂2

∂x2
− rx ∂

∂x
)C

(A)
2 (x, t)

)
(5.16)

and another modified fractional BS equation is obtained

∂

∂t
C

(A)
2 (x, t) = −rC(A)

2 (x, t) + e−rt Ft

(
ert(

σ2x2

2

∂2

∂x2
+ rx

∂

∂x
)C

(A)
2 (x, t)

)
. (5.17)

The initial and boundary conditions are given by

C
(A)
2 (x, 0) = max((x−K), 0), x ≥ 0 (5.18a)

C
(A)
2 (0, t) = 0, t ≥ 0 (5.18b)

C
(A)
2 (x, t)→ xe−rtL−1

{
Φ(λ)

λ(Φ(λ)− r)

}
, x→∞ (5.18c)

With the same method mentioned as above, we can easily compute the solution as
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5.3. Subdiffusive type B option cost 1

follows

C̃
(A)
2 (x, λ) =

(
m2(Φ(λ+ r))

λ+ r
+

Φ(λ+ r)

λ+ r

1−m2(Φ(λ+ r))

Φ(λ+ r)− r

)
× K1−m1(Φ(λ+r))

(m1(Φ(λ+ r))−m2(Φ(λ+ r)))
xm1(Φ(λ+r)), x ≤ K , (5.19a)

C̃
(A)
2 (x, λ) =

(
m1(Φ(λ+ r))

λ+ r
+

Φ(λ+ r)

λ+ r

1−m1(Φ(λ+ r))

Φ(λ+ r)− r

)
× K1−m2(Φ(λ+r))

m1(Φ(λ+ r))−m2(Φ(λ+ r)

× xm2(Φ(λ+r)) +
Φ(λ+ r)

λ+ r

x

Φ(λ+ r)− r
− K

λ+ r
, x ≥ K . (5.19b)

On the other hand, the Laplace transform can be used directly to Eq. (5.14) to derive

the same result, namely

C̃
(A)
2 (x, λ) =

∫ ∞
0

ds ersCBS(x, s)h̃(s, λ+ r)

=

∫ ∞
0

ds ersCBS(x, s)
Φ(λ+ r)

λ+ r
e−(Φ(λ+r)−r)s

=
Φ(λ+ r)

λ+ r

∫ ∞
0

dsCBS(x, s)e−(Φ(λ+r)−r)s

=
Φ(λ+ r)

λ+ r
C̃BS(x,Φ(λ+ r)− r) (5.20)

Replacing λ with Φ(λ + r) − r in Eq. (4.11) and substituting it into Eq. (5.20), the

solutions given by Eq. (5.19) are recovered.

5.3 Subdiffusive type B option cost 1

In this section, the subdiffusive type B option cost 1 with the subordinated GBM will be

presented. Following the previous procedure and using the two time density function,

the corresponding conditional expectation value, Eq. (4.7) can be again expressed in
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5.4. Subdiffusive type B option cost 2

terms of the classical Black Scholes expression ( 2.82)

C
(B)
1 (x, T, t) =

〈
e−r(S(T )−S(t)) (X(S(T ))−K)+

〉
X(S(t))=x

=

〈∫ ∞
0

ds 2

∫ ∞
0

ds 1e
−r(s2−s1)(X(s2)−K)+δ(s2 − S(T ))δ(s1 − S(t))

〉
=

∫ ∞
0

ds
〈
e−r(s2−s1)(X(s2)−K)+

〉
h(s2, T, s1, t)

=

∫ ∞
0

ds 1

∫ ∞
0

ds 2CBS(x, s2 − s1)h(s2, T, s1, t)

=

∫ ∞
0

ds 1

∫ ∞
0

dτCBS(x, τ)h(s1 + τ, T, s1, t) . (5.21)

With the two-time Laplace transform with respect to T and t we end up with

C̃
(B)
1 (x, λ2, λ1) =

∫ ∞
0

ds 1

∫ ∞
0

dτCBS(x, τ)h̃(s1 + τ, λ2, s1, λ1)

=

∫ ∞
0

ds 1

∫ ∞
0

dτCBS(x, τ)
(Φ(λ1 + λ2)− Φ(λ2)) Φ(λ2)

λ1λ2

× e−s1(Φ(λ1+λ2)−Φ(λ2))e−(s1+τ)Φ(λ2)

=
(Φ(λ1 + λ2)− Φ(λ2)) Φ(λ2)

λ1λ2Φ(λ1 + λ2)

∫ ∞
0

dτCBS(x, τ)e−τΦ(λ2)

=
(Φ(λ1 + λ2)− Φ(λ2)) Φ(λ2)

λ1λ2Φ(λ1 + λ2)
C̃BS(x,Φ(λ2)) , (5.22)

which can be explicitly expressed if results given in Eq. (4.11) are used.

5.4 Subdiffusive type B option cost 2

In this section, we take the subdiffusive type option cost 2 into consideration. As

in the previous chapter, we denote by PY (y, T |x, t, x0, 0) the conditional probability

of subordinated GBM, i.e., the conditional probability of the asset price. Similarly, as

before, joint probabilities are denoted by f(y, T ;x, t;x0, 0) and f(x, t;x0, 0) with x0 > 0.

Then Eq. (4.8) can be expressed as

C
(B)
2 (x, T, t) = e−r(T−t)

〈
(X(S(T ))−K)+

〉
X(S(t))=x,X(0)=x0

=
e−r(T−t)

f(x, t;x0, 0)

∫ ∞
K

(y −K)f(y, T ;x, t;x0, 0)dy . (5.23)
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5.4. Subdiffusive type B option cost 2

Again the joint probabilities of the non-Markovian process can now be expressed by the

properties of the process X and one and two time distribution functions. Let us denote

the conditional probability of GBM by PX(x, s|x0, 0) (see Eq. 2.72) and its Laplace

transform by P̃X(x, λ|x0, 0) (see Eq. (2.73)). The joint probabilities of the process Y

can now be written in terms of the conditional probabilities of the Markovian dynamics

and the one and two time distribution functions of the subordinator (see Eq. (3.26))

f(y, T ;x, t;x0, 0) =

∫ ∞
0

ds 1

∫ ∞
s1

ds2PX(y, s2|x, s1)PX(x, s1|x0, 0)

× PX(x0)h(s2, T, s1, t) (5.24)

and

f(x, t;x0, 0) =

∫ ∞
0

dsPX(x, s|x0, 0)PX(x0)h(s, t) (5.25)

with PX(x) denoting the stationary distribution of GBM.

With the help of Eq. (5.24) and Eq. (5.25), we find that C
(B)
2 (x, T, t) in Eq. (5.23)

can be written as

C
(B)
2 (x, T, t) =

e−r(T−t)

Π1(x, t)
Π2(x, T, t) (5.26)

via the abbreviations given By Eq. (4.46).

By applying the two time and one time Laplace transform to Π2(x, T, t) and Π1(x, t)
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5.4. Subdiffusive type B option cost 2

in Eq. (4.46), and with the help of Eq. (3.118), one can see that

Π̃2(x, λ2, λ1) =

∫ ∞
0

∫ ∞
0

e−λ2T e−λttΠ2(x, T, t)dTdt

=

∫ ∞
0

ds 1

∫ ∞
0

dτPX(x, s1|x0, 0)h̃(s1 + τ, λ2, s1, λ1)erτCBS(x, τ)

=

∫ ∞
0

ds 1

∫ ∞
0

dτPX(x, s1|x0, 0)
(Φ(λ1 + λ2)− Φ(λ2)) Φ(λ2)

λ1λ2

× e−s1(Φ(λ1+λ2)−Φ(λ2))e−(s1+τ)Φ(λ2)erτCBS(x, τ)

=
(Φ(λ1 + λ2)− Φ(λ2)) Φ(λ2)

λ1λ2

∫ ∞
0

ds 1PX(x, s1|x0, 0)

× e−Φ(λ1+λ2)s1

∫ ∞
0

dτe−τ(Φ(λ2)−r)CBS(x, τ)

=
(Φ(λ1 + λ2)− Φ(λ2)) Φ(λ2)

λ1λ2
P̃X(x,Φ(λ1 + λ2)|x0, 0)

× C̃BS(x,Φ(λ2)− r) . (5.27)

and

Π̃1(x, λ1) =

∫ ∞
0

e−λ1tΠ1(x, t)dt

=

∫ ∞
0

dsPX(x, s|x0, 0)h̃(s, λ1)

=
Φ(λ1)

λ1

∫ ∞
0

dsPX(x, s|x0, 0)e−Φ(λ1)s

=
Φ(λ1)

λ1
P̃X(x,Φ(λ1)|x0, 0) . (5.28)

As the Black-Scholes formula and the conditional probability of GBM in Laplace space

C̃BS(x, λ) and P̃X(x, λ|x0, 0) have been given in Eq. (4.11) and Eq. (2.73), respectively,

the exact analytic expressions of Π2(x, T, t) in Eq. (5.27) and Π1(x, t) in Eq. (5.28) in

Laplace space could be derived straightforwardly. Moreover, their closed forms could be

derived if the inverse Laplace transform is applied and the expression for C
(B)
2 (x, T, t) in

Eq. (5.26) could then be obtained. However, considering the difficulty and complexity

of this job, we still resort to the numerical method. The quantity Π2(x, T, t) can be

obtained numerically using a two dimensional version of the algorithm proposed in [161]

and Π1(x, t) by the Talbot method [2,3,157]. Then by Eq. (5.26), finally we can evaluate

C
(B)
2 (x, T, t) numerically.

Fig. 5.1 shows the subdiffusive type A option formula with subordinated GBM for
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5.4. Subdiffusive type B option cost 2

tempered stable waiting times Φ(λ) = (λ+ ζ)α − ζα according to different values of the

real time t with parameters K = 2, x = 1, σ = 1 and ζ = 0.001 for the interest rates

r = 0.02 and r = 0.5, respectively. It indicates that when α → 1, the subdiffusive
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Figure 5.1: Analytic expression of subdiffusive type A option cost formula with subor-

dinated GBM C
(A)
1 (x, t) [see Eq. (5.13a)] and C

(A)
2 (x, t) [see Eq. (5.19a)] for tempered

stable waiting times Φ(λ) = (λ + ζ)α − ζα with parameter values K = 2, x = 1, σ = 1
and ζ = 0.001 for different interest rates: (a)(c) r = 0.02 and (b)(d) r = 0.5.

option values are approaching the standard Black-Scholes formula prices.

The comparison of the subdiffusive type A option formula with subordinated GBM

121



5.4. Subdiffusive type B option cost 2

for tempered stable waiting times Φ(λ) = (λ+ ζ)α − ζα is made in Fig. 5.2 for different

values of the parameter ζ.
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Figure 5.2: The comparison of subdiffusive type A option cost formula with subordinated

GBM C
(A)
1 (x, t) [see Eq. (5.13a)] and C

(A)
2 (x, t) [see Eq. (5.19a)] for tempered stable

waiting times Φ(λ) = (λ + ζ)α − ζα with parameter values K = 2, x = 1, σ = 1 and
α = 0.5 for different interest rates: (a)(c) r = 0.02 and (b)(d) r = 0.5.

Fig. 5.3 shows the subdiffusive type B option formula with subordinated GBM for

tempered stable waiting times Φ(λ) = (λ + ζ)α − ζα for different values of the time

difference T − t with parameters K = 2, x = 1, x0 = 2, σ = 1 , t = 0.3 and ζ = 0.001 for
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5.4. Subdiffusive type B option cost 2

the interest rate r = 0.02 and r = 0.5, respectively. It also shows that when α→ 1, the

subdiffusive option values are approaching the standard Black-Scholes formula prices.
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Figure 5.3: Analytic expression of subdiffusive type B option cost formula with subordi-

nated GBM C
(B)
1 (x, T, t) [see Eq. (5.21)] and C

(B)
2 (x, T, t) [see Eq. (5.26)] for tempered

stable waiting times Φ(λ) = (λ+ ζ)α − ζα with parameter values K = 2, x = 1, x0 = 2,
σ = 1, ζ = 0.001, and t = 0.3 for different interest rates: (a)(c) r = 0.02 and (b)(d)
r = 0.5.

tempered stable waiting times Φ(λ) = (λ + ζ)α − ζα is made in Fig. 5.4 for different
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5.5. Summary of chapter

values of the parameter ζ.

As in Chapter 4 we are also interested in the impact of the starting price x0 on the

option values. Fig. 5.5 shows how C
(B)
2 (x, T, t) changes with respect to x0. And the

comparison of the subdiffusive type B option C
(B)
2 (x, T, t) with subordinated GBM is

made in Fig. 5.6

5.5 Summary of chapter

In this chapter, we have examined the pricing of subdiffusive European call options based

on a subordinated GBM which includes the case of subdiffusive GBM. By introducing

general waiting times manifest in a Laplace exponent φ, we generalize the results ob-

tained in the previous chapter. As in Chapter 4, we also derive two types of subdiffusive

type A and type B option costs with non-zero interest rate, respectively. We show that

each subdiffusive call option pricing formula could also be derived from corresponding

fractional differential equations. Finally, we show the behaviour of the subdiffusive type

A and type B option pricing formulas for different values of the parameter.
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Figure 5.4: The comparison of subdiffusive type B option cost formula with subordinated

GBM C
(B)
1 (x, T, t) [see Eq. (5.21)] and C

(B)
2 (x, T, t) [see Eq. (5.26)] for tempered stable

waiting times Φ(λ) = (λ+ ζ)α − ζα with parameter values K = 2, x = 1, x0 = 2, σ = 1
, t = 0.3 and α = 0.5 for different interest rates: (a)(c) r = 0.02 and (b)(d) r = 0.5.
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Figure 5.5: Analytic expression of subdiffusive type B option cost formula C
(B)
2 (x, T, t)

[see Eq. (5.26)] for tempered stable waiting times Φ(λ) = (λ+ ζ)α − ζα with parameter
values K = 2, σ = 1, x = 1, r = 0.5, ζ = 0.001 for different initial and expiration times:
(left panel) t = 0.1, T = 5.1 and (right panel) t = 5, T = 10.
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Figure 5.6: The comparison of subdiffusive type B option cost formula with subordinated

GBM C
(B)
2 (x, T, t) [see Eq. (5.26)] for tempered stable waiting times Φ(λ) = (λ+ζ)α−ζα

with parameter values K = 2, x = 1, σ = 1 , r = 0.5, t = 0.1, T = 5.1 and α = 0.5
for different initial and expiration times: (left panel) t = 0.1, T = 5.1 and (right panel)
t = 5, T = 10.
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Chapter 6

General subdiffusive call option

formula with arbitrary payoffs

function

In this chapter, we will study general option pricing with subordinated processes defined

by Eq. (3.24) with a Laplace exponent given in Eq. (3.106). By general option pricing,

we mean that the payoff function is arbitrary. We should emphasize that general option

pricing with subordinated processes can be used to address several interesting option

pricing problems if certain assumptions are made. We will demonstrate that a general

option pricing formula for a subordinated pricing model can be expressed in terms of

its normal version and the corresponding density of the subordinator. For simplicity,

we will examine the power option with a subordinated GBM. In particular, we will

consider stable and tempered stable waiting times. This option is, perhaps, the simplest

option we could examine that extends the normal European call option case. Thus, we

hope that these results demonstrate the practical use of our approach. This chapter is

organized as follows. In Sec. 6.1, the general subdiffusive call option pricing formulas

will be put forward for arbitrary payoff functions. In Sec. 6.2, we give an application of

our general formula by considering the special case of the subdiffusive power option. We

also derive the fractional equations that can be likewise used to obtain the option cost

and derive its solution. Finally, the comparison between the classical and subdiffusive

power options are made.
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6.1. General subdiffusive call option formula with an arbitrary payoff function

6.1 General subdiffusive call option formula with an arbi-

trary payoff function

In this section, the general subdiffusive call option formula with an arbitrary payoff

function will be presented. Moreover, we assume that the initial time of the option is

the current time t = 0. Recall that the normal option with an arbitrary payoff function

is defined as [139]

C(x, t) = e−rt
〈
(g(X(t))−K)+

〉
X(0)=x

(6.1)

where r is the interest rate, g is an appropriate arbitrary specified function, (g(X(t))−
K)+ is max{0, g(X(t))−K}, t is exercise time, K is strike price and X(t) is the stochastic

process of the asset price. It is implicitly assumed that the expected value is with respect

to a suitable risk-neutral measure. Supposing that the underlying assets price follows

the subordinated process Y (t) = X(S(t)) defined by Eq. (3.24) with Laplace exponent

given in Eq. (3.106), interesting properties may be found as the pricing model is not a

normal Markovian process any more.

According to the different ways of discounting either with respect to the subordinator

or the physical time, there will be two versions of subdiffusive option costs corresponding

to the normal option with arbitrary payoffs defined in Eq. (6.1). Next we will investigate

these expressions in detail.

6.1.1 Subdiffusive formula type 1

The first type of subdiffusive call option cost assumes that the discounting takes place

with respect to the subordinator S(t)

C1(x, t) =
〈
e−rS(t) (g(X(S(t)))−K)+

〉
X(0)=x

(6.2)

where as usual r is the interest rate, g is an appropriate arbitrary specified function,

(g(X(S(t)) − K)+ is max{0, g(X(S(t)) − K}, t is exercise time, K is strike price and

X(S(t)) is the assets’ price.

In fact, the price of option C1(x, t) given by Eq. (6.2) could be expressed in the form
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6.1. General subdiffusive call option formula with an arbitrary payoff function

of the normal option pricing cost with an arbitrary payoff, Eq. (6.1), as follows

C1(x, t) =
〈
e−rS(t)(g (X(S(t)))−K)+

〉
=

〈∫ ∞
0

ds e−rs(g (X(s))−K)+δ(s− S(t))

〉
=

∫ ∞
0

ds e−rs
〈
g (X(s))−K)+

〉
h(s, t)

=

∫ ∞
0

dsC(x, s)h(s, t) (6.3)

where C(x, s) represents the normal option pricing cost defined by Eq. (6.1) and h(s, t)

is the density function of the process S(t) defined in Eq. (3.107). If we take the Laplace

transform to C1(x, t) with respect to t in Eq. (6.3), by Eq. (3.108) it is evident that

C̃1(x, λ) =

∫ ∞
0

dte−λt
∫ ∞

0
dsC(x, s)h(s, t)

=

∫ ∞
0

dsC(x, s)h̃(s, λ)

=

∫ ∞
0

dsC(x, s)
Φ(λ)

λ
e−Φ(λ)s

=
Φ(λ)

λ

∫ ∞
0

dsC(x, s)e−Φ(λ)s

=
Φ(λ)

λ
C̃(x,Φ(λ)) (6.4)

where C̃(x,Φ(λ)) =
∫∞

0 dsC(x, s)e−Φ(λ)s, which would be obtained by applying the

Laplace transform to C(x, s) in Eq. (6.1). Then performing the inverse Laplace trans-

form to C̃1(x, λ) in Eq. (6.4), the expression for the subdiffusive option C1(x, t) deter-

mined by Eq. (6.2) in the time domain could be derived explicitly.

6.1.2 Subdiffusive formula type 2

Another type of subdiffusive call option cost is based on the assumption that the dis-

counting is affected by the real time

C2(x, t) =
〈
e−rt (g(Y (t))−K)+

〉
X(0)=x

(6.5)
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6.2. Subdiffusive power option formula

With the same procedure as above, the average value determined by Eq. (6.5) could be

derived as

C2(x, t) = e−rt
〈
(g (X(S(t)))−K)+〉

= e−rt
∫ ∞

0
ds ersC(x, s)h(s, t) . (6.6)

where C(x, s) represents the normal option pricing cost with an arbitrary payoff, Eq. (6.1),

and h(s, t) is the density function of the process S(t).

If we apply the Laplace transform directly to this formula in Eq. (6.6), we can derive

that

C̃2(x, λ) =

∫ ∞
0

dte−λte−rt
∫ ∞

0
ds ersC(x, s)h(s, t)

=

∫ ∞
0

ds ersC(x, s)h̃(s, λ+ r)

=

∫ ∞
0

ds ersC(x, s)
Φ(λ+ r)

λ+ r
e−Φ(λ+r)s

=
Φ(λ+ r)

λ+ r

∫ ∞
0

dsC(x, s)e−(Φ(λ+r)−r)s

=
Φ(λ+ r)

λ+ r
C̃(x,Φ(λ+ r)− r) . (6.7)

Here we use the fact that the density function h(s, t) of the process S(t) in Laplace

space satisfies Eq. (3.108). C̃(x,Φ(λ + r) − r) can be obtained from the calculation∫∞
0 dsC(x, s)e−(Φ(λ+r)−r)s, which is the Laplace transform of the normal option with an

arbitrary payoff in Eq. (6.1). As we have found the exact expression for the subdiffusive

option C̃2(x, λ) (see Eq. (6.7)) in Laplace space, its closed form could be obtained if the

inverse Laplace transform is performed to C̃2(x, λ). Note that when S(t) = t, which

means that only the real time takes effect in the option pricing, both the subdiffusive

call option costs of Eq. (6.2) and Eq. (6.5) become the normal call option cost C(x, t)

of Eq. (6.1).

6.2 Subdiffusive power option formula

As the general subdiffusive call option formulas for an arbitrary payoff have been pre-

sented, it will provide us with a useful tool to analyse a variety of option types in the
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6.2. Subdiffusive power option formula

subdiffusive regime conveniently and efficiently. In order to show the efficiency of the

subdiffusive option formulas we have derived, we will apply it to the case of the power

option to obtain the corresponding formulas and investigate their behaviour. For the

convenience of the following discussion, we will take a look at the normal power option

first.

6.2.1 Normal power option formula

In the option price cost defined by Eq. (6.1), if we let g(X(t) = X(t)β, and X(t) is GBM

under the risk-neutral measure we get the power option Cβ(x, t) with power parameter

β as [139]

Cβ(x, t) = e−rt
〈

(X(t)β −K)+
〉
X(0)=x

(6.8)

where (X(t)β − K)+ is max{0, X(t)β − K}, t is exercise time, K is strike price. Fur-

thermore, the option given by Eq. (6.8) can be evaluated by [139]

Cβ(x, t) = e(β−1)(r+βσ2

2
)tCBS(xβ, t,K, βσ, rβ) (6.9)

where CBS(x, t,K, σ, r) is the Black-Scholes formula (see Eq. (2.83)).

Moreover, the power option Cβ(x, t) with power parameter β can be described by

the equation

∂

∂t
Cβ(x, t) =

(
σ2x2

2

∂2

∂x2
− r +

(
r + (1− β)(1− σ2

2
)

)
x
∂

∂x

)
Cβ(x, t) (6.10)

with the initial and boundary conditions

Cβ(x, 0) = max((xβ −K), 0), x ≥ 0 (6.11a)

Cβ(0, t) = 0, t ≥ 0 (6.11b)

Cβ(x, t)→ xβ, x→∞ . (6.11c)

To derive the equation above, we use the fact that the standard Black-Scholes price

CBS(x, t,K, σ, r) is found as a solution of the BS Eq. (2.96).
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6.2.2 Subdiffusive power option 1

By introducing a subordinated process defined by Eq. (3.24) with Laplace exponent given

in Eq. (3.106) as a pricing model, we will derive the subdiffusive formulas corresponding

to the normal power option in Eq. (6.8). From the previous discussion, we know that

there will be two versions in the subdiffusive regime. According to the formula derived

in Eq. (6.3), the first type of the subdifffusive power option formula can be written as

C1(x, t) =

∫ ∞
0

dsCβ(x, s)h(s, t) (6.12)

where Cβ(x, s) is the normal power option defined by Eq. (6.8) and h(s, t) is the density

of the process S(t). In particular, if we choose β = 1, the subdiffusive option pricing in

Eq. (6.12) becomes Black-Scholes formula time changed by an inverse subordinators [90].

In fact, the quantity in Eq. (6.12) can likewise be characterized by a fractional dif-

ferential equation which we will derive in the following part. Resorting to Eq. (3.111),

taking the derivative of C1(x, t) with respect to t, it is evident that

∂

∂t
C1(x, t) =

∫ ∞
0

dsCβ(x, s)
∂

∂t
h(s, t) (6.13)

Using Eq. (3.111), we obtain

∂

∂t
C1(x, t) = −Ft

(∫ ∞
0

dsCβ(x, s)
∂

∂s
h(s, t)

)
= −Ft

(
h(s, t)Cβ(x, s)|∞0 −

∫ ∞
0

ds
∂

∂s
Cβ(x, s)h(s, t)

)
= −Ft

(
−
∫ ∞

0
ds

(
σ2x2

2

∂2

∂x2
− r +

(
r + (1− β)(1− σ2

2
)

)
x
∂

∂x

)
Cβ(x, s)h(s, t)

)
= Ft

(
σ2x2

2

∂2

∂x2
− r +

(
r + (1− β)(1− σ2

2
)

)
x
∂

∂x

)
C1(x, t) . (6.14)

Here of course the appropriate boundary conditions are required for h(s, t) at t = 0 and

t =∞.

Finally we obtain the fractional equation for the diffusive power option formula as

∂

∂t
C1(x, t) = Ft

(
σ2x2

2

∂2

∂x2
− r +

(
r + (1− β)(1− σ2

2
)

)
x
∂

∂x

)
C1(x, t) (6.15)
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6.2. Subdiffusive power option formula

with the initial and boundary conditions

C1(x, 0) = max((xβ −K), 0), x ≥ 0 (6.16a)

C1(0, t) = 0, t ≥ 0 (6.16b)

C1(x, t)→ xβ, x→∞ , (6.16c)

which follow instantly from the definition in Eq. (6.1). It is obvious that the Black-

Scholes Eq. (2.96) is recovered when β = 1. So far we have succeeded in deriving the

fractional differential equation for C1(x, t) and it is straightforward to solve it in Laplace

space which is common for solving such fractional equations, but we omit this method

here for simplicity. Alternatively, we can apply the Laplace transform directly to C1(x, t)

in Eq. (6.12). After a simple calculation, it is easy to see that C1(x, t) in Laplace space

can be written as

C̃1(x, λ) =
Φ(λ)

λ
C̃β(x,Φ(λ))

=
Φ(λ)

λ
C̃BS(xβ,Φ(λ)− (β − 1)(r +

βσ2

2
),K, βσ, rβ) . (6.17)

Here we use the relation between the normal power option C̃β(x, λ) and Black-Scholes

formula C̃BS(x, λ,K, σ, r) in Laplace space as follows

C̃β(x, λ) =

∫ ∞
0

dte−λtCβ(x, t)

=

∫ ∞
0

dte−λte(β−1)(r+βσ2

2
)tCBS(xβ, t,K, βσ, rβ)

= C̃BS(xβ, λ− (β − 1)(r +
βσ2

2
),K, βσ, rβ) . (6.18)

Since in Laplace space C̃BS(x, λ,K, σ, r) is given by Eq.(4.11), the closed analytic form

of the subdiffusive power option C1(x, t) in Eq. (6.12) could be derived by performing

the inverse Laplace transform of the expression in Eq. (6.17).
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6.2.3 Subdiffusive power option 2

Let us now turn to the other type of the subdiffusive power option, which is obtained

from Eq. (6.6) as

C2(x, t) = e−rt
∫ ∞

0
ds ersCβ(x, s)h(s, t) (6.19)

We are interested in the fractional equation which could characterise the evolution of

C2(x, t) above. If we take the derivative of C2(x, t) with respect to t, we find that

∂

∂t
C2(x, t) = −re−rt

∫ ∞
0

ds ersCβ(x, s)h(s, t) + e−rt
∫ ∞

0
ds ersCβ(x, s)

∂

∂t
h(s, t) .

(6.20)

By Eq. (3.111) and Eq. (6.19), the equation above can be converted into

∂

∂t
C2(x, t) = −rC2(x, t)− e−rtFt

(∫ ∞
0

ds ersCβ(x, s)
∂

∂s
h(s, t)

)
= −rC2(x, t)− e−rtFt

(
h(s, t)Cβ(x, s)ers|∞0 −

∫ ∞
0

ds
∂

∂s
(ersCβ(x, s))h(s, t)

)
= −rC2(x, t)− e−rtFt

(
−r
∫ ∞

0
ds ersCβ(x, s)h(s, t)

−
∫ ∞

0
ds ers

∂

∂s
Cβ(x, s)h(s, t)

)
(6.21)

with the assumption that the appropriate boundary conditions are satisfied by the den-

sity function h(s, t) both at time t = 0 and t =∞.

As the normal power option satisfies Eq. (6.10), substituting it into the equation
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6.2. Subdiffusive power option formula

above, we can derive the fractional equation for C2(x, t) given by Eq. (6.19) as follows

∂

∂t
C2(x, t) = −rC2(x, t) + e−rtFt

(
r

∫ ∞
0

ds ersCBS(x, s)h(s, t)

+

∫ ∞
0

ds ers
(
σ2x2

2

∂2

∂x2
− r

+

(
r + (1− β)(1− σ2

2
)

)
x
∂

∂x

)
Cβ(x, s)h(s, t)

)
= −rC2(x, t) + e−rtFt

(
ert
(
σ2x2

2

∂2

∂x2

+

(
r + (1− β)(1− σ2

2
)

)
x
∂

∂x

)
C2(x, t)

)
. (6.22)

The initial and boundary conditions for the equation above should satisfy

C2(x, 0) = max((xβ −K), 0), x ≥ 0 (6.23a)

C2(0, t) = 0, t ≥ 0 (6.23b)

C2(x, t)→ xβe−rtL−1

{
Φ(λ)

λ(Φ(λ)− r)

}
, x→∞ . (6.23c)

The fractional equation (6.22) also becomes the standard Black-Scholes Equation 2.96

when we let β = 1. Using the formula which we have obtained for the general case given

by Eq. (6.7), the solution to the fractional equation (6.22) in Laplace space could be

derived as

C̃2(x, λ) =
Φ(λ+ r)

λ+ r
C̃β(x,Φ(λ+ r)− r)

=
Φ(λ+ r)

λ+ r
C̃BS(xβ,Φ(λ+ r)− r − (β − 1)(r +

βσ2

2
),K, βσ, rβ) . (6.24)

Now the closed exact form of the subdiffusive power option C2(x, t) in Eq. (6.19) can

be obtained by performing the inverse Laplace transform to C̃2(x, λ) in Eq. (6.24).

6.2.4 Different cases of waiting times

α-stable waiting times

According to different expressions of the Laplace exponent in Eq. (3.106), we are able

to model different statistics of the waiting times. As a special case, we will consider the
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Figure 6.1: Analytic expression of subdiffusive power option cost formula with α-stable
waiting times C1(x, t) [see Eqs. (6.18)] and C2(x, t) [see Eqs. (6.24)] with parameter
values K = 3, x = 1.1, β = 1.5, σ = 0.2 for different interest rates: (a)(c) r = 0.02 and
(b)(d) r = 0.2.

α-stable waiting times [23,64,104,142], which means the Laplace exponent in Eq. (3.106)

reads Φ(λ) = λα. For this case, it actually describes the subdiffusive dynamics based

on the continuous-time random walk (CTRW) [23].

In Fig. 6.1, the subdiffusive power option with α-stable waiting times is compared

for different α values with parameters K = 3, x = 1.1, β = 1.5, σ = 0.2 for two different
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6.2. Subdiffusive power option formula

values for the interest rate r = 0.02 and r = 0.2. We see that when α → 1, the

subdiffusive option value with stable waiting times is approaching the standard power

option prices.
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Figure 6.2: Analytic expression of subdiffusive power option cost formula with tempered
stable waiting times C1(x, t) [see Eqs. (6.18)] and C2(x, t) [see Eqs. (6.24)] with param-
eter values K = 3, x = 1.1, β = 1.5, σ = 0.2 and ζ = 0.001 for different interest rates:
(a)(c) r = 0.02 and (b)(d) r = 0.2.
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6.2. Subdiffusive power option formula

The tempered stable waiting times

We also consider tempered stable waiting times, which means that in Eq. (3.106) Φ(λ) =

(λ + ζ)α − ζα with 0 < α < 1 [8, 32, 67]. The tempered stable waiting times could

resemble stable laws in many fields [138]. Particularly, the transition from the initial

subdiffusive character of motion in short times to the standard diffusion in long times is

observed [126,154], which is suitable to model many experiments results [21,69,118,128].

When ζ = 0 the CTRW case is recovered while for ζ →∞ the Brownian limit is obtained.

As it is quite difficult to get closed forms for C1(x, t) and C2(x, t) by applying the inverse

Laplace transform to the expressions derived in Eqs. (6.18)–(6.24) directly, we resort to

the so-called Talbot method [2,3,157] to compute the option value in the time domain,

and we use the numerical inverse Laplace transform of the Mathematica software [1].

Fig. 6.2 shows the changes of the subdiffusive power option with tempered stable

waiting times according to different values of the real time t with parameters K = 3,

x = 1.1, β = 1.5, σ = 0.2, ζ = 0.001 for the interest rate r = 0.02 and r = 0.2,

respectively. It also shows that when α→ 1, the subdiffusive option values with stable

waiting times are approaching the standard power option prices. The comparison of the

subdiffusive power option cost formula 1 C1(x, t) with tempered stable waiting times and

formula 2 C2(x, t) is made in Fig. 6.3 for different values of the tempering parameter ζ.

The difference between the values of subdiffusive power option costs with either

stable waiting times or tempered waiting times C1(x, t) and C2(x, t) should be very tiny

when the interest rate r takes a small value, which is evident as the formula C1(x, t) in

Eq. (6.12) and C2(x, t) in Eq. (6.19) would be equal to each other when r = 0. However,

when the interest rate increases, the prices are different, which could be observed both

from Figs. 6.1 and 6.2. When r = 0.02 which is quite close to 0, the value of C1(x, t)

and C2(x, t) are almost the same whereas when r = 0.2 the value is quite different. This

behaviour is as expected.

We are interested in the impact of the subdiffusive behaviour, controlled by the pa-

rameter α. If we take a look at stable waiting times shown by Figs. 6.1, Fig. 6.1 (a)

and 6.1 (b) describe values of the power option C1(x, t) with discounting on the sub-

ordinator time scale. It is clearly visible that the standard power call option formula

overvalues the option when the asset prices follows a subdiffusive dynamics where the

subdiffusive option formula would provide a more reasonable price. Of course the stan-

dard power option is recovered in the limiting case α → 1. Furthermore the figures

indicate that for long times the larger the value of α takes, the higher the value that
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Figure 6.3: The comparison of subdiffusive power option cost formula with tempered
stable waiting times C1(x, t) [see Eqs. (6.18)] and C2(x, t) [see Eqs. (6.24)] with param-
eter values K = 3, x = 1.1, β = 1.5, σ = 0.2 and α = 0.3 for different interest rates:
(a)(c) r = 0.02 and (b)(d) r = 0.2.

the subdiffusive option reaches. For short times, this behaviour is reversed. Fig. 6.1 (c)

and 6.1 (d) show that the subdiffusive formula C2(x, t) which takes the discounting on

the real time scale into consideration exhibits similar trends as C1(x, t). It is remarkable

that both of the subdiffusive formulas C1(x, t) and C2(x, t) give a qualitatively similar

result for r = 0.02. The same behaviour also takes place for the tempered waiting times
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6.3. Summary of chapter

which can be observed in Fig. 6.2.

In the case of the tempered stable waiting times, also the parameter ζ has an impact

on the value of the option. Fig. 6.3 provides us with a clear view of the resulting be-

haviour. For non-zero ζ the subdiffusive option is intermediate between the subdiffusive

power option with stable waiting times and the standard power option. When ζ takes

a value near 0, the value of the subdiffusive power option with tempered waiting times

are more close to the subdiffusive power option with stable waiting times. When the

value of ζ increases, the value of the subdiffusive power option with tempered waiting

times approaches a high level, which is still below the cost of the normal power option.

This behaviour holds for both C1(x, t) and C2(x, t), which means that the parameters

ζ and α both affect the value of the subdiffusive option pricing cost.

6.3 Summary of chapter

In this chapter, we have put forward a general subdiffusive call option pricing formula

for arbitrary payoffs, which is assumed to be able to capture the constant periods in

the asset price dynamics. Our formulas, depending on a subdiffusive pricing model

with general waiting times, can be used to obtain the corresponding subdiffusive option

formulas published in Refs. [88,90,91,120,155]. Since the payoff function is arbitrary, our

results can be applied to a variety of different option pricing problems. As an example,

we derived the subdiffusive power option formula. Once a specific payoff function is

given, one could follow the standard procedure outlined here to derive its subdiffusive

version. Our formulas will be particularly useful for pricing options in markets which

exhibit subdiffusive dynamics.
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Chapter 7

Path dependent call options

In this chapter, we will examine the exotic options with subordinated processes. Up till

this point, we have investigated the vanilla options with subordinated process. Unfor-

tunately, this perfection is depend only on the assets’ price at the maturity time but

ignores the price path leading to it. Rather than the vanilla options, we aim to investi-

gate exotic options in the subdiffusive regime that depend not only on the asset price at

the expiration time but also on the previous price history. In particular, we will examine

Asian call option. In this case, the subordination can be formulated in three different

ways leading to three different option formulas and PDEs. This chapter is arranged

as follows. In Sec. 7.1, we present the conventional Asian call option and discuss a

solution method based on a Laplace transformation of the strike price. In Sec. 7.2, the

possible subdiffusive versions are introduced and solution methods discussed. Finally,

we summarize this chapter in Sec. 7.3.

7.1 The conventional Asian call option

The no arbitrage price of a normal arithmetic Asian option C(x, t) can be expressed

as [5, 137]

C(x, t) = e−rt

〈(
1

t

∫ t

0
g(X(τ))dτ −K

)+
〉
X(0)=x

(7.1)

where g is an arbitrary function specifying the payoff, r is the interest rate, t is expiration

time, and K is strike price. X(t) denotes the price of the underlying asset which is

expected to follow the risk-neutral Geometric Brownian motion (GBM) Eq. (2.78). We
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7.1. The conventional Asian call option

see that the share price at the expiration time as in the normal European call option is

replaced by a functional that includes all share prices from time 0 (the initial time of the

option) until the expiration time. In particular, when g(x) = x, Eq. (7.1) is referred to

as arithmetic Asian call option and when g(x) = ln(x) as geometric Asian call option.

Note that throughout this chapter the brackets 〈...〉 always denote a conditional expected

value 〈...〉X(0)=x.

An elegant way to translate Eq. (7.1) into more tractable expressions is to use a

Laplace transform with respect to the strike price K as described in Ref. [47] for g(x) =

x, but the approach can be applied for a general function g. Let us first review the

major steps of this method. If the option could be expressed as follows

C(x, t,K) = e−rt
〈
β (g(X(t))−K)+〉 (7.2)

where β (X(t)−K)+ is the payoff function for some constant β and function g. Then

C(x, t,K) = e−rt
〈
β (g(X(t))−K)+〉

= βe−rt
∫ ∞

0
(g(z)−K)+f(z|x)dx (7.3)

where f(z|x) is the conditional PDF of X(t). If we apply a Laplace transform with

respect to K, we obtain further

C(x, t, v) = L{C(x, t,K)}

=

∫ ∞
0

e−vKC(x, t,K)dK

= βe−rt
∫ ∞

0
e−vK

∫ ∞
0

(g(z)−K)+f(z|x)dz dK

= βe−rt
∫ ∞

0

(∫ g(z)

0
e−vK(g(z)−K)dK

)
f(z|x)dz

= βe−rt
∫ ∞

0

e−vg(z) + g(z)v − 1

v2
f(z|x)dz

= βe−rt

(〈
e−vg(X(t))

〉
v2

+
〈g(X(t))〉

v
− 1

v2

)
(7.4)
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Applying the inverse Laplace transform to it, we get

C(x, t,K) = βe−rt

(
L−1

{〈
e−vg(X(t))

〉
v2

}
+ 〈g(X(t))〉 −K

)
(7.5)

The option pricing could be obtained explicitly if we know the inversion of
〈e−vg(X(t))〉

v2

and the average value 〈g(X(t))〉.

Comparing to our option formula Eq. (7.1) we notice that the payoff is

1

t

(∫ t

0
g(X(τ))dτ −Kt

)+

, (7.6)

we see that g(X(t)) in Eq. (7.5) is replaced by
∫ t

0 g(X(τ))dτ here. Furthermore, β = 1/t

and K → Kt. Therefore, the Asian call option price is determined by

C(x, t,K) =
1

t
e−rt

L−1


〈
e−v

∫ t
0 g(X(τ))dτ

〉
v2

+

〈∫ t

0
g(X(τ))dτ

〉
−Kt

 . (7.7)

Apart from performing the inverse Laplace transform, the challenge is thus to evaluate

the expected values 〈∫ t

0
g(X(τ))dτ

〉
=

∫ t

0
〈g(X(τ))〉 dτ, (7.8)

and, more importantly,

u(x, t) =
〈
e−v

∫ t
0 g(X(τ))dτ

〉
(7.9)

which satisfies the conventional Feynman-Kac (FK) equation (2.87). In order to extend

Eq. (7.1) to a subdiffusive pricing model, we thus need to generalize the FK equation

accordingly. We first discuss the three different ways of introducing the subordination

in Eq. (7.1).

7.2 Subdiffusive versions of the Asian call option

By replacing the risk-neutral Geometric Brownian motion (GBM) Eq. (2.78) with the

subordinated geometric Brownian motion for the asset price, we then obtain three dif-

ferent types of subdiffusive option formulas depending on the way the physical time is
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represented:

1. The simplest way to include the subordination is by replacing t with S(t) through-

out Eq. (7.1). This yields:

C1(x, t) =

〈
e−rS(t)

(
1

S(t)

∫ S(t)

0
g(X(τ))dτ −K

)+〉
. (7.10)

2. A variant of this version is obtained by replacing t only in the integral limit by

S(t), which keeps the integral over the asset price process simple

C2(x, t) =

〈
e−rt

(
1

t

∫ S(t)

0
g(X(τ))dτ −K

)+〉
. (7.11)

3. Finally, we obtain the third variant by replacing the asset price process X(t) with

Y (t) while keeping the physical time everywhere as in Eq. (7.1), where Y (t) =

X(S(t)) is as before the CTRW in physical time. This means the integral is now

over the physical time rather than over the operational time

C3(x, t) =

〈
e−rt

(
1

t

∫ t

0
g(X(S(τ)))dτ −K

)+
〉
. (7.12)

As we will see below, this convention, which is in a way the most consistent

extension of Eq. (7.1), requires us to introduce an entirely different fractional time

operator.

The option price in version 1 is obtained in a straightforward way as an integral

transformation. However, for versions 2 and 3, we need to apply results on generalized

FK formulas from the literature. Note that the conditional expected value on X(0) = x

is applicable for all three versions since X(S(0)) = X(0) = x.
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Formula 1

The option price Eq. (7.10) can be further manipulated as follows

C1(x, t) =

〈
e−rS(t)

(
1

S(t)

∫ S(t)

0
g(X(τ))dτ −K

)+〉

=

∫ ∞
0

ds

〈
e−rs

(
1

s

∫ s

0
g(X(τ))dτ −K

)+
〉
h(s, t)

=

∫ ∞
0

dsC(x, s)h(s, t) (7.13)

where C(x, s) is the price of the normal Asian call option and h(s, t) is the density

function of the general inverse Lévy subordinator S(t) Eq. (3.107). By applying the

Laplace transform to Eq. (7.13), we obtain further

C̃1(x, λ) =

∫ ∞
0

dte−λt
∫ ∞

0
dsC(x, s)h(s, t)

=

∫ ∞
0

dsC(x, s)h̃(s, λ)

=

∫ ∞
0

dsC(x, s)
Φ(λ)

λ
e−Φ(λ)s

=
Φ(λ)

λ

∫ ∞
0

dsC(x, s)e−Φ(λ)s

=
Φ(λ)

λ
C̃(x,Φ(λ)) (7.14)

To derive the result above, Eq. (3.108) is used here. We conclude that if C1(x, t) is

obtained in Laplace space, it is straightforward to evaluate the subdiffusive version 1

option price by applying the inverse Laplace transform to Eq. (7.14).

Formula 2

In the case of the second option formula Eq. (7.11), we can use the method outlined

above by performing a Laplace transform with respect to the strike price K leading to

Eq. (7.7). Noticing that the payoff is

1

t

(∫ S(t)

0
g(X(τ))dτ −Kt

)+

, (7.15)
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instead of Eq. (7.15), we see that we can use the solution Eq. (7.7) to evaluate Eq. (7.11)

if we replace the two expected values in Eq. 7.7 by the expressions
〈
e−v

∫ S(t)
0 g(X(τ))dτ

〉
and

〈∫ S(t)
0 g(X(τ))dτ

〉
. The expected value

u(x, t) =
〈
e−v

∫ S(t)
0 g(X(τ))dτ

〉
(7.16)

requires a generalization of the conventional FK equation (2.87), which, in fact, has

been solved for a general Laplace exponent Φ of the subordinator S(t) in Ref. [92]. The

expected value Eq. (7.16) is the solution of the fractional equation

∂u(x, t)

∂t
= Ft

((
rx

∂

∂x
+

1

2
σ2x2 ∂

2

∂x2

)
u(x, t)− vg(x)u(x, t)

)
(7.17)

with initial condition

u(x, 0) = 1 (7.18)

where the operator Ft is defined as in Eq. (3.112). Eq. (7.17) is obtained analogous to

the fractional Fokker-Planck equation (3.115) by noting that

u(x, t) =
〈
e−v

∫ S(t)
0 g(X(τ))dτ

〉
=

〈∫ ∞
0

ds δ(s− S(t))e−v
∫ s
0 g(X(τ))dτ

〉
=

∫ ∞
0

ds h(s, t)
〈
e−v

∫ s
0 g(X(τ))dτ

〉
=

∫ ∞
0

ds h(s, t)u0(x, s), (7.19)

where u0(x, s) satisfies the conventional FK equation (2.87).

Therefore, one of the required terms in Eq. (7.7) could be calculated if we are able to

calculate the integral in Eq. (7.19) from the conventional solution of the FK equation.

Moreover, we have〈∫ S(t)

0
g(X(τ))dτ

〉
=

∫ ∞
0

(∫ s

0
〈g(X(τ))〉 dτ

)
h(s, t)ds. (7.20)

For the special case of an arithmetic Asian call option with g(x) = x, we obtain
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further ∫ ∞
0

(∫ s

0
〈g(X(τ))〉 dτ

)
h(s, t)ds =

∫ ∞
0

(∫ s

0
x0e

rτ

)
h(s, t)ds

= x0

∫ ∞
0

ers − 1

r
h(s, t)ds

=
x0

r

(∫ ∞
0

ersh(s, t)ds− 1

)
(7.21)

where h(s, t) is the PDF of the process S(t) in Eq. (3.107). Overall, we are thus able

to evaluate the arithmetic Asian call option via Eq. (7.7) if we can provide Eq. (7.21)

and the solution Eq. (7.19) of the generalized Feynman-Kac equation (7.17) for the case

g(x) = x. As far as the case of an geometric Asian call option with g(x) = ln(x), it also

can obtained with the similar steps unless we get∫ ∞
0

(∫ s

0
〈g(X(τ))〉 dτ

)
h(s, t)ds =

∫ ∞
0

(∫ s

0

(
lnx0 +

(
r − σ2

2

)
τ

)
dτ

)
h(s, t)ds

=

∫ ∞
0

(
lnx0s+

1

2

(
r − σ2

2

)
s2

)
h(s, t)ds

= lnx0

∫ ∞
0

sh(s, t)ds

+
1

2

(
r − σ2

2

)∫ ∞
0

s2h(s, t)ds . (7.22)

Formula 3

In order to evaluate the third version of a subdiffusive Asian call option, Eq. (7.12), we

can proceed as for the second one, only that now the payoff function is

1

t

(∫ t

0
g(X(S(τ)))dτ −Kt

)+

. (7.23)

Therefore, we need to calculate the two expected values
〈
e−v

∫ t
0 g(X(S(τ)))dτ

〉
and〈∫ t

0 g(X(S(τ)))dτ
〉

in order to apply Eq. (7.7). We thus seek the Feynman-Kac equation

that provides as solution the expected value

u(x, t) =
〈
e−v

∫ t
0 g(X(S(τ)))dτ

〉
. (7.24)
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To our knowledge this equation has not been derived yet for the underlying general

CTRW model Eq. (3.24) with x-dependent drift and diffusion and general waiting times.

However, specific cases have been treated in the literature. In [24,160] the FK equation1

has been derived for an x-dependent drift only and the special case of an inverse Lévy

stable subordinator, i.e., the conventional CTRW case. In [22] the full model Eq. (3.24)

has been treated for general waiting times, but only the forward FK equation has been

derived formally. Combining these results from the literature it is straightforward to

conjecture, even without derivation, that the FK equation sought in the present case

should have the form

∂u(x, t)

∂t
=

(
rx

∂

∂x
+

1

2
σ2x2 ∂

2

∂x2

)
Dtu(x, t)− vg(x)u(x, t) (7.25)

with initial condition

u(x, 0) = 1. (7.26)

In Eq. (7.25), the outstanding feature is the presence of a particular fractional time

derivative, the so-called fractional substantial derivative Dt, which has first been derived

for the joint position-velocity PDF of anomalous random walkers [46]. For a general

Laplace exponent, it is defined in Laplace space as [22]

L{Dtu(x, t)} =
λ+ vg(x)

Φ(λ+ vg(x))
ũ(x, λ). (7.27)

and can also be written explicitly in terms of an integral

Dtu(x, t) =

(
∂

∂t
+ vg(x)

)∫ t

0
dτ K(t− τ)e−vg(x)(t−τ)u(x, t), (7.28)

which corresponds formally to the inverse Laplace transform of the rhs in Eq. (7.27). The

kernel K is again related to the Laplace exponent Φ via Eq. (3.113). Clearly, Eq. (7.25)

is a complicated integro-differential equation. No non-trivial solution has been found

yet, which is also due to the fact that the solution can not be expressed in terms of a

simple integral transform as in the Formula 2, Eq. (7.19).

1More precisely, it is the backward FK equation, since the spacial derivatives act on the independent
variable at the initial time.
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7.3. Summary of chapter

The remaining expected value can be simplified as follows〈∫ t

0
g(X(S(τ)))dτ

〉
=

〈∫ t

0
dτ

∫ ∞
0

ds g(X(s))δ(s− S(τ))

〉
=

∫ t

0
dτ

∫ ∞
0

ds 〈g(X(s))〉h(s, τ) (7.29)

For the arithmetic Asian call option with g(x) = x we thus obtain∫ t

0
dτ

∫ ∞
0

ds 〈g(X(s))〉h(s, τ) = x0

∫ t

0
dτ

∫ ∞
0

ds ersh(s, τ) (7.30)

However, the main challenge remains to solve Eq. 7.25, which has not been possible so

far, even for the simple arithmetic case g(x) = x. For the geometric Asian call option

with g(x) = lnx we can derive∫ t

0
dτ

∫ ∞
0

ds 〈g(X(s))〉h(s, τ) =

∫ t

0
dτ

∫ ∞
0

ds

(
lnx0 +

(
r − σ2

2

)
s

)
h(s, τ) . (7.31)

7.3 Summary of chapter

In this chapter, we went beyond the vanilla options and considered exotic options in the

subdiffusive regime that are determined not only by the asset price at the expiration time

but also by the previous price history. We discussed three different types of subdiffusive

Asian call options with a general payoff function. In the first case, the subdiffusive

option price is readily obtained if the result on the conventional Asian call option is

known, since then the integral transformation with respect to the single-point PDF of

the subordinator S(t) can be applied. In the second case, an approach based on a Laplace

transform with respect to the strike price needs to be applied, but the relevant quantities

are again obtained from the conventional ones via the integral transform. In the third

and most realistic case, such a simple transformation can not be used. Nevertheless,

we were able to express the option price in terms of the solution of a generalized FK

equation containing a substantial fractional derivative. Solutions to this equation are

not known at this point in time, so a further study of this equation would be interesting

future work.
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Chapter 8

Concluding remarks and outlook

Conclusions of this thesis

In this thesis, we have discussed subdiffusive European call options with CTRW, the ex-

tension to general waiting times, subdiffusive call options with arbitrary payoff functions

as well as general waiting times, and path dependent call options. In particular, we took

subdiffusive geometric Brownian motion and subordinated geometric Brownian motion

as the underlying asset price models which are related to subdiffusive phenomena. The

main results of this thesis are listed as follows.

In Chapter 4, we use the subdiffusive GBM to analyse the subdiffusive European

call option pricing formula with CTRW. Our study shows that there are two types

of subdiffusive options, type A and type B option costs with non-zero interest rate

based on the CTRW formalization of the subdiffusive pricing model. We indicated that

these two types of subdiffusive formulas could be derived from corresponding fractional

differential equations. During the investigation, the fractional Fokker-Planck equation

governing the dynamics of the subdiffusive model is found again, which is different from

the original derivation in the literature. Comparison between two types of subdiffusive

option formulas are made and the effect of past time points studied.

In Chapter 5, by extending the subdiffusive GBM to the subordinated GBM, we

investigate the subdiffusive European call option pricing formula with general waiting

times which is actually an extension of what we discussed in chapter 4. We derive

two types of subdiffusive type A and type B option costs with non-zero interest rate.

We also find that these two types of subdiffusive formulas could also be derived from
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corresponding fractional differential equations.

In Chapter 6, we investigate a general option formula with arbitrary payoffs, whose

underlying pricing model is assumed to be able to capture the anomalous characteristics

of assets price. We find two types of subdiffusive formulas which give more choices to

model markets with anomalous dynamics. By illustrating the anomalous power option

formula, we present an application of our general formula. The fractional equations

which would be used to describe this kind of new power option formula are derived.

The comparison between the classical and anomalous power option are made.

In Chapter 7, we take subdiffusive exotic options into consideration which are de-

termined not only by the asset price at the expiration time but also by the previous

price history. Particularly, we present three different types of subdiffusive Asian call

options. For the first case, the subdiffusive option price can be readily obtained based

on the classical Asian call option and the integral transformation with respect to the

single-point PDF of the subordinator S(t). For the second case, an efficient approach

based on a Laplace transform with respect to the strike price can be put into use, but

the relevant quantities are again obtained from the conventional ones via the integral

transform. For the last and most realistic case, such a simple transformation can not be

used. However, we can express the option price in terms of the solution of a generalized

FK equation containing a substantial fractional derivative. Solutions to this equation

are not known yet, so further studies need to be completed to analyse this scenario.

Outlook

Starting with what we have derived so far, it is rather interesting to explore other option

pricing formula in the subdiffusive regime. In what follows, some interesting problems

are listed.

• It is rather interesting to get the real data in financial market exhibiting the

anomalous dynamics which could help to adjust the parameters in the pricing

model to better capture the real data.

• To improve the current model with more practical assumptions would be a good

way to find new option pricing formulas. It would be sensible to introduce, for

example, stochastic volatility, as the constant volatility assumed here is not an

ideal way to analyse real data. For example, a new subdiffusive Heston model can
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be formulated as follows

Ẋ(s) = (r − σ2

2
)x+

√
vxξ1(s)

v̇(s) = k(θ − v) + σ
√
vξ2(s) ,

Ṫ (s) = η(s) , (8.1a)

where θ is the long-time mean of v, k is the rate of relaxation to this mean, σ is

the variance noise. ξ1(s), ξ2(s) are standard white Gaussian noises. ξ1(s), ξ2(s)

and η(s) are also assumed to be independent noises such that X, v and T are

statistically independent processes. The noise η is characterised by Eq.(3.106).

By this improvement, a new versatile pricing model will be obtained, which would

result in new option pricing cost formulas.

• The path dependent Asian options also deserve further investigation. It would be

great progress in the field of anomalous dynamics to obtain relevant solutions for

the generalized FK equation (2.87) with the fractional substantial derivative.

• Throughout this thesis, we have only considered the Gaussian white noise for the

pricing model. These results are quite limited. As far as we know, more different

noises can be taken into consideration which would result into new findings.

152



Bibliography

[1] A Mathematica implementation of this method is available at

http://library.wolfram.com/infocenter/MathSource/5026.
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