
1 
 

Genetically engineered mesenchymal stromal cells producing IL-3 and TPO to 

further improve human scaffold-based xenograft models  

 

M. Carretta1#, B. de Boer1#, J. Jaques1, A. Antonelli1, S.J. Horton1,2, H. Yuan3, J.D. de 

Bruijn4, R.W.J. Groen5, E. Vellenga1, and J.J. Schuringa1* 

 

1Department of Experimental Hematology, Cancer Research Centre Groningen 

(CRCG), University Medical Centre Groningen, University of Groningen, The 

Netherlands. 2Current address: Department of Haematology, Cambridge Institute for 

Medical Research, University of Cambridge, Cambridge, UK. 3Xpand Biotechnology BV, 

Bilthoven, The Netherlands. 4Queen Mary University of London, School of Engineering 

and Materials Science (SEMS), Mile End Road, E1 4NS London, UK. 5Dept of 

Hematology, VU University Medical Center, Amsterdam, The Netherlands. #Shared 

authors. 

 

Short title: Genetically engineered MSCs in humanized xenografts 

*Address correspondence to: Prof. dr. Jan Jacob Schuringa (PhD), 

j.j.schuringa@umcg.nl 

Department of Experimental Hematology, University Medical Centre Groningen 

(UMCG), Hanzeplein 1, DA13, 9700RB Groningen, The Netherlands 

E-mail address: j.j.schuringa@umcg.nl; Phone: +31 50 3619391; Fax: +31 50 3614862 

Category: Microenvironment and niche 

mailto:j.j.schuringa@umcg.nl
mailto:j.j.schuringa@umcg.nl


2 
 

 

Word count abstract: 249 words,  

Word count text: 3505  



3 
 

Abstract  

Recently, NOD-SCID IL2Rγ−/− (NSG) mice were implanted with human mesenchymal 

stromal cells (MSCs) in the presence of ceramic scaffolds or matrigel in order to mimic 

the human bone marrow (BM) microenvironment. This approach allowed the 

engraftment of leukemic samples that failed to engraft in NSG mice without humanized 

niches and resulted in a better preservation of leukemic stem cell self-renewal 

properties [1-3]. To further improve our humanized niche scaffold model, we genetically 

engineered  human MSCs to secrete human IL-3 and TPO. In vitro, these IL-3 and 

TPO-producing MSCs were superior in expanding human cord blood (CB) CD34+ 

hematopoietic stem/progenitor cells. MLL-AF9-transduced CB CD34+ cells could 

efficiently be transformed along myeloid or lymphoid lineages on IL-3 and TPO-

producing MSCs. In vivo, these genetically engineered MSCs maintained their ability to 

differentiate into bone, adipocytes and various other stromal components. Upon 

transplantation of MLL-AF9-transduced cord blood CD34+ cells both AML and ALL 

developed in engineered scaffolds, whereby a significantly higher percentage of myeloid 

clones was observed in the mouse compartments compared to previous models. 

Engraftment of primary AML, B-ALL and biphenotypic acute leukemia (BAL) patient 

samples was also evaluated and all patient samples could efficiently engraft, whereby 

the myeloid compartment of the BAL samples was better preserved in the human 

cytokine scaffold model. In conclusion, we show that we can genetically engineer the 

ectopic human BM microenvironment in our humanized scaffold xenograft model. This 

approach will be useful to functionally study the importance of niche factors for normal 

and malignant human hematopoiesis. 
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Highlights  

 Human IL-3- and TPO-expressing MSCs support expansion of human CD34+ 

cells. 

 Genetically engineered MSCs are capable to form bone and stromal components 

in vivo. 

 Humanized xenograft models producing IL3/TPO support growth of patient 

samples. 
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Introduction 

Over the past decades, mouse xenograft models have significantly contributed to a 

better understanding of normal and malignant human hematopoiesis. The generation of 

immunodeficient mouse strains like the NOD-SCID IL2Rγ−/− (NSG) allowed researchers 

to functionally define human hematopoietic stem cells (HSCs) and their malignant 

counterpart [4-6]. These models also served as preclinical models for drug testing [7].  

Even though different subtypes of primary human acute myeloid leukemia (AML) 

samples can expand in these models, major limitations still exist as well. For 30-40% of 

AML samples engraftment remains challenging, especially for the favorable and 

intermediate risk groups [8-10]. This might be explained by the influence of the murine 

microenvironment and the absence of species-specific human factors. NOD-SCID and 

NSG transgenic mice expressing human factors such stem cell factor (SCF), 

granulocyte-macrophage colony-stimulating factor (GM-CSF), Interleukin-3 (IL-3), and 

thrombopoietin (TPO) have been developed and allowed an increase in the 

engraftability rate of primary AML samples [11-14]. Furthermore, the expression of 

human SCF, GM-CSF and IL-3 allowed AML development upon transplantation of cord 

blood (CB) CD34+ cells expressing the MLL-AF9 oncogene [15]. More recently, a series 

of additional models have been developed [16-22]. For instance, MISTRG mice were 

developed whereby human macrophage colony-stimulating factor (M-CSF), IL-3, GM-

CSF and TPO were knocked-in in their respective mouse loci, together with a BAC-

transgene encoding for human SIRP, supporting the development and function of 

innate immune cells in vivo [16]. 
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Yet, in these human cytokine mice essential human niche-specific factors might still be 

lacking. Also, the interaction of hematopoietic cells with specific human niche 

components (such as adipocytes, osteoblast or endothelial cells) might be critically 

important to allow homing and long-term self-renewal of HSCs. In order to reconstruct a 

human bone marrow (BM) microenvironment in immunodeficient mice, we recently 

developed an approach whereby ceramic scaffolds coated with human mesenchymal 

stromal cells (MSCs) were implanted subcutaneously in NSG mice [1,3]. We observed 

that CB CD34+ cells expressing BCR-ABL or MLL-AF9 could efficiently induce both 

AML and acute lymphoblastic leukemia (ALL) in these human BM scaffold-based 

xenografts (huBM-sc). Furthermore, a large cohort of patient samples covering all 

important genetic and risk subgroups successfully engrafted in this model, whereby 

stem cell self-renewal properties were better maintained as determined by serial 

transplantation assays and genome-wide transcriptome studies.  

Although the presence of an ectopic human BM niche presents clear advantages 

compared to normal NSG mice, some key issues still remain. For example, there are a 

number of growth factors that are not produced by MSCs, including TPO and IL-3. Here, 

we investigated whether we could genetically engineer MSCs to produce such factors 

and evaluated these modified MSCs in vitro and in vivo in humanized scaffold xenograft 

models. We engineered MSCs to overexpress IL-3 and TPO (henceforth referred to as 

cyto-MSCs) that efficiently supported expansion of human CD34+ stem/progenitor cells 

in vitro. Furthermore, these cyto-MSCs were functionally capable to form bone, 

adipocytes and various other stromal components in vivo and efficiently supported 

growth of AML, B-cell ALL (B-ALL) and biphenotypic patient samples (BAL). Lastly, we 
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found that the presence of IL-3 and TPO impacts on the lymphoid versus myeloid output 

in a CB MLL-AF9 in vivo model.  

 

Material and Methods 

Humanized scaffold niche xenograft model 

The ectopic bone model was established as described previously [1,3,23]. Briefly, four 

hybrid scaffolds consisting of three 2–3 mm biphasic calcium phosphate particles 

loaded with human MSCs and/or IL-3- and/or TPO-expressing MSCs were implanted 

subcutaneously into 6 to 8 weeks old  female NOD.Cγ-Prkdcscid Il2rγtm1Wjl/SzJ (NSG) 

mice. Six to eight weeks after scaffold implantation, different cell doses (patient samples 

or CB models) ranging from 0.9×105 to 4×106 were directly injected into the scaffolds 

during primary and secondary transplantations as indicated in the text. Human CD45 

engraftment was analysed by timely sub-mandibular bleeding procedures. Cells isolated 

from patient #1 were enriched for CD34 as previously described [24,25]. Cells isolated 

from patient #2 and #3 were CD3 depleted as previously described [1]. 

 

MS5 and MSC co-cultures  

CB CD34+ cells were grown in myeloid Gartner’s without the ectopic addition of 

cytokines. CB MLL-AF9 cells were grown under myeloid restricted and lymphoid 

permissive conditions. More detailed information can be found in the supplementary 

methods. 

 

Further materials and methods are provided as supplementary information. 
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Results 

Characterization of IL-3 and TPO expressing MSCs in vitro and in vivo 

We recently reported a human niche xenograft model in which MSCs are coated on 

scaffolds that are subcutaneously implanted in mice to generate humanized bone 

marrow niches [1,3,23]. Here, we wished to evaluate whether genetically engineered 

MSCs can be used in this model and provide tools to perform gene-function analyses to 

study the importance of niche factors for normal and malignant human hematopoiesis.  

Transcriptome studies of primary MSCs revealed that a variety of cytokines and growth 

factors  are produced, but some critically important cytokines such IL-3 and TPO are not 

(Fig. 1A, Supplemental Fig. 1A) [26] and our own unpublished MSC transcriptome 

studies (data not shown, submitted) confirmed these findings. We transduced primary 

human MSCs with lentiviral vectors expressing human IL-3 or TPO (Fig. 1B) and tNGFR 

positive cells were sorted, stored and used for further experiments (Supplemental Fig. 

1B). Conditioned supernatant (spnt) of cyto-MSC, mixed with normal MSCs in a range 

of 1-20%, was used to stimulate the IL-3 and TPO dependent MO-7e cell line for 15 

min, after which lysates were analysed for activated STAT5. As controls, cells were 

stimulated with 1-5 ng/ml IL-3 or TPO as indicated (Fig. 1C). Stimulation with as little as 

1% of IL-3 conditioned medium and 5% of TPO conditioned medium induced STAT5 

phosphorylation to comparable levels as stimulation with 1 ng/ml of these cytokines, 

suggesting that the concentration in conditioned media ranged from 10-50 pg/ml. 

Similarly, MS5 lines were generated that produced IL-3 or TPO (cyto-MS5). 

Next, stromal co-cultures were performed to functionally evaluate genetically 

engineered MSCs and MS5 murine bone marrow stromal cells. Empty vector (EV)-
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transduced or non-transduced control stromal cells were mixed with cytokine-producing 

stromal cells at various ratios. While the presence of IL-3 led to increased proliferation 

along the myeloid lineage, secretion of TPO resulted in the expansion and maintenance 

of a more immature phenotype as read out by the percentage and absolute cell counts 

of CD34+ cells, progenitor activity in CFC assays of cells taken at day 7, 14 and 28 from 

stromal co-cultures, and morphological analysis by cytospins and MGG staining (Fig. 

1D-H, Supplemental Fig. 1C-G). In particular the combination of IL-3- and TPO-

producing stroma was most efficient in expanding immature CD34+ progenitor cells (Fig. 

1D-H, Supplemental Fig. 1C-G). Importantly, cyto-MSCs were still capable to 

differentiate and form bone in vivo and HE staining indicated that a normal morphology 

of the scaffolds was obtained including the presence of adipocytes, various stromal 

components and blood vessels  (Fig.1I, Supplemental Fig. 2B ). Expression of IL-3 and 

tNGFR was also confirmed by immunohistochemistry 6 weeks after implantation (Fig. 

1J).  
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Figure 1, Characterization of IL-3 and TPO expressing MSCs in vitro and in vivo  

A) MSC gene expression profile of selected growth factors and cytokines (GO: 

secreted). B) Schematic representation of the two lenti-viral vectors carrying IL-3 and 

THPO. C) Western blot on M-O7e whole-cell lysate showing the activation of pSTAT5 

upon the manual addition of IL-3 and/or TPO, the supernatant of MSCs or a mixture of 

cyto-MSCs with normal MSCs in different ratios. D) Growth curve of CD34+ CB isolated 

cells co-cultured with cyto-MS5 mixed in different ratios with normal MS5. MS5 EV 

transduced cells were used as control E) CD34+ cumulative count of the CB co-culture 

with MS5 at day 14. F) CFC-analysis, cumulative colony count (technical triplicate, 

±s.d.) from the CB co-culture with MS5 at day 14. G) Growth curve of CD34+ CB 

isolated cells co-cultured with cyto-MSCs mixed in different ratios with normal MSCs. H) 

MGG staining of the CB co-culture with MSCs at day 18. I) H&E staining of huBM-sc 

coated with different ratio of normal MSCs, IL-3- or  TPO-expressing MSCs or a mixture 

of cyto-MSCs and normal MSCs after 6 weeks in vivo. J) IHC staining of IL-3 and 

tNGFR of cyto-MSCs after 6 weeks in vivo. * p ≤0.05, ** p ≤0.01, *** p ≤0.001,  paired 

Student t test.  

 

Leukemic cells engraft in human cytokine producing bone marrow scaffolds and 

recapitulate patient phenotype 

Next, engraftment of primary human acute leukemic cells upon direct injection in the 

scaffolds was evaluated. Scaffolds were coated with 60% normal MSCs, 20% IL-3- and 

20% TPO-expressing MCSs (cytoBM-sc), or only with normal MSCs  as published 

previously (huBM-sc) [1]. Three different patient samples were investigated, including 



12 
 

an AML, a B-ALL and a BAL sample (Supplemental Table 1).  Leukemic CD34+ cells 

were injected between 6-8 weeks after subcutaneous implantation of the ectopic 

engineered BM niches. Efficient engraftment was observed for all leukemia samples in 

both the huBM-sc or cytoBM-sc models with comparable kinetics (Fig. 2A). The FACS 

immunophenotype of leukemic cells grown in scaffolds was compared to that of the 

original patient sample. AML patient #1 presented with a FLT3-ITD and an NPM-MLF1 

fusion at diagnosis, with 54% CD34+ cells, 79% CD33+ and 2% CD19+ cells. Leukemia 

developed in both the huBM-sc or cytoBM-sc models with palpable tumors originating 

from the scaffolds and infiltration of human CD45+ cells in the mouse compartments 

such BM, spleen and liver was observed as well. For this sample, the 

immunophenotype of the original patient sample was well preserved in both the normal 

and cytokine humanized niches (Fig. 2B). B-ALL patient #2 contained an MLL-AF4 

translocation with 99% CD19+  cells at diagnosis. For this sample, CD34-positivity of 

engrafting cells was better preserved in the cytoBM-sc model compared to the huBM-sc 

(Fig. 2A) and murine niche environment (data not shown). Lastly, we analysed patient 

#3 who presented a BAL with complex karyotype (Supplemental Table 1). Overall, cells 

retrieved from the cytoBM-sc displayed an immunophenotype that or more closely 

resembled the phenotype of the patient at diagnosis, in particular with regard to 

expression levels of CD33+ and CD38+ (Fig. 2A, 2C).  
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Figure 2, Leukemic cells engraft in cytoBM-sc and recapitulate patients 

phenotype A) Immunophenotype of 3 patients; de novo (after thawing), cells retrieved 

from human niches of huBM-sc NSG and cytoBM-sc NSG models. B-C) FACS analyses 

comparing immunophenotype of patient #1 (B) and patient #3 (C) de novo, in huBM-sc 

and cytoBM-sc. 

 

CB MLL–AF9 cells can transform along myeloid and lymphoid lineages on cyto-

MSC co-cultures. 

CB CD34+ cells transduced with MLL-AF9 can be transformed along the myeloid or 

lymphoid lineage depending on extrinsic cues [15,27]. We have previously shown that 

while in the normal NSG xenograft model MLL-AF9-induced transformation in vivo is 

heavily lymphoid biased, more myeloid transformation is observed in the humanized 

niche scaffold model [3,27]. Nevertheless, since in particular IL-3 was shown to be 

important for MLL-AF9 induced human AML in xenografts, and not produced by our 
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MSCs (Fig. 1A), we investigated the leukemic transformation potential of MLL-AF9 

transduced CB CD34+ cells in our cytoBM-sc model. 

To study this, we first cultured MLL-AF9-transduced CB cells in vitro on MSCs or a 

mixture of cyto-MSCs and MSCs supplemented with cytokines under myeloid-restricted 

or lymphoid permissive conditions. Rapid transformation was observed under all growth 

conditions (Fig. 3A). We did not observe any differences in growth between the myeloid-

restricted culture conditions and all cells remained CD33+ under both conditions (Fig. 

3A-B). Under lymphoid-permissive conditions CB MLL-AF9 cells expanded faster on 

MSCs with lymphoid cytokines compared to the cyto-MSCs (Fig. 3A). CB MLL-AF9 cells 

underwent full lymphoid transformation on MSCs with the addition of lymphoid 

cytokines, whereas in the cyto-MSCs grown under lymphoid-permissive conditions both 

lymphoid and myeloid clones were expanding (Fig. 3C). A typical feature of MLL-AF9 

transformed cells is the formation of large cobblestone areas as was observed in both 

the normal MSC as well as the cyto-MSC co-cultures (Fig. 3D). These data indicate that 

both MLL-AF9-induced myeloid as well as lymphoid transformation can be achieved in 

vitro on cyto-MSCs, whereby transformation appears to be more balanced towards the 

myeloid lineage compared to co-cultures on normal MSCs. 
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Figure 3, Cyto-MSC co-cultures with CB MLL–AF9 cells allow immortalization 

along the myeloid and lymphoid lineage 

A)  Total cumulative expansion of CB MLL-AF9 cells is shown. Arrow indicates when 

the cells were replated on fresh stroma. B-C)  CD33 and CD19 expression in 

suspension cells for the myeloid co-cultures (B) and lymphoid co-cultures (C) at multiple 

time points. D) Cobblestone area-forming cells underneath MSC stroma of myeloid and 

lymphoid co-cultures. 
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Increased frequency of MLL-AF9-induced myeloid leukemia in cytoBM-sc 

implanted mice  

We evaluated the in vivo MLL-AF9-driven leukemogenesis upon direct injection into 

cytoBM-sc NSG mice and compared that to our previously published models 

(intravenously (IV) injected NSG mice and scaffold injected (ISC) huBM-sc) (Fig. 4A). In  

cytoBM-sc mice (n=11), 3 out of 4 implanted scaffolds were injected with 3x105 

unsorted CB transduced MLL-AF9 cells, comparable to cell numbers that were injected 

into previously published IV or huBM-sc models. The transduction efficiency at the day 

of injection was approximately 15% (data not shown). All mice developed a fatal 

leukemia in 20-52 weeks, with a significantly longer latency compared to the previously 

used models (IV NSG vs cytoBM-sc: p=0.017, huBM-sc vs cytoBM-sc: p=0.046). 

Unexpectedly, out of the 33 injected scaffolds only 8 scaffolds developed palpable 

tumors (24%), while in the huBM-sc model this percentage was 79% (Fig. 4B). 

Nevertheless, in all the injected cytoBM-sc that did not develop tumors, we could 

confirm the presence of human cells by IHC staining for CD45+ (Supplemental Fig. 2A), 

of which a representative example is shown for mouse #5 cytoBM-sc1 (Fig. 4C), 

confirming that human cells were injected initially. The scaffold that did develop a tumor 

in mouse #5 (cytoBM-sc3) was analysed by IHC staining confirming positivity  for CD45, 

CD33 and IL-3 (Fig. 4C). Overall, the frequency of AML, B-ALL and mixed AML/B-ALL 

cells within the scaffolds was comparable between huBM-sc and cytoBM-sc models 

(Fig. 4D).  

We hypothesize that the lower rate of tumors formed on the scaffolds of cytoBM-sc mice 

might possibly be attributed to potentially high levels of exogenous IL-3 and TPO that 



17 
 

would induce differentiation or loss of long-term self-renewal properties. As confirmed 

by IHC staining for the mouse endothelial marker CD31 and VwF, cytoBM-sc were well 

vascularized, allowing leukemic clones to migrate from the site of injection to mouse 

compartments (PB, BM, spleen, liver) (Supplemental Fig. 2B). In fact, all mice 

developed an enlarged spleen, with an average weight of 0.82 ± 0.31 g (Supplemental 

Fig. 2C). In contrast to our previous IV and huBM-sc models, differences in the leukemic 

phenotypes were observed in the mouse compartments. CD33+/CD19- AML cells were 

detected in the PB, BM, spleen and liver of mouse #10 (Fig. 4D-E and Supplemental 

Fig. 2A). Even though this was only one example, such exclusively myeloid cells in PB, 

spleen, liver or BM had never been observed in any of our previous models (Fig. 4D, 

[3,27]). Furthermore, 20% of the mice displayed mixed B-ALL/AML clones in the spleen 

or liver, again a feature that was never observed in previous studies (Fig. 4D-E [3,27]). 

In the murine BM niche, the mixed B-ALL/AML frequency was in line with what was 

observed in the previous models (Fig. 4D-E). MGG staining was performed on tissues 

to confirm the myeloid and/or lymphoid cells and a representative example of mouse #1 

with mixed B-ALL/AML is shown (Fig. 4F).  

Although MSCs are not known to migrate efficiently from one organ to another, we 

questioned whether some MSCs might have migrated to the liver in the mouse that 

displayed exclusively AML cells (mouse #10). While we could detect the presence of 

CD45-expressing cells and IL-3, indicating engraftment of human cells as well as the 

presence of human IL-3, no tNGFR positive cells were detected (Fig. 4G), providing no 

evidence for the migration of MSCs to the liver. Instead, tNGFR positive cells were 

detected in the scaffolds (Fig. 1J). Overall, these data indicate that CB MLL-AF9 cells 
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can engraft in the cytoBM-sc model albeit with longer latency and lower frequency, 

while in the organs of these mice the balance in lineage output is shifted somewhat 

towards more myeloid or mixed AML/B-ALL phenotypes. 
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Figure 4, Increased frequency of MLL-AF9-induced myeloid leukemia in cytoBM-

sc implanted mice 

A) Schematic representation of the different models injected with CB MLL-AF9 cells: IV 

injected NSG mice, ISC injected huBM-sc and ISC injected cytoBM-sc. Kaplan–Meier 

survival curves of CB MLL-AF9-injected mice, displaying the differences in kinetics of 

leukemia development. B) Percentage of tumor formation in injected scaffolds in huBM-

sc and cytoBM-sc. C) Picture depicting tumor initiated on scaffold 3 from mouse #5, with 

IHC for CD45, CD33 and IL-3 staining for scaffold 3 and HE and CD45 IHC staining of 

scaffold 1, that did not develop a solid tumor but displayed human cell engraftment. D) 

Frequencies of leukemic phenotypes observed in three different experimental set ups: 

IV injected NSG mice, ISC injected huBM-sc and ISC injected cytoBM-sc. E) FACS 

analyses of CD45+MLL-AF9+ cells from BM, liver and scaffold of ISC injected cytoBM-

sc mice displaying different leukemic phenotypes. F) MGG staining of B-ALL/AML MLL-

AF9 cells from BM, liver, and huBM-sc (mouse#5), 40x magnification. G) IHC for  CD45, 

CD33, IL-3 and tNGFR on liver sections from mouse #10. 

 

Lymphoid clones outcompete myeloid clones in secondary transplantation  

In our previously published studies using the IV NSG and huBM-sc models, CB MLL-

AF9 B-ALL cells could readily engraft in secondary recipients [3,27], while secondary 

engraftment of myeloid CD33+ clones was not achieved. For example, in an IV model in 

which we observed a mixed AML and B-ALL phenotype, we sorted CD33+/CD19- and 

CD19+/CD33- populations and transplanted them IV into secondary mice without 

scaffolds. While the CD19+/CD33- clones readily induced secondary B-ALL within 8 
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weeks after transplantation, the CD33+/CD19- clones engrafted with much slower 

kinetics (Supplemental Fig. 3A). At early phases CD33+/CD19- myeloid cells were still 

observed in the PB of these mice, however, lymphoid CD19+/CD33- clones appeared as 

well, became more dominant over time, and at the time of sacrifice at week 16 the mice 

succumbed of B-ALL and not AML (Supplemental Fig. 3A). LM-PCRs indicated that a 

minor fraction of lymphoid CD19+/CD33- B-ALL cells contaminated the myeloid 

CD33+/CD19- sorted population and it was exactly this population that generated the B-

ALL (Supplemental Fig. 3B). These data clearly highlight the lymphoid bias of routinely 

used NSG xenograft mouse models. 

We evaluated the self-renewal potential of CB MLL-AF9 AML cells generated in 

cytoBM-sc mice. We sorted GFP+/CD45+/CD33+ cells from BM, spleen, liver and 

scaffold 1 of mouse #1 and scaffold 3 of mouse #5 (Fig. 5A, Supplemental Fig. 2A).  

1.1x105 cells from BM, spleen and liver were injected per scaffold, and in total 2 

scaffolds were injected, while 0.9x105 cells from scaffold of mouse #1 and #5 were 

injected in a single scaffold of secondary cytoBM-sc mice. Secondary leukemic 

engraftment was observed only in the mouse injected with AML cells derived from BM. 

Tumor formation was observed in one of the two injected scaffolds and infiltration of CB 

MLL-AF9-positive cells was also observed in the BM, spleen and liver. Despite the fact 

that the injected cells were sorted for the myeloid marker CD33+, the secondary mouse 

developed CD19+ B-ALL. As previously observed, this may be explained by a small 

contamination of CD19+ cells during the sorting procedure (data not shown). One 

secondary mouse transplanted with AML cells derived from spleen died during the 

course of the experiment and the remaining 3 mice were sacrificed 45 weeks after 
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injection without signs of disease. These results indicate that despite the presence of an 

engineered human niche microenvironment providing IL-3 and TPO, MLL-AF9-induced 

transformation of neonatal CB CD34+ cells remains biased towards CD19+ B-ALL. 

 

 

 

 

 

 

 

 

 

 

Figure 5 Lymphoid clones outcompete myeloid clones in secondary 

transplantation  

A) FACS analyses of CB MLL-AF9 cells from BM, liver, spleen and huBM-sc of ISC 

injected cytoBM-sc (mouse #1) and huBM-sc (mouse #5). Red boxes indicate the 

sorted cells injected in secondary recipients. B) FACS analyses of MLL-AF9 cells from 

BM ISC injected secondary cytoBM-sc (mouse #1.1).C) H&E staining of engrafted 

secondary cytoBM-sc (mouse #1.1) and non-engrafted cytoBM-sc (mouse #1.2). 
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Discussion 

In order to improve the in vivo xenograft modelling of human hematological 

malignancies, several laboratories have begun to build humanized microenvironments 

in xenograft mice by making use of human mesenchymal stromal cells in order to 

provide better niches in which leukemic cells can engraft [1-3,23,28-31]. In this study, 

we aimed to further develop our previously described huBM-sc model [1,3,23]using 

human MSCs that we genetically engineered to express cytokines that were not 

expressed in these cells. We engineered MSCs stably expressing human IL-3 or human 

TPO, and tested these functionally. In vitro, these IL-3 and TPO-producing MSCs were 

superior in expanding human cord blood (CB) CD34+ hematopoietic stem/progenitor 

cells. Furthermore, MLL-AF9-transduced CB CD34+ cells could efficiently be 

transformed along myeloid or lymphoid lineages on IL-3 and TPO-producing MSCs. 

These data indicate that these genetically engineered MSCs are sufficient to allow 

either myeloid or lymphoid transformation without the need for additional exogenous 

cytokines. Importantly, in the absence of exogenous cytokines, non-engineered MSCs 

or MS5 are not sufficient to allow in vitro transformation of MLL-AF9-transduced CB 

cells  ([27] and data not shown). We did notice that under lymphoid-permissive 

conditions the balance of MLL-AF9-induced transformation appeared to be shifted 

towards the myeloid lineage at later timepoints in comparison to when exogenous 

cytokines were added (Fig. 3C). 

Next, we assessed the ability of cyto-MSCs to differentiate in vivo. Six weeks after 

implantation, mice were sacrificed and scaffolds were analysed. No differences in the 
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ability of forming bone, fat tissue and stromal component were observed compared to 

normal MSCs.  

We then studied  the engraftment of three primary AML, B-ALL and BAL patient 

samples in our new IL3/TPO-producing cytoBM-sc model to our previous huBM-sc 

models. All three tested samples efficiently engrafted in the cytoBM-sc model, with 

latencies and immunophenotypes that did not significantly differ from what we 

previously had observed in our huBM-sc model (Fig.2 and [1]). The main differences 

were that immature CD34+ cells for the B-ALL sample were better preserved in our new 

cytoBM-sc model, and the same was true for the myeloid CD33+ immune phenotype for 

the BAL patient sample. Furthermore, engraftment of MLL-AF9-transduced CB cells 

was evaluated in the new cytoBM-sc model since it had been shown that the lineage 

fate of MLL-AF9 expressing cells can be dictated by environmental cues [15,27], and 

we compared these data to our previous huBM-sc models and IV models [27]. Injection 

of MLL-AF9-transduced CB cells into the scaffolds of cytoBM-sc models resulted in the 

development of a fatal leukemia in all the experimental animals. At sacrifice, mice 

displayed both the myelomonocytic and B-ALL immunophenotypes that are also 

observed in MLL-AF9 pediatric patients. Surprisingly, the efficiency of tumor formation 

on the injected scaffolds themselves was reduced by ~55% in the cytoBM-sc model 

compared to the previous huBM-sc model. A possible explanation for this might be that 

the local concentrations of IL-3 and TPO produced by the genetically engineered MSCs 

would be non-physiological, resulting either in the differentiation or the loss of self-

renewal properties, or potentially in the migration of leukemic cells to other mouse 

niches where the cytokine concentrations would be less high. In fact, for the first time 
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we detected complete myeloid AML clones in PB, BM, spleen and liver. Also mixed B-

ALL/AML clones were observed for the first time in spleen and liver. Although we have 

not been able to quantify the exact levels of exogenous cytokines in the different murine 

tissues, we have been able to detect human IL-3 in the liver of mice transplanted with 

cytoBM-sc by IHC. This suggests that increased levels of IL-3 might indeed underlie the 

higher frequency of myeloid and mixed clones observed in murine tissues, but further 

studies are needed to clarify these issues. As already observed in the IV NSG model 

and in the ISC huBM-sc model, also in the cytoBM-sc model CD33+-sorted myeloid 

clones failed to self-renew in secondary recipients, while B-ALL clones could readily 

engraft and give rise to secondary leukemia. This finding was somewhat unexpected 

and suggests that the presence of a modified human microenvironment that 

overexpresses IL-3 and TPO does not allow myeloid clones to self-renew properly, but 

a further fine-tuning of the levels of cytokines produced in the humanized niche might be 

required to solve these issues. The present study does clearly indicate that the 

humanized scaffold xenograft model allows for relatively simple genetic engineering of 

the bone marrow microenvironment. As such, this approach will be very useful to 

functionally study the importance of niche factors for normal and malignant human 

hematopoiesis. 
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