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Abstract

Visibility algorithms are a family of methods that map time series into graphs, such that the tools of graph 1

theory and network science can be used for the characterization of time series. This approach has proved a 2

convenient tool and visibility graphs have found applications across several disciplines. Recently, an approach has 3

been proposed to extend this framework to multivariate time series, allowing a novel way to describe collective 4

dynamics. Here we test their application to fMRI time series, following two main motivations, namely that (i) 5

this approach allows to simultaneously capture and process relevant aspects of both local and global dynamics in 6

an easy and intuitive way, and (ii) this provides a suggestive bridge between time series and network theory 7

which nicely fits the consolidating field of network neuroscience. Our application to a large open dataset reveals 8

differences in the similarities of temporal networks (and thus in correlated dynamics) across resting state 9

networks, and gives indications that some differences in brain activity connected to psychiatric disorders could be 10

picked up by this approach. 11

Introduction 12

Visibility graphs (VG) were recently introduced as a method to map time series into networks [29,39], with the 13

aims of using the tools of Network Science [5, 43] to describe the structure of time series and their underlying 14

dynamics. This strategy of transforming time series into graphs has been exploited in recent years by some 15

authors and several alternative methods have been put forward, contributing to the nascent field of performing 16

graph-theoretical time series analysis (see [12,62,64] for a few seminal examples and [15] and references therein 17

for a recent overview). Research on VG has since then focused essentially on two separated avenues. First, 18

analytic studies have primarily explored the foundations of this mapping [14,22,27,38] and elaborated on 19

mathematical methods [26] to extract rigorous results on the topology of visibility graphs associated to canonical 20

dynamics such as stochastic or chaotic processes [6,16,30,37,40] and to obtain combinatoric analogues of different 21

dynamical quantities [32]. The second avenue deals with applications of this machinery, primarily by using this 22

method as a feature extraction procedure with which build feature vectors which can properly characterize time 23

series with the purpose of making statistical learning (see [4, 20,36,53] for a few examples in the life sciences). 24

In this latter context, the application to neuroscience is on its infancy, and has essentially limited so far to the 25

analysis of electroencephalogram (EEG) data (see [1–4,42] for a few examples). The study of fMRI recordings 26

under these lens has been scarce, and in this work we would like to motivate and justify why we think this is a 27

promising enterprise, both from a univariate and -perhaps more interestingly- from a multivariate time series 28

perspective [31]. Among other strategies to map time series intro graphs, using the repertoire of visibility graphs 29
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is particularly interesting, not just because its current application is scarce, but also because these methods are 30

well suited to handle the specificities of fMRI data. More concretely, these methods have been shown to be 31

efficient in extracting information and dealing with (i) data polluted with noise [30], (ii) multivariate [44], and 32

(iii) non-stationary [39]. In order to showcase the usefulness of visibility graphs in neuroscience we will choose a 33

biggish, high quality public dataset of resting state fMRI data [45], and will make use of the family of visibility 34

algorithms to build a multilevel graph of temporal networks, where each node represents a time point, and two 35

nodes are connected if they are visible to each other, according to the algorithm explained below. In the case of 36

multivariate time series -as the ones acquired in neuroimaging- each of these networks is actually the layer of a 37

multiplex network (usually associated to a recording in a different ROI). By being able to integrate in a single 38

structure all the data enables both the intralayer (univariate) and the interlayer (multivariate) analysis 39

simultaneously. We will show that a direct analysis of this network provides genuine and nontrivial information 40

on fMRI data, potentially including -but not only- the description and possible non-invasive classification of some 41

brain diseases. 42

Materials and Methods 43

fMRI data We used the public dataset described in [45]. This data was obtained from the OpenfMRI 44

database, its accession number being ds000030. We use resting state fMRI data from 121 healthy controls, 50 45

individuals diagnosed with schizophrenia, 49 individuals diagnosed with bipolar disorder and 40 individuals 46

diagnosed with ADHD. The demographics are reported in the original paper, and they can additionally be found 47

in the GitHub page containing the results of this study1. 48

The fMRI data was preprocessed with FSL (FMRIB Software Library v5.0). The volumes were corrected for 49

motion, after which slice timing correction was applied to correct for temporal alignment. All voxels were 50

spatially smoothed with a 6mm FWHM isotropic Gaussian kernel and after intensity normalization, a band pass 51

filter was applied between 0.01 and 0.08 Hz. In addition, linear and quadratic trends were removed. We next 52

regressed out the motion time courses, the average CSF signal and the average white matter signal. Global signal 53

regression was not performed. Data were transformed to the MNI152 template, such that a given voxel had a 54

volume of 3mm x 3 mm x 3mm. Finally we averaged the signal in 278 regions of interest (ROIs) using the 55

template described in [54]. 56

In order to localize the results within the intrinsic connectivity network of the resting brain, we assigned each 57

of these ROIs to one of the 9 resting state networks (7 cortical networks, plus subcortical regions and cerebellum) 58

as described in [57]. 59

Construction of the visibility graphs The procedure to build up a visibility graph is extensively and 60

clearly described in [29,30,32] for univariate and [31] for multivariate time series. Here we will recall the basic 61

steps and provide a visualization of the application of the methodology to BOLD data. 62

Given a time series of N data, any two time points i and j in which the measured quantity takes the values yi 63

and yj respectively will have visibility and consequently will become two connected nodes in the associated 64

natural visibility graph if any other data point yk placed between them fulfills the condition: 65

yk < yi + (yj − yi)
k − i
j − i

. 66

Together with this convexity criterion, named Natural Visibility (NV), an ordering criterion, named Horizontal 67

Visibility (HV) has also been defined [30]. According to the latter, two time points i and j, in which the measured 68

quantity takes the values yi and yj respectively, will now have horizontal visibility if any other data point yk 69

placed between them is smaller, i.e. 70

yk < inf{yi, yj}, ∀k : i < k < j. 71

In either case, the resulting graphs have N nodes, are connected by a trivial Hamiltonian path that induces a 72

natural ordering in the degree sequence, and are undirected (see figure 1 for an illustration). In the event the the 73

1https://github.com/danielemarinazzo/Visibility LA5C data
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Figure 1. Examples of Natural Visibility Graph (VG, bottom) and Horizontal Visibility Graph
(HVG, top) algorithms applied to the same sample time series. In each case, a time series of
N data map into a graph of N nodes, where two nodes are linked according to either natural or
horizontal visibility criteria (i.e. convexity and ordering criteria respectively, see the text). On the
right side, an illustration of the points connected according to either criterion to a given time
point from a typical fMRI region of interest time series.

time arrow turns out to be a relevant aspect, directed graphs can be easily constructed, as detailed in [32]. Note 74

that the resulting Horizontal visibility graph (HVG) is simply a core subgraph of the Natural visibility graphs 75

(NVG), the former being analytically tractable [26]. As a matter of fact, HVG can be understood as an order 76

statistic [28] and therefore filters out any dependency on the series marginal distributions (that’s not true for 77

NVG so in applications where marginal distributions are relevant, one should use NVG over HVG). 78

Both algorithms are fast: naive implementations of NVGs have a runtime complexity O(N2), however a 79

divide-and-conquer strategy already reduces it to O(N logN) [33]. Naive implementation of HVG is already 80

O(N logN) in most of the cases of practical interest. Finally, these methods are well-suited to handle several 81

degrees of non-stationarity in the associated time series [28]. 82

In this work we will be analyzing BOLD data, and for that task we decided to choose NVG over HVG. This is 83

because NVGs are in principle better suited to handle and extract long range correlations than HVG, as the 84

former naturally allow for the development of hubs -which will be typically associated to extreme events in the 85

data and can correlate with data at all scales-. Correlations in time series are actually inherited in graph space in 86

the degree distribution. It is somewhat easier to find fat-tailed degree distributions in NVGs (which account for 87

hubs with extremely large degrees). On the other hand, HVGs (which have shown to work fine with processes 88

evidencing short-range correlations) typically display exponentially decaying degree distributions: a feature which 89

is linked to short-scale visibility, making this method more local. 90

For illustration, Figure 1 depicts how the links are established in the visibility graph according to both 91

visibility criteria. The code used to compute the Visibility Graphs is available 2, and is basically a translation to 92

Matlab of the original visibility scripts in Fortran90 3. 93

When it comes to the application to multivariate time series formed by M series, note that each of the M time 94

series yields a different visibility graph to begin with, so in principle the multivariate series can always be 95

mapped into a multilayer graph with M layers [31]. Moreover, since for every node i there is a natural 96

correspondence across layers (node i corresponds to time stamp i and this is the same time stamp for all 97

components), there exist a natural alignment between every node of each layer, so the multilayer graph is 98

effectively a so-called multiplex network [5, 31] (see figure 2 for an illustration). Of course, other smarter 99

alignments between graphs could be investigated (for instance, one could try to find the alignment that minimize 100

some sort of Hamming distance between ordered node sets), but in this work we keep it simple and consider the 101

natural alignment induced by the time arrow. 102

Interestingly, this multiplex visibility graph encodes the complex structure of each time series in the topology of 103

each layer. One can therefore extract in each layer any desired topological feature (say for instance the entropy 104

2https://github.com/danielemarinazzo/Visibility
3http://www.maths.qmul.ac.uk/∼lacasa/Software.html
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Figure 2. Example of the construction of a multiplex visibility graph from a multivariate time
series with M = 3 components. In this cartoon, each layer builds the HVG associated to each
variable, therefore all layers are well aligned according to the time arrow, making interlayer
comparison straightforward. Adapted from [31].

over the degree distribution, which would provide a different number for each layer), with which one could build 105

a feature vector that provides a compact representation of the multivariate time series complexity. A similar 106

procedure was followed for instance in [1] to extract markers of Alzheimer’s disease from a graph theoretical 107

characterization of the Hurst index of EEG data. 108

Second, the complex interdependencies and correlations which might emerge in a multivariate series across 109

variables could in turn be extracted using similarity measures across layers. There exist a large variety of network 110

measures that one can use for this task [44]. A simple example of such a measure is the so-called interlayer 111

mutual information, recently explored in the context of multiplex visibility graphs of coupled chaotic maps [31]. 112

This quantity measures the information shared by every two layers based on the similarity of the degree 113

distributions. Given the degree distributions P (kα) and P (kβ) of two arbitrary layers α and β it is defined as 114

MIα,β =
∑
k[α]

∑
k[β]

P (k[α], k[β]) log
P (k[α], k[β])

P (k[α])P (k[β ])
. 115

As the degree distribution captures the structure of each layer, this measure is in turn capturing the information 116

shared between the two layers, that is to say, the information shared across each time series component of the 117

multivariate time series. Now, since this is a M ×M matrix whose ij entry provides the mutual information 118

between layers (ROIs) i and j, one can then -for instance- average across pairs (that is to say, across ROIs) to 119

find a scalar quantity 〈MI〉: the mean value of the mutual information for each intrinsic connectivity network. 120

This methodology is depicted in figure 3. Note that other informational or similarity measures between layers 121

could be used instead (e.g. edge overlap, conditional or partial mutual information, transfer entropy, etc), here 122

for the sake of exposition we only consider mutual information. 123

The visibility algorithms produce networks whose nodes are time points. As one can observe in figure 3, these 124

networks have a modular structure, in which subnetworks are constituted by time points that are mainly 125

adjacent. A modular structure in a temporal network is thus an indication of different temporal regimes. The 126

existence of these temporal regimes is what motivated the study of dynamical functional connectivity (see for 127

example [17,21]). Dynamic functional connectivity can be seen in the visibility framework as the comparison of 128

the temporal networks, taking their modular structure into account. This comparison can be done in the first 129

place considering the modular network as a whole. In our case we partitioned the visibility graphs for each ROI 130

using hundred runs of the Louvain algorithm. We then quantified the distance between the two partitions by 131

means of the mutual information, using the function in the Brain Connectivity Toolbox [50]. The results of the 132

partition of two ROIs, one in the Anterior Cingulate Cortex (ACC) and one in the Precuneus (PCC), are shown 133

in figure 4. The modules of the graphs correspond to consecutive time points (left panels), i.e. partitioning the 134

visibility graph provides a natural decomposition of the time series in time intervals. Turning to the 135

interdependency between the two time series, the right panel of figure 4 represents the Sorensen similarity 136
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Figure 3. Scheme of the procedure: Within a given region which aggregates a certain number
of ROIs, one constructs a visibility graph per ROI and builds accordingly a multiplex visibility
graph. We then compute the pairwise mutual information between degree distributions across
the multiplex layers (ROIs) and finally average to obtain a value for each RSN. The multilayer
network is visualized with MuxViz [10]

between each pair of modules in the two time series. It shows that there are segments with high Sorensen indexes, 137

and it is likely that during these segments the two ROIs reflect similar neural events. 138
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Figure 4. Left: The clusters in which the visibility adjacency matrices from two example ROIs are
partitioned according to the Louvain algorithm. Right: Sorensen index quantifying the similarity
between pairs of clusters. The value of the distance among the partitioned networks considered
as a whole is also reported, in terms of normalized mutual information.

Results 139

We start by reporting in Figure 5 the results of 〈MI〉 within each of the intrinsic connectivity networks, for the 140

four groups of subjects considered. For each group of subjects, each circle corresponds to 〈MI〉 of a given subject, 141

and Random Average Shifted Histograms (RASH) are also provided. This representation is not parametric, and 142

it is bounded. The plots report the median of the Harrell Davis estimator, and the 95% high density intervals 143

using a Bayesian bootstrap. The outliers are detected based on the distance between each pair of data points 144

without assuming symmetry of distributions. 145

In order to account for departure from normality of these distributions we used a graphical approach and 146

computed the Kolmogorov-Smirnov distance, using the publicly available code 4, obtaining values up to 0.7 (a 147

value of 0.39 would correspond to rejecting the null hypothesis at a level α < 0.001 for the smallest population). 148

The number of ROIs constituting each intrinsic state network (thus a proxy for the network size, given that 149

Shen’s parcellation has ROIs of similar size) is not correlated with the average value of the mutual information. 150

In particular, it is interesting to observe that the intrinsic connectivity network called Limbic in Yeo’s 151

parcellation is the smallest one, but nonetheless has a low interlayer mutual information compared to the other 152

networks for all the clinical groups. 153

The network which showed a clearest differentiation in terms of the average interlayer mutual information among 154

the four clinical groups is indeed the Limbic one (Figure 6). This evidence was assessed by means of a 155

multivariate response test with age of the subjects and framewise displacement as covariates. The p-value of 156

0.005 was corrected for multiple comparisons using the Bonferroni-Holm criterion with α = 0.05. The 157

Kolmogorov-Smirnov statistics of the pairwise comparison between the distributions of average interlayer mutual 158

information values for these particular networks ranged from 0.15 to 0.3. The null hypothesis of values for 159

controls and schizophrenics drawn from the same distribution would be rejected with an α < 0.005. Figure 6 also 160

reports the shift functions to visualize the difference between two distributions, in this case controls and 161

schizophrenics. This function [59] does not assume (as t-tests do) that two distributions differ only in the 162

location of the bulk of the observations, and allow to determine how, and by how much, two distributions differ. 163

Here the Harrell-Davis quantile estimator is used. Confidence intervals of the decile differences with a bootstrap 164

4https://github.com/GRousselet/matlab stats
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Figure 5. For each group and each intrinsic connectivity network, we plot the distribution across
subjects of the averaged interlayer mutual information.

estimation of the standard error of the deciles are computed, and one controls for multiple comparisons so that 165

the type I error rate remains around 0.05 across the 9 confidence intervals 5. In this specific case we can observe 166

a clear separation for all the quantiles but the ninth one. 167

To complement this analysis, in figure S1 we further report two additional ways in which results of this kind are 168

often represented (mean and standard errors). According to this plot it is already evident to a naked eye that the 169

method easily distinguishes controls from patients with any mental disorder, suggesting that visibility graphs do 170

indeed extract informative features which can be used for non-invasive diagnosis. It shall be stated that 171

visualizing results in such a way is indeed suboptimal and sometimes problematic (nicely explained in [49]), that’s 172

why we initially chose the visualizations provided in figures 5 and 6.6,7 173

Figure 6. Left: The average interlayer mutual information for the intrinsic connectivity network
denoted as Limbic, for the four groups of subjects. Right: Shift function to visually and statisti-
cally compare the distributions for controls and schizophrenics, at different quantiles

5https://garstats.wordpress.com/2016/07/12/shift-function/
6https://github.com/CPernet/Robust Statistical Toolbox/
7https://github.com/GRousselet/matlab visualisation
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Discussion 174

Why the (Multivariate) Visibility Graph? All in all, there are several reasons why we think that 175

visibility graphs are a convenient tool, here we discuss some. 176

Usefulness: Visibility Graphs have been shown to inherit in their topology the essence of the associated dynamics, 177

including nontrivial fingerprints which turn to be both descriptive and informative for statistical learning 178

purposes. 179

Fit for purpose: these methods can be used directly in both stationary and non-stationary signals (i.e. 180

non-stationarity is not required to be removed). Also, series do not require ad hoc phase partitioning or 181

symbolization. Also, visibility graphs naturally filter out linear trends so they don’t require such detrending [29]. 182

Furthermore, since HVG is an order statistic, it is also invariant under monotonic (order-preserving) rescaling on 183

the data [28]. The NVG is not invariant under this latter transformation though, so nonlinear rescaling to make 184

data more ’peaky’ will necessarily modify the associated NVG in a nontrivial way. 185

Computationally easy and efficient: the method is numerically straightforward to implement and the runtime 186

algorithms are quite decent (varying from O(n) for so-called visibility sequential motifs [22] to O(n log n) for the 187

full adjacency matrices using divide-and-conquer strategy). 188

Amenable to analytical insight: differently from other strategies for graph-theoretical time series analysis, 189

Visibility Graphs are not computational black boxes. More particularly for the HVG (but not only [22,39]), there 190

exist several theorems available and methods to build rigorous results of HVGs properties [26, 27, 30, 32,37], this 191

latter being an are of intense research activity at the interface between combinatorics and dynamical systems. 192

Versatile: The methods are not context dependent but are generally applicable to both univariate and 193

multivariate time series across the disciplines. A drawback of this property is that the topological features one 194

can extract from these graphs are themselves not context-dependent. 195

Novel: It builds a bridge between time series and networks and thus opens the exciting possibility of exploring 196

the usefulness of a large bunch of new tools in the endeavor of describing and classifying complex signals. 197

Coming back to the specific reason why we think that Natural Visibility Graphs are particularly suited for 198

BOLD data, it has been shown that relevant information on the time course of the BOLD signal and on correlated 199

activity can be extracted by looking at single frames, corresponding to peaks in the signal [35,55], and that these 200

events could be the proxy for an innovation signal at the neural level [23,60]. In this framework, the degree of the 201

nodes corresponding to the BOLD peaks in the adjacency matrix constructed according to the Natural Visibility 202

emphasizes the functional relevance of the neural events and of the corresponding patterns of coactivation across 203

the brain. Notwithstanding, both NVG and HVG have been shown to be useful in different contexts so there is 204

no general rule of thumb on what method should we use: this choice shall be addressed in a case by case basis. 205

Finally, what is important/informative when it comes to describe the properties of a certain cognitive state? Is it 206

the complex pattern underlying the structure of individual time series (that is, local activity of ROIs) of different 207

regions? Or are the correlations and interdependencies (understood in a broad sense) between these regions the 208

key aspect to look at? When the latter is the case, then a functional network analysis approach [7] seems to be 209

the appropriate thing to do. In the former case where the nature of local activity across regions already captures 210

information [18,63], then one does not need to resort to functional dependencies and local analysis is the correct 211

thing to do. This is obviously an open question which should be addressed, from a biological point of view, in a 212

case by case basis. A recent study suggests that both conceptual frameworks can indeed be connected [52]. In 213

general, most probably both aspects play a relevant role, and some studies have already successfully merged the 214

two [9, 56]. Be that as it may, the multiplex visibility framework offers a compact way of extracting at once both 215

the local temporal structure (via the network intralayer properties) and the global interconnection pattern (via 216

multiplex interlayer similarities). 217

Similarity with other measures We have discussed at the end of the Methods section that the modular 218

temporal graphs resulting from the visibility algorithm are a natural way to describe different dynamical regimes 219

of individual time series, and their interdependence, without arbitrary and possibly problematic choices such as a 220

sliding window and its length [19,25]. 221

Features of the visibility graph, such as the modularity, the clustering coefficient, or the node degree could be 222

used as features in classification algorithms aimed to detect modulations of the local and correlated dynamical 223
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regime of BOLD signals. 224

Furthermore, using the excellent resource that is NeuroVault (http://neurovault.org/) we also looked at the 225

maps depicting the results of other measures, and noticed that the areas belonging to the limbic Yeo network are 226

associated with lower levels of Regional Homogeneity (ReHo) [63], higher coefficient of variation of the BOLD 227

signal [61], and lower value of the fractional amplitude of low-frequency fluctuations (fALFF) [65]. This evidence 228

speaks to the fact that interlayer mutual information in multiplex visibility networks is associated to decreased 229

predictability and increased independence between the degrees of freedom of the measured time series. 230

Classification of neural disorders The main focus of this paper is methodological, and a thorough 231

discussion on the implications of our results on neuroimaging studies of psychiatric disorders is beyond its scope, 232

moreover we wouldn’t want to hypothesize after the results are known (HARKing [46]). That being said, it is 233

interesting to highlight that the limbic network has been previously associated to mental 234

disorders [24,34,47,48,51,58]. In the same way we refer the reader to nice recent studies specifically aimed to use 235

advanced neuroimaging data analysis tools to map and classify neural disorders [8, 11,41], and [13] for a review. 236

Our results shown here using visibility graphs confirm some of these previous works and further showcase that (i) 237

visibility graphs extract informative features with which (ii) we can find statistically significant signatures of 238

different neural disorders. 239

To conclude, given the exposition and results reported in this study, we hope to have motivated our colleagues 240

to consider Visibility Graphs as a valuable Network Neuroscience tool for both exploratory and focused studies. 241

Supporting Information 242

The code and data necessary to replicate the results reported here are indicated in the text. For convenience we 243

report here the location of the main repository, linking to the others. 244

https://github.com/danielemarinazzo/Visibility LA5C data 245

Figure S1. Two visually attractive but statistically suboptimal ways to report the group results,
based on mean values and bars representing standard errors.
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47. S. Potvin, O. Lungu, A. Tikàsz, and A. Mendrek. Abnormal effective fronto-limbic connectivity during
emotion processing in schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry,
72:1–8, jan 2017.

48. G. Roberts, A. Perry, A. Lord, A. Frankland, V. Leung, E. Holmes-Preston, F. Levy, R. K. Lenroot, P. B.
Mitchell, and M. Breakspear. Structural dysconnectivity of key cognitive and emotional hubs in young
people at high genetic risk for bipolar disorder. Molecular Psychiatry, dec 2016.

49. G. A. Rousselet, J. J. Foxe, and J. P. Bolam. A few simple steps to improve the description of group
results in neuroscience. European Journal of Neuroscience, 44(9):2647–2651, 2016.

50. M. Rubinov and O. Sporns. Complex network measures of brain connectivity: Uses and interpretations.
NeuroImage, 52(3):1059–1069, sep 2010.
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