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Abstract New insights into the dynamical properties of water in hydroxyapatite (HAP) nanopores, a model sys-7

tems for the fluid flow within nano-size spaces inside the collagen-apatite structure of bone, were obtained from8

molecular dynamics simulations of liquid water confined between two parallel HAP surfaces of different sizes9

(20 Å ≤ H ≤ 240 Å). Calculations were conducted using a core-shell interatomic potential for HAP together with10

the extended simple point charge model for water. This force field gives an activation energy for water diffusion11

on the HAP surface that is in excellent agreement with available experimental data. The dynamical properties12

of water within the HAP nanopores were quantified in terms of the second-order water diffusion tensor. Results13

indicate that water diffuse anisotropically within the HAP nanopores with the solvent molecules moving parallel14

to the surface twice as fast as the perpendicular direction. This unusual dynamic behaviour is linked to the strong15

polarizing effect of calcium ions, and the synergic interactions between the water molecules in the first hydration16

layer of HAP with the calcium, hydroxyl and phosphate ions, which facilitate the flow of water molecules in the17

directions parallel to the HAP surface.18
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1 Introduction23

The macroscopic properties of bone tissue are tightly coupled to molecular processes taking place at the interface24

between Hydroxyapatite minerals (HAP, molecular unit formula [Ca10(PO4)6(OH)2]) and water within the lacuno-25

canalicular network (Sansalone et al 2013). In particular, the formulation of theoretical models for the prediction26

of tissue behaviour under the influence of time-dependent external stress inducing internal remodelling requires a27

detailed understanding of the dynamics of water and its interaction with the surface of HAP surfaces. Mechanics28

modelling for describing the mechanical behavior of bone at the macroscopic scale are based on homogenization29

and micromechanical methods which are powerful tools not only to obtain the overall behaviour of the material via30

the determination of the overall properties, but also to obtain information about the microfields which are defined31

at the microscale and are associated with the local distribution of the macrofields. Macroscopic predictions of32

either part or all of the elastic modulus tensor have been given by many authors (Yoon and Cowin 2008; Sansalone33

et al 2012; Hellmich and Katti 2015). In this context, bones with different forms of water will display differences34

in stiffness and strength.35

HAP scaffolds constitute a prototypical model of biomaterial based surfaces (Kandori et al 2000b; Rimola et al36

2012; Corno et al 2010) and have been used in several studies of bone repair (Oddou et al 2011). These substitu-37

tions HAP-based materials allowed the investigation of the interactions between HAP surfaces with biomolecules38

(Almora-Barrios et al 2009; Katti et al 2010; Kandori et al 2000a; Hernandez et al 2015; Lukasheva and Tolmachev39

2015), water (Zhao et al 2014), ions (de Leeuw 2004a;b; Sakhno et al 2010) and gases (Chiatti et al 2013). Water40

plays a crucial role during bone mineralization and in the protein interaction (Corno et al 2010; Qin et al 2012;41

Nair et al 2014; Lemaire et al 2015a) as they can act as a prominent charge carrier, transporting ions (Prakash et al42

2009; Prakash and Subramanian 2011) and maintaining the pH of the medium. When considering cells nanopores43

of transmembrane proteins (Hille 2001) or bone nanopores (Pham et al 2015), the interactions between water44
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molecules and the polar groups of HAP (calcium (Ca2+), phosphate (PO3−
4 ) and hydroxyl (OH−) ions) may affect45

the local environment of the interface, modifying the diffusion of water molecules, which tend to be reduced when46

compared with the bulk (Bhide and Berkowitz 2005; von Hansen et al 2013; Lemaire et al 2015b).47

The unusual dynamics of water and other molecules under confinement has been subject to several experimen-48

tal and theoretical studies (Tan et al 2005; Sendner et al 2009; Su and Guo 2011; Nguyen and Bhatia 2012; Bourg49

and Steefel 2012; Srivastava et al 2012; Xu et al 2013; Planchais et al 2014; Prakash et al 2015; Han et al 2015;50

Qiu and Huang 2015; Nie et al 2016). In particular, nuclear magnetic resonance (NMR) techniques showed that51

water diffuses anisotropically inside nanoporous systems (Cleveland et al 1976; Thomsen et al 1987; Wei et al52

2011; Salles et al 2011) and two different self-diffusion coefficients of water were measured in sheep Achilles ten-53

don using pulsed-field-gradient stimulated-echo NMR (Fechete et al 2005). However, the molecular-level details54

regarding the diffusion mechanism of water molecules in the vicinity of the HAP bone surface, the origin of this55

anisotropic diffusion behaviour, and the interactions at the interface responsible for the preferential movement of56

water molecules towards a particular direction remain unclear.57

Owing to advances in theoretical models and techniques, atomistic simulation methods are particularly suited58

to obtain a molecular-level characterization of the solid-water interface (Kirkpatrick et al 2005; Kubicki 2016),59

including a direct exploration of the structure and dynamics of water in contact with a mineral (Parvaneh et al60

2016).61

In this study, we present classical molecular dynamics (MD) simulations of liquid water in hydroxyapatite62

nanopores of different pore sizes. The aim of this work is to investigate the dynamical properties of water, and63

changes therein with varying pore size. In particular, the concept of self-diffusion tensor originally introduced by64

Kubo (1957) has been applied to compute all nine Cartesian components of the three dimensional diffusion. As65

the diffusion coefficient is a scalar quantity and cannot therefore determine the preferential movement of water66

molecules in a particular direction, in this work we computed the anisotropic diffusion of water within HAP67

nanopores to quantify the effect of confinement on its dynamic behaviour.68
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2 Theoretical models and methods69

2.1 HAP surface and water models70

Hydroxyapatite (HAP given by Ca10(PO4)6(OH)2) is viewed as an hexagonal primitive cell with P63/m space71

group. The nanopore is represented by a face-to-face configuration of parallel HAP platelets. Its size corresponds72

to the narrowest pore diameters measured in bones by Holmes et al. (Holmes et al 1964). This geometrical config-73

uration is motivated by the fact that, in bone tissue, hydroxyapatite is present in the form of thin micro-plates with74

dimensions (L× ℓ× e), where L = 250− 500 Å (in e1-direction), ℓ = 150− 250 Å (in e2-direction) and e = 25 Å75

(in e3-direction) (Weiner and Traub 1986). Cell parameters and crystallographic data of Sudarsanan and Young76

(Sudarsanan and Young 1969) are used for the initial configuration of the HAP structure. The dimensions of the77

parallelepipedic shaped simulation box were adjusted to contain 3×3×4 such micro-plates. The position of each78

atom in the box is given using the vector position r whose the cartesian coordinates are denoted by (r1,r2,r3) in79

the orthogonal frame (e1,e2,e3) (see Fig. 1).80

The HAP platelets and water layers constituted the elementary unit cell for our simulations. HAP nanopores81

were generated by varying the c-axis of the crystal from H = 20 Å to H = 240 Å. The resulting surface corre-82

sponds to the (0001) basal plane, which is the dominant surface in the thermodynamic morphology (Mkhonto and83

de Leeuw 2002) and important in biological systems, as the elongation of the bone platelets along the c-direction84

of the apatite crystal results in the expression of this surface (Rohanizadeh et al 1999). In addition, there is an85

experimental evidence that these faces act as the binding site for many adsorbates (Wierzbicki and Cheung 2000).86

For all pore sizes, the atomic configuration editor Aten (Young 2016) was used to fill the resulting vacuum87

with water molecules corresponding to the experimental density of 1 g.cm−3.88

2.2 Molecular dynamics89

All MD simulations were performed using the DL_POLY 4.05.1 program code (Todorov et al 2006). Interatomic90

potentials for HAP and its interaction with water are the ones developed by de Leeuw and Parker (de Leeuw91

2004a; de Leeuw and Parker 1998). The water molecules were represented using the extended simple point charge92
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(SPC/E) potential (Berendsen et al 1981). The potential parameters used in this work are reported in electronic93

supporting material (see Tab. S1).94

Each system considered in the present study was first equilibrated for 50 ps in the microcanonical (NVE)95

ensemble. This was followed by an equilibration period in the isothermal-isobaric (NPT) ensemble (P = 1 atm96

and T = 300 K) during which the volume was monitored in order to confirm the system reached equilibrium. The97

behaviour of the volume for the nanopores with H = 20 Å, 60 Å and 110 Å is reported in Fig. S2 of electronic98

supporting information. This was followed by 2 ns of production period in the NPT ensemble. All simulations99

used Nosé-Hoover algorithm with 0.5 ps and 0.5 ps as the thermostat and barostat relaxation times, respectively. To100

mimic the in vivo human bone environment, simulations were performed at temperature of 310 K unless otherwise101

stated. The Verlet leapfrog scheme with a time step of 0.1 fs was used to integrate the equations of motion. Periodic102

boundary conditions were applied in all three directions of the unit cell. The long range electrostatic interactions103

between the charges of all species were computed using the Smoothed Particle Mesh Ewald (SPME) method with104

a relative error of 10−6 (Essmann et al 1995). Table 1 lists the number of atoms in HAP (NHAP), which included105

core-shell atoms, number of water molecules NOw , duration of each simulation TD, and initial H and equilibrated106

H∗ values of the pore sizes. Notice that the equilibrium height of the pore size is close to the initial one, which107

justifies the use of the the NPT ensemble instead of NVT for our simulations. The structure of the HAP nanopore-108

water systems considered in the present study are reported in Tab. S3 of electronic supporting material.109

To verify if HAP nanopores and the surface retained the crystalline structure, we computed the phosphorous-110

phosphorous (P-P) radial distribution functions (RDFs) of the hydroxyapatite crystal, of the HAP nanopore (H =111

110 Å) in contact with water, and of the surface of the HAP nanopore (see Fig. S4 of electronic supporting112

material). The P-P RDF profile of the nanopore is very similar to that of the crystal, which indicates that HAP113

nanopores remain crystalline. The P-P RDF profile of the HAP surface shows some deviations compared with that114

of HAP nanopore, suggesting some restructuring of the surface but not to an extend to indicate amorphousization115

of the surface. This also agrees with previous MD work by de Leeuw, which showed that HAP surfaces maintain116

its crystalline structure (de Leeuw 2004a) de Leeuw (2004b).117
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Table 1 Details of the molecular dynamics simulations of the HAP nanopores-water systems: number of atoms in HAP NHAP, number of
water molecules NOw , duration of each simulation TD (in ns), initial H (in Å) and equilibrated H∗ (in Å) pore sizes.

H (in Å) NHAP NH2O TD (in ns) H∗ (in Å)
20 2520 455 2 21.6
30 2520 682 2 32.8
40 2520 910 2 41.3
50 2520 1138 2 52.7
60 2520 1363 2 64.1
70 2520 1593 2 71.4
80 2520 1820 2 82.7
90 2520 2048 2 92.4
100 2520 2276 2 103.9
110 2520 2506 2 112.6
120 2520 2732 2 124.6
130 2520 2960 2 135.3
160 2520 3650 1 167.3
200 2520 4550 1 196.8
240 2520 5300 1 228.1

2.3 Validation of the theoretical methodology118

We have used the SPC/E water model because it gives a density, radial distribution functions, and self-diffusion119

coefficient for water in good agreement with experiment (Berendsen et al 1987). In particular, the value of self-120

diffusion coefficient Ds for bulk SPC/E water obtained from a molecular dynamics simulation of 729 water121

molecules (NPT ensemble, 2 ns of production period) is 2.58× 109 m2/s, in good agreement with the experi-122

mental value of 2.999×109 m2/s (Holz et al 2000). Moreover, comprehensive calculations of the activation energy123

of diffusion Ea of water in bulk liquid water also concluded that using SPC/E model the value of Ea is 14.8 kJ/mol,124

which is only 2.6 kJ/mol lower than the experimental value Ea = 17.4 kJ/mol (Holmboe and Bourg 2014). To vali-125

date the combination of force fields, molecular models and computational techniques used in the present work, we126

compared the activation energy denoted Ea for the diffusion of water within HAP nanopores with the experimental127

values measured for cortical bone and inter-tubular dentine (Fernández-Seara et al 2002). MD simulations were128

conducted at the temperatures of 288, 298, 310 and 323 K to determine the activation energy for water diffusion129

in HAP nanopores with H = 60 Å and H = 110 Å (see Fig. 3), which are representative of typical nanopores in130

bones (50 < H < 125 Å) (Holmes et al 1964). The activation energies were obtained from the linear fit of the131
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points in Fig. 3 using Arrhenius equation ln(Ds) = ln(D0)−Ea/(RT ), and the values of Ea are 22.5± 0.7 kJ/mol132

for H = 60 Å and 21.5± 2.0 kJ/mol for H = 110 Å, which are very close to experiments as seen for NMR mea-133

surements in cortical bone (Ea = 26.6 kJ/mol) and intertubular dentine Ea = 29.5 kJ/mol (Fernández-Seara et al134

2002). This result validates the molecular models and interaction potentials used in the present work to represent135

fluid flow within bone sub-micrometer pores. A related point to consider is that the activation energies for water136

diffusion within the HAP nanopores are higher than in bulk Ea = 17.4 kJ/mol (Holmboe and Bourg 2014), which137

suggests that diffusion of water is hindered by the interaction between water molecules and the polar groups at the138

HAP surface.139

3 Results and discussion140

3.1 Self-diffusion coefficient141

The self-diffusion coefficient of water, denoted by Ds, is a key property when studying the flow of fluid. From a142

MD simulation diffusion coefficients can be calculated using Einstein relation:143

Ds =
1
ds

1
2

d〈〈[r(t)− r(0)]2〉〉

dt
. (1)

where ds is the dimension of the space (in this paper ds = 3), r(0) and r(t) are the position vectors at times t = 0144

and t, respectively, and the angled brackets 〈〈·〉〉 indicate the average over the number of times origin spanned by145

t and the number of water molecules. However, this scalar quantity can not describe the differential diffusion of146

water in directions parallel or perpendicular to the HAP surface in Fig. 1.147

In order to quantify the anisotropic diffusion of water in the HAP nanopores, we introduce the second order148

water self-diffusion tensor D, which is defined as:149
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whose components Di j represent the anisotropic diffusion coefficients and are computed using the following ex-150

pression which is derived from (Kubo 1957):151

Di j =
1
2

d〈〈|ri(t)− ri(0)| · |r j(t)− r j(0)|〉〉

dt
, i, j = 1,2,3. (3)

In Eq. (3), ri(0) and ri(t) are the components of the position vectors along the ei-direction (i, j = 1,2,3) of152

the Cartesian frame shown in Fig. 1. The anisotropic diffusion coefficients Di j were computed by modifying the153

DL-POLY code. This new utility accurately determines the anisotropic self-diffusion coefficients by computing154

the mean square displacement (MSD) for the different atomic species in the simulation using multiple time origins155

as defined by Eq. 3. The mean square displacements associated with the diagonal elements of the anisotropic156

self-diffusion tensor Dii for i = 1,2,3 are plotted in the Fig. 2.157

Without attempting an exhaustive list on a subject beyond the scope of this paper, Cummings et al. (Cum-158

mings et al 1991) have presented different methods for calculating certain self-diffusion coefficients in a non-159

newtonian fluid subject to a couette strain field. Furthermore, Liu et al. (Liu et al 2004) have introduced a Einstein-160

Smoluchowski like method for calculating the parallel and perpendicular components of the self-diffusion to a161

surface. Boţan et al. (Boţan et al 2011) have used this previous method for studying the self-diffusion in clay162

nanopores.163

The anisotropic diffusion tensor D can be decomposed into its so-called spherical and deviatoric parts:164

D =
1
3

(Tra D)I+Dev D, (4)

where I is the identity tensor, Tra is trace operator that gives the sum of the diagonal elements of D, and the165

deviatoric part is given by Dev D = D− (1/3)(Tra D)I. Any tensor of the form αI, where α is a scalar, is known166

as a spherical tensor, while Dev D is known as a deviator of D. Note that an important property of the deviatoric167

tensors is Tra (Dev D) = 0. This decomposition decouples the “volumetric” from the “distortional” properties168

which can be interpreted as a decoupling of the “mean” part from the “fluctuation” part because of the underlying169

orthogonality of the spherical and deviatoric partitions Tra (Ds ×Dev D) = 0, where Ds = (1/3)(Tra D)I. This170

decomposition mimics the ones of the vectors that can be decomposed uniquely as a sum of two vectors, one171

tangent to a surface, called the tangential component of the vector, and another one perpendicular to the surface,172
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called the normal component of the vector. As a result due to the geometry of the HAP nanopores, the matrix173

representation of the self-diffusion tensor D should be diagonal. This was first confirmed by the obtention of the174

quasi-nullity of the off-diagonal elements, and then by computing the spherical part of D in Eq. (4), which does175

indeed correspond to the standard diffusion coefficient of water calculated using Eq. (1).176

The anisotropic diffusion coefficients of water as a function of the pore size are reported in Fig. 4. Our calcu-177

lations show that the transport properties of water depend significantly on the size of the HAP nanopore (Pham178

et al 2015), but also quantify the marked anisotropic behaviour of liquid water when confined within nano-size179

volumes.180

In Fig. 4, for small to medium nanopores (20 Å < H < 70 Å) the coefficients D11 and D22 associated with181

the diffusion along the e1 and e2 directions, correspond to the movement of particles parallel to the HAP surface182

(see Fig. 1), and their values are similar to to the isotropic self-diffusion coefficient Ds. For nanopores larger183

than > 70 Å, D11 is about 15% higher than Ds, whereas D22 ∼ Ds. On the other hand, for all nanopores the184

coefficients D33, which correspond to the normal direction to the HAP surface, are significantly lower than both185

the isotropic coefficient Ds, and the coefficients D11 and D22 associated with the diffusion parallel to the HAP186

surface. For example, in the HAP nanopore with H = 110 Å, D33 = 1.5×10−9 m2/s and D11 and D22 are equal to187

3.0×10−9 m2/s and 2.2×10−9 m2/s, respectively. This signifies that water molecules preferentially diffuse along188

the HAP surfaces rather than towards the bulk of the aqueous solution in contact with the nanopore. In Fig. 4 also189

notice spherical part of the diffusion tensor D corresponds to the standard isotropic diffusion coefficient.190

This in-plane confinement effect is visually represented in Fig. 5 by the trajectory of a water molecules that191

is part of the first hydration layer of the HAP nanopore with H = 110 Å. A water molecule was considered to be192

part of the first hydration layer of HAP if the distance between the calcium atoms (Ca) at the HAP surface and193

the oxygen atoms (Ow) of the water molecules is less than 3.0 Å. This distance corresponds to the position of the194

first minimum in the Ca2+ −Ow pair distribution function (e.g., Di Tommaso et al. (Di Tommaso et al 2014)) as195

well as the position of the minimum in the number density profile of the oxygen atoms that is closer to the HAP196

surface (see Fig. 5). This graph shows that during the dynamics the tagged water molecule moves approximately197

parallel to the surface of HAP. A similar conclusion were obtained from the visualization of the trajectories of198

water molecules that were part of the second hydration layer of HAP. Moreover, the analysis of the motion of the199

tracer molecule from its initial (t = 0 ns) to its final (t = 2 ns) MD steps indicates that the e1 and e2 components of200
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the position vector change by twice as much as the e3 component. This agrees with the values of the anisotropic201

diffusion coefficients D11 and D22 being larger than D33 (see Fig. 4). The polarization effect of the calcium ions202

at the HAP surface, which can extend up to four layers of water (Bolis et al 2012), can help rationalize the slow203

diffusion of water along the e3-direction observed in our MD simulations.204

The time-dependent mean square displacement (MSD) of the oxygen atoms of water molecules (Ow) close to

the HAP-water interface and further away from it was also computed using the following expression:

〈〈∆r2(t)〉〉Ow,n
= 〈〈[r(t)− r(0)]2〉〉,

where r(0) and r(t) are the position vectors at times t = 0 and t, respectively, and the angled brackets 〈〈·〉〉 indicate205

the average over the number of times origin spanned by t and the number of water molecules. The subscript206

Ow,n denotes the oxygen atoms that are part of the n-th “layer” of water in the HAP nanopore. For example, a207

water molecule was considered to be part of the first hydration layer if d(Ca2+−Ow) < 3.0 Å. The (water) oxygen208

atoms used to compute the MSD of a specific hydration layer were determined from the configuration of the209

first MD step of the production period and by selecting those Ow atoms such that the d(Ca2+ −Ow) was within210

a specific threshold. The MSD of Ow in the hydroxyapatite nanopores with H = 60 Å and 110 Å for hydration211

layers defined by d(Ca2+−Ow) thresholds equal to 6 Å (first and second layer), 20 Å, 30 Å and 40 Å are reported212

in Fig. S5 of electronic supporting material. Results indicate that as we move further away from the interface,213

water molecules diffuse more slowly and this effect becomes more pronounced with the size of the nanopore.214

However, it is important to notice that several water exchanges could be counted between the different hydration215

layers during the MD trajectories, and consequently the MSD in Fig. S4 cannot be unambiguously associated to a216

specific hydration layer of the HAP nanopore.217

3.2 Hydrogen bonding at the HAP-water interface218

Hydrogen bonding (H-bonding) interactions play a vital role in the movement of water molecules on the HAP219

surface. Figure 6 shows the molecular arrangement of water molecules on the HAP surface. In particular, Fig. 6(a)220

gives a closer view of the orientation of water molecules on the surface and the H-bonded interaction with hydroxyl221

and phosphate groups of HAP. Visualization of the trajectories revealed a peculiar "rolling" motion for the water222
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molecules. This is illustrated in Fig. 6(b)-(e), where the molecular arrangement of a selected water molecule at223

four MD steps shows that the H-bonding interactions with the HAP surface influence the translation and rotation224

motions of water and facilitate the anisotropic diffusion of water. Figure 7 reports a schematic representation of the225

rolling motion of water, which occurs via H-bonding interactions determining the preferential diffusion of water226

molecules on the (e1,e2)-plane.227

The H-bonding structure greatly influences the dynamical properties of water (Chandra 2002). The effect of228

confinement on the distribution of the number of H-bonds was therefore quantified by scanning the MD trajectories229

of bulk liquid water and HAP nanopores to determine the existence of an H-bond between two water molecules230

based on the following geometrical criteria: (i) the donor-acceptor inter-oxygen distance is less than 3.5 Å; (ii) the231

donor acceptor inter hydrogen-oxygen distance is less than 2.45 Å; (iii) the hydrogen-donor-acceptor angle is less232

than 30◦ (Chandra 2000).233

The average number of H-bonds nHB is about 3.5 in bulk liquid water and in the HAP nanopore with H = 110 Å234

but nHB decreases to 3.4 for H = 60 Å, 3.3 for H = 40 Å and 3.0 for H = 20 Å, that is, as the degree of confinement235

increases. This is linked with the influence of the HAP surface on H-bonding network. In fact, the distribution236

of the number of H-bonds between water molecules coordinated to the HAP surface and the surrounding water237

molecules (see Tab. 2) shows that in liquid water the majority of water molecules (51%) are in the ideal local238

tetrahedral network, whereas in the first hydration layer of HAP more than 60% of water molecules have two,239

one or zero H-bonds. Since in an aqueous environment the motion of water molecules occurs via the breaking240

and reforming of H-bonds, the reduction in water diffusion within HAP nanopores can be explained in terms of241

the lack of water-water H-bonds through which a water molecule can diffuse from the surface to the bulk. Since242

the molecules coordinated on the surface form, on average, less than two HBs per molecule with the surrounding243

water molecules, this implies that they interact with the hydroxyl group and diffuse preferentially along the surface244

rather than towards the bulk solution.245

4 Conclusion246

We conducted classical molecular dynamics simulations of liquid water within hydroxyapatite nanopores of dif-247

ferent sizes (20 Å ≤ H ≤ 240 Å) in order to determine the effect of confinement on the dynamical properties of248
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Table 2 Distribution of the number of hydrogen-bonds for the water molecules coordinated to the calcium surfaces. Results obtained from
molecular dynamics simulations of bulk water and water within HAP nanopores of different sizes (20 Å≤ H ≤ 110 Å). The values given are
percentages of molecules with the given number of hydrogen bonds and the average number of hydrogen bonds per water molecule.

0 1 2 3 4 5 Average
Bulk water 0.0 0.9 0.8 33.0 51.3 5.9 3.53
HAP-water

110 Å 22.3 22.4 22.0 19.7 12.5 1.0 1.81
60 Å 22.7 22.5 22.0 19.4 12.3 1.0 1.79
40 Å 24.5 23.6 21.4 18.3 11.2 1.0 1.71
20 Å 26.8 27.9 21.2 15.0 8.3 0.7 1.52

water. We showed that our core-shell potential for hydroxyapatite together with the standard SPC/E water model249

gives an activation energy for water diffusion of water on the hydroxyapatite surface that is in good agreement250

with available experimental data. We identified an anisotropic diffusive behaviour for the molecules, which was251

quantified by defining a self-diffusion tensor, D, and computing the anisotropic diffusion coefficients of water, Di j252

(i, j = 1,2,3). As a result of the strong interactions between water molecules and the functional groups of HAP,253

which become dominant in such confined environments, the motion of water molecules in the direction parallel254

to the surface is significantly faster than in the direction perpendicular to it, where the polarizing effect of Ca2+
255

sites reduces the diffusion of water molecules. On the other hand, solvent molecules can move preferentially along256

the e1-direction (characterized by anisotropic diffusion coefficient D11) as a result of synergic interactions of the257

water molecules at the interface with the calcium, hydroxyl and phosphate ions of the HAP surface.258

Our study demonstrates and quantifies the anisotropic behaviour of fluid in bone nanostructures, which is an259

important area of bone biophysics (Lemaire et al 2015a; Abdalrahman et al 2015), and therefore gives new insights260

into the mechanisms controlling the motion of solvent molecules in confined spaces.261
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Fig. 1 HAP-water system (Ca-green, PO3−
4 -pink, O-red, H-white) with a pore size of 90 Å.
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Fig. 2 The mean square displacements associated with the three interest quantities describing the diffusion coefficients Dii for i = 1,2,3 for
H = 90 Å.
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sizes equal to 60 Å and 110 Å where H is the initial height of the nanopore.
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Fig. 4 Anisotropic diffusion coefficients Dii (i = 1, 2, 3), standard isotropic diffusion coefficient Ds, and spherical part of the diffusion tensor
D of water molecules within the HAP nanopores.
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Fig. 5 Motion of a randomly chosen tracer molecule that is part of the first hydration layer of the HAP nanopore with H = 110 Å. The inset
reports the radial distribution function [g(r)] of calcium ions at the surface and oxygen atoms in water (Ca-Ow).
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Fig. 6 Molecular arrangement of water molecules on the HAP surface with H = 70 Å (Ca-green, P-pink, O-red, H-white and hydroxyl O in
blue): (a) H-bonding between hydroxyl ion (HAP) and water molecules: (b) to (e) Motion of selected water molecule (in yellow color circle)
on the HAP surface at selected times (in ps).
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Fig. 7 Schematic representation of the HAP-water interface showing the water adsorption sites and the mechanism of water rolling motion on
the HAP surface.


