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Abstract

A new statistical method is introduced for dose �nding in phase IB/IIA trials, which, along with

e�cacy and toxicity as endpoints, also considers pharmacokinetic information in the dose-selection

procedure. Following the assignment of a current best dose to a cohort of patients, the concentration

of a drug in the blood is measured at the locally D-optimal time points. The dose-response outcomes

are also observed for each patient. Based on the updated information, a new dose is selected for the

next cohort so that the estimated probability of e�cacy is maximum, subject to the condition that

the estimated probability of toxicity is not more than a chosen constant. Another condition for the

dose selection is related to the total exposure of the drug in the body, expressed by the area under the

concentration curve over time, so that the curative purpose is likely to be achieved in the population

without overdosing. Simultaneously to the maximisation of the estimated probability of e�cacy, the

mean area under the concentration curve for a chosen dose is not allowed to be more than a target value

taking into account its inter-patient variability. The purpose is to investigate the gain in e�ciency of

using pharmacokinetic measures in the dose escalation. The proposed method is found to identify the

optimal dose accurately without exposing many patients to toxic doses.

Keywords: Area under the concentration curve, Continuation ratio model, D-optimum sampling

times, One-compartment pharmacokinetic model, Population pharmacokinetics.

1. Introduction

Interest has grown in recent years in the development of dose-�nding methods incorporating both

toxicity and e�cacy as endpoints. The idea in these methods is to �nd a dose for further development

which is both safe and e�cacious. Thall and Russell (1998) developed a dose-�nding method that

satis�es both e�cacy and safety requirements. The method treats a su�cient number of patients, like5
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30 or 45, to estimate the rates of e�cacy and toxicity at the selected dose with a given reliability,

and also stops the trial if it is found that none of the doses are both safe and e�cacious. The dose-

response outcome in this case is trinomial, categorised as neutral, e�cacious or toxic, as in Li et al.

(1995). However, the method su�ers from the limitation that, in the settings where all the doses have

acceptable toxicity with higher e�cacy at the higher doses, it does not escalate to the more desirable10

doses with high probability. So it often fails to detect the best dose in the presence of a number of

candidate doses. Thall and Cook (2004) proposed another method based on the trade-o�s between

treatment e�cacy and toxicity, which provides a substantial improvement over the earlier version and

also accommodates bivariate binary outcomes. The successive patients in a trial receive doses based

on a set of e�cacy-toxicity trade-o� contours that partition the two-dimensional outcome space. The15

method is known as E�Tox.

Zhang et al. (2006) proposed another such method considering trinomial responses. The design

selects a dose based on some optimal dose-selection criteria using the continual reassessment method

and is popularly known as TriCRM. Although the design follows a similar idea to that in Thall and20

Russell (1998), it uses the continuation ratio (CR) model with di�erent dose-selection criteria and

simpli�ed stopping rules. Thall and Cook (2004) also extended the approach of Thall and Russell

(1998) to the CR model, but it involves considerable e�ort to elicit priors. In that sense, TriCRM is a

simple alternative to E�Tox.

25

Dragalin and Fedorov (2006) suggested an adaptive procedure considering e�cacy and toxicity as

endpoints. The modelling of these bivariate binary endpoints is based on either Gumbel bivariate

binary logistic regression or the Cox bivariate binary model. They express a dose-�nding problem in

terms of a penalised D-optimality criterion. The design maximises the information under the control

of a penalty function for treating patients at doses which are too low or too high. Thall et al. (2008)30

presented a dose-�nding procedure based on bivariate outcomes that incorporates patients' covariates

and dose-covariate interactions. This is an extension of the methodology in Thall and Cook (2004).

Thall and Nguyen (2012) proposed a new approach for bivariate ordinal outcomes.

Phase I trials are small in size and as a consequence the dose-toxicity curves may not be well35

estimated. They often determine a dose which can be found either unacceptably toxic or ine�ective in

a later phase. Phase I/II trials are relatively larger and so the associated methods could potentially

lead to more e�cient dose selection. They are still not big enough for the selected dose to converge
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to the best dose with probability one, even if the algorithm is shown to be convergent. The outcomes

in dose-�nding studies are often dichotomised, and, as a result, we lose some information. In par-40

ticular, an outcome which is not toxic may be just below the cut-o� point or a toxic outcome may

be far above the cut-o� point. Similarly, the e�cacy is dichotomised. Usually these issues are not

considered in the dose-escalation methods. However, they can be considered implicitly by taking into

account continuous measures like the area under the concentration curve (AUC). This additional infor-

mation utilised during the process of dose selection may signi�cantly improve the e�ciency of the trial.45

In this paper, we introduce a general approach for phase I/II trials, which, along with e�cacy

and toxicity endpoints, also considers pharmacokinetic (PK) information in the dose selection, the

information often viewed as important for �nding the best dose (Govindarajulu, 1988). Although

there is considerable work on modelling PK and pharmacodynamic (PD) data, not much e�ort has50

been devoted to incorporating PK information into adaptive dose-�nding studies. Piantadosi and Liu

(1998) demonstrated that the e�ciency and accuracy of phase I clinical trials can be improved by

incorporating PK data into dose escalation. Along with dose, they incorporated the resulting AUC

as a covariate in the model. The implementation of the method requires accurate PK data, but the

theory of optimal design to e�ciently collect blood samples has not been used. Nyberg et al. (2009)55

considered simultaneous optimisation of dose and PK sampling times. A Bayesian approach for phase

I trials was presented in Whitehead et al. (2007), which is based on simultaneous monitoring of PK

and PD responses. The methodology in Zhou et al. (2008) is for phase I trials in healthy volunteers,

where, for each individual in the trial, the method monitors two continuous PK measures, AUC and

the maximum concentration, and a binary indicator variable for an undesirable event. The presented60

methods that incorporate PK measurements in dose escalation are for phase I trials. Since these are

usually small, it is di�cult to address the issue of population variability. In this paper, we propose a

dose-selection method for a seamless phase I/II clinical trial where it is possible to assess both toxic

and e�cacious outcomes. In such trials there is particular interest in the PK parameters and we use

the optimal sampling times for their precise estimation.65

Concentration of a drug in blood is generally modelled as a function of time for a given dose and the

PD e�ect is often modelled as a function of dose. In a combined approach, the PD response is modelled

as a function of concentration. Concentration is inherently more informative than dose because, unlike

dose, which is only a nominal mass administered to a patient, it gives biological information (Riviere,70

2011). The PK/PD approach establishes the dose-concentration-e�ect relationship and is capable of
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predicting the e�ect at any time after administering a dose. It also helps in estimating the dose and

dosing interval to achieve the e�ect of a desired level. The PK/PD approach has been described in

Meibohm and Derendorf (1997), Hooker and Vicini (2005), and Davidian (2010), among others. Since

characteristics such as age, body weight, ethnicity, physiological functions, genetics, disease status and75

sensitivity to treatment often vary from patient to patient, Jönsson (2004) developed methodologies

for individualised dosing utilising population PK and PK/PD models. These did not employ optimal

time points to collect the PK and PD responses, the use of which could save resources and provide

more accurate parameter estimates.

80

More work is needed to increase the e�ciency of clinical trials and here we present our attempt in

this direction. In this paper, we do not combine the PK and PD models into one. Instead, we use a

PD response to select the best dose with a restriction put on the drug exposure measured by the area

under the concentration curve. We consider two models, one for the dose-response outcomes and the

other for the PK data. We begin with an up-and-down design for the �rst few cohorts, after which85

the model-based procedure starts. At that stage, we choose the dose which maximises the estimated

probability of e�cacy subject to the conditions that the estimated probability of toxicity at that dose

is not more than an acceptable level and also the estimated mean AUC is not more than a target

value. The latter constraint is de�ned so that it includes the inter-patient variability in the AUC.

The analytical expressions for the AUC and its variability are based on the assumed PK model. The90

use of the AUC based on a separate PK model is simpler than the PK/PD approach. It gives precise

estimates of the PK parameters and leads to faster decision making regarding the dose. The aim

of this paper is to develop an e�cient dose-�nding method that exposes not too many patients to ei-

ther sub-therapeutic or toxic doses and recommends the best dose for further study in phase IIB or III.

95

The paper is organised as follows. Section 2 introduces the general algorithm for the new design,

the PK and dose-response models, and the dose-selection criteria and stopping rules. Section 3 presents

the simulation results comparing the new method with a special case of the one of Zhang et al. (2006).

Finally, there is a discussion in Section 4. Details of the up-and-down initial stage, model approximation

and derivation of the approximate mean and variance of the AUC are given in appendices.100
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2. Methods

2.1. Basic idea

We assume that a set of dose levels is pre-speci�ed from pre-clinical trials or very early clinical trials.

The aim of the study is to select the dose level which can be recommended for further investigation

in a larger group of patients, where it is compared with a placebo or another experimental treatment.105

We consider here an adaptive design where an interim analysis of the data is performed after treating

each cohort of patients, and a new decision on the PK sampling times and on the dose allocation is

made for the next cohort based on the updated knowledge of the responses. As mentioned in Section

1, we support the choice of dose levels by additional information on the concentration of the drug

in the plasma, which is directly related to the dose response. Too high a concentration may cause110

toxicities while too low a concentration will not produce a desirable e�ect. The dose-optimisation

criterion to be used in this paper is the maximisation of the estimated probability of e�cacy subject

to the constraints imposed on the estimated probability of toxicity at the selected dose and on the

estimated mean AUC. The population D-optimal blood sampling times assure high accuracy in the

estimation of the mean PK parameters and their variances. Our dose-response model is derived from115

a trinomial distribution for the outcomes: neutral, e�cacious and toxic. A one-compartment mixed

e�ects model with bolus input and �rst-order elimination is used for the PK data. In what follows,

we present the detailed forms of the considered models, both for the concentration of the drug and for

the drug e�ect. However, we would like to stress that the algorithm is more general, that is, it can be

applied to other models as well, as it is indicated in Section 4.120

2.2. Optimum adaptive clinical trial design

We assume that the patients enter a clinic sequentially and cohorts of the same size are treated

with a dose level determined from the updated information. The choice of dose level for each cohort is

model based and satis�es an optimisation criterion. There are various possible criteria, such as maxi-

mum tolerated dose, biologically optimum dose or simply D-optimum dose. The maximum tolerated125

dose is the dose level for which the probability of toxicity attains a maximum permissible value. This

criterion is often used in oncology trials, as it is usually assumed that both the e�cacy and toxicity

probabilities increase with dose level. However, in cases where we can observe e�cacy, it makes sense

to consider a criterion which allows for the highest chance of e�cacy, particularly if it does not increase

with dose level. Alternatively, one can consider a criterion which in principle should lead to the best130

dose-response model prediction and so the best indication of the e�cacious dose level after the trial.
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In this paper, we consider the biologically optimum dose approach, as, apart from recommending

an optimum dose for further studies, it generates dose levels during the trial considered as most e�-

cacious, and thus gives a good chance of the best treatment for the patients in the trial. We escalate135

the dose level in the trial to maximise the chance of e�cacy, but not skipping too many dose levels,

while controlling the toxic events. This is done in two ways: by putting a constant threshold on the

probability of toxic outcomes and by restricting the total exposure of the drug in the body. The former

restriction is based on a dichotomised response, yes or no for a toxic event, over a cohort, while the

latter one is based on a continuous PK measure, the population mean AUC. This additional informa-140

tion needs to be as accurate as possible and so we derive population D-optimum designs for blood

sampling times for each cohort of patients. This gives us very precise estimates of the PK parameters

at each stage of the adaptive trial.

Below we present the main steps of the adaptive design, where k represents the stage in a trial.145

Step 1: Treat cohort k with the current best dose.

Step 2: Obtain the D-optimal sampling time points and observe the PK responses at these time

points, when appropriate.

Step 3: Observe the dose-response outcomes.

Step 4: Estimate the model parameters and update the models.150

Step 5: Select the best dose for the next cohort based on the chosen dose optimisation criterion and

constraints.

Step 6: Stop if the stopping rule is met, otherwise set k = k + 1 and repeat Steps 1-5.

Step 7: Carry out a complete analysis of the data to recommend a dose for further study.

155

We need to estimate the PK parameters as well as the dose-response parameters at each stage of

the adaptive trial. With a small cohort size, we need to collect data from a few cohorts to obtain

some reliable parameter estimates. Hence, we start the trial with an up-and-down procedure, which is

run for the �rst few cohorts before we start the fully adaptive parametric algorithm described above.

During the up-and-down procedure, we observe the PK responses and the dose-response outcomes, but160

there is no estimation of parameters. The up-and-down procedure is similar to that of Ivanova (2006),

where a dose is increased, stays at the present dose or is decreased depending on the responses of the

most recent cohort. Here, however, we take into account responses from all cohorts up to the most

recent one. The basis of the method lies in the toxic outcomes, which can stop the trial if toxicity is
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above the acceptable level. Details of this initial part of the trial are given in Appendix A.165

In Section 3, we conduct a simulation study to illustrate the operating characteristics of the pro-

posed design. The example used consists of the one-compartment PK model with random e�ects and

the continuation ratio dose-response model, described in Sections 2.3 and 2.4, respectively.

2.3. Population PK model170

We consider PK models for the concentration of a drug in the plasma. Often, the mechanistic part

of such models is a solution of di�erential equations representing the distribution of the drug in the

body's compartments. The drug is absorbed, distributed and eliminated, and these processes di�er

among patients. Hence, so-called population PK models need to be considered to account for this

variability.175

We denote the population PK models by

yij = f(θi, tij) + εij , i = 1, . . . , N, j = 1, . . . , ni, (1)

where yij is a random variable representing the concentration of a drug in the blood for the ith individ-

ual at time tij , θi is a p-dimensional vector of the model parameters for the ith individual, f : R+ → R+

is a function which is non-linear with respect to the parameters and possibly also with respect to the

design variable t, εij denotes the random error and ni is the number of measurements taken on indi-180

vidual i. An additive random error model may lead to negative concentrations in the simulation study

with large error observations. However, it works well in the presence of a small error variance. For a

large error variance, it would be wise to consider a multiplicative error model yij = f(θi, tij) exp(εij),

so that log(yij) = log(f(θi, tij))+εij . The methodology presented in this paper can be applied to both

cases with some minor technical adjustments to the model approximation.185

Furthermore, we assume that some or all of the model parameters are random and can be rep-

resented in an additive form as θi = β + bi, where β = (β1, . . . , βp)T is a vector of the population

mean parameter values and bi is a vector of random e�ects for subject i. We assume that bi has a

multivariate normal distribution with zero mean vector and diagonal covariance matrix denoted by

E(bi) = 0 and Var(bi) = Ω = diag(ω1, . . . , ωp).

We also assume that the random errors are independently normally distributed with zero mean and

constant variance σ2 and that bi and εi are independent. Retout et al. (2001) also assumed an additive
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model for the random parameters. Although the normality assumption may lead to negative values

of the parameters, this will be very rare unless the variability in the parameters is very large. This190

possibility can be avoided if an exponential model θi = β exp(bi) is assumed instead. Here, we consider

the additive random parameters to keep the PK model simple. However, a switch to the exponential

model would not alter the dose-�nding methodology presented here.

We are interested in the e�cient estimation of all the population parameters, denoted by Ψ =

(βT,λT)T, where βT = (β1, . . . , βp) and λT = (ω1, . . . , ωp, σ
2). The dimension of Ψ is 2p + 1 if all

the parameters are random, otherwise it will be less. The Fisher information matrix (FIM) for the ith

individual and design ξi = {ti1, . . . , tini
} is given by

Mi(Ψ, ξi) = E

{
−∂

2li(Ψ | yi)
∂Ψ∂ΨT

}
, (2)

where li(Ψ | yi) is the log-likelihood function for a given vector of observations yi = (yi1, . . . , yini)
T

195

for individual i. Since our model is non-linear in the parameters, derivation of an analytic expression

for the log-likelihood function is not possible. Various approximations to the information matrix have

been proposed in the statistical literature. A comparison of di�erent methods is presented in the PhD

thesis by Mielke (2012), who concludes that none of the methods is uniformly best.

200

As in Pinheiro and Bates (1995) or Retout et al. (2001), we approximate the log-likelihood function

using a �rst-order Taylor series expansion of the function f(θi, tij). Here, however, we expand the

function about φi = (βT, bT
i )T at φ0 =

(
β0T

,E(bi)
T
)T

=
(
β0T

,0T
)T

, where β0 is a vector of initial

values for the population means: see Appendix B. The population FIM for the design for all subjects

in the trial Ξ = {ξ1, . . . , ξN} is de�ned as the sum of the N individual Fisher information matrices in

(2), that is,

M(Ψ,Ξ) =

N∑
i=1

Mi(Ψ, ξi).

The FIM is an argument of many optimal design criteria, initially derived for �xed e�ects lin-

ear models, but more recently extended to non-linear models by Fedorov (1972); Fedorov and Hackl

(1997), and Atkinson et al. (2007), including random e�ects, as in Mentré et al. (1997). In this work,

we use the D-optimality criterion, that is, we maximise the determinant of the population FIM to

obtain sampling times for measuring the concentration of the drug in the plasma. The properties of205

this criterion are well known and it is widely used in many applications. We �nd that our estimates

of the PK model parameters are very precise, as one would expect from data collected according to

a D-optimum design. Computations for the D-optimal time points are implemented in PFIM 3.2
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(Bazzoli et al., 2010), an R package to evaluate and optimise designs in the context of population PK

experiments.210

Since the FIM depends on the model parameters, to obtain the locally optimal time points we

need to assume some prior values for the parameters. The procedure starts with some informed guess

of the parameters and then replaces them at each stage with the current maximum likelihood esti-

mates. The covariance matrix of the maximum likelihood estimators approaches the inverse of the215

FIM asymptotically. Therefore, by minimising the inverse of the determinant of FIM, the D-criterion,

we can minimise the asymptotic general variance of the estimated model parameters. To achieve this,

we obtain the maximum likelihood estimates using the R procedure nlme (Pinheiro and Bates, 2000).

It is also possible to use the posterior estimates of the PK parameters in the search for the optimal

time points, but that would involve more computational challenges and would require assumptions220

regarding prior distributions of the parameters. Wake�eld et al. (1994) developed a Bayesian approach

for the non-linear mixed-e�ects model. They used a three-stage model and a Markov Chain Monte

Carlo method to obtain the posterior density of the random e�ects, and hence the posterior estimates.

Apart from precise estimation of the model parameters and model prediction, we are interested225

in using the PK information for guiding an adaptive dose-selection procedure. A patient's response

depends on the exposure to the drug. Hence, we use the AUC of the PK pro�le as a measure in the

guidance. Other measures could also be considered, such as the maximum concentration or the time

to maximum concentration. Although we focus here on the AUC, it is straightforward to adapt the

algorithm to another measure.230

Let h(x,θi) represent the AUC for individual i, where x is the dose received, θi is the vector of

random PK parameters and h is a di�erentiable function of the parameters. Then the concentration

curve is a random variable. To derive approximations to its expectation and variance, we use a �rst-

order Taylor series expansion of h(x,θi) about θi at E(θi): see Appendix C. The expression derived235

here for measuring the inter-patient variability in the area under the concentration curve is general.

The methodology can be adapted for the maximum concentration, another important PK parameter,

and, of course, for any underlying PK model.
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Example

Consider the simple one-compartment PK model with bolus input and �rst-order elimination. Then

model (1) becomes

yij =
x

Vi
exp

(
−Cli
Vi

tij

)
+ εij , i = 1, . . . , N, j = 1, . . . , ni,

where Cli and Vi denote the clearance and volume of distribution for individual i, so that θi = (Vi, Cli)
T

240

is the vector of parameters, with β = (V,Cl)T and bi = (bV i, bCli)
T. It is shown in Appendix C that

the approximate mean and variance of the AUC over the range [0, t1] are

E{h(x,θi)} ∼= h(x,β) =
x

Cl

{
1− exp

(
−Cl
V
t1

)}
(3)

and

Var{h(x,θi)} ∼=
{
xt1
V 2

exp

(
−Cl
V
t1

)}2

ω1 +

{
x

Cl
exp

(
−Cl
V
t1

)(
1

Cl
+
t1
V

)
− x

Cl2

}2

ω2. (4)

These approximations are used in the adaptive dose-selection procedure, which is described in

Section 2.5.245

2.4. Dose-response model

We consider a trinomial response Y = (Y0, Y1, Y2)T for each patient, where Y0 is a neutral response,

Y1 is an e�cacious response and Y2 is a toxic response. The probability of each of these outcomes

depends on dose. It is commonly accepted that a drug's toxicity increases with dose. E�cacy also

increases in many cases, but it is possible for some drugs that the e�cacy attains a plateau or in-250

creases and then decreases. For an experimental drug, we assume that the probability of a neutral

response decreases monotonically with dose and that the probability of toxicity increases monotoni-

cally with dose. However, the probability of an e�cacious outcome may be non-monotonic, increasing

or decreasing. The corresponding probabilities are denoted by ψ0(x,ϑ), ψ1(x,ϑ) and ψ2(x,ϑ), so that

ψ0(x,ϑ) + ψ1(x,ϑ) + ψ2(x,ϑ) = 1, where ϑ is the vector of parameters.255

The proportional odds model is often used to establish the dose-response relationship in such a

situation. However, it requires the assumption that dose has the same e�ect across the cumulative

logits. Since this assumption is very di�cult to satisfy, we plan to utilise the continuation ratio model

(Agresti (1990), Chapter 9) given by260

log

{
ψ1(x,ϑ)

ψ0(x,ϑ)

}
= ϑ1 + ϑ2x and log

{
ψ2(x,ϑ)

1− ψ2(x,ϑ)

}
= ϑ3 + ϑ4x.
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The parameter ϑ1 represents the baseline log-relative probability, ϑ2 re�ects the contribution of

dose in the log-relative probability of having an e�cacious outcome relative to a neutral one, ϑ3 is the

baseline log-odds and ϑ4 is the contribution of dose in the log-odds of a toxic outcome relative to a

neutral or e�cacious one. Solving the above equations, we obtain

ψ0(x,ϑ) =
1

(1 + eϑ1+ϑ2x)(1 + eϑ3+ϑ4x)
,

ψ1(x,ϑ) =
eϑ1+ϑ2x

(1 + eϑ1+ϑ2x)(1 + eϑ3+ϑ4x)

and265

ψ2(x,ϑ) =
eϑ3+ϑ4x

1 + eϑ3+ϑ4x
.

To ensure that the above three non-linear functions exhibit the assumed behaviour of the responses,

we restrict the parameter space to

Θ =
{
ϑ = (ϑ1, ϑ2, ϑ3, ϑ4)T : ϑ1 ≥ ϑ3, ϑ3 < 0 and ϑ2, ϑ4 > 0

}
.

Assume that we are at the kth stage in a trial. So k cohorts have been treated so far with dose

levels from the set of ordered levels X . Let x be the k × 1 dose vector with components xl and let

R be the k × 3 outcome matrix with Rl = (Rl0, Rl1, Rl2) as the lth row, l = 1, 2, . . . , k. Note that270

Rl0 +Rl1 +Rl2 = c, where c is the number of subjects in a cohort treated with dose xl. The successive

components of Rl are the counts of neutral, e�cacious and toxic responses for the lth cohort. Thus,

the likelihood function is

Lk(ϑ | x,R) ∝
k∏

l=1

{ψ0(xl,ϑ)}Rl0{ψ1(xl,ϑ)}Rl1{ψ2(xl,ϑ)}Rl2 .

The parameters ϑ are estimated at each stage of the adaptive trial. Since maximum likelihood

estimation is unsuitable because of small sample sizes at the early stages of the trial, we employ a275

Bayesian approach. The posterior estimate of ϑ at the kth stage is

ϑ̂k =

∫
Θ
ϑ p(ϑ)Lk(ϑ | x,R)dϑ∫

Θ
p(ϑ) Lk(ϑ | x,R) dϑ

, (5)

where p(ϑ) is the joint prior distribution of the parameters. Let us assume that 0 < ϑ2 < u1,

0 < ϑ4 < u2, w1 < ϑ1 < w2 and w3 < ϑ3 < w4, and that the joint prior distribution is uniform. Then

we obtain

p(ϑ) =
2

u1u2(w2 − w3)2
, ϑ ∈ Θ̃, (6)
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where280

Θ̃ = {ϑ : w3 < ϑ3 ≤ ϑ1 < w2, 0 < ϑ2 < u1, 0 < ϑ4 < u2} . (7)

In Section 3, we choose a di�erent Θ̃ for each of the simulation scenarios.

2.5. Dose-selection criteria

At each stage in the trial, we select that dose for the next cohort for which the estimated probability

of e�cacy is maximum, subject to the condition that the estimated probability of toxicity is not more

than a pre-speci�ed acceptable level. Often, it is not advisable to skip the pre-speci�ed dose levels285

when they are increased for application in the next cohort. In our method, we introduce an option

of constraining the increase by any number of dose levels. However, we impose no such constraint on

the levels when they are decreased. For example, the next best dose could be �ve levels higher then

the previous one, but with a constraint of not skipping more than one dose level, we apply the dose

two levels higher than the previous one. Another condition for the dose selection is related to the290

total exposure of the drug in the body so that the curative purpose is likely to be achieved without

overdosing; this is expressed by a restriction on the area under the concentration curve over time.

Suppose that we are at the kth stage of the trial and based on the current data, we have the

estimates Ψ̂k and ϑ̂k. Then, we select the dose xk+1 for the next cohort of patients so that295

xk+1 = arg max
x∈X

ψ1(x, ϑ̂k),

subject to the conditions that

ψ2(xk+1, ϑ̂k) ≤ γ

and

Ê{h(xk+1,θi)} −AUC0

ŜD{h(xk,θi)}
≤ δ(xk, ϑ̂k), (8)

where γ ∈ (0, 1) is a given constant, usually allowing 20-30% chance of toxicity and Ê{h(x,θi)} =

h(x, β̂k) is the estimate of the approximate population mean AUC for dose x at stage k. The estimate

of the approximate standard deviation of the AUC is denoted by ŜD{h(xk,θi)}. Also, AUC0 is a value300

for the AUC that is considered to be desirable and δ(xk, ϑ̂k) = 1/ψ1(xk, ϑ̂k). A desirable AUC is

one for which the curative purpose is likely to be achieved, allowing some acceptable level of toxicity.

The choice of such a value will require expert opinion. Previous studies of similar drugs or pre-clinical

12



studies can help in this context.

305

The left-hand side of (8) represents a relative di�erence between h(xk+1, β̂k) and AUC0. We con-

strain the choice of xk+1 so that, for large values of the estimated probability of e�cacy ψ1(xk, ϑ̂k),

this di�erence is small. This `forces' convergence of the dose to the one giving the required exposure

to the drug. On the other hand, when the estimated probability of e�cacy is small, the constraint

is weak, allowing for a wider choice for the next dose level. The PK constraint (8) is dynamic, that310

is, the value of δ(xk, ϑ̂k) changes during the trial according to the current estimate of the probability

of e�cacy, and the estimates of the expectation and the standard deviation of the AUC are updated

after each cohort. This gives some �exibility to the algorithm. A �xed δ might lead to choosing a

sub-optimal dose, and, in any case, it would be di�cult to decide on its value.

315

It follows from the constraint that Ê{h(xk+1,θi)} ≤ AUC0 +δ(xk, ϑ̂k) ŜD{h(xk,θi)}. If ψ1(xk, ϑ̂k)

attains the maximum possible value 1, then δ(xk, ϑ̂k) will have the value 1 and consequently we will

choose a dose with a mean AUC within one standard deviation of the target, which accommodates the

population variability. However, in the majority of cases, δ will have a larger value than 1. Therefore,

we will usually be selecting a dose with a mean AUC within more than one standard deviation of the320

target value.

This constraint is introduced as an additional indicator of a curative e�ect, with a precaution

against the allocation of too toxic doses. It works di�erently to the constraint on the probability of

toxicity ψ2. The AUC, expressed as a function of the random PK parameters, not only takes into325

account the population variability, but also directly constrains the PK parameters responsible for the

drug's action, and so indirectly, the dose level.

2.6. Stopping rules

In a clinical trial, a variety of stopping rules are possible and the choice depends on the purpose

of the trial. We employ a simple rule: stop the trial when the same dose is repeated for r cohorts330

or when the trial reaches the maximum number of m cohorts, whichever comes �rst. The idea is to

terminate the trial early to save resources if it is found that the same dose is being selected repeatedly.

Otherwise, it will run for the maximum number of cohorts available. For early stopped trials, the

optimum dose (OD) is de�ned as the dose that has been repeated r times. However, for the trials that

use the maximum number of cohorts m, we carry out a complete analysis of the data and de�ne the335

OD as the dose that would be allocated to cohort m+ 1 if that cohort were in the trial.
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3. Simulation results

3.1. Choice of design parameters

We assume that an experimental drug has 20 available doses from 0.5 to 10, increasing in steps of

0.5, that is, the set of doses is X = {0.5, 1.0, . . . , 10.0}. Four hypothetical dose-response scenarios are340

considered: see Figure 1. Scenario 1 has a monotonically decreasing e�cacy curve with dose 0.5 as
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Figure 1: Dose-response scenarios for simulation study. The respective parameter values are: Scenario 1, ϑ =

(1.44, 0.26,−1.70, 0.25)T; Scenario 2, ϑ = (−3.50, 1.00,−6.00, 0.72)T; Scenario 3, ϑ = (−0.80, 0.50,−3.80, 0.30)T; and

Scenario 4, ϑ = (−6.50, 0.75,−8.00, 0.65)T.

the OD. Scenarios 2 and 3 depict non-monotonic e�cacy curves with respective ODs of 5.5 and 6.5.

A monotonically increasing e�cacy curve is re�ected in Scenario 4 with 10 as the OD. Two kinds of

responses need to be generated for the simulation study: the concentration of the drug in the blood

and the trinomial dose-response outcomes. The values of the PK parameters for the simulation study345

are V = 0.5 L, Cl = 0.06 L/hr, ω1 = 0.004, ω2 = 0.00005 and σ2 = 0.000225. The parameter values

are chosen such that the coe�cient of variation is around 12%. The choice of a small error variance

should be reasonable as we have found the observations to be small as well.

14



Each trial starts with the lowest dose of 0.5 mg/kg body weight. The acceptable toxicity level γ is350

taken to be 0.20. Doses to the �rst four cohorts in each trial are allocated according to the up-and-

down design in Appendix A. The up-and-down stage need not have exactly four cohorts. There are

�ve parameters to estimate in our PK model and, therefore, we have chosen four cohorts to provide

initial values for the maximum likelihood estimates. One should choose this number depending on the

complexity of the model. The value of AUC0 is taken to be the AUC at the true OD in each scenario.355

Although we consider the same γ for each scenario, we have di�erent values of AUC0. The highest

doses which meet the safety level are 1 mg/kg, 6 mg/kg, 8 mg/kg and 10 mg/kg for the respective

scenarios. For each trial, we set the maximum number of cohorts to be m = 20, each cohort of size 3.

To let the trials stop early when it is found that no further improvement in dose selection is possible,

we set r = 6.360

3.2. Generation of PK and dose-response outcomes

A vector of random e�ects bi for individual i is generated from the bivariate normal distribution

N2(0,Ω). The PK parameters for that individual are then obtained as θi = β + bi. The next step is

to �nd the individual concentrations at the D-optimal time points. The design region for the sampling

times is T = [0, t1] hours, where t1 = 30 in (3). To decide on the optimal number of sampling times,365

we use the relative e�ciency de�ned in (9). Although we consider the same prior in each case, the

designs have a di�erent number of design points. It has been found that the e�ciency of a 3-point

design relative to a 2-point one is double. The e�ciency of a 4-point design relative to a 3-point one

falls to 1.15. As we increase the number of design points, such e�ciencies become closer to 1: see

Figure 2. This means that the gain is substantial if we consider 3 design points rather than 2.
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Figure 2: Rationale for setting the number of design points in the one-compartment PK model with bolus input and

�rst-order elimination. The locally D-optimum design points are obtained using the initial prior values Ψ0 assuming

that the lowest dose is given to a cohort of 3 patients.

370
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Therefore, to avoid the di�culty of collecting many samples, three optimal time points are consid-

ered for the individuals in each cohort, that is, ni = 3 for all i. The random errors are then generated

from N3(0, σ2I3) and added to the previously generated individual concentrations to produce the sim-

ulated PK responses for individual i. The same scheme is followed to simulate the responses for all

individuals in each cohort. We chose the prior values Ψ0 = (0.1, 0.005, 0.0007, 0.0000006, 0.000004)T
375

to obtain the optimal points for the �rst four cohorts in the up-and-down stage of the trial. The prior

values are quite far away from the true values of the parameters, which would normally be unknown

and could be wrongly assumed at the beginning of the trial. For the �fth cohort onwards, the current

maximum likelihood estimates of the PK parameters are used.
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Figure 3: Simulated concentrations in a randomly chosen trial for Scenario 3.

Figure 3 gives the concentration data that are obtained in a randomly chosen trial for Scenario 3380

from the simulation study of 1000 simulated trials. A total of 60 patients are recruited in this particular

trial and the concentrations at the three D-optimal time points are shown for each patient and are

denoted by circles. Though not presented, the other scenarios would have similar kind of concentration

data. The progress of the same trial is summarised in Figure 4. Under each of the scenarios in Figure

1, we have speci�c probabilities at each dose to generate the trinomial dose-response outcomes. The385
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Figure 4: Summary of the progress in a random trial for Scenario 3.

outcomes obtained for each cohort of the presented trial are plotted against their numbers. Each dotted

horizontal line that goes through the middle of the outcomes indicates the dose that the corresponding

cohort received.

3.3. Model �tting

Once we have data on the concentration and the dose-response outcomes, we can update the390

model �ts. We obtain the maximum likelihood estimates of the PK parameters using the R procedure

nlme (Pinheiro and Bates, 2000). The posterior estimates of the dose-response parameters in (5),

are obtained by numerical integration using cubature, an R package (Johnson and Narasimhan, 2009).

The package carries out the adaptive multidimensional integration over hypercubes. One needs to

specify the tolerance limit and the maximum number of function evaluations desired. The smaller395

the tolerance limit or the larger the maximum number of function evaluations, the more accurate the

estimate is. We set these to be 0.001 and 5,000, respectively, to keep the computational time down.

We use a joint uniform prior distribution for ϑ, given in (6). The parameter space Θ̃ is chosen for each

scenario so that the true values of the parameters lie in the middle of the corresponding intervals. For

instance, since Scenario 1 has the true parameters ϑ = (1.44, 0.26,−1.70, 0.25)T, Θ̃ has 0 < ϑ2 < 0.52,400

0 < ϑ4 < 0.50, 0 < ϑ1 < 2.88 and −3.40 < ϑ3 < 0. More speci�cally, u1 = 0.52, u2 = 0.50, w1 =

0, w2 = 2.88, w3 = −3.40 and w4 = 0 in (7). The same approach is followed for the other scenarios.

In evaluating the integrals in (5) with the uniform distribution speci�ed in (6), the prior distributions

in the numerator and denominator cancel out as they are constants. Once the posterior estimates are

obtained, we update the dose-response functions.405

3.4. Dose selection for the next cohort

Once we have the updated PK and dose-response parameter estimates, we can select the dose for

the next cohort based on the criteria de�ned in Section 2.5. As an additional safety precaution, we
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allow the design to skip only one level at a time when the dose is increased.

3.5. Checking the stopping rules and the OD selection410

We continue the process of allocating doses to the cohorts until the stopping rules are satis�ed.

Once a trial reaches m cohorts, we carry out a complete analysis to �nd the OD. At the end of each

trial, we also record the PK and dose-response parameter estimates, whether the trial stopped early

and the OD in that case. Each of the four scenarios is investigated through 1,000 simulated trials.

All the computations are conducted in R. The simulations are implemented on a Dell PC with an415

Intel Core 2 Duo processor running at 3.00 GHz and RAM 4.00 GB. The processing time for 1,000

simulations is 8-10 hours.

3.6. Numerical results

We compare the operating characteristics of the new PK guided design, incorporating the AUC

constraint, with the one that does not take into account the PK information. The dose selection in the420

latter design is based on the probability of e�cacy and the toxicity condition only, de�ned in Section

2.5. It is similar to the method presented by Zhang et al. (2006). The simulation results for these two

designs are presented in Table 1 and Figures 5-11. In Figures 5-8, the �rst row shows the summaries

when the additional PK constraint is employed. The summaries in the second row are based on the

toxicity constraint only.425

Table 1 clearly shows the advantages of the additional constraint on the AUC pro�le. The gain in

percentage of the doses correctly recommended for further studies depends on the scenario, but, in all

cases considered, the PK guided designs are uniformly better in this respect.

430

Table 1: Percentage of best doses recommended as optimum for further studies (%BD), percentage of doses recommended

as optimum for further studies, but carrying the probability of toxicity above the acceptable level (%TD), and percentage

of cohorts treated at the best doses throughout the trials (%AD).

Scenario Best Doses %BD %TD %AD

PK No PK PK No PK PK No PK

1 0.5 99.0 52.4 0.6 32.7 65.3 31.8

2 5.5 and 6.0 80.2 66.2 0.9 9.5 41.1 33.5

3 5.5-7.5 91.7 85.7 0.0 2.5 52.4 49.2

4 10.0 47.9 46.3 0.0 0.0 17.8 17.5
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As seen in Table 1, as well as in the left panels of Figure 5, the largest bene�t is shown in Scenario

1, where the best dose is the �rst one and small doses have a high probability of toxicity. The right

panels of this �gure show how the doses were allocated in the simulated trials. The new approach

selects 0.5 as the OD in 99% of the trials, compared to 52.4% by the old approach. Only in 0.6% of

the trials was a dose with a probability of toxicity above the limit γ chosen as the optimum in the435

PK guided trial, whereas it was 32.7% in the other case. Therefore, the PK guided design avoids

doses with a high chance of toxicity, while the other design has not prevented this from happening.

Furthermore, 65.3% of the cohorts were treated at the best dose in the PK guided trials, compared to

only 31.8% in the trials without the PK guidance.

440
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Figure 5: Scenario 1 with the OD at 0.5. The bars in the left panel represent the proportions of the doses selected as

the OD in the simulations and those in the right panel represent the proportions of the cohorts treated at the allocated

doses during the trials. The acceptable level for the probability of toxicity is indicated by the horizontal dashed line.

The new approach in Scenario 2 selects 5.5 as the OD in 39.7% of the trials. It selects dose 6.0 in

40.5% of the trials. This happens as the true probabilities of e�cacy at these doses are quite close.

These two �gures together make 80.2% of what we call in Table 1 �best doses�. The corresponding �g-

ure for the old approach is 66.2%. Again, we observe that the PK guided design avoids recommending
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doses with a high probability of toxicity, and, moreover, such doses are used much less in the simulated445

trials in this case: see Figure 6.
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Figure 6: Scenario 2 with the OD at 5.5. The bars in the left panel represent the proportions of the doses selected as

the OD in the simulations and those in the right panel represent the proportions of the cohorts treated at the allocated

doses during the trials. The acceptable level for the probability of toxicity is indicated by the horizontal dashed line.

The new approach in Scenario 3 identi�es exactly 6.5 as the OD in 17.8% of trials. Because of the

�at shape of the e�cacy curve, this scenario has a number of doses with probabilities of e�cacy quite

close to that for the OD. The doses are 5.5, 6.0, 6.5, 7.0 and 7.5, and these �best doses� are selected in450

91.7% of trials. Although the old approach selects these doses in 85.7% of trials, it recommends doses

above the toxicity probability threshold in 2.5% of cases. Furthermore, from Figure 7, the allocation

of doses in the trials is again more ethical in the PK guided design.

There is little di�erence between the two designs in Scenario 4, as shown in Table 1 and also in455

Figure 8. The new approach selects 10.0 as the OD in 47.9% of the trials, while the percentage for

the old approach is 46.3. This is the case where both the probability of e�cacy and the probability of
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Figure 7: Scenario 3 with the OD at 6.5. The bars in the left panel represent the proportions of the doses selected as

the OD in the simulations and those in the right panel represent the proportions of the cohorts treated at the allocated

doses during the trials. The acceptable level for the probability of toxicity is indicated by the horizontal dashed line.

toxicity increase with dose, where only higher doses have a better chance of having an e�ect and all

doses are below the toxicity threshold. This scenario illustrates a very cautiously chosen dose range. As

a consequence, this leads to slow learning in the trial and requires the collection of a lot of information460

before a recommendation can be made.

We have found that, for this scenario, all available cohorts were used almost all the time. This

is in contrast to Scenario 1, where, especially in the PK guided design, the learning process was fast

and there were much smaller numbers of cohorts required in the trials. In fact, Scenario 1 is another465

extreme case, where the dose range is not well chosen. Smaller dose levels in this case could have been

even better and the trial carries a high risk of toxic responses.

Figure 9 shows the distribution of the PK parameter estimates for all the scenarios. We have found

the coe�cient of variation for the mean PK parameter estimates to be around 2%, and those for the470

variance components and error variance to be 10-35%, except for Scenario 1 where it is high for the
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Figure 8: Scenario 4 with the OD at 10.0. The bars in the left panel represent the proportions of the doses selected as

the OD in the simulations and those in the right panel represent the proportions of the cohorts treated at the allocated

doses during the trials. The acceptable level for the probability of toxicity is indicated by the horizontal dashed line.

error variance because of the presence of some outliers in the estimates. Since the design employs

the D-criterion for measuring PK responses, it is assuring high e�ciency in the parameter estimation.

From Figures 10 and 11, the dose-response parameter estimates obtained from the two approaches

are similar. Obviously, they are not as good as the PK estimates. This is due to the fact that the475

information on the trinomial dose response is not gathered in a way that would be optimal for param-

eter estimation. Here, we focused on the criterion which would provide a good dose for further studies

in an ethical trial, which is particularly important in classes of drugs where toxicity can be very serious.

It has already been mentioned that we stop a trial early if the same dose is repeated for six cohorts480

and call the associated dose the OD. We have found that, as the location of the OD moves from left to

right in the dose region of a scenario, more cohorts are needed to stop early. Most of the early stopped

trials identify the OD accurately. It has been found that the PK guided approach utilises fewer cohorts

than the other approach.
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Figure 9: Boxplots of the PK parameter estimates obtained from the simulations. The horizontal dashed lines indicate

the true parameter values. For each parameter, the successive boxes are for Scenarios 1, 2, 3 and 4, respectively.

To investigate the sensitivity of the PK sampling times to the assumed prior values, we de�ne the

relative D-e�ciency of a design ξ∗k to ξ∗true as

Relative Efficiency =

(
|M(Ψ̂k, ξ

∗
k)|

|M(Ψtrue, ξ∗true)|

) 1
p

, (9)

where ξ∗k is the optimum design obtained at the kth stage of a trial using the current estimates of

the parameters Ψ, ξ∗true is the optimum design obtained for the true values of the parameters and p

is the number of parameters in the model. In both cases, the dose remains �xed and it is the one490

administered to the cohort at the kth stage. Since both designs depend on the parameter values, it

is possible, with completely di�erent parameter values to the true ones, to have a design for which

the relative e�ciency is very high. A larger determinant of the information matrix means a smaller

generalised variance of the estimators. But, in our case, that will mean that the variance is underes-

timated. Hence, we want the numerator to be close to the denominator in (9). This, in turn, means495

that we want to have an optimum design which is obtained for values around the true values of the
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Figure 10: Boxplots of the dose-response parameter estimates obtained from the simulations, the top panel for Scenario 1

and the bottom panel for Scenario 2. The horizontal dashed lines indicate the true parameter values. For each parameter,

the left box corresponds to the design which takes into account the AUC and the right box to the one which ignores it.

parameters. This can be achieved in a trial as we update the parameter estimates at each stage. After

a su�cient number of stages, the estimates will be stable and so will be the design points: see Figure 12.

Figure 13 shows the relative D-e�ciency of the designs computed at each of the stages using (9)500

for Scenario 2. Though not presented, we have found underestimated variances for the initial four

stages. Recall that we use the up-and-down design for the �rst four cohorts and that blood samples

for these cohorts are collected at the optimal time points which are based on an initial guess about

the parameter values. From the �fth cohort onwards, we use the current estimates obtained from the

trial data. Here, we observe a decreasing trend in the relative e�ciency. Since the estimates stabilise505

as the trial proceeds, there is not much change at the later stages and also the e�ciency approaches one.
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Figure 11: Boxplots of the dose-response parameter estimates obtained from the simulations, the top panel for Scenario 3

and the bottom panel for Scenario 4. The horizontal dashed lines indicate the true parameter values. For each parameter,

the left box corresponds to the design which takes into account the AUC and the right box to the one which ignores it.

The PK guided design depends on the target value of the AUC. In our simulations so far, we have

considered it as the one at the true OD. To assess the sensitivity of the design to the target value,

we set it at doses other than the true OD. All of the scenarios are studied for this purpose. Table 2510

gives a summary of the results. The notation in these tables is de�ned as follows: dose used for cal-

culating AUC0 (Dose), percentage of best doses recommended for further study (%BD), percentage of

doses recommended as optimum, but carrying the probability of toxicity above the maximum allowed

threshold (%TD), and percentage of cohorts treated at the best doses throughout the trials (%AD).

515

The �gures in the tables indicate that the design is sensitive to the choice of target value for the
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Figure 12: Optimal PK sampling time points in a trial. The left plot shows the points for the true values of the PK

parameters and the one on the right gives the points using the current estimates.
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Figure 13: Relative D-e�ciency in a randomly selected trial for Scenario 2.

AUC. Scenarios 1 and 2 are more sensitive than Scenarios 3 and 4. As the target moves further away

from that at the true OD, the %BD is a�ected. As re�ected in Scenarios 2 and 3, if we choose a target

below that at the true OD, the design will avoid recommending a toxic dose as the OD. It will also

not allocate toxic doses to the cohorts often. But that may have a negative impact on the correct520

identi�cation of the optimum dose, as in Scenario 2. Similarly, if the target is above that at the true

OD, the design may not refrain from recommending a toxic dose as the OD. Scenario 3 is not that

a�ected by the target AUC, as the dose-response curve is more �at here. Since this scenario has many

doses with similar probabilities of e�cacy, the target AUC chosen at any dose in the neighbourhood

of the true OD will not a�ect the design much. In any of these four scenarios, a small misspeci�cation525

of the target AUC should not signi�cantly a�ect the outcome of the trials.
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Table 2: Sensitivity of the design to the assumed target for the AUC.

Scenario Dose %BD %TD %AD

1 0.5 99.0 0.6 65.3

1.0 44.7 0.0 40.5

1.5 46.4 44.4 36.2

2.0 50.5 37.6 35.6

2.5 53.0 36.1 33.3

2 4.5 0.5 0.0 2.0

5.0 72.7 0.1 33.6

5.5 80.2 0.9 41.1

6.0 72.0 3.5 34.2

6.5 62.9 8.5 34.0

3 5.5 91.9 0.0 45.1

6.0 91.1 0.0 49.8

6.5 91.7 0.0 52.4

7.0 86.4 0.0 51.6

7.5 82.4 1.5 48.5

4 8.0 9.0 0.0 6.3

8.5 29.5 0.0 13.2

9.0 49.7 0.0 18.8

9.5 48.7 0.0 19.3

10.0 47.9 0.0 17.8

4. Discussion

The presented design is conceptually similar to that of Zhang et al. (2006), but their design does

not incorporate PK information. They �nd a dose that maximises the di�erence between the estimated

probability of e�cacy and λ times the estimated probability of toxicity, given that the estimated prob-530

ability of toxicity is smaller than a pre-speci�ed level, where 0 ≤ λ ≤ 1. The value of λ can be varied

to weigh the importance of toxicity in the criterion, but no recommendation is made about its value.

However, in many real scenarios, such a di�erence with a non-zero λ may lead to doses which are not

optimum. Therefore, we decide to use λ = 0, which also helps to avoid double dependence on the

probability of toxicity.535
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In this paper, along with dose-response outcomes, we have considered an important PK measure,

AUC, and its inter-patient variability in the dose escalation. The main purpose of this study was to

investigate the role of PK measures in dose �nding and, by means of detailed comparisons, we showed

that utilising the PK information can be very bene�cial. The original version of Zhang et al. (2006)540

is a fully model-based procedure. To make it comparable with our design, we have employed the

up-and-down procedure in that design too. The up-and-down stage is required in our method to facil-

itate the maximum likelihood estimation of the PK model parameters. The fully model-based version

of our design should be possible if we apply the Bayesian approach to PK parameter estimation as well.

545

The PK information is commonly collected in early clinical trials and it is often analysed for the

purpose of dose selection. Here, we propose a systematic method with a two-fold aim: �rst, to obtain

the best dose level for further studies in phase IIB or III trials with the minimum chance of toxic

responses during the trial and, second, to obtain the most e�cient estimates of the population PK

parameters. The second goal is achieved by using the population D-optimum design for the sampling550

times. A PK guided trial will make sense only if the PK information is accurate and we assure this by

the choice of design.

The simulation results from four di�erent dose-response scenarios indicate that the incorporation

of such measures can improve the accuracy of dose �nding studies. It is also shown that the method555

is capable of limiting overdosing by a considerable amount depending on the location of the OD. The

proposed PK guided approach can therefore be used in situations where more careful escalation is

essential to avoid toxicity.

As indicated in the up-and-down stage, a trial is terminated if an unacceptable level of toxicity is560

found at the very beginning. Once the model-based procedure applies, we stop early only if the same

dose is repeated for r cohorts. At any stage, when the constraints are not satis�ed, we allocate the

lowest dose to the next cohort. In our design, it is possible to terminate a trial early for lack of e�cacy

by using an additional constraint that would ensure that the selected dose has at least a prespecifed

level of e�cacy. Such a constraint could be used after a reasonable number of stages, as using it from565

the beginning may force the design to stop before learning much about the dose-response relationship.

The priors that have been chosen for Bayesian estimation of the dose-response parameters are
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vague enough to produce any possible extreme scenario. This re�ects lack of knowledge of the shape

of the response curves. If it is possible to choose more informative priors, the results will improve570

even further. The information on point prior values of the PK parameters is often available, and so

we apply maximum likelihood estimation for the PK model. However, these parameters are treated as

random to allow for the variability in the population.

We have assumed a single PK pro�le for each of the four dose-response scenarios. Though not575

presented here, we have found Scenarios 1 and 4 to be insensitive to the assumed coe�cient of vari-

ation for the PK parameters. The other two scenarios can be a�ected if we increase it greatly. As

seen in (4), the variance of the AUC depends on both the PK parameters and the dose. If the dose

is small, the increase in the variance components will have a slight e�ect on the variance of the AUC

compared to that if the dose is high. Since in Scenario 1, the true OD lies towards the beginning580

of the dose region, the impact of a change in the variance components is negligible. As there is no

dose above 10 in Scenario 4, the impact of the PK pro�le is negligible for this scenario too. The

consideration of a 12% coe�cient of variation is not unrealistic in that here both mean parameters

have the same coe�cient of variation. The coe�cient of variation in one parameter is very likely to be

di�erent from the other in real situations and any increase will have less impact than what we have now.585

Since the proposed design is for seamless phase I/II trials, assuming a maximum sample size of 60

patients is not unreasonable. Also, an early stopping rule is in use to stop a trial if convergence to

a dose occurs. A smaller sample size can be used if a good prior distribution for the dose-response

parameters exists. Also, we have assumed 20 available doses of the experimental drug to investigate590

the properties of the method. In practice, a smaller number of dose levels may be available.

Implementation of the method requires a reliable value for the target AUC. Since we did not have

one for our example in Section 3, for simulation purposes, we set the target AUC as the one at the true

OD. In real trials for new drugs, it may be elicited from the experiences of the clinicians. Previous595

studies of similar drugs or extrapolation from pre-clinical studies of the same drug could be some

possible options as well.

Further work is needed, so that other available information can also be used to bene�t clinical

trials. Inclusion of covariates into the models or considering additional PD responses, such as changes600

in some biomarkers, can potentially help in capturing the variability in the observed drug action and
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so further improving the dose-selection trials. Other optimality criteria may be considered too. The

approach presented in this paper would be the same, although the level of di�culty of implementing

it might increase.
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Appendix A. Up-and-down design

Assume that we are at the kth stage of the up-and-down procedure of a trial and that the successive

k cohorts have received doses from a pre-speci�ed sequence of doses X . Let us denote the proportion

of toxic responses up to cohort k by p̂k, that is,

p̂k =
1

kc

k∑
i=1

Ri2,

where c is the cohort size and Ri2 is the number of toxic responses for the ith cohort after receiving a610

dose. The algorithm starts with the lowest dose from a pre-speci�ed sequence of ordered doses. Then

for the given thresholds pL, pM and pU , we increase, stay at the same dose level, decrease or stop

the trial depending on the value of p̂k. In the simulation study, we set pL = γ/3, pM = 2γ/3 and

pU = γ, where γ is the maximum acceptable level for the probability of toxicity. More speci�cally, the

algorithm has the following structure:615

p̂k



≤ pL increase the dose to the next level if not at the highest

level, otherwise stay at the highest level,

∈ (pL, pM ) stay at the current dose,

∈ [pM , pU ) decrease the dose by one level if not at the lowest

level, otherwise stay at the lowest level,

≥ pU stop the trial.

Although we have chosen the thresholds so that the width is γ/3, other choices can be made as

recommended by a clinician.
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Appendix B. Fisher information matrix for the population PK model

The Taylor series expansion gives the approximate function as

f(θi, tij) ∼= f(θi, tij)

∣∣∣∣
φ0

+

(
∂f(θi, tij)

∂φi

)T ∣∣∣∣
φ0

(φi − φ0)

= f(θi, tij)

∣∣∣∣
φ0

+

(
∂f(θi, tij)

∂β

)T ∣∣∣∣
φ0

(β − β0) +

(
∂f(θi, tij)

∂bi

)T ∣∣∣∣
φ0

(bi − 0)

= µij +

(
∂f(θi, tij)

∂β

)T ∣∣∣∣
φ0

β +

(
∂f(θi, tij)

∂bi

)T ∣∣∣∣
φ0

bi,

where µij is a constant. Writing this in matrix notation for ni observations, we have a linear mixed

e�ects model for individual i given by

yi ∼= µi +Hiβ +Libi + εi,

where Hi = (∂f(θi, tij)/∂β)
T ∣∣
φ0 and Li = (∂f(θi, tij)/∂bi)

T ∣∣
φ0 are (ni × p)-dimensional matrices,

µi is the vector of constants µij and εi is the vector of random errors εij . This gives

Ei = E(yi) ∼= µi +Hiβ,

and, by the assumption of independence of bi and εi, we have

Vi = Var(yi) ∼= LiΩL
T
i + Σi,

where Σi is an ni × ni diagonal matrix with all the diagonal elements equal to σ2.620

Since bi and εi are assumed to be normal, the log-likelihood function is approximated by

`i(Ψ | yi) ∼= log

[
(2π)−

ni
2 |Vi|−

1
2 exp

{
−1

2
(yi −Ei)

TV −1
i (yi −Ei)

}]
.

Then the FIM for individual i can be approximated by the block diagonal matrix

Mi(Ψ, ξi) ∼=

 Ai 0

0 Bi

 ,
where elements (m,n) of Ai and Bi have the forms

(Ai)mn =

(
∂Ei

∂βm

)T

V −1
i

∂Ei

∂βn
for m,n = 1, . . . , p

and

(Bi)mn =
1

2
tr

(
∂Vi

∂λm
V −1
i

∂Vi

∂λn
V −1
i

)
for m,n = 1, . . . , p+ 1.

31



Appendix C. Calculation of the approximate mean and variance of the AUC

The �rst-order Taylor series expansion of h(x,θi) about θi at E(θi) gives625

h(x,θi) ∼= h(x,θi)

∣∣∣∣
E(θi)

+

(
∂h(x,θi)

∂θi

)T ∣∣∣∣
E(θi)

(θi − E(θi))

= h(x,β) +

(
∂h(x,θi)

∂θi

)T ∣∣∣∣
E(θi)

bi,

where E(θi) = β. Therefore,

E{h(x,θi)} ∼= h(x,β)

and

Var{h(x,θi)} ∼=
(
∂h(x,θi)

∂θi

)T ∣∣∣∣
E(θi)

Ω

(
∂h(x,θi)

∂θi

) ∣∣∣∣
E(θi)

.

For our PK model, the AUC for an individual i over the range [0, t1] is de�ned as

h(x,θi) =

∫ t1

0

f(θi, t) dt

=

∫ t1

0

x

Vi
exp

(
−Cli
Vi

t

)
dt

=
x

Cli

{
1− exp

(
−Cli
Vi
t1

)}
.

Assuming that E(Vi) = V and E(Cli) = Cl, we obtain

E{h(x,θi)} ∼= h(x,β) =
x

Cl

{
1− exp

(
−Cl
V
t1

)}
and

Var{h(x,θi)} ∼=
(
∂h(x,θi)

∂θi

)T ∣∣∣∣
E(θi)

Ω

(
∂h(x,θi)

∂θi

) ∣∣∣∣
E(θi)

=
(

∂h(x,θi)
∂Vi

∂h(x,θi)
∂Cli

)
E(θi)

 ω1 0

0 ω2

 ∂h(x,θi)
∂Vi

∂h(x,θi)
∂Cli


E(θi)

=

{
∂h(x,θi)

∂Vi

∣∣∣∣
E(θi)

}2

ω1 +

{
∂h(x,θi)

∂Cli

∣∣∣∣
E(θi)

}2

ω2.

Also, we have

∂h(x,θi)

∂Vi

∣∣∣∣
E(θi)

= −xt1
V 2

exp

(
−Cl
V
t1

)
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and630

∂h(x,θi)

∂Cli

∣∣∣∣
E(θi)

=
x

Cl
exp

(
−Cl
V
t1

)(
1

Cl
+
t1
V

)
− x

Cl2
.

It follows that

Var{h(x,θi)} ∼=
{
−xt1
V 2

exp

(
−Cl
V
t1

)}2

ω1 +

{
x

Cl
exp

(
−Cl
V
t1

)(
1

Cl
+
t1
V

)
− x

Cl2

}2

ω2.
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