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Summary
Studies of timbre are usually conducted in a “vacuum” of perfect silence. However, in the real-world, sounds are
mostly heard in the presence of competing background noise. A series of pairwise dissimilarity listening tests on
musically trained participants demonstrated how different levels of background noise can cause rearrangement
of timbre spaces. Furthermore, it was shown that while spectral acoustic descriptors (e.g. spectral centroid or
tristimulus values) seem robust under the presence of background noise, descriptors representing deviations from
purely harmonic characteristics (e.g. inharmonicity) lose their salience for the higher noise level. Such results
suggest that studies of timbre may need to take background noise into account in order to enhance their validity
for real world applications.

PACS no. 43.66.DFc, 43.66.Jh, 43.66.Lj, 43.75.Zz

1. Introduction

In the real world acoustic signals are rarely perceived in
absolute silence. Inevitably, this has triggered studies that
assess the role of the physiology of auditory periphery
on masking phenomena, elucidating complex mechanisms
such as excitation overlap, suppression, etc. [1, 2, 3]. Ev-
idence concerning the effects of noise on the neural rep-
resentation of various sounds emerges also from the neu-
roimaging literature [4, 5, 6]. Several noise-related psy-
chophysical phenomena (auditory masking being the most
prominent) are induced by complex modifications of neu-
ral discharge rate patterns as well as phase-locking alter-
ations. Mechanisms of masking have the potential to in-
duce distortions to auditory representations as early as the
cochlea and the first stages of the auditory pathway. The
representations at subsequent and more central auditory
stages may also be affected. Where the acoustic features
of two sources overlap in space and time they may inter-
act to produce masking [7] and/or intermodulation [8, 7].
Intermodulation results in the introduction of temporal co-
herence between independent features, and hence presum-
ably impedes the otherwise clear segregation and grouping
of features which constitute timbre [8, 9]. Human percep-
tion has also been shown to recruit mechanisms of central
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and peripheral noise compensation. The degree of success
depends on several factors, such as the type and level of
noise, its spectral and temporal statistics, the nature and
spectral/temporal constituents of the signals of interest, to
mention only but a few. The overall cognitive attitude, may
also be determined from high-level intelligent processes
such as those that refer to attention, analysis of auditory
scenes, etc. Consequently, the effect of noise upon the au-
ditory representations should not be considered obvious
and should be studied carefully in order to unveil details
of the interactions between the various noise and signal pa-
rameters and the physiological or behavioural responses.

However, relatively few studies have dealt with issues
concerning behavioural responses to musical signals in
noise. Instead, most studies focus on perception of noise-
degraded speech [10, 11, 12, 13]. This is expected due to
the importance of accuracy and quality in speech commu-
nication. More specifically, and aside from the numerous
works on behavioural responses to speech in noise (SIN)
(further discussion and references can be found in [14] and
[15]), during the last decade there has been increasing in-
terest in the potentially depictive and interpretative role
of more objective measures obtained from recording and
imaging techniques of the central nervous system (CNS).
Both western and mandarin-type (namely with pitch con-
tour variations) syllables in noise have been investigated,
mostly with a family of techniques referred as Evoked Po-
tentials (including Auditory Brainstem Response variants
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such as ABR and cABR). Such studies have provided evi-
dence of the neural transcription of auditory stimuli within
early, intermediate and late CNS structures and their func-
tional role in the perception of speech in competing en-
vironments (e.g. noise). Additionally, they have offered
objective evidence (such as superiority in timing of neu-
ral code, enhanced representation of harmonics, and less
degradation of the response morphology in noise [11], or
enhanced neural encoding of speech F0 [13] for observed
differences in performance between various groups of lis-
teners (such as musicians vs. non-musicians) in such de-
manding tasks. Such findings may be seen as new space
opening for the systematic study of various remediation
strategies for several types of auditory processing difficul-
ties and disorders [16].

Additionally, D’Ausilio et al. [12] using stimulation
techniques (Transcranial Magnetic Stimulation) have sug-
gested an advanced model of the functional role of vari-
ous brain regions (entangling specific motor areas) which
constructively inter-operate with perception-oriented brain
areas to achieve better understanding of noisy speech sig-
nals, thus enlightening previously proposed (and criti-
cized) articulatory-motor theories and models of speech
perception (for details please refer to the works of A. M.
Liberman, such as [17]). To summarise, the accumulation
of such studies suggests that for speech discrimination or
recognition tasks, noise compensation (i.e. extraction of
exploitable information from noisy signals) involves sev-
eral neural mechanisms and cognitive processes.

Despite the sizeable amount of research on the phys-
iological mechanisms of auditory perception in noise, at
the best of our knowledge, relatively few studies have at-
tempted a comprehensive behavioural exploration of tim-
bre in noise (e.g. [18]) and the potential alterations of
timbral spaces per se in relation to the properties of in-
terfering noise (e.g. type of noise, level, spectral profile,
etc.) have not yet been examined. Instead, the majority
of behaviourally oriented works has merely focused on
confusions between speech sounds (for an overview, see
[19]). The confusion patterns imply complex alterations
of underlying perceptual spaces which may generally be
attributed to the degree up to which specific acoustic prop-
erties are obscured. The identification of such perceptual
spaces will shed some light on interesting issues such as,
for example, whether and how certain acoustic properties
are perceived under noise.

The aim of the present exploratory work was to present
some evidence concerning the effects of interfering noise
on the perception of multi-component signals and thus,
to define more specific questions for addressing in future
work. More specifically, it focused on the possible role of
background wideband noise level on the perceived rela-
tionships between synthetic tones containing various types
of spectral components and/or modulations. This approach
aimed to investigate how a number of acoustic properties
was perceptually affected by background noise.

To this end, we adopted the pairwise dissimilarity rat-
ing approach which has become a norm in timbre percep-

Partial(t)

Amplitude(t) * sin(2π*Frequency(t)*t + Phase)

Amplitude PhaseFrequency

+

Max
Amplitude

ADSR

AM FM Inharmonicity Phase

Figure 1. Partial level diagram of the additive synthesiser. The
temporal development of amplitude for each partial is defined
by a combination of maximum amplitude, ADSR envelope and
sinusoidal amplitude modulation. The temporal development of
frequency position for each partial is defined by an initial dis-
placement from the ideal harmonic position together with a sinu-
soidal frequency modulation. Both AM and FM are defined by
their width and frequency. Phase takes an angle from 0◦ to 360◦

as an input but this feature was not used for the preparation of
this stimulus set.

tion research [20, 21, 22, 23, 24], whereby listeners re-
port the perceived distances between pairs of stimuli. Our
experimental design included the presentation of the syn-
thesised sound stimuli under three different background
noise level conditions designated as: silence, low noise
and high noise. Multidimensional Scaling (MDS) analysis
was then utilised to yield three timbre spaces (correspond-
ing to the three background noise conditions) from the ac-
quired dissimilarity ratings. A comparison of the generated
perceptual spaces revealed that the spatial configurations
were sensitive to the presence of high levels of background
noise. Findings were interpreted in terms of acoustic char-
acteristics that either retain or lose their relevance with
perceptual dimensions under noisy conditions. Our anal-
ysis demonstrated that the predictive ability of some de-
scriptors (e.g., inharmonicity) was eliminated for the high
noise condition while other acoustic correlates were found
to be more robust under background noise.

2. Material and Method

2.1. Participants

Nine listeners (aged 22–41, mean age 29, 6 male and 3
female) with long term music practice (17.2 years on av-
erage, range: 10 to 25) participated in the listening test.
They were all researchers from the Centre for Digital Mu-
sic at Queen Mary University of London and highly aware
of their hearing acuity. However, they were selected at ran-
dom, without any more specific inclusion criterion (e.g.
degree of technical skills/education, etc). They also had
no prior training or knowledge of the test, and, conse-
quently, they had been ‘naive’ [25] about it. All partic-
ipants reported normal health and hearing, meeting the
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Figure 2. Stimuli spectrograms illustrating the spectro-temporal features of the stimuli. Panels 1 - 13 show the spectrograms of the
thirteen respective sounds in the silence condition.

characteristics of otologically normal subjects as defined
by ISO/FDIS 70291.

2.2. Stimuli and apparatus

Thirteen complex, tonal sounds were synthesised using
additive synthesis. Each sound contained thirty nominal
partials, which were independently controlled for; i) max-
imum amplitude, ii) envelope; amplitude and frequency
modulation, and iii) inharmonicity. Figure 1 shows the par-
tial module of the additive synthesiser. Each sound was
600 ms long and the inter stimuli interval was 400 ms. The
fundamental frequency (f0) was kept constant at 392 Hz
(G4). Figure 2 shows the spectrograms of the 13 sound
stimuli in silence condition that reveal the amount of vari-
ation of acoustic parameters featured in the stimulus set.
Figure 3 and Table I show an example of the graphical in-
terface settings that were applied for production of stimu-
lus No.11 and the mean values of some extracted acoustic
descriptors for each stimulus respectively. The definition
of the acoustic features is given in Table IV.

Whilst the synthetic sounds we employed featured some
typical characteristics of real-world musical sounds (i.e.,
pitch, large number of overtones, prominent harmonic-
ity, ADSR-type temporal envelope), they did not resemble
specific instruments. Hence, they were not likely to be sub-
ject to higher level and/or more abstract categorical cues to
similarity, e.g. “this sound is a piano", that might enhance
robustness of sound identification and therefore affect dis-
similarity ratings under noisy conditions.

Prior to the listening test, the stimuli were equalised
in loudness in an short listening test within the research

1 Otologically normal person is regarded a person in a normal state of
health who is free from all signs or symptoms of ear disease and from
obstructing wax in the ear canal and who has no history of undue expo-
sure to noise, exposure to potentially substances, or familial hearing loss
[26].

Figure 3. Settings of the additive synthesiser graphical interface
for sound stimulus No.11. The upper box, labelled inharmonicity,
represents harmonic displacement from the fundamental. In this
case, positive displacement of the harmonic partials increases for
higher partials. The left column shows the ADSR and the right
column shows the frequency and width of the AM and FM for
each partial. The numbering of y-axis for the AM and FM widths
refers to the width variation as a proportion of the amplitude and
the frequency position of the partial respectively.

team. The levels were adjusted separately for each condi-
tion (i.e., silence, low noise, high noise). One sound from
the stimulus set was initially picked up as a reference and

290

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



Zacharakis et al.: Rearrangement of timbre space ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 103 (2017)

Table I. Mean feature values for the 13 sound stimuli in silence.

SC_norm SC_std T1 T2 T3 Sp_dev OER Inharm. Inharm_std nsn MCV

S1 3.28 0.87 0.31 0.46 0.23 0.06 2.10 0.05 3.9 · 10−3 27.9 · 10−3 86.2 · 10−3

S2 3.48 0.85 0.29 0.46 0.25 0.03 1.99 0.05 3.9 · 10−3 28.1 · 10−3 84.7 · 10−3

S3 10.46 0.35 0.10 0.26 0.64 0.11 1.17 0.17 11.7 · 10−3 50.6 · 10−3 77.7 · 10−3

S4 9.55 0.57 0.11 0.28 0.61 0.11 1.21 0.17 50.2 · 10−3 72.3 · 10−3 78.7 · 10−3

S5 8.71 0.67 0.11 0.31 0.56 0.20 1.40 0.15 51.0 · 10−3 64.3 · 10−3 78.6 · 10−3

S6 8.57 0.53 0.13 0.12 0.83 0.47 1.08 0.05 3.8 · 10−3 50.5 · 10−3 77.5 · 10−3

S7 8.93 0.51 0.05 0.10 0.86 0.14 0.99 0.14 10.8 · 10−3 41.2 · 10−3 79.3 · 10−3

S8 5.14 1.69 0.04 0.42 0.36 0.09 2.05 0.04 4.3 · 10−3 36.3 · 10−3 79.21 · 10−3

S9 7.94 1.26 0.22 0.15 0.60 0.97 3.45 0.08 70.3 · 10−3 10.5 · 10−3 78.9 · 10−3

S10 6.82 0.64 0.26 0.17 0.64 1.12 151 · 106 0.01 50.0 · 10−3 41.2 · 10−3 80.1 · 10−3

S11 6.66 1.52 0.20 0.27 0.57 0.23 2.94 0.13 33.5 · 10−3 56.3 · 10−3 81.8 · 10−3

S12 8.30 5.17 0.16 0.29 0.43 0.10 3.94 0.05 3.9 · 10−3 43.8 · 10−3 83.3 · 10−3

S13 4.98 1.84 0.28 0.42 0.35 0.10 2.23 0.04 4.1 · 10−3 27.3 · 10−3 81.3 · 10−3

was set at a convenient2 listening level. The rest of the
stimuli were then equalised in loudness according to this
reference by the first author resembling the classical up-
down psychophysical procedure [28]. The equalised set
was in turn evaluated by the rest of the authors. In each
condition containing background noise, real-time gener-
ated white noise was presented continuously throughout
the block. Figure 4 indicatively shows the effect of back-
ground noise on the spectrogram of sound stimulus No. 7.

In all three conditions, the resulting RMS playback level
of the target sounds (i.e., not including the background
noise) was measured to be approximately 60 dBA SPL
(rms, slow response). In the low noise condition, the back-
ground noise level was 44 dBA SPL (rms, slow response).
In the high noise condition, the background noise level was
68 dBA SPL (rms, slow response). Post-test, all partici-
pants reported that the level was comfortable for all stimuli
and confirmed that loudness across stimuli was constant
within blocks (i.e., within conditions). They also reported
that the target sounds were somewhat quieter in low noise
and considerably quieter in high noise conditions (though
never inaudible).

The listening test was conducted under controlled con-
ditions in an acoustically isolated listening room. Sound
stimuli were presented through the use of a laptop com-
puter, with a Tascam US122L external audio interface and
a pair of Sennheiser HD600 circumaural headphones.

2.3. Procedure

Participants were asked to rate all the pairwise distances
among the 13 sound stimuli within each separate condition
(silence, low noise and high noise). Therefore, they rated
the perceptual distances of 91 pairs (same-sound pairs in-
cluded) within each of the three conditions. The rating was
given using an unbounded scale (i.e., free magnitude es-
timation) [29] whereby they freely inserted a number of
their choice to represent the overall dissimilarity of each

2 Combining effortless perception with safe playback level < 75 dBA
[27].

Figure 4. Background noise spectrograms showing the effect of
background noise on a typical stimulus (sound index 7). A shows
the spectrogram of the sound in the silence condition. B shows
the spectrogram of the sound in the low-noise condition. C shows
the spectrogram of the sound in the high-noise condition.

pair, with 0 indicating a same pair3. The ratings were then
normalised by dividing all the dissimilarities by the max-
imum response for each listener, thus providing a range
from 0 to 1. The order of the three conditions, the order of
the pairs within each condition and the order of the sounds
within each pair were all presented randomly.

Prior to each condition, each listener was presented with
the sounds of the entire stimulus set (within that condition)
in random order, so as to become familiar with the over-
all timbral range. This was followed by a brief training
session where listeners compared five selected pairs. The
training data were discarded. Listeners were advised to
maintain a consistent rating strategy throughout the exper-
iment (i.e., to keep in mind that subsequent ratings should
be scaled according to the assigned dissimilarity rating of
the first pair which should be used as a reference).

3 The free magnitude estimation method was favoured over bounded
magnitude estimation as the latter introduces the following two issues
during a rating procedure. Participants, not being in a position to antici-
pate upcoming dissimilarities, may never utilise the available range of the
scale in case an even larger dissimilarity shows up later in the test. On the
other hand, they may prematurely select the scale’s maximum when their
maximum rating should normally be appointed to an upcoming pair, thus
clipping their intended response.
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Listeners were permitted to listen to each pair of sounds
as many times as necessary before submitting their dissim-
ilarity rating. They were also encouraged to take regular
breaks and were free to do so at any time. The overall lis-
tening test procedure, including instructions, lasted around
one hour and a half for most of the participants.

3. Results

Before proceeding to the main body of the analysis we
examined the internal consistency of our participant re-
sponses for each background noise condition. Cronbach’s
alpha was 0.87 for the silence condition 0.85 for the low
noise condition and 0.94 for the high noise condition indi-
cating an acceptable inter-participant reliability.

3.1. Timbre spaces for the three conditions

We subsequently used Multidimensional Scaling (MDS)
[30, 31] to construct the geometric configuration of our
stimuli timbre space, which allowed interpretation of dis-
similarity data by Euclidean methods, e.g. the relations be-
tween the spaces and differences in their structure. Non-
metric weighted4 MDS analysis [33, 34, 35, 36] was ini-
tially performed over a range of dimensionalities to deter-
mine the order most suitable to represent the timbre space
for each presentation condition. Table II shows the evo-
lution of two measures of fit (Stress-I and DAF) for or-
ders of dimensionality between one and three5. Since the
obtained Stress-I values should not exceed 0.2 which has
been proposed as an acceptable maximum for such experi-
ments [37] we adopt the 3D solution as optimal modelling
of our data. Still, the Stress-I values are somewhat higher
than the typical values proposed by [38] for the dimen-
sionality and the number of points in our solution (Stress-I
≈ .148). However, as our data come from a sensory exper-
iment one may tolerate such a relatively small excess due
to the existence of measurement noise.

The 3-dimensional timbre spaces for each condition ap-
pear in Figure 5. Figure 6 shows the dendrograms from
hierarchical clustering that elucidate the formation of stim-
uli relationships within the three perceptual spaces of Fig-
ure 5. The silence condition features four clusters of stim-
uli: 1-2-8-13, 3-4-5, 6-7 and 9-10-11. Stimulus 12 do not
seem to group with any of those clusters while stimuli 3,
8 and 9 are loosely related with their corresponding clus-
ters. This cluster formation is largely maintained for the
low noise condition. The only notable differences is the
breaking of cluster 1-2-8-13 into 1-2 and 8-13 and the
deformation of 10-11 into 9-10 leaving stimulus 11 un-
clustered. Stimulus 8 differs from stimulus 13 only by an
added white noise component (see Figure 2) which seems
to be grouped with background noise thus making 8 and
13 essentially indistinguishable.

4 The individual differences scaling (INDSCAL) algorithm was applied
as offered by the SPSS PROXSCAL (proximity scaling) algorithm [32].
5 Stress-I is a measure of misfit. The lower the value (to a minimum of 0)
the better the fit. DAF: Dispersion Accounted for is a measure of fit. The
higher the value (to a maximum of 1) the better the fit.

Table II. Measures of fit for different MDS dimensionalities for
silence, low noise and high noise conditions.

Condition Dim. Stress-I Impro. D.A.F. Impro.

silence
1D 0.418 – 0.825 –
2D 0.241 0.177 0.913 0.088
3D 0.179 0.062 0.968 0.055

low noise
1D 0.406 – 0.835 –
2D 0.253 0.153 0.935 0.100
3D 0.177 0.076 0.968 0.033

high noise
1D 0.312 – 0.902 –
2D 0.242 0.070 0.934 0.032
3D 0.162 0.080 0.977 0.043
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(c) High noise timbre space

Figure 5. The three dimensional timbre spaces for the silence,
low noise and high noise conditions.
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Figure 6. Dendrograms from hierarchical cluster analysis of si-
lence, low noise and high noise conditions. The index numbers
on the abscissa represent the thirteen stimuli used for the experi-
ment.

The configuration of the high noise condition is mainly
characterised by the formation of one major cluster of
stimuli suggesting that differences between sounds were
less perceivable and by the increased distances of stimuli
6 and 7 which implies that the presence of strong AM in
the low frequencies was robust under noise.

The next two subsections will examine the extent to
which the above qualitatively described variations are
translated into statistically significant configurational and
dimensional differences between the timbre spaces and the
potential acoustic interpretation of these differences.

3.2. Configurational and dimensional similarity be-
tween perceptual spaces

In this section the relationships between the perceptual
spaces which were obtained through non-metric MDS
(NMDS) of the listeners’ responses for each one of the
three background noise conditions (e.g. silence, low noise
and high noise) are investigated in terms of their configura-
tional similarity, wherein the examined sounds represented
the objects of the configurations. The configurational sim-

ilarity reflects the similarity of the solid shapes defined
by the swarms of objects within the spaces. Any global
form of similarity between spaces should also take into
account the orientation of the swarms relative to the axes
and the scales of the spaces, and henceforth will be called
dimensional similarity, thus ascribing the notion of the di-
rect relationships between the dimensions of the extracted
NMDS spaces.

Similar to the approach in [29], the configurational simi-
larity between spaces was judged by two indices computed
from the distances between the objects; the Tucker’s Con-
gruence coefficient [39, 38] for ranked distances and the
m2 statistic for Procrustes analysis [40, 41, 42]. The rank-
based congruence coefficient offers a narration of gross
similarity of ?shapes? which are formed by the swarms
of objects in the compared MDS spaces, whereas the m2

provides a rigorous quantification. The explicit or im-
plicit use of ranks in the assessment of goodness-of-fit
has been extensively reported in the literature, covering as-
pects of the MDS problem from as early as the estimation
of stress (e.g. rank-images method), [38, 43] to the esti-
mation of similarity between distance matrices (e.g. rank-
based Mantel tests, CADM, etc. see [44, 45, 46]). The m2

resembles a measure of alienation 1-r2 (where r is the cor-
relation coefficient between the sequences of within-space
distances of the two examined spaces) [47, 48]. The ex-
ploitation of both indices was chosen for reasons of com-
pleteness and by the fact that, generally, no single measure
of configurational similarity may be considered as globally
adequate to depict the relationship between two examined
spaces [49, 38].

As a guideline, for the congruence coefficient, values
larger than 0.92 are considered good/fair (more loosely,
values 0.85-.94 may also be considered good/fair accord-
ing to [50]), and values larger than 0.95 practically imply
perfect equivalence between configurations [51]. The sta-
tistical significance of the congruence coefficient between
the two configurations was tested using a bootstrap analy-
sis method (Monte Carlo estimate of its expected value un-
der chance conditions) [52, 53]. Regarding the m2 statistic,
values < 0.75 (based on recommendations for r2 > 0.25
as described in [54]) signify a large effect size.

For the m2 statistic, an approach which follows ran-
domization testing and is suited to Procrustes analysis
under the name of PROcrustean randomization TEST
(PROTEST) has been proposed [55, 56, 47]. According to
this, significance is tested using a large number of random
permutations of the original data. The statistical signifi-
cance of r2 (derived from m2) has only been investigated
in few studies [57, 58, 49] which showed that critical val-
ues for r2 varied with dimensionality of configurations and
number of objects.

Table III summarizes the values of the congruence co-
efficient and m2 for the relationships of configurations be-
tween all examined spaces. The configurations of silence
and low noise spaces show a higher degree of similarity
(congruence coefficient = 0.95, well above the statistical
significance of p = .05, and m2 = 0.16 highly significant).
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Table III. Congruence coefficients, m2, r2 and RV-mod for the
mutual relationships across timbre spaces as described in the
schema of Figure 5. (**p < .01). m2 significance testing with
PROTEST method. CC: Congruence coefficient (expected value,
SD), Expected chance value, estimated by bootstrap with 10000
runs.

Relationship CC m2 r2 RV-mod

Silence-LN 0.95 (.85, 0.02) 0.16** 0.84 0.79**

Silence-HN 0.89 (.80, 0.02) 0.39** 0.60 0.53**

LN-HN 0.90 (.81, 0.02) 0.36** 0.64 0.58**

Between silence and high noise both the congruence co-
efficient and m2 are worse than between silence and low
noise (congruence coefficient = 0.89, m2 = .39, both sta-
tistically significant). Similar results are observed between
the low noise and high noise conditions. Despite the fact
that the configurational similarity seems to be generally
retained, it is clear that a considerable deterioration has
taken place for high levels of noise.

Next, we proceeded with an assessment of the dimen-
sional similarity between spaces, namely the relationships
between the dimensions of the extracted NMDS spaces.
Instead of one-by-one comparisons between the respective
dimensions, we chose to follow an ensemble relationship
approach. That is, we relied on techniques that attempt
to assess the association between two data tables, where
rows represent the individual objects (sounds) within each
space, and columns (as variables) represent the dimen-
sions of the space (i.e. table of sound coordinates on each
respective dimension).

Out of the several approaches that have been proposed
we selected the modified RV coefficient [59, 60, 61, 62] as
a measure of overall (dimensional) similarity between the
spaces. The RV coefficient for matrices plays a role analo-
gous to the correlation coefficient between two variables.

The last column of Table III presents the modified RV
coefficient between the MDS spaces. The RV coefficient is
0.79 between the silence and low noise spaces. However,
and in a similar manner to the configurational similarity
results, it is evident that it drops considerably when the
comparisons refer to the high noise condition (low noise
vs. high noise: 0.58, silence vs. high noise: 0.53). This
drop of the dimensional similarity for the high noise con-
dition is in accordance with the previously reported drop
of configurational similarity.

3.3. Acoustic correlates

Trying to explain the differences in the spatial configura-
tions exhibited in the high noise condition we examined
the correlations between some acoustic features (measur-
ing spectral content, spectral fine structure, spectrotempo-
ral characteristics and inharmonicity) and the timbre space
dimensions for all conditions. The acoustic features were
extracted for the silence condition using the spectral mod-
elling synthesis (SMS) MATLAB platform [66]. The win-
dow length applied was 2,048 samples (fs = 44.1 kHz)
with an overlapping factor of 93.75%, the zero padding

factor was 2, and 30 harmonic partials were extracted for
all sounds. Apart from the mean value, the standard de-
viation of each acoustic descriptor was also computed in
an effort to capture elements of the time-variant behaviour
of the sounds. Table IV presents the abbreviations and the
definitions of all the features that exhibited significant cor-
relations with the perceptual dimensions.

Table V presents all the acoustic descriptors that fea-
tured significant correlations with the dimensions of the
three timbre spaces. Interestingly, while the energy distri-
bution of harmonic partials (the normalised spectral cen-
troid and the tristimulus values), spectral fine structure
(spectral deviation) and some spectrotemporal informa-
tion (standard deviation of the SC) retain their associa-
tion with dimensions of all spaces, inharmonicity and its
standard deviation, do not seem to have predictive ability
for any of the high noise space dimensions. This presents
some evidence that the configurational and dimensional
differences observed between the high noise space and the
other two could be attributed to a degradation of percep-
tion regarding inharmonic and noisy components of the
target sounds.

4. Discussion

The main goal of this study was to demonstrate that back-
ground noise can cause rearrangement of timbre spaces
of complex tones. Through MDS analysis of dissimilar-
ity data, we displayed and compared the organisation of
the perceptual spaces between three listening conditions
regarding the level of background noise, namely silence,
low noise and high noise. Quantitative measures show
that both dimensional and configurational congruence de-
creases significantly between silence and high noise con-
ditions. Although this may appear as an expected finding,
it had not been previously shown in a timbre space level.
As noted in the introduction, background noise may affect
perception at various processing stages. However, we do
not offer an in-depth psychophysical analysis or modelling
of the possible mechanisms that may be involved in our
results. Our aim was to provide with evidence and build
upon a perspective of treatment for important perceptual
phenomena that characterise the relationships between au-
ditory objects and signal and/or noise features.

Subsequently we attempted to highlight the way that the
identified psychological dimensions are altered at higher
noise levels by considering the extent to which acoustic
correlates of the silence space are preserved in noisy tim-
bre spaces. Whereas all three dimensions for the silence
and low noise conditions exhibited several acoustic cor-
relates, high noise dimensions were less explained. More
specifically, the 3rd high noise dimension showed no cor-
relation with any of the examined acoustic descriptors and
the 2nd dimension correlated merely with odd even ra-
tio. The standard deviation of the spectral centroid along
with odd even ratio exhibited an increasing influence at
higher levels of background noise. Although a designation
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Table IV. Abbreviations and definitions of the significant audio features.

Feature Abbreviation Explanation

Normalised Spectral Centroid SC_norm normalised barycenter of the harmonic spectrum [63]
Tristimulus 1, 2, and 3 T1, T2, T3 Relative amplitudes of the 1st, the 2nd to 4th and the 5th to the rest

harmonics [64]
Mean Coefficient of Variation MCV Variation of the first 9 harmonics over time [65]
SC standard deviation SC_std Standard deviation of SC over time
Spectral deviation Sp_dev Metric of the harmonic spectrum fine structure [63]
Odd Even Ratio OER Ratio of the energy contained in odd versus even harmonics [63]
Inharmonicity Inharm. Metric of the frequency displacement of partials relatively to a

purely harmonic sequence [63]
Inharm. standard deviation Inharm_std Standard deviation of inharmonicity over time

Table V. Spearman’s correlation coefficients between acoustic descriptors and perceptual dimensions of the three spaces (*p < .05,
**p < .01). Only significant correlations are depicted.

Sil_1 Sil_2 Sil_3 LN_1 LN_2 LN_3 HN_1 HN_2 HN_3

SC_norm -0.78** 0.55* 0.56* 0.59* 0.56*

SC_std 0.59* 0.69** 0.76**

T1 0.81** 0.76** 0.74**

T2 0.68* 0.66* 0.75**

T3 0.71** 0.71** 0.82**

Sp_dev 0.60* 0.76** 0.64* 0.70** 0.71**

OER 0.58* 0.56* 0.61* 0.69**

Inharm. 0.70** 0.62* 0.63* 0.64*

Inharm_std 0.56* 0.65*

MCV 0.60* 0.65* 0.60*

of acoustically derived labels for the perceptual dimen-
sions does not seem straightforward, it is clearly demon-
strated that acoustic features like inharmonicity and its
standard deviation, along wi th the mean coefficient of
variation lose their predictive ability for the high noise
condition. A possible explanation could be that such ef-
fects can be attributed to inharmonic, amplitude modulat-
ing and noise-like characteristics of the target sound be-
ing incorporated into the background noise [67, 9, 68, 69].
This finding could be further examined utilising the ques-
tioning of previous works regarding the sensitivity for de-
tection of changes (differences) between timbral entities
[70] and the way the contrasts of timbral features are al-
tered under the presence of noise.

For the moment, our approach provides a behaviour-
based treatment of the way and the degree to which acous-
tic information is retained and contributes to the forma-
tion of perceptual relations between sounds (e.g. percep-
tual spaces) in noisy conditions. As future work, we pro-
pose the exploitation of computational auditory modelling
for the analysis of auditory representations as a means for
the study of acoustic information processing throughout
the auditory pathway (e.g. cochlear models, STRFs, etc.
[71, 72, 73, 74]. Such an approach will be of interest for
several applications (e.g. signal processing and telecom-
munications, psychoacoustics, special education and com-
munication, etc.) As examples, we could consider the im-
provement of methods for the assessment of Auditory Pro-
cessing Disorders (APD) [10] or the incorporation of mu-

sical education/experience as a beneficial factor for speech
perception in noise [11, 75]. Further, the investigation of
relationships between auditory modelling based represen-
tations and the perceptual spaces will also facilitate in-
terpretations on the share of specific physiological, psy-
chophysical or, possibly, even cognitive phenomena and
mechanisms (such as masking, grouping, etc.) in the for-
mation of perception. A necessary following step is to use
a combination of more realistic background noises (traf-
fic, car engine, electrical appliances noises etc.) and stim-
uli (natural sound sources such as musical instruments or
speech).

Finally, our previous work has demonstrated that there
exists a clear relation between timbre perception and its
semantic dimensions [76, 29]. Thus, a potential research
direction would be to explore whether the effects of back-
ground noise are limited to timbre perception or are also
extended to the domain of semantics.

5. Conclusion

In this article, we investigated the robustness of a tim-
bre space for different levels of background noise. We ac-
quired pairwise dissimilarity ratings on a group of synthe-
sised musical tones under three different background noise
conditions: silence, low noise and high noise. A compar-
ison of the generated perceptual spaces for the three dif-
ferent conditions revealed that both psychological dimen-
sions and configurations are sensitive to the presence of
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higher levels of background noise. Although the question-
ing of whether the observed changes take place in the pe-
riphery, as a result of auditory masking, or reflect higher
level processes is intriguing, our adopted approach re-
mains at the level of listeners’ responses. Additionally, we
sought to explain the above findings in terms of acous-
tic correlates of perceptual dimensions under noisy condi-
tions. Features that capture various aspects of our stimuli
(spectral, spectrotemporal, inharmonicity, etc.) were ex-
tracted for the silence condition and were subsequently
correlated with the perceptual dimensions for all three
conditions. This analysis demonstrated that the predictive
ability of features representing deviation from pure har-
monicity was eliminated for the high noise condition while
others (mainly describing static spectra) were proven more
robust.
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