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Large-scale models of signal propagation in human
cells derived from discovery phosphoproteomic
data
Camille D.A. Terfve1, Edmund H. Wilkes2, Pedro Casado2, Pedro R. Cutillas2 & Julio Saez-Rodriguez1,w

Mass spectrometry is widely used to probe the proteome and its modifications in an

untargeted manner, with unrivalled coverage. Applied to phosphoproteomics, it has

tremendous potential to interrogate phospho-signalling and its therapeutic implications.

However, this task is complicated by issues of undersampling of the phosphoproteome and

challenges stemming from its high-content but low-sample-throughput nature. Hence,

methods using such data to reconstruct signalling networks have been limited to restricted

data sets and insights (for example, groups of kinases likely to be active in a sample).

We propose a new method to handle high-content discovery phosphoproteomics data on

perturbation by putting it in the context of kinase/phosphatase-substrate knowledge, from

which we derive and train logic models. We show, on a data set obtained through

perturbations of cancer cells with small-molecule inhibitors, that this method can study the

targets and effects of kinase inhibitors, and reconcile insights obtained from multiple data

sets, a common issue with these data.
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S
ignificant technical and data-processing advances have
allowed shotgun (discovery) mass spectrometry (MS), the
most frequently used MS proteomics strategy, to routinely

achieve a high degree of coverage of the proteome and modified
(for example, phosphorylated) proteome, with ever-improving
quantitative accuracy1–3. However, owing to the high redundancy
and extreme complexity of proteome samples, the full
spectrum of peptides present is largely undersampled in any
single experiment. Hence, repeated analyses of the same or
similar biological samples can show problematically low
overlap of identified proteins4–6. This leads to problems of high
missing-data fraction and low reproducibility, especially when
using data-dependent acquisition, where simple heuristics are
used to select precursors for tandem MS analysis7–11. This an be
alleviated using strategies by which extracted ion chromatograms
are constructed for all peptides identified in a set of samples9,12.
In addition, depth of analysis comes at a high cost in terms of
experimental time, which limits the ability to perform replications
and analyse many conditions5.

Using such phosphoproteomics data (hereafter phospho-MS)
data to investigate signalling by phosphorylation, we are further
faced with problems linked to the specificity of kinase–substrate

relationships, complexity of combinatorial and context-specific
regulation, and limitations in our knowledge of both direct and
indirect effects of the molecular tools used12–15. Together,
these form a complex set-up with uncertainties at many levels,
the like of which is increasingly successfully handled with
statistical and network-modelling approaches (see for example,
Ideker and Krogan16, and Terfve and Saez-Rodriguez17 for
reviews). Indeed, the challenges mentioned above (uncertainty in
the data, sparsity of prior knowledge), combined with a scope
unmatched by other proteomics technologies, make traditional
modelling approaches such as reverse-engineering and
knowledge-driven model building largely unsuitable17.
Therefore, analyses of phospho-MS to understand signalling
typically result in a list of modulated abundances, of which some
can be followed up on, but which fail to interrogate the
connections between the elements of a signalling network,
despite a clear interest from the community2,8,15,18,19.

In this work, we present a method (PHOsphorylation
Networks for Mass Spectrometry (PHONEMeS)) to analyse
changes in phospho-MS data on perturbation in the context of
a network of possible kinase/phosphatase-substrate (K/P-S)
interactions (Fig. 1). This method combines (i) stringent
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Figure 1 | Overview of the PHONEMeS method. (a) Data. Cells are treated with a panel of kinase inhibitors (Supplementary Table 1), and discovery

phospho-MS data are obtained. The data are normalized and a linear model used to estimate the effects (and significance) of each treatment on each

peptide. A Gaussian mixture model is fitted for each peptide. Those that show a naturally Boolean behaviour with two populations (a control and a

perturbed state) are selected. Each measurement (peptide, condition) is associated with the log ratio of the probability of belonging to either the control or

perturbed distribution. See also Fig. 2 and Supplementary Fig. 1. (b) Background network. The data are mapped to a K/P-substrate network combining

information from multiple databases (Supplementary Table 2) from which we extract a network of possible paths connecting drug targets and data

(Supplementary Fig. 2). (c) Training of the networks is done by iterating through (i) sample Boolean logic models of perturbation flow; (ii) simulating the

logic model to steady state; (iii) scoring based on comparison of prediction with the log ratios above; and (iv) correcting sampling weights according to

frequencies of edges in best models (Supplementary Fig. 2). The resulting most likely paths (within a given tolerance) are used to generate testable

hypotheses.
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statistical modelling of perturbation data with (ii) logic model
building and training based on a space of paths from perturbed
nodes to affected phosphorylation sites compatible with K/P-S
knowledge. Based on a phospho-MS data set acquired on the
inhibition of kinases with small molecules, we show that
PHONEMeS is capable of recapitulating known relationships
between different perturbed kinases and their substrates.
Furthermore, it organizes the data in a way that is readily
interpretable as a network of regulatory relationships as
opposed to a list of sites affected by the inhibition of a
particular kinase. We demonstrate the power of this approach
by modelling the effect of the inhibition of multiple kinases in a
breast cancer cell line and verify the unexpected prediction that
mTOR inhibition affects the function of the cyclin-dependent
kinase CDK2. Finally, using an independent data set (obtained
with the same cell line but a different set of inhibitors and
instruments), we show that placing the data in context with
PHONEMeS allows us to reconcile the insights obtained from
two data sets that seem disparate at first sight, as is often the case
with discovery MS.

Results
Data processing for perturbation flow modelling. The data used
here consist of liquid chromatography-tandem MS (LC-MS/MS)
analysis of phospho-enriched proteomic extracts from MCF7
breast cancer cell line samples exposed to a panel of 20
small-molecule kinase inhibitors targeting multiple growth
pathways (Supplementary Table 1) for 1 h (ref. 20). To obtain
estimates of the effect of each inhibitor on each of the 12,266
unique peptides across biological duplicates and technical
triplicates, as well as a rigorous measure of the reliability of
these estimates, we applied a linear model with empirical Bayes
shrinkage of the standard errors, followed by multiple hypothesis
testing correction (see Fig. 1a and Supplementary Fig. 1a).

Boolean logic modelling is well suited for computationally
efficient modelling of large-scale networks and has the potential
to capture relationships between species even when the data are of
semiquantitative nature21,22. However, it does make the strong
assumption that the state of species observed can be satisfactorily
captured with a two-level scheme. As defining a functionally
relevant high/low state for each of thousands of phosphosites is
unrealistic, we applied a Gaussian mixture model (GMM) on each

site to determine which sites in our data sets are better captured
with two distinct populations of states across the conditions
observed and the location of the group of conditions where
the site is at its control or perturbed state (see Figs 1a and 2).
We found that 62.3% of peptides were best captured with a single
component, indicating that the level of phosphorylation of sites
on these peptides is not significantly affected by our kinase
inhibitors. This is expected when using a discovery technology,
since most of the proteome can be assumed to be unaffected
by punctual perturbations such as those used here. Of those
peptides that we better captured with more than one population,
the majority (72.5%) showed a behaviour whereby the
phosphorylation levels lie in either of two populations, one
encompassing the control level and the other assumed to capture
the set of conditions in which the perturbation has reached the
site (Supplementary Fig. 1). We focused on these 2,376 peptides
that comply with the Boolean assumption, and computed for each
peptide i in each condition j a single number Sij (the log ratio of
the probability of belonging to the control versus the perturbed
distribution), which is negative when the data point is more likely
to belong to the perturbed distribution, and positive otherwise
(see Fig. 2). This single number can be used to derive a score that
compares candidate networks based on their associated predicted
states of measured nodes on perturbation (see below).

Context-specific network building and training. The core of
PHONEMeS lies in building and training a background network
that represents a set of possible paths connecting inhibited
kinases/phosphatases to the measured phosphosites responding
to the perturbation. This aspect is conceptually similar to a
previously presented methodology for low-content phosphopro-
teomics23. Manually assembling a network connecting the targets
of 20 kinase inhibitors and a couple of thousand perturbed sites is
obviously unfeasible. Therefore, we compiled a data set of
known and predicted K/P-S interactions from multiple databases
(see Supplementary Table 2), and looked for paths from
perturbed K/P to data sites in this network of influence. The
resulting network (hereafter referred to as ‘background network’)
represents the set of paths compatible with knowledge on K/P-S
relationships, through which the kinase inhibitions can reach the
perturbed sites (Fig. 1b and Supplementary Fig. 2a–c).
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fold change (FC) versus control is computed for each treatment with a moderated t-statistic. A Gaussian mixture model is fitted for each peptide and those

that are best fitted with two components (in our pilot data, 72% of the peptides with multiple components) are kept. Each measurement (peptide i,

condition j) is associated with a single number Si,j, the log ratio of the probability of belonging to either the control or perturbed distributions. Peptide i is
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�0.5 and 0.5 are considered undetermined. See also Supplementary Table 3.
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Training is done by iteratively sampling and scoring candidate
networks based on evidence from the data (see Fig. 1c and
Supplementary Fig. 2d–g). Candidate logic models are built from
the space of solutions compatible with knowledge, by sampling
incoming hyperedges (that is, sources and their logic combination)
for each node in the network (Fig. 3d). Each candidate network is
then simulated until a steady state is reached under all conditions
considered, and the predicted and observed states of nodes are
compared (Supplementary Fig. 2e) by computing a score

Smodel¼
X

nodes predicted P
Si;j�

X
nodes predicted C signif : P

Si;j ð1Þ

that rewards correctly predicted perturbations and penalizes
wrongly predicted and missed perturbations. Based on these
model scores, we select a family of best-performing models, and
update the sampling procedure accordingly (Supplementary
Fig. 2f–g). Training finishes when the average score and sampling
frequencies of edges for the population of models sampled in each
generation stabilize. Multiple independent training results (that is,
frequencies of edges in the final population of models) are typically
combined into a single solution to account for the stochastic nature
of the optimization. The results are visualized as a single network
where each node is represented with its highest frequency inputs
with a user-defined level of tolerance. The tolerance (edges within
x% of the highest frequency input) is used to assess the extent to
which different areas of the network are constrained by the data.

Target prediction power and network information content.
Having established the validity of the method using a proof-of-

principle analysis (see Supplementary Note 1 and Supplementary
Figs 3 and 4), we wanted to determine (i) whether PHONEMeS
had the ability to discriminate incorrect targets and (ii) whether
combining data with knowledge in the form of a network structure
brings valuable information to the training process. Indeed, when
looking at paths in the K/P-S network to the sites found in our data
to be perturbed under inhibition of the kinase mTOR (mammalian
target of rapamycin), we found that there are two groups of K/P:
those that can reach all perturbed sites for a condition, and those
that cannot reach any (Supplementary Fig. 5). Therefore, any K/P
in the first group would be a viable drug target candidate in the
sense that they have potential paths to all sites perturbed under
that drug treatment.

To answer these, we compared three analyses aiming to capture
the effects of mTOR inhibitors (Fig. 3a). In the first setting, we built
and trained models attempting to connect the correct drug target
(mTOR) to the sites perturbed under mTOR inhibition. In the
second setting, we instead used the targets of another drug
(MP2K1 and MP2K2, targets of the MEK inhibitors), and in the
third setting we used the right target but randomized K/P-S
networks (obtaining by randomly shuffling the K/P across K/P-S
interactions). As we can see from the scores plots (Fig. 3b),
networks based on the wrong information (wrong targets) provide
clearly worse fits (pink–purple curves) than those based on
plausible targets (blue–turquoise curves). The random network
scores (green–red curves) cover a range between these two
extremes. These results suggest that an optimization with a
biologically realistic network but with the incorrect targets
performs worse than a random network, which itself performs
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three separate randomized sets of K/P interactions and the expected target. (b) Population average scores for each of the two mTOR inhibitors.

(c) Simplified representation of the resulting networks (20% tolerance; full networks shown in Supplementary Fig. 6). The size of the nodes reflects the

number of K/P or sites perturbed, at a distance d from the drug target. Real network/correct target: 33 out of 34 perturbed nodes connected to mTOR,

average shortest path length of 4.3; 92 nodes in total. One of the three randomized networks/real target: 30 out of 34 perturbed nodes connected to

mTOR, average shortest path length of 4.9; 83 nodes in total. Real network/incorrect target: 30 out of 34 perturbed nodes connected to MP2K1/MP2K2,

average shortest path length of 8.1; 141 nodes in total. Most sites are connected to the designated targets in all cases but the paths are shorter with the

correct target than with the incorrect ones. The random networks show a major difference in terms of number of sites explained directly by the drug target

or its first neighbours (14 sites for the real network versus 4 sites for this random network).
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worse than a realistic network with the right target. These results
would presumably be influenced by the specificity of the drug and
the similarity of the neighbourhoods of candidate targets. However,
at least in this case study, our analysis indicates that prior
knowledge, at both the drug target and network level, is
informative as it leads to better fits to data. Looking at the
resulting networks (Fig. 3c and Supplementary Fig. 7), we can see
that even though all settings can connect chosen targets to most
sites, the incorrect targets reach the perturbed sites through longer
paths, with an average shortest path length of 4.3 with the real
target and 8.1 with the wrong target. Comparing the real and
randomized networks, the biggest difference lies in the number of
sites that are found directly under the drug target or one of its first
neighbours (mTOR, AKT1, KS6B2/KS6B2 and SGK1 cover 14 sites
in the real network, whereas mTOR and its first neighbours only
explain 4 sites in the random network). This indicates that, when
working with kinase inhibitors, one should question the assay and
assumed drug targets when none of their known direct substrates
are affected. In summary, this analysis indicates that considering
the scores and resulting networks (proximity of sites to drug target,
simplicity of the network, etc) should allow us to prioritize drug
targets as being more or less likely. Accordingly, we have used
PHONEMeS to analyse the effect of each of the 20 drug treatments
applied in this data set (see Supplementary Note 2 and
Supplementary Table 7). This allowed us to get a novel perspective
on the specificity and efficacy of kinase inhibitors.

Modelling the effect of mTOR inhibition. We used PHONEMeS
to model the propagation, through the phospho-signalling net-
work, of mTOR inhibition with two distinct mTOR inhibitors
(Fig. 4 and Supplementary Table 1). The mTOR kinase interacts
with multiple proteins to form two complexes: mTORC1 (which
responds to nutrients and regulates processes such as protein
synthesis and autophagy) and mTORC2 (which responds to
growth factors). The regulation and downstream effects of mTOR
in either of these are complex and only partially characterized24,
but potent specific inhibitors of mTOR as the catalytic subunit of
both complexes are available. Indeed, each of the inhibitors used
here result in 37 significantly perturbed phosphosites, of which 32
are common, indicating both efficacy and common specificity.
Connecting these sites to mTOR in the network of possible K/P
solutions results in a network of 311 nodes and 4,859 edges
(Supplementary Fig. 6). After applying PHONEMeS excluding
predicted interactions, we obtained a trained network that is
easily visually interpretable, comprising 30 nodes and 32 edges
with 20% tolerance (Fig. 4a). This network shows that mTOR
inhibition results in an expected decrease of phosphorylation of
many canonical mTOR substrates (for example, MYC, 4EBP1,
AKTS1, KS6B1). It also shows a propagation of the signal further
downstream through an effect on KS6B1 and AKT1. Therefore,
PHONEMeS successfully placed the perturbation data in context,
resulting in a noticeable increase in interpretability. Because
many of the sites affected by mTOR inhibition in our data do not
have experimentally demonstrated kinases, we wanted to see if we
could use our trained network to confirm which of their predicted
kinases is most likely to be responsible for their phosphorylation
in this context (Fig. 4b,c). Based on their predicted kinases, we
were able to connect an additional 14 perturbed sites to the
perturbation of mTOR, and to provide strong evidence in favour
of 1 (or 2) possible kinases among the 5 to 16 kinases that were
predicted for these sites (see Supplementary Table 5). Finally,
functional annotation of the resulting network (Fig. 4c) allowed
us to explicitly show effects of mTOR inhibition on downstream
processes such as translation, regulation of the cell-cycle/survival,
and interactions within the two mTOR pathways.

mTOR effects CDK2-mediated G1/S-phase transition. The
above analysis predicted an interesting path between mTOR and
CDK2 (via Akt), leading to perturbation of the phosphorylation
level of predicted substrates of CDK2 such as cyclin-L1 (CCNL1)
(see Fig. 4c). Therefore, we wanted to verify both the plausibility
of this predicted path to CCNL1, and the hypothesis
that mTORC1/2 inhibition leads to a perturbation of the
activity of CDK2. First, we constructed extracted ion
chromatograms for the ion shown in Fig. 5b, which covers the
Ser335/Ser338 phosphorylation sites (m/z 891.0787; tRE64 min)
across the control and drug-treated samples (see also
Supplementary Fig. 9). As we can see in Fig. 5b,c, this
phosphopeptide was decreased 2–5 fold in abundance following
Akt and mTORC1/2 inhibition, but not following P70S6K
inhibition, confirming that the path mTOR-AKT-CDK2 is
likely to be responsible for the fact that perturbation of mTOR
reaches CCNL1. This site was also inhibited by PI3K inhibitors,
but not by the other inhibitors tested (see Supplementary Fig. 9).
Given that the sequence flanking the CCNL1-Ser335 phosphor-
ylation site shows a consensus CDK2 phosphorylation motif
(xSPxxK25), it is likely that this site is the CDK2 substrate of
which phosphorylation level is affected by mTOR inhibition in a
mechanism that is Akt and CDK2-dependent.

Next, we wanted to verify that the cell biological effect of CDK2
is indeed altered when mTOR and Akt activities are modulated,
as the PHONEMeS prediction suggests. CDK2 is known to
control the transition of cells from G1 to S phase25, such that
inhibition of CDK2 activity leads to a stalling of the cells in a
G1–G0-like state due to an inability to make the transition into
S phase. Therefore, if our predictions are correct, inhibition
of mTOR/Akt should result in a decrease of CDK2’s activity
(as evidenced by the decrease in phosphorylation of its
substrates as shown in Fig. 5a), and therefore an increase in the
proportion of cells unable to transition into S phase and beyond.
To test this, we treated MCF7 cells with specific Akt and
mTORC1/2 inhibitors for 24 h (see Fig. 5a) and subsequently
measured the proportion of cells in each cell-cycle phase by flow
cytometry (see Fig. 5d). As we can see in Fig. 5d, on
pharmacological inhibition of either Akt or mTORC1/2, the
proportion of cells present in G1 phase increased approximately
1.7- and 2-fold, respectively, relative to DMSO control, and the
proportion of cells present in S and G2/M phase was
concomitantly reduced. By contrast, on treatment with a
CDK1/2/9 inhibitor (Fig. 5e), the proportion of cells in G2/M
phase was increased, consistent with an effect on CDK1 and
confirming that the effect observed on Akt and mTOR inhibition
is likely to be CDK2-dependent and CDK1-independent. As a
whole, these data suggest that inhibition of either mTORC1/2 or
Akt reduced the biochemical (Fig. 5b,c) and functional (Fig. 5d)
activity of CDK2, thus giving support to the predictions from the
network model (Fig. 5a).

Reconciling insights from independent data sets. A
fundamental problem with discovery MS lies in the poor
agreement between multiple, biologically similar, data sets7,11. We
reasoned that if this was mostly a result of the undersampling
problem4,10, then placing the data in its molecular context should
be able to reconcile the insights obtained, even if the individual
sites that are sampled in each data set are different. To test
this hypothesis, we applied PHONEMeS on an unpublished,
novel but related data set that was obtained in a different physical
location, on a different LC-MS/MS instrumentation and with a
partially overlapping set of drugs (Fig. 6 and Supplementary
Table 4). The two data sets differ substantially, both quantitatively
(depth, that is, number of peptides measured) and qualitatively
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(sites perturbed identified, drugs used), as summarized in Fig. 7.
However, when we put the two networks obtained in parallel
(Fig. 7), we can see that the insights are remarkably similar.
Indeed, both resulting networks consist of a ‘core network’
(connecting 24 out of 34 and 16 out of 22 sites, respectively), with
paths of length up to two kinases from mTOR supported by
perturbed sites at every step, and a ‘peripheral network’
containing exclusively paths of three kinases, comprising
kinases not supported by data and many predicted edges. Even

though the sites sampled in each core network differ (only 2 sites
are common, out of 24 and 16 sites, respectively), we can see in
Fig. 6b that eight kinases that are common between the two
networks explain 87.5% of sites in the core network.
Discrepancies in the ‘peripheral networks’ presumably result
from a decreased quality of knowledge in the relationship
between the target and distant sites as we get further away
from mTOR, as well as a decreased intensity and reliability of the
biological signal. Importantly, the kinases selected in the common
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core network are not simply those that form the shortest path
between sites perturbed and mTOR (Fig. 6b). Indeed, respectively
24 and 9 of these 39/12 shortest paths K/P are actually chosen for
each data set, combined with an additional 8 and 27 K/P. In
conclusion, out of a possible 282/286 kinases lying on paths
linking mTOR to its perturbed substrates in each data set,
PHONEMeS shows that a remarkably similar set of kinases best

explains these two a priori disparate data sets independently
(Fig. 6b).

To confirm the general applicability of PHONEMeS, we used
the approach to analyse a published mTOR inhibition data set26,
generated using a different cell line and a very different MS
approach, that is, iTRAQ labelled data with a very limited
number of replicates and conditions, and a lower proteome
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Figure 7 | Putting phospho-MS data in context: results. (a) Networks resulting from independent analysis of two separate data sets on mTOR inhibition,

laid out by distance from the drug target (mTOR) (kinases highlighted in green and perturbed sites in yellow are identical between the two networks).

(b) Structure of the resulting and background networks. (a,c) Structure of the background networks for the main (a) and the validation data set (c). As

expected (see Supplementary Fig. 4), the number of K/P that can reach perturbed sites from mTOR are roughly equivalent in the two data sets

(a versus c, left), but the minimum number of K/P necessary to connect these (b versus d, right) is much smaller in the validation data set (c), which

contains less sites to connect. The results from the validation data set are however less constrained (higher number of edges within tolerance), presumably

as a result of shallower sampling of the proteome. (b) Structure of the 20% tolerance resulting networks for the two data sets. The core networks (paths

with evidence at every step) explain, respectively, 4 and 16 perturbed sites with 11 kinases. Eight of these kinases are common between the two analyses,

and explain 87.5% of the sites in the core network of each analysis, despite the overlap in sites identified consisting of only two sites. Comparing the

resulting and background networks, we can see that the training to data allowed to strongly constrain the background network, but solutions do not simply

represent the shortest possible paths.
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coverage. We found that our approach both confirmed our own
insights about mTOR inhibition and allowed to generate
new insights that could not be obtained in the original study
(see Supplementary Note 3 and Supplementary Fig. 10).

Discussion
In this paper, we introduce a method, termed PHONEMeS, which
places discovery phosphoproteomic MS data on perturbation in
the context of a network of possible K/P-S interactions. This
method reconstructs paths from kinases inhibited on drug
treatment to sites perturbed by these inhibitions, using a Boolean
logic modelling. The assessment of whether a site is perturbed, as
well as the scoring of models based on comparison between data
and model prediction, is based on a stringent multi-step
probabilistic scoring scheme. We found that this method is
capable of discriminating incorrect targets from kinases that are
truly affected by a drug treatment, which is extremely valuable
given that the in vivo specificity of kinase inhibitors is often
poorly defined15. In addition, we observed that the data-driven
training results in a considerable decrease in the complexity of the
networks that have to be interpreted, compared to the full
network of paths compatible with prior knowledge. Finally, we
demonstrated the use of this method as a means to place
discovery MS data on perturbation in a clearly and easily
interpretable context, leading to an easily testable hypothesis. We
went on to validate some of these predictions, such as a predicted
phosphorylation of CCNL1 by CDK2, leading to perturbation of
the phosphorylation of CCNL1 on inhibition of mTOR and Akt
but none of the other kinases in the network. We additionally
validated the prediction that CDK2’s activity is perturbed by
mTORC1/2 and Akt inhibition, resulting in an alteration of the
proportion of cells in the G1, S and G2/M phases of the cell cycle.
We also showed the use of PHONEMeS to compare insights from
multiple similar data sets despite these having little overlap at first
sight, a common problem with discovery MS.

Other studies have looked for paths in large networks, mostly
using protein–protein interaction (PPI) networks and different
types of experimental data27–32. Because of the nature of the
networks that frequently support these procedures (that is, PPI
networks or compendium functional networks such as
STRING33), the resulting networks connect experimentally or
knowledge-derived ‘hit nodes’ rather than physically interpretable
and testable paths, and do not include site-specific information.
In addition, there rarely is a clear and consistent physical
interpretation of paths, because the search procedure is often
designed to find minimal paths of influence or minimally
connecting subnetworks, and is agnostic to the biological
interpretation of edges, which is often widely heterogeneous.
Furthermore, many of these approaches ignore quantitative
information associated with ‘hit’ nodes that they aim to
connect, and impose some constraint on inclusion of nodes
without data, thereby penalizing missing data/data with high
false-negative rates and incomplete coverage. This is a reasonable
choice when using genomic and transcriptomic technologies
where coverage is less of an issue, but less so with respect to
proteomics experiments. Finally, many of these methods cannot
simultaneously capture multiple conditions (and disjoint sets of
associated hits) in a single network. Therefore, multiple
conditions require either searching for multiple separate
networks or lumping all nodes to be connected as if they
originated from the same perturbation. Some studies34–36 have
applied well-known reverse-engineering approaches (for example,
correlation-based), but using extensively manually curated data of
much smaller scope. A few studies12,37 have used very similar
data to ours but their insights were focused on inferring

fragments of a phosphorylation-based network, in the form of
kinase–substrate relationships and individual kinases likely to
be affected by a perturbation, rather than retrieving global
paths of perturbation as we do here. Our study therefore
demonstrates a novel approach to derive biological information
from phosphoproteomics data that can complement existing tools
and that, crucially, can provide insights not attainable with
current approaches.

A number of assumptions underlie our approach: first, since it
constrains the space of solutions to what is compatible with
known and predicted K/P-substrate specificity, anything outside
this scope cannot be found (although candidate interactions can
easily be added prior to training). This allows constraining
solutions to an a priori realistic set, which seems like a reasonable
compromise when working with very high-content (but
comparatively low-sample-throughput) data. Second, given the
nature of regulation by phosphorylation, the background
networks tend to be very complex, sometimes resulting in poorly
constrained (or non-identifiable) areas. This limits the insights
that can be generated from the analysis for certain sections of the
network, a feature that we make visible in the solutions. Ongoing
developments in high-content MS technologies should make
rich experimental designs more attainable, resulting in more
constrained models. Third, our approach describes rapid change
on perturbation (mathematically assumed to correspond to a
pseudo steady state) based on data at a characteristic time point
on perturbation. This is mostly a decision associated with the
limited availability of perturbation time-series data and the
complexity of constraining both structure and dynamics on such
large scales. Modelling change on perturbation implies that the
edges do not capture activity per se, but a change in a K/P’s
activity on perturbation, at the time of measurement. Finally, our
work uses phosphorylation as a proxy of alteration of activity.
Hence, the presence of a path does not necessarily mean that
phosphorylations caused the activation/inhibition cascade,
but that they could occur concurrently with those events.
Conversely, an activation/inhibition path could simply be
absent if no phosphorylation path could be found that co-occurs
with the cascade. Other available data (for example, about other
post-translational modifications) could easily be included in our
framework to address this.

This approach represents a step forward in the functional,
context-specific interpretation of discovery MS phosphoproteo-
mic data on perturbation, such as but not limited to kinase
inhibition: any perturbation that can be connected to the K/P-S
network (genetic, extracellular ligand and so on) can in principle
be used. We are planning to investigate several additional features
for this method, such as different ways to (i) include (and study)
the logic combinatorial complexity in the network (which we
have largely ignored here because, without combinations of
perturbations, complex logic gates rarely reach high frequencies);
(ii) include multiple states of regulation, such as for example,
control/up/down; (iii) extend the background knowledge to
interactions based on lipid phosphorylation and phospho-binding
domains.

Methods
Data generation. The main data set used in this paper is described in Wilkes
et al.20. Briefly, cells are treated for an hour with one of 20 small-molecule kinase
inhibitors (see table ST1) or the DMSO vehicle. Cells are collected, lysed and
enriched for phosphopeptides using TiO2, and samples are run through an LC-MS/
MS (LTQ-Orbitrap-Velos) in (technical) triplicates. Each treatment is performed in
biological duplicates (successive early passages), leading to a total of six replicate
measurements for each peptide and drug treatment. The peptide identification is
done using Mascot and the quantification is done using the Pescal software38,
providing peak heights from extracted ion chromatograms for each
phosphopeptide ion. For the second data set, the analysis pipeline is identical
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except for the inhibitors used (see table ST4) and the mass spectrometer
(LTQ-Orbitrap-XL). The construction and visualization of extracted ion
chromatograms (XICs) was automated with a computer programme written in
Python that interfaces with MSFileReader (ThermoFisher Scientific) as reported
previously9. The time and mass windows for the generation of XICs were 1.5 min
and 7 p.p.m., respectively.

Cell-cycle analysis. MCF7 cells were plated in six-well plates at a density of
approximately 0.5� 106 cells per well in Dulbecco’s modified Eagle’s medium
(supplemented with 10% foetal bovine serum; 1% penicillin/streptomycin).
Following a 24-h incubation period, these cells were treated with 0.1% DMSO,
0.1 or 1.0 mM AZD-5438, 0.1 or 1.0 mM MK-2206, or 0.1 or 1.0 mM Torin-1 for
24 h. Following this incubation, the cells were washed with PBS, trypsinized and
collected by centrifugation (450g, 5 min). Cells were fixed with the drop-wise
addition of 10 ml ice-cold 70% EtOH—with constant agitation—and incubated at
4 �C for 2 h. Fixed cells were then washed with PBS, collected by centrifugation
(as above) and stained in the dark with 0.7 ml Guava Cell Cycle reagent (Merck
Millipore, USA). Stained cells were then measured through the use of a Guava
easyCyteTM Flow Cytometer (Merck Millipore, USA). Each sample was run in
triplicate on the instrument and 5,000 cells were analysed in each replicate
injection.

Data processing. The raw peak heights were log transformed and quantile
normalized, and a linear model was applied to estimate the effect of each treatment
and experimental artefact, as implemented in the Bioconductor package limma.
Multiple designs were tested and a design with a factor for each drug, a single
control and a factor for the biological replicates (experiments were done in two
sets, each containing a control and a set of drugs, and two biological replicates) was
selected based on Akaike’s Information Criterion. The linear model was fitted
taking into account the inter-technical replicate correlation. We then estimated the
log fold change between each kinase inhibition and the control condition for each
peptide, and computed the significance of this fold change using a moderated
t-statistic by empirical Bayes shrinkage of the standard errors. The resulting
P-values were corrected for multiple hypothesis testing using a Benjamini–
Hochberg procedure applied on each condition, as implemented in the R function
p.adjust. We fitted a GMM on the estimates from the linear model, separately for
each peptide, across 21 conditions (20 drugs, 1 control), using the R package
mclust. The package implements an expectation-maximization algorithm to fit a
GMM with one to nine components and return the optimal model according to a
Bayesian information criterion. Of the 11,654 peptides for which a model could be
fitted, 7,263 were best fitted with one component, 3,183 with two, and 670 with
three. We filtered the data to exclude cases where the areas under the density curves
of the two distributions overlap by more than 10% and excluded those peptides for
which the control intensity could not be estimated due to insufficient data. A total
of 2,376 peptides fulfilled all of these conditions. Based on the Gaussian parameter
estimates obtained for the 2,376 peptides mentioned above, we computed a single
number for each site i/condition j: Si,j¼ log10(Pi,j(Ci)/Pi,j(Pi)) where Pi,j(Ci) is the
probability that peptide i in condition j belongs to the control distribution for
peptide i and Pi,j(Pi) is the probability that peptide i in condition j belongs to the
perturbed distribution for peptide i. This number is negative when the measure-
ment is more likely to belong to the perturbed distribution, and positive otherwise.

Background network. We assembled the K/P-S data from multiple databases
(Phospho.ELM, PhosphoSitePlus, HPRD, NetworKin and DEPOD, all downloaded
in January 2013), mapped it to Uniprot identifiers (UPIDs) and filtered it to
contain only reliable, human protein–protein information. The NetworKIN data
were filtered to exclude interactions with either a motif or context score below 0.5,
and predicted interactions for CSK21 and CSK22 (2288 each) were excluded
because of low specificity. The final bipartite K/P-S network contains 128,251
interactions between 604 kinases/phosphatases and 17,319 sites on 4,567 proteins
(see ST2). As discussed, this exclusively contains PPIs. Additional types of
knowledge can be added to the background network and be subjected to training in
an identical manner. This is the case, for example, for the link between PI3K
(PK3CA, D) and PDPK1.S393, which is added to the knowledge to reflect the
activation of PDPK1 as a consequence of lipid phosphorylation by PI3K. A
background network is built from this graph reflecting two main goals: (i) finding
relationships between perturbation targets, and (ii) finding kinases/phosphatases
that are affected by the perturbations and are responsible for the altered
phosphorylation levels in the data. Because the altered sites change from data to
data, background networks are specific to each data set. First, we extract a directed
network at the protein level that connects drug targets, including paths of up to
seven nodes. Second, we collect all K/P that potentially target our data sites. Finally,
we collect all K/P in the second network to all K/P in the second network, with
paths of up to five nodes at the protein level. We then translate PPIs back into their
protein-site equivalents, and add ‘integrator edges’ to bridge the site-protein steps
in protein–protein paths (see SF2). All nodes in the background network are
recorded with their UPIDs, and UPIDs (often without the ‘_HUMAN’ suffix) are
used to refer to nodes in starting and resulting networks.

Iterative training to data
Sampling. Logic models are sampled from the background network at each gen-
eration. Sampling is done for each node independently by dividing the (0,1)
interval into as many bins as allowed, with input combinations of edges and
drawing from the uniform distribution. For integrators, the allowed input com-
binations are as follows: each edge independently, all edges together as a single
AND or no edge. For example, an integrator with two incoming edges has four
input combinations: (edge1, edge2, edge1 þ edge2, no edge), each getting one of
four bins, that is, a probability of 0.25. For a sink node, we sample a single K/P
(for example, for a sink with two incoming edges: (edge1, edge2) each gets one of
two bins, that is, a probability of 0.5). For intermediate nodes, we allow all possible
logic combinations of input edges by drawing for the edges and then separately for
the gate that will combine them. For example, considering an intermediate with
two incoming edges (edge1, edge2) are sampled independently with 0.5 probability,
and the AND/OR is sampled with 0.5 probability. As a result, both edges will be
sampled simultaneously in an expected 25% of models (half of which will are
expected to be sampled with an ‘AND’ gate), no edge will be sampled in 25% of
models (expected), and either edge only will be sampled in half of the remaining
50% of cases each. These add up to the following possibilities: (edge1, edge2, no
edge, edge1‘AND’edge2, edge1‘OR’edge2), with respective probabilities (0.25, 0.25,
0.25, 0.125, 0.125) (more details in SF2).

Scoring. Models in the sampled population are simulated under each condition
(drug or identical set of drug targets) by deterministically propagating perturbations
from drug target nodes in the Boolean logic model, until reaching steady state. The
score of a model is obtained by summing for each simulated condition over the j data
conditions that map to the set of drug targets used in the simulation (that is,
evidence from multiple drugs with the same targets are added up):

Smodel¼
X

nodes predicted P
Sij��

X
DP nodes predicted C

Si;j

(that is, true positive predictions (negative Si,j)þ false-positive predictions (positive
Si,j)� false-negative predictions (negative Si,j)). The best models are associated with
the lowest (most negative) scores. True negative predictions are not taken into
account because with discovery (untargeted) MS data we expect negative
measurements (nodes not perturbed) to outweigh positive ones under any particular
condition. Note that the Si,j are obtained by peptide, and the simulation gives
perturbed/control information at the site level, so when multiple peptides match to
the same site, their Si,j are added up as independent pieces of evidence. A family of
best models (with a user-defined level of tolerance around the best model of the
iteration) is selected and used for weights correction.

Weights correction. This is done by virtually copying edges a number of times
that is proportional to their frequency in the best models, with a fixed ceiling (‘cap’
parameter). For the integrator example above, if the ceiling is cap¼ 2 and edge1 is
present in 50% of best models, and the AND in the other 50%, then the new
possibilities are (edge1� 2, edge2, edge1 þ edge2)� 2, no edge), with respective
probabilities (2/6, 1/6, 2/6, 1/6). For the sink example, if edge1 is present in 100% of
best models, then the new possible inputs are (edge1� 3, edge2), with respective
probabilities (0.75, 0.25). For the intermediate example, if edge1 is present in 100%
of best models, and edge2 is present in 50% of best models, with the AND gate in
50% of best models, then edge1 and edge2 will be sampled with respective
probabilities 3/5 and 2/5, and the AND will be sampled with probability
(0.5þ 0.5)/2 (average of the previous sampling weight and the frequency of AND
in the best models of the generation).

Results analysis. The iterative training is finished when the average score of the
population of sampled models and the frequency of edges in this population
stabilize. These frequencies are the final result of a single optimization, and they are
normally combined and averaged across multiple independent optimizations to
account for the stochastic nature of the optimization. The results of combined
optimizations are expressed as a ‘majority voting model’, which is the model where
each node has as input the edge with maximum (averaged) frequency in the trained
populations. Starting from this single ‘consensus’ model, we look at a spectrum of
models with increasing levels of noise, where each node receives all edges with a
frequency within a certain percentage of the best input frequency. All of the
computation is done in R, and the resulting networks and attributes are output as
flat text files that can be directly imported and visualized in Cytoscape39.

All the code is freely available as an R package under licence GPLv3, as well as
tutorials and Cytoscape files on http://www.cellnopt.org/PHONEMeS

Proof-of-principle and influence of parameters. For these analyses (Fig. 3), three
independent rounds of optimization were performed for each setting, with
parameters set to the following: direct interactions¼G1, cap¼ 5, n¼ 5,000,
tolerance¼ 30%, sizeP¼ 1, unless stated otherwise. Optimizations were run for 50
generations, at which point all had stabilized (see Supplementary Fig. 3).

Target discrimination and random networks. For these analyses (Fig. 3), the data
relating to the two mTOR inhibitors in Supplementary Table 1 (sites perturbed
under either drug) were used as a basis to build and train background networks
using (i) the real K/P-S bipartite network and MTOR_HUMAN as a target; (ii) the
real network and MP2K1/MP2K2_HUMAN as targets; and (iii) three different
randomized versions of the bipartite K/P-S network where K/P were randomly
shuffled, and MTOR_HUMAN as a target. For each setting, three independent
optimizations were run for 50 generations, with parameters sizeP¼ 0, direct
interactions¼ all, n¼ 5,000, tolerance¼ 15%, and cap¼ 20.
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mTOR inhibitors analysis. The analysis for the first data set (Figs 4 and 7, left) is
sidentical as the one in option (i) of the ‘Target discrimination and random
networks’ section above. The functional annotation of sites was extracted from
Uniprot. For sites where both GSK3B and CDK2 were possible kinases, the
kinases were prioritized based on the sign of the perturbation (the perturbation on
GSK3B being an activatory one, sites showing an increase were more likely to be
placed downstream of GSK3B than CDK2, whose known substrate signs showed
decreases in phosphorylation, consistent with an inactivatory perturbation). For the
second data set (Fig. 6, right), the settings are identical but the data used to build and
train the background network are those associated with the two mTOR inhibitors in
Supplementary Table 4. All network visualization is done in Cytoscape.
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