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a b s t r a c t

Various strategies have been proposed in recent years in the field of mechanical metamaterials to widen
band gaps emerging due to either Bragg scattering or to local resonance effects. One of these is to
exploit coupled Bragg and local resonance band gaps. This effect has been theoretically studied and
experimentally demonstrated in the past for two- and three-phase mechanical metamaterials, which are
usually complicated in structure and suffer from the drawback of difficult practical implementation. To
avoid this problem, we theoretically analyze for the first time a single-phase solid metamaterial with so-
called quasi-resonant Bragg band gaps. We show evidence that the latter are achieved by obtaining an
overlap of the Bragg band gap with local resonance modes of thematrixmaterial, instead of the inclusion.
This strategy appears to providewide and stable band gapswith almost unchangedwidth and frequencies
for varying inclusion dimensions. The conditions of existence of these band gaps are characterized in detail
using metamaterial models. Wave attenuation mechanisms are also studied and transmission analysis
confirms efficientwave filtering performance.Mechanicalmetamaterialswith quasi-resonant Bragg band
gaps may thus be used to guide the design of practically oriented metamaterials for a wide range of
applications.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Mechanical metamaterials are engineered periodic composites
with exceptional dynamic properties. The possibility they provide
to manipulate and attenuate elastic waves at various frequencies
can be exploited for various applications, ranging from seismic
shielding [1,2] or noise abatement [3] to subwavelength imag-
ing [4] and thermal management [5]. These fundamental prop-
erties arise from metamaterial geometry and/or composition and
are due to the existence of band gaps (BGs)—frequency ranges, in
whichwave propagation is inhibited. The frequencies andwidth of
BGs depend on the contrast betweenmechanical properties of ma-
terial phases and lattice parameters. Bragg BGs occur in Phononic
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Crystals (PCs) through destructive interference of waves scattered
from periodic inhomogeneities at wavelengths comparable to the
spatial periodicity of the lattice [6,7]. The resulting high operat-
ing frequencies make this type of structure unsuitable for noise
mitigation or vibration isolation. Instead, hybridization BGs [8,9]
are typically induced in metamaterials by resonant modes of the
constituents, which interact with the wave field in the embedding
medium [10]. These BGs are independent of the spatial configura-
tion of the metamaterial and can be nucleated at much lower fre-
quencies than Bragg BGs, but are usually rather narrow and require
heavy resonators [10–14]. Thus, due to their complicated design or
limited working performance [13,15,16], mechanical metamateri-
als are yet to become widespread in applications.

One promising solution to overcome these limitations is to
exploit overlapping Bragg and local resonance BGs. The co-
existence of both BG types in the same structure has already
been demonstrated theoretically and experimentally for different
systems at various frequencies [17–23], including in 3D sonic
solid metamaterials with coated inclusions [24,25]. These studies
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highlight the BG formation mechanisms [9,17,22,23] and show
that the coupling between the two BGs leads to the creation of a
combined ‘resonant Bragg’ BG with a broad transmission gap in
the sub-wavelength region [7,21,22,24,25]. These conclusions are
also valid for surface guided waves [26] and acoustic waves in PCs
with gas bubbles [27]. Recently, coupled resonant Bragg BGs have
also been found in co-continuous metamaterials with enhanced
mechanical properties [28]. All these studies involve composite
metamaterial structures comprising at least two material phases,
and the hybridization BG is usually associated with resonance
modes of inclusions.

A more practical and promising solution are single-phase
metamaterials, which have attracted increasing interest in the
community [29–38], and in which both types of BGs have been
shown to be present [39–43]. However, to the best of our
knowledge, the conditions andphysicalmechanismof the coupling
of Bragg BG with local resonances in single-phase structures has
not yet been analyzed. In this work, we present evidence for
single-phase 2-D and 3-D slab-type metamaterials with wide BGs
due to the interaction between Bragg scattering and resonant
modes. Moreover, we develop a new strategy to bring the BGs to
overlap, using resonating modes of the matrix material instead
of the inclusions, leading to so-called ‘quasi-resonant Bragg’
BGs. These BGs appear to exhibit efficient wave attenuation
and stable frequency ranges for a wide range of geometric
parameters of the inclusions. Thus, the proposed strategy shows
promise for enhancedwave attenuationmechanisms coupledwith
the possibility of fabricating simpler structures, promoting the
exploitation of mechanical metamaterials in real applications.

2. Two-dimensional mechanical metamaterials

2.1. Two-phase structures

First, we analyze 2-D phononic structures, in which pure
transverse (out-of-plane) and mixed (in-plane) modes propagate
independently, when the wave vector k⃗ is restricted to the XY
plane. In this Section, we analyze in-plane modes only.

We start by considering a square array of circular steel inclu-
sions (Fig. 1(a)) or cavities (Fig. 1(b)) in a typical polymeric mate-
rial, such as that used in a 3-D printer, characterized by Young’s
modulus E = 2 GPa, Poisson’s ratio ν = 0.4 and mass density
ρ = 1050 kg/m3. The material parameters of isotropic steel are
Young’s modulus E = 207 GPa, Poisson’s ratio ν = 0.3, and mass
density ρ = 7784 kg/m3. As a first approximation, we neglect any
dissipation losses. We consider the cavities to be filled by vacuum,
so that no refraction of elastic waves occurs at their boundary. The
radius of an inclusion or a cavity is R, and the distance between the
centers of two neighboring non-diagonal inclusions or cavities is a.
Fig. 1 shows the corresponding band structures for wave numbers
varying along the boundary of the first Brillouin zoneΓ –X–M eval-
uated by the Finite ElementMethod (FEM) for a representative unit
cell with a = 1 mm and R = 0.45 a. Blue and red curves indicate
propagating and evanescentmodeswith real and imaginary values
of the wave vector, respectively. The simulations are performed
by applying Bloch periodic conditions at the unit cell boundaries
and implemented using the commercial software COMSOL Multi-
physics 4.3. The frequencies f are normalized as Ω = fa/ct , ct be-
ing the transverse wave velocity. Directional and complete BGs are
indicated by red and green shaded rectangles, respectively.

For the PC with steel inclusions (Fig. 1(a)), the wide complete
band gap occurring between the third, Ω = 0.727, and fourth,
Ω = 2.071, pass bands is due to Bragg scattering. Vibration
forms at the BG bounds show localization of motion in the matrix
material. The BG in the PC with cavities (Fig. 1(b)) is smaller in
size and shifted to lower frequencies. The shift can be explained
by the lower rigidity of the phononic structure, while the decrease
of the BG size occurs due to the presence of localized modes,
e.g. the fourth pass band, forming the upper BG bound. Although
the vibration forms at the BG bounds shown in subfigures of
Fig. 1 differ for the two considered structures, the BG in a PC with
cavities is also due to the Bragg scattering mechanism. This can be
deduced from the structure of the imaginary part of the spectrum,
typical for Bragg BGs, which uniformly varies within the BG with a
maximumvalue approximately at itsmid-frequency [44], and from
the similarity in the pass bands below the BGs.

Next, we analyze a metamaterial composed of polymeric
circular cylinders with steel cores, which are connected by means
of thin ligaments (schematically shown in the inset of Fig. 2). The
radius of the steel inclusion is Rinc = 0.25a, the radius of the
coated inclusion is r = 0.35a, and the thickness of the ligaments is
b = 0.05a, where a is defined as previously. The corresponding
band structure shown in Fig. 2 is characterized by three wide
BGs separated by almost flat bands due to localized modes (the
corresponding vibration patterns are shown in subfigures of Fig. 2).
It is difficult to ascertain the physical nature of the BGs with
certainty. On one hand, the imaginary part of the lowest BG
resembles that expected for Bragg scattering (see e.g. Fig. 1);
however, a localizedmode occurs at the BG lower bound, when the
coated steel cylinder vibrates as a rigid mass with the ligaments
playing the role of springs. Below this mode, there is a pass
band characterized by torsional motions of the coated cylinders,
which are also typical for locally resonant materials [13]. Thus,
the BG appears to be due to coupled Bragg and local resonance
effects, as its large size also indicates. However, this metamaterial
configuration is unpractical due to manufacturing difficulties and
stability issues.

To stiffen the whole structure, we combine it with the
previously considered PCwith cavities. The resulting configuration
is schematically shown in Fig. 3 together with the corresponding
banddiagram. Thismetamaterial is characterized by three BGs. The
lowest BG bound is of the local resonance type and consists in a
localized mode Ω = 0.182 with the vibration pattern shown in
Fig. 3, similar to that occurring in the BG in the coated cylinders
lattice (see Fig. 2). The resonance nature of this BG is confirmed
by the structure of the imaginary part of the diagram, typical for
locally resonant metamaterials [45]. The third BG around Ω = 1.5
is due to Bragg scattering, as indicated by the Bragg-type imaginary
bands.

The second (widest) BG has a lower bound at the same
frequencies as the Bragg BG of the PC with cavities, while its
upper bound is at about twice that of the PC with cavities. The
vibration pattern at the lower bound of the BG appears to be
a combination of localized motions in thin ligaments (vibration
pattern at Ω = 0.732 in Fig. 2) and vibrations of the rhombus-
shaped material portions originating from the PC with cavities.
Therefore, at the lower bound of the second BG, thematrix sections
oscillate as rigid bodies,while the coated inclusions aremotionless.
The localized motions in the matrix are similar to those in the
inclusions also for torsional vibrations of rhombus-shaped matrix
portions corresponding to the mode below the lower BG bound
(vibration pattern at Ω = 0.532 in Fig. 3). The described behavior
is similar to local resonances at the lower bound of the lowest BG.
However, the structure of the imaginary parts of the spectrum is
totally different and shows enhanced wave attenuation typical for
the coupled ‘resonance-Bragg’ BGs [7,24].

All the mentioned features suggest a new BG formation
mechanism: the local resonances of the rhombus-shaped (matrix)
parts are coupled with Bragg scattering in the same parts of
the metamaterial. The presence of coated inclusions allows the
localizing of the motions in the matrix and shifting the upper
bound of the BG to higher frequencies by stiffening the whole
structure.
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(a) PC with steel inclusions.

(b) PC with circular cavities.

Fig. 1. Band structures and vibration patterns for 2-D PCs with circular (a) steel inclusions and (b) cavities. The complete and directional band gaps are shaded in green and
red, respectively. In vibration patterns, displacements are represented in a color scale from red (maximum) to blue (minimum). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Band structure and vibration forms for a 2-D phononic structure made of circular cylinders with steel cores connected by thin ligaments.
The fact than local resonances are induced only in the
matrix distinguishes the considered metamaterial structure from
other phononic structures with coupled ‘resonance-Bragg’ BGs
[7,22,24,28], where Bragg scattering in the matrix is coupled with
local resonances in the inclusions. Due to this difference,wedenote
this type of BG as a ‘quasi-resonant Bragg’ BG. Notice that there
is no separate local resonance BG in the matrix, since resonances
emerge only after introducing the inclusions. At the same time, the
wide BG in Fig. 3 is located at the same frequencies as the Bragg BG
in Fig. 1.
2.2. Single-phase structures

To examine a single-phase configuration, we replace the steel
inclusion in the previously considered 2-phase model with the
polymericmaterial. The corresponding computed band structure is
shown in Fig. 4. The lowest BG originating from the local resonance
effect in the 2-phase configuration (Fig. 3) disappears, since the
mass of the inclusion is insufficient to induce this BG. The two
higher complete BGs found for the 2-phase metamaterial are
preserved and approximately retain theirwidth: e.g., for the single-
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Fig. 3. Band structure, representative unit cell and vibration patterns for a metamaterial with a 2-phase inclusion.
Fig. 4. Band structure, representative unit cell and vibration forms for a 2-D single-phase metamaterial with a quasi-resonant Bragg BG. Vibration form at Ω = 0.644
corresponds to the lower bound of the BG in the same metamaterial with 2 times thicker ligaments compared to the shown unit cell.
phase metamaterial the lowest BG spans from Ω = 0.546 to 0.976
and corresponds to the BG frequencies between 0.553 and 0.975
for the 2-phase metamaterial. The structure of the imaginary part
shows that the physical mechanism of these BGs is also preserved:
the wide BG is of a ‘quasi-resonant Bragg’ type with enhanced
wave attenuation indicated by large non-uniformly varying values
of the imaginary wave part of the spectrum, whereas the higher
BG is of Bragg-type. This indicates that overlapping Bragg BG with
the local resonances in the matrix can be achieved in single-phase
metamaterials.

Comparing 1- and 2-phase models, it appears that the mass of
the inclusion does not play a key role in the formation mecha-
nism of the coupled BG. This also follows from the examination
of the vibration patterns at the BG bounds, Ω = 0.564 and 0.976
in Fig. 4, in which the circular inclusion is motionless. To deter-
mine the influence of the inclusion geometric parameters on the
BG frequencies, we calculated band diagrams for an inclusion with
thicker, b = 0.1a, and thinner, b = 0.025, ligaments, as well as
for an inclusion of smaller radius, r = 0.25a, keeping other di-
mensions unchanged. The quasi-resonant Bragg BG for the inclu-
sionswith smaller radius and thinner ligaments appears at approx-
imately the same frequencies (0.538–0.922 and 0.533–1.068, re-
spectively). For the unit cell with the thicker ligaments, the band
gap is at Ω = 0.644–1.038. In the latter case, the decrease in
the BG width can be explained by the fact that thicker ligaments
make the structure stiffer and involve the inclusions in the matrix
vibration, as clearly seen in the vibration form at Ω = 0.644 in
Fig. 4(e), corresponding to the lower BG bound (to be compared
with the pattern at Ω = 0.546 in Fig. 4 for the structure with 2
times thinner ligaments). The parametric study shows that for the
proposed configuration, the optimal ligament thickness to achieve
the widest quasi-resonant Bragg BG is b < 0.1.

On the other hand, thin ligaments in combination with a small
inclusion may result in the decrease of the BG size due to the
appearance of resonance modes of the inclusion at previously
forbidden frequencies. For example, Fig. 5 shows a band diagram
for a single-phase metamaterial with R = 0.45a, r = 0.25a,
and b = 0.025. The lower BG bound is again related to a mode
withmotions concentrated outside the inclusion (vibration pattern
at Ω = 0.524 in Fig. 5), while the upper bound is a flat curve
representing a mode with vibrations localized in the ligaments
only (vibration pattern at Ω = 0.904 in Fig. 5) and differs from
that for the previously considered configuration (vibration pattern
at Ω = 0.976 in Fig. 4). Other modes above the BG are also almost
flat curves characterized by vibrations of the ligaments similar to
that at Ω = 0.923 in Fig. 5. Besides the decrease in the BG size,
another negative effect of the appearance ofmodes localized in the
ligaments is the vanishing of the coupled resonance-Bragg effect
observed due to the changes in the imaginary part of the spectrum.
The imaginary curves in Fig. 5 resemble those obtained for Bragg
scattering as in Fig. 1, rather than those describing enhanced
wave attenuation in Fig. 4. Therefore, to obtain enhanced wave
attenuation, coupling between the quasi-resonant Bragg BG with
local resonances of the ligaments should be eliminated.

3. 3D slab-type single-phase metamaterials

The procedure developed for obtaining quasi-resonant Bragg
BGs for 2-D models is now applied to 3D slab structures. We
consider the metamaterials with similar cross-sections as the
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Fig. 5. Band structure, representative unit cell and vibration forms for a 2-D single-phase metamaterial with thinner ligaments and smaller inclusion compared to the case
shown in Fig. 4.
Fig. 6. (left) Representative unit cell and (center) band structure for a plate-type single-phase metamaterial with a quasi-resonant Bragg BG indicated by the shaded region;
(right) vibration patterns at the lower and upper bounds of the BG.
previously analyzed 2-D cases, adding the thickness along the
z axis to obtain a plate metamaterial configuration. The cross-
sectional dimensions are R = 0.45a, r = 0.35a and b = 0.05a,
and the plate thickness is designated as h. The parametric study
for various values of h shows that the value h = 0.6a provides the
maximum BG size for 0.1a ≤ h ≤ a.

The band diagram for the mentioned parameters is shown in
Fig. 6(b). The BG is located at slightly lower frequencies compared
to the corresponding 2-D case (see Fig. 4), due to the coupling
with out-of-planemodes, as deduced fromanalysis of the vibration
patterns at the BG bounds in Fig. 6, both of which indicate strong
dependence on the z coordinate. These vibration shapes also
point out that the BG is of a ‘quasi-resonant Bragg’ type, since
at the BG bounds the inclusion is almost motionless, while the
matrix parts vibrate intensively. Also, as in the 2-D case, the
BG is located at the Bragg BG frequencies and is much wider
compared to the one found for a plate with cylindrical cavities
of the same radius (located between Ω = 0.530 and Ω =

0.552).Moreover, simulations reveal that variations of the in-plane
inclusion parameters do not influence the BG significantly. Thus,
we may conclude that quasi-resonant Bragg BGs are also found in
plate-type single-phase metamaterials.

Finally, in order to confirm the band structure analysis,
transmission spectra are calculated for wave propagation in a
400 × 200 × 0.6 mm3 homogeneous plate with metamaterial
regions composed by the unit cells from Fig. 6(a) around an area
of 2×2mm2, as shown in Fig. 7(a). The cavity has been introduced
to replicate a possible experimental test in which a finite surface
is required to attach a sensor to measure the displacements.
Simulations are performed in ABAQUS with a mesh of over 1
million linear hexahedral C3D8R elements, in order to provide
accuracy up to the maximum frequency of interest. An excitation
is applied to the surface at point E in Fig. 7(a) by imposing a
displacement of 1× 10−6 mm in the out-of-plane direction z. Two
input signals are considered: (i) a sumofHanningmodulated 7 sine
cycles centered at 250, 375, 500, 675 and 750 kHz (time evolution
and FFT are shown in Fig. 7(b), left) and (ii) a Hanning modulated
21 sine cycles centered at 550 kHz (Fig. 7(b), right). The transient
explicit simulations are 1 × 10−4 s long to allow wave reflections
from all the plate edges resulting in multiple waves impinging the
metamaterial region from different directions.

Fig. 7(c, d) illustrate the transmitted displacements U1 and
U3 along the x and z directions, respectively, recorded at point
A for elastic waves propagating in the MetaMaterial Plate (MMP)
compared to those in a homogeneous plate (HP) for reference.
Transmission spectra obtained by assigning the excitation pulse
(i), are presented in both time and frequency domains. Results
show a frequency range extending from 480 to 630 kHz in which
the attenuation in the MMP is so strong that it can be treated
as a complete band gap. These frequencies are slightly higher
than those obtained in the dispersion analysis, since the latter
are relative to an infinite metamaterial. The filtering abilities of
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Fig. 7. (a) Schematic representation of a 3-D metamaterial plate (MMP) with a central region constituted by 4 rows of the proposed unit cells organized in a ring geometry
around a homogeneous region. (b) Time and frequency content of the applied pulses. (c, d) Normalized displacements u1 and u3 at point A with corresponding Fourier
spectrum in the MMP and in a reference homogeneous plate (HP). The BGs from the corresponding dispersion spectrum are highlighted by shaded regions. (e, f) Snapshots
of the corresponding Von-Mises stress distribution in the MMP.
the designed metamaterial ring region are further highlighted
by computing Von Mises stress maps for the excitation case (ii),
i.e. a Hanning-modulated 21 sine cycle with central frequency
550 kHz shown in Fig. 7(e, f). Clearly, when the frequency content
of stress waves falls inside the BG frequency range, the area inside
the phononic region remains motionless, since all the waves are
filtered out. Thus, we can conclude that the proposedmetamaterial
with quasi-resonant Bragg BGs is capable of attenuating elastic
waves in a very efficient manner.

4. Conclusion

We have proposed and theoretically studied a novel BG forma-
tion mechanism in two- and single-phase phononic metamateri-
als. We show evidence that the resulting BGs can be twice as large
as those of conventional Bragg BGs in the corresponding phononic
structures with cavities. The BG widening effect is achieved by
coupling a Bragg BG with local resonance effects in parts of the
matrix material, rather than in inclusions as is commonly done.
The resulting so-called ‘quasi-resonant Bragg’ BGs have been found
in 2-D and 3-D slab-like metamaterial configurations. Parametric
studies, in which geometric parameters and/or sample thickness
have been varied, show that the dispersion relation is a typical one
for known metamaterials with overlapping Bragg and local reso-
nance BGs. Additional insight into BG formation mechanisms have
been gained by analyzing vibrations patterns at the BG bounds
and the imaginary part of the band structure diagrams. Moreover,
transmission properties have been evaluated anddemonstrate that
the designed structures show enhancedwave attenuation abilities,
making them suitable for noise abatement and vibration suppres-
sion applications. Further investigations are required in the future
to gain deeper insight into the nature of this type of structure.
However, considering the simplicity of the geometries involved,
the elimination of the need for multiple phases and the proven re-
duced sensitivity to geometrical parameters of the inclusions, the
proposed structures could already significantly simplify the man-
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ufacture of real structures and thus be exploited in practical appli-
cations.
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