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Abstract

We report the exfoliation of graphite in aqueous solutions under high shear rate [∼ 108s−1]

turbulent flow conditions, with a 100% exfoliation yield. The material is stabilized without
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centrifugation at concentrations up to 100 g/L using carboxymethylcellulose sodium salt to

formulate conductive printable inks. The sheet resistance of blade coated films is below∼
2Ω/◻. This is a simple and scalable production route for conductive inks for large area printing

in flexible electronics.

Printed electronics combines conducting, semiconducting and insulating materials with printing

techniques, such as inkjet,1 flexography,2 gravure3 and screen.4 Metal inks based on Ag,5 Cu6

or Au,7 are used due to their high conductivity σ ∼107S/m,5,8,9 making them the dominant tech-

nology in high frequency electronics (radio-frequency identification, RFID).10,11 For flexible elec-

tronic devices, e.g. organic photovoltaics (OPVs), a sheet resistance, RS [=1/σh, where h is the film

thickness] <10Ω/◻ is required,12 while for printed RFID antennas one needs a few Ω/◻.13 To min-

imize RS and cover the underneath rough layers, such as printed poly(3,4-ethylenedioxythiophene)

polystyrene sulfonate (PEDOT:PSS),14 thick films (µm range) are deposited using screen print-

ing.1,14–16 This is a technique in which the ink is forced mechanically by a squeegee through the

open areas of a stencil supported on a mesh of synthetic fabric.17 The ink must have high viscosity

(>500mPas),18,19 because lower viscosity inks run through the mesh rather than dispensing out of

it.18 To achieve this viscosity, typical formulations contain a conductive filler, such as Ag parti-

cles,20 and insulating additives,17 at a total concentration higher than C=100 g/L.17 Of this,>60g/L

consist of the conductive filler needed to achieve high σ ∼107S/m.20,21 In 2016, the average cost

of Ag was∼550$/Kg,22 that of Au∼40,000$/Kg,22 while Cu was cheaper at∼4.7$/Kg.23 Although

metal oxidation issues under ambient conditions have been addressed as indicated in Refs.,6,24

metal electrodes can degrade the device performance, by chemically reacting with photoactive

layers (Cu25) or by migrating into device layers (Cu,26 Ag27). It was also reported that they

might cause water toxicity,28 cytotoxicity,29 genotoxicity,30 and deoxyribonucleic acid (DNA)

damage.31 The average cost of graphite in 2016 was∼1$/Kg,32 however, carbon-based inks are not

typically used to print electrodes in OPVs or RFIDs, due to their low σ ∼2-4x103S/m,33–35 which

corresponds to a Rs ∼20 to 10Ω/◻ for a 25µm film. Thus, there is a need for cheap, stable and

non-toxic conductive materials.
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Graphene is a promising alternative conductive filler.36 Graphite can be exfoliated via soni-

cation using solvents37–42 or water/surfactant solutions.40,43 Dispersions of single layer graphene

(SLG) flakes can be produced at concentrations∼0.01g/L37 with a yield by weight YW ∼1%,37

where YW is defined as the ratio between the weight of dispersed material and that of the starting

graphite flakes.44 Dispersions of few layer graphene (FLG) flakes (<4nm) can be achieved with

C∼0.1g/L45 in N-Methyl-2-pyrrolidone (NMP) and∼0.2 g/L in water.40 The low YW ∼1-2%40,45

for FLG prepared by bath sonication is due to the fact that a significant amount of graphite remains

unexfoliated as the ultrasonic intensity (i.e. the energy transmitted per unit time and unit area46)

is not uniformly applied in the bath46,47 and depends on the design and location of the ultrasonic

transducers.47 In tip sonication, the ultrasound intensity decays exponentially with distance from

the tip,48 and is dissipated at distances as low as∼1cm.48 Therefore, only a small volume near the

tip is processed.49 Refs. 50,51 reported∼2nm thick flakes with lateral size up to∼70x70nm2 and

C∼0.2 g/L with YW =1% by tip sonication. In order to formulate screen printing inks,51 the flakes

C was increased from 0.2 g/L to 80 g/L via repetitive centrifugation (4 times) and re-dispersion (3

times) processes, resulting in an increased preparation time. Ref. 52 used a rotor-stator mixer to

exfoliate graphite, reaching C<0.1g/L of FLGs with YW <2x10−3. YW is low because in mixers,

a high shear rate, γ̇ , (i.e. the velocity gradient in a flowing material53) is localized in the rotor

stator gap52,54 and is∼2x104-1x105s−1, dropping by a factor∼100 outside it.54 Ref. 55 reported the

production of FLGs with number of layers N<5 and YW >70% through electrochemical expansion

of graphite in lithium perchlorate/propylene carbonate. The process required 3 cycles of electro-

chemical charging followed by >10h of sonication and several washing steps (with hydrochloric

acid/dimethylformamide, ammonia, water, isopropanol and tetrahydrofuran) to remove the salts.

A method with less processing steps and high YW (ideally 100%) remains a challenge.

Microfluidization is a homogenization technique whereby high pressure (up to 207MPa)56 is

applied to a fluid, forcing it to pass through a microchannel (diameter, d<100µm), as shown in

Fig.1, and discussed in Methods. The key advantage over sonication and shear-mixing is that

high γ̇ > 106s−1 is applied to the whole fluid volume,57,58 not just locally. Microfluidization was
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used for the production of polymer nanosuspensions,56 in pharmaceutical applications to produce

liposome nanoparticles to be used in eye drops,59 to produce aspirin nanoemulsions,60 as well

as in food applications for oil-in-water nanoemulsions.61 Microfluidization was also used for the

de-agglomeration and dispersion of carbon nanotubes.62

Here, we report the production of FLGs with YW ∼100% by microfluidization. The dispersion

is stabilized at a C up to∼100 g/L using carboxymethylcellulose sodium salt (CMC) (C=10g/L).

4% of the resulting flakes are<4nm and 96% are in the 4 to 70nm thickness range. The stabilized

dispersion is used for blade coating and screen printing. RS of blade coated films after thermal

annealing (300○C-40 min) reaches 2Ω/◻ at 25 µm (σ=2x104S/m), suitable for electrodes in de-

vices such as OPVs,12,63 organic thin-film transistors (OTFTs)64 or RFIDs.13 The inks are then

deposited on glass and paper substrates using blade coating and screen printing to demonstrate the

viability for these applications (OPVs, OTFTs, RFIDs).

Results and discussion

We use Timrex KS25 graphite flakes as starting material. These are selected because their size is

suitable for flow in microchannels∼87µm wide (90% are<27.2µm65). Larger flakes would cause

blockages. The flakes are used in conjunction with sodium deoxycholate (SDC) (Aldrich). SDC

is first mixed in deionized (DI) water (σ=5.5x10−6), the flakes are then added and treated with a

Microfluidic processor with a Z-type geometry interaction chamber (M-110P, Microfluidics), Fig1.

Mixtures are processed at the maximum pressure for this system (∼207MPa), with varying process

cycles (1-100). The temperature, T [○C] increases from 20 to 55○C after the liquid passes through

the interaction chamber. A cooling system reduces it to∼20○C. This is important, otherwise T will

keep increasing and the solvent will boil. Graphite/SDC mixtures with increasing graphite C (1-

100g/L) and 9g/L SDC in DI water are processed over multiple cycles (1, 5, 10, 20, 30, 50, 70,

100). One cycle is defined as a complete pass through the interaction chamber.

Scanning electron microscopy (SEM) (Fig.2a) is used to assess the lateral size of the starting
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Figure 1: Schematic of the microfluidization process. Graphite flakes in SDC/water are added in
the inlet reservoir. An intensifier pump applies high pressure (up to∼207MPa) and forces the sus-
pension to pass through the microchannel of the interaction chamber where intense γ̇ ∼9.2x107s−1

is generated. The processed material is cooled and collected from the outlet reservoir. The process
can be repeated several times.

flakes and of those exfoliated flakes after 5, 20 and 100 cycles. Dispersions are diluted (1000 times,

from 50g/L to 0.05 g/L) to avoid aggregation after they are drop cast onto Si/SiO2. The samples

are further washed with five drops of a mixture of water and ethanol (50:50 in volume) to remove

the surfactant. Three different magnifications are used. For each, images are taken at 10 positions

across each sample. A statistical analysis of over 80 particles (Fig.2b) of the starting graphite

reveals a lateral size (defined as the longest dimension) up to∼32µm. Following microfluidization,

this reduces, accompanied by a narrowing of the flake distribution. After 100 cycles (Fig.2c), the

mean flake size is∼1µm.

Atomic force microscopy (AFM) is performed after 20 and 100 cycles to determine h and as-

pect ratio (AR=lateral size/h). After 20 cycles, Fig.3(a,b) shows flakes with d∼1.7µm and h=25nm;

d=1.9µm with h=8.5nm, while Fig.3(c,d) shows∼1nm flakes, consistent with N up to 3. AFM

statistics of h and AR are also performed. Three samples,∼60µL, are collected from each dis-

persion (20 and 100 cycles) and drop cast onto 1cm x 1cm Si/SiO2 substrates. These are further
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a)

c)

b)

Figure 2: a) SEM image of pristine graphite flakes, b) histograms of lateral flake size for the
starting material and after 5, 20 and 100 cycles, c) SEM image after 100 cycles.
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a)

c)

b)

d)

Figure 3: AFM images of typical flakes produced after 20 cycles: a) flakes with h=8.5 and 25nm.
b) corresponding cross section profiles. c) flakes with h=1nm and d) corresponding cross section.
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washed with five drops of a mixture of water and ethanol (50:50 in volume) to remove the surfac-

tant. AFM scans are performed at 5 different locations on the substrate with each scan spanning

an area∼20µmx20µm. For each processing condition we measured 150 flakes. After 20 cycles,

h shows a lognormal distribution66 peaked at∼10nm (Fig.4a), with a mean value∼19nm. After

100 cycles (Fig.4a) the distribution is shifted towards lower h, with a maximum at∼7.4nm, a mean

h∼12nm (4% of the flakes are <4nm and 96% are between 4 and 70nm). Fig.4b shows that AR

increases with processing cycles from∼41 for 20 cycles to∼59 for 100.

Figure 4: a) Flake thickness distribution and b) AR after 20 and 100 cycles, as measured by AFM.

The crystalline structure of individual flakes is investigated after 100 cycles (no statistical dif-

ference was observed between samples of different processing cycles) using scanning electron

diffraction (SED)67 with a Philips CM300 field emission gun transmission electron microscope

(FEGTEM) operated at 50kV with a NanoMegas Digistar system.68 This enables the simultaneous

scan and acquisition of diffraction patterns with an external optical CCD (charge-coupled device)
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camera imaging the phosphor viewing screen of the microscope. Using SED, small angle con-

vergent beam electron diffraction patterns are acquired at every position as the electron beam is

scanned over 10 flakes with a step size of 10.6nm. Local crystallographic variations are visualized

by plotting the diffracted intensity in a selected sub-set of pixels in each diffraction pattern as a

function of probe position to form so-called "virtual dark-field" images.67,69 Fig.5a,c,e,g. shows

the virtual dark-field images corresponding to the diffraction patterns in Fig.5b,d,f,h respectively.

These show regions contributing to the selected Bragg reflection and therefore indicate local vari-

ations in the crystal structure and orientation. Consistent with selected area electron diffraction

(SAED), three broad classes of flakes are observed, comprising (a,b) single crystals; (c,d) poly-

crystals with a small (<5) number of orientations, and (e-h) many (>5) small crystals. This shows

that there is heterogeneity between individual flakes and that after 100 cycles a significant fraction

(∼70%) are polycrystalline.

(a) (b)

(e) (g)

(c) (d)

(f) (h)

Figure 5: Virtual dark-field images (a,c,e,g) and representative diffraction patterns (b,d,f,h) ac-
quired from (a,b) a single crystal flake, (c,d) a polycrystalline flake and (e-h) a polycrystalline
flake comprising three crystals overlapping one another. The scale bar is 1µm.

It is important to assess any chemical changes, such as oxidation or other covalent function-

alization that might occur during processing, since unwanted basal plane functionalisation may

lead to a deterioration in electronic performance.70 Flakes produced after 100 cycles are washed

9
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by filtration to remove SDC prior to thermogravimetric analysis (TGA) and X-ray photoelectron

spectroscopy (XPS). For this washing procedure, 10mL ispopropanol is added to 5mL dispersion

to precipitate the flakes. The resulting mixture is passed through a 70mm diameter filter and rinsed

with 500mL DI water followed by 500mL ethanol. The powder is dried under vacuum and scraped

from the filter paper. Inert atmosphere (nitrogen) TGA is performed to identify adsorbed or cova-

lently bonded functional groups using a TA Q50 (TA Instruments). Samples are heated from 25

to 100○C at 10○C/min, and then held isothermally at 100○C for 10 min to remove residual mois-

ture. T is then ramped to 1000○C at a typical heating rate of 10○C/min.71 The starting graphite

shows∼2wt% decomposition above 700○C. Flakes after washing reveal no surfactant, as confirmed

by no weight loss at∼400○C, where SDC suffers significant decomposition, as shown in Fig.6a.

However, thermal decomposition of the flakes occurs at∼600○C, lower than the starting graphite,

with a weight loss∼6wt%. Flakes with small lateral dimensions and thickness have a lower thermal

stability compared to large area graphitic sheets.73,74

The starting graphite and the exfoliated flakes are then fixed onto adhesive Cu tape for XPS

(Escalab 250Xi, Thermo Scientific).75 The binding energies are adjusted to the sp2 C1s peak of

graphite at 284.5eV.76–78 Survey scan spectra (Fig.6b) of the starting graphite and the exfoliated

flakes reveal only C1s and O1s76 peaks. The slight increase in oxygen content for the exfoliated

flakes compared to the starting material (C1s/O1s 35.1 to 25.9) is likely due to the increased ratio

of edge to basal plane sites as the flake lateral size decreases. However, C1s/O1s remains an order

of magnitude larger than the∼3 typically observed in graphene oxide (GO).79–81 Even following

reductive treatments, the C1s/O1s ratio in reduced graphene oxide (RGO) does not exceed∼15,79,80

i.e. half that measured for our flakes. High-energy resolution (50eV pass energy) scans are then

performed in order to deconvolute the C1s lineshapes. Both the starting graphite and exfoliated

flakes can be fitted with 3 components (Fig.6c-d): an asymmetric sp2 C-C (284.5eV76,78), C-O

(∼285-286eV78) and π-π* transitions at∼290eV.78 Only a slight increase in the relative area of the

C-O peak is seen (from ∼2% to ∼5%). Therefore, we confirm that excessive oxidation or additional

unwanted chemical functionalisations do not occur during microfluidization.
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a) b)

c) d)

Figure 6: a) TGA of starting graphite, and flakes after 100 cycles and SDC in nitrogen. b) XPS
of starting graphite and after 100 cycles. c)-d) high-resolution C1s spectra of starting graphite
and after 100 cycles. Red curves represent the Shirley-type72 background, which accounts for the
effect of the inelastic scattering of electrons.
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 100 cycles

 

 

%

FWHM(G) [cm-1]

Figure 7: a) Representative Raman spectra at 514.5nm for graphite and after 20 (red curve),
50 (blue curve), 70 (green curve) and 100 (grey curve) cycles, b) Distribution of Pos(G), c)
FWHM(G). e,f) I(D)/I(G) as a function of e) Disp(G) and f) FWHM(G).
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Raman spectroscopy is then used to assess the structural quality of the flakes. ∼60µL of aque-

ous dispersion is drop cast onto 1cm x 1cm Si/SiO2 substrates, then heated at 80-100 ○C for 20

min, to ensure water evaporation, and washed with a mixture of water and ethanol (50:50 in vol-

ume) to remove SDC. Raman spectra are acquired at 457, 514 and 633 nm using a Renishaw InVia

spectrometer equipped with a 50x objective. The power on the sample is kept below 1mW to

avoid any possible damage. The spectral resolution is∼1cm−1. A statistical analysis is performed

on the starting graphite and on samples processed for 20, 50, 70 and 100 cycles. The spectra are

collected by using a motorized stage as follows: the substrate is divided in nine equally spaced

regions∼200x200µm2. In each, 3 points are acquired. This procedure is repeated for for each sam-

ple and for the 3 wavelengths. The Raman spectrum of graphite has several characteristic peaks.

The G peak corresponds to the high frequency E2g phonon at Γ.82 The D peak is due to the breath-

ing modes of six-atom rings and requires a defect for its activation.83 It comes from transverse

optical (TO) phonons around the Brillouin zone corner K.82,83 It is active by double resonance

(DR)84,85 and is strongly dispersive with excitation energy86 due to a Kohn Anomaly (KA) at K.87

DR can also happen as an intravalley process,i.e. connecting two points belonging to the same

cone around K (or K’). This gives the so-called D’ peak. The 2D peak is the D-peak overtone, and

the 2D’ peak is the D’ overtone. Because the 2D and 2D’ peaks originate from a process where

momentum conservation is satisfied by two phonons with opposite wave vectors, no defects are

required for their activation, and are thus always present.88–90 The 2D peak is a single Lorentzian

in SLG, whereas it splits in several components as N increases, reflecting the evolution of the elec-

tronic band structure.88 In bulk graphite it consists of two components,∼1/4 and 1/2 the height of

the G peak.88 In disordered carbons, the position of the G peak, Pos(G), increases with decreas-

ing of excitation wavelength (λL),91 resulting in a non-zero G peak dispersion, Disp(G), defined

as the rate of change of Pos(G) with excitation wavelength. Disp(G) increases with disorder.91

Analogously to Disp(G), the full width at half maximum of the G peak, FWHM(G), increases with

disorder.92 The analysis of the intensity ratio of the D to G peaks, I(D)/I(G), combined with that of

FWHM(G) and Disp(G), allows one to discriminate between disorder localized at the edges and in
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the bulk. In the latter case, a higher I(D)/I(G) would correspond to higher FWHM(G) and Disp(G).

Fig.7a plots representative spectra of the starting graphite (black line) and of flakes after 20 (red

line), 50 (blue line), 70 (green line) and 100 cycles (grey line). The 2D band lineshape for the

starting graphite and the 20-70 cycles samples shows two components (2D2,2D1). Their intensity

ratio, I(2D2)/I (2D1), changes from∼1.5 for starting graphite to∼1.2 for 50 and 70 cycles, until

the 2D peak becomes a single lorentzian for 100 cycles, suggesting an evolution to electronically

decoupled layers.90,93 FWHM(2D) for 100 cycles is∼70cm−1, significantly larger than in pristine

graphene. This implies that, even if the flakes are multilayers, they are electronically decoupled

and, to a first approximation, behave as a collection of single layers. Pos(G) (Fig.7b), FWHM(G)

(Fig.7c) and I(D)/I(G) (Fig.7d) for 20-70 cycles do not show a significant difference with respect

to the starting graphite. However, for 100 cycles, Pos(G), FWHM(G) and I(D)/I(G) increase up

to∼1588, 34cm−1 and 3.2, suggesting a more disordered material. For all the processed samples

(20-100) the D peak is present. For 20-70 cycles, it mostly arises from edges, as supported by

the absence of correlation between I(D)/I(G), Disp(G)(Fig.7e) and FWHM(G)(Fig.7f). The cor-

relation between I(D)/I(G), Disp(G)(Fig.7e) and FWHM(G)(Fig.7f) for 100 cycles indicates that

D peak arises not only from edges, but also from in-plane defects. Therefore, we select 70 cy-

cles to formulate conductive printable inks. We note that here we use synthetic microcrystalline

graphite flakes instead of large natural or single crystal flakes sometimes used by other LPE-based

papers.37,52,55,94,95 Our flakes produced up to 70 cycles are of comparable quality, as shown by

Raman spectroscopy.

Printable inks formulation. Following microfluidization, carboxymethylcellulose sodium salt

(CMC) (Weight Average Molecular Weight, MW = 700.000, Aldrich No.419338), a biopolymer96

which is a rheology modifier,97,98 is added to the dispersion to stabilize the flakes against sedi-

mentation. CMC is added at C=10 g/L over a period of 3h at room temperature. This is necessary

because if all CMC is added at once, aggregation occurs, and these aggregates are very difficult

to dissolve. The mixture is continuously stirred until complete dissolution. Different inks are pre-

pared, keeping constant the SDC C=9 g/L and CMC C=10 g/L, while increasing the flakes C to 1,
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10, 20, 30, 50, 80, 100 g/L. Once printed and dried, these formulations correspond to 5, 35, 51, 61,

73, 81 and 84 wt% total solids content, respectively.

The rheological properties are investigated using a Discovery HR-1 rheometer (TA Instru-

ments) in a parallel-plate (40mm diameter) configuration.99 We monitor the elastic modulus G’

[J/m3=Pa], representing the energy density stored by the material under shear,100 and the loss

modulus G”[J/m3=Pa],100 representing the energy density lost during a shear process due to fric-

tion and internal motions.100 Flow curves are measured by increasing γ̇ from 1 to 1000s−1 at a gap

of 0.5mm, because this γ̇ range is applied during screen printing.101 Fig.8a plots the steady state

viscosity of an ink containing 73% wt flakes (100 cycles) as a function of γ̇ . CMC imparts a drop in

viscosity under shearing, from 570mPa.s at 100s−1 to 140mPa.s at 1000s−1. This is a thixotropic

behavior,102 since the viscosity reduces with γ̇ . The higher γ̇ , the lower the viscosity.102 This

behavior is shown by some non-Newtonian fluids, such as polymer solutions103 and biological

fluids.104 It is caused by the disentanglement of polymer coils or by the increased orientation of

polymer coils in the direction of the flow.102 On the other hand, in Newtonian liquids the viscosity

does not change with γ̇ .104 Refs. 105,106 reported that thixotropy in CMC solutions arises from

the presence of unsubstituted (free) OH groups. Thixotropy decreases as the number of OH groups

increases.105,106

During printing, shear is applied to the ink and its viscosity decreases, making the ink easier to

print or coat. This shear thinning behavior facilitates the use of the ink in techniques such as screen

printing, in which a maximum γ̇ ∼1000s−1 is reached when the ink penetrates the screen mesh.101

Fig.8b plots the viscosity at 100s−1 as a function of wt% flakes (70 process cycles). This drops

from 0.56 to 0.43Pa.s with the addition of 5 wt% flakes, and recovers above 50 wt% flakes. The

CMC polymer (10 g/L in water) has µ ∼0.56Pa s at 100s−1, and drops to 0.43Pa s with the addition

of 5 wt% flakes. The flakes wt% affects γ̇ , which increases reaches 0.6Pa s at 80 wt%.

More information on the ink rheological behavior and microstructure can by obtained by os-

cillatory rheology measurements.107 CMC gives a viscoelastic character to the ink. This can also

be evaluated in terms of the loss factor defined as tanδ=G”/G’.100 The lower tanδ , the more solid-
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a) b)

c) d)

Figure 8: a) µ as a function of γ̇ for an ink with 73wt% flakes, b) µ at 100s−1 for different flakes
wt%. c,d) G’,G” and tanδ as a function of c) wt% flakes and d) processing cycles.

like (i.e. elastic) the material is at a given strain or frequency.100 Fig.8c plots G’, G” and tanδ at

1% strain and frequency, checked from dynamic amplitude sweeps in order to be within the linear

viscoelastic region (LVR). In LVR, G’ and G” are not stress or strain dependent108 as a function

of flake loading. The addition of 5 wt% flakes in CMC decreases both G’ and G”, which start to

increase for loadings above 30 wt%. Tanδ decreases with flake loading, leading to a more solid-

like behavior. We estimate G’, G” and tanδ also for inks containing flakes processed at different

cycles, while keeping the flakes loading at∼73%, Fig.8d. Both G’ and G” increase with processing

cycles, while tanδ decreases, indicating an increase of elastic behavior with processing.

For simplicity, blade coating is used to compare ink formulations. Inks are blade coated onto

glass microscope slides (25x75mm) using a spacer to control h. The films are dried at 100○C for 10

min to remove water. h depends on the wet film thickness, the total solid content wt% of the ink and

the number of processing cycles. We investigate the effects of processing cycles, flake content and

post-deposition annealing on RS. This is measured in 4 different locations per sample using a four-
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point probe. A profilometer (DektakXT, Bruker) is used to determine h for each point. In order

to test the effect of the processing cycles, films are prepared from inks containing∼73wt% flakes

processed for 0, 5, 10, 30, 50, 70 and 100 cycles keeping the wet h constant (1mm). Fig.9a shows

the effect of processing cycles on RS and h. Without any processing, the films have RS ∼77Ω/◻

and h=35.8µm, corresponding to σ ∼3.6x102S/m. Microfluidization causes a drop in RS and h. 10

cycles are enough to reach∼10Ω/◻ and h∼25.6µm, corresponding to σ ∼3.9x103S/m. RS does not

change significantly between 10 and 100 cycles, while h slightly decreases. We getσ ∼4.5x102S/m

above 30 cycles.

a) b)

c) d)

Figure 9: a) RS and h as a function of processing cycles for a formulation with∼73 wt% flakes, b)
RS as a function of h for different wt% (70 cycles), c) σ as a function of h for different wt%, d)
bulk σ and critical h as a function of wt% (70 cycles). All samples are dried for 10 min at 100○C.

The effect of flake loading for a fixed number of processing cycles (70) is investigated as

follows. Dispersions with different loadings are prepared by increasing the flakes C between 1

and 100g/L, whilst keeping the SDC (9g/L) and CMC (10g/L) constant. Films of different h are

prepared by changing the spacer height during blade coating, leading to different wet and dry h. RS

and σ as a function of h are shown in Figs.9b,c. At∼34.5wt% the flakes already form a percolative

17
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Figure 10: Fit of σ as a function of h according to Eq.3 for 73 wt%.

network within the CMC matrix and σ ∼15-20S/m is achieved (σ of cellulose derivative films

is< 10−8S/m109). Fig.9c shows that, for a given composition, there is a critical h below which σ is

thickness dependent. Above this, the bulk σ is reached. As shown in Fig.9c, for∼80wt% we get

σ ∼7.7x103S/m for h>4.5µm. Higher loadings (84 wt%) do not increase σ further. Fig.9d indicates

that the critical h where the bulk σ is reached drops from∼20µm for 51 wt% to ∼4.5µm for 80

wt%. Coatings with h>4.5µm can be easily achieved using screen printing in a single printing

pass. Fig.9c shows that σ is h dependent up to a critical point. In order to understand the effect

of h on σ we adapt the percolation model of Ref. 110. The total area covered by non-overlapping

flakes is A f (e.g. for elliptical flakes A f =mπab where m is the number of flakes and a [m] and

b [m] are their half-axes lengths). The fractional area covered by the flakes (overlapping), with

respect to the total area S[m2], can be evaluated as q=1-p, with p=e−A f /S where q is the fractional

area covered by the flakes.110 q coincides with A f /S only when the flakes do not overlap. Denoting

by A f h f the total flakes volume and f the volume fraction of flakes in the films we have:

A f h f = f hS = −Sh f lnp (1)
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σ follows a power law behavior of the form of:110

σ = k(q−qc)
n (2)

around the percolation threshold qc,110 and n is the electrical conductivity critical exponent above

percolation. Eqs.1,2 give:

σ = σ∞[1−e
(hc−h) f

h f ]

n
(3)

where σ∞=ke(− f nhc/h f ) and hc is the critical thickness corresponding to zero σ . σ as a function

of h is fitted with Eq.3 in Fig.10 for∼73wt%,i.e. f=0.61, givingσ∞ ∼4.3x103S/m, hc=0.39µm,

h f ∼7.58µm and n=0.39.

b)

c)

a)

d)

5 m 5 m

5 m 5 m

Figure 11: SEM images taken from coatings comprising a) starting graphite, b) after 1 cycle, c)
after 5 cycles and d) after 100 cycles. The scale bar is 5µm.

Fig.11, shows SEM images of the coatings comprising the starting graphite (Fig.11a), after 1

(Fig.11b), 5 (Fig.11c) and 100 cycles (Fig.11d). Flake size reduction and platelet-like morphology

is observed after the first cycle, Fig.11b. The samples have fewer voids compared to the starting
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graphite, providing higher interparticle contact area and higher packing density, consistent with

the h reduction (Fig.9a) and the increased σ . Whilst the packing density increase results in more

pathways for conduction, the smaller flake size increases the number of inter-particle contacts.

Then, RS remains constant.

a)

b)

c)
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Figure 12: σ as a function of a) T and b) time. c) TGA thermograms from flakes coatings compared
with with the SDC (powder) and the CMC (powder) components.

Post-deposition annealing is studied in blade-coated films for a∼80wt% flakes after 70 cycles.

Fig.12a plots σ as a function of T. A three step regime can be seen. In the first (100-180○C) σ
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is constant (∼7.7x103S/m), above 180○C it increases, reaching 9x103S/m at 260○C, followed by a

significant increase is at 285○C to∼1.5x104S/m. Fig.12b shows the effect of annealing time at 260,

285 or 300○C. Either higher T or longer annealing times are required to increase σ .

TGA is then used to investigate the thermal stability of the films, Fig.12c. The thermogram of

CMC polymer reveals a 10% weight loss up to 200○C, due to water loss.111 Fig.12 also shows that

50% of the CMC is decomposed at 285○C, while the SDC surfactant remains intact. Annealing at

300○C for 40min leads to films with RS ∼ 2Ω/◻ (25µm) corresponding to σ ∼2x104S/m. This σ is

remarkable, given the absence of centrifugation, usually performed to remove the non-exfoliated

material, or washing steps to remove the non-conductive polymer and surfactant materials. The

SDC additive stabilizes the flakes against restacking through electrostatic repulsion forming a large

contact area per surfactant molecule.40 CMC further stabilizes against restacking through electros-

teric repulsion.112 Thus, RS of our patterns is less than 2Ω/◻, surpassing other reported printable

graphene inks.94,113–115 Our inks also could be exploited to prepare transparent conductive films,

by using grids. e.g. a grid with line width∼100µm and a pitch distance∼2000µm, would give∼90%

transparency, combined with low RS ∼ 100Ω/◻ at a thickness of 10µm.

The printability of the ink with∼80wt% flakes after 70 cycles is tested using a semi-automatic

flatbed screen printer (Kippax kpx 2012) and a Natgraph screen printer (Fig13a), both equipped

with screens with 120 mesh count per inch. Fig.13b shows a 29x29cm2 print on paper with a line

resolution∼100µm, Fig.13c. The pattern (Fig.13b) can be used as a capacitive touch pad in a sound

platform that translates touch into audio.116 The electronic module has a series of 12 contact pads

(2.5 cm x 2.5 cm) on its underside that are interfaced to printed electronic pads on the paper surface.

This maintains a set-point charge on each of the printed capacitive touch pads. When a touch-pad

is touched, it undergoes an instantaneous discharge that is then identified by the electronics and a

corresponding sound is played. We measured the normalized resistance (resistance after bending/

resistance prior to bending) for up to 1400 cycles for a bending radius of 12.5mm and observed a

change of less than 1%.

21

Page 22 of 41

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



a)

b)

c)

5cm

100 m

200 m

Figure 13: a) Demonstration of screen printing, b) capacitive touchpad design (29cmx29cm)
printed on paper, c) the line resolution is 100µm.
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Conclusions

We reported a simple and scalable route to exfoliate graphite. The resulting material can be used

without any additional steps (washing or centrifugation) to formulate highly conductive inks with

adjustable viscosity for high throughput printing. Conductivity as high as 2x104 S/m was demon-

strated. Our approach enables the mass production of chemically unmodified flakes that can be

used in inks, coatings and conductive composites for a wide range of applications.

Methods

Microfluidization process

In order to compare the microfluidization process with sonication or shear mixing it is important to

elucidate its fluid dynamics. The mean velocity U [m/s] of the fluid inside the microchannel is:117

U =

Q
A

(4)

where Q [m3/s] is the volumetric flow rate, defined as:118

Q =

cnV
t

(5)

where cn is the number of cycles, V[m3] the volume of material (graphite and solvent) passing a

point per unit time t[s] and A[m2] is the channel cross-sectional area, given by:

A = π (

Dh

2
)

2
(6)

where Dh=4A/P is the hydraulic diameter of the microchannel, with P the wetted perimeter (i.e.

the part of the microchannel in contact with the flowing fluid117). For a batch of 0.18L it takes

1.93h to complete 70 cycles. Thus Eq.5 gives Q=1.8x10−6m3/s. Eq.6 with Dh ∼87µm58 gives
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A=5940x10−12m2. Thus, Eq.4 gives U∼304m/s.

The Reynolds number, Re, can be used to determine the type of flow and it is given by:117

Re =
ρUDh

µ
(7)

where ρ[Kg/m3] is the liquid density. We typically use 50 up to 100g/L of graphite, which cor-

responds to a total density (mixture of graphite and water) of 1026 to 1052Kg/m3. µ[Pa s] is

the dynamic viscosity (µ=τ/γ̇ , where τ[Pa] is the shear stress). We measure µ with a rotational

rheometer in which a known γ̇ is applied to the sample and the resultant torque (or τ) is mea-

sured.99 We get µ ∼1x10−3 Pa s (20○C), similar to water.117 Thus, Eq.7 gives Re∼2.7x104, which

indicates that there is a fully developed turbulent flow inside the microchannel (there is a transition

from laminar to turbulent flow in the 2000>Re>4000 range).119

The pressure losses inside the channel can be estimated by the Darcy-Weisbach equation,117

which relates the pressure drop, due to friction along a given length of pipe, to the average velocity

of the fluid flow for an incompressible fluid:117

∆p =
fDLρU2

2Dh
(8)

where ∆p [Pa] is the pressure drop, L[m] is the pipe length, fD is the Darcy friction factor, a dimen-

sionless quantity used for the description of friction losses in pipe flow.117The energy dissipation

rate per unit mass ε [m2/s3] inside the channel can be written as:120

ε =
Q∆p
ρVc

(9)

where Vc is the volume of the liquid inside the microchannel. From Eqs.8,9 we can rewrite ε as:

ε =
fDU3

2Dh
(10)
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For Re=2.7x104, we get fD ∼0.052 from the Moody chart,121 which links fD, Re, and the relative

roughness of the pipe (=absolute roughness/hydraulic diameter117). From Eqs.4,5,6, 10 we get

ε ∼8.5x109m2/s3. γ̇ can then be estimated as:122

γ̇ =

√

ε

ν
(11)

where ν[m2/s] is the kinematic viscosity,122 defined as ν = µ/ρ ∼1x10−6m2/s. From Eq.11 we

get γ̇ ∼ 108s−1, which is 4 orders of magnitude higher than that required to initiate graphite ex-

foliation.52 Thus, the exfoliation in the microfluidizer is primarily due to shear stress generated

by the turbulent flow. In comparison, in a rotor-stator shear mixer, lower γ̇ ∼2x104-1x105s−1 are

achieved54,122,123 and only near the probe.54 Thus, exfoliation does not take place in the entire

batch uniformly.52 On the contrary, in a microfluidizer all the material is uniformly exposed to

high shear forces.62

Turbulent mixing is characterized by a near dissipationless cascade of energy,122i.e. the energy

is transferred from large (on the order of the size of the flow geometry considered) random, three-

dimensional eddy type motions to smaller ones (on the order of the size of a fluid particle).117

This takes place from the inertial subrange (IS) of turbulence where inertial stresses dominate over

viscous stresses, down to the Kolmogorov length,124 η[m], i.e. the length-scale above which the

system is in the turbulence IS, and below which it is in the viscous subrange (VS), where turbulence

energy is dissipated by heat.122,125 η can be calculated as:124

η = (

ν3

ε
)

1
4

(12)

From ν ∼1x10−6m2/s and Eq.9, we get η ∼103nm for microfluidization in water. Since our starting

graphitic particles are much larger (> µm) than η , exfoliation occurs in the turbulence IS rather

than VS. In comparison, in a kitchen blender η=6µm,126 thus exfoliation occurs in the VS, i.e.

the energy is dissipated through viscous losses, rather than through particle disruption. During mi-

crofluidization, in the IS, the main stress contributing to exfoliation is due to pressure fluctuations,
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i.e. the graphite is bombarded with turbulent eddies. This stress,τIS[Pa], can be estimated as:122

τIS ∼ ρ(εdg)
2
3 (13)

where dg is the diameter of a sphere of equivalent volume to the flakes. For dg=0.1 to 27µm, τIS is

in the∼0.1-4MPa range. The dynamic pressure also breaks the flakes, as well as exfoliating them.

For length scales< η , we are in the VS and the stress applied on the fakes, τV S, can be estimated

as:122

τV S ∼ µ

√

ε

ν
(14)

which gives τV S ∼0.1MPa. Thus, the stresses applied on the flakes in the IS are much higher than

in the VS, where energy is lost by heat. This can lead to more defects in the basal plane. The

Kolmogorov length can be tuned, Eq.12, by either increasing the kinematic viscosity of the disper-

sion or decreasing the energy dissipation rate, thus extending the viscous subrange of turbulence

realizing a milder exfoliation.

In microfluidization, the energy density E/V[J/m3], (where E[J] is the energy) equates the pres-

sure differential,61 due to very short residence times ∼10s−4,61 i.e. the time the liquid spends in the

microchannel. Therefore, for a processing pressure∼207MPa, E/V= 207MPa=2.07x108J/m3. For

this total energy input per unit volume, the flakes production rate Pr=VC/t [g/h] for a typical batch

of V=0.18L and t=1.93h (for 70 cycles), is Pr ∼9.3g/h, with starting graphite concentration∼100

g/L using a lab-scale system. Scale-up can be achieved by increasing Q, using a number of paral-

lel microchannels,58 which decreases the time required to process a given V and cn (Eq.5). With

shorter time, Pr increases. Large scale microfluidizers can achieve flow rates∼12L/min58 at pro-

cessing pressure∼207MPa, which correspond to Pr=CQ/cn ∼1Kg/h (∼9ton per year,∼90k liters of

ink per year) in an industrial system using 70 process cycles and C=100 g/L.
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