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Summary 

 The myoactive neuropeptide NGIWYamide was originally isolated from the 

holothurian (sea cucumber) Apostichopus japonicus but there is evidence that NGIWYamide-

like peptides also occur in other echinoderms. Here we report the discovery of a gene in the 

sea urchin Strongylocentrotus purpuratus that encodes two copies of a NGIWYamide-like 

peptide: Asn-Gly-Phe-Phe-Phe-(NH2) or NGFFFamide. Interestingly, the C-terminal region 

of the NGFFFamide precursor shares sequence similarity with neurophysins, carrier proteins 

hitherto uniquely associated with precursors of vasopressin/oxytocin-like neuropeptides. 

Thus, the NGFFFamide precursor is the first neurophysin-containing neuropeptide precursor 

to be discovered that does not contain a vasopressin/oxytocin-like peptide. However, it 

remains to be determined if neurophysin acts as a carrier protein for NGFFFamide. The 

Strongylocentrotus purpuratus genome also contains a gene encoding a precursor comprising 

a neurophysin polypeptide and “echinotocin” (CFISNCPKGamide) - the first 

vasopressin/oxytocin-like peptide to be identified in an echinoderm. Therefore, in 

Strongylocentrotus purpuratus there are two genes encoding precursors that have a 

neurophysin domain but which encode neuropeptides that are structurally unrelated. 

Furthermore, both NGFFFamide and echinotocin cause contraction of tube foot and 

oesophagus preparations from the sea urchin Echinus esculentus, consistent with the 

myoactivity of NGIWYamide in sea cucumbers and the myoactivity of vasopressin/oxytocin-

like peptides in other animal phyla, respectively. Presumably the NGFFFamide precursor 

acquired its neurophysin domain following partial or complete duplication of a gene 

encoding a vasopressin/oxytocin-like peptide, but it remains to be determined when in 

evolutionary history this occurred.  
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Introduction 

 

Neuropeptide signalling molecules have been identified throughout the animal 

kingdom and are involved in the regulation of a variety of physiological processes, acting as 

neurotransmitters, neuromodulators or neurohormones (Greenberg and Price, 1983; 

Grimmelikhuijzen et al., 1999; Hoyle, 1999; O'Shea and Schaffer, 1985; Strand, 1999). 

However, relatively little is known about neuropeptide structure and function in the phylum 

Echinodermata (e.g. sea urchins, starfish, sea cucumbers). New opportunities to identify and 

characterize echinoderm neuropeptides have emerged recently with the sequencing of the 

genome of the sea urchin Strongylocentrotus purpuratus (Order Echinoida; Family 

Strongylocentrotidae) (Burke et al., 2006; Sodergren et al., 2006). Moreover, there are a 

number of reasons why analysis of neuropeptides in echinoderms is of interest. 

Adult echinoderms are unique in the animal kingdom in having a pentaradial 

morphological organization, which is both evolutionarily and developmentally derived from 

bilateral symmetry (Burke et al., 2006). It is of particular interest, therefore, to determine how 

neuropeptides participate in neural coordination of physiology and behaviour in the context 

of a pentaradial bauplan. Furthermore, analysis of neuropeptide expression provides a useful 

approach for investigation of the changes in neuroarchitecture that accompany transition from 

bilaterally symmetrical larvae to radially symmetrical adult echinoderms (Byrne and 

Cisternas, 2002). 

As deuterostomian invertebrates, echinoderms occupy an interesting phylogenetic 

position in the animal kingdom because, together with hemichordates and xenoturbellids, 

they form a sister clade to the chordates (Bourlat et al., 2006; Bromham and Degnan, 1999; 

Dunn et al., 2008). Comparative analysis of echinoderms and chordates therefore provides a 
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basis for identifying synapomorphies shared within the deuterostome clade as well as 

characters that differentiate echinoderms from chordates. 

Echinoderms have many unusual biological properties, which include remarkable 

powers of autotomy and regeneration and the ability to rapidly and reversibly change the 

mechanical state of their body wall and/or body wall associated appendages (Byrne, 2001; 

Patruno et al., 2001; Thorndyke et al., 2001; Wilkie, 2001; Wilkie, 2005). Neuropeptides 

have been implicated as potential regulators of these processes (Birenheide et al., 1998; 

Mladenov et al., 1989; Tamori et al., 2007) but more detailed investigation of the role of 

neuropeptides in these and other aspects of echinoderm biology is needed. 

The first neuropeptides to be identified in echinoderms were a family of peptides 

known as SALMFamides, which have a characteristic C-terminal motif, Sx(L/F)xFamide 

(where x is variable). The prototypes for this family, S1 (GFNSALMFamide) and S2 

(SGPYSFNSGLTFamide), were both isolated from the starfish Asterias rubens and Asterias 

forbesi (Elphick et al., 1991a; Elphick et al., 1991b). Subsequently, members of the 

SALMFamide family have been identified in sea cucumbers, including GFSKLYFamide and 

SGYSVLYFamide from Holothuria glaberrima (Díaz-Miranda et al., 1992). 

Pharmacological studies have revealed that SALMFamide neuropeptides cause relaxation of 

muscle preparations in starfish and sea cucumbers (Díaz-Miranda and García-Arrarás, 1995; 

Elphick et al., 1995; Elphick et al., 1991a; Melarange and Elphick, 2003; Melarange et al., 

1999) and SALMFamides may have a general role as muscle relaxants throughout the 

phylum Echinodermata (Elphick and Melarange, 2001). Furthermore, evidence of other 

physiological roles of SALMFamides in echinoderms has been reported, including 

modulation of luminescence in brittle stars (De Bremaeker et al., 1999) and regulation of 

neurohormone (gonad-stimulating substance) secretion in starfish (Mita et al., 2004). 
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Sequencing of the genome of the sea urchin Strongylocentrotus purpuratus facilitated 

identification of a gene encoding SALMFamides, the first neuropeptide precursor gene to be 

characterised in an echinoderm (Elphick and Thorndyke, 2005). The Strongylocentrotus 

purpuratus SALMFamide gene comprises two protein-coding exons: the first exon encodes a 

N-terminal signal peptide and the second exon encodes seven putative SALMFamide 

neuropeptides known as SpurS1 – SpurS7 (Elphick and Thorndyke, 2005). Discovery of this 

gene is of interest because it has revealed an unprecedented diversity of SALMFamides in an 

echinoderm species. Moreover, identification of the SALMFamide gene in 

Strongylocentrotus purpuratus has paved the way for identification of other neuropeptide 

genes in this species. 

SALMFamide neuropeptides were originally isolated from starfish and sea cucumbers 

because of their cross-reactivity with antibodies to molluscan FMRFamide-related peptides 

(Díaz-Miranda et al., 1992; Elphick et al., 1991a). Subsequently, Iwakoshi et al. (1995) used 

a different strategy for isolation and identification of echinoderm neuropeptides. Radial 

longitudinal muscle and intestinal preparations from the sea cucumber Apostichopus 

japonicus were used to test for the presence of myoactive peptides in body wall extracts of 

the same species (Iwakoshi et al., 1995; Ohtani et al., 1999). Amongst the peptides identified 

were two members of the SALMFamide family (GYSPFMFamide and FKSPFMFamide) 

and, consistent with previous pharmacological tests with SALMFamides, both peptides 

caused relaxation of muscle preparations (Ohtani et al., 1999). Many of the other peptides 

identified had indirect effects on muscle contractility, either potentiating or inhibiting 

electrically evoked contractions. However, one of the peptides identified (NGIWYamide) 

was found to cause contraction of the muscle preparations tested (Iwakoshi et al., 1995; 

Ohtani et al., 1999). 
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The physiological roles of NGIWYamide in holothurians have been investigated in 

detail by testing the effects of NGIWYamide on longitudinal body wall muscle, tentacles and 

intestine from Apostichopus japonicus (Inoue et al., 1999). NGIWYamide caused contraction 

of body wall muscle and tentacle preparations, consistent with the effects of NGIWYamide 

originally observed by Iwakoshi et al. (1995). However, NGIWYamide also caused inhibition 

of the spontaneous rhythmic contractile activity of intestine preparations. Using antibodies to 

NGIWYamide to analyse the distribution of this peptide in Apostichopus japonicus, abundant 

NGIWYamide-immunoreactivity was observed in the radial nerve cords and circumoral 

nerve ring, localised in neuronal cell bodies and their processes. In addition, and consistent 

with the pharmacological effects of NGIWYamide, NGIWYamide-immunoreactivity was 

detected in the innervation of body wall dermis, intestine, tentacles and tube feet (Inoue et al., 

1999). 

More recently, Saha et al. (2006) tested the effects of NGIWYamide on tube foot 

preparations from the starfish species Asterina pectinifera and found that the peptide causes 

contraction. Furthermore, antibodies to NGIWYamide revealed the presence of 

NGIWYamide-like immunoreactivity in the radial nerve cords and tube foot innervation in 

Asterina pectinifera. Collectively, these data indicate that NGIWYamide-related peptides 

may occur throughout the phylum Echinodermata and may have a general role in neural 

regulation of muscle contraction in echinoderms. However, to test these hypotheses it will be 

necessary to identify NGIWYamide-related peptides in other echinoderms apart from sea 

cucumbers. Therefore, building on a successful strategy that led to the identification of a 

SALMFamide gene in the sea urchin Strongylocentrotus purpuratus, here we have 

investigated the occurrence of a gene encoding a NGIWYamide-related peptide in this 

species. 
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Materials and Methods 

 

Analysis of Strongylocentrotus purpuratus genome and cDNA sequence data 

 

A search for a gene encoding a NGIWYamide-like peptide in the genome of the sea 

urchin Strongylocentrotus purpuratus was initiated in January 2005 employing the Basic 

Local Alignment Search Tool [BLAST; (Altschul et al., 1990)] facility available on the 

Baylor College of Medicine Human Genome Sequencing Center website 

(http://www.hgsc.bcm.tmc.edu/blast/blast.cgi?organism=Spurpuratus). The strategy used was 

similar to that employed previously to identify a gene encoding novel SALMFamide 

neuropeptides in Strongylocentrotus purpuratus (Elphick and Thorndyke, 2005). Thus, the 

query sequence comprised three copies of the sequence NGIWY separated by the sequence 

GKR, with the glycine (G) residues putative substrates for C-terminal amidation and the 

lysine-arginine (KR) dipeptide sequences putative cleavage sites for endopeptidases (i.e. 

NGIWYGKRNGIWYGKRNGIWYG). Using this approach, a contig containing a DNA 

sequence encoding two copies of a putative NGIWYamide-like peptide (NGFFFamide) was 

identified. 

The full-length sequence of the putative NGFFFamide precursor protein was 

determined by analysis of Strongylocentrotus purpuratus genome and cDNA sequence data 

using resources available on the Baylor College of Medicine Human Genome Sequencing 

Center Sea Urchin Genome Project website 

(http://www.hgsc.bcm.tmc.edu/projects/seaurchin) and the NCBI Sea Urchin Genome 

Resources website (http://www.ncbi.nlm.nih.gov/genome/guide/sea_urchin/). As described in 

detail in the results section, determination of the full-length sequence of the putative 

NGFFFamide precursor revealed that it shares sequence similarity with the precursor of a 
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vasopressin/oxytocin-like peptide in Strongylocentrotus purpuratus, which we have named 

“echinotocin”.  

Comparison of the sequences of the NGFFFamide precursor, the echinotocin 

precursor and precursors of vasopressin/oxytocin-like peptides in other species was 

performed using ClustalX for multiple sequence alignment and NJ plot for construction of 

trees with bootstrap analysis (Saitou and Nei, 1987; Thompson et al., 1997). 

 

 

In vitro pharmacology 

 

The pharmacological activity of NGFFFamide and echinotocin was investigated by 

testing the effects of these peptides on in vitro preparations of tube feet and oesophagus from 

specimens of the sea urchin Echinus esculentus L. (Order Echinoida; Family Echinidae), 

which were collected off the coast of Ayrshire in Scotland, transported to QMUL and 

maintained in a seawater aquarium at about 11oC. NGFFFamide and echinotocin were 

custom synthesized by the Advanced Biotechnology Centre at Imperial College London. 

Echinotocin (CFISNCPKGamide) was synthesized with a disulphide bridge between the 

cysteine residues, consistent with the occurrence of a disulphide bridge in other members of 

the vasopressin/oxytocin neuropeptide family (De Bree and Burbach, 1998; Light and Du 

Vigneaud, 1958).  

Tube foot preparations were obtained from specimens of Echinus esculentus by 

severing extended tube feet. Silk ligatures were tied around each end of the severed tube foot 

and one of the ligatures was attached to a glass rod.  The preparation was then suspended in a 

20 ml bath containing aerated seawater at 11oC and the second ligature was attached to an 

isometric force transducer (Harvard Apparatus). Likewise, oesophageal preparations were set 
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up using approximately 1.5 cm sections of oesophagus. Once set up, tube foot and 

oesophageal preparations were allowed to equilibrate until a stable resting tension was 

obtained. The effects of NGFFFamide and echinotocin on tube foot and oesophageal 

preparations were examined by applying the peptides to achieve bath concentrations within 

the range of 10-11 M to 10-6 M. Additionally, NGFFFamide and echinotocin at a 

concentration of 3 x 10-6 M were tested consecutively on tube foot and oesophagus 

preparations to enable direct comparison of their efficacy. 

After dissection of tube foot and oesophagus preparations, sea urchins were 

anaesthetized in seawater containing 0.1 M magnesium chloride.  

 
 
 

 

 

 

 
 
 



 10

Results 

 
Identification of a gene encoding the neuropeptide NGFFFamide in Strongylocentrotus 

purpuratus 

 

Analysis of Strongylocentrotus purpuratus genomic sequence data using the 

tBLASTn method with the query NGIWYGKRNGIWYGKRNGIWYG resulted in the 

identification of a 6296 base contig (21522) containing a sequence of 54 bases encoding an 

amino acid sequence (KRNGFFFGKRNGFFFGKR) that comprises two copies of the peptide 

sequence NGFFFG separated and flanked by putative dibasic cleavage sites (KR). Thus, 

endopeptidase-mediated cleavage at the dibasic cleavage sites followed by C-terminal 

amidation mediated by peptidylglycine alpha-amidating monooxygenase could give rise to 

two copies of the NGIWYamide-like peptide Asn-Gly-Phe-Phe-Phe-(NH2) or NGFFFamide. 

Analysis of the most recent assembly of Strongylocentrotus purpuratus genome 

sequence data (version 2.1) revealed that the KRNGFFFGKRNGFFFGKR sequence is 

located within scaffold 54273. Furthermore, BLAST analysis of expressed sequence tag 

(EST) data obtained from a Strongylcentrotus purpuratus radial nerve cDNA library revealed 

that the KRNGFFFGKRNGFFFGKR sequence is encoded by a cDNA (RNSP-5L15) for 

which both 5’ EST (EC439145; GI: 109403168) and 3’ EST (EC438106; GI: 109402129) 

data are available. The RNSP-5L15 cDNA encodes a protein comprising 266 amino acid 

residues and, as expected for a neuropeptide precursor, analysis of this protein sequence 

using SignalP 3.0 [www.cbs.dtu.dk/services/SignalP; (Bendtsen et al., 2004)] predicts a N-

terminal signal peptide (Fig. 1). Following the predicted 26 amino acid residue signal peptide 

there is a 114 amino acid residue sequence, which is then followed by the 18 residue 

sequence KRNGFFFGKRNGFFFGKR, comprising two copies of the putative NGFFFamide 

neuropeptide separated and flanked by potential dibasic cleavage sites (KR). On the C-
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terminal side of the NGFFFamide-encoding region of the precursor is a 108 amino acid 

residue sequence that contains fourteen cysteine residues. Moreover, submission of the 

putative NGFFFamide precursor as a BLASTp query against the GenBank non-redundant 

database revealed that the C-terminal region of the protein shares a high level of sequence 

identity with neurophysins, proteins that form the C-terminal region of precursors for the 

neuropeptide hormones vasopressin, oxytocin and vasotocin. For example, residues 181-260 

of the NGFFFamide precursor share 46% sequence identity with residues 37-116 of the 

chicken vasotocin precursor.  

Comparison of the RNSP-5L15 cDNA sequence with the Strongylocentrotus 

purpuratus genome sequence revealed that the 266 amino acid NGFFFamide precursor is 

encoded by a gene comprising 4 exons (Fig. 1). Exon 1 is a 206 base 5’ non-coding sequence, 

which is separated from exon 2 by an intron comprising 37141 bases.  Exon 2 (150 bases) 

consists of a 5’ non-coding region (42 bases) followed by 118 bases that encode the N-

terminal signal peptide and the first ten amino acid residues of the 114 residue polypeptide 

that separates the signal peptide from the NGFFFamide-encoding region. A short second 

intron (715 bases) is followed by exon 3, which comprises 444 bases encoding the remaining 

104 residues of the 114 residue polypeptide, two copies of the NGFFFG sequence separated 

and flanked by putative dibasic cleavage sites (Lys-Arg) and then a 26 residue sequence. The 

third intron comprises 16420 bases and is followed by exon 4 (502 bases), which comprises 

246 bases encoding a neurophysin-like sequence followed by a stop codon and a 253 base 3’ 

non-coding sequence. 

In the sea urchin genome project, annotation of Strongylocentrotus purpuratus 

genome sequence data was facilitated by production of a list of genes predicted by the 

GLEAN3 gene prediction algorithm (Elsik et al., 2007; Sodergren et al., 2006). Interestingly, 

the NGFFFamide precursor gene was one of a number of genes that were not predicted by the 
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GLEAN3 algorithm. Therefore, we manually annotated this gene as part of the sea urchin 

genome project annotation process and the NGFFFamide gene has been assigned the official 

ID number SPU_030074 (see 

http://www.spbase.org/SpBase/search/viewAnnoGeneInfo.php?spu_id=SPU_030074 for 

further details). 

 

 

Identification of a gene encoding a vasopressin/oxytocin-like peptide (“echinotocin”) in 

Strongylocentrotus purpuratus 

 

 Our discovery that the C-terminal region of the putative NGFFFamide precursor 

contains a polypeptide sequence similar to neurophysins that occur in precursors of the 

peptide hormones vasopressin and oxytocin prompted us to investigate the occurrence of a 

gene or genes encoding vasopressin/oxytocin-like peptides in Strongylocentrotus purpuratus. 

To do this the human vasopressin precursor sequence was submitted as a BLASTp query 

against putative Strongylocentrotus purpuratus proteins predicted by the gene prediction 

algorithm GLEAN3 (Elsik et al., 2007; Sodergren et al., 2006). The protein with the highest 

level of sequence identity with the query sequence was a putative 225 amino acid residue 

protein (GLEAN3_06899). Analysis of the sequence of this protein revealed that residues 87-

98 comprised a vasopressin/oxytocin-like peptide sequence (CFISNCPKG) followed by a 

potential substrate for C-terminal amidation (G) and a putative dibasic cleavage site (KR). 

Moreover, the C-terminal region of the protein contained a neurophysin-like sequence. 

However, the N-terminal part of the protein sequence (residues 1-86) did not share sequence 

similarity with vasopressin and oxytocin precursors. Furthermore, analysis of the protein 

sequence using SignalP 3.0 revealed that a predicted N-terminal signal peptide was located 
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between residues 61 and 86 of the putative 225 residue protein. This suggested that inclusion 

of the N-terminal 60 residues of the 225 residue protein, as predicted by GLEAN3, is likely 

to be erroneous. Thus, it appears that in Strongylocentrotus purpuratus there is a 165 residue 

vasopressin/oxytocin-like precursor protein, which comprises a 26 residue N-terminal signal 

peptide, a putative vasopressin/oxytocin-like peptide (CFISNCPKGamide), which we have 

named “echinotocin”, and a neurophysin-like protein (Fig. 2).   

A large number of Strongylocentrotus purpuratus ESTs have been deposited in the 

GenBank database but cDNA/EST data have as yet not been obtained for the echinotocin 

precursor. Therefore, the sequence shown in Fig. 2 is derived from the GLEAN3 prediction 

(06899). The predicted echinotocin precursor gene comprises 3 exons, with the first exon 

(138 bases) encoding the N-terminal signal peptide, echinotocin and the N-terminal region of 

neurophysin. Exons 1 and 2 are separated by an intron comprising 24,141 bases. The second 

exon (208 bases) encodes the core of the neurophysin protein and is followed by an intron 

comprising 2,379 bases. The third exon (152 bases) encodes the C-terminal region of the 

neurophysin protein and is followed by a stop codon (Fig. 2). This gene has been assigned the 

official gene ID number SPU_006899 (see 

http://www.spbase.org/SpBase/search/viewAnnoGe neInfo.php?spu_id=SPU_006899) 

 

Comparison of the NGFFFamide precursor, the echinotocin precursor and precursors of 

vasopressin/oxytocin-like peptides in other species 

 

To facilitate comparison of the sequences of the NGFFFamide precursor and the 

echinotocin precursor and comparison of these sea urchin precursors with precursors of 

vasopressin/oxytocin-like peptides in other species, ClustalX was used to generate a multiple 

sequence alignment (Fig. 3). This revealed that whilst the fourteen cysteine residues that are 
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characteristic of neurophysins are conserved in both the echinotocin precursor and the 

NGFFFamide precursor, there is variation in the length of the peptide sequences between 

some of the conserved cysteine residues. For example, between cysteines 7 and 8 in the 

NGFFFamide-associated neurophysin there are seven residues, whereas in the neurophysins 

associated with echinotocin and with vasopressin/oxytocin-like peptides in other species 

there are nine residues. Conversely, there are six residues between cysteines 12 and 13 in the 

NGFFFamide-associated neurophysin, whereas in the neurophysins associated with 

echinotocin and with vasopressin/oxytocin-like peptides in other species there are only four 

residues.  

To assess the overall similarity of the NGFFFamide- and echinotocin-associated 

neurophysins, a neighbour-joining tree was generated based on a ClustalX alignment of the 

sequences of the neurophysin domains from the NGFFFamide precursor, the echinotocin 

precursor and precursors of other vasopressin/oxytocin-like peptides (Fig. 4). This revealed 

that, based on sequence similarity, NGFFFamide neurophysin is not more closely related to 

the echinotocin neurophysin than to neurophysins associated with vasopressin/oxytocin-like 

peptides in other phyla.  

 

 

NGFFFamide and echinotocin cause contraction of sea urchin tube foot and oesophagus 

preparations 

 

Both NGFFFamide (Fig. 5A,B) and echinotocin (Fig. 5C,D) caused contraction of 

tube foot and oesophagus preparations from the sea urchin Echinus esculentus. Comparison 

of the effects of NGFFFamide and echinotocin suggested that the magnitude of 

NGFFFamide-induced contraction was larger than echinotocin-induced contraction on both 
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tube foot and oesophagus preparations. Thus, the mean force of contraction induced by 3 x 

10-6 M NGFFFamide on tube feet was 1.35 ± 0.21 mN (s.e.m.; n = 3), whereas the mean 

force of contraction induced by 3 x 10-6 M echinotocin on tube feet was 0.81 ± 0.42 mN 

(s.e.m.; n = 3). Similarly, the mean force of contraction induced by 3 x 10-6 M NGFFFamide 

on oesophagus was 1.47 ± 0.23 mN (s.e.m.; n = 3), whereas the mean force of contraction 

induced by 3 x 10-6 M echinotocin on oesophagus 0.71 ± 0.01 mN (s.e.m.; n = 3). However, 

statistical analysis of these data using a t-test did not reveal significant differences in the 

magnitudes of contraction induced by NGFFFamide and echinotocin.  

NGFFFamide caused dose-dependent contraction of oesophagus preparations at 

concentrations ranging from 10-11 M – 10-6 M (Fig. 5E). With tube foot preparations, dose-

dependent contractile effects were only observed with higher concentrations of NGFFFamide 

within the range of 10-8 M – 10-6 M (Fig. 5E). These data indicate that NGFFFamide is more 

potent as a contractant of oesophagus than as a contractant of tube feet. 

Echinotocin caused dose-dependent contraction of tube foot (10-8 M – 10-6 M) and 

oesophagus (10-9 M – 10-7 M) preparations (Fig. 5F). 
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Discussion 

 

NGFFFamide: a novel myoactive neuropeptide in sea urchins 

 

 We have identified a gene in the sea urchin Strongylocentrotus purpuratus that 

encodes a novel myoactive neuropeptide Asn-Gly-Phe-Phe-Phe-(NH2) or NGFFFamide, 

which we pronounce “negfamide”. NGFFFamide was identified on account of its sequence 

similarity with NGIWYamide, a myoactive neuropeptide in holothurians (sea cucumbers) 

(Iwakoshi et al., 1995; Ohtani et al., 1999). NGIWYamide-like immunoreactive peptides also 

occur in starfish (Saha et al., 2006) and therefore NGFFFamide and NGIWYamide may be 

members of a family of neuropeptides that occur throughout the phylum Echinodermata. A 

cDNA encoding the NGFFFamide precursor protein was identified in a cDNA library 

generated from Strongylocentrotus purpuratus radial nerve tissue, demonstrating that the 

NGFFFamide gene is expressed in the sea urchin nervous system and indicating that 

NGFFFamide may function as a neuropeptide. 

To investigate the physiological roles of NGFFFamide, the pharmacological effects of 

synthetic NGFFFamide on in vitro preparations of tube feet and oesophagus from the sea 

urchin Echinus esculentus were examined. NGFFFamide caused contraction of Echinus tube 

foot and oesophagus preparations, consistent with the contracting action of NGIWYamide on 

sea cucumber body wall muscle and tentacle preparations and starfish tube foot preparations 

(Inoue et al., 1999; Saha et al., 2006). Thus, it appears that members of the 

NGIWYamide/NGFFFamide neuropeptide family typically cause muscle contraction in 

echinoderms. Further studies are now required to investigate the mechanisms by which 

NGIWYamide and NGFFFamide affect muscle activity in sea cucumbers and sea urchins, 

respectively. One scenario would be direct interaction with receptor proteins expressed by 
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muscle cells; an alternative possibility is that these peptides act indirectly by stimulating the 

release of myoactive factors from nerves or other cell types. 

 

 

The NGFFFamide precursor contains a neurophysin domain 

 

 The discovery of a new family of myoactive neuropeptides in echinoderms is of 

interest with respect to the neurobiology and physiology of these animals. However, perhaps 

of more general interest is our discovery that the NGFFFamide precursor, in addition to 

encoding two copies of the NGFFFamide peptide, also comprises a polypeptide that shares a 

high level of sequence identity with neurophysins, a family of proteins that are derived from 

the precursors of vasopressin/oxytocin-type neuropeptides. Neurophysins act as carrier 

proteins that are important for packaging, processing and protection of vasopressin/oxytocin-

type neuropeptides (De Bree, 2000; De Bree and Burbach, 1998; Legros and Geenen, 1996). 

Hitherto neurophysins have been uniquely associated with vasopressin/oxytocin-type 

neuropeptides and to the best of our knowledge the NGFFFamide precursor is the first to be 

discovered comprising neurophysin and a neuropeptide that is not a member of the 

vasopressin/oxytocin family of peptides.  

 

 

Echinotocin: a vasopressin/oxytocin-like peptide in sea urchins 

 

The vasopressin/oxytocin neuropeptide family has a widespread phylogenetic 

distribution indicative of an ancestry that dates back at least as far as the common ancestor of 

bilaterian animals. Accordingly, vasopressin/oxytocin-like peptides have been identified in 
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vertebrates (Hoyle, 1999; Urano et al., 1992), protostomian invertebrates (Cruz et al., 1987; 

Oumi et al., 1994; Proux et al., 1987; Reich, 1992; Van Kesteren et al., 1992) and most 

recently in two deuterostomian invertebrates, the urochordates Ciona intestinalis and Styela 

plicata (Kawada et al., 2008; Ukena et al., 2008). However, vasopressin/oxytocin like 

peptides have thus far not been identified in any echinoderm species. Against this 

background and our discovery that the sea urchin NGFFFamide precursor contains a 

neurophysin domain, it was of interest to investigate the occurrence of a gene encoding a 

vasopressin/oxytocin-like peptide in sea urchins. BLAST analysis of Stongylocentrotus 

purpuratus genomic sequence data using the human vasopressin precursor as a query enabled 

identification of a gene encoding a peptide (CFISNCPKGamide) that is a member of the 

vasopressin/oxytocin-type neuropeptide family and which we have named “echinotocin”. 

Likewise, if vasopressin/oxytocin-like peptides are identified in other echinoderm species, we 

suggest that these are collectively known as “echinotocins”.  

Comparison of the sequence of echinotocin with other members of the 

vasopressin/oxytocin neuropeptide family reveals that residues Cys1 and Cys6 in echinotocin 

are conserved throughout the family (Fig. 6). This is not surprising because in 

vasopressin/oxytocin-like peptides these two residues form a disulphide bridge, conferring a 

cyclic conformation that is important for the biological activity of these peptides (Hruby et 

al., 1990; Sawyer, 1977). Other residues in the echinotocin sequence are shared with some of 

the known vasopressin/oxytocin-like peptides. Thus, the C-terminal amidated glycine residue 

and residues Asn5 and Pro7 in echinotocin are also features of most vasopressin/oxytocin-like 

peptides, with notable exceptions being two vasopressin/oxytocin-like peptides identified in 

urochordates (Kawada et al., 2008; Ukena et al., 2008) and a putative neuropeptide 

(CFLNSCPY or “nematocin”) in the nematode Caenorhabditis elegans (NP_001033548; 

GI:86564869). Residues 2 and 3 in echinotocin are phenylalanine and isoleucine, 
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respectively, which is consistent with the occurrence of hydrophobic residues (Phe, Tyr, Leu 

or Ile) in these positions in other vasopressin/oxytocin-like peptides. Finally, the presence of 

a basic amino acid residue (Lys) at position 8 in echinotocin confers similarity with 

vasopressin, which has an arginine residue at this position, whereas oxytocin has a leucine 

residue in this position (Fig. 6). 

 

 

Structure of the echinotocin precursor and organisation of the echinotocin gene. 

 

 The predicted structure of the echinotocin precursor protein is consistent with 

precursors of vasopressin/oxytocin-like peptides in vertebrates and in other invertebrates (De 

Bree and Burbach, 1998; Hoyle, 1999). Thus, the echinotocin sequence is preceded by a N-

terminal signal peptide and followed by a C-terminal neurophysin-like domain (Fig. 3). A 

signal peptide, vasopressin/oxytocin-like neuropeptide and neurophysin occur in all of the 

known precursor proteins for vasopressin/oxytocin-like neuropeptides in both vertebrates and 

invertebrates (De Bree and Burbach, 1998; Hoyle, 1999). However, there is variability in the 

length of the C-terminal polypeptide sequence following the highly conserved neurophysin 

domain. For example, in the oxytocin, annetocin and nematocin precursors it is very short (9 

residues) or absent (Fig. 3), whereas in the vasopressin precursor there is a 39 amino acid 

residue peptide, which is known as copeptin. Moreover, following cleavage at a monobasic 

site separating it from neurophysin, copeptin is co-secreted with vasopressin. Three notable 

characteristics of copeptin are that it is preceded by a monobasic cleavage site, it is 

glycosylated at a site (N6-X-T8) located near its N-terminus and it has a conserved 

hydrophobic LLLRLV sequence comprising residues 17-22 (De Bree and Burbach, 1998). 

Interestingly, the C-terminal region of the echinotocin precursor has some of these features; it 
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has a putative glycosylation site (NGS) that aligns with the glycosylation site in the 

vasopressin precursor (NAT) and it has a hydrophobic sequence (LLDLLL) that aligns with 

the LLLRLV sequence in the vasopressin precursor (Fig. 3). There is also a potential dibasic 

cleavage site (KR) at residues 134 and 135 in the echinotocin precursor, which if utilised in 

vivo would liberate a 30 amino acid residue copeptin-like molecule. 

Interestingly, glycosylation of copeptin is a characteristic hitherto uniquely associated 

with vasopressin precursors (De Bree and Burbach, 1998). Therefore, the presence of a 

putative glycosylation site in the C-terminal region of the echinotocin precursor is intriguing 

and worthy of further investigation to assess if it is glycosylated in vivo in sea urchins. 

Measurement of serum levels of copeptin can be used as a biomarker for several clinical 

conditions in humans (Katan et al., 2008) but little is known about the physiological 

relevance of this molecule. It has been postulated that copeptin may act as a modulator of 

excitatory neurotransmission in the brain (Van den Hooff et al., 1990) and as a prolactin-

releasing factor (Nagy et al., 1988), but further studies are required (Hyde et al., 1989). 

Comparative studies on the echinotocin-associated copeptin-like peptide in sea urchins may 

provide new insights on this issue. 

The predicted echinotocin precursor protein is encoded by three exons, which is 

consistent with the structural organisation of genes encoding vasopressin/oxytocin-like 

peptides in other animals (De Bree and Burbach, 1998; Hoyle, 1999). The first and third 

exons of genes encoding precursors of vasopressin/oxytocin-like peptides also have 5’ and 3’ 

non-coding sequences, respectively (Ivell and Richter, 1984) and it is likely, therefore, that 

the echinotocin gene is similar in this respect. The positions of introns interrupting the coding 

sequence are conserved between the echinotocin gene and other genes encoding 

vasopressin/oxytocin-like peptides. Thus, the first intron is located between the codons for 

residues Gln46 and Cys47 in the echinotocin precursor and the second intron interrupts the 
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codon for residue Asn116 (Fig. 2); introns are located at equivalent positions in genes 

encoding precursors of vasopressin/oxytocin-like peptides in mammals (Ivell and Richter, 

1984) and in the gastropod mollusc Lymnaea stagnalis (Van Kesteren et al., 1995). Thus, the 

conserved positioning of the two introns in genes encoding vasopressin/oxytocin-like 

precursors presumably dates back to the common ancestor of all bilaterian animals. However, 

this feature appears to have been secondarily lost in some lineages because, for example, 

genes encoding vasopressin/oxytocin-like peptides (cephalotocin and octopressin) in the 

mollusc Octopus vulgaris lack introns (Kanda et al., 2003). 

 

 

Physiological roles of echinotocin in sea urchins 

   

 Analysis of the in vitro pharmacological effects of synthetic echinotocin on Echinus 

tube feet and oesophagus revealed that, like NGFFFamide, it causes contraction. However, as 

with NGFFFamide, the mechanisms by which echinotocin causes muscle contraction in sea 

urchins remain to be determined. We can, however, speculate on the molecular identity of a 

receptor that may mediate effects of echinotocin because, as part of a genome-wide 

annotation of genes associated with nervous system function, we have identified a gene 

(SPU_021290) encoding a G-protein coupled receptor in Strongylocentrotus purpuratus that 

is an ortholog of vasopressin/oxytocin receptors (Burke et al., 2006) (see also 

http://www.spbase.org/SpBase/search/viewAnnoGeneInfo.php?spu_id=SPU_021290).  

The myoactivity of echinotocin is consistent with the effects of vasopressin/oxytocin-

like peptides in other animals. For example, in mammals vasopressin regulates blood 

pressure by causing vasoconstriction. However, perhaps the most well known physiological 

role of vasopressin is in osmoregulation, acting as an anti-diuretic hormone (Sawyer, 1977). 
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Interestingly, a gene encoding a vasopressin/oxytocin-like peptide (Styela oxytocin-related 

peptide or SOP) was recently identified in an invertebrate chordate, the sea-squirt Styela 

plicata (Ukena et al., 2008). Analysis of the expression of the SOP gene in the cerebral 

ganglion of Styela revealed that it is upregulated when animals are exposed to dilute (60%) 

seawater, which also causes closure of their inhalant and exhalant siphons. Furthermore, SOP 

causes contraction of in vitro preparations of inhalant and exhalant siphons from Styela. 

Ukena et al. (2008) conclude that SOP acts to prevent influx of dilute seawater in Styela, 

suggesting an evolutionarily ancient role for vasopressin/oxytocin-like peptides in 

osmoregulation. It is possible, therefore, that the contractile effect of echinotocin on tube feet 

in vitro is indicative of a similar role in sea urchins, with retraction of tube feet reducing 

water influx in hypoosmotic conditions.     

Oxytoxin causes uterine contraction and stimulates lactation in mammals  (Sawyer, 

1977) and evidence of an evolutionarily conserved role for vasopressin/oxytocin-like 

peptides in reproductive physiology has emerged from studies on invertebrates. For example, 

the molluscan peptide conopressin causes contraction of the vas deferens in the pond snail 

Lymnaea stagnalis (Van Kesteren et al., 1992) and the annelid peptide annetocin induces 

egg-laying behaviour in earthworms (Oumi et al., 1996). Moreover, a recent study suggests 

that neurons releasing oxytocin/vasopressin-like peptides are an evolutionarily ancient 

neuronal population with dual photosensory-neurosecretory properties coordinating 

reproduction with light cycles (Tessmar-Raible et al., 2007). Consistent with this hypothesis, 

neurons releasing a vasopressin/oxytocin-like peptide in the insect Locusta migratoria are 

more active in the dark than in the light and this activity is regulated by extraocular 

photoreceptors (Thompson and Bacon, 1991). Interestingly, genes encoding orthologs of 

mammalian retinal transcription factors are expressed in sea urchin tube feet, suggesting that 

these organs have a photosensory function (Burke et al., 2006). Therefore, the contractile 
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effect of echinotocin on tube feet in vitro may be a manifestation of an in vivo role in 

mediating photosensory regulation of physiological processes in sea urchins. 

In addition to the peripheral actions of oxytocin and vasopressin in mammals and 

other vertebrates, there is growing evidence of roles in the central nervous system (CNS) 

associated with reproductive behaviour and social behaviour/cognition. For example, there is 

evidence that oxytocin has important roles in maternal-infant bonding, pair bonding and 

social interaction, whilst differences in vasopressin receptor expression in the brain are 

associated with monogamy versus polygamy in vole species (Caldwell et al., 2008; 

Donaldson and Young, 2008; Israel et al., 2008; Winslow et al., 1993). The evolutionary 

origins of these CNS-mediated actions of vasopressin and oxytocin are unknown; discovery 

of vasopressin/oxytocin type peptides in deuterostomian invertebrates provides new 

opportunities to address this issue. 

 

The role of neurophysins as carrier proteins for vasopressin/oxytocin-like peptides. 

 

Neurophysins are required to facilitate endopeptidase-mediated cleavage of 

vasopressin/oxytocin-like peptides from precursor proteins and for binding and transport of 

the biologically active peptides in secretory granules from neuronal somata to axonal 

terminals (De Bree, 2000; De Bree and Burbach, 1998). There are fourteen highly conserved 

cysteine residues in neurophysins (see Fig. 3), which form seven intramolecular disulphide 

bridges (De Bree and Burbach, 1998). Furthermore, neurophysins form dimers and binding of 

vasopressin/oxytocin-like peptides favours dimerization (Nicolas et al., 1978). The 

interaction of vasopressin/oxytocin-like peptides with neurophysins was one of the first 

ligand-protein interactions to be analysed (Acher et al., 1958) and more recently it has been 

investigated in detail using NMR spectroscopy and X-ray crystallography (Chen et al., 1991; 
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Sardana and Breslow, 1984; Wu et al., 2001).  The first three amino acids in the N-terminal 

part of vasopressin (Cys-Tyr-Phe) and oxytocin (Cys-Tyr-Ile) are the residues that are most 

important for binding to neurophysin (De Bree and Burbach, 1998) and the corresponding 

residues in echinotocin are structurally identical or similar (Cys-Phe-Ile). The strongest 

interaction is a salt bridge between the αNH3
+ group of the N-terminal cysteine residue and 

the γCOO- group of Glu47 in the oxytocin/vasopressin neurophysins and both of these 

residues are conserved in the echinotocin precursor. The aromatic side chain of residue Tyr2 

in oxytoxin and vasopressin is located in a pocket formed by the disulphide bridges Cys10-

Cys54 and Cys21-Cys44, the Cys21-Phe-Gly-Pro24 backbone, and the side chains of Pro24, Glu47 

and Asn48. By comparison, echinotocin has a residue (Phe2) with an aromatic side chain and 

all but one of the residues in neurophysin that form a pocket for the aromatic side chain of 

Tyr2 in oxytoxin and vasopressin are conserved in the echinotocin precursor sequence, with 

the exception being Phe22, which is a methionine residue in the sea urchin sequence. Other 

evolutionarily conserved characteristics of vasopressin and oxytocin that are important for 

binding to neurophysin are the disulphide bridge between Cys1 and Cys6, the peptide 

backbone between residues 2 and 3 and the side chain of residue 3 (De Bree and Burbach, 

1998). Based on these similarities, it is likely that echinotocin interacts with the neurophysin 

domain of the echinotocin precursor. 

 

 

Does the neurophysin encoded by the NGFFFamide gene act as a carrier protein for 

NGFFFamide? 

 

By analogy with the role of neurophysins as carrier proteins for vasopressin/oxytocin-

like peptides, the neurophysin domain in the NGFFFamide precursor may likewise act as a 
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carrier protein for NGFFFamide. Consistent with this notion, several residues that are 

involved in binding of vasopressin/oxytocin-like peptides (see above) are conserved in the 

NGFFFamide neurophysin, including the residues corresponding to the cysteines at positions 

10, 21, 44 and 54 and the glutamate at position 47 in the vasopressin/oyxtocin neurophysins. 

There are, however, some interesting differences between the NGFFFamide-associated 

neurophysin and neurophysins associated with echinotocin and other vasopressin/oxytocin-

like peptides. Thus, between cysteines 7 and 8 in the NGFFFamide-associated neurophysin 

there are seven residues, whereas in the neurophysins associated with echinotocin and with 

vasopressin/oxytocin-like peptides in other species there are nine residues. Furthermore, there 

are six residues between cysteines 12 and 13 in the NGFFFamide-associated neurophysin, 

whereas in the neurophysins associated with echinotocin and with vasopressin/oxytocin-like 

peptides in other species there are only four residues. Unusual structural features such as 

these may facilitate binding of NGFFFamide by its associated neurophysin.  However, 

experimental investigation of an interaction of NGFFFamide with neurophysin, which was 

beyond the scope of this study, will be required to address these issues.   

 

 

The evolutionary origin of the neurophysin domain in the NGFFFamide precursor 

 

 Genes encoding precursors for vasopressin/oxytocin-like peptides with an associated 

neurophysin domain have been identified throughout the animal kingdom (De Bree and 

Burbach, 1998) and the echinotocin gene reported here is a new member of this gene family. 

This widespread phylogenetic distribution indicates that the evolutionary origin of the 

vasopressin/oxytocin family of neuropeptide precursors dates back at least as far as the 

common ancestor of all bilaterian animals. The NGFFFamide precursor is the first protein to 
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be identified that has a neurophysin domain without an associated vasopressin/oxytocin-like 

peptide and therefore it is of interest to explore the evolutionary origin of this novel protein.  

The occurrence of the neurophysin domain in the Strongylocentrotus purpuratus 

NGFFFamide precursor is presumably a consequence of duplication and transposition of 

DNA encoding the precursor, or part of the precursor (i.e. the neurophysin domain), of a 

vasopressin/oxytocin-like peptide in an ancestor of Strongylocentrotus purpuratus. 

Consistent with this notion, the NGFFFamide and echinotocin genes both have an intron 

preceding the codon encoding the first cysteine residue of their neurophysin domains. In the 

echinotocin gene and in most genes encoding vasopressin/oxytocin-like peptides there is also 

a second intron that interrupts the neurophysin-encoding sequence. The NGFFFamide 

neurophysin, however, is encoded by a single exon (exon 4). Thus, if the neurophysin domain 

of the NGFFFamide precursor originated as a consequence of complete or partial duplication 

of a gene encoding a vasopressin/oxytocin-like peptide, then the second intron that interrupts 

the neurophysin coding sequence must have been lost subsequently. There is a precedence for 

this, however, because, as discussed above, the two genes encoding vasopressin/oxytocin-like 

peptides in Octopus vulgaris both lack introns (Kanda et al., 2003). 

Based on sequence similarity, NGFFFamide neurophysin is not more closely related 

to the echinotocin neurophysin than to neurophysins associated with vasopressin/oxytocin-

like peptides in other phyla. Moreover, the echinotocin neurophysin shares more similarity 

with the neurophysin associated with lamprey vasotocin than it does with the NGFFFamide-

associated neurophysin (see Fig 4). This suggests that, with respect to a putative common 

ancestral sequence, the NGFFFamide-associated neurophysin is more divergent than the 

neurophysin associated with echinotocin. Furthermore, this feature of the NGFFFamide-

associated neurophysin may be related to accommodation of NGFFFamide as a binding 

partner.  
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Determination of the timing of the duplication event that gave rise to the occurrence 

of a neurophysin domain in the Strongylocentrotus purpuratus NGFFFamide precursor will 

be facilitated if genes encoding precursors for NGFFFamide-like peptides with a neurophysin 

domain are identified in other echinoderms. BLAST analysis of genome sequence data 

obtained for the sea urchin Allocentrotus fragilis 

(http://www.hgsc.bcm.tmc.edu/blast.hgsc?organism=15) reveals the presence of an exon 

encoding a neurophysin domain that is identical to residues 185-266 of the 

Strongylocentrotus purpuratus NGFFFamide precursor. Thus, this feature is not unique to 

Strongylocentrotus purpuratus but also occurs in other sea urchins. More interesting would 

be to determine if the NGIWYamide precursor protein in the holothurian Apostichopus 

japonicus also has a neurophysin domain. If it doesn’t, this would suggest that the 

neurophysin domain in the NGFFFamide precursor originated in an echinoid ancestor of 

Strongylocentrotus purpuratus. If the NGIWYamide precursor does have a neurophysin 

domain, this would suggest that it originated prior to the common ancestor of echinoids and 

holothurians. It is possible that precursors comprising NGFFFamide/NGIWYamide-like 

peptides together with a neurophysin domain occur throughout the phylum Echinodermata 

and even in closely related phyla such as the Hemichordata and the Xenoturbellida (see 

(Bourlat et al., 2006)). Further investigation of this issue will be possible when genome 

sequences are determined for other echinoderm species and for hemichordate and 

xenoturbellid species.   
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Figure Legends 

 

Fig. 1. The Strongylocentrotus purpuratus NGFFFamide precursor. The sequence of a cDNA 

(lowercase, 1302 bases) encoding the NGFFFamide precursor protein (bold uppercase, 266 

amino acid residues) is shown. The DNA sequence was derived from genomic sequence data 

but EST data were used to determine the length of 5’ and 3’ non-coding regions and the 

positions of introns. The positions of introns in the gene encoding the NGFFFamide 

precursor are shown by highlighting the pairs of bases (bold and underline) in the cDNA 

sequence that are interrupted by an intron in the corresponding genomic sequence. The 

predicted signal peptide is shown in blue and the two copies of the NGFFFG sequence are 

shown in red, interrupted and flanked by putative dibasic cleavage sites (KR) shown in green. 

The C-terminal neurophysin-like region of the precursor is shown in purple with the fourteen 

cysteine residues underlined. The asterisk shows the position of the stop codon.  

 

Fig. 2. The Strongylocentrotus purpuratus echinotocin precursor. The nucleotide sequence 

(lowercase) encoding the echinotocin precursor is shown, as predicted by the GLEAN3 gene 

prediction algorithm, with the corresponding protein sequence (165 residues) shown in bold 

uppercase. The positions of introns in the gene encoding the echinotocin precursor are shown 

by highlighting the pairs of bases (bold and underline) in the sequence that are interrupted by 

an intron. The predicted signal peptide is shown in blue, the echinotocin sequence 

(CFISNCPKGG) is shown in red followed by a putative dibasic cleavage site (KR) shown in 

green. The neurophysin-like region of the precursor is shown in purple with the fourteen 

cysteine residues underlined. The asterisk shows the position of the stop codon. 
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Fig. 3. ClustalX multiple alignment of the sequences of the Strongylocentrotus purpuratus 

NGFFFamide precursor, the Strongylocentrotus purpuratus echinotocin precursor and 

precursors of vasopressin/oxytocin-like peptides in other species. Signal peptides are shown 

in the blue, neuropeptides are shown in red, dibasic cleavage sites are shown in green and 

neurophysin-like domains are shown in purple. The conserved cysteine residues in the 

neurophysin-like domains are underlined and numbered 1 – 14.  The precursors of 

vasopressin/oxytocin-like peptides from other species include precursors of human 

vasopressin (Mohr et al., 1985), human oxytocin (Mohr et al., 1985), vasotocin from the 

lamprey Lethenteron japonicum (Suzuki et al., 1995), an oxytocin-like peptide (SOP) from 

the urochordate Styela plicata (Ukena et al., 2008), Lys-conopressin from the mollusc 

Lymnaea stagnalis (Van Kesteren et al., 1992), cephalotocin from the mollusc Octopus 

vulgaris (Reich, 1992), annetocin from the annelid Eisenia foetida (Oumi et al., 1994) and 

inotocin from the arthropod (insect) Tribolium castaneum (Aikins et al., 2008; Stafflinger et 

al., 2008). Also included is a precursor from the nematode Caenorhabditis elegans 

(GenBank: NP_001033548, GI:86564869) that has not been reported previously in the 

literature; this precursor contains an unusual putative vasopressin/oxytocin-like peptide 

comprising just eight residues (CFLNSCPY), which we have named “nematocin”. 

 

Fig. 4. Neighbour-joining tree (with bootstrap values) based on a ClustalX multiple 

alignment of neurophysin (NP) sequences, incorporating residues from the first to the 

fourteenth conserved cysteines. The tree shows that the neurophysin domain of the 

Strongylocentrotus purpuratus NGFFFamide precursor does not have a higher level of 

overall sequence similarity with the neurophysin domain of the Strongylocentrotus 

purpuratus echinotocin precursor than with the neurophysins from other species.  
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Fig. 5. NGFFFamide and echinotocin cause contraction of sea urchin tube foot and 

oesophagus preparations. Representative traces show that application (arrows) of 

NGFFFamide (3 x 10-6 M; A,B) and echinotocin (3 x 10-6 M; C,D) causes contraction of 

oesophagus (A,C) and of tube foot (B,D) preparations from the sea urchin Echinus 

esculentus. (E) Graph showing the dose-dependent effect of NGFFFamide on tube foot (filled 

squares) and oesophagus (open squares) preparations. Data points are mean values (n = 4) 

with bars showing standard errors. (F) Graph showing the dose-dependent effect of 

echinotocin on tube foot (filled squares) and oesophagus (open squares) preparations. Data 

points are mean values (n = 4) with bars showing standard errors. 

 

Fig. 6. Comparative alignment of the amino acid sequence of echinotocin with the sequences 

of vasopressin, oxytocin, vasotocin and vasopressin/oxytocin-like peptides identified in other 

invertebrate species. Cysteine residues, which are conserved in all of the peptides, are shown 

in bold. References: 1. Present study; 2. (Light and Du Vigneaud, 1958); 3. (Suzuki et al., 

1995); 4. (Kawada et al., 2008); 5. (Ukena et al., 2008); 6. (Van Kesteren et al., 1992); 7. 

(Reich, 1992); 8. (Oumi et al., 1994); 9. (Proux et al., 1987); 10. (Aikins et al., 2008); 11. 

(Stafflinger et al., 2008); 12. GenBank: NP_001033548, GI:86564869.  

 

 



 

FIGURE 1  
 
 
 
1                                                     aaacttga 
9 ttcgatcgcggggagcataacaccaggagagatttttgatgttaagagagtggacaaaac 
69 acagcatttgatcattggttagtggaactaggtggaagagaattcaatggttcgcctcgc 
129 tggaaacaacagtggagaataggcacgagctatacgtggagaaaaggttttcgttagatt 
189 taggtgcctcgagaaaagatcgcaggtcgattggtttaagggaaggtaccgaaggaaaag 
249   atgggctacgagagacggatactgcggacgttattgtcgatcttaatagtactagcatca 
       M  G  Y  E  R  R  I  L  R  T  L  L  S  I  L  I  V  L  A  S  20 
309   ttcgtcacagtctatggagaaagagatagcaactttatgcaacagaagcaattcaggaat 
       F  V  T  V  Y  G  E  R  D  S  N  F  M  Q  Q  K  Q  F  R  N    40 
369   atagtaccgtcaccgcttatccaaaaatggcgggaaaatcgaatgggtcccgcggaggag 
       I  V  P  S  P  L  I  Q  K  W  R  E  N  R  M  G  P  A  E  E    60 
429   aagactagcaacgaacagtggagggacgagctccttagtaaccttagaaacgtgcttaga 
       K  T  S  N  E  Q  W  R  D  E  L  L  S  N  L  R  N  V  L  R    80 
489   aaacacaacgcatcaccatcatcacgaagcagagacagaaccgacatcacagcctacggc 
       K  H  N  A  S  P  S  S  R  S  R  D  R  T  D  I  T  A  Y  G    100 
549   ctccaagaacctatgcagcagcttcctgcagacgtaacggccgatcagttgttcatacta 
       L  Q  E  P  M  Q  Q  L  P  A  D  V  T  A  D  Q  L  F  I  L    120 
609   gagggcgctgtaaactcacccagggaaaactacgaggaggaaacgcccattgacgaggat 
       E  G  A  V  N  S  P  R  E  N  Y  E  E  E  T  P  I  D  E  D    140 
669   aagagaaacggatttttcttcggtaaacgtaacggatttttcttcgggaagaggtcggat 
       K  R  N  G  F  F  F  G  K  R  N  G  F  F  F  G  K  R  S  D    160 
729   agcgatgcctcatcaaccaagatggacgatgacagactacccaaatacgaatcatcagga 
       S  D  A  S  S  T  K  M  D  D  D  R  L  P  K  Y  E  S  S  G    180 
789   tcatttgataagtgcagaccatgcggtccaggccggcagggacgatgcgtaatggtgggt 
       S  F  D  K  C  R  P  C  G  P  G  R  Q  G  R  C  V  M  V  G    200 
849   acatgttgtagtcccctattcggctgctacctattcacacccgaagccgcagcgtgtatg 
       T  C  C  S  P  L  F  G  C  Y  L  F  T  P  E  A  A  A  C  M    220 
909   acagaagatgtgtccccgtgtcaactcaatgcgccttcctgtggccttgcaggaaagtgt 
       T  E  D  V  S  P  C  Q  L  N  A  P  S  C  G  L  A  G  K  C    240 
969   gtagccgatgggatttgctgttctgccgcagagggcgcctgccaccttgacccgacctgt 
       V  A  D  G  I  C  C  S  A  A  E  G  A  C  H  L  D  P  T  C    260 
1029  acgtcgatgtcattaaattaattttggacgcattggtgtatttttcaaatcaatatcatg 
       T  S  M  S  L  N  *                                           266 
1089  gtgtacagttttttctgaccctgtaatttcctctagctccgaaaataatcttcttactcg 
1149  accgttccatttacctttttctttggtcgaattcattaggaacgtgcgcttacaaaatgt 
1209  tgtgtaattgtactatcaactcctggttgttatgagcatttattcgctattgagattgtt 
1269  gtatttccgtactcaaacttgaatccaacgcgct 

 



  

FIGURE 2  
  
 
 
1    atgatgtccgtcaagagtatagtcacctgtttgtttctgtcattggttctggctctatgg  
      M  M  S  V  K  S  I  V  T  C  L  F  L  S  L  V  L  A  L  W    20 
61   ataggggggagcttcgcctgttttatctccaactgcccaaaggggggtaaaagatcaaat  
      I  G  G  S  F  A  C  F  I  S  N  C  P  K  G  G  K  R  S  N    40  
121  tctcgtccacttagacagtgcctcgaatgcggaccaggcggcgtaggaaggtgcatgggc  
      S  R  P  L  R  Q  C  L  E  C  G  P  G  G  V  G  R  C  M  G    60   
181  ccagggatctgctgcggaccaacgattggctgtcacatcaacacacaacacacactgtcc  
      P  G  I  C  C  G  P  T  I  G  C  H  I  N  T  Q  H  T  L  S    80  
241  tgtatgcgagaaaacgagatctcaacgccatgtgaactcccaggaaacccttgtcagact    
      C  M  R  E  N  E  I  S  T  P  C  E  L  P  G  N  P  C  Q  T   100  
301  gtcccaagtggtacatgtggagcaatgggtgtatgctgcaatagtaattcttgttcagaa  
      V  P  S  G  T  C  G  A  M  G  V  C  C  N  S  N  S  C  S  E   120  
361  gatgcatcctgtctgatgattgaagaggatgactccctcaaaagatttgagcagatgagt  
      D  A  S  C  L  M  I  E  E  D  D  S  L  K  R  F  E  Q  M  S   140  
421  cgagaggaaaacggttcgacgaggaaagacctccgggttaaacttctcgatttacttttg       
      R  E  E  N  G  S  T  R  K  D  L  R  V  K  L  L  D  L  L  L   160                
481  aacatgcaggatcaataa 
      N  M  Q  D  Q  *               165 

 
 
 



 
 

FIGURE 3 
 
 
NGFFFamide      MGYERRILRTLLSILIVLASFVTVYGERDSNFMQQKQFRNIVPSPLIQKWRENRMGPAEEKTSNEQWRDELLSNLRNVLR 80   
 
NGFFFamide      KHNASPSSRSRDRTDITAYGLQEPMQQLPADVTADQLFILEGAVNSPRENYEEETPIDEDKRNGFFFGKRNGFFFGKRSD 160 
Echinotocin     --------------------MMSVKSI---VTCLFLSLVLALWIGGSFACFISNCPKG-----------------GKRSN 40 
Vasopressin     -----------------------------MPDTMLPACFLGL-LAFSSACYFQNCPRG-----------------GKR-- 31 
Oxytocin        -----------------------------MAGPSLACCLLGL-LALTSACYIQNCPLG-----------------GKR-- 31 
Vasotocin       --------------------------MARCAPLTLAVSVLSL-VLISSACYIQNCPRG-----------------GKR-- 34 
SOP             -----------------------MTSSHPKRLNQLICCVVIMSYVTVQGCYISDCPNS-----------------RFWST 40 
Lys-conopressin --------------------MMSSLCG---MPLTYLLTAAVLSLSLTDACFIRNCPKG-----------------GKRSL 40 
Cephalotocin    ---------------------MSQNCFAIVQLLFVLFTVCSLFIATTDGCYFRNCPIG-----------------GKRAT 42 
Annetocin       -----------------MACTKKSANMKLRKSLTVTAFLLFVNLSLSSACFVRNCPTG-----------------GKRSV 46 
Inotocin        -----------------------------MSTIITSIILLVLSESLVSGCLITNCPRG-----------------GKRSK 34 
Nematocin       -----------------------MGSSP-------ILLVLAISIGLASACFLNSCPYR-----------------RYGRT 33 
 
                                        1  2            3     45     6          7           8 
NGFFFamide      SDASSTKMDDDRLPKYESSGSFDKCRPCGPGRQGR-----CVMVGTCCSPLFGCYLFTP-EAAACMTEDVSP----CQLN 230 
Echinotocin     --------------SRP----LRQCLECGPGGVGR-----CMGPGICCGPTIGCHINTQ-HTLSCMRENEIS--TPCELP 94 
Vasopressin     ---------------AMSDLELRQCLPCGPGGKGR-----CFGPSICCADELGCFVGTA-EALRCQEENYLP--SPCQSG 88 
Oxytocin        ---------------AAPDLDVRKCLPCGPGGKGR-----CFGPNICCAEELGCFVGTA-EALRCQEENYLP--SPCQSG 88 
Vasotocin       ---------------DLTD-SVRQCLPCGPGGQGR-----CFGPRICCGEAMGCRLGGP-DVAICRAERLMP--SPCESR 90 
SOP             G-----KREPTREKQTRSGPPIRKCPPCGLRGTGQ-----CFSSRMCCTPALGCVIGENEITEPCRYESRIP--VECASA 108 
Lys-conopressin --------------DTG-MVTSRECMKCGPGGTGQ-----CVGPSICCGQDFGCHVGTA-EAAVCQQENDSS--TPCLVK 97 
Cephalotocin    --------------PMSEQGSNQKCMSCGPNGEGQ-----CVGSNICCHKD-GCIIGT--LAKECNEENEST--TACSVK 98 
Annetocin       --------------LLSPLQPARQCMPCGATVGGRSVLGVCVSENTCCVAHLGCFVNTE-ESKVCALENHLS--TPCRLE 109 
Inotocin        --------------FAISENAVKPCVSCGPGQSGQ-----CFGPSICCG-PFGCLVGTP-ETLRCQREGFFHEREPCIAG 93 
Nematocin       ----------------------IRCSSCGIENEGV-----CISEGRCCT------NEECFMSTECSYSAVCP--ELFCKI 78 
 
                   9              10    11 12    13    14 
NGFFFamide      APSCG----------LAGKCVADGICCSAAEGACHLDPTCTSMSLN---------------------------------- 266 
Echinotocin     GNPCQTVP--------SGTCGAMGVCCNSNS--CSEDASCLMIEEDDSLKRFEQMSREENGSTRKDLRVKLLDLLLNMQD 164 
Vasopressin     QKACGS----------GGRCAAFGVCCNDES--CVTEPECREVFHRRAR--ASDR---SNATQLDGPAGALLLRLVQLAG 151 
Oxytocin        QKACGS----------GGRCAVLGLCCSPDG--CHADPAC----DAEAT--FSQR------------------------- 125 
Vasotocin       GEPCGH----------GGKCGAPGLCCSSES--CAEDASCG--WEGGDS--PGERPFPHSALRLQSPAAEAMLELINSNS 154 
SOP             GPTCMRKDREKGNVQSMGVCAADGLCCNADG--CTYHHECLLAEKDPSDSMAPLATIRSSL------------------- 167 
Lys-conopressin GEACGSRD--------AGNCVADGICCDSES--CAVNDRCRDLD--------------GNAQANRGDLIQLIHKLLKVRD 153 
Cephalotocin    GVPCGTDG--------QGRCVADGVCCDESS--CFTTDRCDREN--------------HRSMA--------MQKLLEIRD 146 
Annetocin       GPPCGSDG--------QDVCAVEGICCAGQN--CRYDAQC---------------------------------------- 139 
Inotocin        SAPCRKN---------TGRCAFDGICCSQDS--CHADKSCAS--DDKSP--IDLYTLINYQAELAGDK------------ 146 
Nematocin       G-------------HHPGYCMKKGYCCTQGG--CQTSAMC---------------------------------------- 103 
 
NGFFFamide      ------------- 266 
Echinotocin     Q------------ 165 
Vasopressin     APEPFEPAQPDAY 164 
Oxytocin        ------------- 125 
Vasotocin       LRD---------- 157 
SOP             ------------- 167 
Lys-conopressin ---YD-------- 155 
Cephalotocin    GIYYKK------- 152 
Annetocin       ------------- 139 
Inotocin        ------------- 146 
Nematocin       ------------- 103 
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FIGURE 6 
 
 
Peptide  Sequence                      Source                    Ref. 

 
Echinotocin   Cys-Phe-Ile-Ser-Asn-Cys-Pro-Lys-Gly-NH2        S. purpuratus (Echinodermata) 1 
Vasopressin   Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Arg-Gly-NH2        Homo sapiens (Chordata)  2 
Oxytocin      Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH

2 
       Homo sapiens (Chordata)  2 

Vasotocin     Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Arg-Gly-NH2         Lethenteron japonicum (Chordata) 3 
Ciona-VP      Cys-Phe-Phe-Arg-Asp-Cys-Ser-Asn-Met-Asp-Trp-Tyr-Arg    Ciona intestinalis (Chordata) 4 
Styela-OP     Cys-Tyr-Ile-Ser-Asp-Cys-Pro-Asn-Ser-Arg-Phe-Trp-Ser-Thr-NH

2 
  Styela plicata (Chordata)  5 

Conopressin   Cys-Phe-Ile-Arg-Asn-Cys-Pro-Lys-Gly-NH2        Lymnaea stagnalis (Mollusca) 6 
Cephalotocin  Cys-Tyr-Phe-Arg-Asn-Cys-Pro-Ile-Gly-NH2          Octopus vulgaris (Mollusca)  7 
Annetocin     Cys-Phe-Val-Arg-Asn-Cys-Pro-Thr-Gly-NH

2
                  Eisenia foetida (Annelida)  8 

Inotocin      Cys-Leu-Ile-Thr-Asn-Cys-Pro-Arg-Gly-NH2                  Locusta migratoria (Arthropoda)    9-11 
Nematocin     Cys-Phe-Leu-Asn-Ser-Cys-Pro-Tyr                          Caenorhabditis elegans (Nematoda) 12 


