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Abstract: 

Polymers and polymer composites are susceptible to premature failure due to the formation of 

cracks and microcracks during their service time. Evolution of cracks and microcracks could 

induce catastrophic material failure. Therefore, the detection/diagnostics and effective repair of 

cracks and microcracks are vital for ensuring the performance reliability, cost effectiveness and 

safety for polymer structures. Cracks and microcracks, however, are difficult to detect and often 

repair processes are complex. Biologically inspired self-healing polymer systems with inherent 

ability to repair damage have the potential to autonomically repair cracks and microcracks. This 

article is a review on the latest developments on the topics of cracks and microcracks initiation 

and propagation in polymer structures and it discusses the current techniques for detection and 
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observation. Furthermore, cracks and microcrack repair through bio-mimetic self- healing 

techniques is discussed along with surface active protection. A separate section is dedicated to 

fracture analysis and discusses in details Fracture mechanics and formation. 
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1 Introduction  

Polymer materials used in the automotive, aerospace and space industries are required to perform 

in conditions where they may undergo severe mechanical, thermal and chemical damage. 

Replacing or repairing damaged parts is often expensive and difficult.  

Polymer structural damage can be classified into macro and microscopic levels. Microscopic 

scale damage such as microcracking occurs as a result of impact and internal stresses. 

Microcracking is the major cause of material failure due to its nature of being undetected and 

also because of the induced structure fragmentation which leads to the reduction of mechanical 

properties such as strength, stiffness and dimensional stability [1, 2]. Table 1 shows the most 

common polymer composites and their advantageous of use, applications and main source of 

cracks and microcracks damage. 

Macroscopic damage is traditionally detected visually and repaired manually. Damage inspection 

techniques such as ultrasonics and radiography are used to detect microscopic and internal 

damages. However, damages like microcracking are difficult to detect due to limitations in the 

resolutions of these techniques and hence it won’t be repaired.  Further, cracks, structural defects 

and delamination that form deep into the structure of polymer composites are extremely difficult 

to detect and repair [1, 3, 4]. These internal defects not only decrease the material performance 

but also serve as catalysts for further damage like macrocracks, moisture swelling and debonding. 

Microcracks are also responsible for the environmental degradation of the polymer and the 
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consequence reduction in performance [5-7] as well as reducing adhesion which leads to 

debonding [8]. 

Most of the damage that occurs on the surface of polymer structures or laminating polymers 

causes chains and structure break-up. This causes a rapid deterioration of physical properties at 

the damage site which also can propagate locally or migrate to other sites. Repairing the 

damaged chains often result in restoring the original properties and prevents the damage from 

expanding.  

Polymer chains are damaged when subjected to external stress such as aggressive chemicals, heat, 

light (including UV), mechanical impact, radiation and particles. The damage might manifest as 

a dent, crack, microcrack, rupture and fracture. Damage retardant and resistant additives are 

added to polymer and polymer composites for industrial application to provide protection. 

However, once damage stress overwhelms the protection barrier, these additives have no 

repairing mechanisms [9-12]. In thermosetting polymers, the final molecular structure depends 

on the curing reaction conditions during the manufacturing process. Therefore, monitoring the 

progress of the curing reactions enables more control over the final product specifications 

including formation of cracks and microcracks [13-15].  

Polymer composites with the capability of self healing or self repair based on mimicking the 

biological process of wounds healing have been introduced recently [1, 3, 16-20]. The 

incorporation of microencapsulated dicyclopentadiene (DCPD) healing agent into epoxy 

composite can extends fatigue life by as much as 213% [16]. Up to 80 % recovery has been 

reached by healing at 80 0C of the fiber-reinforced composite materials filed with 
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dicyclopentadiene monomer stabilized with 100–200 ppm p-tert-butylcatechol in form of 

microcapsules with a mean diameter of 160 µm [17, 18]. At present, self healing polymer 

composites face serious challenges of being expensive to manufacture and lack of fundamental 

process knowledge. These composites mostly work in preventing further damage rather than 

complete healing. They also have poor mechanical properties and they are difficult to mould into 

large structures. A new generation of self cross-linkable polymer resin composites (thixotropic 

and phenolic epoxies) with self healing properties has the potential to provide the essential 

understanding as well as the economic and the industrial solution. Significant research is needed 

to understand the self healing concept and the cross-linking reactions mechanism to successfully 

apply self healing material in the automotive, aerospace and space industries.  

2 Crack and microcrack: Formation; initiation and propagation  

Most polymer composites are subjected to mechanical loadings and environmental factors during 

fabrication, storage and service. As a consequence, microcracks may be formed in the 

composites during static, dynamic, fatigue cyclic loading of different types, such as tension, 

compression and shear.  

Exposure to variable environmental conditions such as temperature, moisture, chemicals, and 

radiation also cause the formation and propagation of microcracks. Polymer composites 

subjected to synergistic effects of mechanical loading and environmental exposure usually are 

more susceptible to microcrack formation and propagation. Microcracking in the polymer 

composites immediately cause deterioration of the thermomechanical properties and it also 

serves as initiator to other forms of damage; induce delamination and fibre-matrix interfacial 

debonding and cause fiber fracture, provide pathways for entry of moisture, oxygen, and other 
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corrosive liquid [21, 22]. Thus, microcracks can ultimately lead to overall material degradation 

and affect the long term durability of the polymer composites materials[23]. Table 2 presents 

examples of various causes of defects in composites and their detection methods.  

Several models have been proposed for a polymer composite system in which a crack start 

travelling in the matrix approaching the reinforcing fibres. For a given fibre reinforced composite 

where the fibre is gripped by the polymer matrix, a matrix crack is halted by fibre. Upon 

increasing the load, crack starts to pass around the fibre without breaking the interfacial bond. 

Interfacial shearing and lateral contraction of the fibre result in debonding and a further 

increment of crack extension. After considerable debonding the fibres break at some weak points 

within the matrix and further crack extension occurs. The total failure of the composite happens 

when the broken fibre end is pulled out against the frictional grip of the matrix[24]. 

2.1 Thermal stress induced microcracking 

Thermal stress could be generated in polymer composites either during manufacturing process or 

when the composites are exposed to service conditions. Thermal stresses mainly arise from the 

mismatch of thermal expansion coefficients between the reinforcement and the matrix, cure 

shrinkage in thermosetting matrices and melting/solidification volumetric changes in 

thermoplastics[23, 25]. Microcracks in carbon fiber/epoxy laminates were studied at the range of 

cured temperatures of 70-180 oC [25]. The average final crack density (cracks/cm2) has been 

increased from 10 to 35 with increase of stress free temperature from 120 to 200 oC. Thermal 

stress increases as the difference between the operating temperature and the stress-free 

temperature increases. Accumulation of thermal stresses in polymer composites could initiate 

microcracking and cracking even in the absence of applied mechanical loading [23, 26, 27].  
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The development of thermal stress induced microcracking in polymer composites depends on 

many factors, such as the matrix composition and structure[28], type of reinforcement[29], 

interfacial properties[30], stacking sequence of the laminates[31], fibre volume fraction and fibre 

distribution, the presence of moisture or any inhomogeneity (voids) within the composites 

structure. Timmerman et al [29] studied the influences of matrix and fibre on microcracking of 

carbon fibre/epoxy composites exposed to cryogenic thermal cycling. Their study revealed that 

microcracking occurred in the polymer matrix transverse to the fibers and increased backbone 

flexibility of the polymer matrix (lower glass transition temperature Tg), higher tensile moduli 

and coefficient of thermal expansion of the fibres led to an increased microcrack density. An 

increase of microcracking from 8.5 to 72 cracks/cm2 has been observed with decrease of 

laminate glass transition temperature from 142 to 69oC, respectively.  

Polymer composites that are used in aerospace applications are often exposed to cyclic thermal 

loading. For example, service temperatures for aircraft components normally range from -55ºC 

to 80ºC. The temperatures in the low earth orbit (LEO) where most satellites and space shuttle 

orbit can vary from -150 ºC to 150 ºC. Awaja and co-workers [32] evaluated the epoxy resin 

composites reinforced with various reinforcing materials such as carbon fibre, carbon nanotube, 

nano-clay and 3D-glass fibres under the simulated LEO environmental conditions, including 

high vacuum, UV radiation, atomic oxygen (AO) and thermal cycles. Occurrence of chemical 

reactions such as chain scission and oxidation resulting from degradation in the LEO conditions 

were confirmed for all composites. The degree of the degradation reactions was found to be 

related to the type of the filler reinforcement. Among the five selected polymer composites, CF 

suffered least surface degradation with increase of O 1s percentage from 10.6% to 15.6% and a 
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decline of C 1s percentage from 86.1% to 80.52 % under typical LEO conditions based on XPS 

results. Resin mass loss and flaking occurred on the treated epoxy composites and microcracks 

were formed in the CF sample at the interface of the fibre/resin interface. Synergistic effects of 

simulated LEO environmental conditions accelerate polymer degradation through chain scission, 

oxidation and crosslinking. No surface microcracks were observed for composites reinforced 

with 3D glass woven fabric, which could be due to the high thermal cycling resistance of the 3D 

glass composite as well as the number of thermal cycling performed [33] . 

A number of studies have been undertaken to investigate the effect of thermal cycling on 

microcrack initiation and growth in polymer composites [29, 34, 35]. Shimokawa et al.[34] have 

carried out thermal-cycling tests of up to 10,000 cycles on two kinds of 

carbonfiber/thermoplastic polyimide composite material: IM7/PIXA, IM7/K3B, and up to 1000 

cycles on G40-800/5260 carbon fiber/bismaleimide composite material. A fairly large number of 

transverse microcracks were observed in carbon fibre reinforced composites by the end of 

thermal cycling tests but these microcracks were found not to contribute to the failure of out-of-

plane delamination buckling due to their directions[34]. The type of fibers and the polymeric 

matrix used in the composites play a large role in propagation and distribution of microcracks in 

carbon fibre epoxy composites. Higher fiber tensile moduli resulted in increased microcrack 

density and larger cracks. Increased polymer backbone flexibility caused an increase in 

microcrack density and decreased the Tg of the studied laminates [29, 35]. With a 100 oC 

temperature change an unidirectional laminate stresses of ±15 MPa can be generated, with 

somewhat higher values for a typical 0/90 laminate resulting in mainly matrix cracking with 

change of flexural and transverse properties. 
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Damages in the forms of transverse cracks resulting from thermal loading in extreme conditions 

such as space environment (-157oC to +120oC) have been studied in epoxy composites for 

potential applications in space stations. Microcracks and further surface erosion occurred when 

the composites were exposed to UV radiation, thermal cycling, simulated AO and vacuum [36]. 

Awaja et. al. [37] have studied the structural change of epoxy resin composites reinforced with 

hollow glass microspheres, microlight microspheres, 3D parabeam glass, and E-glass subjected 

to accelerated thermal degradation conditions by X-ray microcomputed tomography (XµCT) and 

optical coherence tomography (OCT). The results showed that air bubbles originally trapped in 

the glass microsphere and microlight microsphere composites underwent expansion as a result of 

thermal treatment, which has been proved to be the main cause for crack initiation and 

propagation in the resin matrix. Cracks/voids found in the E-Glass and 3D-Glass composites 

subjected to elevated temperature result are mostly in the resin matrix and propagate into the 

fabric filler.  

2.2 Mechanical fatigue induced microcracking (mechanical cycling) 

 Fatigue, in general, and of polymers in particular, is the major cause of component failure due to 

cyclic or random application of load [38]. Once under alternating loads, most polymers will fail 

at stress levels much lower than they can withstand under monotonic loading conditions. As a 

result of the periodic nature of the applied load, micro-cracks initiate and propagate at relatively 

low stress level and finally structure will fracture. Although investigation of the fatigue failure 

phenomenon in metals dates back to 18th century [39], studies in polymer fatigue has been 

conducted since 1960’s and several early articles and review papers cover both experimental and 

theoretical investigations of fatigue failure in polymers [40-46]. In most cases, principles initially 
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developed to explain fatigue failure in metals can accurately describe polymer fatigue 

phenomenon [38]. 

 Increased application of polymer based materials in various engineering components and 

advanced structures demands improved polymer fatigue properties. There are several parameters 

influencing the fatigue behaviour of polymers including stress amplitude, intensity and frequency; 

environmental factors such as temperature and humidity; surface coating as well as material 

variables e.g. polymer structure, its viscoelastic characteristics and molecular weight distribution 

[47]. 

One of the strategies for improving fatigue behaviour of brittle thermosetting polymers is to 

enhance fracture toughness. This could be achieved by introducing a second phase such as rigid 

fillers, rubbery particles/thermoplastic modifiers and microcapsules to polymer matrix [16, 48-

57]. While the toughness mechanism in rubber modified polymer is due to shear bending and 

plastic void growth, a crack tip pinning or crack surface bridging mechanism is in play for solid 

filler modified polymers. Using both rubbery particles and solid fillers have been shown to result 

in synergistic toughening in epoxy polymer[48]. Addition of modifiers at 10 vol 10% into a 

ductile epoxy polymer led to improve of fatigue crack propagation resistivity of the polymer to 

more than 100 % [49]. L. Becu et al. [50] have shown that the fracture toughness of the epoxy 

matrix expressed as constant of the Paris Law can be improved from 437x10-3 for pure epoxy to 

0.7x10-3 by introducing core-shell particles at a volume fraction of up to 24 %. In [51] the Paris 

law constant for epoxy polymer was found to be strongly dependent on the liquid-filled urea-

formaldehyde microcapsules concentration, varying from 8.2x10-2 for neat epoxy to 

approximately 8.6x10-4 above 10 wt% microcapsules, but was independent of microcapsule 
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diameter. Similar result was observed for use of wax-protected, recrystallized Grubbs’ catalyst 

leading to 104 increase in the rate of polymerization of bulk dicyclopentadiene and extends the 

fatigue life of a polymer over 30 times longer [52]. Artificial crack closure and hydrodynamic 

pressure crack-tip shielding have also shown to reduce the fatigue crack growth. The mechanism 

involved in these methods is crack-tip shielding in which the intensity of crack tip is reduced 

using polymer infiltration and/or a viscous fluid [16, 58-66]. This therefore makes the concept of 

employing microcapsules very interesting as it utilises all the aforementioned mechanisms to 

enhance the fatigue performance of polymer [16, 52]. Recently the interest in the hydrodynamics 

response of ships in rough seas has been increased significantly. The navigation of ships and 

other floating structures in seaways are frequently experiences wave slamming or pounding 

which give rise to elastic vibration throughout the hull. As a result of the slamming waves, the 

ship’s structure is subjected to repeated impulse forces that cause high fatigue stresses and 

damage to the structure[67-69] made of carbon steel. Reinforced polymer offers a better 

alternative to carbon steel. It is about 30% to 70% lighter than carbon steel and provides stealth 

capability. More importantly, the fatigue accumulation of composite materials are reported to be 

4 – 7 orders of magnitude slower than in metals and that is why composite vessels has never 

shown fatigue problems [70-72]. However, composites have their own drawbacks, they are only 

suitable for smaller ships or boats because they lack the stiffness and the in-plane strength 

required for the large ship hulls. 

 Sandwich composite are finding an increasing number of applications in marine structures such 

as floating marina or the deck of an offshore platform. The high stiffness, light-weight and 

energy absorption gives the sandwich composites an advantage over the conventional materials 
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[73]. Marine sandwich structures demonstrate particular failure modes as a consequence of 

complex in service cycling slamming loads. Slamming loads can cause core crushing, shear 

failure in the core, facesheet-core debonding and compressive or tensile failure of the laminates 

that overtime can reduce the load carrying capability of the marine composites and compromise 

the seaworthiness of the structure. Detection of extent of damage in marine sandwich structures 

under slamming impact are of high importance as it has been found that the face sheets in 

sandwich composite usually remain intact with no visible or apparent damage and therefore 

obscuring any failure events in the core and the interface where damage is likely to initiate and 

propagate [74-76].  

2.3 Surface breaking cracks 

Polymers and polymer composites are widely used in space technologies and space structures 

due to their strength, light weight, good thermal and electrical insulation properties. Most of the 

components in aerospace structures are subjected to cyclic loads and thermal stresses. As a result 

of cyclic loads; cyclic stresses are induced which can result in local crack initiation and growth. 

The cracks are mostly initiated at external surfaces. Initiation and propagation of small cracks 

deep within the structure where detection is difficult and repair is virtually impossible can cause 

catastrophic component failure. Prevention of fatigue failure depends on accurate life prediction 

and regular inspection. In addition, a self healing approach has been recently explored [77] to 

improve the fatigue life of polymers and preventing catastrophic failure of aerospace components. 

The dicyclopentadiene microcapsules (50-200 µm) with a urea-formaldehyde shell were used for 

a self-healing composite production. A recovery of about 75% of the virgin fracture load has 

been achieved with an average healing efficiency of 60%. 
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2.4 Thermo-mechanical stresses induced cracking 

Many engineering components or structures are often subjected to combined thermal and 

mechanical loads. These components are subjected to cyclic strains which are generated both 

thermally and mechanically. Example of such components and structures are the parts of aircraft 

engine hot section that operate in a high temperature environment along with mechanical loading, 

nuclear reactors that subjected to both high temperature and pressure and high pressure vessels 

and boilers[78-80]. 

Thermo mechanical cyclic loading may result in cracks initiation and the propagation of existing 

cracks. These thermo-mechanical stresses cause damage to the components and lead to a failure. 

Predicting the safe life period of components subjected to thermo-mechanical stresses is of great 

importance and challenge to the industry [81-83]. In [83] the combined thermal cycling (CTC) 

and mechanical loading (ML) tests were shown to be a time and cost efficient way to generate 

crack propagation data and so can be used to predict isothermal crack processes. 

2.5 Stress corrosion cracking  

Stress corrosion cracking (SCC) is a common problem for polymers and composites that serve 

under a combination of mechanical stress and chemically aggressive environment. For polyolefin 

pipe, it is commonly observed in the form of a microcrack colony within a surface layer of 

degraded polymer exposed to both mechanical stress and chemically aggressive environment [84, 

85]. Four stages of SCC have been distinguished by Choi et al [85]: (1) multiple crack initiations 

due to localized material degradation, (2) individual crack growth, (3) cracks interaction and 

formation of crack clusters, and (4) crack/cluster instability or crack cluster growth resulting in 

ultimate failure. Figure 1 shows stress SCC formation in combined aggressive chemical 
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environment and mechanical stress. Hogg et. al. [86] developed a model for SCC growth in fibre 

reinforced composites in acidic environment and concluded that the resin toughness plays a 

critical role in resisting the crack growth. The rate of crack growth under stress corrosion 

conditions was found to be controlled by the stress acting on the fibres as log da/dt (m/s)= 

0.005722 (MPa) - 12.57 (conditions: T is 20 0C, 0.65 M HCl) where 22 is the stress acting in 

the fibre direction. The resin matrix modifies the stress acting on the fibres which leads to 

controlling the crack growth rate during stress corrosion.  

Polymer composites can be used as high voltage insulators for overhead high voltage 

transmission lines with voltage ranging from 69 kV to 735 kV. Composite insulators are 

susceptible to brittle fracture caused by SCC of the composite materials, see Figure 2, as a result 

of combined effect of moisture, and corona discharge which forms acid solutions in service [87-

93]. Several critical factors have been identified to influence the SCC in polymer composites 

insulators. These include resin and fibre type, acid type and concentrations, composite surface 

conditions and external stress. M.J. Owen et al. [92]analysed various states of electrical and 

mechanical damages of a group of ten 275 kV polymeric insulators. The combined effect of 

electrical activity and moisture appears to be similar to acid stress corrosion and responsible for 

producing brittle fracture of the pultruded rods of insulators.  

It has been demonstrated that in nitric acid environment and in the presence of mechanical 

bending load, the extent of stress corrosion damage on the surface of high voltage composite 

insulators is strongly dependent on the type of polymer resin used. Vinyl ester, epoxy and 

polyester are the three most common used resins for composite insulators. Studies showed that 

the resistance to the initiation of SCC in nitric acid of the E-glass/vinyl ester composite is 
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approximately 10 times greater than the E-glass/epoxy composite. Furthermore, the E-

glass/epoxy system exhibits approximately 5 times higher resistance to the initiation of SCC than 

the E-glass/modifed polyester system [94]. SCC growth on composites can occur far below the 

fracture strength since fibres under stress are very sensitive to acid environment. Under the stress 

corrosion, acid environments drastically affects the life of composites[95]. 

The initiation of SCC has also been evaluated in acid environment and in the absence of 

mechanical loads.  Kumosa et. Al. [96] demonstrated that E-glass/epoxy composite used in 

composite high voltage insulators with the line voltage from 60 to 735 kV are the most 

susceptible to the stress corrosion damage in nitric acid environment when no mechanical stress 

is applied. It has been speculated that this is mainly due to the different amount of fibres exposed 

on the surface of polymer composites (35.5% and 11.7% for the epoxy and modified polyester 

composite, respectively) as a result of different manufacturing process and physical properties of 

resins used. The externally applied stresses are not necessary for the initiation of SCC on the 

surfaces of fibre reinforced polymer composite insulators. The SCC can develop in the fibres 

embedded in a polymer resin due to presence of residual stresses in the composites, Figure 3. 

However their initiation rates will decrease with time to zero if external mechanical loads are not 

applied.  

Surface condition of polymer composite used in high voltage insulators plays a key role in SCC. 

In order to provide a better adhesion between composite rods and other components used in 

insulators which ultimately leads to preventing moisture coming to contact with composite rods, 

sandblasting is applied on the composite surface. Sandblasted polymer composite insulators have 

shown no negative effect on the SCC initiation and propagation. Low and medium level of sand 



20 

 

blasting exhibited slight improvement in composite resistance which was estimated as acoustic 

emission signal (AE) to stress corrosion cracking. The improvement of resistance of E-

glass/vinyl ester from 34.2 to 17 and 7.5 AE events for as-supplied, low sandblasted, and 

medium sandblasted samples was attributed to release of residual extrusion stresses in the fibres 

[97]. 

Chemical composition of fibres used in fibre reinforced composite insulators has an influence on 

SCC resistance of composites. Boron free E-glass fibre reinforced polymer composites exhibit a 

significant enhancement in SCC resistance in nitric acid environment of pH 1.2 from 43699 AE 

events for E-glass/modified polyester to 327 AE events. This effect is despite the fact that boron-

free E-glass composites has a high level of surface fibre exposure[98].  

Polymer matrix composites are increasingly being used in advanced structures such as aerospace 

components that experience high temperatures (more than 100 ºC) and oxidative environments. 

While reinforcing fibres used in these structural parts may tolerate such a severe condition, it is 

the matrix and fibre/matrix interphase that can be readily degraded causing the structural failure 

[99, 100]. Two epoxy/carbon model composite systems, R922- 1 /C- 12K and R6376/C-12K, 

were investigated for aging at 177oC up to 10 000 h. In the absence of oxygen, the weight loss 

rate difference between the two material systems at 177°C was not significant (0.010% h-l), but 

the weight loss rate difference in air was dramatic (0.126% h-1) [99]. In [100] 977-2 epoxy/amine 

resin plates have been aged at 150 oC under vacuum and ambient air. The thermal ageing under 

vacuum, even after 1000 h, does not lead to any noticeable variation of the elastic modulus. In 

contrast, 1000 h of isothermal ageing in air leads to an increase of the elastic modulus up to 35%: 

5500 MPa compared to the initial value of 4070 MPa. 
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 Studies on oxidation of matrix revealed that resin oxidation occurs at the matrix surface 

controlled by oxygen diffusion that creates cracks even without any external loading. The matrix 

cracks then become a pathway for oxygen penetration through oxidised layer increasing in an 

amine epoxy by 19% with increase of ageing temperature from 180 oC to 220 oC causing more 

damage to the structure which ultimately leads to failure [101, 102].   

2.6 Thermo-oxidation-induced crack 

Thermo-oxidative behaviour of fibre reinforced composites is highly influenced by the type of 

fibres used to reinforce the resin matrix[103]. Carbon fibre has a stabilising effect on matrix 

oxidation due to the radical scavenging property of carbon [104]. The stabilizing effect appears 

to have little dependence on the polymer nature or the carbon fibre nature as it was found to be 

about 35% for T800H/BMI and 44% for IM7/ACE composites where fibre volume fraction ws 

estimated to be 60 and 65 %, respectivly. While thermo-oxidative degradation in neat resin is 

mainly diffusion controlled, thermo-oxidation in fibre reinforced polymer composites is only 

diffusion controlled until damage process is activated [105].   

Thermo-oxidation consists of a coupled oxygen diffusion-reaction phenomenon which initially is 

confined to a thin surface layer. Thermo-oxidation environment induces matrix shrinkage strains 

due to the departure of volatile chemical species, and changes local mechanical properties as a 

result of chain scission and internal antiplasticisation of resin network following 3 steps process 

(Figure 4). Experimental and numerical analysis have demonstrated that matrix shrinkage 

generates tensile stress that leads to microcracks. Marco Gigliotti et al. [106] investigated local 

shrinkage and stress induced in composite IM7/977-2 in thermo-oxidative (5 bars O2, 48 h,150 

1C) and neutral environments (5barsN2, 48h,150 1C). During the oxidation phase, the thermo-
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oxidation shrinkage strains and displacements develop only in samples in thermo- oxidative 

environments, with a relative increase of around 48% leading to microcracks. Development of 

microcracks then gives rise to fibre matrix debonding since the matrix microcracking progressed 

along the fibre matrix interface [106-109]. Cracks are generally initiated around fibre tips and 

propagate in the fibre axial direction particularly along the fibre-matrix interface where there is 

no obstacle[110, 111]. Therefore, the interface is considered as an important element in 

determining the extent of surface damage in composites exposed to thermo-oxidative conditions. 

The critical nature of interface signifies the importance of improved fibre matrix interfacial 

adhesion. The composites reinforced with surface treated fibres exhibit lower amount of matrix 

microcracking in the surface layer[112].  

Thermal cycling of composites laminates subjected to oxidative environment demonstrate an 

acceleration of matrix cracking and matrix shrinkage due to coupling between oxidation and 

thermo-mechanical cyclic stresses. Qualitative analysis showed that damage induced by thermo-

oxidative environment is highly influenced by different orientation of plies, laminates stacking 

sequence and the neighbouring ply effect [99, 113-115]. Thermal cycling of carbon/epoxy 

laminates in [113] revealed that cracked surface area of [03/903]S in nitrogen is about 28 mm2 and 

500 mm2 in air whereas for [-453/453]S orientation it was 0 in N2 and only 225 mm2 in air. 

Similar results were obtained in [114] where the cracking damage induced by 500 thermal cycles 

was found dependent on the lay-up: the cracked surface area measured in the [03/903]S laminate 

(e.g. in oxygen: 580 mm2) is twice higher than in the [453/453]S laminate (210 mm2) and much 

higher than in the QI sample (6.5 mm2). A significant increase in matrix cracking of cross-ply 

laminates aged in thermo-oxidative conditions is mainly due to a decrease in resin toughness 

close to the exposed surfaces. This has a direct effect on onset of damage and causes fast 



23 

 

propagation of the matrix micro-cracking [116]. Table 3 shows examples of polymer structures 

with measured shrinkage due to thermal and oxidative damage. 

2.7 Microcracking due to UV exposure  

Polymeric materials exposed to ultraviolet (UV) light radiation generally lose their physical and 

mechanical properties with time. X. Gu et al. [117] have shown with micro-FTIR images of the 

outdoor exposed epoxy/polyurethane samples, substantial amounts of oxidation products in the 

60 µm deep region from the surface to the epoxy bulk which was confirmed by significant 

increase of the elastic modulus in the first 60 µm region after UV degradation by 

nanoindentation. Upon UV exposure, UV photons are absorbed by polymers and these give rise 

to photo-oxidative reactions which causes molecular chain scission and/or chain crosslinking [6, 

118]. Molecular chain scission process generates polymer radicals and lowers the molecular 

weight of polymers. Chain crosslinking results in excessive embrittlement as a result of reduced 

molecular mobility and is mainly responsible for the formation of microcracks [119]. For some 

polymers such as polyethylene, both crosslinking and chain scission may take place concurrently 

as a result of UV exposure. 

UV degradation is not limited to the polymer bulk, it usually starts at the surface and penetrates 

gradually to the bulk. In a set of experiments with high-performance polymers (Kapton, Mylar, 

Lexan, PEEK) effect of UV treatment/atomic oxygen (fluence 1.7×1020 cm-2) for 5-8 hours has 

been studied in [120] and top layer of 0.1-0.2 µm was effected by UV degradation [120]. Surface 

oxidation occurs upon UV radiation which accumulates thermomechanical stress on the surface 

leading to mechanical pressure that spreads into the bulk and forms cracks.  
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Thermal history of polymers has been found to influence their UV stability. PVC that has been 

processed for long periods and/or high temperature demonstrates less resistance to UV damage 

[10].This may be due to the increase in the degree of degradation of macromolecular compounds 

as a result of processing temperature and time. Thermodynamic analysis for PVC has shown that 

the generation and growth of microvoids ( both in number and length) which is followed by 

formation of cracks is a result of relaxation of residual energy, creation of polar groups and the 

adjustment of conformation of macromolecular chains [121]. UV radiation has enough energy to 

break the carbon and oxygen bonds in polymers and to build volatile fragments. Surface 

outgassing of volatiles leads to shrinkage of the skin layer which generates further mechanical 

stresses that can propagate into the bulk of the composites [107, 122, 123]. In [122] oxidative 

induced shrinkage of the polymer made of a mixture of aromatic epoxy (triglycidyl amino 

phenol-diglycidyl ether of bisphenol F) crosslinked by an aromatic diamine, has been studied 

after thermal ageing. At the surface of a 1.5 mm sample exposed 900 h at 150 oC, the shrinkage 

was equal to 2.5% and tensile stress of 85 MP with corresponding compressive stress in the 

sample core of 10 MPa. The environmental degradation behaviour of epoxy-organoclay 

nanocomposites due to accelerated UV is studied by Woo et. al. [6]. SEM results showed that 

microcracks started to appear on both the neat epoxy and nanocomposite surface after about 300 

h of UV exposure. Upon further exposure, the microcracks propagated deeper into the matrix and 

become broadened in the neat epoxy. Compared to neat epoxy, cracks on the nanocomposite 

surface appeared to be wider and shallower due to the present of organoclay in the 

nanocomposites. Similarly, after exposure to 500 h of UV radiation, formation of microcracks 

has also been found in the epoxy matrix in carbon fiber reinforced epoxy composites[118]. These 

microcracking phenomenon are caused by excessive embrittleness of the polymer matrix 
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resulting from increased crosslinked molecules generated through photo-oxidation reactions 

induced by UV radiation. Matrix cracking and extensive debonding of the glass fibre-epoxy 

matrix interface after 100 hours exposure to UV has also been reported [124]. 

Solar UV radiation in the presence of oxygen generates a strong thermal and oxidative 

degradation force for polymer composites. Oxidative thermal degradation at the surface of epoxy 

resin composites leads to structural damage as a result of thermal-mechanical stress and 

oxidation effects (Figure 5).  Thermal stress generates mechanical pressure at the surface and in 

the bulk resulting in crack initiation and propagation. It has been shown that fibre reinforced 

epoxy composites suffer significant surface oxidation as a result of UV radiation and that the 

nature of the reinforcement affects the epoxy resin composite response to UV degradation. 

Surface analysis revealed the occurrence of the chemical phenomena of chain scission, cross-

linking, condensation and oxidation as a result of the accelerated degradation which may cause 

micro-cracks in structure[125]. 

2.8  Microcracking due to hygrothermal ageing  

Water is always present as one of the environmental conditions due to the humidity of the 

atmosphere. Polymer matrix composites used in many structural applications such as aerospace, 

marine and civil engineering are often exposed to a hygrothermal environments defined as an 

environment with combined moisture and temperature. Many polymer matrices tend to absorb 

significant amounts of water when exposed to high humidity. The absorbed moisture combined 

with an elevated temperature causes detrimental physical and mechanical effects to the 

composites [126-128]. Hygrothermal aging in polymer composites is illustrated in Figure 6. 
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Three mechanisms are responsible for moisture transport in composites: diffusion through 

microgaps between polymer chains, capillary processes via gaps and flaws at fibre-polymer 

interface and transport by micro-cracks formed in the matrix during the compounding 

process[129]. Diffusivity of water along the fibre-matrix interface is much more rapid than that 

in the direction perpendicular to the fibres or in polymer with no fibre reinforcement, 

representing the major transport mechanism. The moisture diffusion rate in Kevlar reinforced 

epoxy composites has been found two orders of magnitudes higher than that of epoxy matrix[130] 

Similar behaviour has been reported for sugar palm reinforced epoxy composites [131] . 

Moisture can also diffuse into the composites through microcracks (that accompanies curing) and 

voids. Transport of moisture by microcracks and voids gives rise to swelling and the formation 

of a range of inter- and intra- stresses which can lead to stress cracking. In fibre reinforced 

polymer composites, moisture absorption disrupts the fibre-matrix interfacial bonding leading to 

premature failure. Thus in [132]a reduction of about 34-39 % in delamination damage threshold 

has been observed for the composite laminates of woven carbon and woven glass/SC-15 Epoxy 

resin after 32 weeks of hydrothermal exposure. The absorbed moisture can also act as a 

plasticizer in the polymer matrix and give rise to plastic deformation as well as reduction in Tg 

[132-134]. The absorbed moisture could interact with the polymeric matrix chemically and cause 

hydrolysis. In [135] water absorption has been studied in polyactide 2002D polymer. FTIR 

analysis of the samples tested by hygrothermal ageing in water at 70oC during 8-100 hours have 

revealed chemical changes in the bulk of the polymer confirmed by the relative variation of the 

peaks located at wave numbers 921 cm-1 and 955 cm-1 corresponding to the coupling of the C-C 

backbone stretching with the C-H3 rocking modes, which are related to the presence of a-

crystalline and amorphous regions. The hydrolysis process is generally accelerated by high 



27 

 

moisture content and temperature that results in premature failure of matrix. Hydrolysis can also 

contribute to a decrease in Tg due to chain scission within the matrix structure [136, 137]. 

Moisture absorption and diffusion process for polymer composite materials have been the subject 

of many investigations. Most studies rely on Fick’s law of diffusion in which a rapid increase of 

the absorbed humidity occurs before a maximum is reached after a long immersion time. 

However, due to complexity of interaction between polymer molecules and water, discrepancies 

from the Fickian behaviour are very common. Over the years, various diffusion models have 

been developed and employed to fit the experimental data for hygrothermal effects in polymer 

matrix composites [111, 126, 135, 138-142]. 

There is a vast body of literature detailing the long term durability of polymer composite for 

application in marine environment [143-146]. To simulate the marine environment, many 

researchers have employed distilled water as an ageing medium to conduct marine composite 

research. Researchers comparing the effect of distilled and sea water on the properties of 

polymer composites highlighted the significant differences between sea water and distilled water 

aging particularly in weight gain of composites[147]. It’s been speculated that due to the 

presence of salt crystals blocking water diffusion passages, sea water is absorbed in a lesser 

extent compared to distilled water[148]. There is information in the literature indicating that the 

structural differences in the networks of resins influences the unequal gain in sea water 

molecules and ultimately their mechanical behaviours. Kawagoe et al. found that interfacial 

fracture occurred at the polyester resin-fibre glass interface due to hydrolysis reaction caused by 

seawater molecules[149]. However, the vinyl ester resin composites showed higher hydrolytic 

resistance when immersed in sea water. Microscopy analysis revealed that polyester resin has 
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developed considerably more microcracks compared to vinyl ester counterpart [146]. Table 4 

present details regarding the ageing in polymer composites due to hydrolysis reactions.  

3 Crack and microcrack detection: non-destructive evaluation 

Polymeric materials have wide range of applications such as plastic bags, packaging, coating, 

textiles, fuel storage tanks, containers, electrical insulation, biomedical uses, and large number of 

engineering structures. The extensive use of polymers makes damage detection and monitoring 

vital during the service period. Microcracks formation and propagation are the primary damage 

mechanisms of structural components, it cause a significant degradation in the mechanical, 

thermal and electrical properties of the materials.  

Cracks  detecting techniques in polymeric materials include  non-destructive testing (NDT) 

methods such as visual testing, strain measurements[150-154], CT scanning , ultrasonic testing, 

acoustic emission (AE) [155], vibration-based damage detection  techniques[154, 156], electric 

impedance and thermography [150-157]. These techniques are mainly used to detect local 

damages in structures. The implementation of NDT are limited in use for remote 

measurements[151], they also depend on accessibility nature of the discontinuity, the thickness 

of the material, the depth and type of defect. Furthermore, the signal measuring techniques 

require a highly trained operator to acquire and interpret the data, the signals are also corrupted 

by the structural and electrical noise in addition to attenuation and scattering.  

The uses of high resolution inspection techniques such as electron microscopy and electron 

probing are suitable only for certain specimen type and size and they are in general expensive to 



29 

 

use. Another class of cracks monitoring techniques are based on employing fiber optic probe or 

fluorescent probe [4, 151, 158]. 

Optical fiber sensors were developed to detect and monitor cracks in polymers.  They are 

embedded into the monitored matrix and hence any cracking in the matrix results in cracking in 

the fiber itself causing its transmission properties to be affected. The optical fiber sensors are 

brittle, consequently they must be embedded into other materials, and they are very expensive to 

manufacture and maintain. 

The molecular fluorescent probes are originally used in molecular biology, the pre -dispersed 

probes in the matrix are subjected to changes in the fluorescent intensity as a result of any 

topological changes in the matrix, it has been suggested that it can detect nanoscale cracks in 

polymers[158]. The major limitations of this technique are that it requires a uniform pre 

dispersion of the die and transparent polymer specimen in addition to geometry limitation of the 

specimen due to use of the fluorescent microscope.  In Table 5, a comparison between different 

NDT methods is presented. 

3.1 Optical  

Optical test methods which utilize visible part of electro-magnetic spectrum (wavelength roughly 

between 400 and 700 nm) are primarily used to detect surface and near-surface defects of many 

polymers and PMC. Visual inspection (eye, photography, dye penetrants) Optical microscopy is 

commonly employed to observe surface microcracking in the polymer composites. 

Photomicrographs of the sample surfaces are taken and the number of microcracks on the surface 

is counted. Quantification determination of microcracking density in polymer composites can be 
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done by dividing the total number of microcracks on the sample face by the face area. 

Microscopy is also used to study the propagation of microcracks by recording the location of 

microcracks before applying thermal or fatigue cycling. Bright filed and polarized light 

microscopy are generaly used to identify micro-cracks in composites however in composite 

materials with low contrast such as carbon fibre reinforced composites a contrast dye and dark 

filed illumination or a lazer dye and epi-flurosence are employed to enhance the contrast helping 

to detect microcracks. Dyes are employed along with dark field or polarized light to analyse 

micro-cracks in polymer composites containing translucent fibres such as Kevlar, glass, nylon 

and polyester. Colored dyes are impregnated into fine micro-cracks through capillary action that 

otherwise cannot be detected. In order to examine micro-cracks in thermoplastic polymers 

fluorescence penetrants are used and florescence microscopy is employed to observe micro-

cracks[159, 160]. 

3.2 Optical Coherence Tomography (OCT) 

OCT is a non-destructive and contact-free optical imaging technique which allows extremely 

high-resolution, depth-resolved, three-dimensional imaging of microstructure within scattering 

media [161]. It is originally developed for biomedical applications of biological tissue evaluation 

and it is based on the interference phenomena of white or low-coherence light to determine 

distances and displacement. The principle of OCT is similar to B-mode ultrasound imaging, 

except that OCT typically employs near-infrared light rather than sound. OCT imaging has also 

found application in non-destructive evaluation for non biological materials including polymers 

which have transparent or translucent appearance. Besides polymers, OCT is also well suited to 

retrieve relevant information on the internal defects and structure of polymer composites, such as 
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GFRP. However, some polymer composites comprising of certain filler materials like carbon 

particles, carbon fibres and nanotubes could render the polymer matrix opaque resulting in 

incompatibility with OCT imaging [162]. With the advancement of OCT technique, several other 

OCT techniques have been developed in addition to classic OCT, such as ultrahigh-resolution 

OCT (UHR-OCT) and polarisation-sensitive OCT (PS-OCT). UHR-PS-OCT imaging of the 

matrix fracture, cracks and internal stress in GFRP materials has demonstrated its promising 

potential in detecting defect in the early stage [163].  

3.3 Microscopy (optical microscopy, SEM) 

Microscopy is a useful tool to determine the cause of failure, as well as establishing the area of 

crack initiation. Optical microscopy sample preparation is generally involved sectioning, 

mounting and polishing the area under examination. Not all cracks can be detected using optical 

microscopy, for some materials introducing fluorescent dyes are required to identify the matrix 

cracking[164]. Scanning electron microscopy on the other hand provides more information on 

the process of crack initiation and propagation, however, the samples need to be coated using a 

thin layer of gold in order to avoid electron charges building up on sample. Scanning electron 

microscopy has been extensively used to study the failure mechanism of polymer composites and 

to identify the directions of crack propagation and to determine the origins of fracture in fibre 

reinforced composites[164, 165].    

3.4 Sonic testing 

Sonic and ultrasonic test methods are based on elastic waves propagation in solid or fluid media. 

They can be grouped into two categories: active and passive methods. Active methods require 
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emission of acoustic waves into materials and the reception of waves reflected or transmitted 

from the materials. Passive methods only involve the reception of the waves emitted by the 

material itself. 

3.5 Tap testing 

Tap testing requires an operator to tap the structure to be inspected by hand or by a suitable 

instrument such as a hammer or some other light weight object and detect the defects by listening 

to the resulting sound. It is an inexpensive, fast and easy method to roughly evaluate and locate 

the defects of PMC materials[166]. 

3.6 Acoustic emission 

Acoustic emission (AE) refers to the phenomenon of transient elastic wave generation resulting 

from a rapid release of strain energy due to microstructural changes in the material when 

subjected to mechanical or thermal stresses. It is an example of passive methods which analyse 

the ultrasound pulses emitted by the defects in real time. AE sensors (transducers) which can 

sense the stress waves propagating through a structure are required to detect AE activity. It is an 

effective non-destructive technique to monitor damage growth in different structural materials. 

When a failure mechanism is activated, strain-energy release propagates as a stress-wave from 

the failure source through the medium and is detected at the surface. AE technique can be 

applied to determine both the location of the source and the nature of the damage. For polymer 

composites, many failure mechanisms have been identified as AE sources, including matrix 

cracking, fibre-matrix interface debonding, fibre fracture and delamination [167].  
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3.7 Ultrasonic testing 

Ultrasonic testing of polymer composites is based on the detection and the interpretation of the 

ultrasonic waves reflected by defects such as cracks or voids. The term ultrasonics refers to 

acoustic waves with a frequency above the limit of human hearing, approximately 20 kHz. In 

contrast to electromagnetic waves, ultrasonics waves are a form of mechanical energy that 

consists of oscillations or vibrations of the atoms or molecules of a material. Based on the 

oscillation pattern of the atoms/molecules, Ultrasonic waves can propagate in four principle 

modes, including longitudinal waves, transverse/shear waves, surface/Raleigh waves, and Lamb 

or plate waves. In ultrasonic testing, generation and detection of ultrasonic waves requires the 

use of ultrasonic transducers which convert electrical energy into acoustical (mechanical) energy 

and also a couplant with high ultrasonic signal transmission strength being placed between the 

transducer and the sample. The signal can be detected in either reflection or transmission mode. 

Kinra et. Al. [168] developed an ultrasonic backscattering technique for the detection of matrix 

cracks in laminated composites. The extensive damage of matrix cracking in this composite was 

produced during liquid hydrogen (LH2) permeability test where the composite was subjected to 

thermo-mechanical loading at cryogenic temperature. The incident wave is reflected away from 

the transducer which is also acted as a receiver when there is no interaction between the incident 

wave and the matrix crack, and this indicates the received signal is zero. With the presence of 

matrix cracks, the incident wave is partly reflected back to the transducer and the received signal 

become finite. This technique has shown the ability to detect matrix cracks in each ply of the 

composite laminate in the present of extensive damage in all the plies.  
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The ability of pulse-echo ultrasonics to detect fatigue induced damage generated by cyclic 

flexural loading in thick glass fibre reinforced polymer (GRP) composites has been assessed 

[169]. The results indicated that low fatigue stress induced cracks were difficult to detect by 

ultrasonics because cracks grew in the through-thickness direction which is parallel to the 

transmission direction of the ultrasound waves. While at high fatigue stress, damages are more 

easily detected.  

Shear wave through-transmission ultrasonic C-scan imaging was shown to be a useful technique 

for detection of the partial and internal transverse cracks in a cross-ply graphite/bismaleimide 

laminate[170]. With shear wave through-transmission ultrasonic technique, inclined transducers 

were placed in a confocal configuration with the sample occupying focal plane. When a crack is 

present across the focal area of the transducers, ultrasound beam is partially reflected by the 

crack which causing the change of the transmitted signal amplitude. 

3.8 Penetrating radiation 

3.8.1 Conventional X-ray radiography  

Radiation methods used for non-destructive testing of materials are based on recording and 

analysing of penetrating ionising radiation after interaction with the object being inspected. In 

conventional radiography X-ray beam is used to bombard the target. The unabsorbed radiation 

hits a radiation sensitive film and a 2-D image is formed upon development of film. Microfocal 

X-radiography produces sharper images compared to conventional X-ray methods as it utilises a 

significantly smaller X-ray beam. X-ray images with sufficient contrast are usually hard to obtain 
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in fibre reinforced composites due to low atomic weight of composite molecular components. To 

improve images contrast medium such as sulphur and silver iodide is used[171].   

3.8.2 X-ray computed microtomography  

X-ray microcomputed tomography (XµCT) is a non-destructive radiographic imaging technique 

that can be used to reconstruct interior structural details at a spatial resolution better that 1 µm. 

The term tomography refers to the reconstruction of an object from its projections. In this 

technique, 3D image revealing the internal structure of the sample is reconstructed from a series 

of 2D X-ray absorption images taken at different rotational angles. X-ray tomography allows 

visualization of the 3-D internal microstructure of a material. Quantitative measurements can be 

made from 3D image data, including the spatial distribution and volume fraction of phases. 

Furthermore, structural visualization is possible and XµCT was used previously in inspecting 

mechanically and thermally induced polymer composite damages. One of the drawbacks for this 

technique is the fact that the sample needs to be cut in order to obtain high resolution. 

Several studies have been undertaken to assess the capabilities and limitations of Micro-CT for 

the characterization of damage and internal flaws including delamination and microcracking in 

the polymer composite materials. High-resolution X-ray computed tomography, or 

microtomography (micro-CT), Gain popularity as a technique for Non-destructive testing (NDT) 

of materials and components. 

Schilling et al [172] have carried out a study to evaluate the capabilities and limitations of micro-

CT to characterize damage and internal flaws in fibre-reinforced polymer-matrix composites 

materials and special attention is given to microcracking detection by performing tests to detect 
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microcracking in graphite epoxy laminates with and without the use of a dye. Their results 

showed micro-CT can facilitate characterization of the internal flaws in the composites. The 

magnification is a critical experimental parameter for detecting microcracks in the composites by 

micro-CT without using the dye penetrant, as a result of which, limiting the sample size. 

Excellent characterization of the three-dimensional crack geometry can be obtained using the dye 

penetrant, given sufficient connectivity of the cracks and penetration of the dye.   

In the field of polymer composites, XµCT has been successfully applied as a NDT technique to 

identify and characterize damage and internal flaws including voids, delamination and 

microcracking [37, 172-178]. For example, Sket et al[177] utilised XµCT to monitor initiation 

and evolution of damage in a notched glass fiber/epoxy cross-ply laminate subjected to three-

point bending. Beier et al. [173] reported that resin rich and fibre defects were observed in a non-

crimp fabric (NCF) carbon fibre-reinforced epoxy composite from the cross-sectional µCT 

images. Awaja and Arhatari [174] evaluated the internal damage of syntactic foam materials 

caused by thermal cycling. They reported different types of filler damage and the role of void 

expansion in the generation of cracks. Another study carried out by Schilling et al has shown that 

XµCT is useful in characterizing damage and internal flaws in fibre-reinforced polymer-matrix 

composites materials[172]. Excellent characterization of the three-dementional crack geometry 

can be obtained using the dye penetrant, given sufficient connectivity of the cracks and 

penetration of the dye.  Tan et al.[178] employed XµCT to characterize damage distribution and 

mechanisms (including matrix cracking and delamination) in stitched polymer composites 

subjected to impact loading. Liotier et al[175] employed XµCT to detect hygrothermal fatigue 

induced microcrack network in polymer composites reinforced by multi-axial multi-ply stitched 
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carbon performs. Table 6 lists recent literature demonstrating quantitative measurements of 

defects in composites using tomography technique. 

3.8.3 Compton backscattering diffraction 

The idea of producing X-ray images based on Compton scattering employed in non-destructive 

testing of materials is relatively old. Compton X-ray backscatter images are formed by scanning 

a pencil-shaped beam of x-rays over the inspected object and back-scattered x-rays are scattered 

by interactions with atoms in the object being inspected and the intensity distribution of scattered 

X-rays is measured. Compton backscattering technique is used to on-site crack detection of 

composite structures and can be used where one sided inspection of composite is required. This 

is due to the fact that the x-ray source and detector can be positioned on the same side of the 

target object, enabling testing of large structure such as glass reinforced polymer composite 

sheep skins. Studies showed that Compton back scattering technique has the potential of 

detecting cracks in structures below deposit without removing the deposit or performing other 

surface preparations [179-183]. Table 6 details the usage of X-ray tomography by researchers in 

detecting structural damage in polymer composites at different resolutions. 

3.9 Thermal/Infrared Techniques 

Thermographic techniques are based on the use of thermal energy and its absorption and 

dissipation in a specimen under inspection. There are two types of techniques namely passive 

and active thermography.  While in active thermography an external source of thermal energy is 

required, in passive method heat generates internally as a result of actions such as friction of 
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fracture surfaces. Thermography can be used to inspect large composite structures such as 

aerospace components.  

Infrared thermography is a non-contact, passive thermography and non intrusive optical imaging 

technique for detecting invisible infrared radiation. The distribution of infrared radiation emitted 

by objects can be measured and then transformed into a visible image in temperature scale. 

Infrared thermography has been applied widely in various industries due to the availability of 

wide range of excitation and inspection methods developed for different purposes, such as pulse 

thermography, lock-in thermography and step thermography. Flaw detection such as detection of 

cracks and microcracks by infrared thermography is one of the NDT techniques. Thermal 

imaging which provides temperature distribution profile images clearly indicates the shape and 

location of the defect area. Low amplitude vibration is often used in vibrothermography 

technique where localised heating is induced in specimen. Heat flow is then monitored and 

thermograph is obtained using infra-red sensitive cameras. Thermographs of defected composites 

clearly demonstrate the anisotropy of heat flow. Carbon fibre reinforced composites has been 

evaluated for structural defects using this technique[183, 184]. Table 7 details a comparison 

between the above mentioned methods for cracks and microcracks detection of polymer 

structures using attributes such as resolution, accuracy, ease of use and the type of defects that 

could be detected. 

4 Self Healing: Autonomic Repair and Manufacturing techniques 

Self healing polymeric composites capable of autonomically healing themselves and restoring 

the materials performance in the event of damage possess great potential to solve some of the 

most limiting problems of polymeric structural materials including microcracking and hidden 
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damage. The concept of self healing is based on mimicking the biological process of wounds 

healing. Self healing in polymer composites as a concept mimics the physiological process of 

Hemostasis. Hemostasis is a process in which bleeding is stopped following a series of steps. 

Initially, the ruptured blood vessels are constricted, hence minimizing its diameter to reduce 

blood flow. Then an element of the blood called platelets bind to collagen in the ruptured blood 

vessels walls to form a plug. Then the coagulation step follows, a blood protein (fibrinogen) is 

transformed into polymerized fibrin which generate a clot. The clot makes the basic platform for 

the growth of fibroblasts and smooth muscle cells within the vessel wall. The repair process that 

follows results the dissolution of the clot.   

The successful self healing process is reported to consist of several key elements [1, 3, 19]; (1) A 

repairing chemical, often called healing agent, which is either a monomer or a polymer (2) A 

fibre to encapsulate the healing agent within the polymer matrix (3) A procedure of hardening 

the healing agent in the polymer matrix. The key element of self healing is that no external 

component is required to repair the damage such as tools or external materials. Self healing 

agents must satisfy the properties of fast reaction during cure [1, 19].   

The self repair materials have a healing agent contained within the structure that is activated to 

seal the damage when it occurs. The cross linking agent (hardener) which is embedded in the 

polymer matrix should works on sealing the damage and providing permanent repair and also 

must be feasible and readily available. Furthermore, self cross-linkable resin could be used as a 

laminating substance to coat other materials and structures, such as solar cells, providing long 

lasting protection against chemical and physical damage. This self healing material and 

technique has the potential to have a revolutionary impact on the use of polymer materials in 
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harsh environment applications. Table 8 specifics different healing agents that are used in cracks 

and microcracks self-repair operations and describe their healing efficiency. 

Earlier self repair attempts were focused on sealing cracks, regaining strength and cracks 

retardation as a result of mechanical impact [3]. Dry [3] used a system that involves a polymer 

composite with repairing agent contained in hollow fibre. The repairing process is triggered by 

the breakage of the hollow fibres as a result of cracks and the release of the repairing agent to 

seal of the cracks. Another process was needed to harden the repairing agent in the case of cross-

linking resin. Kessler and White [18] investigated a self repairing system of delamination 

damage of E-glass/ epoxy composites. The healing agents were introduced in two different 

processes. They injected a catalysed healing agent directly to the composite. They also injected a 

healing agent to delaminated composite with catalysts embedded in the matrix. The first process 

showed 67% while the second process showed 19 % recovered fracture toughness in comparison 

with the virgin polymer matrix. Cho et al [185] introduced a self healing system in which the di-

n-butyltin dilaurate (DBTL) catalyst is encapsulated in polyurethane microcapsules while the 

siloxane based healing agent was phase separated in a vinyl ester matrix. The authors claim that 

this method would provide the advantageous of stable healing mechanism in wet conditions and 

elevated temperature up to 100 ºC. 

Previous work on self healings of polymer composites aimed at creating a polymer matrix that 

contain a healing agent(s) with the ability to seal mechanical cracks damage, restoration of 

strength and retard crack propagation [3]. Techniques such as micro-encapsulation of healing 

agent to repair fatigue cracks have been used recently by researchers [1, 16]. These attempts 

faced the problems of the side reactions with the polymer and air [185]. Different types of 
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healing agents were introduced then to tackle these shortcomings such as diene monomers and 

polydimethylsiloxane-based material [19, 185]. However an added catalyst foreign to the resin 

matrix was needed for the healing process [19].  

Other successful self healing processes were reported by different researchers [1, 20, 186]. The 

crack retardation as a result of polymer healing was discussed by Maiti and Geubelle [186]. They 

showed through simulations that by providing wedging materials in the path of the crack result in 

fatigue retardation. Pong and Bond [1, 20] used the encapsulation methods to release a UV 

fluorescent dye into damaged sites within the internal structure of the composites. The affects of 

these materials on the polymer matrix homogeneity is yet to be investigated. They also reported 

on significant restoration of mechanical properties of damaged sites using a healing agent stored 

in a hollow fibre within the composite.  They explained that the proposed self-repairing 

mechanism is temporary and mainly used to inhibit further damage propagation. 

Design of self healing materials system which is capable of reversing damage and recovering 

load bearing capacity can mitigate the effect of microcrack growth is highly desired. Thixotropic 

and phenolic epoxy resin has superior molecular qualities which make them very attractive for 

use in self healing process. Thixotropic resin has a specific molecular arrangement in which the 

material reduces in viscosity when subjected to mechanical stress. This means that the materials 

provide a faster migration rate of cross-linking agent when mixed together allowing the faster 

repair of damaged links. The phenolic epoxy resin has 50% more functional epoxide groups than 

the conventional epoxy resin which facilitate higher cross-linking connections. This would 

increase the cross-linking reaction rate and provide denser network which strengthen the repaired 

structure when applied to. 
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Several different self healing strategies which incorporate self healing functionality to polymeric 

materials have been studied over the past decades. Up until now, the microencapsulation 

approach has been the most studied. In this approach, a microencapsulated healing agent and a 

dispersed catalyst chemical have been embedded within the polymer matrix. When damage-

induced cracking ruptures the microcapsules, it causes the release of the healing agent into the 

crack by capillary action, followed by subsequent polymerization through chemical reaction 

between the healing agent and the catalyst which repairs the polymers.  . 

4.1 Microencapsulations 

Microencapsulation is a process in which a micro-scale particles or droplets of a desired 

substance is engulfed inside a coating material producing capsules with many useful properties. 

Microcapsules are used mainly in the drugs industries for the control release of medicine. They 

have also been used in the polymer composite industries for the delivery of damage-induced 

healing agent in the self repair polymer systems. So far, all the produced microcapsules for 

polymer self repair systems use healing agents and coating material alien to the polymer matrix 

that is dispensed into resulting often into incompatible ingredients. Thermoplastic coated curing 

accelerators and epoxy resins are introduced recently and have the potential to be used in self 

healing polymer systems. However, incompatibility concerns about these microcapsules with the 

resin polymer matrix reduce its potential to be used in industrial applications. Microcapsules 

containing a cross linking agent of the same material that the polymer composites are made of 

will present the solution for the compatibility issue and will provide more reliable self healing 

polymer composites for the automotive and aerospace industries. Figure 7 shows a schematic of 

self healing process using microcapsules. 



43 

 

Many parameters should be considered when generating microcapsules type self healing 

composites. Microcapsules wall thickness, stiffness and interfaces with the polymer matrix 

should be carefully designed [77]. Too thick walled microcapsules might not break during the 

polymer structural damage while too thin walls might lead to breakage during processing [77]. 

The autonomic healing system that was introduced by White et al. [77] consists of 

microencapsulated healing agent that is embedded within the polymer composites. The proposed 

polymer composite contains a catalyst that reacts with the healing agent. When cracks occur in 

the polymer composite at any position, it ruptures the microcapsules releasing the healing agent. 

The healing agent then seeps through the cracks through capillary action. A reaction then 

formulates between the catalyst and the healing agent creating a polymerised material that bond 

the crack faces leading to closure (Figure 8). White et al. [77] reported a 75 % recovery in 

toughness after damage. The polymerisation catalyst used in this technique has unterminated 

chain ends, hence it would allow for multiple repair. However, it is obvious to notice that 

multiple repairs in same position could not be possible if the healing agents contained in the 

microcapsules is consumed or reduced to insufficient quantities for repair.  

Crack tip shielding mechanism was introduced by Brown et al. [187] in their effort to design a 

crack healing methodology for cycling loading. They injected a precatalyzed monomer into the 

crack plane which created a wedge at the crack tip that led to shielding with an extended fatigue 

life by 20 times. They also used injected mineral oil for same purpose taking advantage of 

hydrodynamic pressure and viscous damping mechanisms. They reported at a later work [16] a 

successful fatigue crack retardation and arrest in a self healing matrix using microencapsulated 

dicyclopentadiene (DCPD) healing agent and Grubbs’ first generation Ru catalyst. They reported 
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an extended fatigue life of 118 % in a rapidly growing crack damage and 213 % in a moderate 

crack growth. At low crack growth, the self healing system they introduce is reported to yield 

complete arrest of fatigue crack with infinite fatigue life-extension. 

The microcapsultation using the urea-formaldehyde (UF) process is developed further. Blaiszik 

et al. [188] reported the processing technique for producing nanocapsules for self healing 

material using UF capsules filled with dicyclopentadiene (DCPD) as healing agent. Capsules size 

of 220 nm was achieved using sonication technique and successfully dispersed in an epoxy 

system. As a result of this technique, active crack pinning and crack deflection mechanisms were 

described which also led to higher fracture toughness. 

4.2 Hollow short Glass fibres 

Unlike intrinsic self-healing approach where the polymer matrix is healable, in what is called 

extrinsic self-healing, healing agent has to be encapsulated and embedded into the materials. In 

this approach no external stimulant such as heating is necessary to activate healing process[11].  

Hollow glass fibres and tubes have been employed for loading healing agent pre-embedded in 

polymer matrix. Like some other self-healing approaches this system is inspired by nature as it 

mimics the bleeding in arteries[189]. Potential application of hollow glass fibres to repair 

polymer damage was first reported by Dry[3]. Filling of fibre/tubes with healing medium is 

achieved using vacuum assisted capillary action filling technique. When choosing glass fibres, 

one should take into account the suitable fibre diameter; large fibre diameters (millimetre scales) 

can initiate composite failure. It has been reported that fibre with smaller diameters reduce the 

detrimental effect associated with large diameter fibres[190]. Compared to embedded 
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microcapsules, glass fibre has the advantage of reinforcing composite while providing self repair. 

There are three approaches for self-healing using hollow fibres; fibres containing a one-part resin 

system, a two-part resin and hardener system or a resin system with an encapsulated hardener in 

matrix. 

Hollow glass fibres with external diameter of 60 µm and an internal diameter of 40 µm and 

hollowness of about 50% containing a two-part epoxy healing resin was prepared and 

incorporated within both glass fibre/epoxy and carbon fibre/epoxy composite laminates. This 

study revealed that the inclusion of self-healing plies or individual fibres repair internal matrix 

cracking and delamination throughout the thickness of a laminate. As claimed by authors, one of 

the advantages of this self-healing technique is that it can be readily applied to the existing 

composite manufacturing techniques such as autoclave process[191]. 

UV active hollow glass fibres filled with epoxy resin and a fluorescent dye has been examined as 

a self-healing composite system that allows the easy detection of damage location as well as the 

extent of damage. Bleeding action of the fluorescent dye was used to visualise the area of 

damage. This approach was employed for non-destructive evaluation of damage in composite.     

4.3 Intrinsic self-healing 

Intrinsic self-healing approach relies on the chemical and physical interaction of polymers 

themselves. In intrinsic self-healing materials, there is often a mendable polymer phase which 

repair damage under an external stimulus (mostly heating). This group of self-healing materials 

are easier to implement than that of capsule or hollow fibre based self-healing materials as the 

challenges associated with integration and compatibility of healing agent no longer exist. 



46 

 

Nevertheless, these systems are limited to small-scale damages and the interfering mechanism to 

trigger healing remains a limiting factor for application such as aerospace[1, 20].  

Intrinsic self-healing strategies such as employing thermoplastic/thermoset blends, resins 

containing reversible Diels-Alder cross links, hydrogen bonded polymers, molecular diffusion or 

ionomeric coupling have been investigated in an attempt to find a reliable, simple and low cost 

solution to repair damage in composites. Readers are referred to the recent reviews on intrinsic 

self-healing which covers various polymer systems synthesis and developments[192, 193]. 

Chen et al.[194] announced the discovery of novel organic molecule with the ability to cross-link 

and dis-connect at certain specific temperature. These molecules were thought to have the ability 

to rejoin and restore fractured locations multiple times. This technique is significant in many 

aspects. It introduces the quality of multiple repairs and provides one substance healing. 

Nevertheless, this technique requires the addition of energy from external energy source which 

might be inconvenient for application which external healing force is not feasible or practical. 

Chen et al[194, 195] have developed a transparent and highly cross linked polymeric materials 

based on synthesised furan-maleimide via Diels-Alder reaction that was thermally active. Broken 

bonds reformed upon heating above 120oC and an infinite number of crack healing could be 

achieved. Using maleimide –furan compounds other researchers modified this approach and 

developed thermally reversible cross-linked polymers such as polyamides and epoxy. Despite the 

popularity of furan-maleimide Diels-Alder reaction, other polymers based on Diels-Alder 

reaction have been reported.  
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Inclusion of thermoplastic additives to thermoset polymers has shown to reduce the delamination 

area and eliminating matrix cracking, allowing for multiple healing cycles. Upon heating, 

dispersed thermoplastic polymer melts and undergoes a volumetric thermal expansion to fill the 

damage area [196-198].   

Ionomeric copolymers have also demonstrated self-healing capability through forming reversible 

cross-links that can be activated by external stimuli such as heat or UV[199-202]. This method is 

claimed to be robust and multiple repairs and recoveries can be achieved. Utilising technologies 

such as high frequency ultrasonic pulses as heating mechanism allows rapid in-filed repair of 

composite structures[203]. Interlayer woven and non-woven ionomeric copolymers as self-

healing agents have also been explored[204, 205].   

5 Active protection 

Active protection concept is introduced and it basically means unlimited repairs [206]. 

Polyphenylene-ether was introduced as active protector material that uses oxygen as an energy 

source and copper complexes as a carrier to repair chain scission as a result of damage [206]. 

Many factors need to be present to achieve active protection. Those factors are selectivity of 

repairing agent and memory of the original structure [206]. Repairing agents need to target the 

scission functional end of the chain only and not the natural end group of the chain. Without 

selectivity, the repairing agent would result in linking the entire chains end leading to an 

undesired increase of molecular weight of original chains at the site of damage. This results in 

different molecular structure than the original material [206]. Repairing agents have to be able to 

restore the damage to its original state regardless of the cause of the damage, ie. Heat, light etc. 
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This is one of the most challenging tasks in active protection [206]. Different damage factors 

produce different molecular changes and in all cases the repairing agent needs to remember the 

original structure regardless of the nature of the molecular change. 

Aramaki [207] introduced a self healing polymer film consisting of 1,2-bis(triethoxysilyl)ethane 

(BTESE) polymer containing sodium silicate and cerium(III) nitrate to protect zinc electrode that 

was treated with cerium(III) nitrate at 30 ºC for 30 min. The assessment technique for self 

healing ability was based on polarization measurements of knife-scratched electrode. The authors 

reported no occurrence of pitting corrosion at the scratch sites after 72h emersion in solution.  

6 Fracture mechanics for polymer composites. 

The term “fracture” in science and technology is deduced as total or partial separation of an 

originally intact body or a structure. Often, these separations occur by propagation of one crack 

or several cracks through the material. Fracture analysis, in its most general interpretation, 

comprises all modes of failure, including buckling, large deformation and rupture (ductile 

fracture), failure due to a distributed damage growth, as well as a brittle fracture[208]. Figure 9, 

shows an example of different fracture mechanisms that can be classified according to their 

starting point and progression. 

Fracture analysis of polymer commonly addresses two perspective: a statistical, 

micromechanical (e.g., using Bell theory or atomic potential) or a continuum mechanical (e.g., 

using phase field theory or linear/nonlinear fracture mechanics based on Griffith’s work[209]. 

With consideration of later approach, linear elastic fracture mechanics (LEFM) reveals fracture 

processes, where a cracked body is regarded as linear elastic in whole region[210]. This 
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description is mostly applicable for brittle structure, therefore, it understood as “brittle fracture 

mechanics”. Certain shortcomings have been reported during LEFM analysis as it is restricted to 

sharp cracks only, predicting infinite defect free strength of material only[211], lack of 

correlation between strength of a material and hole size, and no such treatment for or attending 

towards cracks [212]. Investigation through theoretical approach incorporates LEFM and its 

extension as quantized fracture mechanics (QFM) relevant to the structural materials especially 

fracture of relatively small structures [213, 214]. Non-linear fracture mechanics deal with 

challenge like ductile-brittle transition, failure under substantial plasticity, crack tip process 

under fatigue loading condition[215]. Typical viscoelastic effects (like creep and relaxation) 

appears in case of polymers or composites[216].  

Generalization of fracture analysis to composites can routinely be made using crack stress 

analysis in anisotropic solids, but failure process for polymer composites is not trivial to define 

due to structural irregularity of composite system that comprises random arrangement of atoms 

and molecules and presence of fiber/matrix interface. The individual event of failure 

development and final fracture can be too complicated to describe if there were two or more 

physically distinct and mechanically separable material, particularly with complex 

microstructure. Fracture of the individual phases in the composite, between them and between 

well-defined arrays, can take place separately, sequentially or simultaneously, depending on type 

of loading, the external testing condition, the particular microstructure of the composite and 

other factors [217]. There are several fracture modes in polymer composites namely 

delamination or interlaminar fracture, matrix cracking or intralaminar fracture, matrix-fiber 

debonding, fiber breaking, fiber pullout [218].Typically, failure process in polymer composites is 
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time dependent, reflecting at least in part the viscoelastic nature of polymer mechanical response, 

and can be accompanied at high stress permanent deformation, crazing, voids and shear force 

localization.  

6.1 Micromechanical deformation “crazing” 

Composites comprises defects of different sizes from its initial stage, the defects are essentially 

given by foreign particles and microvoids. Under external tensile loading, the microscopic 

deformation initially takes place at heterogeneities of the molecular network and at the foreign 

particles (like deboding and shear yielding [219]). With further increase of damage, void 

formation localizes in thin zones perpendicular to the macroscopic loading direction. These 

regions comprise polymer material between voids and are stretched in to fibrils. This damage 

mechanism on the mesoscale is called crazing. Typical dimensions for craze vary from 0.5 µm to 

200 µm long [220]. The phenomenon is more prominent in polymers that allows to find their 

way into applications where they are replacing metals. Recently, it has been shown that low 

surface energy polymer (lower wettabillity) like polypropylene facilitate dyeing after introducing 

regular spaced crazes[221]. The dye incorporated in craze section and get fixated, rest part of 

fabric was unaffected and hence did not produce any color. The authors further emphasized this 

method by applying controlled and periodic crazing with polymer and by its composite structure 

to produce anisotropic transparent polymer[222]. 

A simple linear craze model for crack tip region for brittle polymer is  

𝑲𝒄 = 𝒖𝝈𝒚𝑬                                 1 
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Whereas; Kc, u, σy and E are fracture toughness, displacement of crack tip, yield stress, Young’s 

modulus respectively. Since σy and E increase with crack speed, so does Kc, that produces 

astable situation[223]. Therefore, physical characteristic of craze is dissimilar from cracks. Using 

LEFM, Bucknall proposed criteria, where craze initiation is treated as a frustrated fracture 

process rather than a yield mechanism[224]. Usually, craze stress is less than yield stress by 

relation ( ~σy/3), improbably high stress concentration would be require to form pores. Mills[225] 

also suggested to include surface scratches or grooves to define realistic model for craze 

initiation. Nevertheless, any purely elastic analysis is not adequate to predict craze growth 

kinetics and hence its preferred to introduce creep process to describe extension of craze. The 

empirical viscoelastic model used to describe the creep process in the craze and to predict the 

variation of craze length with time “t” is found as cz = A ln(t/t*), where cz is craze length and 

A ,t* are constants[225]. The prediction of equilibrium length of crazes by minimizing the 

potential energy of the surrounding elastic material of given craze has been suggested. By taking 

into account the stress transfers (i) between main fibrils and matrix, and (ii) between main and 

cross-tie fibrils, a micro-mechanics model has been discussed by Sha et al[226]. 

Although crazing (craze initiation, growth and break down) is a consequence of mesoscale 

phenomena but deformation and failure of polymers are cross-scale process. It start at microscale 

level like rearrangement, slippage, orientation, disentanglement and scission of entangled chain 

segment[227]. Numerous factors, some are known as stress, temperature, humidity, and 

molecular orientation influences crazing process. Sha et al. [228], Hui et al. [229] and Hui and 

Kramer [230]attempted to correlate the molecular weight, the areal chain density of 

entanglements and the force required to break a carbon–carbon bond with the macroscopic 
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fracture toughness of the material fractured through crazing as its dominant mechanism. In 

contrast, several reports suggest that molecular weight does not have any significant effects on 

the critical stress for craze initiation especially for polystyrene and styrene-acrylonitrile 

copolymer[231, 232]. Other reports explained that molecular weight has incremental influence 

through increasing network density of polymer like PS blended with poly(2,6-dimethyl-1,4-

phenylene- oxide) (PPO)[233]. The addition of acrylonitrile [231], Polybutadiene (PB) [234] to 

PS lowers its plasticization characteristics lead to increase in critical stress for the initiation of 

chain flow such as crazing. The presence of rubber like dispersion markedly lowers the σy but 

essentially no effect on fracture stress[235]. Craze initiation stress has a good correlation with 

the solubility parameter difference between the polymer and crazing agent i.e. the critical stress 

decreases as the solubility parameter of the crazing agent approaches that of the polymer. 

Environmental stress cracking (ESC) agents like Freon vapor for styrene-acrylonitrile copolymer 

[231] and benzene vapors for PVC and PVC-CPE[236] causes reduction in mechanical 

properties (followed through swelling) and reduces craze initiation stress. Craze influences from 

the deformation speed, with higher speed of deformation leads to small craze size before failure 

which makes them undetectable and vice versa[220]. Thus any reproducibility obtained in 

crazing test on well prepared un-notched specimens appears to depend upon numerous factors 

like the presence of a characteristics population of microscopic surface flaws, embedded foreign 

particles and testing conditions (applied stress and temperature)[237].  

Table 9 shows absolute values for craze initiation stress (MPa) carried out under different test 

conditions of different polymers and composites. These values are helpful to manifest stress 

fields of crazes to be able to make predictions of the growth in size and change of shape of 
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crazes prior to crack initiation. Information for critical stress for crazing supports to establish 

bridge linking of material microstructural parameters and macroscopic mechanical properties. 

Multiple crazing is found to be most prominent toughening mechanism for HIPS (High intensity 

polystyrene), ABS (Acrylonitrile butadiene styrene), and RTPMMA (Rubber toughened poly-

methyl methacrylate). [238]. Similar to the rubber particles in styrene, Shang et al. [239] found 

yeast acts as craze initiators in the polyurethane (PU) matrix. Where it acts as a plastic energy 

absorption source and improves the strength of composite. Crosslink between the yeast and the 

APTS (3-Triethoxysilyl Propylamine) modified PU further improve the strength by providing a 

strong interfacial adhesion that avoids the premature craze breakdown.  

6.2 Macroscopic stiffness of composites 

Macroscopic stiffness can be considered as the material strength that dictates the loading state at 

which a material begins to fail in an unstable manner and cannot withstand further loading. It is 

often characterized by either the yield stress or the ultimate stress at fracture. The associated 

material parameters are the yield strength and the ultimate tensile strength [216]. 

Numbers of theories are applicable to predict damage and failure analysis from macro to 

nanoscale or even at atomic scale. Koyanagi et al.[240] presented an elasto-viscoplastic 

constitutive equation for the matrix, which involves continuum damage mechanics regarding 

yielding and failure. It is revealed that the matrix strength varies more drastically with the strain 

rate than the interface strength. Sun et al. [241] developed a unified macro- and micro-mechanics 

failure analysis method to study micro structure effects on macroscopic failure. Though, in their 

analysis thermal residual stress was not considered, that has been addressed by Ye et al. [242] 

especially for biaxial loading of laminates. For unidirectional lamina their results revealed that 
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thermal residual stresses influence on failure strength is closely dependent on fiber off-axis 

angles. They described failure theories of fiber and matrix constituents through maximum stress, 

criterion, maximum strain criterion and tsai–Hill criterion but their work is restricted to study in-

plane failure in composite laminates. Recently Lee and Roh[243] has developed a 2-D strain-

based interactive failure theory to predict the final failure of composite laminates subjected to 

multi-axial in-plane loading. The theoretical results of the failure model developed are compared 

with the experimental data provided by the World-Wide Failure Exercise. The results of theory 

show reasonable accuracy for the final failure of multidirectional laminates as well as 

unidirectional ones.  

Using concept of energy balance, D. Taylor et al[211] introduced FFM (finite fracture mechanics) 

to predict strength of bodies containing short cracks and notches in micro or submicron range. 

Their predictions are of good accuracy for a wide range of materials, including metals, polymers 

and ceramics. Novozhilov [244] proposed propagation of crack occurs in discrete quanta unlike 

smooth occurring. The quantum of advance take place in an individual atomic bond. Later, static 

limit case has been proposed corresponds to quantized fracture mechanics that allows prediction 

of the strength of nanostructures and structural elements containing re-entrant corners [245]. It is 

a novel concept applicable for model for tiny structures even at atomic range that substitutes 

differentials in Griffith criterion with corresponding finite differences [214]. For finite size thin 

sheet, fracture strength for width (w), crack length (2l) and crack tip radius (r) can be written as;  
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Where, σp is the failure stress of a pristine structure, (Δl) is the fracture quantum, which is the 

extension of a crack by breaking one interatomic bond along the crack direction. Recently, it is 

demonstrated that prediction through QFM is more accurate than to Griffith energy balance 

criterion for fracture strength of material of atomic dimension like graphene[246]. While under 

dynamic loading as well as the crack tip evolution, dynamic quantized fracture mechanics 

(DQFM) has been predicted for strength (or time to failure) [247]. Recently these theories have 

been demonstrated to estimate the bonding strength of trabecular-like coatings, i.e. glass-ceramic 

scaffolds mimicking the architecture of cancellous bone, to ceramic substrates[248].  

Experimental observations carried out at different scales, the strength calculated as tensile 

strength of scaled specimens increased with increasing specimen size like carbon fiber/epoxy 

laminates. It is attributed to the smallest specimens being more susceptible to free edge 

delamination[249]. Under unidirectional test, sub laminates specimens increased in strength by 

10% over a factor of 4 increases in size. While, Ply level scaled specimens showed a 62% drop in 

strength over the factor of 8 size. But this phenomenon is not universal and is not valid for all 

specimens. The carbon-PEEK composite, under similar test condition, shows tougher matrix less 

prone to delamination and little scaling effect. Therefore, it is ambiguous to correlate laminate 

scaling to the scaling of material strength[250]. For non-laminate composite like epoxy resin 

with carbon and glass, Miwa and Horiba [251] estimated tensile strength of different fiber length. 

The estimation was based on strain rate and temperature dependence of both the yield shear 

strength at the fiber-matrix interphase and the mean critical fiber length. Strain rate strongly 
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affects the ultimate tensile strength and but modulus of elasticity is almost insensitive to it while 

temperature only influences the modulus[252].  

Apart from scaling, there are several factors affect the strength of composites, such as, strengths 

of fibers and matrix, fiber content and the interfacial bonding between fibers and matrix. Fibers 

work as carriers of load in the matrix; poor fiber/matrix interfacial bonding may leads to drop in 

tensile strength. It has been shown that macroscopic mechanical response of polymer composite 

can be alter by addition of fillers such as CaCO3, cuttlebone, carbon nano-tube and nano-clay to 

improve the stiffness of the polymer composite, though this is often accompanied by the 

decrease in tensile strength and elongation at break[253-257]. Figure 11, shows normalized 

tensile strength of polymer composites namely Epoxy, polyketone and polyurethane through 

incorporation of different fibers and fillers. Normalization has carried out as ratio between tensile 

strength of polymer composite (TSPC) to its relatively pure state of polymer TSpure.  

Tuning of tensile strength is possible with increasing the dispersion of fillers using modifier like 

Oleic acid [256], acrylic resins[258] before incorporation to polymer matrix. Appropriate 

dispersion of CaCO3 nanoparticles significantly improves tensile property of waterborne 

polyurethane (WPU) composite [256] and with MWNTs (10 wt.%.) in PU [257]. Here, tensile 

strength of MWNTs/PU composite is increased by 18.7% from 16 MPa to 19 MPa. Unlike, for 

Poly vinyl alcohol (PVA)/WPU blends that result in decrease of the tensile strength due to 

destruction of the intra-molecular and inter-molecular hydrogen bonding with PVA. The amount 

of fiber or fillers is needed to be optimized for interaction between different phases to avoid 

reverse effect. As lignin improves the PU properties only when is incorporated in limited extent 

(4.2%), higher concentration of lignin (> 5%) in PU causes lacking in lignin distribution and 
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tends to agglomerate instead physically interact with the polyurethane chains cause decrease in 

strength of composite [259]. For polyurethane/nanosilica composites, Chen et al [258] observed 

compatibility between two different phases is the better parameter other than dispersion of 

nanosilica particles for static mechanical properties. Therefore, adhesion between matrix and 

fillers or fiber for adequate compatibility and good filler dispersion are necessary to enhance the 

tensile strength that may lead to achieve uniform stress distribution in composite [239]. By the 

rule of mixture adding fibers with a very high strength to the matrix with low tensile strength 

should result in increasing tensile strength of the composite, if interfacial bonding is good[260]. 

Using CLT (classic lamination theory) it was observed that tensile strength of the hybrid 

composite could be estimated by the additive rule of hybrid mixtures, using the tensile strengths 

of both composites[251].  

In applications with limited aggression in damage development, composite strength is 

moderately well characterized because the problem is enormously complex. One of the major 

causes for the composites is that, it is hard to determine accurately. The high fiber strength 

makes it extremely difficult to introduce the load without stress concentrations which tend to 

lead premature failure especially at the grips[250].  

6.3 Resistance to crack  

The generic term usually applied to measures material resistance for crack extension is fracture 

toughness (KIc). The important parameters include are stress intensity factor (KI), the J-integral, 

the crack-tip opening displacement (CTOD), and the crack-tip opening angle (CTOA) [261]. 

Crack propagation rate is commonly expressed as a function of KI or it equivalent partner energy 

release rate (G)[208]. It is revealed that different crack behavior can be predicted under variable 
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loading conditions that include “crack driving force” (e.g., KI, G, or J) and crack stability[262, 

263]. The correlation between KI and G (the elastic energy release rate) are connected as:  

G = (KI(mode1)
2/E’)+( KI(modeII)

2/E’)+ KI(modeIII)
2/E)                                3 

Where, elastic constants of material (E’= E) for plain stress or E’ = E/(1- ν2) for plain strain[247]. 

KI for crack propogation-mode I(opening), mode II(sliding), or mode III(tearing), is only 

function of geometry and applied load, multi-mode loading are described in literature for further 

discussion [220]. The improved KIc of polymer composite particular for reinforced one is 

achieved by reducing KI at the crack tip[264]. Brighenti et al.[265] examined and calculated 

wide database of KI for Fibre-reinforced composites to determine the applied stress value 

responsible for the appearance and propagation of the debonding-based crack along the fibre. 

They argued that knowledge of KI and the fibre-matrix critical interface energy allow to control 

detrimental effect and to properly tailor the degree of debonding under a defined stress level.  

Though, KI can be used to compare fracture toughness of composite material, but is limited to 

sharp cracks only that might not be applicable for notches and blunt cracked specimens[266]. 

Salazar et al. [267] suggested for blunt crack to consider an apparent fracture toughness (KB) 

equivalent to sharp crack specimen with a stress distribution at the instant of fracture identical to 

that of a specimen with a blunt crack. Their investigation for epoxy resin found fracture 

toughness increased rapidly with crack tip radius and the microscopic analysis of the fracture 

surface indicated that blunting was the reason of the steady increase. Krishanan et al.[268] 

investigated bi-material (polymer/aluminum) specimens with notches at different angle 300, 900 

and 1200. They observed for weakly bonded polymer/metal specimens, crack initiation load 
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increases with the increase of the notch angle. However, for strongly bonded polymer/metal 

specimens, the notch with a notch angle of 900 has lower crack initiation load compared to other 

two notch angles (300 and 1200) due to the complicated relationship between the crack driving 

force and material resistance at the crack initiation from a notch.  

KIC for polymer composite is depend on its inherent polymer matrix toughness, a linear relation 

has been observed for glass-polymer composite with improved toughness while increasing 

toughness of its neat polymer [269]. The capability of intrinsic plasticity of macromolecule 

network governs the inherent matrix toughness that relate to density of cross-links. If cross-links 

density increases, the ‘deformability’ of the network will decrease that has been observed in case 

of epoxy resin[270]. Therefore, with increasing molecular weight of polymer like epoxy carried 

out in order to decrease cross linking density and for enhancing toughness. Nevertheless, simply 

using highly cross linked epoxy matrices is not the ultimate solution for improving KIC. Polymer 

often behave undesirably brittle because plastic deformation is constrained[271]. Moreover, it 

alters other important characteristics such as thermo-mechanical properties, stiffness, strength 

and modulus that are desired and required in various applications. 

The relation between local stress growth criterion in terms of KIc ,Gc (critical strain energy 

release rate) and crack tip stresses (σ) is write as: 

σ =√
𝑬𝑮𝒄

𝝅𝒂
= 

𝑲𝑰𝑪

√𝝅𝒂
                                4 

The influence of KIC and GC for different loading rate is observed by Kanchanomai et al. 

[263] where they observed decrease in KIC and GC with increasing loading rate for epoxy-
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polyamine composite.With assumption of quanta energy dissipation, N. Pugno et al.[214] 

formulated general relation for KIc as quantized fracture mechanics (QFM), where crack 

propagation based on discrete extension rather continuous (Griffith approach). From energy 

balance, relation between KIc of material and condition for propagation of cracks/defects obtain 

as: 

KIC = K*=√〈𝑲𝑰
𝟐〉𝒍

𝒍+∆𝒍; for Mode I,II,III,                                 5 

Where K* is the square root of the “mean” value of the KI
2 along fracture quantum length (Δl) 

and for crack length “l”. The hypothesis of QFM is based on quantized propagation in a linear 

elastic continuum medium. It is well suited to first-order with linear elastic fracture mechanics 

(LEFM) and to second-order for non-linear fracture mechanics. The advantage of QFM over 

classical LEFM is that prior one has no restriction for treating defects and cracks of multiple size 

and shape. The theoretical value obtained from QFM for variable micro size circular holes 

resembled well with experimental results carried out for polysilicon thin film[272]. Analogously, 

for dynamic loads, DQFM (Dynamic quantized fracture mechanics) has been presented and used 

to study the toughness, strength and time to failure of solids, as well as the time evolution of the 

crack tip[247]. The “mean” value of KI is considered during quantum interval of time (Δt) where 

discretization is assumed in both space and time during propogation of crack that follows given 

relation. 

KIC =√〈〈𝑲𝑰
𝟐〉𝒍

𝒍+∆𝒍〉𝒕−∆𝒕
𝒕 ; for Mode I,II,III,                                 6 
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For viscoelastic material and under certain loading conditions Gc is considered as the 

characterising parameter for crack extension rather than the fracture toughness (KIc)[273]. It is 

also experimentally demonstrated for carbon-fiber/epoxy materials where Gc found independent 

of debond length that supporting the idea that Gc is a valid fracture criterion [274].  

An analogous nonlinear elastic fracture mechanics approach may be used that based on J-integral 

(JIC) [275, 276], it is nonlinear elastic release rate and hence equivalent to G under linear elastic 

condition[262]. It represents the energy per unit area necessary to initiate a crack and it is 

obtained by extrapolation to zero crack advancement of the J-R curve, which describes the 

energy per unit area necessary for the advancement of a propagating crack. Recently, it is been 

determined from cracks propagating across a fully yielded ligament; where it represented energy 

required to initiate a crack in an already yielded material [277]. Salazar and co-worker 

demonstrated used J-R curves to determine the influence of the sharpening methodology on the 

stable crack growth resistance for ethylene–propylene block copolymers [278]. At fracture, JIC 

can be related to the crack tip opening displacement, CTOP (δ), and the yield stress (σy) by 

relation JIC = σy δ. One important feature of the J-integral is that, is path independent, so any 

convenient path can be chosen where stress and displacement are known. This approach works 

well for polymers provided they are not too ductile. To deal with highly ductile polymers, EWF 

(essential work of fracture) approach has been applied to determine the toughness response. The 

greater advantage of EWF over the J-integral is to provide clear distinction between surface 

(essential part: the work spent in the inner fracture process zone) and volume-related (non-

essential part: the work spent in the plastic deformation zone) [279].  
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Certain modifiers has been suggested for tuning KIC of polymer, the classification of modifiers 

has been describe depending on its rigidity relative to polymer matrix. Modifiers less rigid than 

the polymer matrix may serve as tougheners in matrices which show ductility to some degree. 

Generally, they serve toughening mechanism through formation of microvoids (eg. like rubber 

particles) and promoting delocalized micro-crack and crack bridging effect (for thermoplastic 

particles). In order to gain improvements of multiple properties, the fillers should possess (1) a 

higher rigidity than the polymer to increase its stiffness, (2) a high specific surface, (3) a 

sufficient filler-matrix bonding to improve strength and to allow a controlled stress transfer from 

the matrix to the fillers, and (4) preferably small dimensions to reduce local stress concentrations 

and to generate high toughness and impact resistance. Table 9 shows list of Epoxy polymer 

composites with different modifiers performed under toughness characterization.  

In the presence of rigid filler of nearly micro dimension, the toughening mechanism may 

comprise crack deflection, plastic deformation and crack front pinning. The reduction of the filler 

dimensions in brittle polymer composites is one of promising pathway to improve the toughness, 

since the microstructural perfection of composites increases by minimizing the size of potential 

defects (e.g. inclusions, agglomerates)[280]. There were also reports on nano-void formation and 

presence of a dilatation zone when the interface is strong [281]. For composites, where the 

dispersed particles are in the nano-scale, several toughening mechanisms come to play 

depending on the filler type. For example, nano-sized silica particles increase the toughness of 

the epoxy matrix through de-bonding of particles which is followed by plastic void growth [282]. 

Whereas, for carbon nano-tubes reinforced epoxy system, pull-out of nano-tubes and de-bonding 

seems to contribute to the increase in fracture energy and the contribution from plastic void 
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growth is minimal[283]. When it comes to fillers with layered structures such as nano-clay or 

silicates (layered), crack-deflection, micro-cracking and plastic void growth is the major 

toughening mechanisms [284, 285] and with graphene addition, crack deflection and crack 

pinning has been reported[286].  

Incorporation of controlled and optimized amount of modifiers tunes mechanical characteristics 

of composite, figure 12. Concentration over critical value, modifiers like halloysite (HNT)[287], 

glass bead[270], Polyethylene terephthalate (PET)[288] lead to aggregates in the microstructure, 

causes poor interfacial adhesion and low stress transfer between the reinforcements and the 

matrix. For brittle polymer like Poly(methyl methacrylate) (PMMA), toughening as a function of 

modifiers like mica content merges into a plateau i.e significant enhancement of toughness upto 

66% for critical value (mica 0.8 vol%) without compromising its tensile strength. With further 

increasing filler volume, plastic deformation of PMMA matrix gets restricted by following 

reduction in the elongation at break[289]. For MMT–PANI (Montmorillonite-polyaniline) 

nanocomposite, the improvement of the toughness is attributed to the breakage of the clay 

aggregates. The clay layers (MMT or Bentonite) believed to be acted as stress concentrators and 

to promote large number of micro-cracks of fracture surface by crack deflection. Up to 23 wt.% 

of MMT clay in the nanocomposite of PANI (polyaniline as the emeraldine salt (EMS)) 

significantly improves fracture toughness, hardness and impact energy of polyaniline. At higher 

content clay aggregates present within the intercalated nanocomposites believed to reduce their 

resistance to crack propagation[290]. Another factor that describes the influences of fracture 

behavior of MMT–PANI nanocomposite is crystalline morphology, especially the size and the 

form of crystals, of semi-crystalline polymer PANI. In contrast for PEEK polymer, crystalline 
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arrangement lead to drop in toughness[291], with incorporation of carbon fiber (APC-2), the 

fracture toughness of the laminates observed to be depend on interfacial interaction but not 

merely on matrix crystallinity. 

7 Recommendations for future work 

Detection and quantitative evaluation of cracks and microcracks is vital for the prevention and 

repair measures in polymer composites. While newly developed non-destructive instrumentation 

with improved image processing capability, for example X-ray microcomputed tomography 

(XµCT) has shown great potential in detection and quantifications of structural defects in 

composites, there is a great need in developing reliable and efficient techniques which produces 

consistent and precise measurements of variables such as voids volume and delamination 

lengths.   

The introduction of nanoscale fillers into the polymer matrices such as clay minerals and carbon 

nanotubes (CNTs) has shown to enhance the physical and chemical integrity of polymers with 

very small filler loading. Further studies are needed to understand their role in improving the 

polymer composites resistance to many environmental factors, such as atomic oxygen, vacuum, 

UV radiation and thermal cycling.  

Polymer degradation due to different environmental factors such as heat, UV, moisture and 

mechanical loading often leads to reduced performance and long-term exposure can result in 

material failure; a serious and undesirable event in many applications. There is still a lack of 

knowledge and understanding in the synergistic effects of polymer degradation conditions. It is 
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very rare for one damaging condition to work alone, the interchange and interaction between 

environmental conditions is a rich topic for further research.   

It is obvious that the current self healing technologies are short from achieving the complete 

mimic of the perfect process of hemostasis. However, research is progressing rapidly to provide 

similar healing ability to polymer composites. The ultimate goal for polymer composite self 

healing is to achieve material stasis through the incorporation of a circulatory system in the 

polymer composites, similar to the one in the biological process, that continuously supply 

chemicals and building elements to the damaged site for unlimited repairs [77]. 

Multiple steps can be taken to advance the self-healing process such as determining the cross-

linking reaction mechanisms of the resin at different cross linking agent concentrations and 

inclusions methods (encapsulations and in access), establishing the variables that govern the 

recovery rate and conditions at damaged sites as a result of radiation, ion bombardment, 

mechanical impact or thermal cycle and evaluating the mechanism, rate and the variables that 

govern the transport of the cross-linking agents from the bulk and surface of the polymer to the 

damage site.  

Fracture mechanics (FM) approach provide insight information for quantifying and predicting 

strength, durability, reliability, toughness and other mechanical response of polymer structural 

components that contain cracks or cracks like defects. It is being used to address all major 

mechanism of material failure; namely ductile and cleavage fracture, creep, fatigue etc. Though 

FM has under gone major development in metallic materials and ceramics but it is moderately 

characterized for polymers and polymers composites (PC). 
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 The major obstacle for PC is their inhomogeneous characteristics unlike metallic materials, 

which limit the applicability for solid mechanics. On the analytical front, we must expand our 

efforts to integrate continuum fracture mechanics analysis with micro/nanoscopic or even 

subatomic process like FFM, QFM or DQFM that governs local fracture at the crack tip. In the 

area of advanced heterogeneous material, fracture mechanics methods must be further developed 

and applied to describe novel failure mode. The gain in understanding from multidisciplinary 

(like mechanics, chemistry and material science) is required to reveal interfacial adhesion, 

atomic bonding dispersion of additives and critical concentration of fillers. Moreover, numerical 

and theoretical model should carried out that enables the extrapolation of short term laboratory 

data in predicting long term service performance of PC. Collectively, research must be carried 

out that focuses practical life prediction methodology.     
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Table 1. Some applications of fibre reinforced composites and their crack susceptibility 

Composite type Qualities Application Sources for cracks Ref 

Carbon fibre/ PEEK Biocompatible, low wear 

rate, chemical stability, 

imaging capability, 

tailored stiffness 

Medical Implants, 

aerospace structures  

Impact load [292-

294] 

Carbon fibre/Eepoxy  Light, stiff, strong military and civil aircrafts 

parts, crogenic fuel tanks 

 

 

Fatigue crack is a major threat 

for structure in this application, 

Permeation of liquid and 

gaseous fuel, gas leakage 

[295-

297] 

Glass fibre/Epoxy  Cost-effective 

manufacturing , 

replacement for steel tube 

susceptible to corrosion, 

Liners in oil directional 

wells, ship hulls, wind 

turbines 

Harsh environment , losing 

structural integrity, then 

durability becomes an issue, 

fatigue crack 

[141, 

298] 

Carbon fibre/UHMWPE Low moisture absorption, 

resistance to corrosive 

chemical, high abrasion 

resistance and high 

impact strength 

Medical implants Delamination cracks [299, 

300] 

Glass fibre/Vinylester Good chemical stability 

in seawater, low cost 

Fishing and patrol boats, 

submarine domes, water 

and crude oil pipes 

Environmental induced crack [146, 

301] 

Glass fibre/Polyester Low cost, good chemical 

stability in seawater 

Boat hull, wind turbine 

blades 

Irreversible damage to 

composite as a result of 

[139, 

140, 
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environmental ageing 148] 

 

Table 2. Some examples of various causes of defects in composites and their detection 

methods  

Type of damage Composites/polymer Detection method Ref 

Thermal fatigue cracking Carbon fibre/epoxy Ultrasonic [302] 

Hygrothermal ageing cracks  E glass/epoxy  Acoustic emission/Ultrasonic [303] 

Stress corrosion cracks Glass fibre/polyester  Acoustic emission [304] 

Stress corrosion cracks  E Glass fibre/polyester  Acoustic emission [305] 

Mechanical fatigue cracking Poly Carbonate, Polyvinyl Chloride Ultrasonic [306] 

Mechanical fatigue cracking Carbon fibre/epoxy Ultrasonic/Infra-red thermography [307-

309] 

Thermal stress cracking Carbon fibre/epoxy  Ultrasonic [309] 

Thermo-oxidation cracks Carbon fibre/epoxy Scanning electron microscopy [108] 

Mechanical fatigue and  impact 

cracking 

E glass/epoxy Scanning electron microscopy, Infra-red 

thermography 

[310, 

311] 

Delamination cracking Carbon fibre/epoxy Ultrasonic [312] 

Impact damage Carbon fibre/epoxy Infrared thermography [313] 
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Table 3: Thermal and Oxidative shrinkage in polymer composites 

Composite Thermo oxidative condition Shrinkage Ref 

PMR-15 resin argon aging environments of 

288 °C, 200 h 

Volume averaged 

0.152 % 

[105] 

PMR-15 resin Oxygen aging, 288 °C, 200 h Volume averaged 

0.66 % 

[105] 

Unidirectional IM7/977-2 carbon-fiber reinforced 

composite 

150 °C, atmospheric air, pressure 

1.7 bars, 1000 h 

Matrix averaged 

7.6 % 

[108] 

Unidirectional IM7/977-2 carbon-fiber reinforced 

composite 

150 °C, oxygen, pressure1.7 bars, 

49.5 h 

Matrix averaged 

6.83 % 

[108] 

Aromatic epoxy crosslinked by the diamino 

diphenylsulphone, 70 m film  

at 180 °C, oxygen, atmospheric 

pressure, 1000 h 

Volume variation 

4.9 % 

[122] 
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Table 4: Hydrolysis aging of polymer composites 

Composite Hydrolysis aging conditions Ageing effect Ref 

Unidirectional composite laminate of 

glass fibre/carbon fibre 

32 weeks: 48 h (10 % humidity, 

74.5 °C), 48 h (100 % humidity, 

23.5 °C), 64 h (100% humidity, 

39 °C) 

Delamination damage tolerance 

reduction on 39 and 34 % for glass 

epoxy and carbon expose, 

respectively 

[132] 

Polyactide glass/carbon fibre epoxy 

composite 

Humidity 95%, 70 oC, 35 h Moisture uptake carbon/epoxy 1.2 % 

Moisture uptake glass/epoxy 2.5 % 

[133] 

Polylactide 2002D Water, 75 oC, 5 h Moisture uptake 1.75 % [135] 

Reinforced with E glass fibre polyester 

resin 

Water, 85 oC, 4 months 

Sea water, 85 oC, 4 months 

Moisture uptake 0.571 % 

Moisture uptake 0.465 % 

[139] 

Reinforced with E glass fibre (51.5 %) 

polyester resin 

Water, 65 oC, 5000 h 

Sea water, 65 oC, 5000 h 

Moisture uptake 0.38 % 

Moisture uptake 0.28 % 

[140] 

Glass fiber-reinforced plastic Water, 60 oC, 10 days Moisture uptake 28 % [141] 

Epoxy resin, diglycidyl ether of 

bisphenol A resin with 

diethylenetriamine 

Water, 80 oC, 1536 h Moisture uptake 2.6 % [142] 

Polyurethane, XB5073 Sea water, 100 oC, 2 years Weight change 2.4 % after drying [143] 

Polychloroprene rubber Sea water, 80 oC, 50 days Nominal stress increase to 11.1 MPa 

at nominal strain of 420 % 

[144] 

z-pinned carbon fibre–epoxy laminate Water, 70 oC, 300 days 

Air, humidity 85 %, 70 oC, 300 

days 

Moisture uptake 3 % 

Moisture uptake 1 % 

[145] 

isophthalic polyester resin (Synolite 

0288 PA) 

Sea water, 60 oC, 1400 h Moisture uptake 1.18 [146] 

Vinyl ester resin (Atlac 580) Sea water, 60 oC, 1400 h Moisture uptake 0.83 % [146] 

5 layers of reinforcement (a glass fibre 

fabric) with isophthalic resin laminate 

Sea water, 60 oC, 1400 h Moisture uptake 1.3 % [146] 

E-glass/vinylester composite Water, 80 oC, 75 weeks Moisture uptake 0.623 % [314] 

Carbon fibre reinforced three-

component modifed BMI (Cytec 5250-4 

RTM) 

Water, 90 oC, 10 days Moisture uptake 4.5 % [315] 
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Table 5: Comparison of different non-destructive testing methods for composites 

Inspection Method Major detected defects Strength and limitation Ref 

Visual inspection 

Surface crack, delamination, 

impact damage 

Simple, rapid, inexpensive, Sub-surface 

flaws cannot be detected, should be used 

along with other detection methods 

[160] 

Optical Coherence Tomography 

(OCT) 

 

Cracks, delamination, voids 3D high resolution imaging, Not suitable for 

carbon fibre composites due to making the 

object opaque for imaging  

[316, 317] 

Microscopy (light microscopy, 

SEM) 

 

Cracks, voids, delamination, 

fibre breakage 

Evaluation of crack initiation and 

propagation, SEM sample preparation takes 

time, infield inspection not possible, small 

sample size studied  

[160, 318] 

Tap test Delamination, cracking Can be used for moisture sensitive 

composites, simple, inexpensive, 

Insufficient sensivity for field applications 

[319, 320] 

Acoustic emission 

 

Cracks, delamination, Fibre 

breakage 

Suitable for field tests, high sensitivity, only 

suitable for detection growing flaws, defect 

size and location difficult to obtain, 

sensitivity affected by surrounding noise, 

not suitable for thick specimen   

[171, 321, 

322] 

Ultrasonic 

 

Cracks, delamination, voids 

and foreign objects 

Depth and location of flaws can be 

determined, can be used when only one side 

access to composite is possible, hard to 

detect the defects in region near the probe 

[323, 324] 
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X-ray radiography 

 

Foreign inclusions, Cracks, 

voids, fibre alignment, fibre 

splitting 

thick section of composite can be inspected, 

Poor image contrast, High cost due to 

OH&S associated with ionising radiation  

[171, 325] 

X-ray computed micro-

tomography 

 

Cracks and micro-cracks, 

voids 

3D images reveals the nature and shape of 

defects, in service damages including 

delamination hard to detect without 

penetrant, higher cost due to OH&S 

[183, 326] 

Compton backscattering 

diffraction 

Cracks and micro-cracks, 

voids, porosity, fibre 

misalignment 

One-sided inspection possible as well as 

tomographic imaging, layer-by-layer 

inspection of object, Higher cost associated 

to the control exposure of personnel to 

ionising radiation.  

[171, 319] 

Infrared thermography 

 

Voids, cracks, foreign 

inclusions, delamination, 

impact damage 

Rapid area coverage, remote sensing 

possible, one-sided inspection possible, 

anisotropy masks indications 

[327, 328] 
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Table 6: Quantitative measurements of defects in polymer composites using x-ray 

tomography 

Composite type Measured 

quantity 

Resolution Notes Ref 

Unidirectional 

Carbon/Epoxy tape 

composite, and 

Carbon/Epoxy fabric 

specimens with porosity 

defects. 

voids 0.08-0.18 

mm 

The proposed method uses a sub-pixel contour 

generation for the average of the air and 

material gray values obtained in CT scans. 

[329] 

Different fibre reinforced 

polymer matrix composite 

materials 

damage and internal 

flaws, including 

delamination and 

microcracking 

 

~4 µm 

It was possible to characterize the three-

dimensional configuration of internal cracks 

and microcracks with some limitations that are 

related to the damage configuration. 

[172] 

Carbon fibre/epoxy 

composite  

Impact damage, crack 

opening displacement 

5.24,4.3,14 

µm 

Using  partial volume correction technique that 

applies measurement weighting based on gray 

scale intensity values proved to be a viable 

method to obtain quantitative estimates of crack 

opening displacements in CF/epoxy composite 

[330] 

Carbon fibre composite with 

and without particle 

toughened epoxy resin  

Impact damage, intra- 

and inter-laminar 

cracks 

0.7,4.3 µm Combination of µCT and synchrotron 

radiation computed laminography allowed 

investigation of the 3D characteristics of 

impact damage and to study particle toughening 

micro-mechanisms, 

 

[331] 

Stitched carbon fibre/ epoxy 

composite laminate 

Impact damage 2048 x 2048 

pixels 

3D internal damage distribution of matrix 

cracks and delamination damage pattern 

differences due to the effect of stitching (stitch 

density and thread thickness) was 

demonstrated.  

 

[115] 

Glass and glass+ aramid 

fibre/polyester composite  

Impact damage 

( delamination, fibre 

breakage, matrix 

cracking) 

12.5 µm Internal damages of impacted composite was 

determined. Cross-sectional views showed 

detailed through-thickness delamination 

distribution and 3D delamination damage 

pattern.  

[332] 

Glass and carbon 

fibre/epoxy composites 

Voids, cracks and 

microcracks 

6 µm Changes in the inner structure of epoxy 

composites could be determined using this 

technique. 

[119] 

Short hemp fibre/HDPE 

composites 

Voids, microcracks, 

fibre-matrix 

debonding 

~ 4 µm 3D- and 2D-imaging reconstruction 

of the meso-scale structure of the material 

allowed study the debonding mechanisms 

during the in-situ tensile testing. 

[333] 

3D woven carbon and glass 

fibre/epoxy composites 

Impact damage, 

delamination, fibre 

breakage, tow 

splitting, resin 

5-10 µm Quantitative micro-mechanism of impact 

damage was studies. 

[334] 
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cracking 

Glass fiber/epoxy 

composites 

Intraply cracking, 

fibre kinking, interply 

delamination  

1 µm A very detailed picture of the cracking 

sequence was provided as well as the 

interaction among the different failure 

mechanisms. 

[177] 

Carbon fibre/epoxy 

composites 

Matrix cracking, 

interplay 

delamination 

10 µm Algorithms were developed for the automatic 

quantification of matrix cracking and fiber 

rotation in each ply from the tomograms. 

[335] 
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Table 7: Comparisons of crack detections for polymer structures and composites 

Cracks detection technique resolution accuracy ease detected defects Ref 

Optical Coherence Tomography up to m scale High No Cracks, delamination, voids [336, 337] 

optical and fluorescence 

microscopy  

up to m scale Medium Yes Cracks, voids, delamination, 

fibre breakage 

[159, 160] 

SEM up to nm scale Very High No Cracks, voids, delamination, 

fibre breakage 

[164, 165] 

Sonic testing cm scale Low Yes Cracks, delamination, fibre 

breakage 

 [238, 239, 

249-251] 

Tap testing cm scale Low Yes Delamination, cracking [166],[258, 

259] 

Acoustic emission mm scale Medium Yes Cracks, delamination, Fibre 

breakage 

[155, 338] 

Ultrasonic testing mm scale Medium Yes Cracks, delamination, voids 

and foreign objects 

[251], 

 [264, 272] 

Conventional X-ray radiography up to m scale High No Foreign inclusions, cracks, 

voids, fibre alignment, fibre 

splitting 

[171, 275] 

X-ray computed 

microtomography 

up to nm scale Very high No Cracks and micro-cracks, 

voids 

[191, 276] 

Compton backscattering 

diffraction 

up to nm scale Very high No Cracks and micro-cracks, 

voids, porosity, fibre 

misalignment 

[171, 258] 

Electric impedance and 

thermography 

mm scale Low Yes Voids, cracks, foreign 

inclusions, delamination, 

impact damage 

[150-157, 254] 

fiber optic and fluorescent probe  mm scale Medium No Cracks and micro-cracks, 

voids 

[4, 151, 158] 
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Table 8: Cracks and Micro cracks self-repair and healing mechanisms 

Composite Healing agent Test method Healing 

efficiency 

Ref 

Unidirectional carbon fiber-

reinforced epoxy composite 

30 wt% DCPD microcapsules and 2.5wt% 

Grubbs’ catalyst 

Tensile test 19% [339] 

Polyester resin styrene-based healing system Tensile test 75% [340] 

Neat epoxy ROMP of DCPD Fracture test 75-90% [187, 

341] 

Fiber-reinforced epoxy 

composites 

ROMP of DCPD Fracture test 66% [16] 

Neat epoxy resin 5–25wt% microencapsulated DCPD 

monomer and 2.5wt% Grubbs catalyst 

Fracture test 60% [77] 

Neat epoxy resin 5 wt% DCPD microcapsules and 0.75 wt% 

the catalyst in the microcapsules with wax 

Fracture test 93% [342]  

Neat epoxy resin 12 wt% PDMS, 4 wt% 

methylacryloxypropyl triethoxysilane, and 

3.6wt% DBTL microcapsules 

Fracture test 46 % [185] 

Epoxy laminate reinforced 

with woven E-glass fabric 

cyanoacrylate-based microcapsules Fracture test 12% [18] 

Carbon fiber-reinforced 

epoxy laminate 

20 wt% DCPD microcapsules and 5wt% of 

Grubbs’ catalyst 

Fracture test 45 % [343] 

Epoxy resin 20 wt% 180 mm DCPD microcapsules and 

2.5 wt% Grubbs’ catalyst 

Fatigue test 89% [18] 

Thermally reversible 

crosslinked polymer 

Cross-linking by Diels–Alder (DA) reaction Fracture tests 50 % at 150 

oC 

[194] 

Fiber-reinforced composites Cross-linking by Diels–Alder (DA) reaction Qualitative test 100 % at 80 

oC 

[344] 

Epoxy of multifunctional 

furan and maleimide 

monomers 

Cross-linking by Diels–Alder (DA) reaction Qualitative test Cracks 

disappear at 

120 oC 

[345] 

2,2,6,6-

tetramethylpiperidine-1-oxy  

Cross-linking by alkoxyamine derivatives Qualitative test Cracks 

disappear at 

100 oC 

[346] 

Glass fiber-reinforced epoxy 

composite 

40 vol% of thermoplastic epoxy particles Tensile fatigue test 100% at 120 

oC 

[347] 

Epoxy resin Thermoplastic component of 25wt% of 

polybisphenol-A-co-epichlorohydrin 

Compact tension 

fracture 

About 30% 

at 140 oC 

[348] 

Glass fiber-reinforced epoxy Thermoplastic component of 10wt% of Visual test 30-50% at [197] 
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composite polybisphenol-A-co-epichlorohydrin 140 oC 

Epoxy resin Chain rearrangement of diglycidyl ether of 

bisphenol-A, nadic methyl anhydride and 

benzyl dimethylamine  

Double torsion 

fracture testing 

100% at 150 

oC 

[349] 

Polyurethane Chain rearrangement in presence of 2–

20wt% of siloxane or fluorinated segments 

Visual test 100% at <10 

oC 

[350] 
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Table 9: Craze initiation stress (MPa) for different polymers (from left to right are 

Polypropylene, polystyrene, polycarbonate, polyvinyl chloride, poly-methyl methacrylate) 

and composites  

 

Polymer 

/Polymer composite 

 

Testing Method 

 

Craze initiation 

 stress (MPa) 

 

 

Reference 

poly(propylene) (PP) Bending Test (self-designed 

and fabricated apparatus) 

6.00 [221] 

Polystyrene plane-strain 

indentation + hydrostatic 

stress criterion 

25.00 [351] 

Quenched Polystyrene (PS) 

Annealed Polystyrene (PS) 

20%PPO + PS 

 40%PPO + PS, 

 

Micro-indentation + 

hydrostatic stress criterion 

40.00 

40.00 

50.00 

55.00 

[233] 

Polystyrene (PS) in air condition 

Polystyrene (PS) in Freon condition 

three-point bending (TPB) 20.00 

6.00 

[231] 

Styrene +5%Acronitrile 

Styrene +13%Acronitrile 

Styrene +24%Acronitrile 

Styrene +28%Acronitrile 

Styrene +33%Acronitrile 

three-point bending (TPB) 7.00 

9.00 

13.00 

14.00 

20.00 

 

[231] 

Polycarbonate Single edge notched (SEN) 

a) Static loading- 

b) Dynamic loading-  

 

80.00 

100.00 

[352] 

poly(methyl methacrylate) (PMMA) Uniaxial stress applied 10.00 [353] 

poly(methyl methacrylate) (PMMA) 

time elapsed (seconds) 

400 

600 

1000 

2000 

4000 

6000 

8000 

Uniaxial stress applied  

41.00 

39.00 

36.00 

32.00 

31.00 

28.20 

27.00 

[227] 
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10000 25.80 

 

(polyvinylchloride + 10% chlorinated 

polyethylene) PVC+CPE 

PVC+ Benzene vapor 

Tapered test strip 44.00 

 

42.00 

[236] 

 

Table 10: Fracture toughness of Epoxy polymer composite tested from different methods. 

Fracture toughness shows here represent the mean values from different literatures. 

 

Polymer 

/Polymer composite 

 

Testing Method 

 

Fracture 

toughness 

(Mpa(m)1/2) 

 

 

Reference 

Pure epoxy 

Epoxy + silica 
 

Tensile test 

 
(Servo-hydraulic fatigue testing) 

 

1.1 

2.5 
 

[354] 

Epoxy 

Epoxy+1%volZnO 

Epoxy+2% volZnO 

Epoxy+3% volZnO 

Epoxy+4% volZnO 
 

Macroscale testing  

method 

Mini Bionix II MTS 

 testing 

ASTM E1820 

 
 

1.5 

2.25 

2.5 

2.8 

2.8 
 

[264] 

Epoxy+10% volAlumina 

Epoxy+10% volTitania 
 

Three-point bending tests 
1.15 

0.85 
 

[280] 

Epoxy+0.01 wt%TRGO 

Epoxy+0.05 wt%TRGO 

Epoxy+0.1 wt%TRGO 

Epoxy+0.25 wt%TRGO 

Epoxy+0.5 wt%TRGO 
 

3P-ENB test 

ASTM E397 
 

0.55 

0.625 

0.71 

0.75 

0.8 
 

[286] 

Epoxy+0.05 wt%GNP 

Epoxy+0.1 wt%GNP 

Epoxy+0.25 wt%GNP 

Epoxy+0.5 wt%GNP 

Epoxy+1wt%GNP 

Epoxy+2wt%GNP 
 

3P-ENB test 

ASTM E397 
 

0.51 

0.55 

0.62 

0.7 

0.8 

0.75 
 

[286] 
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Epoxy+0.05wt%MWNT 

Epoxy+0.1wt%MWNT 

Epoxy+0.25wt%MWNT 

Epoxy+0.5wt%MWNT 
 

3P-ENB test 

ASTM E397 
 

0.52 

0.55 

0.6 

0.62 
 

[286] 

Epoxy+mortar 

 
Epoxy+mortar+5%wt PET 

Epoxy+mortar+10%wt PET 

Epoxy+mortar+15%wt PET 

Epoxy+mortar+20%wt PET 
 

Three-point bending tests 
1.98 

1.62 

1.54 

1.43 

1.22 
 

[288] 

Epoxy 

 
Epoxy+0.03 WS2NTvol% 

Epoxy+0.08 WS2NTvol% 

Epoxy+0.1 WS2NTvol% 

Epoxy+0.12 WS2NTvol% 

Epoxy+0.126 WS2NTvol% 

Epoxy+0.15 WS2NTvol% 

Epoxy+0.18 WS2NTvol% 

Epoxy+0.226 WS2NTvol% 
 

compact tension 

ASTM D 5045-91 
 

0.85 

1 

1.15 

1.46 

2.06 

1.3 

1.3 

1.24 

1.26 
 

[355] 

Epoxy+0.07vol% CNT 

Epoxy+0.08vol% CNT 

Epoxy+0.09vol% CNT 

Epoxy+0.1vol% CNT 

Epoxy+0.12vol% CNT 

Epoxy+0.13vol% CNT 

Epoxy+0.16vol% CNT 

Epoxy+0.07vol% CNT 
 

compact tension 

ASTM D 5045-91 
 

0.8 

1.3 

1.44 

2 

1.15 

1.3 

1.22 
 

[355] 

(DER)Epoxy resins/4,4'-

diaminodiphenylsulphone (DDS) 

DER 332/ (DDS) 

DER 661/ (DDS) 

DER 664/ (DDS) 

DER 667/ (DDS) 
 

 

Single Edge Notced (SEN) 

 

 

 

 

1.09 

1.5 

1.99 

2.54 
 

 

[270] 

(DER)Epoxy resins/4,4'-

diaminodiphenylsulphone (DDS) 

DER 332+10%VolG 

DER 661+10%VolG 

DER 664+10%VolG 

DER 667+10%VolG 
 

 

Single Edge Notced (SEN) 

 

 

1.09 

1.5 

1.99 

2.54 
 

 

[270] 

 

 



99 

 

 

Figure 1 Stress corrosion cracks formation in combined aggressive chemical environment 

and mechanical stress. Copyright 2014. Reprint from [85]. 
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Figure 2 Destruction of high voltage insulator due to action of moisture, electrical field and 

acidic environment. Copyright 2014. Reprint from [92]. 

 



101 

 

 

Figure 3 Stress-corrosion cracks after 336 h of acid exposure of E-glass/vinil ester without 

mechanical load. a,b,c) single fiber crack, and d) multiple fiber crack zone. Copyright 2014. 

Reprint from [96]. 
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Figure 4 A three zone model of thermo-oxidative aging. Copyright 2014. Reprint from 

[105]. 
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Figure 5 Damage development in polymer after aging in nitrogen and air environment. 

Copyright 2014. Reprint from [123]. 
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Figure 6 Development of mechanical stress in polylactide samples for different 

hydrothermal aging temperatures. VPLA and RPLA-i corresponds to virgin polymer and 

polymer after i processing cycles, respectively. Copyright 2014. Reprint from [135]. 
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Figure 7 Schematic of self-healing using microcapsules. Copyright 2014. Reprint from 

[356]. 
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Figure 8 SEM image of the healed surface of composite fiber-reinforced polymer after 30 

min healing time. Copyright 2014. Reprint from [17]. 
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Figure 9 Types of fracture mechanism that generally distinguished for initiation and 

propogation 
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Figure 10 Normalized Tensile strength (TS) of different polymer composites, all values are 

normalized to its pure state (TSPC/TSPure). Inset shows increasing trend from red circle to 

angular dark yellow triangle [256-260, 357-359]. 
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Figure 11 Toughness measurement of different polymers (Polyester, Ethylene oxid, PMMA, 

Emeraldine salt) correspond with different modifiers (PET, HNT, mica, Bentone 

(Ben),(MMT) concentration[269, 287-290]. 

 


