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C osm ologicalm atter perturbations
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W e Investigate m atter density perturbations in m odels of structure form ation with or w ithout
causal/acausal source. Under the uid approxin ation In the linear theory, we rst derive full
perturbation equations in  at space wih a cosn ological constant . W e then use G reen-function
technigque to obtain analytic solutions form atterperturbationsina at = 0m odel. Som e incorrect
solutions In the literature are corrected here. A sin ple yet accurate extrapolation schem e is then
proposed to obtain solutions in curved or € 0 cosn ologies. Som e general features of these solutions
are revealed. In particular, we analytically prove that the resulting m atter density perturbations
are independent of the way the causal source was com pensated into the background contents of
the universe when i was st ormed. W e also use our G reen-fiinction solitions to nvestigate
the com pensation m echanisn for perturbations w ith causal seeds, and yild a m athem atically and
physically explicit form in interpreting it. W e found that the com pensation scale depends not only
on the dynam ics of the universe, but also on the properties of the seeds near the horizon scale. It
can be accurately located by em ploying our G reen functions.

I. NTRODUCTION

T he standard coan ology was lack of a m echanism to produce cosn ological perturbations. In order to com pensate
for this aw in the standard m odel, there are currently two m ain paradigm s for structure form ation| in ation @]
and topological defects E]. W hilke the beauty and sin plicity of the form er appears to have enticed m ore adherents
and studies, the latter has proved com putationally m uch m ore challenging to m ake robust predictions w ith which to
confront observations E{]. T hese two paradigm s are fundam entally di erent in the way they generate cosm ological
perturbations. T he standard adiabatic In ation producesprin ordialperturbationson all scales ofcosn ologicalinterest
via quantum uctuations and the causal constraint during in ation, and these perturbations grow over tim e in an
uncorrelated m anner. A s a consequence, the perturbations today can be thought of as sin ply transfered from the
initial irreqularities that in ation set up, and this transfer function can be easily obtained in the linear theory and
thus well understood in the literature. O n the other hand, topological defects are the byproducts of the spontaneous
sym m etry-breaking phase transition in the early universe, and hence carry energy that was carved out ofthe originally
hom ogeneous background energy of the universe. T herefore due to causality, defects induce perturbations only on
sub-horizon scales, via gravitational interactions w hile evolving. T his m echanian that prevents the grow th of super—
horizon perturoations is called the tom pensation m echanisn ’. In addition, due to the certain topology of the defect
netw ork, the resulting perturbations are correlated and thus non-G aussian, in contrast to the standard adiabatic
In ationary perturbations. It then follow s that to com pute the perturbations in m odels w ith defects, we need to
know the evolution history of defects for the entire dynam ic range during w hich the cosn ologicalperturbations of our
Interest were seeded. T his is what m akes the com putation of defect-induced perturbations so di cul.

In the literature the pow er spectra of this kind ofm odels have been investigated using the 11l E instein-B oltzm ann
equations. However, the study of the phase Infomm ation of these perturbations still rem ains di cult because of
the Im ited com putation power. A lthough there have been som e detailed treatm ents for theories w ith causal seeds
@,@], we shall in this paper present a sim pler form alism , which is an approxin ation to the f1llE nstein-B oltzm ann
equations, to provide not only a physically transparent way for understanding the evolution of density perturbations
in models with source, but also a com putationally econom ical schem e to investigate the phase inform ation of the
resulting cosm ological perturbations. T his form alian is parallel to those presented in Ref. E] and Ref. E], but we
give som e m odi cations to incorporate the inclusion of the cosm ological constant and a m ore detailed treatm ent for
the e ect of baryon-photon coupling/decoupling. W e also note that part of the solutions in Ref. @] are Incorrect
due to the incorrect nitial conditions and the incorrect assum ptions about the form of the subsequent perturbations
induced by the source (see text later). W e shall correct these m istakes and further provide a com plete and explicit
set of analytic solutions for the m atter density perturbations. W ith an accurate extrapolation schem e, these solutions
becom e also valid for m odels w ith any reasonably chosen background coam ology. T he form alism and its solutions to
be developed here w illbe com pletely generaland thus suitable for any m odels w ith or w ithout causal/acausal source.

The structure of this paper is as follows. In section ﬁ, under the uid approxin ation, we rst derive in the



http://arxiv.org/abs/astro-ph/0012205v1

synchronous gauge the full perturbation equationsw ith source tem s, in - at cosm ologies w ith a coan ologicalconstant

. This is done by considering the stress-energy conservation ofthe uids ( and the source ( , and the linearly
perturoed E instein equations ) . The uid com ponents considered here are cold dark m atter (CDM ), baryons B),
and photons ( ), and we em ploy the baryon-photon tight-coupling approxin ation to derive the perturbation equations
before the last-scattering epoch. In this context, we also Investigate the role ofthe so—called stressenergy pseudotensor
) . The initial conditions of these perturbation equations are discussed ), and we use the approxin ation of
nstantaneous decoupling to dealw ith the decoupling of photons and baryons at the epoch of last scattering ) .
W e then num erically justify the accuracy of this form alism in the context of standard CDM m odels, by com paring
is resuls with those of the full E instein-B oltzm ann solver E] ) . W ithin reasonable ranges of coan ological
param eters, our approach provides satisfactory precision at greatly reduced num erical cost.

In section , w e derive them atter perturbation solutionsofthe equationspresented in section . T heperturbations
of radiation and m atter are rst divided into two parts: the initial and the subsequent perturbations. W ith som e
change of variables, these equations are then ready to be solved by the G reen-function technique ). W ith
this technique, we nd the exact solutions on scales much larger or much an aller than the horizon size, nam ely
the super-horizon or the sub-horizon solutions respectively (IIB[). Some degeneracy am ong the G reen fiinctions for
the m atter perturbation solutions is then found and used to reduce their e ective num ber () . W ith this great
sin pli cation, solutions on intem ediate scales are then easily obtained by an accurate interpolation schem e based
on the welkknown standard CDM transfer function ) . W e also discuss the e ect of baryons () . A smmplk
and accurate extrapolation schem e is then Introduced to obtain solitions in the K 6 0 or % 0 cosm ologies (),
where K is the curvature of the universe (see A ppendix El) . Allour G reen-function solutions are num erically veri ed
to high accuracy.

In section , we use our G reen-function solutions to investigate som e In portant properties of cosn ologicalm atter
density perturoations. W e rst dem onstrate the relation between our solutions and the standard CDM transfer
function ). W e also prove that n m odels w ith causal source, the resulting m atter perturbations today are
Independent of the way the source energy is initially com pensated into the background contents of the universe
) . Finally we use our G reen-function solutions to study the com pensation m echanian and the scale on which it
operates ) .W e nd that this com pensation scale is determ ined not only by the dynam ics ofthe universe, but also
by the properties of the source near the horizon scale. O nce the detailed features of the source near the horizon scale
are know n, this com pensation scale can be accurately located using our G reen functions. A sum m ary and conclusion
is given In section El In appendix E, we de ne the convention of som e notations used In this paper, and present for
reference the solutions for the dynam ics of various background cosn ologies, including the consideration of non-zero
curvature and a coan ological constant.

II.SYNCHRONOUS GAUGE PERTURBATION THEORY

In this section, we derive the linear evolution equations for cosm ological perturbations. To calculate the density
and m etric perturoations, we m odel the contents of the universe as perfect uids: radiation (photons and neutrinos)
and pressureless m atter (DM and baryons). W e shall use the photon-baryon tight-coupling approxim ation until
the epoch of last scattering, at which we assum e Instantaneous decoupling, also taking into account the e ect of
Sik dam ping due to the photon di usion. A fter the decoupling, the baryonic perturbations origihating from the
perturbations of the photon-baryon coupled uid are then m erged linearly into the CDM content. In scenarios w ith
causal seeds, the radiation and m atter elds are assum ed to be Initially uniform , and then perturoed by the causal
seeds after they are form ed. The radiation, m atter, and causal seeds are assum ed to interact only through gravity,
m eaning that their stress-energy tensors are separately covariantly conserved.

W e shall work in the synchronous gauge, in which the perturbationsh  to the spacetine metric g obey the
constraint hy = 0. T hroughout this paper, we use a signature ( + + + ) for the spacetim e m etric, and units in which
h= c= kg = 1. Thus the perturbed at Friedm ann-R cbertson-W aker FRW ) m etric is given by

Qo= &(); gyy=2a’()+ hy(;x): 1)

W e shall work In the linear theory, requiring hijj 1. Greek alphabet will denote the spacetin e indices (9.

= 0;1;2;3), and m d-alphabet Latin letters the spatial indices (€g.1i= 1;2;3). A though the synchronous gauge is
som etin es criticised in the literature due to its residual gauge freedom , it is still well suited to m odels In which the
universe evolves from being perfectly hom ogeneous and isotropic. In such m odels, all perturbation variables can be
Initially setto zero (pefore the causalseeds are generated), and this isnom ally referred to asthe ‘Ynitially unperturdoed



synchronous gauge’ (IU SG) @]. Tt possesses no residual gauge freedom . T hus the E instein equations are com pletely
causalin U SG , w ith the values of all perturbation variables at a given spacetin e point being com pletely determ ined
by Iniial conditionsw ithin the past light cone of the point. O ne exam pl of such m odels is the cosn ic defect m odels,
which have been ofm ost interest in the study ofm odels w ith causal seeds.

In section , we derive In the U SG the conservation equations of radiation and m atter elds. In section , we
consider the conservation of source stress energy. In section , w e derive the linearly perturbed E instein equations.
Then, in section , we em ploy the concept of stress-energy pseudotensor to investigate the intermal energy transfer
am ong various elds. In section , we describe the approxin ation of instantaneous decoupling of photons and
baryons at the epoch of last scattering. In section , we num erically verify the accuracy of our form alisn for the
standard CDM m odel, in com parison w ith the results from CM BFA ST E], a fast E instein-B olzm ann solver.

A . Stress-energy conservation of radiation and m atter elds

T he contents of the universe are considered as perfect uids, whose energy-m om entum tensors have the form
T, = (s toluyu +p ; withuyu = 1: 22)

Here ,,p,and y, arethe density, pressure, and fourvelocity of the N th uid respectively. In the hom ogeneous
background, wehaveu, = @ ';9),which mpliesthat u’ = Oto rstorder.W ethusde ne the velocity perturbation

asvy = a ul, ie., u, = (0;v, =a). The equation of state and the sound speed are de ned respectively as

N’

R P (2.3)
C onsequently, the covariant conservation of stress energy foreach uid T, ; = 0 gives E]
1 a
w0 e WSR3 W) =0 (24)
a
a
v + -1 3&)v, + S r o, =0; 2.5)
a 1+ &
2?2 a'_ 2
v, + =@ 3&)v =0; (2.6)
a
where , = =,,h h; is the spatialtrace ofh , and we have decom posed the velocities as v, = v,}: +v?,

with r \/{lf:Oandr ¥=0.

In the regin e of photon-baryon tight coupling, we have only twom ain uids: the CDM com ponent and the tightly—
coupled photon-baryon uid. They willbe denoted asN = ¢; B regpoectively, and discussed separately as follow s.
N ote that we have ignored the neutrinos in the radiation.

1.CDM uid

W e rstconsidertheCDM uid,ie.N = c.W ith .= cﬁ = 0 forpressurelessm atter, the equations of stress-energy
conservation @){ @) becom e
1 a
-t y= —=hy; v.+ —v.= 0: (.7)
2 a
Aswe can see, any perturbations in the CDM velocity willdecay asa . Thuswe can sin ply choose ve = 0 in the
IUSG .0Onceve = 0, £ will ram ain so as there is no linear gravitational source. A s a consequence, the CDM obeys a
single nontrivial conservation law resulting from equation @ )

ht 2-=0=) h= 2. 2.8)

w here the second equation results from the initial condition h = .= 0, as required by the TU SG .



2. Photon-aryon tightly coupled uid and its photon com ponent

For the tightly-coupled photon-baryon ( B) uid, we have

Thuswe can de ne

i (2.10)

w here the second resul com es from the fact that / a *and 5/ a >.De niins @) then give

1
= ; = — 211
" @5 31+ R) @11)

W ih these resuls, the equations of stressenergy conservation for the B uid can be obtained from equations

edid:

4+ 4R a R
Tt R % O TRy 2 Y @12)
a R 3+ 4R
V. B gmv s + 712(1+R)2r 5= 0; 2.13)
., a2 R

v’ = 0: (2.14)

-V
=B al+RrR B
In coam ological applications, such as CM B anisotropies, we are m ore interested in the photon perturbations rather
than the perturbations in the B uid. Therefore by using equations (@) and (R.10), we can extract the photon
com ponent from the above equations to yield @]

4 4
a R P -0 2.16)
T IR gy

w here we have ignored neutrinos in the radiation so as to replace the subscript with r. The velociy can then be
elim nated to yield a sihgle second-order equation:

4 R 4 1,

= 0: 217
c 1+R(T 31) 31 3R @1

3

r

W e note that although the photon velocities arem issing in this equation, they can be recovered at any given m om ent
using equation ) .
An alemative presentation of equations ) and Q.17) is via the entropy perturbation s. It is de ned as the
uctuation in the num ber of photons per dark m atter particle

3
s= 1 ot (2.18)
T hus equations ) and ) can be rew ritten as
S= r v @2.19)
R- 1

2 .

l+Rs_+ " 3Rr s+ ¢): (2 20)
Aswe shall see, , can only have a white noise power spectrum on super-horizon scales. From equation ), this
i plies a k? power spectrum i v, on these scales. A dding the fact that the entropy uctuation s starts from zero on
super-horizon scales due to the xed num ber ofdark m atter particles per photon, it then follow s from equation )
that both s and s have a k* allo outside the horizon. Therefore n num erical sin ulations, as long as the initial
horizon size is am aller than the scales of our Interest, we can sinply set s= s= 0 as part ofthe initial condition.



B . Stress-energy conservation of the source

The causal source we shall consider is weak, so i will appear only as rst-order tem s In the perturbed E instein
equations. T hus In the linear theory we are considering here, they can be treated as being sti , m eaning that their
evolution depends only on their own selfsinteractions and the background dynam ics of the universe, but not on their
selfgravity or on the weak gravitational eld of the inhom ogeneities they produce. T his assum ption w ill enable us to
separate the calculation of their dynam ics from that of the inhom ogeneities they induce, allow Ing us to evolve them
as if they are In a com pletely hom ogeneous background. Since the source is sti , its energy-m om entum tensor
need only be locally covariantly conserved w ith respect to the background:

a
00;0 PR 011 7 221)

a
o0 + 23 0i=  iyi 7 222)

where | = oo+ 4.

A nother In portant aspect of coam ic structure form ation w ith causal seeds like cosn ic defects is the fact that the
sources, form ed at very early tim es, w ill ultin ately create under-densities in the iniially hom ogeneous background,
out of which they are carved. This is a direct result of energy conservation in the universe, and is nom ally term ed
tom pensation’. W e shall discuss this issue In m ore detail Jater.

C .Linearly Perturbed E instein equations

At rst we have ten E instein equations

1
R =8G(T Eg )+ g ; (2.23)
or equivalently,
1
G R 9 Rs=8GT g ; 2 24)
whereR  istheRiccitensor, G isthe graviationalconstant, T = g T , isthe cosn ologicalconstant, G is the
E instein tensor, and R4 g R isthe scalar curvature. Linearly perturbing the above equations, we ocbtain
1 rs 1 rs 1 rp s 2
R =8G(T Eh Tys > Tys + > hyq P *9T)+a” h (225)
or equivalently,
G =8GT £h ; @2 26)
where
X
T = +a® TS+ TS ): @ 27)

a a
2Ropo= h —h=+3 = 1+3F) v n +8G 4 ; @ 28)
a a
( "w 2# ) N
2 R + 2 K By, + 22, ’K lh ¢ 2 ’h
i - i = Nij LS iy Zhus+ 74T
J a J J a J J 3 1] 9 J
2 ~ 2
+ Rk + Pk Eijﬁkl;kl: 16 G "3+ a® Hyy; (229)
2, a a °X
2 G00= Hij;ij —-r“h+ 2-h=6 -— N N T 16 G 00 7 (2.30)
3 a a
N
2 a X o :
2 Goi= ﬁ'ij;j Eh—;iz 6 — @+ ) NVNl + 16 G i (2.31)
a



w here the traceless partsare de ned by R = R 3 inkk=3, and sim ilarly for Hiy and 7 iy. T he prim e over the sum
n equation ) indicates the sum over all uids excgpt CDM . W e note from the above results that in the TU SG
the coam ological constant  does not appear as extra termm s In the perturbation equations except n (@ 29), the YLj’
com ponent.

W ithin the photon-baryon tight-coupling regin e, the above perturoation equations sin plify as:

2

a a
h —-h=+3 — [@+R) r+ ccl+8G 4+ 232)

a a

a 2 1 1 2 2 - 2

Hlj + ZE_FFJ‘_]' r Hlj gh;ij + 5 3T h+ ij;kj + ij;kj_ 5 inkl;klz 16 G i3t a Hj_j ; (2.33)

2 a a ’
Hijig zr‘h+2-h=6 = [cct+ U+ R) + ]+ 16G oo 2.34)

3 a a
2
2 a i

H_j_j;j 5h—;j_= 8 g 1+ R) Vot 16 G i : (2.35)

W e note that if the source obeys the covariant conservation equations ) and ), then equations ) and
g 39) are preserved by equations £37).

In the standard CDM m odelw here the source is absent, equation ) can be greatly sin pli ed on super-horizon
scales 1) in the radiation orm atter era:

1 2@+ R) ) o
et —— ——5— = 0; In radiation era, (2 .36)
2 6 )
5 c= 0; inmatter era: 237)

SinceR = 3 gpa=4 paeq by de nition, weknow R 1 deep In the radiation era. T husthe above equationsboth have
agrowihgmode ./ 2. Thisresuk hasan inportant in plication for num erical sin ulations of structure form ation
w ith causal sources. In this case, if num erical errors appear as white noise on superhorizon modes k < 1=, then
they will have a grow ing behavior S (k) = 4 kP () / k® *. For the horizon crossing m ode k 1=, this becom es
S k) / [B]. T his m eans that although energy conservation together w ith causality should forbid the growth of
perturbations on super-horizon scales, any num erical errors seeded from early tin es would induce a spurious grow ing
m ode on these scales. To overcom e this problem , one needs to perfectly com pensate the source energy in the iniially
hom ogeneous background. In the follow ing section, we shall discuss one of the m ethods that can achieve this.

D . Stress—energy conservation of the pseudotensor

The concept of the stressenergy pseudotensor in an expanding universe was rst ram arked in this context by
Veeraraghavan and Stebbins @], and further investigated by Pen, Spergeland Turok E]. To introduce this concept,

we start from a perturoed M inkow ski space § = + h , where the Bianchi dentity r G = 0 leads to an
ordinary conservation law @ G () = 0 at linear order in Ao A dding the fact that the E instein equations give
G qy=8GT G @y WwhereG () is the sum of non-linear temm s in A, we see that the right-hand side of

this equation provides an ordinarily conserved tensor, the stress-energy pseudotensor.
T he generalization ofthis resul to an FRW m odel is straightforward, w ith only the correctionsdue to the expansion
of the universe. M oving all these corrections (derivatives of the scale factor) to the right-hand side of the E instein

equations while keeping only the Inearterm s in h , we obtaln a pseudo-stressenergy tensor G 1)=8G:
-3 ‘12[ FAER) L] ——2nt o (2 38)
00 8 G 2 c c rr 8 G a 00 r
1 a z 5
u= = 3 @I+ R) Vit o0i; (2.39)
T L2my Zng+ e 2.40)
1] 1] 8 G a rr 8 G a 1] 3 1] 1] - .
T his tensor obeys an ordinary conservation law ; = 0 according to the E instein equations, or equivalently



X=%; @241)

l(? = l]] : (2.42)
This isnot a fundam entally new conservation law , but it describes the interchange of energy and m om entum am ong
the di erent com ponents in the universe, ie. the radiation, m atter, and the source in our case. This description
appears to be physically m ore transparent than the originalE instein equations.

Another advantage of lnvoking this form alisn is that it is easier for num erical sim ulations to specify the initial
conditions and to m aintain proper com pensation on super-horizon scales. Aswe shallexplain Jater, i3 can only have
a whitenoise power spectrum on super-horizon scales. T hus integrating equations ) and ) over tin e show s
that oo has a k* power spectrum and that o; has a k? power spectrum . T herefore, as ong as the horizon size at
the beginning of the simulation is an aller than the scales of our interest, we can set g9 = o1 = 0 as the niial
condition, allow ing for perturbations to grow only inside the horizon and for g to llo ask? outside the horizon.
For sim ulations of structure ©om ation w ith causal source, a check of oo / k? on super-horizon m odes w il tell us
w hether or not the com pensation is well obeyed.

To m ake use of the pseudo-stressenergy tensor form alisn in the study of coan ological perturbations, we com bine
the conservation equation for radiation ) , the de nition ofpseudoenergy ) , and one ofthe altemative E instein
equations using the pseudo-stress-energy tensor ) , to yvield a convenient closed set of equations:

R 1

= + Z(s+ ; 243
S 1+R> 3+3R" S+ el @43)
a a 3
—==4G="(o0 0) — = ¢t 20+R) ¢+ 20+ R) s ; (2 44)
a a 2
PRI 2(1+ R) (2 45)
= T oz St B
-0 037 2 G a

Here we have used equations @), ), £19) and £39) toelimnnateh, ., viand o; respectively. By analogy to
the results in Ref. E], here we have built both the pseudoenergy oo and the entropy uctuation s into the above
form aligm .

E . Initial conditions of causalm odels

A s required by the TU SG , all perturbation variables are zero before any m echanisn of structure form ation starts to
act on the initially hom ogeneous and isotropic universe. In causalm odels, causality also requires that localphysical
processes can never induce correlated perturbationson scalesm uch largerthan the horizon. T herefore, when the initial
irreqularities of the universe are rst formed (eg. via the fom ation of cosm ic defects, or the presence of in ation),
the spatialpart of , and h  can only have whitenoise power spectra on super-horizon m odes| their spatial
perturoations being uncorrelated on scales larger than the horizon size @]. The sam e appliessto y and therefore h.
It then follow s from equations ), ) and ) respectively that the power soectra of vy, i and o; allfall
o ask? outside the horizon. From equations {2.19) and ), we also have the spectra of s, s and (o proportional
to k* on these scales, as previously discussed. A s a summ ary, we have for super-horizon m odes k 1= that

ci rihhig; g5 45/ k° ; (2 .46)
Vei 01 01/ KN 2 .47)
sisi o0 / K ; 2 48)

where ¥V k"’ m eans the power spectrum is proportionalto k" .

Since the production tin e of the initial irreqularities is nom ally so early that the horizon size ; at that time is
much sm aller than the cosm ological scales kcols of our Interest (ie. keos i 1), the above conditions can be regarded
as general initial conditions for all scales of coan ological interest. If we require keos 3 1 in our analysis, we can

sin ply choose
V,= 0i= 0i= S= 8= o= 0; 2 .49)

as the initial conditions, because their power spectra all decay as either k? or k* outside the horizon .



W ith such a choice, we can see from equation ) that there is still freedom for the choice of ., , and b into
which to com pensate oo when oo was st form ed. Nevertheless, as we shall analytically prove later, no m atter
how (¢ was com pensated into the background contents of the universe when the causal source was st fom ed, the
resulting m atter density perturbations today would be the sam e. W e note that this was rst num erically cbserved
in Ref. E], and here we shall provide a thorough interpretation to it using our analytical solutions to be obtained
later. W e also note that none of the above argum ents w ill hold if the initial perturbations are seeded in an acausal
way, which is nevertheless not of our current interest.

F . approxin ation of instantaneous decoupling

O ne thing we have not lncluded in our form alism is the treatm ent at and after the decoupling epoch 4 . Before this

epoch, photons and baryons are assum ed to be tightly coupled, form ing a single B uid. At the decoupling epoch

4, baryons and photons are assum ed to be Instantaneously decoupled from each other, so that and p evolve
separately afterwards. A num erical t to the redshift of the decoupling epoch is [E]

( o th )0:251

- 2y,
Zq = 12911+ 0959 ( - onZ)0%% 1+ b ( goh®)™® ; (2.50)
by = 0313( noh®) %7 1+ 0607( »oh*)"*"* ; (2.51)
by = 0238( noh®)?%: (2.52)

A Yhough this is the result for the decoupling epoch ofbaryons and there is another t for that of photons, these two
epochs| the recom bination ofbaryons and the last scattering of photons| coincide approxim ately in the absence of
subsequent reionization @ ,EI].

In addition, the photons and baryons are not in fact perfectly coupled, and this leads to the di usion dam ping of
photons and Sik dam ping of baryons @] during the decoupling epoch. To m odel these e ects, we apply dam ping
envelopes to both and g at the decoupling epoch z4, ie.

A

N @ =% @Dy &K); N = ;B; 2 53)

w here the tilde indicates the Fourder transform ofa quantity and k is the wave num ber. T he photon di usion dam ping
envelope can be approxin ated by the form @]

D k)’ e B, © 54)
where
( " p2=pl #) pl=p2

k2 F, 202 .

T = —armtan - = ( goh”) Fi; (2 .55)
M pc 2 Fi

m = 146( ,oh?)%9% 14 0:d428arctan I (328 zoh?) ¥ 2 56)
P = 029; 2 57)
P2 = 238( noh*)°"; (2 58)
Fi1= 0293( ,oh?)"®* 1+ @51 ,oh%) %48 ; 2 59)
Fo= 0524( ,oh?)?®% 1+ @05 ,oh%) 926 2 .60)

Sik dam ping for the baryons can lkew ise be approxin ated as @]

Dy k)’ e ®7k)"7, oo
w here
Ks 2,0:398 5 0ugy L+ (962 ,oh?) 084
— = 138 h - h : ; e
Mpc ! ( moh?) ( zoh?) T+ (346 ooni) 0% ( )
h2) 0:0297 h210:0282
mg = 1:40( Boh”) ( moh?) . .

1+ (781 B0h2) 0:926



In som e scenarios w ith causal sources, the dam ping envelopes ) and ) may depart from the form of
exponential 8lko here to a powerdaw decay towards an aller scales. This is due to the survival of perturbations
which are actively seeded during the decoupling process. For exam ple, In m odels w ith coam ic strings, the departure
appears on scales am aller than of order a few arcm inutes (ie. the mulipole index 1~ 3000) E]. Certainly this
is beyond the scale range of our interest. M oreover, since the decoupling process is relatively a short instant in the
entire evolution history of the perturbations, the contribbution from these survived sm allscale perturbations should
be relatively an all. A dding the fact that we expect the post-decoupling contribution in the perturbations seeded by
defects to have a power-law 2llo on sn all scales due to a certain topology of the source [E], the an allscale power
In the nalperturbations is likely to be dom inated by this post-decoupling contrbution, rather than the prin ary
perturbations (those seeded before and during the decoupling, whose power spectrum  rst exponentially decays and
then tums to a power-law fallo ). Therefore, on the scales of our interest, the dam ping approxin ation em ployed
here should be still appropriate form odels w ith cosn ic defects.

Now we consider the evolution of and p after the decoupling epoch zy. From the energy conservation law
@) { ) , Wwe have for the baryon perturbations

= 0: (2.64)

B [¢] +
This inplies (¢ —) / a ', meanhg that the evolution of 5 and . will soon converge to the sam e behavior.
W e also know that m atter perturbations grow as 2 in the m atter era so that [ @) c@) ] 1s relatively an allwhen
com pared w ith either gy or o. A sa consequence, in the calculation of zg and o to linear order, it is appropriate
to combine p and . at the decoupling epoch z4 as

A

e e - e
& = BoB@*t 0@ _ 3 B0® @DPr=4+ w0 c(d),_ 2.65)
Bot o Bot 0
and the sam e for their tin e derivatives. Then we have only two uids after the decoupling: the photon uid ( ) and
the m atter uid, which is linearly combined from the CDM and baryon uids ( , = <+ 3). Eventually we can

take the m atter perturbations at the present epoch tobe €9 Sy S o0.
To sum up, we rstevolethe CDM and B perturbations up to the decoupling epoch z4 given by @.5(), noting

that our form alisn extracts the photon component from the B uid. W e then apply dam ping envelopes to © (4,
and €., as illustrated by equation ), to account fr the photon di usion and Sik damping. §, g, Is then
obtained by linearly combining €, 4, and & (), as shown in equation ) . Finally we carry on the evolution of &,
and €, from the epoch z4 to the present, using our previous perturbation equationsw ith R = 0 and the subscript &’
replaced by h’.

G . A ccuracy for the standard CDM m odels

To verify our schem e for evolving coan ological perturbations, we rst calculate the CDM transfer function in the
context of the adiabatic In ationary CDM m odel:

ec 7 ec 0;0
Tok; o) = =i 000, (2 .66)
ec (k;o)ec (O; O)

where | is the present conform altime. To this end, we em ploy equations €.43), .44) and {2.43) in the absence
of the source temm s, and the approxin ation of instantaneous decoupling described above. W e start the evolution in
the deep radiation era when r 1, R 1,and ; 1=k for a given m ode k. In this case, one choice of the
initial conditions is

s=s5=0; o= %; - L. 2.67)
= ’ c i 00 G . -

ir
Fjgureﬁl show s our results for the CDM transfer functions T. k; ) at the present epoch in di erent cosm ologies,
together w ith the results obtained from CM BFA ST E]. Tt is clear that they agree very well. T he discrepancy of the
tw o reaches itsm axin um ofabout 5% at the scale k 1hMpc ! ;n theopen modelwith o = 0:15and g = 0:05.
W e have also checked our results against those in Ref. @], and they are In agreem ent again w ithin a 5% error. In
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addition, from the bottom curves in Figure , w e notice the oscillations resulting from the photon-baryon coupling
before 4 in cosm ologiesw ith high baryon fractions go= no-

N ext, we calculate the radiation transfer function at the decoupling epoch, since the radiation perturbations at this
epoch w ill appear as the Intrinsic CM B anisotropies. W e de ne this transfer function as:

e (k: Ve (O

T, K; a) = Effﬁi—ﬁl—ffgigl; ©.68)

= &;0) 0; o)

w here we nom alize the radiation perturbationsat 4 to both the am plitude of the super-horizon CDM perturbations
today and the mitialCDM power spectrum , aswe did or Te k; o) (see eqg. ]) . This de nition will enable us to
verify not only the scale dependence of the evolution of perturbations, but also their nom alizations. F jgurelz show s
our results, again as a com parison w ith the results from CM BFA ST . W e see that although the scale dependence of
our resuls is slightly di erent from that of the CM BFA ST results, the overall nom alisation appears to be quite
accurate. T he sideway shift of the oscillatory peaks in our results when com pared w ith the peaks from CM BFA ST
hasamaxinum ofabout 5% in the atmodelwith = 095 and 3o = 0:05. This discrepancy resuls naturally
from the instantaneous-decoupling approxin ation in our form alism . As a resul, despite the sn all lnaccuracy, our
form alism provides a m uch m ore num erically e cient way than the lullE instein-B oltzm ann schem e in calculating the
density perturbations.

IIT.SOLUTIONS OF M ATTER PERTURBATIONS
A .D ecom position of perturbations

W e rst consider density perturbationsabouta atFRW m odelw ith a cosn ologicalconstant , which are causally

sourced by an evolving source eld wih the energy-m om entum tensor (%; ). As seen in the previous section,
w ith the photon-baryon tight coupling approxin ation in the synchronous gauge, the linear evolution equations of the
radiation and CDM perturbations can be given by equations { 43), € .44) and {.4Y), which are derived from equations
¢20), £.39) and @ 41). This set of equations has the advantage in controling the initial condition fr num erical
sin ulations, as wellas understanding the law of stress-energy conservation. For analytic sim plicity, however, we shall
drop the use of ¢ In this section, and em ploy equations ) and ) to form an altemative set of evolution
equations for density perturbations:

P - 2:=0 (1)
. = - ——r° .=0; -
" 1+RrR T 3% 3@+R)
a 3 a?
ct== == lcet @tR) 1:]1=4G ,: (32)
a 2 a

W e note again that the cosn ologicalconstant a ects only the background dynam ics (ie., the evolution ofthe scale
factor a), but does not contribute extra tem s In the above perturbation equations. A fter the decoupling epoch 4,
the treatm ent is essentially the sam e as that introduced in section . W e have num erical veri ed in the context of
the adiabatic in ationary CDM m odelthat the set of equations @.1)) and ) and the set of equations ), )
and ) indeed give identical transfer functions of density perturoations, w ith a num erical discrepancy of less than
0:1% .

A ssum Ing that the causalsource was form ed at som e intialtin e ; and then evolved to the current tin e , it proves
usefil to split the source-seeded linear perturbations into initial (I) and subsequent (S) parts @]:

v &)= 5 &)+ 5 & )N =g 33)
T he iniial perturbations 1% (x; ) origihate from the source con guration at ;, while the subsequent perturbations
S (x; ) are actively and cum ulatively seeded by the later evolution of the source at each ®, where ;< ~< . This
is equivalent to having the initial conditions
I _ I _
vy (D= v (i [ ()=« (1) 34)
v ()= (1)=0: (3.5)
B ecause the source nduces isocurvature perturbations, *(x; ) mustcompensate ° (x; ) on com oving scales k= x°j>
to prevent acausalperturbation grow th on super-horizon scales. O ne ofthe ain s ofthis paper is to show analytically
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how this com pensation m echanism can be achieved. Now we can solve the system of equations ) and @) by
em ploying the integral equation w ith G reen functions:
X Z Z

N )= FxOCN K ) wo &% D+ R X Dwo &% s (3.6)

Z Z

Ski)=4G6  ar IxGVIR; N 4 &GN 3.7)
whereX = ¥ 3. The easiest m ethod of obtaining the G reen—fiinction solutions is to go to Fourder space and solve
the resulting hom ogeneous system of ordinary di erential equations w ith appropriate initial conditions. Since the
G reen functions depend only on the modulus of X = %k  ¥3 it ®llow s that their Fourier am plitudes m ust depend
only on them odulus ofk. Thuswe have

X h i
k)= VG 0%k D+ @Y G DSk D) 38)

€ k;)=46G € °k; ;M k;NdAN: 3.9)

i

W e notice that equation 8.9) is di erent from the om in Ref. fLd], where the authors identi ed our € © as & °.
This identi cation is ncorrect, because 6" ® and &) © have di erent initial conditions, as we shall see.

For sim plicity, we assum e no baryons and there =t R = 0 for now, and shall relax this constraint later. W ith
the change ofvariabley= 1+ A =2 where A = 2( 2 1)=¢q (leading to a=aeq = y2 1), and w ith the fom alism
@) and @), we can rew rite equations @) and @) in Fourder space as

2
g0 leeo, K e 0; (3.10)
v 3 3/
126=€°
@ F)EP 2+ 6 T v € =0; (311)

where a prin e represents a derivative w ith respect toy, & &N , & or&,and & & ,EN or . A ccording
to equations @) and @), the initial conditions @) and @) now becom e:

EC=6F=6"=6%=1 at = j (3.12)

3
&= = Z@ES: 1 at ~; (3.13)

w ith allthe other G reen functions and their tin e derivatives vanishing. T here are three things we should notice here.
Fjlst,itjsrequjredthat@ﬁmo(k; ; )= 0Hr s,andthat &V S ; ;7 = 0 or ~. Second, the G reen fiinctions
@? e only describe the tin e dependence of the hom ogeneous version of equations ) and ), w hile the G reen
fiinctions &  are, by the conventionalde nition, the true G reen fiinctions used to solve the inhom ogeneouscequatjogls
@) and ). Finally, since there are only four variables in equations ) and ) (le.&, &, & and &),
there m ust exist som e dependence am ong the ve sets of G reen functions (ie. & ¢, &' %, & ¢, & * and " °). This
dependence can be observed from the initial conditions ) and ), which yield

@st@gc+g@§r: (3.14)

In Ref. E], the authors ignored the fact that &° = 4=3 In the initial condition ) . This ignorance led to the
absence of the second tem in equation 3.14) (and thus the identi cation of & ° = & ), and consequently the
ncorrect solutions of G reen functions in their nal resuls. Based on equations ) and ) w ith the initial
conditions ) and ), in the ollow ing subsections we shall analytically derive a com plete set 0of G reen—-function
solutions for the m atter perturbations, which w ill then be num erically veri ed.

13



B . Super-horizon and sub-horizon m odes

Under the Iim it k 1ork 1, the ratio &"=6° w ill approach a constant (see below ), so that equation )
becom es the assocj%ted Legendre equation, w ith solutions com posed ofthe associated Legendre functionsP, (y) and

Q, ), where = 1267=6°. W e shalluse subscripts 1 and 0 to denote solutions In the lim its k 1 and k 1
respectively. For sin plicity, we shall denote both ~ and ; as * In the follow ing solutions.

1.k 1: W hen the wavelengths are m uch an aller than the horizon size, the radiation oscillatesm any tin es per
expansion tim e and its e ect is therefore negligble. By setting =6 = 0, equation ) can be solved as
& (;N=E (P 20 )+ F (MO 2 v)i (3.15)

where E (%) and F (%) are functions of *. T his gives the sub-horizon solutions.

2.k 1: W hen the wavelengths are m uch longer than the horizon size, we have &'=6° = 4=3 as the consequence

of zero entropy (see egs. ] and ]), giving = 4. Thusequations ( and (B.11) yied
T A 4 C A A
@o(;)=§@o(;)+ i )+ i 3.16)

G (;N=GMP, ‘@W+H M05E)
Z y 4 4 4
0, ®)P, ) B ®)Q

12 = - : W) A i+2 i ¥
p 0iwP, T B, &0

x) A (x2 1y

dx; (3.17)

4
2
40
2

where ; and ; are constants, and G () and H (%) are functions of #, all detem ined by the initial conditions.

T hese are the super-horizon solutions.

Combined w ith the initial conditions {3.19) and [B13), equations [3.19) and [B17) can be solved to yield the ollow ing
results. For clarity, we shalldenote 9= 1+ A"=2-n & %andy;= 1+ A =2 n " " both asw :

cs 1 2 2 W+ 1)y 1)

T . ! Dlg ——— 77 1 1
=@ D G DG Dbg e 6 w)Gwy+ D (3.18)
& - 2@  wly  5y'w + Swily+ 15y%w  15yw? + Sw 5y); 519

SA (2 1P@? 1)
1
ST =56y LET 2 gwy(wz 1)
3 (o2 v+ 1)
toww? ey Dbg e DwiD (320)

2yw®  20yw’ + 20y*w® + 20w® 30yw 15§ 5+ 3y + 25y°

€< = ; 321
10 52 1P@w? 1) G21)
@g(f _ @fs; 322)
4
G =6 3G 323)
€< = 0; 3 24)
o 36°  5¢w®+ dyw®+ 10y*w? 5 Sw'+ 10y?  20yw + 10w?)
G = ; (3 25)
52 1fw? 1%
€ = 0; 3 26)
e 3 W4yt B 1)2lo y 1,6 4yr5ur 1)2]0 w1
207 10n v+ 1) 9w 1 y 1F 9 1
dyw® 6w’ 10w + O 4w + Tyw + 6y° 4y + 5+ y?
s ad y°w  4y¥w + Tyw + 6y Y v 5.27)

w2 1) 1F
W e note that equations ) and ) result directly from the initial conditions ) and {3.13). They
3.19).

are consistent w ith equation

14
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FIG . 3. The source transfer functions €° (k 1, dashed line) and ©° ( 1, solid line).

D espite the com plicated form s presented here, all these G reen functions have sin ple asym ptotic behaviors in the
radiation—orm atter-dom inated regin es. Since we arem ore interested in the m atter perturbations today and we know
from equation ) that & / 2/ awhen = eq ! 1 ,wecan design a Source transfer function’ as

T k; M in e &; ;M) (328)
= 11 a

eq -

N ote that this is di erent from the de nition of the standard CDM transfer function (.66). Equations §.18){ g27)
then lead to the source transfer functions:

3 w+ 1
B —w? 1) Gw? 1)bo 6w ; 329
! an b ) B ) o9 w1 v (329)
2w
os _ ; 330
0 5A W2 1) -50)
3 9 w1
B = Z@w? 2)+-w@w? 1 ; 331
11 > (Bw ) 4w (w ) Iog —— ( )
geo _ 3 . (332)
0 5wz 1)f
B = PSS, (333)
4 2 W Wt 1
B g _e¥- ; 334
20 0 3720 A w? 1 9w 1 (3.34)
BT =0; (335)
3
ger _ ; 336
0 52 1y (-36)
BT = 0; (337)
3 2w w+ 1
BT . I 338
20 10 w2 1 9 % 1 6-38)

W e plot these source transfer fiinctions in Fiquresﬂ, H, and E They are now only functions of the initial tin e, but
not of the naltime. In the context of topological defects, the defect source was formed at 3 eq- T herefore
i would be also interesting to investigate the asym ptotic behaviors of the source transfer fuinctions w ith very early
nitial tin es. For ; eqs €quations :){ 1@ becom e:

15
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FIG .4. The source transfer functions €7 (dashed), BT (solid), € (dotted), and B (dot-dashed). W e have taken the
absolute valuie of B, because it becom es negative when < 0:6 .
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FIG .5. The source transfer functions B (dashed) and € (solid). W e note that BF = €7 = 0.
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3 3i . 4o

Bl o= 57 =% o= 2o g+ i T = Bl ow= 07 339
3A 3A i er . 3 eq
—Ho=Fow= S Fw=A—Foy=A%5, = i (3.40)
2 2 - A

w here the subscript (1) denotes the condition ; eq - T hese asym ptotic behaviors can be clearly seen in Fiquresﬂ,
E and E . W e note that on sub-horizon scales, Bf® hasam axinum at eq @s seen In Figure E . Adding the fact that
coan ic defects seed m atter perturbations only on sub-horizon m odes due to the com pensation m echanisn , it ollow s
that the defect-induced m atter perturbations are seeded m ainly during the radiation-m atter transition era. This is a
generically di erent m echanism from in ationary m odels, in which m atter perturbations are seeded during In ation
In the deep radiation era when all the m odes are well outside the horizon. N everthelss, the defect and in ationary
m odels both provide scale-invariant perturbations at horizon crossing, and these perturbations evolve sin ilarly after
horizon crossing.

C .D egeneracy of the G reen functions
In principle we need ten G reen functions (ve for .= I+ Sand vefor ,= [+ %) in orderto solve equations
@) and @) by using the form alism @) and @) . However, in addition to the dependence ) by which we
can reduce the e ective num ber of the G reen functions by two, there is another constraint we can invoke| the zero
entropy uctuation on super-horizon scales in the initial conditions, ie. s = s= 0 at ; ormodes k 1=, (see
egs. ] and ]) . Since the form ation tim e ; ofthe active source isnom ally so early that the condition k 1= ;
(and thus s= g = 0) is generally satis ed on the scales of our cosn ological interest, we can rew rite equation @) as

Sk =6 ki D%k D+ G ki D%k D) (3.41)
w here
4

@§=@¥jg+§ig; i= 3;4: (3.42)
From equations §20), 821), B24) and §29), we can get
1

S =61 6= 5w’ 1Pt 1F T y'+ 3ytw® 5% 15wyt 4+ 15Y
+45wiy? + 2w’y 10w’y  6yw’  S50yw + 5+ 15w’ : (343)

U sing equation ), we can also obtain € = &°°, so that

Ch =67 Gp=&": (3.44)
T hese results yield the source transfer functions:
3w+ 1
?3(:1 = '?ff H ?3(:0 = m; I?A‘lcl = .?1(:5; I?EO = '?S:SZ (3.45)

If the initial tim e is deep in the radiation era, ie. ; eqr We further have

4
_ q 2, _ _ 3 0.
Fow = ca2 2 /oyt Blw=8T =3/ i (346)
i
2 g 1 3 4.
Tow= 0w = g i/ OB = By = 2t bgiE 3.47)

w here the last proportionality is only an approxim ation. F jg'ure show s the solutions of B, and By}, = BF ), whik
T,  Bsfand B P arealready shown n F igureﬂ. W e note the the asym ptotic behaviors indicated in equations
B.44) and ) can be clearly seen in Fjguresﬁ and @ T herefore, the orignalten G reen finctions for solving €.
and & have now been reduced to four finctions: two r €. ¢ & and &), and two or& & & and &).
W e shall concentrate only on the solutions of €., w hile leaving those of €, elsew here @]. To calculate € we need 6
using equation {3.9); to calculate € we need 6 = € and 65 using equation §4). In solving €, we note that 6§
transfers the nitial perturbations of both m atter and radiation . ( ;) + €. ( ;)] to today, while &°° transfers the initial

perturbations of their tim e derivatives [ ( ;) + € ( ;)] to the present.
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FIG . 6. The source transfer functions €, (dashed line) and €5, (= BT ; sold line).

D . Solutions on interm ediate scales

W ith & and & & &°°) asthe two basis G reen functions, we can now work out the solutions on interm ediate scales,
usihg resuls derdved In previous sections. In the m atter era, & & on all scales so from equation ) we know
that & &k; o; 1) = & k; o; 1) when ; eq - This can be clearly seen from Fjguresﬁ and@. In the radiation era,
the perturbations & ( ;) + S ( ;)] or B (3) + & ( ;)] that were seeded wellbefore the horizon crossing w ill evolve In
the sam e way as in the standard CDM m odel due to the sam e zero entropy uctuation iniial condition. T herefore
the solution interpolating between & k; o; i) and & &; o; i) or ; oq Willbe the standard CDM transfer
function. Thuswe can write down a t ofthe solution for the fullgam ut ofk and ; as

h i
Gk o7 D=G65 (o7 D+ GH(o; ) 6 (051 TKIK; 1); 1= 3;4; (3.48)

w here

1

o 275 2

T = 1+ ; 349
© In Qe+ 0:11k) ( )
1+ 30 ;
Ik; 5)= P 3.50)
1+ 30 ;0+ 37)

and k is in units of eql (sce equation @11)).HereT k) T.(k; o; so = 0) isthe standard CDM transfer fiinction
w thout baryons (m odi ed from Ref. ]; e eg. ] forthe de nition ofT. k; ¢)),and I k; ;) isa sm allcorrection
near the horizon crossing to m ake the analytic solutions ) t the num erical results. For a given m ode which
is Initially outside the horizon, the background contents of the universe com pensate the defect source until horizon
crossing. T herefore the detailed behavior of these G reen functions near the horizon scale will a ect the so—called
com pensation scale, beyond which no perturbations can grow . This m eans that the correction function I (k; ;) In
equation ) actually plays an in portant role in getting the com pensation scale right, and we shall discuss this
further in section [IV C]. W e have veri ed num erically for both € and & that the t (48) is accurate w ithin a 4%
error orany k and ; (note that the initial conditions of & and & in the num ericalveri cations can be obtained from
egs. 314], B131and B.4q). Fjgureﬂ show s the num erical solitions of & and & (= &°°) wihin a chosen dom ain of
k; i). It con m s the asym ptotic behaviors indicated by equations in ) (see also egs. B29], ] and ]),
and plotted In F igures and. T he asym ptotic behaviors shown by equations M) and 43._4’) can be alsom arginally
observed from Figurel].
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FIG .8. Three dom ains on the (k; ;)-plane for the solutions of G reen functions & and & : Region I Kk < keq = 1= og),
Region IT (k > keq and k > 1= j), and Region IIT (ke < k < 1= ;). These three regions are divided by the thick solid lines.
Also shown arethe := 4 (horizontaldashed Iine), and the k = ky(q, (verticaldashed line).

Schem atically, we can divide the (k; ;)-plane into three regions for the solutions of & (1= 3;4). As shown In
Fjgure, these three dom ains are: Region I k < keq = 1= o), Region II k > keg and k > 1= ;), and Region III
Keq < k < 1= ;). In Region I, the solution of & is &, because the horizon crossing happens after o4, affer which
&, = & asargued before. In Region II, the solution is & because allm odes In this region are inside the horizon
allthe tine. W e notice that & merges with & at the boundary of Regions I and II, where ; > 4. In Region
11T, the solution along the k direction is in the sam e form as the standard CDM transfer function. This is because
m odes w ith larger k cross the horizon earlier, so that their perturbations are suppressed after the horizon crossing
for onger until 4. In addition, the solution along the ; direction in Region IIT is in the same form as &, . This is
because m odes in this region are initially on super-horizon scales, and a given m ode w ith di erent initialtime ; will
experience the sam e am ount of suppression resulting from the period betw een the horizon crossing and ¢y . T herefore,
Regions I, IT and IIT illustrate the intrinsic property of the solution ) .

E.The e ect ofbaryons

There is one im portant issue which we have not discussed| the e ect of baryons. P rior to the photon-baryon
decoupling at 4,theCDM and baryonsare dynam ically independent. In this era, the photon-baryon uid propagates
as acoustic waves w ith a sound speed given by equation ), preventing baryons from collapsing on sn all scales.
T herefore there exists a sound horizon at the decoupling epoch dg g, (hereaffer sin ply the sound horizon) w hich is the
distance such waves can travelpriorto 4, and which is the largest scale at which the baryonscan a ect the evolution
of density perturbations. It hasbeen shown that Inside the sound horizon dg ), not only are the CDM perturbations
seeded before 4 suppressed due to the presence ofbaryons (g. @,@@ 1), but also the baryons them selves have an
exponentially decaying power due to the Sik dam ping @] (see also egq. P .53)), w ith acoustic oscillations due to the
velociy overshoot @,@] A fter the decoupling, baryons evolve In the sam e way as the CDM does, so the m atter
perturbations today can be obtained by linearly combining the CDM and baryonic uctuationsat 4 (see section
and eqg. ]), and then evolving them to today.

Tt follow s that the baryonic e ects tend to suppress the m atter perturbations seeded before the decoupling epoch
( < 4, seethehorizontaldashed line In Figurela) and on scales inside the sound horizon (ie.fork > kg, 1=d ),
see the verticaldashed line in Fjgure) . The perturbations seeded after 4 oron scalesk < kg4, willnot be a ected
by the baryons. W ih this argum ent, we can In pose a suppression factor on our current solition ) to account
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for the e ect ofbaryons, ie. the solution w ith the inclusion ofbaryons can be w ritten as
& &ki ; ihi moi so)= G ki ; IB & 4D moi s0); (351)
where B (k; i;h; no; Bo) accounts for the baryonic suppression:
( T&ihi moi 8o

). , .
B ki i;hi moi B0)= Thpam 0 OF 4 A7

S (3.52)
l; for i d ork < ks(d) lzdi(d);

where T (k;h; no; Bo) Istheusualstandard CDM transfer function w ith the baryonic dependence. O ne accurate t
ofT &k;h; no; o) Isprovided n Ref. @]. W enotethattheratio T k;h; no0; s0)=T k;h;1;0) isuniy outside the
sound horizon (k < kgq) 1=d4)), and is Jess than unity inside the sound horizon. R eferring to F igure B, equation
) m eans that the valie ofB (; i;h; no; o) Is kessthan unity In the region to the right and above the dashed
lines, and is unity otherw ise. W e also note that in the low - ¢ m odels, the sound horizon can be an aller than the
radiation-m atter equality horizon, ie., it is possible that k() 1=dg) > keg @]. In addition, there is a transition
era (;< 4) which is not included in equation {3.5]). This is because in this era the baryonic e ects do not flly
operate as in the regine 4 o that a good t is not trivial to obtain. W e have num erically veri ed equation
$3.59), although an accurate ttothem issingera ;< 4 hasyet to be und.

F.Solutionsin K § O or % 0m odels

T he solutions we have obtained so farhave assumed K = = 0.ForK & 0 or % 0, the grow ing behavior of the
CDM perturbations departs from that ofa at = 0modelonly at very late tin es in the m atter era (see later fora

m ore detailed argum ent). T his allow s us to apply a universal suppression factor on € ®) to account for the e ects of
curvature or

€% & 0i%h; moi 80i )= moh?g( moi 0T ki 0;N1i1; 50i0); (3.53)
where k is in units of noh*Mpc ', and g( no; o) iSgiven by pg]
5 m 0

g( mo; o)=—h i (3.54)
2 Lo ot O+ Lo=2)10+ 0=170)

In equation ) , the leading factor oh? results from the fact that the ratio of scale factors ap=aeq is proportional
to moh? and that the G reen finction @ic(B) = '?ic(B)a():aeq is proportional to this ratio. The factor g( no; o)
accounts for the suppression of the linear grow th of density perturbations in a K 6§ 0 or -universe relative to an

mo = 1 and o = 0 universe @] (@lso veri ed In Ref. [@]). The reason rk to have the unt ,oh?M pc T
equation ) is that the horizon size at radiation-m atter equality o4 is proportionalto ( n oh?) 1 (see eq. ]
n Appendix BJ).

ForK & 0 or % 0, the extrapolation scheme ( w ill be Inaccurate when * is close to o, ie. when the
background dynam ics at * signi cantly departs from that ofa at = 0 model. Nevertheless, this extrapolation
schem e is still appropriate orm ost m odels w ith active source for two reasons. F irst, in the context of coam ic defects,
the pow er ofm atter perturbations on the scales of our interest (k 0:01{1hM pc Yy ism ainly seeded around o4 (see
Figure E and the discussion after eq. ]) . At this tin e, the curvature or e ects are negligble. Second, at late
tin eswhen the curvature or e ectsbecom e In portant, these scales of our interest are already w ell inside the horizon
so that any curvature tem s In the perturbation equations can be neglected. T herefore, the only required change in
the perturbation equations to account for the e ects of curvature or is sin ply to incorporate the correct background
dynam ics, and this involvesonly m odi cationsin a( ), () and (), whose solutionsare given in A ppendix El As
can beseen n F igure, the presence of curvature or a cosm ologicalconstant a ects the background dynam icsonly at
late tin es. M ore precisely, we verify that or ( n,9; )= (02;0); 02;0:8); (1;0) and 20;0), the largest cbservable
scale for m atter perturbations k 0:01hM pc ! corresoonds to the horizon sizes at 5;5;27;54 g respectively,
w hereas In these m odels the curvature or coan ological-constant dom ination occurs only at a m uch later epoch when

>  .Atthesem oments ( 5;5;27;54 o), the scale factorin theK 6 Oor $ 0m odelsdeparts from that in the

at = Omodelonly by lss than one percent. Indeed, we have num erically veri ed that the extrapolation schem e
53 isaccuratewithin a 5% emoror ; 60 oq and 085i mmodels, or ; 20egand no 02 in open

= 0 models, and or ; 200 ¢q and o 2 In closed = 0 models. These ranges of coam ological param eters
have apparently covered the values of our interest.
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Iv.IM PORTANT PROPERTIES

W ith the G reen—-function solutions we have found, we can now analytically investigate som e im portant aspects
about the grow th of cosn ologicalm atter perturbations.

A .The standard CDM m odel

First we investigate the relationship between our G reen fiinctions and the standard CDM transfer function, and
thereby to Justify the use of the standard CDM transfer function in the analytic soluition ) . In the standard
CDM m odel, there are no subsequent perturbations, sowehave § = € + € = € . A sdiscussed in equations )
and ), we also know that the CDM perturbations have a growingmode € ; ) / 2 on super-horizon scales
k 1) for eq OT eq - FOr the super-horizon m odes in the radiation era and allm odes in the m atter era,
this allow s us to w rite

Ski)=R50k) % J=R;M; 41
where A y is the coe cient of the grow ing m ode in the radiation era (j=R: eq and k 1) or in them atter era
(=M : eq) - Thus using our G reen-function solutions ) and ) w ith the initialconditions s= s= 0 and

& &; 1) = 25 k; i)= i as required by the adiabatic In ationary m odel, we can derive the standard CDM transfer
function as

Ay _ ki) P A% fag 2 o
A. e . 2 g2 &+ _.@4
R c(krhi) eqa 1
i
_ 2 A% 2eS o+ 2A% B T (k)= gT ; 42
= 72 i F30 ) Py Tk = &) ; “2)
42 5

wherewe haveused ; g and equations £ 13), 29, 49 and @47, and the last expression was obtained
based on the form alisn {3.49§). First, we note that the two tem s involving ¥, and ¥ , are equal, m eaning that

the two sets of Initial perturbations . ( ;) + S ( ;)] and B ( ;) + & ( 1)] contrbute equally to the present m atter
perturoations. Second, the T (k) here is nothing but the standard CDM transfer function which we have de ned
earlier. Third, the coe cient 2=5 in the nalresult ofequation ( iswellknown (4g. E), and here we cbtained

it using our G reen-function solutions. T his coe cient can be also cbtained by st know ing from equation ( that

00 Isa constant on super-horizon scales (k 1= ), and then usihg itsde nition (.38)) and equation @) to com pare
tsexpressionsfor j=R,M .Onewill nd go= Agr=G = 5Ay =2 G ,which mpliesA y =Ar = 2=5 fork 1= .Thus
the above derivation and result not only illustrate the relation between our G reen functions and the the standard
CDM transfer function T (k), but also justify the use of T (k) in our form alisn @ .49).

B . Independence of the initial conditions

O ne important problem for structure form ation w ith causal seeds is to investigate how the source energy was
com pensated into the radiation and m atter background when the seeds were formed at ;. From the result {2.44)
we know that the power spectrum of the pseudo energy eyy should decay as k* on super-horizon m odes. A s arqued
n equation ), we can thus take g = 0 as part of the initial conditions provided that the scales of Interest are
well outside the horizon iniially. For sin ilar reasonswe can takes= &= 0, where s= 3 ~4 <. In addition, from
equation ) w ithout baryons, we have

_ .3 a’fk , L
00 00 3 N N 4G

: 43
5 G - “4.3)

SR

N =c¢c;r

Since g9 = 0 is required at i, it ollow s that for a given (g X; i), one can have di erent ways of com pensating it
into between y and - . It is thus vitalto check the dependence of the resulting () on the way we com pensate

00 X; i) Into the background initially. C onsider the follow ing tw o extrem e cases, both satisfying egg = e= &= 0 on
super-horizon scales at ;:
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1.€.=3%=4=0,%=3%=4= [ 4G @=a)ok: Using equation ), the nom alized resulting initial pertur-
bations can be calculated as

I
€ (k; ) C CS
107 )= c =& =6": @ 4)
[ 4G @=a)®onk
2.8 =3%=4=[ 8G @=a)y€yp=0 )k, &= 3%=4= 0: Sin ilarly we have
e ;) 2w @? 1)
c K7 A\
205 1) = = : 4.5)

[ 4G @0k A GwZ+ 1)

I
To scethedierence n €& (k; o) today resulting from these two cases, one can calculate

2w @? 1)
Diz(o; )= — 1= ———— 20 =
. A Gw?+ 1) e

4.6)

where we have used equations ), 3.4%) and ). This In plies that no m atter how the source (g (X; i) is
com pensated into the background when it was form ed (ie.w ith any portionsbetween y and « initially), it resuls

I
In the same & (k; o) today on scales which were outside the horizon at ;. W e note that this independence of the
niial conditions was st num erically observed in Ref. E], and here we have provided an analytic proof.

C .Com pensation and totalm atter perturbations

W ith a complete set of G reen functions for both niial and subsequent perturbations, we can now Investigate
the resulting total CDM perturbations and therefore the com pensation m echanian in m odels w ith active source.

I
Having seen the independence of the resulting & (; o) on the way the source energy is nitially com pensated Into
various background com ponents, we can invoke equation @) for €, and equation @) or € to obtain & k; o) =
€l k; o)+ € k; o). Foragivenmode at whichk ; 1 initially, we have:

€ ki o) = ei(k; o)+ ei(k; 0)

Z
=4G %@cs(}i; 07 %00 k; 3+ EFK; 0;MNC+ k;NAN 4.7)
&S\ 1 Z i
8 Gayp 0 a(”
= - T S e T ;A —e+ ;/\ A 4.
5AZan, k)00 k; 1)+ i k )a(A) k;Md 4.8)
8 Gap n
= 5AZa, T &)Poo ki o)t
2 @)
a
TO(k;A);(A) L kN T K S k; dN 4.9)
w here
TO(k;A)= M; (4 .10)
&5 ki 0i™)

and & (; ;") is given by 4§). The function T °(; ") is plotted in Figure fJ. Here we notice that the quantities
Inside the outerm ost brackets in equations ) and @) are equivalent to nothing but the coe cient ofthe grow Ing

modein CDM perturbations. U sing equation @) , one can obtain the resulting perturbations <, k; o) by know ing the
nitial €9 k; i) and Integrating the evolution history of €, (k; ") . Hence this expression is convenient for num erical
purposes. In addiion, we see that the rst term in equation (@) com es sin ply from the initial source energy, serving
w Ith an opposite sign to account for energy conservation. T his is the so—called com pensation. O n the other hand, the
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FIG .9. The function To(k; ) (solid lines) and the standard CDM transfer function T (k) (the dashed line). Each solid line
hasdi erent ,whose highest and lowest values are labeled In units of ¢4 . Successive lines have even logarithm ic tin e intervals.

second termm results from the subsequent evolution of €, (k; "), which actively createsthe CDM density perturbations
on sub-horizon scales (see later). This term also provides a way for defects to create non-G aussianiy.

A tematively, equation @) provides a both physically and m athem atically transparent way of interpreting how
the perturbations are seeded by the source. F irst consider the integraltem for a given m ode k. W hen the m ode is
welloutside the horizon, ie. " 1=k, T °k; ) equalsT () by de nition. Hence the two tem s inside the inner brackets
reduce to © 0i;1 &7 MT (k) due to source stressenergy conservation ) . Since the power soectrum of eOi;i k; ") falls
o ask® outside the horizon (see eq. ]) , We expect the quantity inside the brackets to be negligible until the given
m ode approaches horizon crossing. N ear horizon crossing, ©€pj;; k; *) isno longer sm all, and T Ok; ) starts departing
from T k) (1e.T%k; ) constant > T k) / k 2, see Fiqurelg), o the two tem s Inside the inner brackets begin to
contribute to the integral. This also explains why the correction function I (k; ;) In equation ) is In portant in
a ecting the com pensation scale. A fter horizon crossing, the signi cance of the two tem s inside the inner brackets
then depends on the subhorizon behaviours of their pow er spectra.

As forthe rsttem in equation @), we see that for a superhorizon m ode today, the integral in (Q) isnegligble
as argued above so that only the st temm contrbutes. It serves to give the opposite sign to the source energy so as
to account for energy conservation on superhorizon scales today, and thus for the com pensation at the present epoch

0. On the other hand, ifa given m ode is well inside the horizon today, then the rst tem w illbe negligdble provided
that the source energy €9 k; o) has a powerJdaw fallo inside the horizon, as it does for coan ic strings. T herefore
in calculating CDM perturbations on scales of our interest, which are well Inside the horizon today, the rst tem in
equation @) isnegligble, so that it w illnot a ect our com pensation argum ent observed from the integral.

T his argum ent can be further strengthened by deriving the pseudo-energy today. From the de nition of g @)
and the nalresult of equation @), one obtains

o ki o) = Z(l T ®))®00 k; o)+

0 a(”
TO ;/\ =
& )a(A)

€y &iN+ T k) S k;N dn: 411)
From this result, one can clearly see that for super-horizon m odes, T (k) isunity by de nition so that only the integral
survives. W e have also seen from an earlier argum ent that on superhorizon scales, the quantity inside the square
brackets is nothing but the © 0i;i k77, which has a k4 alto pow er spectrum  (see . @:]) . It ollow s Inm ediately
from equation ) that the pseudo-energy today, oo ( o), has a k*-decay power spectrum outside the horizon. T his
result con m sthe super-horizon behaviorof (g presented in equation D 4d). O n the other hand, alhough @ T k))
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is approxin ately unity for sub-horizon m odes, the usual sub-horizon power-daw decay n €g9 k; o) (@s in the case of
coan ic strings) will stillm ake the rst temm in equation ) negligble inside the horizon.

Thuswe can see explicitly in a neat m athem atical form how com pensation acts on a given length-scale. From this
analysis we can also see that the com pensation scale is determ ined not only by the finctions T%(k; ) and T (), but
also by the properties of the source near the horizon scale. O nce the detailed behavior of the source near the horizon
scale is known, we can accurately locate the com pensation scale using equation @) or ) . W e note that this
result is di erent from the clain in Ref. [@], where m ulti- uid com pensation back-reaction e ects were studied to
show that the com pensation scale arises naturally and uniguely from an algebraic dentity in the perturbation analysis.
Ref. @] also Investigated the com pensation scale, and found constraints on the generation of super-causalhorizon
energy perturbations from a an ooth initialstate, under a sin ple physicalschem e. T he com pensation wavenum berw as
Hund to be constrained w ith k. > 2 ! due to causality, depending on the behavior of the causalevents. T his result
is not inconsistent w ith our nding above, where we further provide a quantitative way to locate the com pensation
scale for any given goeci cm odel

V.SUMMARY AND CONCLUSION

In this paper we present a form alisn which can be used to study the evolution of cosm ological perturbations in the
presence of causal seeds. In this form alism we invoked the uid approxin ation in the synchronous gauge to m odelthe
contents of the universe, and assum ed photon-baryon tight coupling until the last-scattering epoch to account for the
baryonic e ects. T he approxin ation of instantaneous decoupling of photons and baryons was then em ployed at the
last—scattering epoch. In particular, we dem onstrated the accuracy of our form alisn in the context of the standard
CDM m odel, by com paring our resuls of density perturbations w ith those calculated from CM BFA ST .

W e then derived the analytic solutions of m atter density perturbations n a at = 0 cosmnology. The errors
n Ref. @] were corrected to yield a com plete set of G reen—-function solutions for the super-horizon and sub-horizon
m odes (egs. E @ @], ]{ ]) T he degeneracy am ong these G reen ﬁlnctjonswas then found by com paring
their initial conditions and em ploying the zero-entropy initial condition T hJs e ectively reduces
the num ber ofthe G reen functionsneeded in the perturbation solutions ( eqs ]) W ith thisgreat
sim pli cation, the solutions on Interm ediate scales were then easily found by the use ofthe standard CDM transfer
function (eg. ]) . This com plete set of solutions were num erically veri ed to high accuracy. T he baryonic e ects
were also considered (eq. ]). W e then extrapolated these G reen—-finction solitionsto K 6§ 0 or 6 0 m odels
(eg. ]), w ith num erical justi cations to high accuracy.

U sing these G reen—-function solutions, we Investigated several im portant aspects of structure form ation w ith causal
source. W e rst dem onstrated the relation between our G reen functions and the standard CDM transfer function
Eeg. @]) . Second w e proved that the resulting m atter perturbations today is independent of the way the source was
Initially com pensated into the background contents of the universe (eq. ]) . W ih our G reen-function solutions and
the use of the pseudo-stress-energy tensor, we nally addressed the com pensation m echanism in a m athem atically
and physically explicit way (egs. @], @], ]) . In particular, the com pensation scale was shown to be dependent
not only on the dynam ics of the universe, but also on the properties of the source near the horizon scale. O nce given
the detailed behavior of the source near the horizon scale, the com pensation scale can be accurately located using our
G reen functions (eq. §.11]).

A Ythough in the literature, there have been detailed treatm ents of theordes w ith causal seeds, the form alism and its
analytic solutions presented here w ill provide not only a physically transparent way for understanding the evolution
of m atter perturbations, but also a com putationally econom ical schem e which is particularly pertinent when one
needs to nvestigate the phase inform ation of the resulting cosm ological perturbations. Follow Ing the sam e line of
developm ent, we have been also working on the analytic solitions for radiation perturbations @], which willbe usefil
In com puting the fullsky CM B anisotropies seeded by topological defects. Finally, we note that although we have
been concentrating on investigating the perturbationsw ith causal source, our G reen—fiinction solutions are com pletely
general and therefore can be also applied to the study ofm odels w ith acausal source.
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APPENDIX A:COSMOLOGICAL BACKGROUND DYNAM ICS

W ith the discovery ofthe CM BR 1n 1964 @], the universe is believed to be m ainly com posed of not only m atter
but also radiation. A ffer the discovery, several authors worked out the solutions In some FRW m odels with both
radiation and m atter @{J. In this appendix, we ain to derive the generalsolution of FRW m odels, in the presence
ofboth curvature and a cosn ological constant.

W e assum e that the universe is hom ogeneous and isotropic, and is lled w ith two uids, radiation and dark m atter,
w hose stress-energy tensors are also hom ogeneous and isotropic on average. W e shall ignore the overall contribution
of the stress energy from causal seeds like defect elds, because In general they are much an aller than the total
energy densiy of radiation and m atter. Thus In a FRW universe with only radiation and m atter com ponents that
evolve ndependently and adiabatically, the scale factor a( ) is detemm ined by the unperturbed E instein equation, or
equivalently the Friedm ann equation:

i 3

a“+ Ka' = 3 1+ a)+ 3a, ®1)

w here a dot represents a derivative w ith respect to the conform altime ,K isthe curwature, , isthem atter energy
density, isthe coan ological constant, and we have nom alized aoq = 1. Ifwe de ne
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8 G n

m:W; A2)
8G . 8G .

T 3m?2  3aH2?’ @3
=3 @®4)
p— K -

= gz’ @A 5)

where H = a=a’ is the H ubble param eter, then we have from @) that , + .+ + x = 1and

= ; K = 2: (A6)
m 0 8G no m 0 8 G m08g
W e also notice that = mo=aol 1.W ede ne
2(p§ 1)
0 0
A="—""—; B=—"1; C=—"X; @7)
eq m 020 man
where we note that B ;C 1 due to ap land 4o ) o according to the current observational results.
Thus we can rew rite equation @) as
2
d_a _ a2 2 4y,
3 =A“1l+a+Ba" +Ca"); @A 8)
w here
Z
1t da
A= — A ®9)

eq o @+ a+ Ba?+ Cca?)l=?

E quation @) can then be num erically evalnated w ith certain choicesof 9, o and x o.A ssum ing three species
ofneutrinosand using o= 2:0747 10 5'Gev? B]land the fact that at ., both the curvature and the cosm ological
constant termm s are negligble in @), we obtain

ap = 23219 noh%; @10)
eq = 16310 ( 4 oh?) 'Mpc; @11)
teg = 3:4058  10°( ,oh?) Zsec; @12)
where o4 isin the unitsm easured today. In certain cases, @) can be exactly solved:
1.K = =0 (@{de. pno=1; o= 0):
a()=2A%?%=4+ 1 ; A13)
t()=2a2 3=12+ A 2=2; @14)
. . P
which give o4 = 3teg= 2.
2.K <0; =0 (@de. no< 1; o= 0):
1 b p_ pP—  p— i
a()= = cosh@ B )+2 Bshh@® B ) 1 ®15)
1 pP— 1 pP— A
t()= — cwsh@ B )+ p—=shh @ B ) — 1 : A 16)
AB 2 B 2
3.K >0; =0 (@de. npno>1; o= 0):
1 h P p__  p— 1
a()=gcos(A B ) 2 B sin A B ) 1; A17)
()= — @" B )t pe—shp B X 1 @18)
= —— COS —— SN —_— :
AB 2 B 2
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FIG .10. The evolution ofbackground dynam ics in various cosm ologies. P lotted are exact solutions of the scale factora( ).
T he square, triangle, circle and diam ond m ark the universe today for di erent m odels, each with Ho = 70 km s ™ joJe] .

W e notice that at early tim es equatjon) and {) reduce to equations {) . At late times
p1d)

equations & 13{p 14), ‘AlEI{) and A 17{ give the asym ptotic form s
8
< % K= =0;
a()/  exp® Bp); K<0; =0 ®19)
1 coshA B ); K>0; =0;
or
8
< £273; K= =0;
al(t) / t; K <0; =0; @ 20)
1 cosa( BY™?t K > 0; = O:

Figure @ show s som e exam ples of these solutions. A s we can see, the destinies of universes in di erent cosm ologies
diverge, although all have identical features around or before the radiation-m atter equality teq. This converging
behavior at early tim es helps sim plify the calculation of coam ological perturbations w ith causal source, since we know
that this kind of perturbations are m ainly contributed from the radiation-m atter transition era.
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