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Abstract 

  

 Central to the genesis of ventricular cardiac arrhythmia are variations in determinants of 

excitability. These involve individual ionic channels and transporters in cardiac myocytes but also 

tissue factors such as variable conduction of the excitation wave, fibrosis and source-sink mismatch. 

It is also known that in certain diseases and particularly the channelopathies critical events occur 

with specific stressors. For example, in hereditary long QT syndrome due to mutations in KCNQ1 

arrhythmic episodes are provoked by exercise and in particular swimming. Thus not only is the 

static substrate important but also how this is modified by dynamic signalling events associated 

with common physiological responses. In this review, we examine the regulation of ventricular 

excitability by signalling pathways from a cellular and tissue perspective in an effort to identify key 

processes, effectors and potential therapeutic approaches. We specifically focus on the autonomic 

nervous system and related signalling pathways.  

 

Keywords: cardiac ventricle, cardiac arrhythmia, autonomic nervous system, ion channels, 

excitability, conduction velocity 
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Introduction 

  

 An array of ion channels and transporters determine the excitable properties of the heart. 

This can be assessed in a variety of ways from single cell studies using patch clamping and 

imaging, field potentials measured using electrode arrays from the surface of cardiac tissue through 

to measurement in the whole animal using electrocardiography. This normal electrical activity of 

the heart can become disordered and lead to cardiac arrhythmia. In the ventricle this is particularly 

critical as the activity can become sufficiently chaotic to lead to sudden cardiac death. The electrical 

activity of the heart can be modulated through hormonal signalling pathways particularly the two 

arms of the autonomic nervous system. For example, it is known that exercise can provoke 

arrhythmic events in hereditary channelopathies and that common cardiac pathologies such as heart 

failure can lead to a sympathovagal imbalance and may further enhance the predisposition to 

arrhythmia.  

 There has been a substantial body of important work over the last fifty years dissecting out 

the regulation of individual ion channels and currents in cardiac ventricular myocytes. These studies 

have often occurred in single cells and the significance of the phenomena is not always clear for 

regulation in the whole heart. There has been less work in the whole heart and in man. In this 

review we consider how hormonal systems can modulate ventricular cardiac excitability.  

Specifically, we focus on processes in which there is a clear consensus of experimental evidence in 

single cells and consider how this links with tissue electrophysiology and arrhythmogenesis.   

 

Ion channels and transporters determining ventricular excitability 

 A convenient cellular starting point is the ventricular cardiac action potential as illustrated in 

Figure 1 together with how currents might be potentially modulated by increased beta adrenergic 

drive. We will briefly overview this area to set the scene but it is well known and has been reviewed 

before (Roden et al., 2002; Davis et al., 2011; Schmitt et al., 2014). We focus on the human action 
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potential. It should be appreciated there are considerable species differences particularly between 

rodents and large mammals (Davis et al., 2011; Munroe and Tinker, 2015). 

Sodium channels: The fast upstroke (phase 0) is mediated by rapid opening and subsequent 

inactivation of sodium channels. The pore forming cardiac isoform is SCN5A and there are a 

variety of beta isoforms that modulate the properties of the alpha subunit: at least two are present in 

the ventricle (Catterall, 2012). The alpha subunit consists of four groups of six transmembrane 

domains with voltage sensing and activation mediated by the S4 segment and inactivation by 

residues in the III-IV linker. It is possible other isoforms are present in the ventricle particularly in 

the t-tubular network (Westenbroek et al., 2013). Cardiac sodium channels are characteristically 

much less sensitive to tetrodotoxin than those present in central and peripheral nerves. It is also 

worth noting that sodium channels even when inactivated continue to pass a small persistent inward 

current (Saint, 2008). 

Transient outward K+ current (Ito): There is transient repolarisation and notching of the action 

potential that is mediated by a group of potassium currents that rapidly activate and inactivate 

known as Ito (“transient outward”). Ito,f  is a fast transient K+ current constituted of a complex of 

Kv4.2 and 4.3 and the beta subunit KChip2 (Dixon et al., 1996; An et al., 2000; Oudit et al., 2001). 

Ito,s has slower kinetics, a more limited distribution probably only being present in myocytes from 

the ventricular septum and is likely constituted of Kv1.4 (London et al., 1998).  

Calcium currents: Two major types of voltage-gated calcium channels are recognised in cardiac 

tissues namely L-type (“long-lasting”) and T-type (“transient/tiny”). The L-type channel (LTCC) in 

the ventricle, is largely formed by Cav1.2 and can combine with ancillary subunits namely 2,  

and  which increase alpha subunit expression, current density and alter the dynamics of 

activation/inactivation (Roden et al., 2002).  

K+ currents in terminal repolarisation: The potassium currents involved in terminal repolarisation 

are IKr and IKs. IKr is a rapidly activating and inwardly rectifying K+ current that is formed by the 

complex of hERG (human ether-a-go-go related gene) together with perhaps a  subunit of the 
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KCNE family (Trudeau et al., 1995; Abbott et al., 1999). IKs is characteristically very slowly 

activating and the study of patients with the hereditary long QT syndrome revealed that the IKs 

channel complex is a tetramer of KCNQ1 (Kv7.1) -subunits together with the  subunit KCNE1 

(Barhanin et al., 1996; Sanguinetti et al., 1996).  

IK1: IK1 is a strong inwardly rectifying K+ current present in ventricular cells. The window of 

outward current largely determines the resting membrane potential and it is also important in late 

repolarisation. Kir2.1 is probably the major contributor to the current but other Kir2.0 isoforms 

cannot be totally excluded (Zaritsky et al., 2001; Liu et al., 2001).  

Other currents: In many cells including cardiac myocytes there is a leak K+ conductance even after 

pharmacological inhibition of the known K+ currents. These currents seem to correspond to a family 

of channels encoded by twin\two pore subunits assembling as a dimer (Lesage and Lazdunski, 

2000). The significance of these channels for cardiac ventricular electrophysiology is relatively 

unexplored but they have a number of interesting properties (Putzke et al., 2007). 

 ATP-sensitive K+ channels (IKATP) respond to the metabolic product (ATP:MgADP ratio) 

and open as cellular energy provision becomes compromised. The standard view is that the 

ventricular channel is an octameric complex made up of a pore-forming Kir6.2 and the SUR2A 

sulphonylurea receptor subunit (Tinker et al., 2014). 

 The Na+-Ca2+ exchanger is important for cellular extrusion of calcium from the myocyte at 

the end of the action potential. Importantly the transport is electrogenic with three sodium ions 

entering for a single Ca2+ ion i.e. a net inward current. It is important as pathological often diastolic 

calcium release events from the sarcoplasmic reticulum can lead to inappropriate and proarrhythmic 

sarcolemmal depolarisations. NCX1 is the isoform present in ventricular myocytes (Nicoll et al., 

2007).   

 

The major neuro-hormonal systems impinging on ventricular excitability 

 In the following section we do not provide a comprehensive list of hormonal systems but 
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rather try to focus on areas of potential scientific interest and clinical significance.  

Innervation of the heart: The heart is densely innervated by nerves and plexi of the autonomic 

nervous system and contains neurones expressing markers of adrenergic, cholinergic and nitrergic 

origin. In addition this innervation shows regional variation and single nerves may on occasion 

express more than one transmitter pathway.  For example in the rabbit, four chemical subtypes were 

observed within ventricular ganglia: cells were positive for choline acetyltransferase, neuronal nitric 

oxide synthase (nNOS), and positive for both choline acetyltransferase\neuronal nitric oxide 

synthase and for choline acetyltransferase\tyrosine hydroxylase (Pauziene et al., 2016). There were 

also potentially sensory neurofilaments positive for both calcitonin gene-related peptide and 

substance P that innervated the ventricular endo and epicardium. Though adrenergic neurofilaments 

predominated there were substantial regional differences in the myocardium and endo and 

epicardium (Pauziene et al., 2016). It should be emphasised that there is now considerable evidence 

for interaction of sympathetic and vagal efferent fibres and sensory fibres and interneurons within 

intracardiac ganglia and extra-cardiac intrathoracic  ganglia leading to the possibility of quite 

complex reflex behaviours at this level (Armour, 2008). 

Sympathetic nervous system:  Ultimately efferent sympathetic nerve fibres innervating the heart 

release noradrenaline and together with adrenaline released from the adrenal medulla these act on 

adrenoreceptors to modulate ventricular excitability. β-adrenoceptors present in the sarcolemma are 

one of the main effectors and are an archetypal seven-helix G-protein coupled receptor. They 

comprise 1, 2 and perhaps 3 subclasses and in the normal human heart 1 adrenoreceptors 

predominate with the ratio to 2 being approximately 4:1 (Brodde, 1991). However in heart failure 

the expression of the 1 receptor falls whilst 2 levels remain the same.  

 The cellular pathways entrained by activation of 1 and 2 receptors are different. 1 

adrenoreceptors couple exclusively to the stimulatory G-protein, Gs, and via adenylate cyclase to 

increases in cAMP and activation of protein kinase A (PKA) (Xiao et al., 2006). Phosphorylation of 

key proteins such as the LTCC and phospholamban results in the positive inotropic and lusitropic 
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effects (see below). Increased cAMP can also lead to direct activation of a guanine nucleotide 

exchange factor known as EPAC (exchange proteins directly activated by cAMP) for the small G-

protein Rap1. Rap1 is a member of the ras family of small G-protein and activates signaling 

pathways involved in cell adhesion and junction formation (Lezoualc'h et al., 2016). Investigators 

are actively pursuing regulation of membrane proteins by EPACs but there is as yet no clear 

consensus on their potential role. Sustained stimulation of1 adrenoreceptors also activates 

calcium-calmodulin dependent kinase II increasing contractile function but also leading to myocyte 

death (Wang et al., 2004a). Signalling is more complex through 2 adrenoreceptors. These 

receptors also couple to Gs\adenylate cyclase\cAMP\PKA and can increase cAMP however these 

effects are less pronounced and there is modest positive inotropism. However it has become clear 

that 2 adrenoreceptors also signal through inhibitory G-proteins (Gi) and this accounts for the 

attenuation of cAMP mediated signaling compared to activation of 1 adrenoreceptors (Xiao et al., 

1999; Xiao et al., 2003). The recruitment of Gi signalling by the 2 adrenoreceptor also activates 

pathways promoting myocyte survival such as the phosphatidylinositide 3-kinases (Chesley et al., 

2000). It also seems that mechanisms traditionally associated with -receptor desensitization and 

internalization, namely G-protein coupled receptor kinases and -arrestin binding, might also 

initiate novel protective signaling pathways (Lefkowitz and Shenoy, 2005; Shenoy et al., 2006; 

Shukla et al., 2014). This seems to be a particular feature of the 2 adrenoreceptor (Kahsai et al., 

2011). Furthermore, specific agonists can entrain to varying degrees each of these three separate 

signalling modes; a process known as protean agonism (Wisler et al., 2014). This may be relevant 

for the effects of -blockers such as carvedilol (Wisler et al., 2007). Another factor in the 

differential signaling between 1 and 2 receptors is likely to be subcellular distribution and 

assembly into protein complexes. The 1 receptor is widely distributed within the sarcolemmal 

membrane whilst the 2 is confined to the t-tubule. Intriguingly this distribution changes in heart 

failure (Nikolaev et al., 2010).  
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 Cardiac muscle also contains 1 (1a and 1b) adrenergic receptors and activation leads to 

a positive inotropic effect and to myocyte hypertrophy (Endoh, 1996). The 1 receptors couple to 

Gq\11 and the inotropic response is related to the activation of protein kinase C (PKC) (Endoh et al., 

1993).  

Parasympathetic innervation of the ventricle: Parasympathetic efferent nerves are well known to 

innervate the SA and AV nodes and the atria. However a consensus on vagal innervation of the 

ventricles is less clear. Indeed the textbook view posits that it is sparse and of little functional 

significance. However it is clear that choline acetyltransferase-positive nerve fibres innervate the 

ventricle and the acetylcholinesterase enzyme and muscarinic receptors are present (Coote, 2013). 

Furthermore, there are functional data showing that vagus nerve stimulation can decrease the force 

of ventricular contraction independent of heart rate changes (Xenopoulos and Applegate, 1994; 

Lewis et al., 2001).  

 At the cellular level the release of acetylcholine has the potential to act on a range of 

metabotropic muscarinic G-protein coupled receptors (M1 through to M5) (Caulfield and Birdsall, 

1998). The predominant cardiac and ventricular isoforms isoform is M2 and this couples to 

inhibitory G-proteins antagonising cAMP mediated signalling (Peralta et al., 1987; Peralta et al., 

1988; Caulfield and Birdsall, 1998). However there are indications that other family members might 

be present in particular M1 and M3 receptors (Wang et al., 2004b). The transcript and protein for 

the M3 receptor are expressed in the ventricle and various pharmacological responses consistent 

with the expression of these isoforms can be evoked (Wang et al., 2004b). The M1 and M3 

muscarinic receptors couple to the Gq\11 family of G-protein and lead to activation of phospholipase 

C. This in turn leads to the generation of diacylglycerol and IP3 which in turn activate PKC and 

release calcium from intracellular stores (Peralta et al., 1988; Berridge, 2009; Tinker et al., 2016). 

In the ventricle, the IP3 receptor is largely involved in nuclear calcium signalling and hypertrophy 

with little effect on calcium transients associated with excitation-contraction coupling (Nakayama et 

al., 2010).   
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Other receptor pathways and orphan GPCRs: A wide range of other receptor systems are expressed 

in cardiac ventricles. Their effects can be broadly understood by knowing their G-protein coupling 

profile though there are significant nuances in the cell signalling. For example, histamine (H2), 

vasoactive intestinal polypeptide and the prostacyclin receptors are expressed in ventricular cardiac 

myocytes and couple to Gs. Thus agonist activation of these pathways is positively inotropic (Levi 

et al., 1975; Christophe et al., 1984; Alloatti et al., 1991). In addition to the M2 muscarinic receptor 

there are receptors for somatostatin and sphingosine-1-phosphate that couple to inhibitory G-

proteins (Bell et al., 2008; Ochi et al., 2006). GPCRs for endothelin (ET-A) and angiotensin II (AT-

1) are present in ventricular cells and these couple to Gq\11 leading to modest positively inotropic 

effects and cardiac hypertrophy (Pieske et al., 1999; Regitz-Zagrosek et al., 1995; Sugden and 

Clerk, 1998).  What is even more intriguing is the presence of orphan G-protein coupled receptors. 

Regard and colleagues used a systematic approach with real-time quantitative PCR to profile the 

expression of all non-chemosensory GPCRs in forty one tissues (Regard et al., 2008). They 

observed high level expression of a number of orphan GPCRs in murine atria and ventricles. That 

these might have novel physiological functions was supported by the clustering of known GPCRs 

into the same hierarchical families according to tissue expression.   

Nitric oxide: Nitric oxide is synthesised from L-arginine by nitric oxide synthases (NOS). There are 

three NOS proteins: an isoform present in the endothelium (eNOS), one present in neuronal tissues 

(nNOS) and one that is expressed during inflammation (iNOS) (Sessa et al., 1992; Sessa, 1994). 

NOS are also present in cardiac myocytes with eNOS located in the plasma membrane probably in 

caveolae and nNOS located in the sarcoplasmic reticulum and in association with syntrophin and a 

membrane calcium pump (Feron et al., 1996; Xu et al., 1999; Williams et al., 2006). Syntrophins 

are part of the dystrophin complex. Nitric oxide, which is freely diffusible, could also be produced 

from endothelial cells and neurones in addition to myocytes. Nitric oxide activates guanylate 

cyclase leading to cGMP production and the activation of protein kinase G (Follmann et al., 2013). 

Nitric oxide can also directly modify proteins through nitrosylation with accompanying changes in 
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function (Simon et al., 1996; Foster et al., 2009; Irie et al., 2015). Nitric oxide is produced 

constitutively and this may be increased in specific physiological or pathological states (Simon et 

al., 2014).  

Calcium calmodulin dependent kinase II: The major isoform of calcium calmodulin dependent 

kinase II in the heart is CamKIIActivation of this serine\threonine kinase is dependent on the 

binding of calcium-calmodulin. Physiological activation occurs with repetitive high frequency 

calcium signalling and integrates the oscillatory signal. Furthermore, CamKII activation is 

associated with autophosphorylation and this seems to endow the system with memory even after 

cessation of the initial high frequency Ca2+ train (De and Schulman, 1998). In general, it is thought 

that activated CamKII in the heart helps to reinforce positive inotropic signalling and this is 

reflected in the potential phosphorylation of a large number of ion channels and proteins involved in 

calcium handling (see below). However when prolonged this signalling becomes potentially 

pathological (Erickson, 2014).  

 

Regulation of ventricular ion channels   

L-type calcium channels: The LTCC is activated by -adrenergic regulation through PKA with at 

least a doubling of the current (Reuter, 1967; Tsien et al., 1986). PKA is thought to phosphorylate 

CACNA1C at S1928 with perhaps contribution from other phosphorylation sites on the beta2a 

subunit (Kamp and Hell, 2000; Hulme et al., 2006). Graded increases in calcium entry after -

adrenergic stimulation are necessary for increases in calcium release from the sarcoplasmic 

reticulum and positive inotropy (Fabiato, 1985). The activation seems to be facilitated by the 

anchoring of PKA at the membrane via a PKA anchoring protein such as AKAP5 (Fraser et al., 

1998; Diviani et al., 2015). Indeed, AKAP5 can also complex the 1 adrenergic receptor, 

calcineurin, adenylate cyclases and PKC (Diviani et al., 2015).    

 In the resting state activation of receptors coupling to inhibitory G-proteins such as M2 

muscarinic and A1 adenosine receptor does not have an effect on the LTCC. However if the current 
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is activated through the -adrenergic system then stimulation of these receptor systems can 

antagonise the effect probably via Gi2 (Belardinelli and Isenberg, 1983; Chen et al., 2001). Agonist 

activation of Gq\11 coupled receptors do not seem to have consistent and well agreed effects on the 

LTCC. Nitric oxide also seems to mediate an inhibitory effect on LTCC in ventricular 

cardiomyocytes. Thus inhibition of nNOS using drugs or in knockout mice led to an increase in 

current (Gallo et al., 1998; Gallo et al., 2001; Sears et al., 2003). Nitric oxide modulates LTCCs 

both via protein kinase G phosphorylation and direct channel nitrosylation (Mery et al., 1991; Hu et 

al., 1997).  

 Intracellular calcium has complex effects on the properties of LTCCs. It is responsible for 

calcium dependent inactivation which in physiological conditions results from calcium release from 

the SR (Kass and Sanguinetti, 1984; Sipido et al., 1995). This process limits calcium entry and thus 

abnormal action potential prolongation. In contrast, LTCC amplitude is rate dependent and 

increases with increasing frequency of voltage pulses from physiological resting membrane 

potentials. This process is Ca2+ dependent, for example it does not occur if Ba2+ is the charge 

carrier, and is known as calcium dependent facilitation (Hryshko and Bers, 1990; Bers and Morotti, 

2014). This effect is probably responsible for the positive Bowditch staircase which occurs in most 

species except rodents (Boyett and Fedida, 1988; Bers and Morotti, 2014). The key mediator in this 

response appears to CamKII (Anderson et al., 1994).  Studies after heterologous expression of the 

molecular components of the LTCC strongly support the idea that CamKII directly phosphorylates 

the  subunit and perhaps also the 2 subunit (Hudmon et al., 2005; Lee et al., 2006; Grueter et al., 

2006). Indeed, in a mouse with knockin mutation of putative phosphorylation sites on the  subunit 

there was impaired calcium dependent LTCC facilitation (Blaich et al., 2010).   

Other aspects of calcium signalling: Abnormal membrane depolarisations that occur in diastole 

known as delayed afterdepolarisations (DADs) may be dependent on intracellular calcium 

signalling events. Spontaneous and abnormal release of calcium from the SR leads to activation of 

the Na\Ca exchanger and a depolarising inward current. For example in mice that lack FKBP12 
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activity of RyR2 is increased resulting in spontaneous calcium release during diastole and DADs 

(Wehrens et al., 2003). Furthermore in the rare arrhythmic syndrome, catecholaminergic 

polymorphic ventricular tachycardia (CPVT), there are mutations in RyR2 that lead to increased 

activity (Priori et al., 2001). Cell signalling pathways seem to have a critical place in modulating SR 

calcium load through the SR calcium pump (SERC2A regulated by phospholamban) and the cardiac 

ryanodine receptor (RyR2). Phospholamban is a small integral membrane protein that acts to inhibit 

SERC2A activity unless phosphorylated (Fujii et al., 1991). Thus, protein kinase A can 

phosphorylate phospholamban at serine residue 16 leading to increased SERCA2A activity 

resulting in accelerated relaxation and increased calcium uptake into the SR (Kranias and Solaro, 

1982; Li et al., 2000). There are data supporting increases of RyR2 activity mediated by direct 

phosphorylation of the protein at serine 2808 (Shan et al., 2010). It is proposed that this 

phosphorylation event destabilises the interaction with FKBP12 (Wehrens et al., 2006) and is 

responsible for increased SR calcium release via the -adrenergic receptor. However this is 

controversial with a number of investigators proposing that CamKII phosphorylation is the critical 

regulator of RyR2 channel activity, on residues S2808, S2814, S2820, in these situations (reviewed 

in (Camors and Valdivia, 2014)). Interestingly CamKII can also phosphorylate phospholamban at 

T17 leading to a reversal of the inhibition of the calcium pump SERCA2A and increased loading of 

the SR with calcium  (Mattiazzi and Kranias, 2014). Nitric oxide might also modulate RyR2 

through direct nitrosylation although there isn’t a consensus on the exact details and functional 

consequences (Simon et al., 2014).   

 The sympathetic nervous system is key to promoting increased inotropy and lusitropy. 

However increased activity may also be pathological and proarrhythmic particularly if the stimulus 

is prolonged or excessive or on the background of a pathological substrate as in catecholaminergic 

polymorphic ventricular tachycardia (CPVT) or heart failure (Camors and Valdivia, 2014). In 

particular, the increased loading of the SR with Ca2+ through phospholamban disinhibition and 

increased entry via the LTCC might lead to abnormal diastolic calcium release promoting delayed 
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after-depolarisations. Initially this would be entrained by protein kinase A activation but as the 

signal became sustained CamKII would increase in importance. Some of the antiarrhythmic effects 

of vagal nerve activation may occur because they broadly antagonise such events.    

Potassium channels: Ito: Both  and to a lesser extent -adrenergic signalling have been reported to 

result in a reduction in Ito (Apkon and Nerbonne, 1988; Shimoni and Banno, 1993; van der Heyden 

et al., 2006). It is also likely that the current reducing effects initiated by -adrenergic signalling 

override any competing effects caused by the stimulation of -adrenergic signalling (van der 

Heyden et al., 2006). Adrenergic stimulation has been linked to the activation of PKA and PKC and 

subsequent phosphorylation of the channel (van der Heyden et al., 2006). In a number of disease 

states, such as heart failure, diabetes, ischaemia and infarction, reductions in Ito density and 

respective subunit expression have been reported and at least a component of this is thought to be 

due to aberrant adrenergic signalling (van der Heyden et al., 2006). The actions of nitric oxide and 

angiotensin II on the properties of the Ito have also been studied and both appear to reduce current 

density (Gomez et al., 2008; Caballero et al., 2004).   

IKs: -adrenergic stimulation leads to increased IKs and this augmentation likely plays an important 

role in APD shortening at higher heart rates. Since the discovery that IK is enhanced by adrenergic 

stimulation (Bennett and Begenisich, 1987) the mechanisms underlying this augmentation have 

been extensively studied. With the separation of IK into two currents (Sanguinetti and Jurkiewicz, 

1990) it became clear that IKs was the -adrenergic sensitive component (Sanguinetti et al., 1991). 

Extensive characterisation of -adrenergic stimulation on IKs has led to the elucidation of a detailed 

and intricate mechanism of action. Briefly, -adrenergic signalling leads to PKA activation and 

results in direct channel phosphorylation of the N-terminal residue(s) S27 (and potentially S92) 

(Marx et al., 2002). The augmentation of IKs requires the association of KCNQ1 with KCNE1. In 

addition it is also dependent on the presence of a protein kinase A anchoring protein (AKAP) 

yotiao\AKAP9 and also a direct interaction with the microtubule network (Marx et al., 2002; 

Kurokawa et al., 2003; Nicolas et al., 2008). A phosphodiesterase (PDE4D3) may also form part of 
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this channel complex (Terrenoire et al., 2009) and to mediate the full effects on current 

augmentation yotiao\AKAP9 also needs to be phosphorylated by PKA (Chen et al., 2005; 

Terrenoire et al., 2009).  The effects of Gq-coupled receptor stimulation on IKs in cardiac myocytes 

have not been extensively characterised although Daleau et al., have reported that angiotensin II can 

decrease IKs density in guinea pig myocytes (Daleau and Turgeon, 1994). In heterologous 

expression systems IKs can be modulated through stimulation of both M1 and AT1 receptors. 

Acetylcholine and angiotensin II application results in a biphasic pattern of regulation with a 

transient increase followed by a marked and sustained inhibition. The activation phase may be 

regulated by PKC and the inhibitory phase is likely mediated through depletion of 

phosphatidylinositol-4,5-bisphosphate (Matavel and Lopes, 2009). In guinea pig myocytes an 

increase in nitric oxide acts to augment IKs (Bai et al., 2005). It is thought this effect is mediated 

through S-nitrosylation of residue C445 in the C terminus of KCNQ1 (Asada et al., 2009). CamKII 

may activate the current though this has only been reported in sinoatrial nodal cells (Xie et al., 

2015).  

IKr: Currently there is no consensus regarding whether the activation of -adrenoreceptors in 

cardiac myocytes regulates IKr (for example see (Sanguinetti et al., 1991; Harmati et al., 2011). 

Interestingly, in heterologous expression systems the presence of different  auxiliary subunits 

(either KCNE1 or KCNE2) in the channel complex can alter the responsiveness of the channel to -

adrenergic stimulation (Cui et al., 2000). It is therefore possible that the modulation of IKr is species 

dependent and that the variable expression of auxiliary subunits could account for these differences. 

Increases in nitric oxide have been shown to modestly enhance IKr current in guinea pig ventricular 

myocytes after overexpression of nitric oxide synthase 1 adaptor protein (Chang et al., 2008). IKr 

density is also augmented by angiotensin II in guinea pig ventricular myocytes (Daleau and 

Turgeon, 1994).  

IK1:  Isoproterenol and forskolin (a cAMP elevator) have been shown to inhibit IK1 density in human 

ventricular myocytes (Koumi et al., 1995). In contrast, in guinea pig ventricular myocytes 
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isoproterenol moderately increased IK1 density (Banyasz et al., 2014). In canine left ventricular 

purkinje myocytes -adrenergic stimulation acts to decrease IK1 current and methoxamine (an -

adrenergic receptor agonist) decreases the magnitude of IK1 in rabbit cardiomyocytes (Sosunov et 

al., 2004; Fedida et al., 1991). It is possible that angiotensin II may augment IK1  (Shimoni, 1999) 

and it has also been shown that nitric oxide augments IK1 density in human atrial cells. This is 

thought to be due to a direct effect of s-nitrosylation of the Kir2.1 residue C76 (Gomez et al., 2009). 

IKATP: There are indications that IKATP can be activated by -adrenergic stimulation and direct 

phosphorylation by PKA (Gonoi et al., 1999; Quinn et al., 2004). These effects have largely been 

studied in the equivalent of the pancreatic and vascular channels but it is clear that both the pore and 

sulphonylurea receptor contain potential phosphorylation sites. PKC and phosphatidylinositol-4,5-

bisphosphate depletion largely lead to inhibition though the effects can be complex and their 

physiological significance is unclear (Shyng and Nichols, 1998; Cole et al., 2000; Quinn et al., 

2003). However the potential role of metabolic sensitivity of the channel is interesting. Mice with 

global genetic deletion of Kir6.2 have impaired exercise tolerance and a predisposition to 

arrhythmia (Zingman et al., 2002; Liu et al., 2004).  Specifically they did not have appropriate 

action potential shortening on adrenergic challenge and developed afterdepolarisations (Liu et al., 

2004). Thus IKATP together with IKs may be involved in action potential shortening during exercise.  

Other channels and transporters: There is some consensus that -adrenergic stimulation and PKA 

activation increases the cardiac SCN5A sodium current (Matsuda et al., 1992). This probably occurs 

by direct channel phosphorylation and an increase in membrane channel activity. It may also 

promote the translocation of the sodium channel from perinuclear compartments to the plasma 

membrane (Murphy et al., 1996; Hallaq et al., 2006). Increases in intracellular calcium are probably 

inhibitory and this may be mediated by a direct pore blocking effect (Casini et al., 2009). The major 

connexion present in ventricular myocytes is Cx43. Regulatory pathways seem to influence the 

lifetime of the protein and cellular distribution being important in promotion of delivery to the 

intercalated disc and subsequent lateralisation to an inactive pool (Lambiase and Tinker, 2015). 
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There are a number of serine phosphorylation sites in the C-terminus of the protein that can be 

engaged by PKC (Marquez-Rosado et al., 2012). As we have recently reviewed the exact details and 

the involvement of specific receptor pathways are complex (Lambiase and Tinker, 2015). There is 

however agreement that particularly in ischaemia Cx43 is dephosphorylated from its mature forms 

and this corresponds to lateralisation and impaired intermyocyte conduction (Peters et al., 1997; 

Beardslee et al., 2000). The sodium-calcium exchanger does not seem to be significantly modulated 

by phosphorylation (Bers, 2001).    

Integrating the net effects of neuro-hormonal signalling on cellular electrophysiology: The 

unopposed activation of an inward current, such as the LTCC, would lead to action potential 

prolongation. The reverse would occur if outward potassium current increased without any other 

compensatory changes. In practice, the net effects of neuro-hormonal on the cardiac action potential 

are complex. Thus enhanced sympathetic drive increases both LTCC and IKs but the APD shortens 

and together with greater recruitment at high rates is necessary for appropriate APD shortening. The 

parasympathetic system antagonises these effects. The importance of IKs is illustrated in transgenic 

rabbits with transgenic suppression of the current when the action potential duration increases 

because of unopposed activation of LTCC (Liu et al., 2012).   

 Figure 1 summarises a potential consensus position on how cardiac ion channel currents 

might be potentially modulated by increased -adrenergic drive. 

 

Regulation of ventricular excitability at the tissue level 

 The tissue consequences of modulation of cellular electrophysiology are not always obvious 

and there remains a gap in understanding between cellular and basic electrophysiology and the 

clinical phenomena of cardiac arrhythmia (Pandit, 2010). A pertinent clinical question is why 

should an individual develop a specific arrhythmia at a particular time? In some cases a specific 

systemic upset can be pinpointed as being responsible for predilection to arrhythmia e.g. thyroid 

dysfunction, drug treatment or myocardial ischaemia. Yet, in many clinical arrhythmias, no specific 
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major structural or functional change is ever identified coincident with the onset of arrhythmia. As 

we have detailed above cell signalling pathways and in particular the autonomic nervous system 

have a profound influence on cellular cardiac excitability. Detailing how it may modulate activation 

and repolarisation properties in tissue preparations and the whole heart, and thereby promote or 

supress clinical arrhythmia, is an important challenge. This is further accentuated when considering 

dynamic modulation, i.e. alterations in electrophysiology resulting from changes in coupling 

interval as well as variation stemming from autonomic stimuli. The very specific adaptation to heart 

rate by cardiac cells is termed “restitution” (Elzinga et al., 1981). The cardiac action potential tends 

to shorten in response to a decrease in coupling interval of successive beats. Specifically, APD 

restitution can be defined as a shortening of the APD in response to a decrease in the diastolic 

interval (DI) preceding that activation. A slower rate-dependence shortening, termed adaptation, 

may occur as a steady state cycle length is reduced (Taggart et al., 2003). Furthermore, slowing of 

conduction velocities occurs at very short diastolic intervals, observed in response to short coupling 

intervals.  

The molecular basis of APD restitution and adaptation: Initially APD restitution was described in 

isolated cat papillary muscle and occurs in many other species including human cardiac tissue 

(Moore et al., 1965; Taggart et al., 2003). The ionic basis of cardiac restitution has been determined 

from experimental and computational studies. At long coupling intervals, the majority of 

repolarisation currents are through IKr. The importance of IKr is exemplified by studies in rabbit 

models of LQT2 in which restitution slopes and the regional dispersion of those slopes are 

increased (Ziv et al., 2009).   

 IKs appears to contribute very little to the repolarisation time course in the resting state at 

slow heart rates but its contribution increases at higher rates. Markov modelling has revealed how 

IKs may contribute to cardiac restitution and adaptation (Silva and Rudy, 2005; Decker et al., 2009). 

The model consists of a group of 14 closed states corresponding to independent movement of the 

voltage sensors in each of the four subunits, a further closed state into which the channel complex 
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transitions after all the voltage sensors have moved and two open states. The transition from deep-

inactive states to the inactive state is slow, whereas the time course of opening from an inactive 

state is rapid. Zones can be grouped into two inactive zones depending whether a voltage sensor 

exists in the deep-inactive state, as well as the channel open zone. In Zone 2, at least one channel 

subunit must transfer to the inactive state from the deep-inactive to allow channel opening to occur, 

whereas in Zone 1 all voltage sensors are in the inactive state. This provides an elegant model of 

how the contribution of IKs to repolarisation can increase at short coupling intervals. During 

adaptation (i.e. at sustained short coupling intervals), there is accumulation of channels in Zone 1. 

As these are able to rapidly open, a "repolarisation reserve" of channels in state Zone 1 builds up, 

and the action potential shortens.   

 Action potential restitution can be seen as being due to a similar, albeit transient, increase in 

IKs at short coupling intervals. At long coupling intervals, almost all IKs channels exist in the deep 

inactive state at the start of the action potential. IKs will transition to the inactive state with each 

action potential, but the long diastolic interval between activations allows the channels to fall back 

to the deep inactive state. A close-coupled S2 beat will activate the cell prior to the full transition of 

IKs to deep-inactive Zone 2 states, the proportion of channels in Zone 1 will still be elevated as a 

consequence of the previous activation. The more premature the S2, the greater the proportion of 

channels available in Zone 1 to rapidly open, and hence the greater the contribution to repolarisation 

from IKs. The net consequence is a greater repolarising current and a shorter action potential. 

 Accommodation may be seen as a separate but related phenomenon.  It is observed that 

action potential duration does not reach a steady state following a change in constant pacing cycle 

length immediately, but requires several minutes before stabilisation. This phenomenon has not 

been fully explored at the molecular level, but changes in intracellular ionic concentrations, 

particularly of intracellular Ca2+ and Na+, may play a key role (Silva and Rudy, 2005).  

The significance of restitution: Initially electrical restitution was described as being important in 

governing the contractile force generated following a premature beat (Kruta and Braveny, 1963). 
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Interest in restitution properties grew as it became apparent that restitution could also be critical in 

explaining induction of heterogeneity in tissue that appeared homogenous during steady state 

activation. This is supported by the studies in the LQT2 rabbits mentioned above in which increased 

restitution slope and dispersion are associated with ventricular arrhythmia (Ziv et al., 2009). One 

manifestation of this is the conversion from stable to unstable APD alternans at short coupling 

intervals (Weiss et al., 2005). Indeed, half a century ago, Nolasco and Dahlen proposed a theoretical 

model predicting that APD restitution slopes of >1 would produce unstable responses to rapid 

cardiac stimuli, cumulating in APD alternans (Nolasco and Dahlen, 1968). This concept has been 

further refined via mathematical biodomain models, in one and two dimensions (Clayton and 

Taggart, 2005).  

Regulation of restitution: It has been established in animal studies that adrenergic stimulation 

increases restitution slope and this is antagonised by vagal activation. Thus Ng and colleagues 

recorded monophasic action potentials in an isolated rabbit heart preparation that had intact 

autonomic innervation (Ng et al., 2007). These studies revealed that sympathetic nerve stimulation 

results in increased restitution slope, decreased ERP and ventricular fibrillation threshold. Vagal 

nerve stimulation had the exact opposite effect and intriguingly later studies revealed that this was 

independent of ventricular muscarinic receptor activation and dependent on nitric oxide released 

from vagal nerve endings (Ng et al., 2007; Brack et al., 2007; Brack et al., 2011). Our own recent 

studies showed that vagal innervation arising in the dorsal vagal motor nucleus in the brainstem 

resulted in a tonic protection against VT induction and was dependent on neuronal nitric oxide 

(Machhada et al., 2015). The adrenergic modulation of restitution also occurs in human hearts 

(Taggart et al., 2003). There may also be a kinetic mismatch between LTCC regulation and IKs 

regulation by isoproterenol and this may lead to transient early afterdepolarisations (Xie et al., 

2013). 

 Recently, we have described for the first time dynamic modulation of cardiac 

electrophysiology during experimentally induced mental stress (Finlay et al., 2015). Patients with 
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structurally normal hearts attending for EP studies for ablation of supraventricular tachycardia 

underwent a psychometric relaxation protocol. During this, measurements of cardiac restitution 

were undertaken from the RV endocardium, LV endocardium and LV epicardium. The 

electrophysiological protocol was then repeated during coerced mental arithmetic and anger recall 

protocols. Marked changes in the dispersion of cardiac activation and repolarisation were observed 

during mental stress, particularly at short coupling intervals. One patient exhibited non-sustained 

polymorphic ventricular tachycardia under stress but not at rest. Interestingly, a particular feature of 

these studies was that as ERP reduced consequent to mental stress, the shortest coupling interval 

also reduced. However, at the shortest coupling intervals attained, the induced conduction delay (an 

inverse surrogate of conduction velocity) actually increased.  Essentially, the cellular consequence 

of mental stress permitted “access” to shorter coupling intervals, at which cycle lengths the effect of 

induced conduction velocity slowing was magnified. So even a minor direct effect on conduction 

velocity may be bolstered by indirect effects, allowing extremely short coupling intervals to take 

place, the sequelae of which can be significant conduction velocity slowing. Figure 2 illustrates 

these phenomena. 

Source-sink mismatch: Arrhythmia may be supressed electrotonically by surrounding tissue. 

Experimental and computational work indicates that this effect can be overcome by activation of -

adrenergic signalling which promotes SR Ca2+ overload and promotion of tissue level excitation 

presenting as ventricular ectopics (Myles et al., 2012; Campos et al., 2015). However there has been 

little other work investigating the potential involvement of other signalling pathways.  

Computational approaches: There is a long history of computational modelling in understanding 

cardiac biology (Noble, 1984; Noble, 2002; Mirams et al., 2012). Furthermore, there have been 

significant contributions in this area in an effort to understand the how cell signalling pathways 

regulate excitability. Specifically, models have shown that -adrenergic mediated inotropy and 

lusitropy are heavily influenced by phospholamban regulation of SERCA2A activity and LTCC 

phosphorylation (Saucerman et al., 2003; Saucerman and McCulloch, 2004). At the cellular level 
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investigators have recently focused on the adaptation of ventricular repolarisation during changes in 

heart rate (Pueyo et al., 2004; Pueyo et al., 2005; Pueyo et al., 2010) or with sympathetic drive or 

beat-to-beat variability occurring due to phasic oscillation in sympathetic tone and mechanical 

loading (Heijman et al., 2013). The accompanying modelling work reveals a complex interplay of 

various factors including IKs and INa regulation and sodium ion accumulation (Johnson et al., 2010; 

Pueyo et al., 2010; Pueyo et al., 2016).   

Conduction velocity: Conduction velocity is often assumed to be a fixed value for a particular 

tissue, and little direct evidence exists other than the very steep electrical restitution observed just 

prior to ERP, termed conduction velocity restitution. This underlies the well-known “gap 

phenomenon”, which describes the clinical observation of a very close coupled extrastimulus being 

conducted through the AV node whereas a slightly longer coupling interval resulted in conduction 

block. Our data imply a dynamism to conduction velocity previously underappreciated. Indeed, a 

feature of dynamic conduction velocity restitution is that it only takes place very close to the origin 

of the extra beat. Slowing of a wavefront of activation due to CV restitution protects downstream 

sites from further slowing (Finlay et al., 2014).  

 We can hypothesise several ionic and cellular mechanisms by which conduction velocity 

may be decreased at very short coupling intervals. As is seen in APD restitution, at short DIs, 

intracellular Na+
 increases as a result of inadequate extrusion via the Na+-K+  exchanger and as a 

sequelae of intracellular Ca2+  increase. At very short coupling intervals, intracellular Na+ could be 

high enough to reduce the velocity of the action potential upstroke by reducing the transmembrane 

Na+ gradient and thereby slow conduction velocity. Sodium channels exists in several states, 

Markov models predict that at short coupling intervals fewer of them will have cycled through the 

conformational changes necessary to return them to a resting state. Thus at short DIs, membrane 

sodium channel availability will be reduced (O'Hara et al., 2011). Cycling of ion channels may also 

contribute to conduction slowing at short diastolic intervals. Though active at the cell membrane, 

the Nav1.5 protein and the connexin proteins exist in a state of equilibrium with subcellular 
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apparatus (Hallaq et al., 2006; Lambiase and Tinker, 2015). It is possible, but as yet unproven, that 

altering the membrane locational equilibrium of either of these proteins will reduce cellular 

conductivity or excitability.  

Dispersion of repolarisation: Another feature of the intact ventricle is that there is variation in 

action potential duration in different regions. The classical view is that there is a transmural 

difference in APD accounted for by differences in ion channel expression. The epicardial APD is 

shorter than the endocardial whilst M-cells resident in the mid-myocardium have the longest APD. 

Furthermore, epicardial and M cells have a prominent notch (spike and dome pattern) in the action 

potential accounted for by higher expression of Ito (Litovsky and Antzelevitch, 1988; Antzelevitch, 

1997; Wettwer et al., 1994). Furthermore, the M cell has lower expression levels of IKs but not IKr 

and IK1 (Liu et al., 1993; Liu and Antzelevitch, 1995). The existence of the M cell has been disputed 

however with the suggestion that in the intact heart apical-to-basal differences are more important 

(Janse et al., 2012). A recent mapping study in the human heart did not find a clear correlation with 

ion channel expression (Opthof et al., 2016). These cellular properties and whatever underlies them 

are thought to generate the characteristic properties of the T-wave on the ECG as reflected in 

Tpeak-Tend and QTc dispersion (Janse et al., 2012). It is clear spatial heterogeneity exists in the 

intact heart but its nature is more controversial than is generally accepted. Electrotonic and 

structural factors may be more important than is generally supposed.  

 Is this spatial dispersion of repolarisation under regulation by the autonomic nervous 

system? As we discuss below in a number of the channelopathy syndromes particular triggers, 

usually related to the adrenergic system, are often part of the disease history. Furthermore, it has 

been argued that the underlying genetic abnormalities accentuate spatial dispersion (Antzelevitch, 

2007). There are data indicating that sympathetic drive in LQT1 may accentuate dispersion of 

repolarization (Tanabe et al., 2001). In more general terms there are animal data that showing that 

the dispersion of repolarisation is increased and the activation sequence may be changed from apex 

to base to base to apex with sympathetic activation (Yoshioka et al., 2000; Mantravadi et al., 2007). 
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Interestingly this correlates with heterogeneous nervous innervation as much as differential ion 

channel expression. Finally, noradrenaline and sympathetic nerve stimulation are known to increase 

the restitution slope in spatially restricted fashion with greater shortening occurring at the base (Ng 

et al., 2009). This was sensitive to inhibition with IKs blockers.   

  

Clinical Perspective 

 Powerful direct and indirect evidence points to the role of modulation of autonomic tone in 

arrhythmogenesis. The reduction of cardiac arrhythmic death by -blockade during myocardial 

infarction (MI) is the most widely known of these data and is supported by a substantial evidence 

base (Waagstein et al., 1993; Bristow et al., 1996; Hjalmarson et al., 2000; Poole-Wilson et al., 

2003). -blockers seem to have a significant effect on sudden cardiac death in this setting and 

lipophilic agents are especially valuable perhaps indicating some central effects or a unique protean 

signalling mechanism with carvedilol (Hjalmarson, 1999; Wisler et al., 2007).  

 The multi-tiered contribution of autonomic tone to cardiac arrhythmia onset is illustrated by 

numerous striking observations of increased arrhythmia frequency coincident with major 

psychological stress. These include earthquakes, missile (or threatened missile) attack and in the 9-

11 World Trade Centre attacks (Leor et al., 1996; Niiyama et al., 2014; Meisel et al., 1991; Shedd et 

al., 2004; Steinberg et al., 2004). Eye-catching associations have also been made with the 

phenomenon of voodoo death and as an explanation for increased arrhythmic events during world 

cup football supporters (Lester, 2009; Wilbert-Lampen et al., 2008). More controlled data have 

shown ICD shocks to be associated with mental stress (Lampert et al., 2002; Lampert et al., 2005).  

Controlled laboratory experiments have solidified these associations. This work has been pioneered 

by Lampert and coworkers. In a series of elegant studies, mental stress was induced using a 

standardized series of psychometric tests, including mental arithmetic (reverse serial sevens with 

harsh encouragement) and anger recall (Lampert et al., 1994; Lampert et al., 2000; Stopper et al., 

2007; Lampert, 2009; Abisse et al., 2011). These studies have examined the physiological effects 
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on the 12-lead ECG and T-wave in particular of patients at risk of arrhythmia. Furthermore, they 

have documented increased frequencies of ICD discharges/therapies during periods of intense stress 

in ischaemic heart disease patients. Figure 3 shows an example of an ICD discharge in a patient 

with ischaemic heart disease watching a football match.  

 Previous works have also documented increased arrhythmogenicity in animal models during 

induced stress (Verrier and Lown, 1984) however less work has been done in man and in patients 

with cardiac disease. It has been hypothesized that mental stress can contribute to arrhythmia by 

increasing heterogeneities of repolarisation and activation (or conduction velocity) throughout the 

heart (Toivonen et al., 1997; Kop et al., 2004). These effects can thus amplify pre-existing 

heterogeneity, for example, due to ischemic heart disease or cardiomyopathy. These observations 

have been derived from the surface electrocardiogram, rather than cellular action potential or tissue 

electrogram measurements. Our recent work (see above) has begun to define the dynamic tissue-

level electrophysiology changes directly using invasive measurements performed in patients 

undergoing electrophysiological studies for benign arrhythmia investigations (Finlay et al., 2015). 

However, the emergence of new technologies, such as non-invasive electrical cardiac mapping (e.g. 

ECGi), has started to contribute to the understanding of the interplay between activation, 

repolarisation and their modulation with autonomic stimulation (Ghanem et al., 2005; Vijayakumar 

et al., 2014). 

 Mental stress induced arrhythmia is not a simple case of increased sympathetic drive. 

Rather, the sympathetic and parasympathetic axes appear to work in unison to optimise physiology 

to the perceived requirements of both bodily homeostasis and higher-level neuronal inputs. Several 

diseases have contributed disproportionally to our understanding of the interplay between 

autonomic and hormonal activation and the syndrome of cardiac arrhythmia, and Long QT 

syndrome type 1 (LQT1) and CPVT merit particular consideration.   

 Arrhythmic events in patients with LQT1 and CPVT are now well established to be 

dependent on high sympathetic tone with exercise being a particular trigger (Schwartz et al., 2001; 
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Behere and Weindling, 2016). In LQT1, this dependence on exercise/increased adrenergic tone for 

arrhythmogenesis relates to the previously described dependence on IKs augmentation for APD 

shortening at high heart rates. Clinically this mechanistic hypothesis is well corroborated because -

blocker therapy is extremely effective at preventing arrhythmic events in LQT1 patients (Vincent et 

al., 2009). A history of stressful life events and prolonged mental stress has also been associated 

with arrhythmia burden in Long-QT syndrome patients (Hintsa et al., 2010). Transgenic rabbit 

models of LQTS have provided a greater understanding of the triggers for arrhythmogenesis at the 

tissue and whole heart level and have confirmed the need for an additional specific stressor to 

induce arrhythmic events and sudden death in LQT1 but not LQT2 (Brunner et al., 2008; Lang et 

al., 2016). Additionally, transgenic LQT1 rabbit hearts, but not LQT2 rabbit hearts, display 

persistent early after depolarisations (EADs) at both the myocyte and whole heart level when 

perfused with isoprenaline (Liu et al., 2012). For CPVT, -blocker therapy is less effective, 

compared to LQT1, and often these patients have an implantable cardioverter-defibrillator fitted. 

Unfortunately in these patients inappropriate shocks are relatively common and in some cases the 

stress associated with these events can feed back to promote further episodes of malignant 

arrhythmia (Miyake et al., 2013). Interestingly, swimming appears to be a particularly strong trigger 

for arrhythmia in patients with both LQT1 and CPVT. It has been postulated that this occurs 

because swimming activates both the sympathetic and parasympathetic autonomic systems, through 

the ‘diving-reflex’, and that the interplay between the two systems results in increased dispersion of 

refractoriness which can act as a substrate for arrhythmia development (Choi et al., 2004; Shattock 

and Tipton, 2012).  

 Diurnal variation in the timing of ventricular arrhythmia occurrence has been the subject of 

intense interest. In the Framingham study sudden cardiac death peaked between 7 and 9 am (Willich 

et al., 1987) and has been correlated to variations in ventricular refractoriness. The phenomenon of 

cyclical diurnal variation in incidence of arrhythmia is observed across subgroups in many diseases, 

for example ischaemic heart disease, Brugada syndrome (Matsuo et al., 1999), long QT syndromes 



28 
 

or atrial fibrillation, though the “at risk” phase varies between conditions. The circadian clock is 

ultimately controlled by the suprachiasmatic nuclei of the anterior hypothalamus, which can be 

thought of as the “master clock”, entraining circadian rhythms to the solar day (Reppert and 

Weaver, 2002). This overarching control entrains multiple circadian oscillators, existing across 

tissues and organs, including in brain tissue and peripheral organs. Such slave oscillators have even 

been demonstrated in immortalised cell lines in culture. In the heart, critical control of ion channel 

expression has been linked to such cellular clocks, under the control of krüppel-like factor 15 

(Jeyaraj et al., 2012) and this has been shown to alter the expression of Ito in a circadian manner, 

with overexpression promoting arrhythmia susceptibility in a mouse model. This cyclical temporal 

pattern of ion-channel expression can go some way towards explaining variations in the QT interval 

through the course of the day, with autonomic hormonal effects added on shorter time scales. 

Further, these intrinsic cellular changes in expression will interact functionally with the autonomic 

variation over the course of 24 hours, which may serve to further modulate cardiac 

electrophysiology and the propensity for arrhythmias.  

 Gender differences in cardiac electrophysiology have been recognised since the earliest days 

of study of the ECG (Bazett, 1920). The QT interval in females is longer than in males, and females 

with inherited LQT2 are at increased risk of arrhythmia and sudden cardiac death. There is strong 

element for a hormonal basis behind these differences, with no differences in QT interval between 

sexes prior to the onset of puberty. A role for testosterone is implied by the shortening of QTc in 

males at puberty, not seen in orchidectimised males. In females, a cyclical QT variation occurs with 

the menstrual cycle, and increases in arrhythmic risk in long-QT syndrome are observed in 

preganancy and post-partum (Rodriguez et al., 2001). The molecular mechanisms underlying such 

variations are complex and incompletely understood, and data exist pointing to both direct 

inhibition of currents (especiallyIKr) by oestrogens (Kurokawa et al., 2008). Classical receptor 

mediated interactions have been shown to lead to changes in ion channel expression, the 

complexities of interactions with interspecies variation in experimental models can make dissection 
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of pathways challenging (Odening and Koren, 2014; Odening, 2016). This modulation of 

electrophysiology by hormonal and circadian influences can have real clinical consequences, for 

example women are at much higher risk of drug-induced prolongation of the QT interval. Other 

hormonal modulators of cardiac electrophysiology are well known clinically. For example, thyroid 

function is tightly bound with arrhythmic risk, and thyroid dysfunction has been linked to both 

atrial and ventricular arrhythmic risk. Thyroid hormones have wide ranging modulation of gene 

expression, including regulation of the Na-K-ATPase, elements of calcium regulating system e.g. 

phospholamban, and also may have direct effects on ion channel function under specific conditions 

(Rajagopalan and Gerdes, 2015; Vargas-Uricoechea and Sierra-Torres, 2014). -adrenoceptors are 

also under thyroid hormone control (Klein and Danzi, 2007). Hypopituitarism can also be 

associated with arrhythmia (KOSOWICZ and ROGUSKA, 1963). Given the exquisite regulation of 

the cardiac membrane potential, simultaneously on a beat-to-beat basis with daily or monthly 

hormonal changes, it is no surprise that complex interlocking and synergistic pathways may 

produce electrophysiological consequences.  

 In cardiac disease signalling pathways remodel but there is also evidence for changes in 

autonomic nervous innervation (Fukuda et al., 2015). Sympathetic nerve innervation is inhibited by 

sem3a derived from the endocardium during development. Overexpression or reduced expression of 

sem3a has consequences for ventricular excitability: specifically a mouse overexpressing the 

protein has readily inducible ventricular tachycardia (Ieda et al., 2007). In cardiac hypertrophy there 

is sympathetic hyperinnervation perhaps driven by nerve growth factor (Kimura et al., 2007). The 

situation in human heart failure is complex though with upregulation of sympathetic nerve activity 

but this is combined with reduced expression of tyrosine hydroxylase (Chidsey et al., 1962; Chidsey 

et al., 1963; Fukuda et al., 2015). Vagal nerve stimulation is being actively explored in heart failure. 

The CardioFit trial showed that the therapy was well tolerated in patients with heart failure (De 

Ferrari et al., 2011). However a randomised trial failed to demonstrate a change in the primary 

outcome namely left ventricular end-diastolic volume in the NECTER-HF trial but quality of life 
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measures did show some improvement (Zannad et al., 2015). How vagal nerve stimulation might 

affect cardiac excitability and death from arrhythmia in heart failure remains to be tested. Finally, 

left cardiac sympathetic denervation has an established place in the management of LQTS and 

CPVT (Collura et al., 2009).  

 

Summary 

 The hormonal regulation of ventricular excitability is important in arrhythmogenesis. The 

regulation by the autonomic nervous system of IKs, the LTCC and intracellular calcium handling in 

general are particularly important with an established and agreed evidence base. Traditionally, it has 

been asserted that noradrenaline and adrenaline acting on -receptors and acetylcholine on 

muscarinic M2 receptors are key to changes in excitability by modulating the activity of PKA. 

Changes in PKA activity are important but it is also now clear that a number of other cellular 

pathways are operative particularly those involving CamKII and NO. Finally, there is a gap between 

our cellular understanding of ion channel regulation by the sympathetic and parasympathic nervous 

system and how this relates to tissue, organ and whole animal physiology and predisposition to 

arrhythmia. Spatial and rate dependent effects can be clearly influenced by autonomic signalling.  

 

Outlook   

A major challenge in this field is to be able to interpret, integrate and summate the effects of 

hormonal systems at the ionic, cellular and whole heart level. There is a wealth of experimental data 

analysing the effects of hormones on individual ionic currents and AP morphology but how this 

data translates from the cellular to whole heart level has not been extensively investigated. It is 

inherently difficult to interpret how changes in ionic current at the level of the myocyte will affect 

for example the complex mechanism of repolarisation. Intra-cardiac electrophysiological recordings 

and non-invasive mapping techniques such as non-invasive electrical cardiac mapping (e.g. ECGi) 

should provide insight and the use of computational modelling will help to integrate data from 
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different sources and produce whole heart models (Rodriguez et al., 2015). Recently, an elegant 

paper by Sadrieh and colleagues reported the use of a multiscale and cutting edge computational 

approach to produce a whole heart model of why the T waves in LQT2 often have a notched or 

bifid appearance (Sadrieh et al., 2014). In the future, it may be possible to use similar computational 

approaches to integrate data from a wide variety of sources to produce models that can display and 

predict how particular hormonal systems control ventricular excitability.  
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Table Legend 

 A Table summarising a potential consensus from the literature (see text for details and 

references) of the regulation of ion channels and the sodium-calcium exchanger by key signalling 

pathways related to autonomic modulation.  

 

Figure Legends 

 

Figure 1. Illustration of the effect of -adrenergic receptor stimulation on the human 

ventricular action potential and the corresponding changes in the kinetics of the underlying 

currents. Upon sympathetic stimulation the action potential (AP) shortens (indicated by dashed red 

line). The increase in the ICaL current increases the height of the plateau phase and the increase in IKs 

acts to shorten the time needed for phase 2 and 3 repolarisation to occur. The shortening of the AP 

allows for an increase in heart rate and reduces the effective refractory period. The references for 

the specific effects of -AR signalling, and a detailed explanation, on the individual currents is 

provided in the main text. The current magnitudes represented in the lower panel are not to scale. 

: Strong experimentally confirmed effect; ?/: Likely effect but no consensus; ?: No consensus.  

  

Figure 2. Progressive increase in dispersion of repolarisation with premature extrastimuli. 

The panels demonstrate the dynamics of activation and repolarisation with prematurity of an ectopic 

or paced beat, from data derived from a mathematical model. Panel A shows that in general the 

measured times of activation increase more the further the measured site is from the pacing simulus 

(conduction delay of 0 ms). Panel B demonstrates a model of restitution that can be applied to the 

repolarisation of cells. The repolarisation times at specific points (Panel C) are the sum of the 

conduction delay plus the restituting ARI. The cumulative effect of conduction delay principally 

occurs very close to the stimulus site, thus this is the area where most ARI restitution can occur. 

The combined effect is that repolarisation times near the stimulus site are reduced, whereas 
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conduction delay protects distant sites from short diastolic intervals. The dispersion of 

repolarisation thus varies disproportionally more at sites close to the activation site following a 

premature extrastimuli (Panel D). Simulations using method described in (Finlay et al., 2013). 

 

 

Figure 3.  An implantable cardiovertor defibrillator recording of an episode of VT induced in 

a sports spectator. The patient, with an implantable cardioverter defibrillator and ischaemic heart 

disease, was watching a English premier league football match when he experienced palpitations 

and received a single therapy from his ICD. This occurred shortly after a series of missed 

opportunities by his team. Following this, he continued watching the rest of the game and attended 

the clinic later that day, where he underwent device interrogation. A single episode of VT follows a 

sinus tachycardia, and a “short-long-short” sequence of beats following a premature atrial complex 

(PAC) and ventricular ectopic (VE) trigger the onset of the ventricular tachycardia. The final score 

was a 2-1 loss.   
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