River Research and Applications

River Research and Applications

Assessing the mechanistic basis for fine sediment biomonitoring: Inconsistencies among the literature, traits and indices

Journal:	River Research and Applications
Manuscript ID	RRA-16-0249.R1
Wiley - Manuscript type:	Special Issue Paper
Date Submitted by the Author:	31-Jan-2017
Complete List of Authors:	Wilkes, Martin; Coventry University, Centre for Agroecology, Water and Resilience Mckenzie, Morwenna; Coventry University, Centre for Agroecology, Water and Resilience Murphy, John; Queen Mary University of London, School of Biological and Chemical Scineces Chadd, Richard; Environment Agency of England and Wales, Environmental Monitoring
Keywords:	Fine sediment, Biomonitoring, Macroinvertebrates, Traits, Colmation

SCHOLARONE™ Manuscripts

- 1 Assessing the mechanistic basis for fine sediment
- 2 biomonitoring: Inconsistencies among the literature,
- 3 traits and indices

6 Martin A. Wilkes^{1*}, Morwenna Mckenzie¹, John F. Murphy², Richard P. Chadd³

- 8 ¹ Centre for Agroecology, Water and Resilience, Coventry University, U.K.
- 9 ² School of Biological and Chemical Sciences, Queen Mary University of London,
- 10 London, U.K.
- ³ Environment Agency, Stepping Stone Walk, Winfrey Avenue, Spalding,
- 12 Lincolnshire, U.K.
- * Corresponding author: martin.wilkes@coventry.ac.uk, +44 (0) 7557 425307.

- **Keywords**
- 16 Biomonitoring; fine sediment; macroinvertebrates; traits; colmation.

Abstract

Classification of species sensitivity for biomonitoring has been approached under two different frameworks, using either empirical data or expert opinion. Two tools for fine sediment (i.e. clogging, colmation) biomonitoring in the United Kingdom tend towards these contrasting approaches. The Proportion of Sediment-sensitive Invertebrates (PSI) index was developed using expert judgement. Empirical weightings were subsequently added at genus or species (EPSI) and mixed (EPSI_{mixed}) taxonomic levels but scores remain constrained by the original categories. In contrast, the Combined Fine Sediment Index (CoFSI), composed of separate taxon scores along organic matter (OFSI) and total fine sediment (ToFSI) gradients, was developed using a purely empirical approach. We tested the mechanistic bases for these indices by relating taxon scores to species traits. We compared the results with those for the well-established Walley Hawkes Paisley Trigg (WHPT) index of organic pollution. After controlling for varying sample sizes, WHPT could be better predicted by a linear combination of all available traits (mean R²=0.92) than any of the fine sediment indices (0.68<mean R²<0.76). When only traits expected to respond to fine sediment were offered as independent variables, the goodness-of-fit was substantially reduced for all fine sediment indices (0.27<mean R²<0.46). Our findings demonstrate the lack of integration between the literature on macroinvertebrate responses to fine sediment, the available trait data, and taxon scores. Refinement of the trait database is recommended to build on the valuable work done to date. Since the United Kingdom has taken the lead in embedding

- 41 fine sediment into routine biomonitoring programmes, these findings have
- 42 important international implications.

Introduction

Classifications of sensitive or tolerant species have long been used to monitor the aquatic environment (e.g. Kolkwitz & Marsson, 1909). Worldwide, this activity has been undertaken within two very different frameworks: on the one hand using an objective, data-driven approach to locate taxa along a stress gradient (e.g. Whittier & Hughes, 1998; Pirhalla, 2004; Murphy et al., 2015), and on the other hand through relying on expert judgement to assign scores to taxa based on existing information about their sensitivity or tolerance to the stressor of interest (e.g. Armitage et al., 1983; Barbour et al., 1999; Extence et al., 2011). A current debate about biomonitoring for fine sediment in the United Kingdom rests on the contrast between these two approaches. Resolving this debate has important consequences for the practice of biomonitoring throughout Europe and other regions of the world, where pressure-specific indices for fine sediment have yet to be widely developed.

Fine sediment is a particularly pervasive stressor of river ecosystems, with adverse impacts arising from its accumulation within substrata (i.e. clogging, colmation) and its transportation in suspension (Wood & Armitage, 1997; Bilotta & Brazier, 2008; Jones et al., 2012). Negative impacts are evident at all trophic levels, from primary producers (Van Nieuwenhuyse and LaPerriere, 1986; Klco, 2008) to top predators relying on visual searching behaviour (Gardner, 1981; Berkman and Rabeni, 1987). This is of particular concern in sport fish spawning gravels which are directly affected by the reduction in suitable spawning habitat, smothering of redds and reduced overwintering and fry emergence, in addition

68	to indirect impacts related to prey abundance (Sear et al., 1993; Kemp et al.,
69	2011; Relyea et al., 2012). It is now a primary research area for many freshwater
70	ecology and environmental engineering groups around the world. In Europe, this
71	is partly a result of the focus brought by the implementation of the Water
72	Framework Directive (WFD), leading to the realisation that fine sediment is an
73	important and widespread cause of ecological deterioration linked to drivers as
74	diverse as agriculture, urbanisation, flood management and flow regulation
75	(Collins & Anthony, 2008; Taylor & Owens, 2009; Acreman & Ferguson, 2010).
76	
77	Authorities in the United Kingdom use a macroinvertebrate community index
78	known as Walley Hawkes Paisley Trigg (WHPT) for WFD status classification.
79	WHPT scores taxa based on their occurrence (presence-absence) or assigns a log
80	abundance-weighted score in one of four categories (1-9; 10-99; 100-999; and
81	>999 individuals). WHPT evolved from the Biological Monitoring Working Party
82	(BMWP) method, in which taxa were attributed organic pollution sensitivity
83	scores based on expert judgement (Armitage et al., 1983). The index has been
84	refined since the inception of BMWP, most recently by using data-driven
85	optimisation (Paisley et al., 2014). WHPT is among the most well developed
86	biomonitoring tools in the world. This is evidenced by its long history of
87	optimisation and the adoption of the method in many parts of the world (e.g.
88	Diaz et al., 2004; Herman & Nejadhashemi, 2015). This history demonstrates the
89	pioneering role that the United Kingdom has played in index development,
90	something which it continues to do in the context of fine sediment
91	biomonitoring.

Whilst WHPT is a central pillar of WFD classification in the UK, diagnosing the
cause of ecological degradation and classifying ecological status more accurately
requires the use of a range of pressure-specific indicators. In the United Kingdom
there are currently two such groups of indices for fine sediment: those related to
the Proportion of Sediment-sensitive Invertebrates (PSI) index; and those
comprising the Combined Fine Sediment Index (CoFSI). In the development of
the PSI scoring system taxa were subjectively assigned to one of four Fine
Sediment Sensitivity Rating (FSSR) categories: (A) highly sensitive; (B) sensitive;
(C) tolerant; and (D) highly tolerant, based on a review of existing empirical
information primarily published in ecological monographs and identification
keys (Extence et al., 2011). Weightings for each taxon were later computed using
extensive monitoring data by Turley et al. (2015) at the genus and species levels
(EPSI), and by Turley et al. (2016) at mixed taxonomic levels (EPSI $_{mixed}$), to
enhance the empirical basis for PSI. However, the resulting scores (%) still
remain constrained by the original FSSR categories.

CoFSI was developed more recently using a highly statistical approach (Murphy et al., 2015) whereby a number of environmental gradients, determined from extensive fieldwork, were reduced to two axes using partial Canonical Correspondence Analysis (pCCA). The resulting axes, describing gradients of total fine sediment (Total Fine Sediment Index; ToFSI) and organic matter (Organic Fine Sediment Index; OFSI), were then used to derive species scores based on their projected position along each axis, followed by calculation of a combined score at the community level. Thus the procedure was entirely data-driven, leaving no room for the use of extensive prior knowledge from the

118	literature. As a result of differences in their development, the two tools (EPSI and
119	CoFSI) often assign different scores to the same taxa (e.g. Figure 1).
120	
121	Direct comparison of the two sets of indices (PSI- and CoFSI- related) is
122	challenging due to differences in the methods used in their development. The

original PSI index was calibrated using visual estimates of surface fine sediment cover (Turley et al., 2014). In contrast, CoFSI was calibrated using the sediment resuspension technique (Duerdoth et al., 2015). We avoid the pitfalls of direct comparisons by focusing on the mechanistic basis for fine sediment

biomonitoring using data on species traits.

Trait-based approaches to freshwater biomonitoring have been growing in popularity (Menezes et al., 2010; Statzner & Běche, 2010). This is due to methodological advances (Cornwell et al., 2006; Poff et al., 2006; Villéger et al., 2008; Laliberte & Legendre, 2010; Schleuter et al., 2010) and the availability of fuzzy coded data describing species traits (e.g. Tachet et al., 2010). However, attempts to develop robust predictive tools based on trait-environment relationships have been met with frustration (Verberk et al., 2013), and many trait-based approaches to the development of biomonitoring tools are informed by expert interpretation of primary literature rather than any published trait databases (e.g. Extence et al., 2011).

We assessed the degree to which taxon scores under EPSI and CoFSI are related to species traits drawn from the widely used trait database of Tachet et al. (2010). We considered linear models for each index using a series of traits

describing life-history, morphology, physiology and behaviour as independent variables. As the most well-developed biomonitoring index, we compare the results with models for WHPT. Our objectives were to (i) test the relative performance of the two fine sediment biomonitoring tools with respect to trait associations and against a benchmark provided by WHPT and (ii) test the absolute power of currently available traits to predict taxon scores under these tools. Objective (ii) also included a secondary aim to assess the predictive power of a subset of traits drawn from the literature. We hypothesised that traits would be a better fit to taxon scores under WHPT due to its long history of development, followed by EPSI due to its origin as a trait-driven index, then finally CoFSI as the most empirically-based tool.

Methods

Index scores and trait values

Taxon scores for WHPT (UKTAG, 2014), empirical weightings for EPSI (Turley et al., 2015) and EPSI_{mixed} (Turley et al., 2016) and taxon scores under CoFSI (Murphy et al., 2015) were taken from their respective sources. We considered models for OFSI and ToFSI scores as well as the combined CoFSI score for each individual scoring taxon (see equation 2 in Murphy et al., 2015). For WHPT we explored separate models predicting scores for presence-absence, the mean of abundance-weighted scores for each scoring taxon, and the high abundance score for each scoring taxon. The results of these alternative models were very similar (Figure A1). We therefore focused on WHPT presence-absence scores for

simplicity in the remainder of our modelling. Prior to the modelling all index scores were centred and standardised in order to aid interpretation of model coefficients.

Where possible, taxon scores were matched with fuzzy coded trait values from Tachet et al. (2010) as alternative databases were largely incomplete (e.g. Schmidt-Kloiber & Hering, 2015) for 'true' traits, *i.e.* not those reflecting ecological preferences (Statzner & Běche, 2010; Verberk et al., 2013). In instances where index scores were available at a coarser taxonomic level than traits, fuzzy values were averaged across genera or species. This resulted in a total number of taxa for which matched trait data were available of 106 (WHPT), 421 (EPSI), 348 (EPSI_{mix}) and 95 (CoFSI, OFSI, ToFSI) for the respective indices. Taxonomic resolution for WHPT was family level, whereas fine sediment indices were generally at species level (see supplementary material).

The complete trait dataset encompassed 63 trait modalities (hereafter referred to as 'traits' for brevity) in 11 trait categories (Table A1). After compiling lists of scoring taxa and their traits separately for each index, individual trait modalities were centred and standardised within a trait category to give equal weights across all trait categories. As some traits describing type of food and feeding mode were moderately correlated (0.6<r<0.75) we considered removing the correlated food types. However, since variance inflation factors (VIFs) were low (<2), it was decided to keep the full set of food types. Finally, a subset of traits that are purported to be instrumental in conferring tolerance or sensitivity to fine sediment was selected based on a review of the literature (Table A1).

Modelling approach

A multiple linear regression approach was taken to predict scores under each index using a combination of traits. We selected linear parametric modelling because it gives more readily interpretable results. Furthermore, our literature review gave no reason to believe that trait relationships would be non-linear. All analyses were performed in R 3.2.3 (R Core Team, 2015). Goodness-of-fit was assessed for several sets of models. The first three sets ('global' models) included all taxa for which scores were available under the respective indices: (i) the global 'all traits' model using all 63 traits; (ii) the global model 'pruned' using stepwise selection in both directions (*stepAIC* function, MASS package; Venables & Ripley, 2002); and (iii) the global 'literature' model using only the subset of 35 traits drawn from the literature (Table A1). For each index, nested global models were compared using the *anova* function. We did not explore literature-based models for WHPT.

Due to the bias introduced by inequalities in the number of scoring taxa for each index, we generated another set of model results by taking 1000 random samples of 90 taxa: (v) the 'all traits minimum' model; (vi) the 'pruned minimum' model; and (vii) the 'literature minimum' model. Finally, to assess the sensitivity of WHPT models to trait averaging at the family level, modelling for the all traits minimum and pruned minimum scenarios was repeated for 100 random samples of sub-family level (genus or species) traits within WHPT families, with 50 samples of 90 taxa for each set of sub-family level traits (5000 samples in

total). All sampling was performed without replacement using the *sample* function. In all cases we used R^2 as a measure of goodness-of-fit.

Results

The global 'all traits' and 'pruned' models for WHPT had a higher goodness-of-fit than equivalent models for the fine sediment indices (Table 1). In turn, the goodness-of-fit for global EPSI and EPSI_{mixed} models was substantially lower than for CoFSI, OFSI and ToFSI. However, these results do not allow direct comparison between indices due to variations in the number of scoring taxa, which affects statistical power (Cohen, 1992). When offering only the literature-based traits as explanatory variables the performance of global models for the fine sediment indices was greatly reduced. The global 'all traits' model did not improve predictions significantly (p>0.05), except in the case of the EPSI literature model (p<0.02), *i.e.* in most cases the fit of more parsimonious 'pruned' models was not significantly different to that of the more complex 'all traits' models (Table 1). Thus, we focus primarily on the global 'pruned' models to assess trait-index relationships (Figure 2).

The WHPT global 'pruned' model retained significant explanatory variables in several trait categories, including aquatic stages, respiration and feeding modes, diet and voltinism (Figure 2a). The global 'pruned' models for EPSI and EPSI_{mixed} retained similar sets of traits (Figure 2b-c). The traits most strongly driving species sensitivity under these indices were 'AttachedTemp', 'Shredder', and 'Scraper'. Those most strongly indicating tolerance were 'Adult' and 'Flier',

although the latter was not significant (p>0.05). The CoFSI global 'pruned' model
retained a different set of coefficients, including several diet-, feeding mode-,
locomotion- and resistance- related traits (Figure 2d). The OFSI and ToFSI global
'pruned' models shared significant coefficients for traits describing voltinism,
ovoviviparity, tegumental respiration and feeding modes, yet the sign of
coefficients for these traits was opposite under each index (Figure 2e-f). In
general, the OFSI model was more strongly related to traits describing respiration modes.

No traits were consistently associated with tolerance under all fine sediment indices. Only 'Shredder' was consistently associated with sensitivity. CoFSI and the PSI-related indices also shared strong and significant positive coefficients for 'AttachedTemp' and 'Crawler'. 'Scraper' indicated sensitivity in all cases except ToFSI. There were opposite signs in trait-stressor relationships between the two groups of fine sediment indices for 'Small', 'AerialActive', 'Ovoviviparity', 'Cocoons', 'Perren' (life cycle duration >1 year), 'OpenWaterSwimmer', 'Parasite', 'Predator', 'DeadAnimal' and 'DiapauseDormancy'.

With regards to the global 'literature' models, several literature-based traits were significant predictors of EPSI and $EPSI_{mixed}$ weightings (p<0.05), whereas relatively few of the traits purported to be important in determining sensitivity or tolerance to fine sediment in the literature were significant predictors of OFSI or ToFSI scores (Table 2, Table A2-A6). There were a number of inconsistencies in the sign of relationships expected from the literature review and those observed in the global literature models (Table 2).

Figure 3 shows goodness-of-fit for the 'minimum' models. These results are directly comparable between indices as they are not biased by variations in the number of scoring taxa. The minimum 'all traits' (Figure 3a) and 'pruned' (Figure 3b) WHPT models, which were robust to trait averaging at the family level, performed better than the fine sediment indices. When only traits drawn from the literature review were included as explanatory variables, the goodness-of-fit for all fine sediment indices was again greatly reduced (Figure 3c). After controlling for the number of scoring taxa, the fit of models for alternative fine sediment indices was similar.

Discussion

A large body of literature is forming around the response of macroinvertebrates to fine sediment (see reviews by Wood & Armitage, 1997; Bilotta & Brazier, 2008; Jones et al., 2012). This includes several studies focusing explicitly on species traits (Gayraud & Phillipe, 2001; Wagenhoff et al., 2012; Buendia et al., 2013; Descloux et al., 2014), which have been employed to good effect in a range of other applications, including flow intermittence (Datry et al., 2014), insecticides (Rico & Van den Brink, 2015) and multiple agricultural stressors (Lange et al., 2014). In Europe, these traits are typically drawn from the database of Tachet et al. (2010), which is limited to 63 true traits in 11 categories.

The aforementioned literature has the potential to contribute towards progress in biomonitoring. However, in the case of fine sediment, our findings

demonstrate the need for more integration of the available trait data, the a priori expectations from the literature, and the scores assigned to taxa under currently available pressure-specific indices. This is evidenced by the relatively poor fit of trait-based models for fine sediment indices, especially when only traits drawn from the literature review were entered as explanatory variables. It is further reinforced by the differences in significant traits retained in models for alternative fine sediment indices.

Taxon scores under WHPT were strongly related to traits conferring tolerance or sensitivity to organic pollution (Tomanova et al., 2008; Archaimbault et al., 2010; Feio & Dolédec, 2012). WHPT scores were negatively related to taxa with tegumental respiration and aquatic lives strongly skewed towards adult lifestages (e.g. Acroloxidae, Dugesiidae) and positively to univoltine shredders (e.g. Lepidostomatidae) and taxa with a range of aquatic life stages, including eggs (e.g. Gyrinidae). In contrast, few traits with strong and significant coefficients in the models for fine sediment indices could be related to the extant literature on trait-fine sediment relationships. Some traits had coefficients with conflicting signs between the two sets of indices. This is surprising given that both were designed for biomonitoring of the same stressor. Before discussing these differences in detail, it is worth noting two important nuances of the findings reported.

Firstly, CoFSI, OFSI and ToFSI had a substantially higher R^2 than EPSI and EPSI_{mixed} for the global models (Table 1) but marginally lower for the 'minimum' models (Figure 3). The CoFSI-related indices also had fewer significant variables

than the PSI-related indices in the global literature-based models (Table 2), despite a better fit. This is because the much lower number of scoring taxa under CoFSI meant that the resulting models had a higher type II error rate (Cohen, 1992). Secondly, some traits with significant coefficients in the global pruned models (Figure 2) did not have significant coefficients in the global literature models (Table 2). This is because the significance of each coefficient is assessed in the presence of all other independent variables, and the pruned models retained traits that were not included in the literature models.

Only a single trait ('Shredder') was consistently associated with sensitivity across all five fine sediment indices (PSI- and CoFSI- related). Both Buendia et al. (2013) and Descloux et al. (2014) also found shredders to be relatively sensitive. The mechanism for this may be the burial of leaf litter and/or a reduction in its nutritional quality through inhibition of fungal growth (Febra, 2013). This is similar to the mechanism posited for the sensitivity of scrapers (Brookes, 1986; Suren, 2005; Kent & Stelzer, 2008; Jones et al., 2012; Relyea et al., 2012), which were also consistently associated with sensitivity in all pruned models except ToFSI. The next strongest association with sensitivity across the majority of fine sediment indices was for temporarily attached organisms. However, Descloux et al. (2014) reported this trait to be indicative of tolerance across three rivers in Germany. Buendia et al. (2013) found that temporarily attached taxa were present in sediment-laden tributaries of the River Isábena in the Central Pyrenees but reported no significant correlation. Finally, crawlers were also associated with sensitivity under CoFSI, EPSI and EPSI_{mixed}. This is consistent with Buendia et al. (2013), who reported a significant negative correlation

Page 16 of 51

between the prevalence of crawling as a trait and the rank of sites increasingly
affected by fine sediment deposition. On the other hand, Descloux et al. (2014)
found a consistently significant positive correlation between the relative
occurrence of crawlers and colmation.

Several further traits were inconsistently associated with sensitivity or tolerance, having coefficients with opposite signs under the various indices. These included small taxa (2.5-5 mm), aerial (active) dispersers, ovoviviparous reproducers, parasites, predators, perennial organisms and those with strong resistance traits for cocoons and diapause or dormancy. Some of these inconsistencies may be explained by the use of different calibration techniques under the two sets of indices, i.e. visually assessed surficial sediments under PSIrelated indices but quantitative superficial and surficial sediments under the CoFSI-related indices. However, the lack of support for trait-index associations from the literature suggests that this explanation is only partial at best. Instead, such equivocal results suggest that there is a problem in the trait-literaturebiomonitoring nexus. The problem may lie with the literature, with the way that traits are described, or with the development of the biotic indices. It is most likely to be a combination of these factors. This likelihood is further reinforced by the fact that our models lacked significant coefficients for a range of other traits purported to important in fine sediment response in the literature (Table A1).

Body size

Small-bodied taxa (<5 mm) are expected to be strongly sensitive to fine sediment due to smothering and restricted dispersal in reduced pore space (Gayraud & Phillipe, 2001; Wood et al., 2001; Wagenhoff et al., 2012; Descloux et al., 2014). However, body size did not feature strongly in our models.

Life cycle duration and voltinism

Based on the literature, we expected perennial and uni- or semi-voltine taxa to be sensitive and ephemeral and multivoltine taxa to be relatively tolerant (Larsen et al., 2011; Buendia et al., 2013). Semivoltine and perennial taxa were tolerant according to the pruned models for EPSI, EPSI_{mixed} and CoFSI but voltinism traits were associated with either sensitivity (OFSI) or tolerance (ToFSI) under the CoFSI sub-indices, indicating that the combination of axes describing organic matter and total fine sediment under CoFSI may cancel out distinct mechanisms of the fine sediment impact. Only ToFSI had a significant coefficient for any life-history trait (semivoltine, tolerant) among the literature-based models. Ephemeral or multivoltine taxa were not found to be tolerant under any of our models, with the exception of ToFSI. On the contrary, these traits were strongly linked with sensitivity under OFSI.

Aquatic life-stages

Life-stage can affect an organism's ability to avoid burial and excavate itself, although there is much variability between taxa for a given life-stage (Wood et al., 2001; 2005). Certainly, immotile eggs are expected to be negatively impacted

Page 18 of 51

by fine sediment (Jones et al., 2012) and this was supported in literature-based models for EPSI and EPSI_{mixed}. Models for CoFSI and ToFSI indicated that taxa with strong larval life-stages are tolerant, whilst models for EPSI, EPSI_{mixed} and ToFSI indicated the same for adult life-stages. However, the picture is far from clear because of the way fuzzy coded traits are organised, which is a problem when focusing on life-stage. For example, a taxon which is aquatic as an egg, larva, pupa and adult would receive equal fuzzy codes across all four trait modalities. The results for life-stages, therefore, must be seen as representing the level of aquatic specialism rather than the sensitivity of a given life-stage *per se*. Advances in trait-based biomonitoring would benefit from ontogenetic information (Statzner & Běche, 2010).

Reproduction and resistance

There is little information in the literature as to how reproduction and resistance traits are expected to respond to fine sediment. Descloux et al. (2014) found that ovoviviparity was less prevalent at impacted sites and that cocoons and asexual reproduction varied significantly across the gradient of colmation, although the sign of these relationships was not consistent among three rivers. In the pruned models there were significant coefficients for 'cocoons' (EPSI, tolerant), 'DiapauseDormancy' (ToFSI, sensitive) and asexual reporoduction (EPSI_{mixed}, sensitive). The EPSI and OFSI pruned models indicated that ovoviviparous taxa are tolerant, whereas the equivalent ToFSI model indicated sensitivity for the same trait, again suggesting that the combination of organic matter and total fine sediment gradients under CoFSI may obscure discrete processes.

419 Diet and feeding mode

The literature contains a relative richness of information upon which to base a priori expectations for traits describing diet and feeding mode. The majority of this information points to sensitivity of shredders and scrapers due to burial and dilution of food resources and reductions in nutritional quality (Brookes, 1986; Suren, 2005; Kent & Stelzer, 2008; Relyea et al., 2012; Febra, 2013; Doretto et al., 2015), and of filter-feeders due to the clogging of feeding apparatus (Kurtak, 1978; Lemly, 1982; Edington & Hildrew, 1995; Strand & Merrit, 1997) as well as a decline in nutritional quality (Nuttall & Bielby, 1973), although the empirical evidence from recent work focusing explicitly on traits is often equivocal on this (Buendia et al., 2013; Descloux et al., 2014). As discussed above, the sensitivity of shredders and scrapers was supported by our findings, but no other consistent relationships between taxon scores and diets or feeding modes were evident.

434 Respiration

Of the respiration traits available, we expected to find significant associations between taxon scores and tegumental and gill respiration modes. Descloux et al. (2014) reported a significant reduction in tegumental respiration and a significant increase in gill respiration across a gradient of colmation. Buendia et al. (2013) also found that gills conferred tolerance. However, this is counterintuitive as organisms with tegumental respiration are typically associated with tolerance to oxygen depletion, which is characteristic of fine

sediment stress (Tomanova et al., 2008; Larsen et al., 2011; Von Bertrab et al., 2013). On the other hand, organisms with gills have previously been reported as sensitive (Townsend et al., 2008; Larsen et al., 2011) due to abrasion and clogging of the breathing apparatus (Lemly, 1982; Culp et al., 1986; Jones et al., 2012). Gills did not feature strongly in any of our models but tegumental respiration was a significant indicator of tolerance in the literature-based model for EPSI and the pruned model for OFSI. The latter also included spiracle respiration. This reflects the closer association of OFSI with the content of organic matter (Murphy et al., 2015), which is linked to the important role of oxygen availability and sediment quality (Von Bertrab et al., 2013). Tegumental respiration was indicated as sensitive in the ToFSI pruned model, again suggesting that the invertebrate response to organic matter and total fine sediment may be discrete.

Locomotion and relation to the substrate

Given that locomotion traits describe an organism's habitat use, they should be strongly linked to fine sediment. Indeed, both Buendia et al. (2013) and Descloux et al. (2014) consistently found that open water swimmers, burrowers and interstitial organisms were sensitive. Interstitial organisms in particular are expected to be susceptible to smothering and restrictions to movement with increasing fine sediment (Wood et al., 2005; Jones et al., 2012), yet this was only supported by pruned and literature-based models for CoFSI and ToFSI. Crawlers are not identified in the literature as either sensitive or tolerant, but pruned models for EPSI, EPSImixed and CoFSI strongly indicated sensitivity for this trait.

Evidence for other locomotion traits in our results and in the wider literature is equivocal.

Refining traits for fine sediment biomonitoring

Both of our main findings - that (i) the performance of trait-based models for fine sediment indices was inferior to those for WHPT and (ii) that traits retained in the models were inconsistent and difficult to reconcile with the literature - may be partly attributable to the lack of relevant traits in the trait database of Tachet et al. (2010). Our findings suggest the need to build upon the excellent work of Tachet et al. (2010) in the context of fine sediment. We therefore recommend a refined set of traits specifically for fine sediment biomonitoring.

There is a difference between species that actively forage by swimming in open water (e.g. *Notonecta*) and those that use swimming as an escape strategy but would potentially be impacted by fine sediment deposition (e.g. *Cloeon*), yet both receive fuzzy scores for 'OpenWaterSwimmer' in the trait database. The sensitivity of taxa with fixed eggs (e.g. 'IsolatedEggsCemented') depends on what the eggs are fixed to (stones, wood, plants) and where (shallow zone, margin, hyporheic zone). The sensitivity of filter-feeders depends on their ability to excrete excess fines: insect filter feeders (e.g. Simuliidae, Hydropsychidae) are likely to be sensitive whereas lower taxa that able to excrete inert fine matter (e.g. Unionidae, Sphaeriidae) are likely to be tolerant. Crawlers could be sensitive, such as certain Ephemeroptera (Ciborowski et al., 1977; Corkum et al., 1977; cf. Jones et al., 2012) or tolerant, for example Chironomidae and Caenidae,

who burrow into fine sediment (Jones et al., 2012). Burrowers could also be sensitive or tolerant depending on what they burrow into. Some taxa burrow into fine sediment (e.g. Caenidae, some Sialidae), others in coarser substrata (e.g. Ephemeridae). The same argument applies to other traits describing relation to substrate. Finally, some gills are easily clogged (e.g. Potamanthidae, *Serratella*), others (e.g. Caenidae) are not (Corbin & Goonan, 2010). Physical adaptation in the latter and behavioural adaptation in others (e.g. *Baetis*) confers tolerance to colmation (Buffagni et al., 2009).

Thus, we recommend the following refinements to the trait database: (i) split open water swimmers into two categories (active foraging, escape); (ii) consolidate several reproduction traits into fixed versus free eggs and include more information on preferred oviposition sites; (iii) split filter-feeder trait into those able and unable to excrete excess fines; (iv) a split involving anatomical and/or behavioural adaptations allowing gill respiration in highly sedimented environments and (v) combine traits describing locomotion and relation to substrate with information on substrate preference. The latter suggestion risks criticism due to the circular nature of using substrate preference to indicate fine sediment stress. However, we argue that these traits do not make sense in the absence of such information, and without sufficient and relevant data on 'true' biological traits (e.g. excavation capacity; Wood et al., 2005) substrate preference is the only alternative.

Our study did not explicitly consider trait interactions, trait combinations and context (*e.g.* ontogenetic, environmental) dependency (Poff et al., 2006). Verberk

et al. (2013) have suggested that trait-based approaches to biomonitoring should recognise the important trait linkages driven by evolutionary trade-offs (where investment in one trait leaves fewer resources for another), spin-offs (where investment in one trait decreases the cost or increases the benefit of another) and body plan constraints due to fundamental physical and biological developmental limits. Further progress may lie in the search for sets of traits underlying life-history strategies adapted for coping with fine sediment stress.

Conclusions

Our findings point to a problem in the trait-literature-biomonitoring nexus within the context of fine sediment. This is evidenced by a relatively poor fit of trait-based models for fine sediment indices compared to WHPT, a lack of consistency in the traits indicating sensitivity and tolerance under CoFSI- and PSI- related biomonitoring tools, and equivocality between our results and evidence from the extant literature. We suggest that progress may lie in the refinement of traits for fine sediment applications, building on the valuable compilations of traits previously published.

Acknowledgements

Our thanks to Iwan Jones of Queen Mary University of London and Chris Extence of the Environment Agency for helpful comments which influenced our approach to the work.

E 12

543	References
544	
545	Acreman, M. C. & Ferguson, A. J. D. 2010. Environmental flows and the European
546	water framework directive. Freshwater Biology 55: 32-48.
547	
548	Archaimbault, V., Usseglo-Polatera, P., Garric, J., Wasson, J.G. & Babut, M. 2010.
549	Assessing pollution of toxic sediment in streams using bio-ecological traits of
550	benthic macroinvertebrates. Freshwater Biology, 55:1430-1446.
551	
552	Armitage, P. D., Moss, D., Wright, J. F. & Furse, M. T. 1983. The performance of a
553	new biological water quality score system based on macroinvertebrates over a
554	wide range of unpolluted running-water sites. Water Research 17: 333-347.
555	
556	Barbour, M. T., Gerritsen, J., Snyder, B. D., Stribling, J. B., 1999. Rapid
557	Bioassessment Protocols for use in Streams and Wadeable Rivers: Periphyton,
558	Benthic Macroinvertebrates, and Fish. EPA 841/B-99/002, U.S. Environmental
559	Protection Agency, Washington, D.C.
560	
561	Berkman, H.E. and Rabeni, C.F. 1987. Effect of siltation on stream fish
562	communities. Environmental Biology of Fishes 18: 285-294.
563	
564	Bilotta, G. S. & Brazier, R. E. 2008. Understanding the influence of suspended
565	solids on water quality and aquatic biota. Water Research 42: 2849-2861.
566	

567	Brookes, A. 1986. Response of aquatic vegetation to sedimentation downstream
568	from river channelisation works in England and Wales. Biological Conservation
569	38: 351-367.
570	
571	Bruno, M. C., Carolli, M. & Maiolini, B. 2016. Settling distances of benthic
572	invertebrates in a sediment mobilization simulation in semi-natural flumes.
573	Journal of Limnology 75: 180-192.
574	
575	Buendia, C., Gibbins, C.N., Vericat, D., Batalla, R.J. and Douglas, A. 2013. Detecting
576	the structural and functional impacts of fine sediment on stream invertebrates.
577	Ecological Indicators, 25:184-196.
578	
579	Buffagni, A., Cazzola, M., Lopez-Rodriguez, M.J., Alba-Tercedor, J. and Armanini,
580	D.G. 2009. Distribution and Ecological Preferences of European Freshwater
581	Organisms: Volume 3. Ephemeroptera. Pensoft: Sofia/Moscow.
582	
583	Cohen, J. 1992. A power primer. Psychological Bulletin 112: 155-159.
584	
585	Collins, A. L. & Anthony, S. G. 2008. Assessing the likelihood of catchments across
586	England and Wales meeting 'good ecological status' due to sediment
587	contributions from agricultural sources. Environmental Science and Policy 11:
588	163-170.
589	

590	Corbin, T.A. and Goonan, P.M. 2010. Habitat and water quality preferences of
591	mayflies and stoneflies for South Australian streams. Transactions of the Royal
592	Society of South Australia 134: 5-18
593	
594	Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. 2006. A trait-based test for habitat
595	filtering: convex hull volume. Ecology 87: 1465-1471.
596	
597	Datry, T., Larned, S. T., Fritz, K. M., Bogan, M. T., Wood, P. J., Meyer, E. I. & Santos,
598	A. N. 2014. Broad-scale patterns of invertebrate richness and community
599	composition in temporary rivers: effects of flow intermittence. Ecography 37:
600	94-104.
601	
602	Descloux, S., Datry, T. & Usseglio-Polatera, P. 2014. Trait-based structure of
603	invertebrates along a gradient of sediment colmation: Benthos versus hyporheos
604	responses. Science of the Total Environment 466: 265-276.
605	
606	Dewson, Z. S., James, A. B. W. & Death, R. G. 2007. The influence of reduced flows
607	on stream invertebrate individuals, populations and communities. Journal of the
608	North American Benthological Society 26: 401-415.
609	
610	Diaz, R. J., Solan, M. & Valente, R. M. 2004. A review of approaches for classifying
611	benthic habitats and evaluating habitat quality. Journal of Environmental
612	Management 73: 165-181.
613	

614	Dobson, M., Poynter, K. & Cariss, H. 2000. Case abandonment as a response to
615	burial by Potamophylax cingulatus Trichoptera: Limnephilidae. larvae. Aquatic
616	Insects 22: 99-107.
617	
618	Doretto, A., Bona, F., Falasco, E., Piano, E., Tizzani, P. & Fenoglio, S. 2016. Fine
619	sedimentation affects CPOM availability and shredder abundance in Alpine
620	streams. Journal of Freshwater Ecology 31: 299-302.
621	
622	Duerdoth, C. P., Arnold, A., Murphy, J. F., Naden, P. S., Scarlett, P., Collins, A. L.,
623	Sear, D. A. & Jones, J. I. 2015. Assessment of a rapid method for quantitative
624	reach-scale estimates of deposited fine sediment in rivers. Geomorphology 230:
625	37-50.
626	
627	Edington, J. M. & Hildrew, A. G. 1995. Caseless caddis larvae: a key with ecological
628	notes. Freshwater Biological Association Scientific Publication No. 53: 1-138.
629	Ambleside.
630	
631	Extence, C. A., Chadd, R. P., England, J., Dunbar, M. J., Wood, P. J. & Taylor, E. D.
632	2011. The assessment of fine sediment accumulation in rivers using macro-
633	invertebrate community response. River Research and Applications 29: 17-55.
634	
635	Febra, I. M. N. 2013. The importance of inert fine sediments on leaves microbial
636	decomposition and aquatic invertebrates Sericostoma vitattum. consumption.
637	Unpublished PhD Thesis, Universidade de Coimbra.
638	

639	Feio, M.J. & Dolédec, S. 2012. Integration of invertebrate traits into predictive
640	models for indirect assessment of stream functional integrity: a case study in
641	Portugal. Ecological Indicators, 15: 236-247.
642	
643	Gardner, M.B. 1981. Effects of turbidity on feeding rates and selectivity of
644	bluegills. Transactions of the American Fisheries Society 110: 446-450.
645	
646	Gayraud, S. & Philippe, M. 2001. Does subsurface interstitial space influence
647	general features and morphological traits of the benthic macroinvertebrate
648	community in streams? Archiv für Hydrobiologie 151: 667-686.
649	
650	Gibbins, C., Vericat, D. & Batalla, R. J. 2007. When is stream invertebrate drift
651	catastrophic? The role of hydraulics and sediment transport in initiating drift
652	during flood events. Freshwater Biology 52: 2369–2384.
653	
654	Herman, M.R. & Nejadhashemi, A.P. 2015. A review of macroinvertebrate- and
655	fish- based stream health indices. Ecohydrology & Hydrobiology 15: 53-67.
656	
657	James, A. B., Dewson, Z. S. & Death, R. G. 2009. The influence of flow reduction on
658	macroinvertebrate drift density and distance in three New Zealand streams.
659	Journal of the North American Benthological Society 28: 220-232.
660	
661	Jones, J. I., Murphy, J. F., Collins, A. L., Sear, D. A., Naden, P. S. & Armitage, P. D.
662	2012. The impact of fine sediment on macro-invertebrates. River Research and
663	Applications 28: 1055-1071.

664	
665	Kemp, P., Sear, D., Collins, A., Naden, P. and Jones, I. 2011. The impacts of fine
666	sediment on riverine fish. Hydrological Processes, 25(11): 1800-1821.
667	
668	Kent, T. R. & Stelzer, R. S. 2008. Effects of deposited fine sediment on life history
669	traits of Physa integra snails. Hydrobiologia 596: 329-340.
670	
671	Klco, B. 2008. Effects of sediment loading on primary productivity and
672	Brachycentridae survival in a third-order stream in Montana. BIOS 35: 502-601.
673	
674	Kolkwitz, R. & Marsson, K. 1909. Ökologie der tierischen saprobien: beiträge zur
675	lehre von des biologischen gewasserbeurteilung. Internationale Revue der
676	Gesamten Hydrobiologie und Hydrographie 2: 126-152.
677	
678	Kurtak, D. C. 1978. Efficiency of filter feeding of black fly larvae Diptera:
679	Simuliidae). Canadian Journal of Zoology 56: 1608-1623.
680	
681	Laliberté, E. & Legendre, P. 2010. A distance-based framework for measuring
682	functional diversity from multiple traits. Ecology 91: 299-305.
683	
684	Lange, K., Townsend, C.R. & Matthaei, C.D. 2014. Can biological traits of stream
685	invertebrates help disentangle the effects of multiple stressors in an agricultural
686	catchment? Freshwater Biology 59: 2431-2446.

688	Larsen, S., Pace, G. & Ormerod, S. J. 2011. Experimental effects of sediment
689	deposition on the structure and function of macroinvertebrate assemblages in
690	temperate streams. River Research and Applications 27: 257-267.
691	
692	Lauridsen, R.B., Edwards, F.K., Cross, W.F., Woodward, G., Hildrew, A.G. & Jones,
693	J.I. 2014. Consequences of inferring diet from feeding guilds when estimating and
694	interpreting consumer-resource stoichiometry. Freshwater Biology 59: 1497-
695	1508.
696	
697	Lemly, A. D. 1982. Modification of benthic insect communities in polluted
698	streams: combined effects of sedimentation and nutrient enrichment.
699	Hydrobiologia 87: 229-245.
700	
701	Menezes, S., Baird, D. J. & Soares, A. M. 2010. Beyond taxonomy: a review of
702	macroinvertebrate trait-based community descriptors as tools for freshwater
703	biomonitoring. Journal of Applied Ecology 47: 711-719.
704	
705	Murphy, J. F., Jones, J. I., Pretty, J. L., Duerdoth, C. P., Hawczak, A., Arnold, A.
706	Blackburn, J. H., Naden, P. S., Old, G., Sear, D. A., Hornby, D., Clarke, R. T. & Collins,
707	A. L. 2015. Development of a biotic index using stream macroinvertebrates to
708	assess stress from deposited fine sediment. Freshwater Biology 60: 2019-2036.
709	
710	Nuttall, P. M. & Bielby, G. H. 1973. The effects of china-clay wastes on stream
711	invertebrates. Environmental Pollution 5: 77–86.
712	

713	Paisley, M. F., Trigg, D. J. & Walley, W. J. 2014. Revision of the biological
714	monitoring working party BMWP. score system: derivation of present-only and
715	abundance-related scores from field data. River Research and Applications 30:
716	887-904.
717	
718	Pirhalla, D.E., 2004. Evaluating fish-habitat relationships for refining regional
719	indexes of biotic integrity: development of a tolerance index of habitat
720	degradation for Maryland stream fishes. Transactions of the American Fisheries
721	Society 133: 144–159.
722	
723	Poff, N. L., Olden, J. D., Vieira, N. K., Finn, D. S., Simmons, M. P. & Kondratieff, B. C.,
724	2006. Functional trait niches of North American lotic insects: traits-based
725	ecological applications in light of phylogenetic relationships. Journal of the North
726	American Benthological Society 25:730-755.
727	
728	R Core Team. 2015. R: A language and environment for statistical computing. R
729	Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
730	http://www.R-project.org/.
731	
732	Relyea, C. D., Minshall, G. W. & Danehy, R. J. 2012. Development and validation of
733	an aquatic fine sediment biotic index. Environmental Management 49: 242-252.
734	
735	Rico, A. & Van den Brink, P.J. 2015. Evaluating aquatic invertebrate vulnerability
736	to insecticides based on intrinsic sensitivity, biological traits, and toxic mode of
737	action. Environmental Toxicology and Chemistry 34: 1907-1917.

738	
739	Schleuter, D., Daufresne, M., Massol, F., & Argillier, C. 2010. A user's guide to
740	functional diversity indices. Ecological Monographs 80: 469-484.
741	
742	Schmidt-Kloiber, A. & Hering, D., 2015. www. freshwaterecology. info-An online
743	tool that unifies, standardises and codifies more than 20,000 European
744	freshwater organisms and their ecological preferences. Ecological Indicators 53:
745	271-282.
746	
747	Sear, D.A. 1993. Fine sediment infiltration into gravel spawning beds within a
748	regulated river experiencing floods: Ecological implications for salmonids.
749	Regulated Rivers: Research & Management 8: 373–390.
750	
751	Statzner, B. & Běche, L. A. 2010. Can biological invertebrate traits resolve effects
752	of multiple stressors on running water ecosystems? Freshwater Biology 55: 80-
753	119.
754	
755	Strand, R. M. & Merritt, R. W. 1997. Effects of episodic sedimentation on the net-
756	spinning caddisflies <i>Hydropsyche betteni</i> and <i>Ceratopsyche sparna</i> (Trichoptera:
757	Hydropsychidae). Environmental Pollution 98: 129-134.
758	
759	Suren, A. M. 2005. Effects of deposited sediment on patch selection by two
760	grazing stream invertebrates. Hydrobiologia 549: 205-218.
761	

762	Tachet, H., Richoux, P., Bournaud, M. & Usseglio-Polatera, P. 2010. Invertébrés
763	d'eau douce: systématique, biologie, écologie. Centre National de la Recherche
764	Scientifique Press, Paris, France.
765	
766	Taylor, K.G. & Owens, P.N. 2009. Sediments in urban river basins: a review of
767	sediment-contaminant dynamics in an environmental system conditioned by
768	human activities. Journal of Soils and Sediments 9: 281-303.
769	
770	Tomanova, S., Moya, N. & Oberdorff, T. 2008. Using macroinvertebrate biological
771	traits for assessing biotic integrity of neotropical streams. River Research and
772	Applications, 24: 1230-1239.
773	
774	Townsend, C.R., Uhlmann, S.S. & Matthaei, C.D. (2008) Individual and combined
775	responses of stream ecosystems to multiple stressors. Journal of Applied Ecology
776	45: 1810–1819.
777	
778	Turley, M. D., Bilotta, G. S., Extence, C.A. & Brazier, R. E. 2014. Evaluation of a fine
779	sediment biomonitoring tool across a wide range of temperate rivers and
780	streams. Freshwater Biology 59:, 2268-2277.
781	
782	Turley, M.D., Bilotta, G.S., Krueger, T., Brazier, R.E. & Extence, C.A. 2015.
783	Developing an improved biomonitoring tool for fine sediment: Combining expert
784	knowledge and empirical data. Ecological Indicators 54: 82-86.
785	

UKTAG. 2014. UKTAG River Assessment Method, Benthic Invertebrate Fauna.

787	Invertebrates General Degradation): Whalley, Hawkes, Paisley & Trigg WHPT.
788	metric in River Invertebrate Classification Tool RICT. online). Available from:
789	http://www.wfduk.org/sites/default/files/Media/Characterisation%20of%20th
790	e%20water%20environment/Biological%20Method%20Statements/River%20I
791	nvertebrates%20WHPT%20UKTAG%20Method%20Statement.pdf [Accessed 23
792	January 2016].
793	
794	Van Nieuwenhuyse, E.E. and LaPerriere, J.D. 1986. Effects of placer gold mining
795	on primary production in subarctic streams of Alaska. Water Resources Bulletin
796	22: 91–99.
797	
798	Vannote ,R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. 1980.
799	The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences
800	37: 130-137.
801	
802	Venables, W. N. & Ripley, B. D. 2002. Modern Applied Statistics with S. Fourth
803	Edition. Springer, New York. ISBN 0-387-95457-0.
804	
805	Verberk, W. C. E. P., Van Noordwijk, C. G. E. & Hildrew, A. G. 2013. Delivering on a
806	promise: integrating species traits to transform descriptive community ecology
807	into a predictive science. Freshwater Science 32: 531-547.
808	
809	Villéger, S., Mason, N. W. & Mouillot, D. 2008. New multidimensional functional
810	diversity indices for a multifaceted framework in functional ecology. Ecology 89:
811	2290-2301.

812	
813	Von Bertrab, M. G., Krein, A., Stendera, S., Thielen, F. & Hering, D. 2013. Is fine
814	sediment deposition a main driver for the composition of benthic
815	macroinvertebrate assemblages? Ecological Indicators, 24: 589-598.
816	
817	Wagenhoff, A., Townsend, C.R. & Matthaei, C.D. 2012. Macroinvertebrate
818	responses along broad stressor gradients of deposited fine sediment and
819	dissolved nutrients: a stream mesocosm experiment. Journal of Applied Ecology
820	49: 892-902.
821	
822	Whittier, T.R. & Hughes, R.M. 1998. Evaluation of fish species tolerances to
823	environmental stressors in lakes of the northeastern United States. North
824	American Journal of Fisheries Management 18: 236–252.
825	
826	Wood, P.J. and Armitage, P.D. 1997. Biological effects of fine sediment in the lotic
827	environment. Environmental Management, 21: 203-217.
828	
829	Wood, P.J., Vann, A.R. & Wanless, P.J. 2001. The response of <i>Melampophylax</i>
830	mucoreus Hagen)(Trichoptera: Limnephilidae. to rapid sedimentation.
831	Hydrobiologia 455: 183-188.
832	
833	Wood, P. J., Toone, J., Greenwood, M. T. & Armitage, P. D. 2005. The response of
834	four lotic macroinvertebrate taxa to burial by sediments. Archiv für
835	Hydrobiologie 163: 145-162.
836	

Table 1 Goodness-of-fit and ANOVA results for global models. The test evaluates the null hypothesis that the fit of the global 'all traits' model is no better than the fit of the more parsimonious model ('pruned', 'literature').

Table 2 Expected and observed relationships between traits and taxon sensitivity (♠) or tolerance (♠). (-) denotes non-significant result. Green arrows represent agreement, red disagreement and black where inconsistent results were found in the literature (†). Observed relationships taken from global literature models. See Table A1 for details of the traits and expectations included.

Category	Modality	Expected	EPSI	EPSI _{mixed}	CoFSI	OFSI	ToFSI
	VSmall	^	-	-	-	-	-
	Small	^	_ ***	-	-	-	-
Marinaum langth (mm)	SmallMed	Ψ	-	-	-	-	-
Maximum length (mm)	Med	4	-	-	-	-	-
	MedLarge	^	-	-	-	•	-
	Large	↑	-	-	-	-	-
Life cycle duration	Ephem	•	-	-	-	-	-
Life cycle duration	Perren	1	^ ***	-	-	-	-
Voltiniam (number of	Semivoltine	1	-	-	-	•	*
Voltinism (number of generations per year)	Univoltine	1	-	-	-	-	-
generations per year j	Multivoltine	4	-	-	-	•	-
	Egg	^	^ ***	^ **	-	-	-
Aquatic stages	Larva	^		-	\\psi\ *	-	↓ *
Aquatic stages	Nymph	+	-	_	-	-	-
	Adult	+	***	*	*	-	_*
Reproduction	Oviviparity	^	-	-	-	-	-
Keproduction	Asexual	↑ / \ †	-	_	-	-	-
Resistance forms	Cocoons	↑ / \ †	-	-	-	-	-
	Microorganisms	↑ / \ †	-	-	-	-	-
	FineDetritus	Ψ	-	-	-	-	-
Type of food	DeadPlant	↑ / \ †	-	-	-	-	-
	Microphytes	↑ / \ †	-	-	-	-	-
	Microinvs	^	-	-	-	-	-

Earding made	DepsoitFeeder	↑ / \ †	-	-	-	-	-
	Shredder	^	-	^ *	-	-	-
Feeding mode	Scraper	↑ / \ †	^ *	^ *	-	-	-
	Filterer	^	-	-	-	-	-
Dognization	Tegument	↑ / \ †	↓ *	-	-	-	-
Respiration	Gill	↑ / \ †	-	-	-	-	-
	OpenWaterSwimmer	↑	-	-	-	-	-
Mada aflacemention	Crawler	↑ / \ †	-	-	-	-	-
Mode of locomotion	Burrower	↑	^ *	^ *	-	-	-
and relation to substrate	Interstitial	↑	-	-	^ *	-	^ *
			A 4-4-4-	▲ ¥	*	_	_
substrate	Attached (temporary)	Ψ	^ ***	^ *	^ *	-	-
substrate	Attached (temporary) Attached (permanent)	¥	-	<u> </u>	<u>T</u>	-	-
icance levels: ≤0.05(*);	Attached (permanent)	V	•	-	-		

Significance levels: $\le 0.05(*)$; $\le 0.01(**)$; $\le 0.001(***)$.

Table A1 Traits used as independent variables. Trait modes in bold indicate inclusion in the subset of traits selected from a review of the literature.

Category	Mode	Short name
Maximum length	<2.5	VSmall ¹
(mm)	2.5-5	Small ¹
	5-10	SmallMed ¹
	10-20	Med ¹
	20-40	MedLarge ¹
	40-80	Large ¹
	>80	VLarge
Life cycle duration	≤1	Ephem ²
(years)	>1	Perren ²
Voltinism	<1	Semivoltine ²
(generations per	1	Univoltine ²
year)	>1	Multivoltine ²
Aquatic stages	Egg	Egg ³
	Larva	Larva ³
	Nymph	Nymph ³
	Adult	Adult ³
Reproduction	Ovoviviparous and care for	Ovoviviparity ⁴
	young	
	Free single eggs	IsolatedEggsFree
	Fixed single eggs	IsolatedEggsCemented
	Cemented or fixed clutches	ClutchesFixed
	Free clutches	ClutchesFree
	Endophytic clutches	ClutchesVeg
	Terrestrial clutches	ClutchesTerr
	Asexual reproduction	Asexual ⁵
Dispersal	Water passive	AquaticPassive
	Water active	AquaticActive
	Areial passive	AerialPassive
	Aerial active	AerialActive
Resistance forms	Eggs, statoblasts	EggsStatoblasts
	Cocoons	Cocoons ⁶
	Protection against dessication	Housing
	Diapause/dormancy	DiapauseDormancy
	None	NoResistance
Type of food	Fine sediment and	Microorganisms ⁷
	microrganisms	-
	Detritus <1mm	FineDetritus ⁷
	Plant detritus >1mm	DeadPlant ⁸
	Living microphytes	Microphytes ⁹
	Living macrophytes	Macrophytes
	Dead animals >1mm	DeadAnimal

	Living microinvertebrates	Microinvs ¹⁰
	Living macroinvertebrates	Macroinvs
	Vertebrates	Vertebrates
Feeding mode	Absorber	Absorber
_	Collector-gatherer	DepositFeeder ⁷
	Shredder	Shredder ⁸
	Scraper	Scraper ⁹
	Filterer	Filterer ¹¹
	Piercer	Piercer
	Predator	Predator
	Parasite	Parasite
Respiration	Tegument	Tegument ¹²
	Gills	Gill ¹³
	Plastron	Plastron
	Spiracle	Spiracle
	Hydrostatic vesicle	Hydrostatic
Mode of locomotion	Flight	Flier
and relationship to	Surface swimmers	SurfaceSwimmer
substrate	Open water swimmer	OpenWaterSwimmer ¹⁴
	Crawling	Crawler ¹⁴
	Burrowing	Burrower ¹⁴
	Within interstices	Interstitial ^{14,15}
	Attached (temporary)	AttachedTemp ¹⁴
	Attached (permanent)	AttachedPerm ¹⁴

¹Small-bodied taxa more sensitive to fine sediment due to restricted dispersal in reduced pore space (Gayraud & Phillipe, 2001; Wagenhoff et al., 2012; Descloux et al., 2014). Larger taxa may also be relatively sensitive (Buendia et al., 2013)

²Voltinism reflects ability to recover from disturbance due to fine sediment; ephemeral and multivoltine taxa are tolerant compared to perennial and uni- and semi-voltine taxa (Buendia et al., 2013; Larsen et al., 2011)

³Life-stage affects ability to avoid burial (Wood et al., 2001; Jones et al., 2012)

⁴Oviviparity was less prevalent at sites impacted by colmation (Descloux et al., 2014)

⁵Prevalence of asexual reproduction exhibited a significant response to colmation but sign of relationship was inconsistent among three sites (Descloux et al., 2014)

⁶Prevalence of cocoons as a resistance form exhibited a significant response to colmation but sign of relationship was inconsistent among three sites (Descloux et al., 2014)

⁷Diets and feeding modes associated with fine sediment (e.g. Buendia et al., 2013), although effect was not consistent among three sites for fine sediment and microorganisms diet and collectorgather feeding mode (Descloux et al., 2014)

Buendia et al. (2013) and Descloux et al. (2014) found that shredders were relatively sensitive. However, Descloux et al. (2014) also found that the prevalence of dead plant diets increased with colmation. Doretto et al. (2015) also found that the abundance of shredders and the

availability of coarse particulate organic matter declined with sedimentation in alpine streams.

⁹Fine sediment may bury and dilute algal resources for scrapers (grazers) (Brookes, 1986; Suren, 2005; Kent & Stelzer, 2008; Relyea et al., 2012) yet both Buendia et al. (2013) and Descloux et al.

(2014) found that scrapers were relatively tolerant of fine sediment

¹⁰Prevalence of living microinvertebrate diets decreased with colmation (Descloux et al., 2014)

11Filtering apparatus can become clogged, interrupting feeding and possibly causing
 abandonment (Edington & Hildrew, 1995; Strand & Merrit, 1997). Buendia et al. (2013) found
 that filterers were sensitive to fine sediment

 12 Prevalence of tegumental respiration decreased with colmation in three rivers (Descloux et al., 2014). However, Larsen et al. (2011) found that organisms with tegumental respiration were tolerant of sand addition.

¹³Gills can become clogged and abraded (Lemly, 1982; Jones et al., 2012). Townsend et al. (2008) and Larsen et al. (2011) both found that organisms with gills were sensitive to fine sediment. However, both Buendia et al. (2013) and Descloux et al. (2014) found that the prevalence of gills as a respiration mode increased with colmation.

¹⁴Locomotion traits all exhibited significant associations with fine sediment (Buendia et al., 2013; Descloux et al., 2014)

¹⁵Interstitial organisms are susceptible to smothering and hypoxia (Wood et al., 2005).

Table A2 Results of the 'global literature' model for EPSI.

	Estimate	SE	t	p
(Intercept)	0.000	0.043	0.00	1.00
VSmall	0.056	0.047	1.19	0.23
Small	-0.222	0.098	-2.27	0.02
SmallMed	-0.045	0.077	-0.59	0.55
Med	0.011	0.075	0.15	0.88
MedLarge	-0.139	0.074	-1.89	0.06
Large	0.019	0.061	0.32	0.75
Ephem	0.145	0.101	1.43	0.15
Perren	0.420	0.125	3.35	0.00
Semivoltine	-0.143	0.087	-1.65	0.10
Univoltine	-0.042	0.089	-0.47	0.64
Multivoltine	-0.065	0.105	-0.62	0.54
Egg	0.189	0.061	3.08	0.00
Larva	-0.053	0.080	-0.66	0.51
Nymph	-0.074	0.086	-0.85	0.39
Adult	-0.514	0.121	-4.26	0.00
Ovoviviparity	-0.095	0.076	-1.25	0.21
Asexual	0.062	0.052	1.17	0.24
Cocoons	-0.049	0.066	-0.73	0.46
Microorganisms	-0.025	0.056	-0.44	0.66
FineDetritus	0.058	0.088	0.66	0.51
DeadPlant	-0.099	0.076	-1.31	0.19
Microphytes	-0.089	0.069	-1.29	0.20
Microinvs	-0.116	0.072	-1.60	0.11
DepositFeeder	-0.060	0.098	-0.61	0.54
Shredder	0.170	0.088	1.94	0.05
Scraper	0.181	0.076	2.37	0.02
Filterer	-0.081	0.131	-0.61	0.54
Tegument	-0.025	0.078	-0.33	0.75
Gill	-0.065	0.077	-0.85	0.39
OpenWaterSwimmer	0.016	0.094	0.17	0.87
Crawler	0.059	0.102	0.58	0.56
Burrower	0.186	0.082	2.26	0.02
Interstitial	0.068	0.059	1.15	0.25
AttachedTemp	0.442	0.144	3.06	0.00
AttachedPerm	-0.078	0.049	-1.59	0.11

Table A3 Results of the 'global literature' model for EPSI_{mixed}.

	Estimate	SE	t	p
(Intercept)	0.000	0.048	0.00	1.00
VSmall	0.031	0.053	0.57	0.57
Small	-0.187	0.124	-1.51	0.13
SmallMed	0.001	0.091	0.02	0.99
Med	0.014	0.094	0.15	0.88
MedLarge	-0.092	0.081	-1.13	0.26
Large	0.092	0.060	1.53	0.13
Ephem	0.067	0.117	0.58	0.57
Perren	0.086	0.137	0.63	0.53
Semivoltine	0.144	0.100	1.44	0.15
Univoltine	0.051	0.102	0.50	0.62
Multivoltine	0.118	0.113	1.04	0.30
Egg	0.174	0.066	2.64	0.01
Larva	-0.060	0.095	-0.63	0.53
Nymph	-0.007	0.092	-0.08	0.94
Adult	-0.275	0.128	-2.15	0.03
Ovoviviparity	-0.037	0.072	-0.51	0.61
Asexual	0.104	0.059	1.76	0.08
Cocoons	-0.039	0.078	-0.50	0.61
Microorganisms	-0.100	0.064	-1.56	0.12
FineDetritus	0.012	0.085	0.14	0.89
DeadPlant	-0.107	0.075	-1.44	0.15
Microphytes	-0.044	0.081	-0.54	0.59
Microinvs	-0.091	0.081	-1.12	0.26
DepositFeeder	-0.025	0.094	-0.27	0.79
Shredder	0.257	0.092	2.78	0.01
Scraper	0.243	0.089	2.74	0.01
Filterer	0.098	0.112	0.88	0.38
Tegument	-0.101	0.094	-1.07	0.29
Gill	-0.020	0.095	-0.21	0.83
OpenWaterSwimmer	0.058	0.124	0.47	0.64
Crawler	0.193	0.112	1.72	0.09
Burrower	0.154	0.074	2.07	0.04
Interstitial	0.055	0.063	0.87	0.38
AttachedTemp	0.330	0.140	2.36	0.02
AttachedPerm	-0.101	0.057	-1.76	0.08

Table A4 Results of the 'global literature' model for CoFSI.

	Estimate	SE	t	р
(Intercept)	0.000	0.096	0.00	1.00
Small	-0.182	0.262	-0.69	0.49
SmallMed	-0.431	0.305	-1.41	0.16
Med	-0.056	0.237	-0.24	0.81
MedLarge	-0.356	0.270	-1.31	0.19
Large	-0.290	0.205	-1.42	0.16
Ephem	0.233	0.251	0.93	0.36
Perren	0.288	0.333	0.86	0.39
Semivoltine	-0.502	0.257	-1.95	0.06
Univoltine	-0.303	0.215	-1.41	0.16
Multivoltine	-0.322	0.262	-1.23	0.22
Egg	0.171	0.173	0.99	0.33
Larva	-0.446	0.209	-2.13	0.04
Nymph	-0.251	0.223	-1.13	0.26
Adult	-0.680	0.331	-2.06	0.04
Ovoviviparity	-0.253	0.213	-1.19	0.24
Asexual	0.201	0.175	1.15	0.25
Cocoons	0.112	0.174	0.64	0.52
Microorganisms	0.241	0.145	1.67	0.10
FineDetritus	0.170	0.240	0.71	0.48
DeadPlant	-0.182	0.165	-1.11	0.27
Microphytes	-0.166	0.195	-0.85	0.40
Microinvs	0.051	0.202	0.25	0.80
DepositFeeder	-0.226	0.259	-0.87	0.39
Shredder	0.140	0.219	0.64	0.52
Scraper	-0.238	0.250	-0.95	0.34
Filterer	-0.376	0.297	-1.27	0.21
Tegument	-0.052	0.216	-0.24	0.81
Gill	0.104	0.175	0.59	0.56
OpenWaterSwimmer	-0.038	0.170	-0.22	0.82
Crawler	0.145	0.266	0.55	0.59
Burrower	0.128	0.175	0.73	0.47
Interstitial	0.359	0.170	2.12	0.04
AttachedTemp	0.735	0.358	2.05	0.04
AttachedPerm	-0.181	0.130	-1.39	0.17

Table A5 Results of the 'global literature' model for OFSI.

	Estimate	SE	t	р
(Intercept)	0.000	0.098	0.00	1.00
Small	0.014	0.268	0.05	0.96
SmallMed	-0.038	0.312	-0.12	0.90
Med	0.044	0.242	0.18	0.86
MedLarge	-0.084	0.277	-0.30	0.76
Large	0.024	0.209	0.11	0.91
Ephem	0.490	0.257	1.91	0.06
Perren	0.006	0.341	0.02	0.99
Semivoltine	0.232	0.263	0.88	0.38
Univoltine	0.183	0.220	0.83	0.41
Multivoltine	0.306	0.268	1.14	0.26
Egg	0.053	0.177	0.30	0.77
Larva	-0.064	0.214	-0.30	0.77
Nymph	-0.164	0.228	-0.72	0.48
Adult	0.110	0.338	0.33	0.75
Ovoviviparity	-0.347	0.218	-1.59	0.12
Asexual	0.025	0.179	0.14	0.89
Cocoons	-0.003	0.178	-0.02	0.99
Microorganisms	0.063	0.148	0.42	0.67
FineDetritus	-0.031	0.245	-0.13	0.90
DeadPlant	-0.291	0.169	-1.73	0.09
Microphytes	-0.136	0.199	-0.68	0.50
Microinvs	0.067	0.207	0.32	0.75
DepositFeeder	0.073	0.265	0.27	0.79
Shredder	0.143	0.224	0.64	0.53
Scraper	0.225	0.256	0.88	0.38
Filterer	-0.238	0.304	-0.78	0.44
Tegument	0.012	0.221	0.06	0.96
Gill	0.342	0.179	1.91	0.06
OpenWaterSwimmer	-0.104	0.174	-0.60	0.55
Crawler	-0.093	0.272	-0.34	0.73
Burrower	-0.079	0.179	-0.44	0.66
Interstitial	-0.084	0.174	-0.48	0.63
AttachedTemp	0.192	0.367	0.52	0.60
AttachedPerm	-0.071	0.133	-0.54	0.59

Table A6 Results of the 'global literature' model for ToFSI.908

	Estimate	SE	t	p
(Intercept)	0.000	0.101	0.00	1.00
Small	-0.210	0.276	-0.76	0.45
SmallMed	-0.457	0.322	-1.42	0.16
Med	-0.087	0.250	-0.35	0.73
MedLarge	-0.348	0.285	-1.22	0.23
Large	-0.335	0.216	-1.55	0.13
Ephem	-0.016	0.265	-0.06	0.95
Perren	0.316	0.351	0.90	0.37
Semivoltine	-0.689	0.271	-2.54	0.01
Univoltine	-0.440	0.227	-1.94	0.06
Multivoltine	-0.530	0.276	-1.92	0.06
Egg	0.161	0.182	0.88	0.38
Larva	-0.460	0.221	-2.08	0.04
Nymph	-0.187	0.235	-0.80	0.43
Adult	-0.818	0.349	-2.35	0.02
Ovoviviparity	-0.086	0.225	-0.38	0.70
Asexual	0.210	0.184	1.14	0.26
Cocoons	0.126	0.183	0.69	0.50
Microorganisms	0.233	0.153	1.53	0.13
FineDetritus	0.207	0.253	0.82	0.42
DeadPlant	-0.039	0.174	-0.23	0.82
Microphytes	-0.108	0.205	-0.53	0.60
Microinvs	0.020	0.213	0.09	0.93
DepositFeeder	-0.292	0.273	-1.07	0.29
Shredder	0.075	0.230	0.33	0.74
Scraper	-0.392	0.264	-1.49	0.14
Filterer	-0.285	0.313	-0.91	0.37
Tegument	-0.065	0.228	-0.29	0.78
Gill	-0.077	0.185	-0.42	0.68
OpenWaterSwimmer	0.016	0.179	0.09	0.93
Crawler	0.213	0.280	0.76	0.45
Burrower	0.186	0.185	1.01	0.32
Interstitial	0.446	0.179	2.49	0.02
AttachedTemp	0.710	0.378	1.88	0.07
AttachedPerm	-0.161	0.137	-1.17	0.25

916	rigure legends
917	
918	Figure 1 Comparison of taxon scores under CoFSI and taxon weightings under
919	EPSI for 71 taxa that score under both indices.
920	
921	Figure 2 Coefficients for 'global pruned' models: WHPT (a); EPSI (b); EPSI mixed
922	(c); CoFSI (d); OFSI (e); and ToFSI (f). Note that positive coefficients denote traits
923	associated with sensitivity under each index.
924	
925	Figure 3 Goodness-of-fit for 'minimum' models using all traits (a), traits retained
926	after stepwise selection (b) and literature-based traits (c). Symbols indicate
927	means and whiskers show 95% confidence intervals from random sampling.
928	
929	Figure A1 Coefficients for 'global pruned' models: WHPT presence-absence (a);
930	the mean of abundance-weighted WHPT scores for each scoring taxon (b); and
931	the high abundance WHPT score for each scoring taxon (c).EPSI (c). Note that
932	positive coefficients denote traits associated with sensitivity.
933	

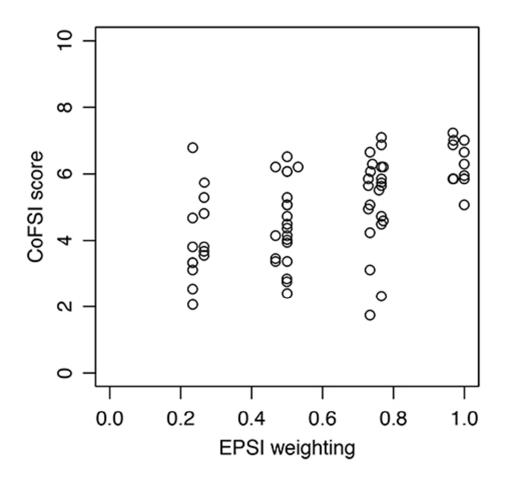


Figure 1 Comparison of taxon scores under CoFSI and taxon weightings under EPSI for 71 taxa that score under both indices.

39x38mm (300 x 300 DPI)

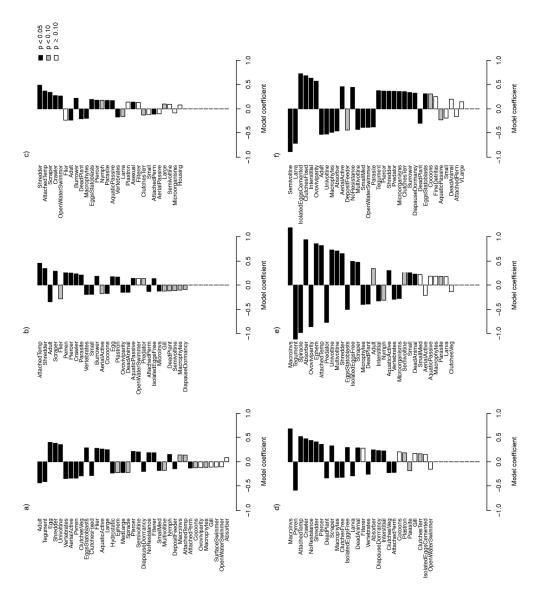


Figure 2 Coefficients for 'global pruned' models: WHPT (a); EPSI (b); EPSI mixed (c); CoFSI (d); OFSI (e); and ToFSI (f). Note that positive coefficients denote traits associated with sensitivity under each index.

215x244mm (300 x 300 DPI)

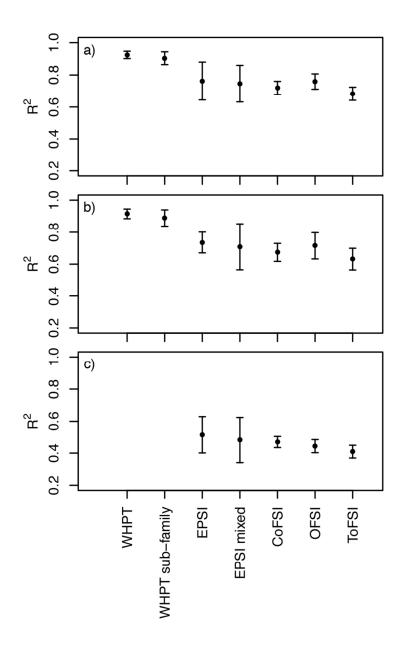


Figure 3 Goodness-of-fit for 'minimum' models using all traits (a), traits retained after stepwise selection (b) and literature-based traits (c). Symbols indicate means and whiskers show 95% confidence intervals from random sampling.

74x121mm (300 x 300 DPI)

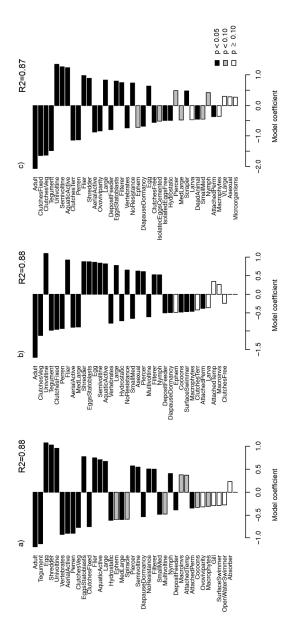


Figure A1 Coefficients for 'global pruned' models: WHPT presence-absence (a); the mean of abundance-weighted WHPT scores for each scoring taxon (b); and the high abundance WHPT score for each scoring taxon (c).EPSI (c). Note that positive coefficients denote traits associated with sensitivity.

107x241mm (300 x 300 DPI)