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Abstract

In this paper, we propose an easy-to-use yet comprehensive model for a system

of cointegrated commodity prices. While retaining the exponential affine structure

of previous approaches, our model allows for an arbitrary number of cointegration

relationships. We show that the cointegration component allows capturing well-known

features of commodity prices, i.e., upward sloping (contango) and downward sloping

(backwardation) term-structures, smaller volatilities for longer maturities and an upward

sloping correlation term structure. The model is calibrated to futures price data of

ten commodities. The results provide compelling evidence of cointegration in the data.

Implications for the prices of futures and options written on common commodity spreads

(e.g., spark spread and crack spread) are thoroughly investigated.
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One of the most distinctive features of commodity markets is the large number of long-

run equilibrium relationships that exist between the levels of commodity prices. For example,

the price of crude oil may move against the price of heating oil on a given day but not in

the long run. That is, in the long-run the price of crude oil is tied to the price of heating

oil in an equilibrium relation. These long-run equilibrium relations are usually referred to

as cointegration relations. Cointegrated systems set in discrete time are widely employed

in economics, especially empirical macroeconomics, to analyze various phenomena. Engle

and Granger (1987) and Johansen (1991) revolutionized the field by a series of seminal

results, such as the Granger representation theorem stating that a cointegrated system set

in discrete time has an autoregressive error correction model (ECM) representation. Similar

results are available for continuous time systems, but modeling cointegration in continuous

time is less popular in economics. Phillips (1991) introduced the concept of cointegration in

continuous time modeling and pointed out that the long-run parameters of a continuous time

model can be estimated from discrete data by focusing on the corresponding discrete time

ECM. Comte (1999) models cointegration in a continuous-time framework using CARMA

(continuous-time autoregressive moving average) processes and develops a continuous time

Granger representation theorem.

In this paper we develop a continuous time model of cointegrated commodity prices. In

this model commodity prices are non-stationary and several cointegration relations are allowed

amongst them.

There is a vast literature on modeling the price of a single commodity as a non-stationary

process. For example, Schwartz and Smith (2000) assume the log price to be the sum of two

latent factors: the long-term equilibrium level, modeled as a geometric Brownian motion, and

a short-term deviation from the equilibrium, modeled as a zero mean Ornstein - Uhlenbeck

(OU) process. To account for higher order autoregressive and moving average components in

the short-run deviation from equilibrium, Paschke and Prokopczuk (2010) propose to model

these deviations as a more general CARMA process. Moreover, Cortazar and Naranjo (2006)

generalize the Schwartz and Smith (2000) model in a multi-factor framework. For an extensive

account of the various types of one dimensional commodity price models, see the recent review

of Back and Prokopczuk (2013). However, the literature on modeling a system of commodity

prices is quite scarce.

Although cointegration has been studied extensively from a statistical and an econometric

point of view, see, e.g., Baillie and Myers (1991), Crowder and Hamed (1993) and Brenner and

Kroner (1995), it has received little attention in the continuous-time asset pricing literature.
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Two fairly recent models, which are closly related to the one developed in this paper, are

proposed in Cortazar et al. (2008) and Paschke and Prokopczuk (2009), both of which account

for cointegration by incorporating common and commodity-specific factors into their modeling

framework. Amongst the common factors, only one is assumed non-stationary. Although they

explicitly take into account cointegration between prices, the cointegrated sytems generated

by these two models are not covering the whole range of possible number of cointegration

relations, but allow for none or for exactly n−1 relations to exist between the n prices. Benth

and Koekebakker (2015) recently developed a model of two cointegrated commodites, where

the deviations from the cointegration relation are modeled using a CARMA process.

Research on the pricing of derivatives written on cointegrated assets is understandably

even scarcer. Duan and Pliska (2004) were (to the best of our knowledge) the first to examine

the implications of cointegration for derivatives prices. They use a cointegrated multi-variate

GARCH model to price options on the spread between two stocks. Their findings indicate that

these prices only depend on the presence of cointegration when volatilities are stochastic. The

recent paper by Nakajima and Ohashi (2012) also focuses on the implications of cointegration

on spread options, but, in contrast to Duan and Pliska (2004), they consider commodity rather

than equity spread options. Their modeling approach is also somewhat different from Duan

and Pliska (2004). Nakajima and Ohashi (2012) write the continuous-time model of Gibson

and Schwartz (1990) down in a multi-variate cointegration framework. More specifically, they

assume that the risk-neutral drift of a commodity spot log-price temporarily deviates from the

risk-free rate, and that these deviations are described by convenience yields and cointegrating

relations among the prices. Their primary finding is that – unlike the result of Duan and

Pliska (2004) – cointegration affects the prices of commodity spread options no matter whether

volatility is stochastic or not. This discrepancy in the findings of Duan and Pliska (2004) and

Nakajima and Ohashi (2012) is due to the fact that stocks (unlike commodities) earn the risk-

free rate under the pricing (or risk-neutral) measure. This discrepancy is further discussed

in Benth and Koekebakker (2015) and they propose a parametric class of pricing measures

which preserves cointegration. Using their framework, a closed form formula for exchange

options on two cointegrated commodities can be obtained, similar to the classical Margrabe’s

formula (Margrabe 1978).

Dempster et al. (2008) argue that when a cointegration relationship exists between two

asset prices only the spread between the two should be modeled. This approach has the

advantage that closed-form analytic pricing formulae for spread options may exist depending

on the complexity of the dynamics. The authors obtain closed-form solutions under a two-
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factor Ornstein-Uhlenbeck (OU) process for the dynamics of the spot spread. However, this

“direct” approach also presents certain drawbacks: since only the spread is modeled, it is

not possible to obtain prices for futures and options on the individual components of the

spread, nor is it possible to use market data on these derivatives. Furthermore, it is not

straightforward to formulate the dynamics of the spread because it may, for example, reach

negative values, but certainly not large negative values. An OU or square-root process would

then not be appropriate choices.

To avoid these disadvantages, we follow Duan and Pliska (2004) and Nakajima and Ohashi

(2012), among others, and model the dynamics of the (underlying) assets forming the spread.

More specifically, we extend the modeling framework developed by Schwartz and Smith (2000).

They model the spot price dynamics of one commodity with two factors and show that their

model is equivalent to the stochastic convenience-yield (SCY) model proposed by Gibson and

Schwartz (1990). They argue, however, that their specification better conforms with intuition

than models based on the somewhat elusive notion of “convenience yield”. Our extension of

the Schwartz and Smith (2000) model to n commodities is parsimonious and intuitive. Like

Schwartz and Smith (2000), we use two factors to model the dynamics of the spot price of

each commodity. Then, we assume that both factors are correlated across the n commodities,

and that the long-term factor is also cointegrated across the n commodities.

The new feature of our model is that it can represent from one up to n− 1 cointegration

relationships, instead of only one (cf. Nakajima and Ohashi (2012)) or precisely n − 1 (cf.

Paschke and Prokopczuk (2009)).

The model is estimated using data of futures prices for crude oil, heating oil, gasoline,

natural gas and electric power. Compelling evidence is found of multiple cointegration

relationships. For example, our results indicate that two cointegration relationships exist

between crude oil, heating oil, gasoline and natural gas. Furthermore, we find evidence for

cointegration between natural gas and electric power, and between electric power in various

markets. To gain a better understanding of our model and of its implications for futures and

spread options, we calculate the prices of futures and options written on the spark spread,

the crack spread and on a spread between electric power prices in different markets, using

the results of our model estimation. The results give a clear and concise overview of the

implications of cointegration in commodity markets. Confirming previous work (cf., e.g.,

Nakajima and Ohashi (2012)), we find that cointegration alters the shape of term-structures

of futures prices at long horizons. Furthermore, we find that cointegration creates an upward-

sloping correlation term-structure. The latter finding is consistent with empirical evidence,
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but more importantly, it lowers the volatility of spreads, therefore lowering the prices of spread

options.

The rest of the paper is organized as follows. In Section 1, we present the details of our

model. Section 2 derives closed-form pricing formulae for futures and European-style options.

In Section 3, we calibrate our model to futures price data on 10 energy commodities. The

purpose of Section 4 is to demonstrate the effects of cointegration on futures prices and spread

option prices. Section 5 concludes.

1 Commodity Spot Price Model

We consider n commodity spot prices S(t) = (S1(t), . . . , Sn(t))>. The dynamics of each

price is driven by two factors: X(t) = logS(t) captures the spot log-prices and Y (t) =

(Y1(t), . . . , Yn(t))> captures the long-run behaviour of X(t).1 Intuitively, one can think of X

and Y as the short-end and the long-end of the term-structure of futures prices.

Dynamics of log-prices

The seasonally adjusted spot log-prices follow the dynamics:

d(X(t)− φ(t)) = −Kx(X(t)− φ(t)− Y (t))dt+ Σ
1
2
x dW x(t), (1)

where the n× n matrix Kx quantifies the speed of mean reversion of the adjusted log-prices

around their equilibrium levels Y , Σ
1
2
x is a diffusion matrix and W x is a standard Brownian

motion. The function φ(t) controls for seasonal effects and is defined as

φ(t) = χ1 cos(2πt) + χ2 sin(2πt), (2)

where χ1 and χ2 are n-dimensional vectors of constants. Specifying the effects of seasonality as

above is commonly done in the literature (see, e.g., Sørensen (2002), Paschke and Prokopczuk

(2009) and Nakajima and Ohashi (2012))2.

The long-run levels of log-prices have the following dynamics:

dY (t) = (µy −KyΘY (t))dt+ Σ
1
2
xydW x(t) + Σ

1
2
y dW y(t), (3)

1By modelling each commodity price by two factors, we have a total of 2n factors.
2A statistical study on the seasonal variability of energy commodity prices can be found in Manoliu and

Tompaidis (2002), Borovkova and Geman (2006), Geman and Ohana (2009), among others. While not directly
relevant for the pricing of options on (commodity) futures (as pointed out by Back et al. (2013)), a deterministic
seasonal component may impact on model estimation (as pointed out by Lo and Wang (1995) and Back et al.
(2013)), and hence indirectly on option prices.
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where µy ∈ Rn, Ky and Θ are n× n matrices, Σ
1
2
xy and Σ

1
2
x are diffusion matrices and W y is

a standard Brownian motion independent of W x.

Let us denote Z(t) = (X(t) − φ(t),Y (t))>. The process Z is a multivariate Ornstein-

Uhlenbeck (OU) process with dynamics:

dZ(t) = [µ−KZ(t)] dt+ Σ
1
2dW (t), (4)

where we use the following vector and matrix notations:

µ :=

0n
µy

 , K :=

Kx −Kx

On KyΘ

 , Σ
1
2 :=

Σ
1
2
x On

Σ
1
2
xy Σ

1
2
y

 , W (t) :=

W x(t)

W y(t)

 . (5)

The solution to (4) is given by:

Z(T ) = e−K(T−t)Z(t) +

[∫ T

t
e−K(T−u)du

]
µ+

∫ T

t
e−K(T−u)Σ

1
2dW (u), (6)

The conditional distribution of Z(T )|Z(t) is a normal distribution with first two moments:
E[Z(T )|Z(t) = zt] = e−K(T−t)zt +

[∫ T

t
e−K(T−u)du

]
µ, (7)

Cov(Z(T )|Z(t)) =

∫ T

t
e−K(T−u)Σe−K

T (T−u)du, (8)

where Σ = Σ
1
2

(
Σ

1
2

)T
and the conditional variance-covariance matrix derives from Itô’s

isometry.

Cointegration

In the limit when T − t goes to infinity, the conditional mean and covariance of Z, given

by (7) and (8), both go to infinity, unless all eigenvalues of the matrix K have positive real

part. In that case, the distribution of the process stabilizes towards a normal distribution

with unconditional first two moments given by:{
z∞ = K−1µ, (9)

vec(Σ∞) = (K ⊕K)−1vec(Σ), (10)

where vec denotes the stack operator and ⊕ the Kronecker sum.3 Therefore the two limiting

3The derivation of the covariance follows from Van der Werf (2007). Meucci (2009) studies the relationship
between the multivariate Ornstein-Uhlenbeck process and statistical arbitrage and derives a similar formula.
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first moments are finite and the process Z is stationary4. If some eigenvalues of K are zero,

the corresponding eigenvalues of e−K(T−t) will be one and Z is no longer stationary. If Z is

non-stationary, but there exist linear combinations of its components which are stationary,

then it is called cointegrated. These linear combinations are referred to as cointegration

relationships. From an economic perspective, cointegration exists when the paths of two or

more variables (e.g., a pair or pool of stocks, interest rates or commodities) are linked to form

a long-run equilibrium relationship from which they deviate only temporarily.

In our model, the matrix K summarizes the cointegration structure of the vector Z. We

can rewrite it as:

K =

Kx On

On Ky

In −In
On Θ

 = Kz ·Θz,

where Kz can be seen as the speed of adjustment of Z towards its stochastic equilibrium

level, defined through the cointegration matrix Θz as a linear combination of the components

of Z.5

Cointegration is included at two levels in our model. The first level of cointegration

links the seasonally adjusted spot log-prices to their long-run levels. The corresponding

cointegration relationship is described by the upper part of the Θz matrix: [In − In].

We assume that Kx is invertible, and that all of its eigenvalues have positive real part. Hence

there are n cointegration relationships between seasonally adjusted spot log-prices and their

equilibrium levels. The matrix Kx quantifies the speed of mean reversion of the elements in

X around the long term levels in Y . The second level of cointegration links the components

of Y to one and another through the lower part of the Θz matrix. We denote the number of

cointegration relationships between them by h, where h ≥ 0 and h < n. The respective n× n

cointegration matrix Θ has the last n − h rows equal to zero vectors and each of the first h

non-zero rows encodes a stationary combination of the components of Y . It is normalized

such that Θii = 1, i ≤ h. The matrix Ky is a n×n matrix with the last n−h columns equal to

zero vectors, such that KyΘ is a n×n matrix of rank h, with all h non-zero eigenvalues having

positive real part. Each of the h non-zero columns in Ky quantifies the speed of adjustment

of each element in Y to the corresponding cointegration relation. We show in Appendix A

that the vector process ΘzZ(t) is stationary, even if Z is not stationary.

In the empirical section, we will focus on the impact of the cointegration at the second

4Notice that since we will be working in a Gaussian framework, the notions of weak and strong stationarity
are equivalent. Hence, for the (Brownian) Ornstein-Uhlenbeck process Z, stationarity is guaranteed by
finiteness of its first two limiting conditional moments.

5This decomposition, called full rank factorization, is not unique. Footnote 17 details how we have ensured
identification.
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level, captured by the Θ matrix. We can distinguish the following 3 cases:

(i) rank(Θ) = 0 → no cointegration relationship exists among the (non-

stationary) long-run log-price levels Y (t);

(ii) 0 < rank(Θ) < n → cointegration among the long-run log-price levels Y (t) exists;

(iii) rank(Θ) = n → Z(t) is stationary.

In case (i) Θ = On and if the diffusion matrices are diagonal we are effectively in the two-

factor model of Schwartz and Smith (2000). Case (iii) corresponds to a so-called double-mean-

reverting model.

To summarize, our model allows for h cointegration relationships between equilibrium log-

price levels, with 0 ≤ h < n. By doing so, it extends, to our knowledge, the existing literature

which usually restricts the number of cointegration relationships at the second level, to exactly

one or n − 1. We will show in the empirical section that this additional level of flexibility is

supported by the data.

To better illustrate the use of the model we briefly look at a toy example.

Example 1 (cointegration matrix ). Consider the following 3 possible configurations of the

matrix Θ:

(i) :

0 0

0 0

 , (ii) :

1 −3

0 0

 , (iii) :

1 −1

0 2

 .
Recall that each non-zero row of the matrix Θ corresponds to a cointegration relationship.

This means that in case (i) there is no cointegration relationship. In case (ii) there is one

cointegration relationship. The value of Y1(t) tends to stay close to 3 times the value of Y2(t).

For case (iii), the matrix is invertible. In this case, Y1(t) and Y2(t) are both stationary. The

value of Y1(t) tends to stay close to the value of Y2(t), which, in turn, tends to stay close to

zero.

Closed-form solution

From equation (6), X(T ) can be written as:

X(T ) = X(t) + [φ(T )− φ(t)] +
[
In On

] [
e−K(T−t) − I2n

]
Z(t) (11)

+
[
In On

] [∫ T

t
e−K(T−u)du

]
µ+

[
In On

] ∫ T

t
e−K(T−u)Σ

1
2dW (u).
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Then using the result by Carbonell et al. (2008) that

e−Kτ =

e−Kxτ ψ(τ)

On e−KyΘτ

 with ψ(τ) := Kx

[∫ τ

0
e−Kx(τ−u)e−KyΘudu

]
, (12)

we obtain after straightforward calculations the following result6:

S(T ) = S(t) exp

{[
e−Kx(T−t) − In

]
X(t) + ψ(T − t)Y (t) +

[
φ(T )− e−Kx(T−t)φ(t)

]
(13)

+

[∫ T

t
ψ(T − u)du

]
µy +

∫ T

t

[
e−Kx(T−u)Σ

1
2
x + ψ(T − u)Σ

1
2
xy

]
dW x(u)

+

∫ T

t
ψ(T − u)Σ

1
2
y dW y(u)

}
.

As we can see from (13), the vector of spot prices S(t) is an exponential function of Gaussian

factors7. Hence the characteristic function of X(t) can be readily computed analytically, as

we show in Lemma 1 in Appendix B.

Note that apart from the assumption of cointegrated spot log-prices, most of our model

assumptions are fairly standard. This has several advantages. First, and most importantly,

it allows us to cleanly isolate the effects of cointegration. Second, the futures prices are

exponentially affine in the two factors and the prices of European-style options are still given

by a Black-like formula (see Black (1976)), which enables fast and easy calculations. Also, we

would like to stress that adding jumps by specifying a mean-reverting jump-diffusion process

for X(t) would most likely not lead to different conclusions about the effects of cointegration.

The reason is that, while cointegration inherently has a long-term effect, the effect of spot

price jumps fades away in the long term. This is particularly the case of commodity spot

price jumps, given their tendency to “mean-revert”, see, e.g., Hambly et al. (2009).

Similarly to Schwartz and Smith (2000), our model can also be written as a convenience

yield model. We provide the equivalent convenience yield model in Appendix C.

2 Futures and European-Style Option Prices

Futures and options are derivatives instruments with the spot as the underlying “stock”. Our

goal in this section is to compute the prices of these instruments (under the assumption of no-

arbitrage). To that end recall the renowned risk-neutral valuation principle, which states that

6Note that the matrix exponential of A is denoted by eA and the element-by-element exponential of A by
exp(A)

7Notice that our model belongs to the class of affine models proposed by Duffie and Kan (1996).
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prices of derivatives are simply given by the expectation of their discounted terminal pay-off

under a risk-neutral measure. In order to proceed, we need to perform a change of measure

from the real-world measure to the risk-neutral measure. We assume that the spot commodity

is not an investable asset8, which causes the market to be “incomplete” irrespective of the

stochastic process characterizing the spot returns. Therefore we need to specify the market

prices of risk. We make the simplifying assumption that the market prices of risk are constant

over time. This means that the change of measure transforms the Brownian motion W (t) to

a Brownian motion W ∗(t) plus a vector of constants, i.e.,

d

W ∗
x(t)

W ∗
y(t)

 = d

W x(t)

W y(t)

+

λx
λy

 dt, (14)

where W ∗
x(t) and W ∗

y(t) are standard Brownian motions under the risk-neutral measure

(indicated by an asterisk), and where λx and λy are the market price of W x(t) and W y(t)

risk, respectively.

The assumption of constant market prices of risk is in line with a large body of literature

(see, e.g., Gibson and Schwartz (1990), Schwartz and Smith (2000), Lucia and Schwartz (2002),

Kolos and Ronn (2008), Cortazar et al. (2008) and Benth and Koekebakker (2015)). While

keeping the model parsimonious in the number of parameters, it implies that cointegration

is preserved under the change of measure. Under such condition, the spot price is not a

discounted risk-neutral martingale9. The validity of the assumption is assessed in Section 3.

We now readily obtain Proposition 1, which gives a closed-form formula for the futures

prices of the n commodities.

Proposition 1. At time t the vector of futures prices for contracts with maturity T is given

by

F (t, T ) = exp {α(t, T ) + β(T − t)X(t) + ψ(T − t)Y (t)} , (15)

8For example, in the gas and oil markets that we consider, one needs to be able to transport and store
the commodity in order to speculate on it. The assumption that the spot commodity asset is not tradable is
common in the literature, see, e.g., Gibson and Schwartz (1990), Schwartz and Smith (2000), Casassus and
Collin-Dufresne (2005), Casassus et al. (2013) and Benth and Koekebakker (2015). It is generally believed to
hold for most commodities, except for precious metals. If one, instead, assumes that the spot commodity is
tradable, as Duan and Pliska (2004), then, the martingale condition implies that cointegration under assets
disappears when changing from the real-world to the risk-neutral measure.

9Notice that a deviation from martingale behavior may be interpreted as a convenience yield for holding
the spot commodity. See Appendix C for the equivalent convenience yield model (under P).
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with β(τ) := e−Kxτ and with α(t, T ) defined by

α(t, t+ τ) :=
[
φ(t+ τ)− e−Kxτφ(t)

]
−
(
In − e−Kxτ

)
K−1
x µ∗x +

(∫ τ

0
ψ(τ − u)du

)
µ∗y (16)

+ diag

{
1

2

[
In On

] [
e−Kτ

(∫ τ

0
eKuΣeK

>udu

)
e−K

>τ

]In
On

},
where diag(A) returns the vector with diagonal elements of A, and where

µ∗ =

µ∗x
µ∗y

 = µ− Σ
1
2

λx
λy

 .
Proof. See Appendix D. q.e.d.

From Proposition (1), we see that the futures price F (t, T ) is an exponential affine function

of the two factors X(t) and Y (t). Note that, while the coefficients β and ψ only depend on

time t and maturity T through the (remaining) time to maturity T − t, α depends on both

variables t and T independently (due to the seasonality function φ(t)).

Now by Itô’s lemma the risk-neutral dynamics of F (t, T ) are given by

dF (t, T )

F (t, T )
=

[
e−Kx(T−t)Σ

1
2
x + ψ(T − t)Σ

1
2
xy

]
dW ∗

x(t) + ψ(T − t)Σ
1
2
y dW

∗
y(t). (17)

The variance-covariance matrix of returns on futures prices, denoted Ξ(τ), is an immediate

consequence of (17). It depends on τ unless Kx = On. Since (17) is a Gaussian-affine model,

closed-form pricing formulae for European-style options can be readily obtained using Black’s

formula (see Black (1976)). It should be stressed that these pricing formulae have no explicit

dependency on the market prices of risk (only indirectly via their dependency on F (t, ·)).

Indeed, the information on the market prices of risk is fully embedded in the term structure

of futures prices. Hence, if options are priced using observable market-based futures prices,

there is no reliance on the assumption about the market prices of risk.

3 Model Estimation

3.1 Data

The model is estimated on three sets of data. Dataset I consists of weekly time-series data

on the closing futures prices of 4 closely linked energy commodities, namely crude oil, heating
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oil, gasoline10 and natural gas11. The contracts have fixed times to maturity of 1, 3, 6, 9 and

12 months and are listed and traded on the NYMEX (New York Mercantile Exchange). The

data span the period from January 1991 to December 2013.12

Dataset II is composed of weekly time-series data on the closing futures prices of electric

power in 4 different markets, namely Germany, Nordics,13 Switzerland and Poland.14 These

data cover a relatively short time period from January 2007 to December 2013.

Typically the most liquid and high-volume electric power futures contracts are the so-called

Base Month, Base Quarter and Base Year ones. The Base Month is a contract delivering 720

MWh (megawatt-hours) for a period of 1 month (1MW × 30 days × 24 h/day = 720MWh).

Base Quarter (Year) contracts are nothing else than a series of 3 (12) consecutive Base Month

contracts.

To make the model compatible with the data in set II, we regard 720 MWh electric power

for a period of 1 month as a commodity, and we shall henceforth refer to it as the power

commodity. Note that we have 4 power commodities, one for each region. The power

commodity serves as the underlying asset for the Base Month contract. The theoretical (or

model-implied) futures prices of the Base Month contract can be easily calculated by using

(15). The Base Quarter contract with maturity T is a contract for which the seller commits

to delivering power to the buyer, starting at T , for a period of a quarter. It is therefore, as

noted earlier, a bundle of 3 Base Month contracts with maturities T , T + 1M and T + 2M

(capital “M” means month). Similarly, the Base Year contract with maturity T is a bundle

of 12 Base Month contracts with maturities T , T + 1M , . . ., T + 10M and T + 11M . The

price of a Base Quarter (Base Year) contract can hence be approximated by the average15 of

the prices of 3 (12) Base Month contracts. For each type of contract (i.e., Base Month, Base

Quarter and Base Year), we use in the measurement equation the futures contract with the

nearest time-to-maturity. The reason is that, on some days and for some regions, only one

maturity is available.

Dataset III contains weekly time-series data on the closing prices of electric power (Phelix

10From January 1991 to December 2005 data on Unleaded Gasoline (HU) is used, while data on Reformulated
Blendstock for Oxygenate Blending (RB) is used for the remainder of the period (i.e., for the period January
1996 to December 2013). The reason is that the HU contracts stopped trading on NYMEX end of 2005.
We note that the HU and RB contracts were trading at almost the same prices over the 2-year period they
co-existed.

11This dataset was retrieved from Quandl (www.quandl.com).
12Each period, the futures prices with exactly 1, 3, 6, 9 and 12 months to maturity are interpolated from

the existing term structure of futures prices.
13The Nordics consist of Sweden, Norway, Denmark, Finland, Iceland, The Faroe Island and Greenland.
14This dataset was obtained from the trading division of AXPO AG.
15Note that all prices are quoted in the same unit (e/MWh), independent of the length of the delivery

period.
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Base Futures) and natural gas (TTF Natural Gas Futures) futures contracts, both of which

are traded on the EEX (European Energy Exchange)14. The data cover the time period

from January 2006 to December 2013. The reason for not taking the weekly natural gas

futures prices from dataset I and/or the weekly electric power futures prices from dataset

II is simply because this data cannot be (straightforwardly) used to compute values of the

spark spread (which is defined as the spread between the market price of electric power and

the cost of the natural gas needed to produce that electric power). The “power commodity”

in dataset III corresponds to electric power for one day and the “natural gas commodity”

corresponds precisely to the amount of natural gas needed to generate that much electricity,

which enables an easy calculation of the spark spread. Like for dataset II some futures

contracts are conveniently represented as a bundle of ‘basic’ futures contracts with various

expiration dates (with the “power commodity” or “natural gas commodity” as underlying)

whose prices can be easily computed using equation (15).

3.2 Procedure

Since the state variables X(t) and Y (t) cannot be observed directly from the data, they are

inferred from the (observable) futures prices, as previously employed in the literature (e.g.

Cortazar et al. (2008), Paschke and Prokopczuk (2009), and Nakajima and Ohashi (2012)).

We use the Kalman filter for this purpose. The state (or transition) equation is given by (1)-

(3). The measurement equation is obtained by matching model-implied log-prices of futures

to the data, accounting for noise by assuming that the error is an n-dimensional (uncorrelated)

Gaussian process. We stress that the Kalman filter is applicable because the transition and

measurement equations are subject to Gaussian noise and linear in X(t) and Y (t). The

Kalman filter is also used for computing the likelihood of the (observed) futures prices given

the model and the model parameters. This facilitates a straightforward maximum likelihood

(ML) estimation of the model parameters.

Given that there are a large number of parameters, we employ a two-step ML estimation

procedure. In the first step, we estimate a simple one-dimensional version of the model for

each commodity separately. The estimates for the parameters of the seasonality term (2),

as well as those for the variance of the measurement errors, are kept fixed in the second

step. The estimates for the other parameters serve as starting point for the second step of

the estimation procedure. The filtered values of the latent state variables X(t) and Y (t)

are utilized to calculate reasonable starting values for parameters that cannot be estimated

within the model version used in step one (i.e., correlation and cointegration parameters).



14

In the second step of the estimation procedure, the parameters of the full model are

estimated (with exception of those that are kept fixed at values obtained in the first step).

At this step, the log-likelihood function is maximized under the restriction that the model is

“well-specified”. Specifically, this means that at each iteration (of our maximization routine)

we perform a Johansen constraint test,16 checking whether the cointegration properties of the

filtered time-series of X(t) and Y (t) do not contradict with the cointegration matrix Θ.17

3.3 Results

In this section, we present and discuss our estimation results.

Appendix E.2 illustrates the quality of the fit of log-prices of futures on crude oil, and

shows that the data is remarkably well fitted. The ability of the model to fit the data is

confirmed by Root Mean Square Errors (RMSEs) which are very low, ranging from 9 bps (1-

year futures on crude oils and heating oil) to 1.03% (3-month futures on natural gas). These

results give us confidence that the model reproduces the features of the data well. It is also

interesting to notice that RMSEs tend to be lower for longer maturity contracts, which may

be explained by potential spikes in the prices, whose impact on derivatives’ prices might be

substantial on the short-term, but are likely to disappear on longer horizons. This observation

is reassuring, as the focus of our paper is on the long-term effects of cointegration.

In Appendix E.3 we collect graphs that represent the estimated trajectories of the spot

log-prices X(t) and the long-run log-price levels Y (t). For all 10 commodities, the spot log-

prices X(t) fluctuate quite wildly around the long-run log-price levels Y (t), which themselves

are also varying over time (but with a lower magnitude, as expected). Furthermore, we find a

strong seasonality in the (futures) prices of heating oil, gasoline and the 4 power commodities

with the exception of “power Poland”. The seasonality of crude oil prices is found to be

negligible.

For comparison, the 10 long-run log-price levels Y (t) are also shown in Figures 1 through

3. Figure 1 suggests that the long-run log-price levels of crude oil, heating oil and gasoline are

driven by only one factor. This would mean that no less than 2 cointegration relationships

exist among these 3 variables. The long-run log-price level of natural gas, however, seems to be

16The Johansen test (see Johansen (1991)) is a procedure for testing the presence of cointegration
relationships between two or more time-series.

17In order to obtain a unique full rank decomposition of the matrix K, one has to impose some extra
structure on Θ and Ky by fixing some of their components. In our case, in addition to restricting the diagonal
components of Θ to one, we also fix some components to zero. To achieve this goal, we employed an iterated
estimation procedure that fixes to zero some of the parameters in Θ and Ky that are statistically non-significant
in the previous step. Conditional on the structure of Θ and Ky, the decomposition is unique.
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driven by another factor. These visual findings are confirmed by the estimated cointegration

matrix (see (18)), denoted by Θ̂I for dataset I, by Θ̂II for dataset II, and by Θ̂III for dataset

III.18

Θ̂I =


1.00 −0.69*** −0.28*** 0.03***

0.36*** 1.00 −1.47*** 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

 , Θ̂II =


1.00 −1.33*** 0.00 0.00

0.00 1.00 −0.63*** 0.00

0.00 0.00 1.00 −0.74***

0.00 0.00 0.00 0.00

 ,
(18)

Θ̂III =

1.00 −2.27***

0.00 0.00

 .
It is clear from Figure 2 that the long-run log-price levels of power in the 4 regions are driven

by only one factor. Intuitively this also makes sense because one would expect that price

differences between regions (or countries) stabilize in the long-run. This visual finding is also

confirmed by the estimated cointegration matrix Θ̂II .
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Figure 1. Filtered time-series of the long-run log-price levels Y (t) (dataset I). The colors corresponds
to the following 4 commodities: gray (crude oil), red (heating oil), blue (gasoline), and green (natural
gas).
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Figure 2. Filtered time-series of the long-run log-price levels Y (t) (dataset II). The colors corresponds
to the following 4 commodities: gray (power Germany), red (power Nordics), blue (power Swiss), and
green (power Poland).

For the sake of completeness, we also report the estimates of the parameters other than

Θ. Values of these estimates can be found in Appendix E. These values are fairly standard

and in line with the literature. Hence we do not explain them in detail but only mention a

18Statistical significance at 1% symbolized by ***, statistical significance at 5% symbolized by ** and statistical
significance at 10% symbolized by *
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Figure 3. Filtered time-series of the long-run log-price levels Y (t) (dataset III). The colors corresponds
to the following 2 commodities: gray (electric power) and red (natural gas).

few results that we find interesting.

Recall that the matrices Kx and Ky measure the speed at which X(t) and Y (t) return to

their cointegrated equilibria. From the estimates of Kx and Ky, we see that X(t) returns at

least twice as fast to its equilibrium state than Y (t). This is a very intuitive result, because a

deviation of X(t) from its “equilibrium” value is likely due to daily fluctuations in supply and

demand (or speculative activity) whereas a deviation of Y (t) from its “equilibrium” value is

more likely due to structural shifts in supply and demand.

A second observation is that X(t) and Y (t) are strongly positively correlated, as indicated

by the estimates of Σxy. This result is again very intuitive if we recall that X(t) and Y (t)

correspond to the short-end and the long-end of the term-structure of futures prices, which

typically have a strong tendency to co-move (as evidenced by many empirical studies).

4 Implications for European-Style Spread Option Prices

In this section we analyze the prices of European-style options written on the price difference,

or spread , between two or more commodities. Spread options present an ideal setting for

investigating the implications of cointegration, since they crucially depend on the short- and

long-run relation between the assets that make up the spread. Also, since spread options have

become regularly and widely-used instruments in financial markets, for example for hedging

purposes or for exploiting (statistical) arbitrage opportunities, there is a growing need for a

better understanding of the effects of cointegration on their prices.

We will distinguish between options on spreads between 2 commodities and options on

spreads between n > 2 commodities, such as the price difference between crude oil and a

basket of various refined products. The reason is that for the 2-commodity case we have

analytic (approximation) formulas, such as Margrabe’s formula (see Margrabe (1978)) and

Kirk’s (approximation) formula (see Kirk (1995)), while for the general case (i.e. when n > 2)

we have to rely on numerical methods19.

19Also for the n = 3 case there are some (semi-)analytic approximation formulas, such as the extension of
Kirk’s formula proposed by Alos et al. (2011), but here we give preference to the Monte-Carlo technique.
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4.1 The 2-Commodity Case

The holder of a European-style call option on the spread between 2 commodities receives at

maturity T the pay-off

max(S1(T )− αS2(T )− k, 0), (19)

where k is the strike price, and where α > 0 is usually the ratio of the units of measure of

S1(t) to the units of measure of S2(t) or, in case of an “input-output” (or production) spread

(e.g., crack, dark or spark spread), the input-output conversion rate. When the strike price

k equals zero a spread option is equivalent to an option to exchange one asset for another.

In this special case, the price of the option can be computed analytically by Margrabe’s

formula (see Margrabe (1978)). In the general case, however, there are no closed-form pricing

formulae for spread options (at least to the best of our knowledge). Instead, we need to rely

on approximation formulae or extensive numerical computations.

For the 2-commodity case considered here we use the approximation formula of Kirk (1995)

to calculate the price of a spread option with payoff (19). Note that Kirk’s formula coincides

with Margrabe’s formula when the strike price k equals zero. Alternative approximation

formulae can be found in Carmona and Durrleman (2003) and Bjerksund and Stensland

(2011). These formulae typically improve upon Kirk’s formula in terms of numerical accuracy

and efficiency, but they come at the cost of higher computational complexity. Since, for our

purpose, the precision of Kirk’s formula is sufficient, we keep the formulae simple and do not

use any of these alternatives.

Let us start by looking at a toy example to grasp the impact of the cointegration

parameters on the prices of futures contracts and the distributional properties of spreads.

Example 2 (spreads between two commodities). Consider two commodities having a single

cointegration relation between their long term components given by Y1− θY2 = 0 with θ > 0.

Hence the cointegration matrix is given by

Θ =

1 −θ

0 0

 .
Furthermore, assume that χ1 = χ2 = 02, µy = 02, λx = λy = 02 and

Kx =

k1 0

0 k2

 , Ky =

 l1 0

−l2 0

 , Σx =

σ2
x 0

0 σ2
x

 , Σy =

σ2
y 0

0 σ2
y

 , Σxy = O2,
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where k1, k2, l1, l2, σx and σy are positive constants.

At time t, the long-run distribution of X, i.e., the distribution of X(t+ τ) for large τ , is

Gaussian with mean mX(τ) ≈ Ψ1Y (t) and variance vX(τ) ≈ σ2
yΨ2τ . The matrices Ψ1 and

Ψ2 are given by

Ψ1 :=

 l2 θ
l1+l2 θ

l1 θ
l1+l2 θ

l2
l1+l2 θ

l1
l1+l2 θ

 , Ψ2 :=

 θ2(l21+l22)
(l1+l2 θ)

2

θ(l21+l22)
(l1+l2 θ)

2

θ(l21+l22)
(l1+l2 θ)

2

l21+l22
(l1+l2 θ)

2

 .
While the covariance matrices are diagonal, the presence of cointegration creates a positive

correlation between the long-run behavior of the spot log-prices. One further sees that X1 −

θX2 is stationary given that its mean and variance does not depend on τ . However, X1−αX2

with α 6= θ is not stationary; its variance at time t+ τ is, for large τ , approximately given by

σ2
y (θ − α)2 1 + l2

(l + θ)2 τ

where l := l1
l2

. The minimum variance variance is obtained when l = 1
θ .

While for the purpose of spread option pricing we are interested in the distributional

properties of the spread between prices (rather than those of the spread between log-prices),

it is worth noting that the mean and variance of S1 − αS2 (α > 0) can be readily obtained

using the properties of the multi-variate log-normal distribution.

Now we fix the parameters as α = 1, θ = 1.25, k1 = k2 = 2, σ2
x = 0.2, σ2

y = 0.05 and

X(0) =

3.69

2.95

 , Y (0) =

3.60

2.90

 ,
and then we run a simulation to assess the impact of the parameters l1 and l2 on the level

and volatility of the futures spread with 10 year to maturity, as well as on the correlation

between the log-returns on the two 10-year futures contracts and on the at-the-money (ATM)

European-style call option written on the 10-year futures spread. The results are shown in

Figure 4.

We see that if there is cointegration, the correlation between the spread components

becomes stronger (reducing the volatility of the spread), resulting in lower spread option

prices. That is, the price of the ATM spread option is almost 35% lower if l1 = l2 = 0.1 than

it is if l1 = l2 = 0 (i.e. no cointegration). Figure 5 shows a comparison between the distribution

of the spread 10 years out if l1 = l2 = 0.1 and the it if l1 = l2 = 0 (no cointegration), clearly
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Figure 4. Top left panel: Correlation between log-returns on 10-year futures contracts. Top right
panel: Kirk’s (approximate) volatility of the 10-year spread. Bottom left panel: Level of the 10-
year spread. Bottom right panel: Price of 10-year ATM call option on the spread. Note: Volatilities
as well as futures and option prices have been rescaled to the case of no cointegration.

demonstrating that the width of the distribution decreases when cointegration is taken into

account.
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Figure 5. Distribution of the spread 10 years out.

As shown by Kirk’s volatility in Figure 6, the impact of cointegration on the spread

volatility is also visible on the shorter end of the term-structure. However, the effects
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Figure 6. Top panel: Kirk’s volatility ṽ(t, T ) as a function of maturity time T . Bottom panel:
Correlation between the futures log-returns of both commodities. Note: The blue line corresponds to
the original model, the red line to the model with no cointegration between the n variables in Y (t).

become negligible, and essentially disappear, for very short maturity spreads. The (significant)

impact of cointegration on the volatility of long-dated spreads is (mainly) caused by stronger

correlation between the log-returns on the futures contracts when their long-term price levels,

i.e., Y (t), are cointegrated (see the bottom panel of Figure 6). This is an intuitive result given

that in case of cointegration the far long-end of the spread term-structure is driven by only

one factor. The term structure of futures prices and of ATM call option prices are shown in

Figures 7 and 8. Figure 8 is the same as Figure 7, except that here no cointegration between

the n variables in Y (t) is assumed.
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Figure 7. Top panel: Term-structure of futures log-prices for power (green line) and gas (blue line).
Bottom panel: Term-structure of spark spread option prices. Note: The gray lines indicate the case
without seasonality effects.

From Figure 7, we observe again a significant impact of seasonality on the results. This is

the reason why we also plotted the results for the case without seasonality (depicted by gray

lines). Let us now consider the shapes of the term-structures of futures prices. For that, it is

important to note that these term-structures depict exactly how spot prices would evolve in

absence of stochasticity (something that is also clear from the definition of futures prices, see

(27)). As a consequence, the term-structures are subject to the same influences as the spot
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Figure 8. Top panel: Term-structure of futures log-prices for power (green line) and gas (blue line).
Bottom panel: Term-structure of spark spread option prices. Note: The gray lines indicate the case
without seasonality effects.

prices S(t), namely (i) the reversion of the seasonally adjusted spot log-prices X(t) − φ(t)

towards their long-run levels Y (t) and (ii) the reversion of the latter towards their cointegrated

“equilibrium” relationship(s) (characterized by the matrix Θ). Since the speed of reversion

“(i)” is greater than that of reversion “(ii)” (see also the discussion in Section 3 above), “(i)”

primarily influences the short-end of the term structures while “(ii)” primarily influences the

long-end of the term structures. This is also clearly reflected in the figures: Up to a maturity

of one year the shape of the term-structures is clearly determined by “(i)”, that is, the one-year

seasonally adjusted futures log-prices are relatively close to X(t = 2014) = (3.69, 2.95)>. For

maturities longer than one-year we see a convergence towards the cointegration “equilibrium”

levels, i.e., KyΘ logF (t = 2014, T = 2024) ≈ µy. This also explains why the term-structures

in Figure 7 are very similar (to the ones in Figure 8) up to T = 2015 but differ for larger

T . Spread option prices are plotted in the bottom panel of Figures 7 and 8. An immediate

observation is that those in Figure 7 (with cointegration in Y (t)) are substantially lower than

those in Figure 8 (without cointegration in Y (t)) and this is, as discussed above, mainly due

to a lower variance of the spread because of positive correlation induced by cointegration.

We will now present another example on spreads between two commodities in which a

so-called spark spread option is priced. In this example, we rely on the estimation results for

dataset III (see Section 3).

Example 3 (spark spread). The spark spread is, as mentioned, the spread between the market

price of electric power and the cost of the natural gas needed to produce that electric power.

As such, the spark spread is a metric of the profitably of natural gas-fired electric power plants.

Hence, utility companies employ the spark spread as an indicator for turning on or off their

natural gas-fired electric power plants. When this is not possible (in the short-term), they

often resort to buying (financial) futures and/or options on the spark spread to hedge their
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risk of a profit margin squeeze. In this example, the prices of these two types of instruments

are calculated using the estimation results of dataset III.

The spot price of the spark spread at January 1st 2014 (according to our model) is $8.87.

Using Kirk’s formula, we now compute the price of an at-the-money (ATM), hence k = 8.87,

European-style call option with maturities up to 10 years starting January 1st 2014. For the

sake of clarity we set the vector of risk premiums λx and λy and the risk-free interest rate

curve equal to zero. The results are shown in Figures 9 and 10. Figure 10 is the same as

Figure 9, except that here no cointegration between the n variables in Y (t) is assumed.

The shapes of the term-structures of spread futures prices and that of the ATM option

prices are similar in the two cases since the estimated speeds of reverting to the cointegration

relation (i.e. the elements of Ky) are both close to zero and not statistically significant. The

effect of cointegration is most visible in the term-structure of the correlation of the futures

log-returns between the two components of the spark spread, depicted in Figure 11.
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Figure 9. Top panel: Term-structure of spread futures. Bottom panel: Term-structure of spark
spread option prices. Note: The gray lines indicate the case without seasonality effects.
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Figure 10. Top panel: Term-structure of spread futures. Bottom panel: Term-structure of spark
spread option prices. Note: The gray lines indicate the case without seasonality effects.

In contrast to the previous example, the correlation of the futures log-returns is strictly

positive even in the absence of cointegration. This is due to the fact that the estimated
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Figure 11. Correlation between the futures log-returns of both commodities. Note: The blue line
corresponds to the original model, the red line to the model with no cointegration between the n
variables in Y (t).

covariance matrix of the shocks is not diagonal. However, cointegration induces additional

correlation that is increasing with maturity.

4.2 The n-Commodity Case

There is an extensive literature on approximation methods for spread and basket options

on more that two commodities, with recent contributions from Li et al. (2010) and Caldana

and Fusai (2013). However, mostly for simplicity, we rely in this paper on the Monte-Carlo

simulation method for pricing spread options written on more than two commodities.

From (17), it follows that F (t, T ) (conditional on information available up to time s ≤

t ≤ T ) is distributed as follows:

F (t, T ) ∼ logN
(

logF (s, T )− 1

2

∫ t

s
diag(Ξ(T − u))du,

∫ t

s
Ξ(T − u)du

)
, (20)

where diag(X) denotes the vector containing the diagonal elements of the matrix X. Note

that F (s, T ) can be either computed from (15) or observed from data.

The fact that the distribution function of F (t, T ) is known in an easy-to-use and analytic

form is one of the merits of our model. It allows us to simulate futures price curves at any

time t in the future based on today’s curves (time s) almost effortlessly. Hence, the price of

a call option on the time-T value of a certain spread can be simply obtained by carrying out

the following steps:

(i) compute or observe today’s futures price curves F (s, T );

(ii) compute M realisations F (m) (m = 1, . . . ,M) of F (T, T ) by sampling from (20) as

follows:

F (m) = F (s, T ) exp
{
ε(m)

}
,

where ε(m) is generated from a multivariate normal distribution with mean

−1
2

∫ T
s diag(Ξ(T − u))du and variance-covariance matrix

∫ T
s Ξ(T − u)du;20

20Here the technique of antithetic variables is used to reduce the number of random samples needed for a



24

(iii) compute the Monte-Carlo estimate of a call with strike k on the spread

S1(T )−
N∑
n=2

ωnSn(T )

(
= F1(T, T )−

N∑
n=2

ωnFn(T, T )

)
,

with ωn ∈ R+ for all n = 2, . . . , N , as follows:

1

M

M∑
m=1

max

{
F

(m)
1 −

[
N∑
n=2

ωnF
(m)
n

]
− k, 0

}
. (21)

We note that the random variables ε(m) can be simply re-used for pricing spread options with

different maturity dates.

Example 4 considers the pricing of an option on the crack spread , which is a spread

between the futures prices of 3 commodities. This example will rely on the estimation results

for dataset I (see Section 3).

Example 4 (crack spread option). The crack spread refers in general to the price difference

between crude oil and refined products such as diesel, kerosine, gasoline and petroleum. The

crack spread is hence nothing else than the profit margin that an oil refiner realizes when

“cracking” crude oil while simultaneously selling the refined products in the wholesale market.

In this example we will consider a so-called 3:2:1 crack spread, which consists of shorting

3 crude oil futures contracts and purchasing 2 gasoline futures contracts and 1 heating oil

futures contract. Since gasoline and heating oil are quoted in dollars-per-gallon while crude

oil, and usually also the crack spread, is quoted in dollars-per-barrel, we must multiply the

futures prices of gasoline and heating oil by 42 (the number of gallons per barrel). The crack

spread is therefore calculated as follows:

−3× Fcrude oil(t, T ) + 2× 42× Fgasoline(t, T ) + 42× Fheating oil(t, T ). (22)

An oil refiner can hedge the risk of losing profits by buying an appropriate number of futures

contract on the crack spread. However, then he also loses any upside. As an alternative

the oil refiner can buy a call option of the crack spread. Then he pays a fixed up-front cost

(premium), but still profits from any future widening of the spread. In the following, we will

calculate the prices of futures and call options on the crack spread using the estimation results

of dataset I.

The spot price of the spread at January 1st 2014 (according to our model) is $65.52. Now

given level of accuracy.
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Figure 12. Top panel: Term-structure of futures crack spread prices. Bottom panel: Term-
structure of crack spread option prices. Note: The gray lines indicate the case without seasonality
effects.

we price an (out-of-the-money) European-style call option with strike K = $250.00 on the

crack spread with maturities up to 10 years starting January 1st 2014. For this purpose we rely

on the Monte-Carlo based method presented above. The results are summarized in Figures 12

through 14. Like Figure 10, Figure 13 shows the case where there is no cointegration between

the variables in Y (t).
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Figure 13. Top panel: Term-structure of futures crack spread prices. Bottom panel: Term-
structure of crack spread option prices. Note: The gray lines indicate the case without seasonality
effects.
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Figure 14. The distribution of the crack spread 10-years out.

The spread option prices are significantly lower when cointegration is accounted for.

To better understand the latter observation, we have plotted in Figure 14 the probability

distribution of the spread 10 years out. We find that the shape of the distribution is wider
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Figure 15. Correlation between the futures log-returns of three commodities (from top to bottom:
between 1 and 2, between 2 and 3, between 1 and 3). Note: The blue line corresponds to the original
model, the red line to the model with no cointegration between the n variables in Y (t), and the green
line to the model with only the first cointegration relation between the n variables in Y (t).

without cointegration and gets narrower when the cointegration relations are included in the

model. The variance of the crack spread distribution is lower in the model with cointegration

given higher positive correlations between the three components. Indeed, Figure 15 depicts

the effect of cointegration on the term-structure of the correlation of the futures log-returns

between the three components of the crack spread. Again, the correlation of the futures log-

returns is strictly positive even in the absence of cointegration. However, the correlations in

the model without cointegration quickly reduces during approximatively the first three years.

On the other hand, the additional correlation induced by cointegration is increasing with

maturity.

Finally, we present an example of a spread between four commodities. In this example,

we rely on the estimation results for dataset II (see Section 3).

Example 5 (power spread). Consider a spread between the price of electric power on the

Swiss market and the average between the prices of electric power in the German, Nordic and

Polish markets:

FSwitzerland(t, T )− 0.33× (FGermany(t, T ) + FNordics(t, T ) + FPoland(t, T )) . (23)

The spot price of the spread at January 1st 2014 according to our model is 13.19.

Figure 16 depicts the distribution of the spread 10 years in the future. Again, the shape of

the distribution is wider if cointegration is not taken into consideration. This has of course a
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Figure 16. The distribution of the power spread 10-years in the future.

significant impact on option prices. For example, the price of a ATM call on the spread with 10

years to maturity is three times higher in the model without cointegration. As in the previous

examples, the lower variance of the spread distribution in the model with cointegration is due

to higher positive correlations between the four components.

5 Conclusion

We present a parsimonious two-factor model for n cointegrated commodity prices. The spot

prices are fully cointegrated with the corresponding long-run levels, which are cointegrated

with one another, across commodities. Expanding on Paschke and Prokopczuk (2009) and

Cortazar et al. (2008), our model is able to describe one up to n−1 cointegration relationships

between the long-term factors of n commodities.

We estimate our model to three alternative datasets and show that the data supports

our model assumptions on cointegration. First, we use weekly prices of futures on crude oil,

heating oil, gasoline and natural gas with a wide range of maturities, spanning a period of

over twenty years. We find two (statistically significant) cointegration relationships. Only

natural gas is not cointegrated with one of the others. Second, we use weekly prices of futures

on electric power in four different regions. As expected, we find that all of them are strongly

cointegrated with one another. The third dataset consists of futures prices on electric power

and natural gas, which are also found to be cointegrated.

Using the estimation results of our model, we calculate the prices of several spread options

on energy commodities and highlight the effects of cointegration. We show that cointegration

affects particularly the long-end of futures price term-structures. Furthermore, we find that

cointegration leads to an upward sloping correlation term-structure which lowers the volatility

of spreads and therefore also lowers the value of options on spreads.
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A Stationarity of ΘzZ

The process Z is not stationary but there exist n + h cointegration relationships between

its components. We show in this appendix that the vector process ΘzZ is stationary. By

construction, the first n + h rows of the matrix Θz are non-zero row vectors and the n + h

non-zero eigenvalues of K have positive real part. ΘzZ has the following dynamics:

d(ΘzZ(t)) = [Θzµ−ΘzKZ(t)]dt+ ΘzΣ
1
2dW (t).

ΘzZ(t) has a normal conditional distribution with two first moments:

E[ΘzZ(T )|ΘzZ(t) = Θzzt] = e−ΘzKz(T−t)Θzzt +

[∫ T

t
e−ΘzKz(T−u)du

]
Θzµ

Cov(ΘzZ(T )|ΘzZ(t)) =

∫ T

t
e−ΘzKz(T−u)ΘzΣΘT

z e
−ΘzKT

z (T−u)du.

Let us focus on the non-zero components of ΘzZ (n+h elements). The matrix ΘzKz is block

diagonal with the only non-zero component in the left (n+h)×(n+h) corner. Noting that the

notions of weak and strong stationarity are equivalent in a Gaussian framework, the non-zero

components of ΘzZ are stationary if their first two limiting conditional moments are finite.

This is the case if all the eigenvalues of the matrix in the left (n+h)× (n+h) corner of ΘzKz

have positive real part. But the eigenvalues of the matrix in the left (n+ h)× (n+ h) corner

are the non-zero eigenvalues of ΘzKz which are the non-zero n+h eigenvalues of KzΘz = K.

Therefore, ΘzZ is a stationary process.

B Characteristic function of X(t+ τ)

Lemma 1. The characteristic function of X(t+ τ) conditional on the information up to and

including time t, i.e.,

ϕX(t, τ, x, y;ω) := Et
[
exp

{
iω>X(t+ τ)

}
|X(t) = x,Y (t) = y

]
, (24)
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is given by21

ϕX(t, τ, x, y;ω) = exp

{
iω>e−Kxτx+ iω>ψ(τ)y + iω>

[
φ(t+ τ)− e−Kxτφ(t)

]
(25)

+ iω>
[∫ τ

0
ψ(τ − u)du

]
µy

− 1

2

[
ω> 0>n

] [
e−Kτ

(∫ τ

0
eKuΣeK

>udu

)
e−K

>τ

] ω
0n


Proof. By straightforward calculations. q.e.d.

C Equivalent convenience yield model

Similarly to Schwartz and Smith (2000), our model can also be written as a convenience

yield model. Adopting the notation and structure of convenience yield models (e.g. Gibson

and Schwartz (1990), Nakajima and Ohashi (2012)), we denote by δ(t) the time-t vector of

convenience yields and rewrite the dynamics of X(t) as follows:

dX(t) = [µx − δ(t)−KyΘX(t)]dt+ Σ
1
2
x dW x(t) (26)

By matching the drift terms of (26) and (1), we obtain

δ(t) = µx + (Kx −KyΘ)(X(t)− Y (t))−KyΘY (t)

= µx +
[
Kx −KyΘ, −Kx

]
Z(t)

Note that the seasonality term φ(t) has been suppressed for simplicity.

It follows that δ(t) is a linear combination of X(t) − Y (t) and ΘY (t), which represent

the cointegration relations and thus are stationary. Hence δ(t) is stationary. Its dynamics is

given by:

dδ(t) = [µδ −Kδδ(t)−KδxΘX(t)]dt+ Σ
1
2
xδdW x(t) + Σ

1
2
δ dW y(t),

21The integrals appearing here can be computed explicitly using results in Carbonell et al. (2008).
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where

µδ = −Kxµy + (KxKyΘ−KyΘKx)K−1
x µx

Kδ = Kx + (KxKyΘ−KyΘKx)K−1
x

Kδx = (KxKyΘ−KyΘKx)K−1
x Ky

For brevity we omit the explicit expressions for the variance-covariance matrices Σδ and Σxδ,

but, as in the case of µδ, Kδ and Kδx, they depend on the parameters of the original model.

The following observations are worth mentioning: • As to be expected, the convenience

yield model is also characterized by two factors, i.e. the vector of log-prices X(t) and the

vector of convenience yields δ(t). •While the convenience yields are stationary, the log-prices

are not stationary, but are cointegrated. The cointegration matrix is given by Θ. • The vector

of deviations from the cointegration relationships, i.e. ΘX(t), is stationary and acts as an

error-correction mechanism in the dynamics of log-prices, as well as convenience yields.

D Proof of Proposition 1

By the no-arbitrage assumption, the j-th futures price is given by

Fj(t, T ) = E∗t [Sj(T )] = E∗t [exp(Xj(T ))|X(t) = x,Y (t) = y] = ϕ∗X(t, τ, x, y;−iωj). (27)

where ϕ∗X(·) is the characteristic function of X(T ) under the risk-neutral measure, and where

ωj is a n-dimensional vector with the j-th component equal to 1 and the other components

equal to 0. Noting that ϕ∗X(·) is similar to ϕX(·) (see Lemma 1) but with µ replaced by µ∗,

we find

Fj(t, T ) = exp

{
ω>j e

−KxτX(t) + ω>j ψ(τ)Y (t) + ω>j
[
φ(t+ τ)− e−Kxτφ(t)

]
+ ω>j

[∫ τ

0
e−Kx(τ−u)du

]
µ∗x + ω>j

[∫ τ

0
ψ(τ − u)du

]
µ∗y

+
1

2

[
ω>j 0>n

] [
e−Kτ

(∫ τ

0
eKuΣeK

>u

)
e−K

>τ

]ωj
0n

}.
The proposition can be verified now by a straightforward calculation.
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E Estimation results

E.1 Parameter estimates

Below we report parameter estimates22 for data set I, II and III under the convention λ̃ := Σ
1
2λ

and

Σ :=

diag(σx) On

On diag(σy)

 ρx ρxy

ρxy
> ρy

diag(σx) On

On diag(σy)

 .

Dataset I:

µ̂x =


0.00

0.00

0.00

0.00

 , ˆ̃
λx =


0.10***

0.08***

0.13***

−0.10***

 , K̂x =


1.18*** 0.01 0.02** 0.01

0.04 1.18*** 0.01 −0.01

0.00 0.03 1.05*** 0.00

0.00 0.00 0.00 2.48***

 ,

σ̂x =


0.35***

0.34***

0.34***

0.60***

 , ρ̂x =


1.00 0.88*** 0.86*** 0.26***

0.88*** 1.00 0.84*** 0.34***

0.86*** 0.84*** 1.00 0.26***

0.26*** 0.34*** 0.26*** 1.00

 , µ̂y =


2.27***

−1.88***

−0.29

−2.68**

 , ˆ̃
λy =


0.13***

0.12***

0.15***

0.05

 ,

K̂y =


0.64*** −0.11*** 0.00 0.00

−0.60*** 0.12 0.00 0.00

−0.10 −0.03 0.00 0.00

−0.76** 0.00 0.00 0.00

 , Θ̂ =


1.00 −0.69*** −0.28*** 0.03***

0.36*** 1.00 −1.47*** 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

 ,

σ̂y =


0.23***

0.19***

0.28***

0.24***

 , ρ̂y =


1.00 0.59*** 0.56*** 0.08

0.59*** 1.00 0.51*** 0.28***

0.56*** 0.51*** 1.00 0.16**

0.08 0.28*** 0.16** 1.00

 , ρ̂xy =


0.48*** 0.64*** 0.50*** 0.22***

0.58*** 0.52*** 0.53*** 0.22***

0.53*** 0.62*** 0.29*** 0.22***

0.20*** 0.10** 0.14*** 0.37***

 ,

χ̂1 =


0.00

0.03***

−0.04***

−0.01***

 , χ̂2 =


0.00

−0.01***

0.02***

0.01***

 .
22Statistical significance at 1% indicated by ***, statistical significance at 5% indicated by ** and statistical

significance at 10% indicated by *.
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Dataset II:

µ̂x =


0.00

0.00

0.00

0.00

 , ˆ̃
λx =


−0.58***

−0.05

−0.08

0.07

 , K̂x =


1.59*** 0.39 0.20*** −0.02

−1.37** 2.55*** −0.24 0.35*

−4.51*** 1.27*** 4.95*** −0.26

−0.40 0.17 −0.13 1.38***

 ,

σ̂x =


0.33***

0.51***

0.43***

0.23***

 , ρ̂x =


1.00 0.25*** 0.61*** 0.24***

0.25*** 1.00 0.25*** 0.27***

0.61*** 0.25*** 1.00 0.27***

0.24*** 0.27*** 0.27*** 1.00

 , µ̂y =


0.92***

0.87***

0.21

0.01

 , ˆ̃
λy =


0.27*

0.30

0.22*

0.11

 ,

K̂y =


0.78*** 1.20*** 0.25*** 0.00

−0.81*** 0.00 −0.05 0.00

0.24** 0.00 0.37*** 0.00

−0.17 −0.19*** 0.00 0.00

 , Θ̂ =


1.00 −1.33*** 0.00 0.00

0.00 1.00 −0.63*** 0.00

0.00 0.00 1.00 −0.74***

0.00 0.00 0.00 0.00

 ,

σ̂y =


0.34***

0.42***

0.32***

0.29***

 , ρ̂y =


1.00 0.72*** 0.60*** 0.38***

0.72*** 1.00 0.42*** 0.48***

0.60*** 0.42*** 1.00 0.24***

0.38*** 0.48*** 0.24*** 1.00

 , ρ̂xy =


−0.01 −0.10 0.02 −0.14

0.39*** 0.37*** 0.45*** 0.17**

0.32*** 0.21 0.14*** 0.08

0.25** 0.15* 0.22* 0.28***

 ,

χ̂1 =


0.14***

0.13***

0.20***

−0.01***

 , χ̂2 =


−0.01

0.01

0.01

0.02***

 .

Dataset III:

µ̂x =

0.00

0.00

 , ˆ̃
λx =

−0.59***

−0.36**

 , K̂x =

 0.94** 0.60**

−4.15*** 2.41***

 , σ̂x =

0.30***

0.46***

 , ρ̂x =

 1.00 0.31***

0.31*** 1.00

 ,
µ̂y =

−0.06

0.02

 , ˆ̃
λy =

 0.17*

0.52***

 , K̂y =

 0.00 0.00

−0.02 0.00

 , Θ̂ =

1.00 −2.27***

0.00 0.00

 , σ̂y =

0.18***

0.30***

 ,
ρ̂y =

 1.00 0.61***

0.61*** 1.00

 , ρ̂xy =

0.25** −0.33***

0.44*** 0.20

 , χ̂1 =

0.12***

0.14***

 , χ̂2 =

−0.09***

0.01

 .
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E.2 Estimation errors

Figure 17 compares the actual log-prices of futures on crude oil to the model-implied prices,

for contracts with different times-to-maturities. The plain line overlaps almost perfectly with

the crosses, which shows that the data is remarkably well fitted.
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Figure 17. Comparison of the prices of log-futures on crude oil (crosses) with model-implied values
(plain line) for contracts with different times-to-maturities ranging from one month (top panel) to
one year (bottom panel).

Similar graphs are available upon request for other commodities.

E.3 Latent variables

Figures 18 through 27 show values of the filtered X(t) and Y (t). The bottom panels depict

the seasonality patterns found in the data.
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Figure 18. Top panel: Filtered time-series of spot log-prices X(t) (gray line) and long-run log-price
level Y (t) (red line) for crude oil. Middle panel: Differences between short- and long-term log-price
levels, i.e., X(t)− φ(t)− Y (t). Bottom panel: Estimated seasonality function for crude oil.
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Figure 19. Top panel: Filtered time-series of spot log-prices X(t) (gray line) and long-run log-
price level Y (t) (red line) for heating oil. Middle panel: Differences between short- and long-term
log-price levels, i.e., X(t)− φ(t)−Y (t). Bottom panel: Estimated seasonality function for heating
oil.
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Figure 20. Top panel: Filtered time-series of spot log-prices X(t) (gray line) and long-run log-price
level Y (t) (red line) for gasoline. Middle panel: Differences between short- and long-term log-price
levels, i.e., X(t)− φ(t)− Y (t). Bottom panel: Estimated seasonality function for gasoline.
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Figure 21. Top panel: Filtered time-series of spot log-prices X(t) (gray line) and long-run log-price
level Y (t) (red line) for natural gas. Middle panel: Differences between short- and long-term
log-price levels, i.e., X(t)− φ(t)−Y (t). Bottom panel: Estimated seasonality function for natural
gas.
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Figure 22. Top panel: Filtered time-series of spot log-prices X(t) (gray line) and long-run log-price
level Y (t) (red line) for power Germany. Middle panel: Differences between short- and long-term
log-price levels, i.e., X(t) − φ(t) − Y (t). Bottom panel: Estimated seasonality function for power
Germany.
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Figure 23. Top panel: Filtered time-series of spot log-prices X(t) (gray line) and long-run log-price
level Y (t) (red line) for power Nordics. Middle panel: Differences between short- and long-term
log-price levels, i.e., X(t) − φ(t) − Y (t). Bottom panel: Estimated seasonality function for power
Nordics.
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Figure 24. Top panel: Filtered time-series of spot log-prices X(t) (gray line) and long-run log-price
level Y (t) (red line) for power Swiss. Middle panel: Differences between short- and long-term
log-price levels, i.e., X(t) − φ(t) − Y (t). Bottom panel: Estimated seasonality function for power
Swiss.
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Figure 25. Top panel: Filtered time-series of spot log-prices X(t) (gray line) and long-run log-price
level Y (t) (red line) for power Poland. Middle panel: Differences between short- and long-term
log-price levels, i.e., X(t) − φ(t) − Y (t). Bottom panel: Estimated seasonality function for power
Poland.
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Figure 26. Top panel: Filtered time-series of spot log-prices X(t) (gray line) and long-run log-price
level Y (t) (red line) for electric power (dataset III). Middle panel: Differences between short- and
long-term log-price levels, i.e., X(t) − φ(t) − Y (t). Bottom panel: Estimated seasonality function
for electric power (dataset III).
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Figure 27. Top panel: Filtered time-series of spot log-prices X(t) (gray line) and long-run log-price
level Y (t) (red line) for natural gas (dataset III). Middle panel: Differences between short- and
long-term log-price levels, i.e., X(t) − φ(t) − Y (t). Bottom panel: Estimated seasonality function
for natural gas (dataset III).
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