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1 Introduction

The properties of QCD radiation near partonic thresholds for the production of heavy final

states have a significant impact on a wide range of phenomenologically relevant collider

observables. Typically, if ξ is a dimensionless kinematic variable vanishing at the threshold,

differential QCD cross-sections will contain terms of the form

dσ

dξ
=

∞∑
n=0

(
αs
π

)n 2n−1∑
m=0

[
c(−1)nm

(
logm ξ

ξ

)
+

+ c(δ)n δ(ξ) + c(0)nm logm ξ + . . .

]
, (1.1)

where the ellipsis denotes terms suppressed by further powers of ξ. The first set of terms, at

leading power in ξ, originates from the singularities associated with soft and collinear gluon

emission. These singularities are universal and factorising, which leads to the possibility of

resumming the resulting logarithms to all orders in perturbation theory. The formalism to

perform this resummation is well-known, and it has been extensively applied to a plethora

of collider observables (see, for example, [1–9]). The second set of terms in eq. (1.1),

which are localised at threshold, originates mostly from singular virtual corrections to the

production amplitude. These terms can also be organised to all orders for processes which

are electroweak at tree level [10–12], albeit with reduced predictive power. The vast amount

and increased precision of LHC data, together with the lack of any striking signature for

new physics, make the third set of terms in eq. (1.1), at next-to-leading power in the

threshold parameter ξ, potentially relevant for precision Standard Model studies. Indeed,

quite a large body of work has already been devoted to this problem.

The fact that at least some NLP contributions can be understood to all orders is well

known, as a consequence of the LBKD theorem [13–15]. Further evidence for a non-trivial
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relation between LP and NLP logarithms came from the analysis of DGLAP splitting

functions in ref. [16]. Since then, and following early studies in [17, 18], several groups

have attempted to construct a systematic formalism for understanding NLP logarithms,

using a variety of methods, ranging from path integral techniques [19], to diagrammatic

approaches [20], physical evolution kernels [21–26], effective field theories [27, 28], and

other techniques [29–31]. Interestingly, the study of next-to-soft contributions to scattering

amplitudes in both gauge theory and gravity from a more formal point of view, based on

asymptotic symmetries of the S matrix, has also received a great deal of attention (see for

example [32–38]).

Recently, building on the results of [15], in ref. [39] we proposed a factorisation formula

for the Drell-Yan scattering amplitude, valid at the accuracy needed to generate NLP log-

arithms in the cross section. This formula generalises the factorisation of soft and collinear

divergences by including NLP effects, and contains the same universal functions as the

leading-power factorisation, together with a new universal radiative jet function, responsi-

ble for next-to-soft emission from a collinearly enhanced configuration. Ref. [39] evaluated

this quantity up to one-loop order for an external quark, and, using as a guideline the

calculation performed with the method of regions [40–42] in ref. [43], succeeded in repro-

ducing a set of NLP terms in the Drell-Yan cross section at NNLO, originally computed

in [44, 45].

The factorisation formula proposed in refs. [15, 39] was, however, appropriate for an

abelian theory, and could only reproduce abelian-like QCD contributions, proportional to

the color factor CnF at O(αns ). The aim of this paper is to provide a fully non-abelian

NLP factorisation formula, a generalisation from previous results which is non-trivial for a

number of reasons.

First, it is necessary to include the emission of colour-correlated gluons from outside

the hard interaction. These diagrams were called next-to-eikonal webs in refs. [19, 20],

where they were shown to be described by generalised Wilson line operators, obeying ex-

ponentiation properties similar to their leading-power counterparts. Second, the definition

of the radiative jet function must be generalised to cope with a non-abelian operator inser-

tion for the additional gluon. Third, one must address double counting of soft and collinear

regions at NLP level, a problem which occurs also at leading power, or in effective field

theory approaches [27, 28], but was easily circumvented in the abelian limit.

The structure of our paper is as follows. In section 2, we introduce a new, non-abelian

definition of the radiative jet function, in terms of a non-abelian conserved current, and

we use it to derive a complete factorisation formula for the Drell-Yan amplitude, with the

required accuracy to reproduce all NLP effects. In section 3, we compute the new radiative

jet function to one loop, which is sufficient to generate all NLP logarithms in the cross

section at NNLO. In section 4, we use these results to check that the known non-abelian

terms in the Drell-Yan K-factor up to NNLO are indeed reproduced. In section 5, we

briefly describe how our methods can also reproduce double-real emission contributions at

NNLO. In section 6 we present our conclusion and outline future work towards an effective

NLP resummation formalism.

– 2 –



J
H
E
P
1
2
(
2
0
1
6
)
1
2
1

2 The non-abelian NLP factorisation formula

2.1 Leading power factorisation

Anticipating the Drell-Yan application of section 4, we consider a quark scattering ampli-

tude involving two partons with momenta p1 and p2, which we write as

M(p1, p2) = v̄(p2)A(p1, p2)u(p1) , (2.1)

so that A has the external fermion wave functions removed. In massless QCD, A is affected

by infrared and collinear divergences, which however factorise to all orders in the form [46]

A(p1, p2) = H(pj , nj)S(βj)
2∏
i=1

J(pi, ni)

J (pi, ni)
. (2.2)

In eq. (2.2), J(pi, ni) is a jet function, collecting collinear singularities associated with

parton i: it depends on an auxiliary vector ni, as described below; this dependence cancels

with the other factors in eq. (2.2), so that the full scattering amplitude is independent of

ni, as expected. For a quark, the jet function is given by1

J(p, n)u(p) = 〈0|Φn(∞, 0)ψ(0)|p〉 , (2.3)

where the fermion field ψ(x) absorbs the external parton of momentum p, and Φn(∞, 0) is a

Wilson line in the direction of the auxiliary four vector nµ, guaranteeing gauge invariance,

and defined according to

Φv(λ2, λ1) = P exp

[
ig

∫ λ2

λ1

dλ v ·A(λv)

]
. (2.4)

The soft function S(βi) collects soft divergences, and is a correlator of Wilson lines directed

along the classical trajectories of the hard emitting particles: in fact, βi is a dimensionless

vector proportional to the four-velocity of parton i according to pi = Qβi, with Q a hard

scale. We define then

S(βi) = 〈0|Φβ2(∞, 0)Φβ1(0,−∞)|0〉 . (2.5)

The final ingredient of eq. (2.2), the eikonal jet function J (pi, ni), is responsible for sub-

tracting the double counting of soft-collinear configurations, which contribute to both the

jets and the soft function. The eikonal jet is obtained by replacing the hard line of mo-

mentum pµ in the partonic jet with a Wilson line with four-velocity βµ, yielding

J (β, n) = 〈0|Φn(∞, 0)Φβ(0,−∞)|0〉 . (2.6)

After factorising all singular (and universal) contributions, the matching to the exact am-

plitude order by order yields H, an infrared-finite, but process-dependent hard function.

Eq. (2.2) forms the starting point for describing radiation at leading power in the

threshold expansion, where the soft function corresponds to dressing the hard function

1Throughout, we leave time ordering implicit for brevity.
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with virtual gluons of 4-momentum kµ → 0, whose infrared singularities cancel those

associated with real emissions. In what follows, considering real radiation up to next-to-

soft level, it will be convenient to generalise the soft function to include sub-leading powers

of momentum in the propagators and emission vertices for virtual gluons. This can be

done by defining a next-to-soft function as

S̃(p1, p2) = 〈0|Fp2(∞, 0)Fp1(0,−∞)|0〉
∣∣
NLP

, (2.7)

where Fp is a generalised Wilson line operator, constructed in ref. [19], which generates

the required next-to-soft emission vertices. A general definition of such an operator for

generic trajectories can be given in a coordinate-space representation, and is presented

in [19]. For straight semi-infinite trajectories one can easily transform to a momentum-

space representation, given by

Fp(0,∞) = P exp

[
g

∫
ddk

(2π)d
Aµ(k)

(
− pµ

p · k
+

kµ

2p · k
− k2 pµ

2(p · k)2
− ikνΣνµ

p · k

)
+

∫
ddk

(2π)d

∫
ddl

(2π)d
Aµ(k)Aν(l)

(
ηµν

2p · (k+l)
− pν lµp · k + pµkνp · l

2(p · l)(p · k)[p · (k+l)]

+
(k · l)pµpν

2(p · l)(p · k)[p · (k+l)]
− iΣµν

p · (k+l)

)]
.

(2.8)

Note that we have given the result for a fermion, where Σµν = i
4 [γµ, γν ] is the appropri-

ate Lorentz-group spin generator. The subscript on the r.h.s. of eq. (2.7) indicates than

one should truncate the resulting expression to include at most one next-to-soft vertex.

Correspondingly, one may define a next-to-soft jet function

J̃ (p, n) = 〈0|Φn(∞, 0)Fp(0,−∞)|0〉
∣∣
NLP

. (2.9)

With these definitions, the non-radiative amplitude reads

A(p1, p2) = H̃(pj , nj) S̃(pj)
2∏
i=1

J(pi, ni)

J̃ (pi, ni)
, (2.10)

as schematically depicted in figure 1(a). Just as in eq. (2.2), H̃ is obtained by matching

to the full amplitude on the left-hand side. It differs from the function H appearing

in the factorisation formula in eq. (2.2), as next-to-soft effects have now been explicitly

factored out.

2.2 Real radiation at next-to-leading power

Let us now consider adding the radiation of an additional (next-to-)soft gluon to the am-

plitude in eq. (2.10). The emission of the extra gluon can be assigned to different factors

in the non-radiative amplitude, as shown in figure 1(b,c,d). Proceeding by analogy with

the treatment of the abelian case [15, 39], we will start by giving a formal definition of the

contribution to the amplitude due to radiation from a jet, say J(p1, n1) ≡ J1. We write

AJ1µ,a(p1, p2, k) = H̃(p1 − k, p2, nj)
S̃(pj)∏2

k=1 J̃ (pk, nk)
Jµ,a(p1, n1, k) J(p2, n2) , (2.11)

– 4 –
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(a) (b) (c) (d)

J

J

J

J

J

J

~

J

J

~~ ~~ ~~ ~~

Figure 1. (a) Schematic factorisation of a two-point amplitude. H̃ and S̃ are the hard and next-

to-soft functions, and J is a non-radiative jet function; next-to-soft subtractions to J are omitted

for simplicity. (b) Emission of a gluon from a jet (to be described by a radiative jet function Jµ);

(c) emission from the hard function. (d) Emission through a radiative next-to-soft function S̃µ.

where µ and a are the Lorentz and the color adjoint indices of the emitted gluon, respec-

tively, and we have introduced the radiative jet function, defined, as in refs. [15, 39], by

Jµ,a(p, n, k)u(p) =

∫
ddy e−i(p−k)·y 〈0|Φn(∞, y)ψ(y) jµ,a(0)|p〉 . (2.12)

The crucial issue in generalising the radiative jet function to the non-abelian theory is the

definition of the non-abelian gauge current jµ,a(x). First of all, it must be a conserved

current, ∂µj
µ
a = 0, in order for the radiative jet to obey the Ward identity

kµJ
µ,a(p, n, k) = gTaJ(p, n) , (2.13)

which is the natural generalisation of the abelian case, and is a necessary ingredient for the

proof of our factorisation formula. Furthermore, we must require that the matrix element

in eq. (2.12) should fully reproduce the relevant terms in the amplitude when the (next-

to-)soft gluon is radiated from virtual gluons inside the jet. It turns out that the standard,

textbook definition of the non-abelian Noether current (see, for example, ref. [47]) does not

have this property. One must however keep in mind that Noether currents are not uniquely

defined: in general, it is possible to add improvement terms (see, for example, ref. [48])

which do not spoil charge conservation but may improve other symmetry properties of

the operator. In our case, we have found that an improvement term indeed exists which

reproduces all relevant terms in diagrams where the (next-to-)soft gluon is emitted though

a three-gluon vertex. Our choice for the non-abelian current is then

jµa (x) = g
{
− ψ(x) γµTa ψ(x) + f bc

a

[
Fµνc (x)Aν b(x) + ∂ν

(
Aµb (x)Aνc (x)

)]}
, (2.14)

which is indeed conserved, as one can readily verify. Note that the last term in eq. (2.14)

(the ‘improvement’) does not contribute to ∂µj
µ
a .
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Our next step is to define an operator matrix element describing (next-to-)soft real

gluon radiation from the soft factor of the non-radiative amplitude, as depicted in fig-

ure 1(d). A natural choice is

ε∗(λ)µ (k) S̃µa (p1, p2, k) = 〈k, λ, a|Fp2(∞, 0)Fp1(0,−∞)|0〉
∣∣
NLP

. (2.15)

This definition is similar to the non-radiative function of eq. (2.7), but one of the gluons is

now real rather than virtual. A similar quantity is defined at leading power in refs. [49–53].

The radiative next-to-soft function obeys the Ward identity

kµS̃
µ(p1, p2, k) = 0 . (2.16)

Following ref. [19], the radiative next-to-soft function can be shown to exponentiate, and it

can be evaluated using next-to-soft webs, generalising the methods used at leading power.

These webs can connect all hard partons in the process, thus they are not captured by the

emission of gluons from inside single-parton jets. Nevertheless, there is clearly a double

counting of contributions between the jets and the next-to-soft function, which is directly

analogous to the double counting of soft and collinear contributions in eq. (2.2). We may

correct for this by subtracting from the jet emission contributions defined in eq. (2.11)

their next-to-soft expansion, according to

AJiµ,a(pi, pj , k)→ AJiµ,a(pi, pj , k)−AJ̃iµ,a(pi, pj , k) , (2.17)

where the subtraction term on the right-hand side is simply defined as the next-to-soft

approximation to the full radiative jet function. Given that the overlap between the soft

and jet functions must be separately gauge-invariant, the Ward identity of eq. (2.16) implies

kµAJ̃iµ,a(pi, pj , k) = 0 . (2.18)

Having precisely defined the jet and next-to-soft contributions to the radiative amplitude

in terms of operator matrix elements, and having taken care to subtract double counted

contributions, the emissions from the hard sub-process, which we denote by AH̃µ,a and depict

in figure 1(c), are defined by matching to the full radiative amplitude Aµ,a. We will discuss

their properties in the following subsection.

2.3 Derivation of the non-abelian factorisation formula

Combining the above ingredients gives a total radiative amplitude

Aµ,a(pi, k) = AJµ,a(pi, ni, k)−AJ̃µ,a(pi, ni, k) +AH̃µ,a(pi, ni, k)

+ S̃µ,a(pi, k)

(
H̃(pi, ni)

2∏
i=1

J(pi, ni)

J̃ (pi, ni)

)
, (2.19)

where we defined

AJµ,a(p1, n1, p2, n2, k) ≡
2∑
i=1

AJiµ,a(pi, ni, k) , (2.20)
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and similarly for AJ̃µ,a. The complete radiative amplitude in eq. (2.19) satisfies the Ward

identity

kµAaµ(p1, p2, k) = 0 , (2.21)

which, together with eqs. (2.13), (2.16), (2.18) implies the relation

kµAH̃µ,a = −kµAJµ,a . (2.22)

Taylor expanding eq. (2.11) and using eq. (2.22) and colour conservation, in the form∑
iTi = 0, one finds

AH̃µ,a(pj , nj , k) =

2∑
i=1

gTa
i

[
∂

∂pµi
H̃(pj , nj)

]
S̃(pj)

2∏
k=1

J(pk, nk)

J̃ (pk, nk)
. (2.23)

In order to characterise the radiative jet functions it is convenient, as in refs. [15, 39] to

introduce polarisation tensors [54]

ηµν = Gµνi +Kµν
i , Kµν

i =
(2pi − k)ν

2pi · k − k2
kµ, (2.24)

so that the total radiative amplitude is given by the sum of “K-polarised” and “G-

polarised” gluons. Considering first the K-projection of the jet contribution to the am-

plitude, and using eqs. (2.11), (2.13), (2.18), we find

2∑
i=1

(
AJiν,a −AJ̃iν,a

)
Kνµ
i =

2∑
i=1

gTa,i

[
(2pi − k)µ

2pi · k − k2
H̃(pj , nj)S̃(pj)

∏
k

J(pk, nk)

J̃ (pk, nk)

−
(
Kνµ
i

∂

∂pνi
H̃(pj , nj)

)
S̃(pj)

∏
k

J(pk, nk)

J̃ (pk, nk)

]
, (2.25)

where we have again Taylor expanded in k. The emission of a G-gluon from a jet, on the

other hand, is given by

2∑
i=1

AJiν,aG
νµ
i =

2∑
i=1

Gνµi H̃(pj , nj) Jν,a(pi, ni, k)
S̃(pj)∏2

k=1 J̃ (pk, nk)

∏
j 6=i

J(pj , nj) , (2.26)

where we set k → 0 in the hard function, retaining only the leading term in its Taylor

expansion, owing to the fact that the G tensor acts on terms proportional to pµi to make

them O(k) [15, 39]. Combining this with the K-gluon emissions, with the G-gluon contri-

bution from the subtraction term, and with emissions from the hard function, as given by

eq. (2.23), we find that the total amplitude, to the required accuracy, becomes2

Aµ,a(pj , k) =

2∑
i=1

{[
1

2
S̃µ,a(pj , k) H̃(pj , nj) + gTa

iG
νµ
i

(
∂

∂pνi
H̃(pj , nj)

)
S̃(pj)

]
×
∏
j

J(pj , nj)

J̃ (pj , nj)
+ H̃(pj , nj)S̃(pj)

Jµ,a(pi, ni, k)

J̃ (pi, ni)

∏
j 6=i

J(pj , nj)

J̃ (pj , nj)
−AJ̃iµ,a

}
,

(2.27)

2For convenience, in what follows, we have chosen to keep terms that vanish due to the on-shell condition

for the emitted gluon, k2 = 0, and due to the physical polarisation condition, kµε
µ(k) = 0.
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where the factor of 1/2 in the first term is due to the fact that we have placed this inside

the sum over hard particles, for brevity.

Reconstructing the expression for the non-radiative amplitude given in eq. (2.10), we

may express eq. (2.27) as

Aµ,a(pj , k) =
2∑
i=1

{[
1

2

S̃µ,a(pj , k)

S̃(pj)
+ gTi,aG

ν
i,µ

∂

∂pνi
+
Jµ,a(pi, ni, k)

J(pi, ni)
(2.28)

− gTi,aG
ν
i,µ

∂

∂pνi
log

(
J(pi, ni)

J̃ (pi, ni)

)]
A(pj)−AJ̃iµ,a(pj , k)

}
,

where we have used eq. (2.10) to replace derivatives of the hard interaction with those acting

on the full non-radiative amplitude and jet functions. Eq. (2.28) is our final non-abelian

factorisation formula, capturing all NLP contributions near threshold. A few comments

are in order.

• The first two terms in eq. (2.28) contain next-to-eikonal webs, composed of generalised

Wilson lines [19], dressing the non-radiative amplitude, together with a derivative

operator. These terms provide a non-abelian version of the original Low’s theorem

(in the absence of collinear enhancements).

• The remaining terms in square brackets organise emissions from jet functions, gen-

eralising to the non-abelian theory the results of [15, 39].

• The last term in eq. (2.28) corrects the radiative jet factors for the double counting

of contributions between the radiative jets and next-to-soft functions.

• Eq. (2.28) describes the amplitude stripped of external wave functions for the hard

partons. To build a cross section, these must be reinstated, as in eq. (2.1), noting

that the derivative in eq. (2.28) does not act on the wave functions.

As discussed in refs. [39, 43], considerable simplifications occur in eq. (2.28) upon choosing

the auxiliary vectors ni to be null, n2i = 0. In this case, one may work in a renormalisa-

tion scheme such that the non-radiative soft and jet functions are unity, to all orders in

perturbation theory. Eq. (2.28) then becomes

Aµ,a(pj , k) =

2∑
i=1

(
1

2
S̃µ,a(pj , k) + gTi,aG

ν
i,µ

∂

∂pνi
+ Jµ,a(pi, ni, k)

)
A(pj)−AJ̃µ,a(pj , k) .

(2.29)

As in refs. [39, 43], in the detailed calculations below we will further make the specific

choice of reference vectors

n1 = p2 , n2 = p1 , (2.30)

whose interpretation is that ni is the anti-collinear direction associated with pi. This is

physically motivated by the fact that p1 and p2 are the only momenta in the problem

at hand, and it allows to make direct contact with the method-of-regions calculation of

ref. [43].
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(a) (b) (c)

p

n
k1

k2

n

k2

p

(d)

(e) (f) (g) (h)

Figure 2. Diagrams contributing to radiative quark jet function: (a) tree level; (b)–(h) one-loop.

3 The non-abelian radiative jet function

Before testing eq. (2.29) in Drell-Yan production, we must first calculate the non-abelian

radiative quark jet function, defined in eq. (2.12). To perform a test at NNLO, we need to

compute Jµ,a at one loop, which we do for null n, in order to use the result in eq. (2.29).

Relevant Feynman diagrams are shown in figure 2. Defining the perturbative coefficients

of Jµ,a via

Jaµ(p, n, k) = gTa
∞∑
n=0

(
αs
4π

)n
J (n)
ν (p, n, k) , (3.1)

the diagram of figure 2(a) gives

J (0)
µ (p, n, k) = − pµ

p · k
+

kµ
2p · k

−
i kαΣα

µ

p · k
. (3.2)

One-loop diagrams are shown in figure 2(b)–(h). Notice that we are computing the bare

Jµ,a, as required in eq. (2.29), following the discussion in ref. [39]. We can then use the

fact that the integral for (h) is scaleless for null n and thus vanishing. Similarly, we have

omitted external-leg vacuum polarisations dressing the tree-level diagram. The result can

be cast in the form

J (1)
µ = (−2p · k)−ε

[
CFJ

(1)
µ,F + CAJ

(1)
µ,A,coll.

]
+

(
2p · n

(−2p · k)(−2n · k)

)ε
CA J

(1)
µ,A,soft . (3.3)

Defining the kinematic variables

t = −2p · k , nµp =
nµ

2n · p
, nµk =

nµ

2n · k
, r =

n · k
n · p

, (3.4)
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we find that the coefficients in eq. (3.3) can be written as

J
(1)
µ,F = (1 + 2ε)

k/

t
γµ + (2 + 6ε)n/pγ

µ +

[
2

ε
− 2− ε(8 + ζ2)

]
kµ

t

+

[
4

ε
+ 4 + 2ε(2− ζ2)

]
nµp +

[
4

ε
+ 8− 2ε(−8 + ζ2)

]
r

t
pµ − 4(1 + 3ε)

k/n/p
t
pµ ;

J
(1)
µ,A,coll. = −(1 + 2ε)

k/

t
γµ +

[
1

ε
+ 1 + ε

(
1− ζ2

2

)]
n/p γ

µ − 4nµp

−
[
− 2

ε
+ 2 + ε(−2 + ζ2)

]
r

t
pµ +

[
− 2

ε
− 2 + ε(−2 + ζ2)

]
k/n/p
t
pµ

+

[
− 1

ε2
− 3

ε
− 3 +

ζ2
2

+ ε

(
− 4 +

3

2
ζ2 +

7

3
ζ3

)]
kµ

t
;

J
(1)
µ,A,soft =

[
− 2

ε
− 4 + ε(−8− ζ2)

]
n/p γ

µ +

{
−
[

2

ε
+ 4 + ε(8 + ζ2)

]
nµk

+

[
2

ε
+ 4 + ε(8 + ζ2)

]
pµ

t
−
[

1

ε2
+

2

ε
+ 4 +

ζ2
2

+ ε

(
8 + ζ2 −

7

3
ζ3

)]
kµ

rt

}
k/n/p

+

[
1

ε2
+

2

ε
+ 4 +

ζ2
2

+ ε

(
8 + ζ2 −

7

3
ζ3

)]
kµ

t
+

(
1

ε2
+
ζ2
2
− 7

3
ε ζ3

)
k/

t
γµ

+

{
− 2

ε2
− ζ2 +

14

3
ε ζ3 −

[
2

ε
+ 4 + ε(8 + ζ2)

]
r

}
pµ

t

+

[
2

ε
+ 4 + ε(8 + ζ2)−

(
2

ε2
+ ζ2 −

14

3
ε ζ3

)
1

r

]
nµp . (3.5)

The first two terms in eq. (3.3) are accompanied by a factor (2p ·k)−ε, corresponding to the

collinear scale associated with radiation from a jet [39, 43]. The third term in eq. (3.3), on

the other hand, contains a different ratio of scales involving the auxiliary vector n. Note

that for the choices in eq. (2.30) the ratio for both jets becomes(
2p · n

(−2p · k)(−2n · k)

)ε
→
(

2p1 · p2
(−2p1 · k)(−2p2 · k)

)ε
. (3.6)

This is the same dependence arising in (next-to-)soft webs connecting both external partons

(shown for example in figure 1(d)). Terms with this scale dependence thus constitute the

double counting of overlapping (next-to-)soft and collinear regions for the virtual gluon

momentum, to be removed by the subtraction term AJ̃µ,a. In our present calculation, one

may interpret this overlap diagrammatically by defining a next-to-soft radiative jet function

J̃µ,a(p, k, n). This function appears in the subtraction term AJ̃µ,a instead of the full radiative

jet function used in the definition of AJiµ,a, eq. (2.11). By analogy with eq. (2.11), we then

write

AJ̃1µ,a(p1, p2, k) = H̃(p1, p2, nj)
S̃(pj)∏2

k=1 J̃ (pk, nk)
J̃µ,a(p1, n1, k) J(p2, n2) . (3.7)

The function J̃µ,a can be obtained from the diagrams for the full radiative jet, by replacing

the emission vertices on the p leg with the soft or next-to-soft Feynman rules arising

from eq. (2.8), and including at most one next-to-soft vertex. At tree-level (using the
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p

n

Figure 3. Example diagrams for the next-to-soft radiaive jet function, where the p leg has been

replaced by a generalised Wilson line, and • denotes a next-to-soft emission vertex, arising from

eq. (2.8).

normalisation of eq. (3.1)) one simply finds J̃ (0)
µ (p, n, k) = J

(0)
µ (p, n, k). At the one-loop

level, one encounters diagrams such as those in figure 3: in fact, only the diagrams in

figure 3(a) and (b) are non-vanishing, By analogy with eq. (3.3), one can write the result

in the form

J̃ (1)
µ = (−2p · k)−ε

[
CF J̃ (1)

µ,F + CAJ̃ (1)
µ,A,coll.

]
+

(
2p · n

(−2p · k)(−2n · k)

)ε
CA J̃ (1)

µ,A,soft , (3.8)

and one finds that

J̃ (1)
µ,F = J̃ (1)

µ,A,coll. = 0 , J̃ (1)
µ,A,soft = J

(1)
µ,A,soft , (3.9)

so that the next-to-soft radiative jet function reproduces precisely the third term in

eq. (3.3): subtracting it from the full jet leaves only collinear contributions, as required.

According to eq. (2.29), for the complete result one also needs the radiative next-to-soft

function S̃µ at one-loop. The relevant diagrams are similar to those entering the next-to-

soft radiative jet function. The leading power soft diagrams can be obtained simply by

relabelling p → p1, n → p2. For the next-to-soft contribution, there are two sets of

diagrams: those where the next-to-soft emission vertex is on leg p1, and those where it is

on leg p2. One may then write S̃µ = S̃µE + S̃µNE, with

S̃µE = J̃ µE
∣∣
p→p1,n→p2 , S̃µNE = J̃ µNE

∣∣
p→p1,n→p2 + J̃ µNE

∣∣
p→p2,n→p1 , (3.10)

where the subscripts E and NE refer to eikonal and next-to-eikonal contributions respec-

tively.

4 Application to Drell-Yan production

We now have all ingredients to verify eq. (2.29) in the Drell-Yan process

q(p1) + q̄(p2)→ V ∗(Q) , (4.1)

where q and q̄ denote a quark and antiquark respectively, V ∗ an off-shell vector boson, and

arguments label 4-momenta. At cross-section level, all LP and NLP threshold logarithms

are associated with real emission of soft or next-to-soft gluons; virtual gluons, however,
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can be hard and collinear, thus loop corrections test all ingredients in eq. (2.28). As usual,

one defines the threshold variable z = Q2/s, representing the fraction of available energy

carried by the final state vector boson; the threshold limit then corresponds to z → 1. The

K-factor at fixed order in perturbation theory is defined by

K(n)(z) =
1

σ(0)
dσ(n)(z)

dz
, (4.2)

with σ(n) the n-loop cross section. As was the case in [39, 43], the first non-trivial test of

eq. (2.28) is to reproduce the real-virtual contribution to the NNLO K-factor. To do so,

we need the tree-level and one-loop amplitudes with one real emission. Using eq. (2.28),

we find

A(0)
µ,a = g

[
−T1,aA(0)

(
p1,µ
p1 · k

+
ikαΣα

µ

p1 · k

)
+ T2,a

(
p2,µ
p2 · k

+
ikαΣα

µ

p2 · k

)
A(0)

]
, (4.3)

where A(0) is the leading order non-radiative amplitude, stripped of external spinors, and

we have used the tree-level radiative jet function in eq. (3.2), as well as the physical

polarisation condition kµε
µ(k) = 0. We have also defined colour generators Ta

1,2 acting on

the p1, p2 legs respectively. For the one-loop amplitude, we use eq. (2.29), which gives

A(1)
µ,a =

2∑
i=1

{[
1

2
S̃(0)µ,a+gTi,aG

ν
i,µ

∂

∂pνi
+J (0)

µ,a−J̃ (0)
µ,a

]
A(1)+

[
1

2
S̃(1)µ,a+J (1)

µ,a−J̃ (1)
µ,a

]
A(0)

}
, (4.4)

where in the second term we have used the fact that the derivative of the non-radiative

tree-level amplitude vanishes [39]. Eq. (4.4) can be further simplified by noting that, at

tree level, the next-to-soft function contribution precisely cancels the next-to-soft radiative

jet contribution. The only missing ingredient at this point is the derivative of the one-

loop non-radiative amplitude, which was already derived in ref. [39]. For example, the

contribution from the p1 leg is given by

Gνµ1
∂A(1)

∂pν1
= − ε

p1 · p2

(
− pµ1 +

p2 · k
p1 · k

pµ2

)
A(1). (4.5)

It is straightforward to assemble all the ingredients,3 to compute the full real-virtual con-

tribution NNLO K-factor. We find

K(2)
rv (z) =

(
αs
4π

)2{
C2
F

[
32D0(z)− 32

ε3
+
−64D1(z) + 48D0(z) + 64L(z)− 96

ε2

+
64D2(z)− 96D1(z) + 128D0(z)− 64L2(z) + 208L(z)− 196

ε
− 128

3
D3(z)

+ 96D2(z)− 256D1(z) + 256D0(z) +
128

3
L3(z)− 232L2(z) + 412L(z)− 408

]
+ CACF

[
8D0(z)−8

ε3
+
−32D1(z)+32L(z)−16

ε2
+

64D2(z)−64L2(z)+64L(z)+20

ε

− 256

3
D3(z) +

256

3
L3(z)− 128L2(z)− 60L(z) + 8

]}
, (4.6)

3Results for the non-radiative amplitude up to one-loop, as well as parametrisations of phase space

integrals in the present notation, may be found in ref. [39]. In the result we present, as was done in ref. [39],

we neglect terms involving transcendental constants for brevity, and we do not include δ-function terms,

which mix with the fully virtual two-loop contribution.
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where

Di(z) =

(
logi(1− z)

(1− z)

)
+

, L(z) = log(1− z) . (4.7)

For comparison with the exact two-loop calculation, we note that the real-virtual contri-

bution to the NNLO K-factor is not separately available in the literature [55, 56]. We have

performed an independent calculation of this result, similar to the one carried out for the

abelian-like contributions in ref. [39]. We find that eq. (4.6) reproduces exactly the full

NNLO result, when the latter is truncated to NLP in (1 − z), including non-logarithmic

contributions.

5 Double real emission contributions

In section 4, we have focused on a single additional gluon emission dressing the non-

radiative amplitude. Although a full factorisation formula for multiple emissions is beyond

the scope of this paper, we can nevertheless obtain the double-real emission contributions

to Drell-Yan production at NNLO by noting that all purely real-emission near-threshold

contributions are (next-to-)soft in nature, with no hard collinear terms. This fact was

already exploited in ref. [20], where next-to-soft Feynman rules were employed to compute

the abelian part of the NNLO K-factor for double real emission. That calculation can easily

be reproduced and generalised to the full non-abelian theory in the present framework. In

essence, all relevant terms can be obtained by dressing the Born amplitude with (next-

to-)soft webs. Formally, by analogy with eq. (2.15), we may define a double radiative

next-to-soft function according to

ε∗µ,λ1(k1) ε
∗
ν,λ2(k2) S̃µν(p1, p2, k1, k2) = 〈k1, λ1; k2, λ2|Fp2(∞, 0)Fp1(0,−∞)|0〉

∣∣
NLP

. (5.1)

A sampling of soft and next-to-soft diagrams resulting from this definition are shown in

figure 4. We have evaluated all diagrams using the next-to-soft Feynman rules arising from

eq. (2.8), and we have integrated over the three-body phase space as in refs. [20, 55]. The

result for the double real emission contribution to the NNLO K factor is

K(2)
rr (z) =

(
αs
4π

)2{
C2
F

[
− 32D0(z)− 32

ε3
+

128D1(z)− 128L(z) + 80

ε2

− 256D2(z)− 256L2(z) + 320L(z)

ε
+

1024

3
D3(z)− 1024

3
L3(z) + 640L2(z)

]
+ CACF

[
− 8D0(z)− 8

ε3
+

1

ε2

(
32D1(z)− 44

3
D0(z)− 32L(z) +

92

3

)
+

1

ε

(
− 64D2(z)+

176

3
D1(z)− 268

9
D0(z)+64L2(z)− 368

3
L(z)+

520

9

)
+

256

3
D3(z)− 352

3
D2(z) +

1072

9
D1(z)− 1616

27
D0(z)

− 256

3
L3(z) +

736

3
L2(z)− 2080

9
L(z) +

2912

27

]
+ nfCF

[
8D0(z)− 8

3ε2
+

1

ε

(
− 32

3
D1(z) +

40

9
D0(z) +

32

3
L(z)− 112

9

)
+

64

3
D2(z)− 160

9
D1(z) +

224

27
D0(z)− 64

3
L2(z) +

448

9
L(z)− 656

27

]}
,

(5.2)
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Figure 4. Sample diagrams contributing to the double radiative next-to-soft function, where •
denotes a next-to-eikonal Feynman rule, and all other couplings to the external lines are eikonal.

which again agrees with an exact calculation, including non-logarithmic NLP terms. It is

not in fact surprising that this happens: one may derive the next-to-soft Feynman rules by

systematically expanding the exact unintegrated amplitude in the emitted gluon momenta

(following the diagrammatic approach of ref. [20]). Thus, the effective approach and the

full calculation agree at the amplitude level by construction. We have also checked that,

upon combining our results for double real emission and real-virtual corrections with the

well-known two-loop virtual corrections, and with mass factorisation, the complete result

of refs. [55, 56] is reproduced, to the expected accuracy.

6 Conclusion

In this paper, we have derived an all-order factorisation formula, eq. (2.28), organising at

the amplitude level all contributions which give rise to threshold logarithms up to next-to

leading power. The formula has been derived for the Drell-Yan process, but we expect

it to apply, with minor modifications, for all processes involving the annihilation of QCD

partons into electroweak final states, such as (multiple) Higgs production via gluon fusion

or multiple vector boson production. Eq. (2.28) generalises the well-known leading power

soft-collinear factorisation formula described in ref. [46], as well as previous formulae that

included only abelian-like contributions [15, 39]. It contains similar universal functions,

namely the leading-power soft and jet functions, together with a radiative jet function. We

have generalised the definition of the latter to a non-abelian theory, and calculated this

quantity at one-loop order for quark jets.

We have verified our formula by reproducing known threshold logarithms at NNLO

in Drell-Yan production, which is a non-trivial check at loop-level since both collinear

and soft momentum regions are tested. We discussed how to remove the double counting

of next-to-soft and collinear contributions via a subtraction term, by defining a next-to-

soft radiative jet function. We note that a more general definition of this function, in

particular for general values of the auxiliary vector n, deserves further study, which we

postpone to future work. As was the case for the abelian-like contributions in previous

work, we find that there is a non-vanishing loop-level contribution to NLP logarithms from

hard collinear configurations of virtual gluons: this leads to a breaking of the next-to-soft

theorems discussed for example in refs. [33, 34], at loop level.

A new feature of the present work is the role of next-to-soft web diagrams, describing

the correlated emission of gluons external to the hard interaction. Using next-to-soft webs,
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we reproduce the double real emission contributions in Drell-Yan production, which are

dominated near threshold by radiation which is always (next-to-)soft, whether or not it is

collinear. We note that, as discussed in detail in refs. [19, 20], the web language is poten-

tially much more powerful, implying formal exponentiation of next-to-soft contributions in

a much more general context, as discussed for example in refs. [57–67]. We conclude that

eq. (2.28) is an important step towards a general resummation procedure for NLP threshold

logarithms. Further necessary ingredients include the calculation of radiative jet functions

for external gluon jets, and the elucidation of subleading collinear effects in processes with

final state parton jets (see, for example [68]). These developments will be the subject of

future work.
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