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We simulate shear flow past a stationary monolayer of spherical particles embedded in a
flat gas-liquid interface. This problem is relevant to the understanding of the microhydro-
dynamics of particle-laden interfacial structures, including particle-laden drops, bubbles
and foams. The combination of the free–shear condition at the gas–liquid interface and
the no–slip condition at the particle surfaces gives rise to a velocity slip at the particle–
laden interface. We study the characteristics of the flow near the monolayer, focusing on
slip velocity, slip length and interfacial shear stress. Two microstructures are compared:
a square array, and a reticulated array mimicking a percolating network of aggregated
particles. We demonstrate that the scaling laws for the dependence of the slip length
on solid area fraction developed for flow past superhydrophobic microstructured surfaces
apply to the case of interfacial particles. The calculated slip lengths are in general smaller
that those reported for microstructured superhydrophobic surfaces. This differences,
which is due to the significant protrusion of the spherical particles in the liquid, can be
accounted for in the case of the square array by an approximate argument. For a given
area fraction, the reticulated array yields a larger slip length than the square array. We
analyse the hydrodynamic forces acting on the particles, and the corresponding tangential
stress exerted by the bulk “subphase”.

1. Introduction

In applications and natural settings gas–liquid interfaces are often found covered with
particulate material. Fouling of gas–liquid interfaces can occur in unsaturated porous
media or environmental bubbly flows, owing to the presence of fine grains and biocolloids
that adhere to the fluid interface (Shang et al. 2009; Weber et al. 1983). In applications,
rigid particles or globular proteins are often added as surface active agents to change the
mechanical properties of the interface or induce stabilisation against coalescence (Tambe
& Sharma 1994; Binks 2002; Stancik et al. 2004).
As for molecular surfactants, the presence of the embedded solid particles alters the

boundary conditions at a fluid interface (for experimental evidence see e.g. Hunter et al.
(2008) and Kotula & Anna (2012); for a theoretical analysis, see Deemer & Slattery
(1978)). These boundary conditions for the bulk fluid are to be applied to the particle–
laden fluid interface, i.e. the composite interface formed by the particles and the fluid
interface in which the particles are embedded. In the absence of mass transfer effects, the
no-penetration condition at the particle–laden interface is expected to hold with good
accuracy. However, the boundary condition for the velocity tangential to the particle–
laden fluid interface must be modified to account for the additional resistance caused by
the presence of the particles to the motion of the adjacent fluid layers. This additional
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Figure 1: Examples of flow problems involving gas-liquid particle-laden interfaces where
significant particle–fluid velocity slip is expected: from left to right, a rising particle-
coated bubble (Weber et al. 1983), liquid drainage in particle–laden thin films (Bournival
et al. 2015; Stancik et al. 2004; Hunter et al. 2008), formation of particle-coated bubbles
in a microfluidic device (Subramaniam et al. 2005; Kotula & Anna 2012).

resistance is expected to be particularly significant when a significant velocity difference
occurs between the particle–laden fluid interface and the adjacent fluid (figure 1).
In this paper we simulate shear flow past a gas-liquid interface containing a monolayer

of spherical particles, for the case in which the particle–laden fluid interface is flat and
the monolayer is stationary (or moving with constant velocity if a change of reference is
accounted for). All the simulations are carried out in the Stokes flow limit. The simulation
results allow to gain insights into the dependence of the slip length parameter appearing
in a partial slip boundary condition for the particle–laden interface on the macroscopic
flow variables and particle distribution. Such boundary condition could be applied to
problems related to froth flotation (Subrahmanyam & Forssberg 1988), solid stabilised
foams and emulsions (Horozov 2008; Martinez et al. 2008) and spray-drying (Tsapis et al.
2005).
Recently, the statics and dynamics of particles embedded in fluid interfaces has been

subject to increasing interest. Singh & Joseph (2005) studied the equilibrium condition
for particles supported by surface tension at a horizontal fluid interface, as a function
of particle weight and contact angle. Under the effect of gravity particles induce a
distortion of the fluid interface whose amplitude is proportional to the magnitude of
the particle weight. For particles in the size range of typical colloids (a < 10µm), the
particle weight is orders of magnitude smaller than the capillary force on the particle.
As a consequence the interface around the particle can be considered locally flat and
unaffected by the gravitational force acting on the particle. This notion can be generalised
to non-horizontal particle–laden interfaces. For curved particle–laden fluid interfaces,
the composite interface can be considered locally flat if the particle radius is small in
comparison to the radius of curvature of the particle–laden interface. For a locally flat
interface, the degree of protrusion of a solid particles in the liquid phase is only a function
of the contact angle θc and the particle radius (Rapacchietta & Neumann 1977).
The drag forces on single spheres embedded in fluid-fluid interfaces has been studied

by several authors. For gas-liquid interfaces, the drag force is a monotonic function of
the degree of protrusion of the particle in the liquid phase (Petkov et al. 1995; Danov
et al. 2000; Fischer et al. 2006). When θc = 90◦, owing to symmetry, the drag on an
isolated sphered in a uniform flow is exactly half the Stokes drag for a fully–immersed
sphere. A particle embedded in a gas–liquid interface and subject to a shear flow will
also experience a hydrodynamic torque and may rotate (Pozrikidis 2007). However, effects
due to rotation, which depend on the shear rate, are expected to be subdominant with
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respect to those due to relative translation between the particle and the surrounding
fluid; for small particles contact line pinning may prevent rotation completely, and this is
a situation often found in practice (Dörr et al. 2016). Only a few studies have investigated
the hydrodynamics of multiple interfacial particles. These studies are typically concerned
with the dynamics of small clusters of particles (Singh & Joseph 2005; Dani et al. 2015),
or to the macroscopic effect of the collective motion of many particles on the dynamics
of liquid–liquid interfacial structures (Frijters et al. 2012). To the best of our knowledge,
the interfacial drag on multiple particles subject to shear flow and the characteristics of
slip flow for this flow configuration have not been considered in the literature.
The flow past a stationary monolayer of spheres embedded in a gas–liquid interface

bears obvious similarities to flow past a microstructured superhydrophobic surface.
In both cases one can define a composite surface composed of free–slip and no–slip
“patches”. From the point of view of continuum modelling, i.e. considering flow variables
on a scale much larger than the particles, the boundary condition at such composite
surface is expected to be a linear combination of the boundary conditions that are
appropriate for the solid and fluid regions. Composite free–slip/no–slip interfaces indeed
have been successfully modelled through a Navier slip boundary condition

λ 〈γ̇〉s = 〈u〉s , (1.1)

where 〈γ̇〉s is the bulk shear rate at the interface, 〈u〉s is the interfacial slip velocity, and
λ is the slip length. For superhydrophobic surfaces, the dependence of λ on the geometry
of the microstructure has been studied extensively (Rothstein 2010): λ is a function
of the size of the microstructural elements, the area fraction covered by the solid, and
the arrangement of the microstructural elements in the slip plane (Ybert et al. 2007;
Sbragaglia & Prosperetti 2007; Lauga & Stone 2003; Ng & Wang 2009). In this paper we
investigate the suitability of boundary condition (1.1) forl flat particle-laden gas-liquid
interfaces; results for flat interfaces are relevant to flow situations in which the radius
of curvature of the interface is much larger than the characteristic particle radius. We
characterise the slip flow past a monolayer of stationary spherical particles for a specific
contact angle, θc = 90◦, and investigate the dependence of λ on relevant parameters for
two cases: a square array, and a reticulated array in which the particles are distributed
according to a mesh–like arrangement. These two cases are idealisations of two limiting
cases found in practice (Aveyard et al. 2000) of monolayers constituted by particles well
dispersed in the interface owing to interparticle repulsion, and monolayers constituted
by particles forming two–dimensional percolating networks owing to particle–particle
attraction, respectively.
The neutrally–wetting case θc = 90◦ studied here has practical relevance. In applica-

tions it is indeed desirable to have a contact angle close to 90◦, as this limiting angle
gives the strongest adhesion of the particle to the interface against desorption in either
of the two adjacent fluids (Binks & Horozov 2006).

2. Problem formulation

We model shear flow past a stationary monolayer of spherical particles of radius a
embedded in a flat air-liquid interface for a contact angle of 90◦ (figure 2). The fluid is
set in motion by a flat wall located at a distance d from the monolayer and translating
with velocity U with respect to the spheres. For large values of d the liquid can be
considered to be bounded by the particle–laden interface only. In this limit we obtain
asymptotic results that depend on the macroscopic bulk shear rate, and not on d directly.
To simulate the flow configuration described above, we employ an expedient that allows
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Figure 2: We simulate a stationary monolayer of particles half–immersed in a flat gas-
liquid interface. The fluid is sheared by a moving wall located at a distance d from the
monolayer and moving with constant velocity U . For large values of d our results converge
to the asymptotic limit in which the flow near the monolayer depends on the macroscopic
shear rate induced by the moving wall, but not on d directly.

to use a fast solver for finite-size particles in bulk flows to simulate a particle–laden gas–
liquid interface. We simulate the flow past a monolayer of spherical particles completely
embedded in the liquid and placed at the center of a two-dimensional channel. The
channel walls translate parallel to the monolayer with velocity U . Because the air–water
free–shear interface is a plane of symmetry for the flow, the flow below the monolayer
with the fully–immersed particles is identical to the flow in which the particles are half-
immersed in a liquid domain bounded from the top by the air–water interface (Dörr &
Hardt 2015). The use of this expedient enables us to use a fast and accurate fixed–grid
method for fully–resolved particles, Physalis (Zhang & Prosperetti 2005; Sierakowski
2016), to simulate at a reasonable computational cost many particles embedded in a
gas–liquid interface.
Following recent work on particles at interfaces (Dörr & Hardt 2015; Dörr et al. 2016),

we neglect the rotation of the particles. This assumption holds when the viscous dissi-
pation due to the rotation of the particles is negligible in comparison to the dissipation
due to the particle–fluid velocity difference (Dörr et al. 2016) or when the motion of
the contact line is hindered due to pinning of the contact line at roughness elements or
chemical heterogeneities (Dörr & Hardt 2015; Dörr et al. 2016). The maximum pinning
force per unit length of contact line is approximately equal to σ∆, where σ is the surface
tension of the air–liquid interface and ∆ is the difference between the cosines of the
advancing and receding contact angles (De Gennes 1985). The parameter ∆ is often not
negligible (the difference between the advancing and receding contact angles is often
larger than 10◦, see e.g. Lewandowski et al. (2010)) and this translates to finite torque
due to pinning that scales as σa2. The hydrodynamic torque on each particle is O(µγ̇a3),
where µ is the liquid viscosity and γ̇ is the characteristic value of the shear rate near the
particle monolayer. The ratio of the torque due to pinning to the hydrodynamic torque is
thus proportional to the capillary number Ca = µγ̇a/σ. Our results are valid in the limit
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Ca ≪ 1, in which the particle does not rotate and hydrodynamic stresses are too small to
appreciably deform the interface. Small capillary numbers are often found in practice: for
example for a particle–covered bubble of radius R = 100µm translating with a velocity
U∞ = 1cm/s, γ̇ ∼ U∞/R = 100s−1 and Ca ∼ 10−6. The capillary number for the entire
drop based on the velocity scale U∞ is a factor R/a larger than Ca (which is based on
the velocity scale γ̇a) , but is still very small.

We consider plane monolayers of particles arrangements in a bi-periodic configuration
for two situations: a square array, and a reticulated mesh–like array formed by orthogonal
chains of particles with one of the chains oriented parallel to the flow.

The problem is governed by two non-dimensional parameters: the non-dimensional gap

size d/a and the solid area fraction φs =
Npπa

2

L2 , where Np is the number of particles in the
periodic cell of side L. For the simulation of the square array, we simulate a single sphere
and vary the area fraction by changing the lateral size of the computational domain. For
the reticulated array case, examined in section 3.4, Np varies from 5 to 25.

A Cartesian coordinate system (x, y, z) is set at the centre of the computational
domain, with x parallel to the flow direction and z in the direction normal to the
monolayer. In the following, u will denote the flow velocity component in the x direction.

The numerical method employed for the simulation, Physalis, couples a finite-difference
solution of the incompressible Navier-Stokes equation to a spectral solution of the Stokes
equation for the velocity, vorticity and pressure disturbances induced by the sphere. The
spectral solution is used only in the immediate neighborhood of the particle surfaces.
The pressure and vorticity are expressed in terms of spherical harmonics. To enforce the
no–slip condition at the particle surfaces, an iterative procedure is used to match the
coefficients of the spherical harmonics expansion to the finite–difference Navier-Stokes
solution at a cage of computational points surrounding the particle surface. For the
simulations in the current paper, we use the Navier–Stokes solver with the non-linear
convective term set to zero (i.e., all the simulations are carried out in the Stokes flow
limit). The results we report are for steady-state conditions. Physalis has been extensively
validated in laminar flows (Zhang & Prosperetti 2005; Bluemink et al. 2008, 2010). It has
been applied to a shear flow over a porous medium surface composed of several layers of
spheres (Liu & Prosperetti 2011), a situation that bears some similarities with the flow
simulated in the current work.

The accuracy of the simulation was assessed through comparison with power–series
Faxén’s analytical solution for the drag force on a single sphere translating with constant
velocity between two parallel walls (Happel & Brenner 2012). Terms up to O(d5/a5)
were retained in the power series. Our numerical results for the drag force on a fully–
immersed sphere in a periodic domain converged to Faxén’s solution in the limit φs → 0.
The relative error between the numerical solution - for small but finite values of φs -
and the analytical solution was found to be always less then 5%, and typically around
2.5%. For example, for φs = 0.349% the relative error between the numerical solution
and Faxén’s solution is 3.89% and 2.57% for d/a = 3 and d/a = 15, respectively.

Owing to the use of a spectral solution close to the particle surface, the Physalis method
demonstrates good accuracy even in simulations in which a relatively small number of
nodes per particle diameter is used (Zhang & Prosperetti 2005; Bluemink et al. 2008;
Botto & Prosperetti 2012). For the simulations in this paper we used either 8 or 16 nodes
per particle diameter. The smaller resolution was used for relatively large gaps, d/a > 5,
and small area fractions, φs < 0.15, for which the flow velocity gradients are small. These
values of the parameters correspond to large domains for which computational cost and
memory requirements were found to be limiting factors. The simulations are carried
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out on a desktop PC equipped with an NVIDIA GTX 970 graphic card (the version of
Physalis used here, BlueBottle, has the ability to exploit the GPU card of the PC).
Unless explicitly stated, all the quantities reported in this paper are normalised using

the particle size a and the wall velocity U as the characteristic length and velocity scales,
respectively.

3. Results and discussion

3.1. Square array: general features

We begin our analysis by examining the square array case. The periodic computational
domain of side L contains in this case a single sphere, and the area fraction can be
simply calculated as φs = πa2/L2. We are particularly interested in the area averaged
streanwise velocity 〈u〉, defined as

〈u〉 = 1

L2

∫
udxdy, (3.1)

and how this quantity changes in the direction normal to the monolayer. In equation 3.1
the integral is extended over the region −L/2 ≤ x ≤ L/2, −L/2 ≤ y ≤ L/2.
In figure 3a, the area averaged velocity is plotted as a function of the coordinate z

normal to the monolayer for a fixed gap size, d = 3a. The velocity profile is approximately
linear in two limits: when φs ≪ 1 and when φs is close to the maximum packing fraction
φs,max = π/4 ≃ 0.78. For intermediate values of φs, the curvature of the velocity profile
has a maximum. This trend can be understood by applying the averaging operator defined
in (3.1) to the streamwise component of the fluid momentum equation in the Stokes flow
limit. The resulting averaged equation reads

d2 〈u〉
dz2

=
∆p

µL
, (3.2)

where ∆p(z) is the difference between the pressure at the plane x = −L/2, averaged over
the line −L/2 ≤ y ≤ L/2, and the corresponding average pressure at the plane x = L/2.
Expression 3.2 shows that the curvature of the average velocity profile can be neglected
when the streamwise pressure drop occurring over a distance L is negligible.
According to the Stokes equation, the pressure disturbance induced by the particle

determines the curvature of the velocity profile. When φs ≪ 1, ∆p ≃ 0 because
the pressure disturbance set up by each sphere evaluated at the boundaries of the
computational domain is small. Indeed, we will shortly see that in the dilute limit the
pressure disturbance induced by a particle looks like a pressure dipole, and in the dilute
limit we therefore expect ∆p = O(µaU/L2) (Batchelor 2000), as for a single sphere
in uniform flow . The pressure disturbance ∆p decreases linearly with φs as φs → 0,
since φs ∝ 1/L2. On the other hand, when the monolayer is near maximum packing the
monolayer behaves almost as a flat wall. In this case, ∆p ≃ 0. For intermediate values
of φs, the inter–particle distance is simultaneously sufficiently small for the pressure
disturbance produced by each particle on the boundaries of the computational domain
to be significant, and sufficiently large for each particle not to block significantly the flow
velocity incident on the other particles. As a consequence, the curvature has a maximum
for intermediate values of φs.
To characterise how the velocity profile changes in the plane of the monolayer, we show

in figure 3b, top and bottom panels, profiles of u along lines perpendicular to the plane
of the monolayer and passing through the sphere centre, (x = 0, y = 0), and through the
midpoint between two spheres, (x = L/2, y = 0), respectively. Because of the fore–aft
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Figure 3: (a) Normalised area averaged streamwise velocity vs. coordinate normal to
the monolayer for d = 3a. (b) Normalised area averaged streamwise velocity along lines
passing through the centre of each sphere (top figure) or through the midpoint between
adjacent spheres (bottom figure).

symmetry of the Stokes equation, the velocity disturbances generated by two adjacent
spheres cancel out at the midpoint (x = L/2, y = 0). As a consequence, the velocity
profiles corresponding to the midpoint are linear for any value of φs. As φs is reduced,
the slope of the velocity profiles decreases. This trend gives a larger slip velocity. The
velocity profiles that correspond to the sphere centres (figure 3b, bottom panel) display
significant curvature for any φs, except perhaps at the highest value of the area fraction.
The error induced by approximating a liquid interfaces covered by a packed monolayer

of particles as a no-slip surface is due to two sources. First of all, a packed monolayer
contains free-slip surfaces even at maximum packing. Secondly, due to the convexity of the
spheres the packed monolayer is not flat. A more accurate interpretation is considering
the monolayer as a collection of bluff solid protuberances over the no-shear plane z = 0.
Each protuberance will locally block the flow and therefore produce a significant pressure
disturbance.
To illustrate the spatial extent and magnitude of the pressure disturbance set up by

each sphere in the monolayer, we show in figure 4a and 4c iso–contours of the normalised
pressure in the plane parallel to the mean flow and perpendicular to the monolayer,
for two selected values of the area fraction, φs = 12.57% and φs = 62.05%. For
φs = 12.57%, the pressure distribution bears signature of the fore–aft symmetric
pressure dipole characteristic of uniform flow past a sphere (Batchelor 2000). As the
area fraction increases (Figure 4b), the two pressure “lobes” seen in 4a move upwards,
and occupy a smaller region near the top apex of the sphere. The streamwise pressure
drop caused by the sphere is smaller for φs = 62.05% than for φs = 12.57%. This
observation supports our suggestion that ∆p decreases as φs approaches the maximum
packing fraction.
Figure 4b and 4d show the velocity fields corresponding to figures 4a and 4c, re-

spectively. Flow recirculation regions do not seem to occur between the spheres. Flow
recirculation between the spheres were evidenced in a simulation of pressure–driven slip
flow over a porous medium interface, where the simulations were carried out using the
same numerical method used here (Liu & Prosperetti 2011). Flow recirculation is instead
not apparent in the simulation results reported by Danov et al. (1995), who examined a
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Figure 4: Normalised pressure (left) and velocity (right) in the plane y = 0 for
φs = 12.57% (top panels) and φs = 62.05% (bottom panels). The gap size is d = 4a.
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Figure 5: Normalised slip velocity vs. (a) area fraction and (b) gap size.

single sphere straddling a fluid interface for a range of contact angles. One could expect
that, owing to the presence of a re-entrant “wedge region” between the particle surface
and the free interface, recirculation would occur for contact angles for which the sphere
is mostly immersed in the liquid.
The slip velocity is plotted as a function of φs for different values of the gap size d in

figure 5a, and as a function of d for different values of φs in figure 5b. Following other
authors (Ng & Wang 2009; Ybert et al. 2007; Liu & Prosperetti 2011), we define the slip
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velocity 〈u〉s as the value of 〈u〉 at z = a . As expected 〈u〉 tends to a uniform velocity
of magnitude U as φs → 0. The rate at which this limit is approached as φs changes
depends on the gap size. As a consequence, the value φs for which 〈u〉 is a significant
fraction of U becomes smaller as d increases. For instance, when d/a = 20, 〈u〉 /U ≃ 0.5
when φs ≃ 1.5%. When d/a = 1.5, 〈u〉 /U ≃ 0.5 when φs ≃ 30%. Since smaller gaps are
associated with larger velocity gradients, this dependence on d indicates a dependence
of 〈u〉s on the shear rate.
The dependence of 〈u〉s on d is non-linear, but approximates a linear relation in the

limit φs → 0 (figure 5 b). The following argument shows that in the dilute limit the
slope of the 〈u〉s vs. d curve is proportional to the gap size and inversely proportional
to the slip length. Approximating the flow past the monolayer as a Couette flow past a
flat partial slip surface, the macroscopic shear rate is 〈γ̇〉s ≃ (U − 〈u〉s)/d. Using this
value in the Navier slip boundary condition (1.1) gives 〈u〉s /U ≃ 1

d/λ+1 . For φs ≪ 1, λ

becomes much larger than d and therefore 〈u〉s /U = 1− d
λ with a small O(d/λ) error.

3.2. Scaling of slip length for square array

Figure 6 shows the slip length λ as calculated from the definition (1.1). Consis-
tently with the the calculation of the slip velocity, the bulk shear rate at the interface
〈γ̇〉s = d 〈u〉 /dz is evaluated at z = a. In the surface plot of 6 a, λ is plotted as a
function of both φs and d/a. Projections of figure 6 onto the λ − d and λ − φs planes
are shown in linear–linear plots in figures 6 b and c, respectively. The inset of figure 6c
shows the λ− φs relation in log–log scale.
The slip length is seen to increase for increasing gap sizes, eventually saturating to an

asymptotic value. A gap size d = 10a already gives a value of λ close to the asymptotic
limit.
In figure 6 c, the values of λ for different values of d are seen to lay practically on

the same curve, suggesting similar scaling laws for different gap sizes. The inset to
this figure shows that the relation λ − φs follows approximately a power law. To guess
possible scaling exponents, we have examine the literature on flows over microstructured
super–hydrophobic surfaces. Ybert et al. (2007) developed a comprehensive theory for
the dependence of the slip length on the area fraction for super–hydrophobic surfaces.
The theory was compared against literature data. Data for unconfined shear flow past a
superhydrophobic surface composed of vertical pillars of circular or square cross section
could be fitted with good accuracy by a correlation of the form λ

L = A1√
φs

− B1, where

L is the distance between the pillars, and A1 and B1 are constant. Ybert et al. (2007)
proposed A1 = 0.325 and B1 = 0.44 (the analytical expressions proposed by Davis
& Lauga (2010) give coefficient values very close to those indicated by Ybert et al.

(2007)). In the dilute limit, i.e. in our case for φs ≪ (A1/B1)
2 ≃ 0.54, the correlation

above reduces to λ/L ∼ 1/
√
φs, which is equivalent to λ/a ∼ 1/φs. This scaling can be

understood from the fact that in the dilute limit the ratio of the hydrodynamic force
on each pillar to the slip velocity is expected to be practically independent of φs. The
tangential stress on the monolayer due to the bulk flow is proportional to the ratio of
the hydrodynamic force and L2. Since the tangential stress for a Newtonian fluid is
proportional to the macroscopic shear rate, then Eq. (1.1) yields λ ∝ a/φs for φs ≪ 1.
The argument above is expected to hold independently of the specific geometry of the

solid object in contact with the fluid interface. Therefore, it should be possible to apply
the scaling proposed by Ybert et al. (2007) to our case. This expectation is confirmed
in figure 7a, where λ/a is plotted as a function of 1/φs for values of φs corresponding
to a relatively dilute monolayer. A linear correlation fits the data remarkably well. From
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Figure 6: (a) Normalised slip length vs. area fraction and normalised gap size. The plots
in figures (b) and (c) are projections of the surface plot of figure (a) onto the λ− d and
λ− φs planes, respectively. Inset:λ− φs relationship in log–log scale.

figure 7a it appears that a linear scaling holds for any value of d. The log–log plot in the
inset of figure 6b shows that the power law exponent has a small dependency on d for
d ≤ 4a. However, differences between the exponents corresponding to different values of
d are about 10% of the d = 20a case, and therefore not noticeable if the data is plotted
as in figure 7a.

While the functional form proposed by Ybert and collaborators does fit our data well,

the prefactors are different. The function λ
a = A1

√
π

φs
− B1

√
π

(φs)1/2
, obtained using the definition

φs = πa2/L2 is plotted as a continuous line in figure 7a, using the coefficient values for
A1 and B1 suggested by Ybert et al. This function is seen to overpredict the magnitude
of the slip length computed in our simulation.

There is a simple explanation for the difference between our result and that of Ybert
et al.The flow configuration considered by these authors can be interpreted as shear
flow past a monolayer of infinitely thin disks (representing the top surfaces of the pillars
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Figure 7: (a) Normalised slip length vs. φ−1
s . The continuous line is equation (3.2),

developed by Ybert et al. (2007) for flow past a superhydrophobic surface. The dashed
line is equation (3.3), where (3.2) has been rescaled by the ratio of the Stokes drag

coefficient for a sphere to that for a thin disk. (b) Normalised slip length vs. (1−φs)
2

√
φs

showing the dense limit φs = 35%− 70% for d = 4a.

composing the super-hydrophobic surface). In our case the spheres protrude significantly
in the liquid. Several studies in the context of super-hydrophobic surfaces have shown
that a larger protrusion produces smaller slip lengths (Sbragaglia & Prosperetti 2007;
Ng & Wang 2009; Kumar et al. 2016; Shelley et al. 2016). Therefore a smaller slip length
in the current case of sphere monolayer is not unexpected.
We can attempt a simple correction to equation (3.2) to account for the finite protrusion

of the spheres into the flow. For a given free-stream velocity the hydrodynamic drag on
an infinitely thin disk in a uniform flow is 9π/16 times smaller than the drag on a
sphere having the same radius. Assuming that tangential stress due to the bulk flow is
approximately proportional to the slip velocity (we will confirm this hypothesis in Sec.
3.3), it should be expected that for sufficiently dilute systems the slip length for flow past
a monolayer of spheres embedded in a gas-liquid interface is a factor of 9π/16 smaller
than that predicted by equation 3.2. To verify this approximation we plot the function

λ

a
=

A2

φs
− B2

(φs)1/2
, (3.3)

as a thick dashed line in figure 7a. Here A2 = 16π
√
π

9 A1 and B2 = 16π
√
π

9 B1 . The values
given by this corrected expression are remarkably close to our data, suggesting that the
difference between the data of Ybert et al. and ours can be mainly attributed to the
larger drag produced by the protruding spheres on the flowing liquid as opposed to the
flat top surfaces of the pillars.
The scaling law discussed above holds for a relatively dilute limit (the data points

clearly discernible in figure 7a correspond to φs ≤ 4%, while these corresponding to the
dense limits are clustered near the origin and are barely visible). In the dense limit, the
slip velocity results from a fraction 1− φs of the plane z = a occupied by the gas–liquid
interfaces. Since the slip velocity in these regions is of the order of 〈γ̇〉s L(1− φs) (Ybert

et al. 2007) and L ∝ φ
−1/2
s , we expect λ ∼ a (1−φs)

2

√
φs

. Figure 7b shows that the simulation

data follows this scaling law with very good accuracy.
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Figure 8: Tangential stress due to the bulk flow normalised by (a) the wall velocity U or
(b) the slip velocity 〈u〉s as a function of the solid area fraction. The inset in figure (b)
shows a zoom for small values of φs of the effective friction coefficient τa/(µ 〈u〉s φs) .

3.3. Tangential stress due to the bulk flow: square array

In many situations of practical interest it would be useful to estimate the drag per unit
area on the particles due to the motion of the bulk fluid (or “subphase’, as often called in
the surfactants literature). We call the hydrodynamic drag on the particles per unit area
the tangential stress due to the bulk flow, and denote this quantity by τ . In the current
paper, τ for a square array is calculated as τ = Fx/(L

2), where Fx is the x–component
of the hydrodynamic force acting on each sphere in the monolayer.
In figure 8a, τ is normalised by using U as velocity scale. With this normalisation the

normalised value of τ has a relatively strong dependence on both φs and d. However, we
note that the wall velocity is characteristic of the fluid velocity “seen” by the particles
only in the extremely dilute limit for which the velocity profile is almost a plug flow.
An improved parameterisation of the shear stress and pressure exerted on each particle
by the bulk flow is expected to be given by the slip velocity 〈u〉s. In figure 8 (b), τ is
normalised by 〈u〉s. Using the slip velocity in the normalisation gives a collapse of the
data onto a single curve for any value of d.
The fact that τ is practically proportional to the slip velocity suggests to introduce

a non-dimensional friction coefficient τa/(µ 〈u〉s φs) having only a marginal dependence
on d and φs. A linear fit to the data in figure 8 (b) suggests a non-dimensional friction
coefficient of about 7. For small values of φs the friction coefficient is smaller than 7 and
non constant (see inset), suggesting that the relation between τ/ 〈u〉s and φs is linear
only in an approximate sense.
In the limit φs → 0 and d → ∞ we expect Fx ≃ 3πµaU (i.e. half the Stokes drag on

a fully immersed sphere). Since 〈u〉s tends to U as φs → 0 (Fig.5a), and by definition
τ = F/L2 = Fφs/(πa

2) for a square array, one might expect a friction coefficient of
approximately 3 in the limits φs → 0 and d → ∞ . For small values of φs the data does
appear to converge to a friction coefficient of 3 as d increases (see inset of figure 8b).
However, the convergence is slow and for values we simulated the friction coefficient is
significantly larger than 3 even for the smallest values of φs we considered. This fact may
be due to the strong dependence of 〈u〉s on the surface fraction (Fig.5a). One would need
to simulate truly negligible values of φs, and use therefore extremely large computational
domains, to recover the expected asymptotic limit.
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Figure 9: Normalised pressure (a) and viscous (b) contributions to τ .
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Figure 10: Hydrodynamic force on each sphere in the square array as a function of the
gap size.

The expansion in spherical harmonics in Physalis enables to easily compute the
pressure and viscous components of the hydrodynamic force on each sphere with excellent
accuracy (Zhang & Prosperetti 2005; Bluemink et al. 2010; Botto & Prosperetti 2012).
Upon normalisation, these force components yield τp and τv, namely the pressure and
viscous contributions to τ , respectively. Figures 9 (a) and (b) show τp and τv as a function
of φs for different values of d. As expected from the analytical solution for Stokes flow
past a sphere, which suggest that pressure and viscous contributions to the drag are
comparable, for φs ≪ 1 the viscous and pressure contributions to τ are comparable in
magnitude. For intermediate and relatively large values of φs, viscous stresses produce
the dominant contribution to τ . For instance, for d = 7a and φs > 0.5, τv is about
one order of magnitude larger than τp. The contribution τp is only significant for small
gap sizes, particularly at the highest values of the area fraction. This result confirms
the intuitive notion that the largest contribution to τ for a moderately dense monolayer
originates from the shear forces exerted by the fluid on the portion of the sphere surfaces
where the streamwise fluid velocity is larger.
For completeness, we also report in figure 10 the hydrodynamic force on each particle

in the square monolayer as a function of d for different values of φs. In contrast to the
previous figures in which the tangential stress due to the bulk flow was reported, in figure
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(a) (b)

Figure 11: Schematic of a square array (a) and a reticulated array (b) for the same value
of the solid area fraction, φs = 43.63%.

10 the force is not normalised by L2, and therefore the dependence on φs is perhaps more
clear. This graph could be useful to quantify how the drag on a surface active particle
embedded at the boundary of a thin film comprised between a particle–laden interface
and a wall changes as a function of the thickness of the film.

3.4. Reticulated array

The slip length depends on the specific microstructure of the monolayer. Two categories
of microstructures are particularly relevant to particle-laden interfaces: well-dispersed
systems - in which the particles are not in contact when φs is smaller than the maximum
packing fraction - and percolating networks, where the particles form connected chains
that span the boundaries of the interface (see e.g. Aveyard et al. (2000)). The square–
array case examined in the previous section belongs to the first category. To percolating
network case is examined in the current section. To get initial insights into more realistic
situations, in which the percolating networks are disordered and are characterised by a
variety of scales, in this section we simulate a periodic mesh-like reticulated arrangement.
One example of such arrangement is illustrated in figure 11 b.
The simulations for the reticulated array case are carried out by including in the

doubly–periodic simulation box a variable number of spheres. The spheres form two
orthogonal rectilinear chains that intersect each other in the center of the domain. One
of the chains is oriented along the flow direction.
Because of the need to consider several particles, simulating reticulated arrays requires

a significantly larger domain than for a square array, for a given area fraction. To limit
the number of simulations while allowing to explore a relevant parameter space, the
majority of the simulations presented in this section are carried out for a fixed gap size,
d = 7a. Preliminary tests confirm that this gap size is sufficiently large for the results to
reasonably approximate the unbounded case d = ∞.
Table 1 summarises values of the slip length λ and tangential stress τ due to the

bulk flow for different values of L (and therefore of φs). The last two columns in table
1 report the values of λ and τ for a square array having the same area fraction of the
corresponding reticulated array. These two quantities are denoted by the symbols λsq

and τsq, respectively.
Comparison of λ with λsq shows that for a given surface coverage and particle size,

the reticulated array gives a significantly larger value of the slip length. The effect of the
specific microstructure (square array vs. reticulated array) on λ becomes more and more
significant as φs decreases. The difference between τ and τsq is comparatively small.
Why does the reticulate array give a larger slip length?The slip length is defined as
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Structure φs L/a λ/a τa/µU λsq/a τsqa/µU

43.63% 6 0.3941 0.1617 0.3294 0.1598

28.27% 10 0.7656 0.1536 0.5249 0.1559

20.8% 14 1.2591 0.1435 0.7016 0.1519

16.48% 18 1.8106 0.1349 0.9228 0.1471

13.63% 22 2.3812 0.1258 1.1202 0.1459

11.62% 26 2.9633 0.1177 1.4267 0.1402

Table 1: Normalised slip length, λ/a, and normalised tangential stress due to the bulk
flow, τa/µU , for reticulated arrays characterised by different values of the area fraction
φs and mesh size L, for d/a = 7. The last two columns report the values of λ and τ for a
square array having the same solid area fraction of the corresponding reticulated array.
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Figure 12: (a) Normalised slip velocity and (b) normalised bulk shear rate at the interface
as a function of solid area fraction for d/a = 7, comparing square and reticulated arrays.
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(a) (b)

Figure 13: Contours of normalised streamwise velocity, u/U , in the plane z = a for
(a) square array and (b) reticulated array. The solid area fraction in (a) and (b) is
φs = 43.63% and d/a = 7.

the ratio of 〈u〉s to 〈γ̇〉s. A difference in slip length can therefore be attributed to: i)
differences in 〈u〉s ; ii) differences in 〈γ̇〉s; iii) a combined effect of both quantities. Figure
12 (a) compares values of 〈u〉s obtained with the reticulated array to those obtained with
the square array. The corresponding values of 〈γ̇〉s are shown in figure 12 (b).
It can be seen that the values of 〈u〉s given by the two microstructures are comparable

only for relatively large values of φs. For moderate and small values of φs , the reticulated
array gives a significantly larger value of 〈u〉s than the square array. Over a similar range
of values of φs, differences in the values of 〈γ̇〉s corresponding to the two microstructures
are relatively small (figure 12 (b)). The observed dependence of the slip length on the
microstructure is thus mainly due to changes in the slip velocity, while changes in the
bulk shear rate at the interface play a relatively marginal role.
A question arises as to why the slip velocity is larger in the case of the reticulated array.

Comparison of figures 11 a and b shows that for a given area fraction, the reticulated
array is characterised by larger connected regions not occupied by particles. Because the
flow in these regions is relatively unobstructed by the particles, the slip velocity in these
regions could be substantially larger than the slip velocity in the interstices between the
particles in the square array case. To verify this hypothesis, we plotted iso–contours of u
in the plane z = a, comparing the reticulated and square array (figure 13). Characteristic
velocities in the open areas bounded by chains in the reticulated array case are at least
50% larger than those in the interstices between particles in the square array case. These
relatively large velocities are spread over regions of linear size comparable to the mesh
size L. In contrast, in the square array the smaller slip velocities are spread over regions
of characteristic linear dimension ℓ ≪ L, where ℓ is the average inter–particle separation.
We have φs = (L/a− 1)πa2/L2 for the reticulated array and φs = πa2/ℓ2 for the square
array. Therefore the ratio L2/ℓ2 of the interfacial areas occupied by large–velocity fluid
(reticulated array) to that occupied by low–velocity fluid increases with decreasing φs.
Since the slip velocity is an area averaged quantity, larger local velocities spread over
larger areas will give a larger value of the slip velocity.
We also note that despite significant differences in slip length between the reticulated

array and the square array, the interfacial shear stress is comparable in the two cases (cf.
table 1).
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Figure 14: Percentage contribution to the tangential stress due to the bulk flowτ for
each particle in a reticulated array, φs = 20.8% and d = 7a. The horizontal chain in the
diagram is parallel to the flow direction.

Comparing the values of τ , we note that despite significant differences in slip length
between the reticulated array and the square array, the values of the tangential stress
due to the bulk flow are comparable in the two cases (cf. table 1).A significant difference
between the square and reticulated array is that, while in the square array each particle
will contribute equally to τ , in the reticulated array different particles can be subject to
different hydrodynamic forces, and therefore the local tangential stress will be in general
non-uniform. To characterise the degree of non-uniformity in τ , we show in the diagram
of figure 14 the fraction of the total value of τ contributed by each particle. This fraction
is calculated as the ratio of the hydrodynamic force on each particle to the sum of the
hydrodynamic forces exerted by all the particles within the computational domain.

The chains of particles arranged perpendicular to the flow direction, or transverse
chains, carry the largest contribution to τ . In the case considered in figure 14 the
transverse chain contributes to more than 66% of the total value of τ . The hydrodynamic
force acting on the transverse chain is strongly non–uniform: the largest contribution,
12%, is associated to the particles located near the mid point of the transverse chain
(farthest away from the intersection point). The central particle, located at the intersec-
tion between the longitudinal and transverse chain, contributes to only 5.3% of the total
value of τ . In comparison, particles belonging to the longitudinal chain, oriented along
the flow direction, are subject to a relatively uniform bulk tangential stress.

The natural choice of length scale to characterise the flow past the reticulated array
is the mesh size L. It is therefore expected that the slip length will scale as λ = Lf(φs),
where f(φs) is a function having relatively weak dependence on φs (and therefore on
L). In figure 15a, the values of λ for the reticulated array are plotted as a function L.
Over the range of values simulated, the slip length is seen to increase only slightly faster
than linearly with L, confirming a scaling of the type λ ∼ Lf(φs). Davis & Lauga (2009)
carried out an analysis of the slip length for a flat partial slip surface composed of a
mesh–like distribution of thin solid regions, obtaining a semi–empirical relation of the
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Figure 15: Normalised slip length vs. (a) normalised mesh size and (b) normalised gap
size; reticulated array, d = 7a. The area fraction in (b) is 43.63%. The dashed line in
figure (a) is equation (3.4) for A = −0.039 and B = 0.03.

form
λ

L
= A ln(φs) +B, (3.4)

where A and B are constants. The values obtained by Davis & Lauga (2009) were A = −
0.107 and B = 0.003. Fitting the simulation data (dashed line in figure 15a), we obtain
A = −0.039 and B = 0.03. As for the square array, the effect of the protuberance of the
no–slip region in the liquid gives a larger value of λ for a given value of φs as compared
to a flat partial slip surface. We have attempted a simple rescaling of by a factor 9π/16
as done for a square array (see Sec. 3.2) to account for the difference between the results
of Davis & Lauga (2009) and ours, but the results have not been as satisfying as for the
square array case. This is due to the fact that for a percolating network hydrodynamic
interactions between the particles are important even in the dilute limit. Therefore, the
ratio of the hydrodynamic force on a single sphere to that of a single disk cannot represent
a good re-scaling factor.
The results above suggest that - in analogy with the case of super-hydrophobic surfaces

- different scalings for the slip length hold depending on whether the solid or the liquid
are the continuous phases in the plane of the particle–laden interface. In the reticulated
network the solid is the continuous phase, and the free-slip interface is the dispersed
phase. On the contrary, in the case of the square array, the solid is the dispersed phase.
When the solid is dispersed phase and the fluid is the continuous phase in the particle-
laden interface, the particle radius is the characteristic length scale, and the slip length
scales as λ ∝ a/φs (for sufficiently small φs) . When the solid is the continuous phase,
the mesh size L is the characteristic length, and the influence of the particle radius enters
only into a weak - potentially logarithmic - dependence on the solid fraction.

4. Conclusions

We have presented numerical simulations for shear flow past a monolayer of neutrally-
wetting spheres embedded in a liquid-gas interface. In our simulations the shear flow
is produced by a flat wall translating parallel to the monolayer. The results are also
applicable to situations in which the monolayer translates with respect to a neighbouring
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wall, a situation which occurs for example in certain evaporating droplets problems
(Yunker et al. 2011).
Towards extracting effective parameters for the particle-laden interface, we fit the

simulation data to the predictions of a Navier slip boundary condition. The simulations
provide accurate values for the slip length as a function of the area fraction, the gap size
between the monolayer and the wall, and the microstructure of the monolayer.
The dependence of λ on φs follows scaling laws similar to those developed for shear

flow past super-hydrophobic microstructured surfaces: λ ∼ a/φs for a dilute square array,
and λ ∼ Lf(φs) where f(φs) is a weak function of φs for a reticulated array. The slip
length is smaller than for flow past super-hydrophobic surfaces for the same area fraction
and microstructure. This feature can be explained by accounting for the fact that most
semi-empirical correlations for superhydrophobic surfaces are developed for flat slip/no
slip surfaces, while in our case the spheres protrude significantly into the flow. For a
square array, a simple prefactor re-scaling based on the ratio of Stokes drag on a sphere
to drag on a disk yields good agreement with the simulation data.
For a given area fraction, the slip length for a reticulated array is larger than for a

square array. This feature is associated to the presence in a reticulated array of relatively
large connected areas unoccupied by particles: the absence of particles “blocking” the
flow apparently leads to a larger slip velocity, and consequently to a larger slip length.
The numerical method we employed enabled to accurately compute the tangential

stress on the monolayer due to the bulk flow, i.e. the drag force per unit area due to
the “subphase” and, for the case of reticulated array, the contribution of each sphere to
this quantity. Values for the tangential stress could be useful, for instance, to estimate
whether chains of particles would break under the effect of strong hydrodynamic forces.
We calculate the tangential stress due to the bulk flow directly from the hydrodynamic
force acting on each particle and not from the macroscopic shear rate, as usually done
in studies on superhydrophobic surfaces.
In addition to providing insights into the flow in the neighborhood of a sheared

monolayer of interfacial colloids, the results of this paper can be useful to estimate
effective resistance coefficients for particle–laden interfaces. For instance, the Stokes
drag on a spherical particle having a partial slip surface with slip length λ is given
by F = 6πµRV (1 + 2λ/R)/(1 + 3λ/R), where R, V are the sphere radius and velocity,
respectively (Luo & Pozrikidis 2008). Assuming that partial slip is produced by surface–
active particles, this expression can be combined with the appropriate expressions for λ
developed in this paper to calculate the rise velocity of a bubble covered by colloids given
the surface coverage by particles or, conversely, the time-dependent surface coverage from
the measured bubble velocity.
The slip length is not easily linked to the surface viscosity of the particle–laden

interface, as the two parameters model different physical aspects. However, a conceptual
link between the two quantities exists. The tangential stress boundary condition (Brenner
2013) states that the tangential stress exerted by the bulk subphase on the particles
balances the divergence of the surface stress tensor (the tangential stress on the gas–liquid
regions of the particle–laden interface is zero owing to the no–shear condition). The Navier
slip equation 1.1 can be interpreted as a linear closure for the tangential stress ≃ µ 〈γ̇〉 on
the monolayer in terms of the particle-fluid velocity difference 〈u〉s. The surface viscosity
and surface elasticity coefficients are instead parameters for the Newtonian closures of
the surface stress tensor in terms of the surface deformation rate and surface deformation
tensors. The surface viscosity, the surface elasticity, and the slip length therefore enter as
parameters in the same differential equation (the tangential stress boundary conditions).
However a simple algebraic relation between these effective parameters cannot be found
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in general. The description in terms of slip length complements, other than replace, a
description in terms of surface viscosity and surface elasticity.
The slip length approach is expected to be particularly useful when the relation between

surface stress tensor and interfacial deformation/deformation rate tensor is not known a
priory. For instance, in the analysis of interfacial rheology experiments (see e.g. Buttinoni
et al. (2015)) it is often assumed that the drag due to the subphase is negligible. However,
rarely estimates for this potentially important quantity are reported. Equation 1.1 can
be used to estimate the drag on the monolayer due to the subphase as a function of the
average area fraction covered by the particles. The same equation provides a boundary
condition for the bulk “subphase” fluid velocity field.
We emphasise that the slip length and the surface viscosity model different microme-

chanical aspects, and are related to different moments of the hydrodynamic stress on
each particle. The surface viscosity is an effective macroscopic property of the particle–
liquid “mixture” which models the resistance to dilatation and shearing of an element of
composite interface (Brenner 2013); the slip length is associated to the locally uniform
relative velocity between the particles and the surrounding fluid. The surface viscosity
is related to the hydrodynamic torque and stresslet on each particle in the monolayer
(Edwards & Wasan 1991; Lishchuk & Halliday 2009); the slip length is associated to the
hydrodynamic drag on the particles.
The current work, which focuses on a rather idealised situation, can be extended in

several directions. In our simulation the relative position between the particles does not
change as a result of the flow. This approximation is realistic when the tangential stress
due to the bulk flow is much smaller than the gradient in surface pressure (i.e., the
two–dimensional pressure due to interparticle forces of non–hydrodynamic origin; see
discussion in Gu & Botto (2016)). Large tangential stresses could lead, after a transient,
to a non-uniform particle concentration in the interface. An expected effect, for example,
is the compaction of the monolayer in the rear stagnation point of a rising particle–
covered bubble. Flow–induced compaction effects on flat interfaces could be simulated
with minor modifications of the computational setup used in the current study.
The simulation results presented here are limited to a 90◦ contact angle. They are

expected to hold as first approximations for contact angles not too different from 90◦.
Single–particle studies offer some insights into expected trends as a function of the contact
angle. Previous work (Danov et al. 2000) has shown that the hydrodynamic drag is larger
when the contact angles is such that the particle has a larger protrusion in the liquid
phase. For an isolated particle, the drag force on a particle for a flat interface can be
expressed as F = 3πµaUK(θc), where K(θc) is a function of the contact angle for which
tables are available (Fischer et al. 2006). According to the scaling laws developed in
the current paper, one might expect that λ will approximately be proportional to 1/K
(at least in the relatively dilute limit): for variations in the contact angle such that the
particles will protrude more and more in the liquid phase, we expect a reduction in the
slip length. This expected behaviour assumes the the fluid interface between the particles
is perfectly flat; fluctuations in the interface due to thermal motion could change this
picture quite substantially, as discussed by (Boniello et al. 2015)). For contact angles
close to 0◦ or 180◦ one needs to consider that the area fraction as defined in the current
paper is not representative of the surface coverage by the particles, as in these limiting
cases the particles barely touch the fluid interface.
While we have started evidencing some effects on the microstructure on the slip length

by comparing square arrays and mesh-like particle networks, more realistic microstruc-
tures should be investigated. These include the regular hexagonal structure of colloidal
crystals at fluid interfaces (Irvine et al. 2010) and the fractal structure of percolating
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networks of aggregated interfacial colloids (Aveyard et al. 2000; Poulichet & Garbin
2015).
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