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1. Introduction

There has been a renewed interest recently in stochastic processes involving random resets to a
fixed state, representing, for example, the reduction of a population after a catastrophe [1–5],
the random attachment of a molecular motor on a biological filament [6], the clearing of a
queue or buffer [7], or a random search reinitialized to its starting position [8–14]. The focus
in random search applications is on the mean first-passage time, which can be optimized under
reset [9–11], but other important statistical quantities have also come to be studied, including
time-dependent distributions [15–18], moments [5], and large deviation functions [19].

Our goal in this letter is to continue the study of large deviations for Markov processes
with reset [19]. We consider as a general framework a Markov process Xi evolving in discrete
time, possibly with time-dependent transition probabilities, and an observable Jn of that process
integrated over n time steps. To be concrete, we will refer to Jn as a “current” (e.g., of an
interacting particle system) but other quantities can also be considered, such as the time a
random walker spends in a given region or the work that a molecular motor expends over time
as it moves on a filament before its position is reset. What is important in each case is that Jn
is not incremented in time, but simply retains its value whenever the process Xi is reset (e.g.,
by returning particles to a particular configuration or restarting an internal clock).

If the time between reset events is finite, then one anticipates that finite-time contributions
to the generating function of Jn for the subprocess without reset play a role in determining
the asymptotic behaviour of the generating function for the full process with reset. Indeed,
one expects that a specific current fluctuation will be optimally realised by a particular reset
frequency. An interesting question is whether this optimal frequency depends smoothly on the
magnitude of the current fluctuation or whether there is a phase transition to a regime where
current fluctuations are optimally realised by trajectories involving no reset at all.

To answer this question, we show that the generating function of Jn can be mapped to the
partition function of the Poland-Scheraga (PS) model for DNA denaturation [20–23] and use
this mapping to derive criteria for first-order (discontinuous) and second-order (continuous)
phase transitions in the large deviation functions describing the fluctuation of Jn. The results
can be applied in principle to any additive observables of Markov processes; in this brief study,
we focus on illustrating the approach for simple random walk models and then discuss other
potential applications in the concluding section.

2. Framework and results

We are concerned with characterizing the fluctuations of Jn for large integration times. For
many systems and observables of interest, especially if the transition probabilities are time
homogeneous or only weakly time inhomogeneous, the distribution of Jn without reset has the
large deviation form,

P (Jn/n = j) ≈ e−nI0(j) (1)
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in the limit of large n [24–26]. In this case, the distribution is fully characterized, up to
subleading corrections in n, by the rate function

I0(j) = lim
n→∞

− 1

n
lnP (Jn/n = j), (2)

written with the subscript 0 to indicate that it is obtained for the process without reset.
Instead of considering the distribution and its associated rate function, we can also consider

the generating function defined as

G0(k, n) = 〈ekJn〉0, (3)

where the angular brackets denote an average over stochastic trajectories, started from some
given initial distribution, and the subscript 0 refers again to the original process without reset.
The exponential scaling (1) implies that the generating function also scales exponentially

G0(k, n) ≈ enλ0(k), (4)

with an exponent

λ0(k) = lim
n→∞

1

n
lnG0(k, n). (5)

referred to as the scaled cumulant generating function (SCGF). Moreover, it is known from the
Gärtner-Ellis Theorem [24] that, if λ0(k) is differentiable, then I0(j) can be obtained as the
Legendre-Fenchel (LF) transform of the SCGF:

I0(j) = max
k
{kj − λ0(k)}. (6)

For non-differentiable λ0(k), the transform above gives only the convex hull of I0(j) and
further arguments are needed to determine its true shape (see [25], Sec. 4.4).

Our aim now is to determine how the above large deviation functions, in particular the
SCGF, change under the addition of reset. To this end, we consider a reset version of the
processXi which, at each time step, has a probability r to be reset (with no current flowing) and
which evolves otherwise according to its “natural” dynamics (with the current correspondingly
incremented). We emphasize that the reset event does not reset the current – it only resets
Xi by returning it to a given initial position (or distribution) or by restarting an internal clock
variable at zero. Finite-time corrections to (3) might then determine the form of the generating
function for the whole “compound” process with reset which we denote as

Gr(k, n) = 〈ekJn〉r. (7)

Conceptually, this problem can be considered as a temporal analogue of the Poland-
Scheraga (PS) model for DNA denaturation in which a double-stranded chain is formed of
pairs of bound and unbound monomers [20–23]. Loops of denatured DNA (i.e., consecutive
unbound monomers) can be mapped in our framework to temporal periods without reset
whereas bound monomers correspond to reset events, as shown in Fig. 1. In the PS model one
calculates the partition function and looks for phase transitions (as a function of temperature)
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Figure 1. Relation between the current Jn under reset and the Poland-Sheraga model of DNA
denaturation (monomer pairs schematically indicated between vertical lines). Periods with
reset, where Jn is not incremented in time, correspond to bonds in the DNA model, whereas
periods without reset, where Jn evolves in time, correspond to detached DNA loops.

with the fraction of bound monomers as order parameter. We here perform an analogous
analysis for the current generating function, looking for phase transitions as a function of the
conjugate parameter k.

Following the PS approach, we write the current generating function for a “loop” of n
consecutive steps without reset as

U(k, n) = (1− r)nG0(k, n) (8)

and that for a period of n consecutive reset steps as

V (k, n) = rne0 = rn. (9)

The latter equation reflects the fact that the current is not incremented during a reset event; see
again Fig. 1. One could also use the same formalism with more general generating functions to
analyse switching between two or more different stochastic “subprocesses” that each increment
the current but with different probability distributions (similar to the sequences of several types
discussed in [27]).

As in the PS model, it is convenient to consider discrete-Laplace-transformed (“z-
transformed”) generating functions [27]:

G̃r(k, z) =
∞∑
n=1

Gr(k, n)z−n, (10)

Ũ(k, z) =
∞∑
n=1

U(k, n)z−n, (11)

Ṽ (k, z) =
∞∑
n=1

V (k, n)z−n =
r

z − r
. (12)
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This amounts to working within a grand-canonical ensemble in time (with fugacity z−1) so the
total number of steps fluctuates rather than being constrained to a constant.

The z-transformed generating function G̃r for the full reset process can be written down
explicitly by observing that its trajectories consist of alternating segments of consecutive
no-reset steps and consecutive reset steps, leading to a geometric sum of Ũ Ṽ terms that yields

G̃r(k, z) =
Ũ(k, z) + Ṽ (k, z) + 2Ũ(k, z)Ṽ (k, z)

1− Ũ(k, z)Ṽ (k, z)
. (13)

This has essentially the same form as the grand-canonical (in space) partition function for the
PS model with the precise numerator depending on our exclusion of zero-length trajectories
(chains) and choice of free boundary conditions.

Note that, for the special case where the current increments for each step (in the original
process without reset) are independent and identically distributed, there are no finite-time
corrections in the generating function and one has the exact relation

G0(k, n) = enλ0(k), (14)

which straightforwardly leads from (13) to

G̃r(k, z) =
∞∑
n=1

[r + (1− r)eλ0(k)]nz−n. (15)

Hence, by inspection,
Gr(k, n) = [r + (1− r)eλ0(k)]n, (16)

and the SCGF is
λr(k) = ln[r + (1− r)eλ0(k)]. (17)

This reflects the obvious fact that, in this case, the generating function for a single step in the
compound reset process is a weighted sum of the generating functions for a single step in the
two subprocesses. An example here is to take as original process a random walker which steps
one lattice unit right with probability p and one unit left with probability (1− p) and so has
current generating function

G0(k, n) = pek + (1− p)e−k. (18)

The reset might force the random walker back to a particular point on the lattice but has no
direct effect on the current counting, so the compound process must have the same generating
function as a “lazy” random walk with probability r to not move.

In more general cases, we can determine the SCGF of the reset process by locating, as in
the PS model, the largest real value of z at which G̃r(k, z) of (13) diverges. In the absence of a
phase transition, we thus look for the largest real solution of

Ũ(k, z)Ṽ (k, z) = 1, (19)
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denoted by z∗(k). With the explicit form for Ṽ (k, z), we have

Ũ(k, z∗) =
z∗(k)

r
− 1 (20)

which is identical to the corresponding condition in the PS model (see, e.g., (5) in [21]) when
the reset probability r is identified with the statistical weight of a bound pair ‡. Since z∗

determines the leading (exponential) behaviour of Gr(k, n) in n, we then obtain

λr(k) = ln z∗(k). (21)

A phase transition occurs in this context when for some value of k the function z∗(k) reaches
the convergence boundary point zc(k) of Ũ(k, z). Denoting this transition point as kc, we must
therefore have §

Ũ(kc, zc) =
zc(kc)

r
− 1. (22)

Analysis of the PS model reveals that the existence and nature of a phase transition is
determined by the behaviour of Ũ(k, z) in the neighbourhood of zc, which itself depends on
the leading (exponential) and subleading (power-law) terms in the long-time limit of U(k, n) ‖.
To be specific, let us assume the general scaling

U(k, n) ∼ (1− r)nenλ0(k)

nc(k)
, (23)

so that zc(k) = (1− r)eλ0(k). If there is a phase transition at a finite value kc, then Ũ(kc, zc)

must converge, meaning c(kc) > 1. From there, the nature of the phase transition is determined
as in the PS model by the value of the exponent c [20–23]:

i) For 1 < c(kc) ≤ 2, the derivative ∂Ũ(k, z)/∂z diverges at kc, leading to a continuous
dynamical phase transition;

ii) For c(kc) > 2, the derivative converges at kc, leading to a first-order or discontinuous
dynamical phase transition with a “cusp” (discontinuous slope in k) in λr(k).

A slight subtlety here is that, in the original PS model, the exponent c and the value
of zc are constants but the weight of a bound pair depends on temperature. In contrast, in
our framework the reset probability is constant but both c and zc depend on the parameter k
conjugate to the current Jn. This does not change the PS criteria for first-order and continuous
phase transitions, since these are based only on the convergence of Ũ and its derivative at
specific parameter values ¶.

Physically, a phase transition is here between a regime where the current fluctuations are
optimally realised by reset events at a finite fraction of time steps, leading to (21), and a regime

‡ Since, by construction, Ũ(k, z) > 0 for positive z we must have z∗ > r so z∗ is inside the region of convergence
of Ṽ (k, z).
§ The form of this equation also ensures zc(k) > r.
‖ This holds provided λ0(k) and c(k) are smooth functions of k; a phase transition could also arise from either
or both functions being non-analytic in k.
¶ The convergence of equivalent sums determines condensation transitions in Bose-Einstein gases, as pointed out
in [21], and in zero-range processes [28].
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where the current fluctuations are optimally realised by trajectories with no reset events, so that

λr(k) = ln zc(k) = λ0(k) + ln(1− r), (24)

the 1 − r factor obviously accounting for the probability of seeing no reset. If the phase
transition is first-order, the average length of a segment without reset is finite at the transition
point.

It is worth emphasizing that the value of c(kc) in a particular reset scenario will in general
depend on r: the nature of any phase transition can depend sensitively on the reset probability,
in contrast to the PS model where the nature of the transition is a priori independent of the
binding weight. We will see examples of this dependence in the following section.

3. Examples

Observables that are incremented in time with independent and identically distributed random
variables have purely exponential generating functions (c = 0), as seen in the previous section,
so they have no phase transition. Going beyond the independent assumption, it is easy to show
by a transfer matrix argument that, if Jn is a time-additive functional of a time-homogeneous
Markov process with a gapped spectrum, then

U(k, n) ∼ (1− r)nenλ0(k)+∆εn , (25)

where ∆ is a constant depending on the initial condition and, crucially, ε < 1 so we again have
c = 0. Processes that are non-homogeneous in time, however, can lead to generating functions
having subleading terms in n. In the following we consider three examples in this class in
which the current increments, although no longer identically distributed, are still independent.
For these weakly time-dependent random walks the currents correspond mathematically to
sums of independent but non-identically distributed random variables.

3.1. Gaussian random walk with varying variance

We first consider a random walker which, at the ith step after resetting, takes a jump drawn
from a Gaussian distribution with zero mean and time-dependent variance A[1−B/(i+ d)],
where A > 0, and B and d are constants such that B ≤ 1 + d to ensure positive variance for all
steps. The variance goes to the constant A as i→∞ for any finite d, but taking d > 0 allows
us to explore larger values of B.

For this model, the generating function of the total displacement (viz., current) for n steps
without reset is simply given by

U(k, n) = (1− r)n
n∏
i=1

exp

[
A

2

(
1− B

i+ d

)
k2

]
. (26)

Setting A = 2, without loss of generality, we can rewrite this as

U(k, n) = (1− r)n exp
[
nk2 −Bk2(Hn+d −Hd)

]
, (27)
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where

Hn =
n∑
k=1

1

k
(28)

is the nth harmonic number. Using the known asymptotic expression Hn ≈ lnn+ γ, where
γ = 0.57721 . . . is the Euler-Mascheroni constant, yields the scaling

U(k, n) ∼ (1− r)nenk2

nBk2
, (29)

which has the form (23) with λ0(k) = k2 and c(k) = Bk2. We immediately see that a phase
transition is only possible for B > 0 (variance increasing with i); in this case there is a
competition between the increasing probability of seeing large displacements in longer no-reset
segments and the decreasing probability of having fewer resets in the first place.

The z-transform of (26) with A = 2 is

Ũ(k, z) =
∞∑
n=1

(1− r)n exp
[
nk2 −Bk2(Hn+d −Hd)

]
z−n (30)

for which no analytic expression can be found for B > 0. The sum, however, can be used to
solve (20) numerically for z∗(k) and to look for phase transitions where it becomes equal to
zc(k) = (1− r)ek2 . Since the SCGF is obviously an even function of k, we concentrate here
on k ≥ 0.

From (22) the value of kc at which a phase transition occurs must satisfy
∞∑
n=1

exp
[
−Bk2

c (Hn+d −Hd)
]

=
(1− r)ek2c

r
− 1. (31)

For B > 0 and 0 < r < 1, both sides of this equation depend monotonically on k2
c ; the

left-hand side diverges as kc → 1/
√
B and approaches zero as kc →∞ whereas the right-hand

side is finite for kc = 0 and diverges as kc →∞. Hence, for the whole parameter range, there
is a single (positive) value of kc satisfying the equation and marking a phase transition.

For d = 0, the plot of the exponent c = Bk2
c shown in Fig. 2 indicates that this phase

transition only becomes first-order for large r and large B +. A similar analysis holds for
d > 0 and is supported by direct calculations of λr(k) from (21) as shown in Fig. 3. Here the
analytical curve for B = 0 (corresponding to a lazy random walk) shows no phase transition,
as expected. The numerical results for B = 0.5 show that the two solutions (21) and (24) meet
at kc with equal derivatives (but different second derivatives), marking a continuous transition
between fluctuations that typically involve resets and fluctuations that do not. For B = 5, (21)
and (24) meet at a lower kc with different derivatives, creating a cusp in λr(k) which marks a
discontinuous transition between the reset and no-reset fluctuation regimes.

The likelihood of each regime is determined from the rate function Ir(j), shown in Fig. 4,
which is obtained by numerically computing the LF transform of the SCGF. For B = 0.5 the
+ The numerical results in this and subsequent figures were obtained using Maple which appears to implicitly use
a zeta-function representation of the left-hand side of (31) and thus finds a solution even when convergence is
slow. We have checked consistency with Mathematica results for parameters that lead to faster convergence.
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Figure 2. (Color online) Exponent c = Bk2c at the phase transition point for the Gaussian
random walk with varying variance. Parameters: d = 0 and r values as shown in the legend.
As B → 0, c→ 1. Exponents greater than two indicate first-order dynamical phase transitions.
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Figure 3. (Color online) SCGF λr(k) for the varying-variance random walk with d = 10 and
r = 0.25. Coloured lines show (21) for different values of B while their intersections with (24)
indicate dynamical phase transitions: continuous for B = 0.5 (yellow circle) and discontinuous
for B = 5 (green circle). The case B = 0 corresponds to the lazy random walk.

rate function shows the same discontinuity in the second derivative as for the SCGF, whereas
for B = 5 the non-differentiable point of the SCGF transforms into a straight line connecting
the reset and no-reset branches ∗. This line is interpreted physically as a mixed regime (“phase
separated in time”) where typical trajectories switch between periods with frequent resets and
periods with no resets ]. In the case where r → 1 and B = 1, it can be checked that the straight
line extends to j = 0 and the rate function approaches

Ir(j) =

{
kc|j| for |j| ≤ 2kc
j2

4
− ln(1− r) for |j| > 2kc,

(32)

∗ The rate function is expected to be convex here, since there are no long-range temporal correlations. Therefore,
the LF transform should give the correct rate function even if the SCGF is not everywhere differentiable.
] This is analogous to the “Maxwell construction” in equilibrium statistical mechanics and relies again on the
absence of long-range temporal correlations.
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Figure 4. Rate function Ir(j) of the varying-variance random walk with d = 10 and r = 0.25.
The rate function for B = 5 has a linear section between the two green circles corresponding to
the left- and right-derivative, respectively, of λr(k) at kc.

where kc =
√
− ln(1− r). Thus in this case there is a mixed regime of periods with

consecutive resets (no current flow) and periods with a lower density of resets. As j increases
the fraction of the trajectory occupied by the latter periods increases, yielding exponential
fluctuations up to a critical current jc = 2kc beyond which the fluctuations become Gaussian
and involve no reset.

3.2. Gaussian random walk with decaying mean

As a variant of the previous model, we now consider step lengths with constant variance but
mean B/i for the ith step after reset. In this case, the generating function for n steps without
reset is

U(k, n) = (1− r)n
n∏
i=1

exp

(
A

2
k2 +

B

i
k

)
. (33)

We concentrate here on B > 0 corresponding to a positive initial bias decreasing with the step
number as 1/i ††. Setting A = 2, as before, we then have

U(k, n) = (1− r)nenk2+BkHn ∼ (1− r)nenk2

n−Bk
(34)

which has the form (23) with λ0(k) = k2 again but now c(k) = −Bk. Notice here that the
exponent in the denominator can be either positive or negative depending on the sign of k.
Hence we see that there is no phase transition for positive k (i.e., positive current fluctuations).
For negative k there is a phase transition at kc satisfying

∞∑
n=1

eBkcHn =
(1− r)ek2c

r
− 1. (35)

as obtained from (22) with the z-transform of (33). Again, it is easy to argue that this equation
has a single solution for all B > 0 and 0 < r < 1.

††We could also include a shift d, as in the previous example, but since this variant already allows arbitrarily
large B, we do not pursue that complication here.
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Figure 5. (Color online) Exponent c = −Bkc at the phase transition point for the Gaussian
random walk with decaying mean and r values as shown in the legend. As B → 0, c → 1.
Exponents greater than two indicate first-order dynamical phase transitions.
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Figure 6. (Color online) SCGF λr(k) of the Gaussian random walk with decaying mean and
r = 0.75. A continuous dynamical phase transition is seen for B = 1, while a first-order
transition is seen for B = 5.

In Fig. 5 we plot numerical results for c = −Bkc against B for different values of r.
When B → 0, we get kc → −∞ and, as in the previous model, c→ 1. The present model also
allows us to easily explore the limiting behaviour when B → ∞ which turns out to depend
qualitatively on r. For r > 1/2, kc → −

√
ln[r/(1− r)] and c has an oblique asymptote. In

contrast for r ≤ 1/2, kc → 0 and c approaches a constant; if this constant is less than two, the
phase transition remains continuous however large B is. We have checked these predictions
by numerically calculating the SCGF via solution of (20). In Fig. 6 we plot the results for
r = 0.75 showing first-order and continuous phase transitions in the current fluctuations for
different values of B, similarly to the previous model. The associated rate function is also
similar to that of Fig. 4 and is not shown for this reason.

One important difference to the previous model is that, although the SCGF is still even
in k without reset (because the step mean decays to zero in the long-time limit), the addition
of reset breaks this symmetry, bringing a non-zero (positive) mean current. The behaviour in
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the large-B limit is also interesting: from the discussion of kc in the previous paragraph we
find that, for r > 1/2, λr(kc)→ ln r whereas, for r ≤ 1/2, λr(kc)→ ln(1− r). In the former
case, zc approaches the convergence boundary point r of Ṽ (k, z) and the effect of this pole can
already be seen in the almost flat part of the B = 5 line in Fig. 6. In fact, the structure of the
right-hand side of (22) and the form of zc suggest that the distinction between r < 1/2 and
r > 1/2 should be rather generic.

3.3. Discrete random walk with decaying mean

For our last example, we briefly consider a random walk on a one-dimensional lattice with
transition probabilities that are weakly asymmetric in time in the sense that, at the ith time step
after reset, the random walker moves one lattice unit right with probability [1 +B/(i+ d)]/2

and one lattice unit left with probability [1−B/(i+d)]/2 where 0 ≤ B ≤ 1+d. In the context
of opinion dynamics, this can be thought of as a discrete-choice model where an agent’s bias
decays with time until reset by some particular event.

For small k, this model behaves similarly to the Gaussian random walk with varying
mean (the steps have mean B/(i + d) and unit variance), but is notably simpler to analyse
analytically. The current generating function for n steps without reset is here

U(k, n) = [(1− r) cosh k]n
(B tanh k + d+ 1)n

(d+ 1)n
, (36)

where (x)n is the Pochhammer symbol defined in terms of the Gamma function as Γ(x +

n)/Γ(x). This yields the asymptotic behaviour

U(k, n) ∼ 1

n−B tanh k
[(1− r) cosh k]n (37)

corresponding to (23) with λ0(k) = ln(cosh k) and c(k) = −B tanh k. For small k, the
exponent c(k) is unsurprisingly close to that of the Gaussian decaying-mean model, but it
differs for large k since here c(k)→ B as k → −∞. This means that for B ≤ 1 there can be
no phase transition at any finite value of k regardless of the value of r. In particular, there is no
phase transition for d = 0 where B ≤ 1 by construction.

This result can be verified explicitly for d = 0 since in this case Ũ(k, z) takes the simple
analytic form

Ũ(k, z) = −1 + [1− (1− r)z−1 cosh k]−B tanh k−1. (38)

One sees directly that zc(k) = (1 − r) cosh k and Ũ(k, zc) diverges, which means that (22)
cannot be satisfied for any finite kc. For d > 0, there also exists an analytic expression
for Ũ(k, z) in terms of the hypergeometric function, which predicts a phase transition if
−B tanh kc > 1 independently of d, in agreement with the earlier analysis.

4. Conclusions

We have shown that dynamical phase transitions can arise in the fluctuations of time-integrated
observables of reset processes, following a mechanism analogous to how phase transitions arise
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in the Poland-Scheraga (PS) model of DNA denaturation. In such processes, subexponential
terms in the generating function of the observable, which play no role in the long-time limit
without reset, are “amplified” by the presence of reset, leading to continuous and discontinuous
transitions between reset and no-reset fluctuation regimes.

Following the random walk examples presented here, we expect similar dynamical phase
transitions to arise in many other settings, including more general “compound processes” that
switch at random times between two or more independent processes. In this context, it would
be interesting to investigate continuous-time models (which do not have such a direct mapping
to the PS model), systems with time-dependent reset or switching events, as in [29, 30], and
non-Markovian dynamics having transition rates that depend on the whole history of the
process (see, e.g, [31, 32]). For illustrative purposes, we have restricted ourselves to models
with zero mean current in the absence of reset, but the analysis can also be extended to driven
non-equilibrium systems where we anticipate that reset-induced dynamical phase transitions
will break the Gallavotti-Cohen symmetry [33] for the current of the original dynamics.

Finally, it is possible to investigate the joint statistics of reset events and currents via the
joint generating function of the current Jn and the number Rn of resets after n time steps. Due
to the structure of our problem, this simply amounts to replacing r by rel on the right-hand
side of (20), with l as the conjugate parameter associated to Rn. The solution z∗ then becomes
a function of both k and l, yielding a joint generating function and, by Legendre transform, a
joint rate function. The value of Rn minimizing this rate function for a given Jn corresponds
to the optimal way to realise that current fluctuation and thus illuminates the physical structure
underlying any dynamical phase transitions.

Acknowledgments

R.J.H. thanks Bernard Derrida for introducing her to the Poland-Scheraga model and also
gratefully acknowledges NITheP for a funded research visit. H.T. is supported by the
National Research Foundation of South Africa (Grants no. 90322 and 96199) and Stellenbosch
University (Project Funding for New Appointee).

References

[1] Pakes A G 1978 J. Appl. Prob. 15 65–77
[2] Brockwell P J 1985 Adv. Appl. Prob. 17 42–52
[3] Kyriakidis E G 1994 Stat. Prob. Lett. 20 239–240
[4] Pakes A G 1997 Comm. Stat.: Stoch. Models 13 255–269
[5] Dharmaraja S, Crescenzo A D, Giorno V and Nobile A G 2015 J. Stat. Phys. 161 1–20
[6] Meylahn J M 2015 Biofilament interacting with molecular motors Master’s thesis Department of Physics,

Stellenbosch University
[7] Di Crescenzo A, Giorno V, Nobile A G and Ricciardi L M 2003 Queueing Syst. 43 329–347
[8] Evans M R and Majumdar S N 2011 Phys. Rev. Lett. 106 160601
[9] Evans M R and Majumdar S N 2011 J. Phys. A: Math. Theor. 44 435001

[10] Evans M R, Majumdar S N and Mallick K 2013 J. Phys. A: Math. Theor. 46 185001
[11] Eule S and Metzger J J 2016 New J. Phys. 18 033006



Phase transitions in large deviations of reset processes 14

[12] Kusmierz L, Majumdar S N, Sabhapandit S and Schehr G 2014 Phys. Rev. Lett. 113 220602
[13] Janson S and Peres Y 2012 SIAM J. Discrete Math. 26 537–547
[14] Bénichou O, Moreau M, Suet P H and Voituriez R 2007 J. Chem. Phys. 126 234109
[15] Brockwell P J, Gani J and Resnick S I 1982 Adv. Appl. Prob. 14 709–731
[16] Kumar B K and Arivudainambi D 2000 Comp. & Math. with Appl. 40 1233–1240
[17] Crescenzo A D, Giorno V, Kumar B K and Nobile A G 2012 Methodol. Comput. Appl. Prob. 14 937–954
[18] Majumdar S N, Sabhapandit S and Schehr G 2015 Phys. Rev. E 91 052131
[19] Meylahn J M, Sabhapandit S and Touchette H 2015 Phys. Rev. E 92 062148
[20] Poland D and Scheraga H A 1966 J. Chem. Phys. 45 1456–1463
[21] Poland D and Scheraga H A 1966 J. Chem. Phys. 45 1464–1469
[22] Kafri Y, Mukamel D and Peliti L 2000 Phys. Rev. Lett. 85 4988–4991
[23] Richard C and Guttmann A J 2004 J. Stat. Phys. 115 925–947
[24] Dembo A and Zeitouni O 1998 Large Deviations Techniques and Applications 2nd ed (New York: Springer)
[25] Touchette H 2009 Phys. Rep. 478 1–69
[26] Harris R J and Touchette H 2013 Large deviation approach to nonequilibrium systems Nonequilibrium

Statistical Physics of Small Systems: Fluctuation Relations and Beyond (Reviews of Nonlinear Dynamics
and Complexity vol 6) ed Klages R, Just W and Jarzynski C (Weinheim: Wiley-VCH) pp 335–360

[27] Lifson S 1964 J. Chem. Phys. 40 3705–3710
[28] Evans M R and Hanney T 2005 J. Phys. A: Math. Gen. 38 R195
[29] Pal A, Kundu A and Evans M R 2016 J. Phys. A: Math. Theor. 49 225001
[30] Nagar A and Gupta S 2016 Phys. Rev. E 93 060102
[31] Harris R J and Touchette H 2009 J. Phys. A: Math. Theor. 42 342001
[32] Harris R J 2015 J. Stat. Mech. 2015 P07021
[33] Lebowitz J L and Spohn H 1999 J. Stat. Phys. 95 333–365


