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Grand-canonical solution of semi-flexible self-avoiding trails on the Bethe lattice
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We consider a model of semi-flexible interacting self-avoiding trails (sISAT’s) on a lattice, where
the walks are constrained to visit each lattice edge at most once. Such models have been studied as an
alternative to the self-attracting self-avoiding walks (SASAW) to investigate the collapse transition of
polymers, with the attractive interactions being on site, as opposed to nearest-neighbor interactions
in SASAW. The grand-canonical version of the sISAT model is solved on a four-coordinated Bethe
lattice, and four phases appear: non-polymerized (NP), regular polymerized (P), dense polymerized
(DP) and anisotropic nematic (AN), the last one present in the phase diagram only for sufficiently
stiff chains. The last two phases are dense, in the sense that all lattice sites are visited once in AN
phase and twice in DP phase. In general, critical NP-P and DP-P transition surfaces meet with
a NP-DP coexistence surface at a line of bicritical points. The region in which the AN phase is
stable is limited by a discontinuous critical transition to the P phase, and we study this somewhat
unusual transition in some detail. In the limit of rods, where the chains are totally rigid, the P
phase is absent and the three coexistence lines (NP-AN, AN-DP, and NP-DP) meet at a triple
point, which is the endpoint of the bicritical line.

PACS numbers: 05.50.+q,05.70.Fh,64.70.km

I. INTRODUCTION

In the most studied lattice model for the collapse tran-
sition (also called coil-globule transition) of polymers [1],
the chains are represented by self-avoiding walks, so that
the bonds of the chain are placed on lattice edges and
the monomers are located on the sites. An attractive
interaction between monomers on nearest-neighbor sites
which are not linked by bonds is added. The competi-
tion between the repulsive excluded-volume interactions
and the attractive interactions leads to a change in the
polymerization transition of SASAW (self-attracting self-
avoiding walks) in a grand-canonical formalism. Experi-
mentally, as the temperature of a polymer solution is low-
ered, the chain changes its configuration from extended
(coil) to collapsed (globule), as the temperature crosses a
particular value, called the Θ-point. For weak attraction,
the transition between a non-polymerized and a polymer-
ized phase in the monomer fugacity-temperature plane is
continuous, becoming discontinuous as the attraction is
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increased, so that the collapse transition is a tricritical
point in this model. The nature of this transition was
studied through a mapping of the polymer model onto a
ferromagnetic O(n) model in the limit n → 0, due to de
Gennes [2, 3]. The contributions to the high-temperature
series expansion of the magnetic model are represented
by self-avoiding walks on the lattice. Mean field tricritical
exponents are found in three dimensions, with logarith-
mic corrections.

In two dimensions, non-classical exponents are ex-
pected, and a major result is due to Duplantier and
Saleur (DS), who managed to derive the exact tricrit-
ical exponents for the SASAW model on a honeycomb
lattice [4]. The proposal of this model, which requires
some fine tuning to allow it to be solved, as a generic re-
sult for the collapse transition has been discussed in the
literature soon after its proposal, and lead to numerical
results which seem to support its robustness [5–9]. An-
other aspect of the problem are the phase diagrams of the
variety of models related to the problem of the collapse
transition. Even a slight change in the SASAW model,
if we assume that the attractive interactions are between
polymer bonds on opposite sides of elementary squares
of the square lattice, leads to a phase diagram which is
different from the one found when the interactions are be-
tween monomers on nearest neighbor (NN) sites. In this
model, an additional polymerized phase appears, besides
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the non-polymerized and the regular polymerized phases,
and the critical polymerization line ends at a critical end-
point [10, 11].

The self-avoidance constraint may also be changed, al-
lowing for more than one monomer at the same site, but
still restricting the number of polymer bonds on each
lattice edge to at most one [12]. This generalization of
SAW’s, usually called trails, has the distinctive feature
that the interactions are now between monomers at the

same site. On two-dimensional lattices, the trails may
collide or cross at each site, and in the original model,
which we will call the ISAT (interacting self-avoiding
trails) model, the statistical weights of both configura-
tions are the same. If, the trails are not allowed to cross
themselves, so that only collisions of the trails on sites
exist, we have a model called VISAW (vertex interacting
self-avoiding walks), which was exactly solved by Blöte
and Nienhuis (BN) [13] and has critical exponents for the
collapse transition distinct from the ones found in the DS
model. There has been much discussion in the literature
on which of the two distinct sets of exponents (DS or
BN) is the generic result for the collapse transition of
polymers. The BN exponents seem to be difficult to find
in simulations, since numerical results for the exponents
of the BN model seem to be closer to the DS values [14].
The inclusion of stiffness in the VISAW model, associat-
ing a bending energy to elementary bends of the chain,
leads to an even richer phase diagram [15], with the tri-
critical points from both integrable models (DS and BN)
residing on a multicritical line. The robustness of the DS
exponents has also been discussed in a recent paper [16],
where it has been shown that if crossings of the trails are
included in the BN model, so that the lattice is no longer
planar, the universality class is changed.

Although of course the analytic results mentioned
above are of inestimable value, details of the phase dia-
grams of the different models are not always easily found
with these techniques, and this is also true for simu-
lations, in particular in the grand-canonical formalism,
where the nature of the collapse transition was recognized
to be tricritical by de Gennes. It is, therefore, interesting
to study these phase diagrams with approximate ana-
lytic tools, among them solutions on hierarchical lattices
such as the Bethe and the Husimi lattice. Indeed, the
ISAT model was recently studied on a four-coordinated
Husimi lattice built with squares and on a four and six-
coordinated Bethe lattice [17]. Rich phase diagrams were
found in these studies, with the coil-globule transition
for four-coordinated cases (which are mean-field approx-
imations for the square lattice) being associated with a
bicritical point. Such behavior was confirmed in a recent
study by Pretti [18], where the ISAT model was gen-
eralized by including an attractive interaction between
NN monomers on single occupied sites not linked by a
polymer bond and solved on Bethe and Husimi lattices
with q = 4. The VISAW model (when the crossings
are forbidden and NN interactions vanish), the SASAW
(when crossings and collisions are not allowed), the model

by Wu and Bradley [19] (when collisions and crossings
have the same weight) and the simple ISAT model (when
the NN interaction vanishes) are recovered as particular
cases.
Given the relevance of the semi-flexible extension of the

VISAW model [15] in the discussion about the differences
between the DS and the BN critical behaviors for the col-
lapse transition, we investigate another generalization of
trail models by including an energy associated to ele-
mentary bends. This is done here for Bethe lattice, with
different statistical weights associated to crossings and
collisions, so that semi-flexible VISAW and semi-flexible
ISAT are obtained as particular cases of our model. It
is shown that the inclusion of semi-flexibility does not
change the nature of the collapse transition when com-
pared with the flexible ISAT model studied before [17],
but an additional polymerized phase appears inside the
regular polymerized phase, which is both dense and ne-
matic, since all lattice sites are visited and all bonds
are in the same direction. For SAW, the semi-flexible
and the self-attracting cases were studied on the Bethe
lattice [20]. When both effects are present, studies on
Bethe and Husimi lattices show the appearance of a sec-
ond polymerized phase, which is dense and anisotropic
in the sense that bonds in one particular direction are
favored [21, 22]. The nature of the collapse transition
is changed when the stiffness is sufficiently high, so that
in this case also the appearance of a second polymerized
phase signals the change of the nature of the collapse
transition.
The model we study is defined in more detail in Sec-

tion II and its solution on a Bethe lattice is presented in
Section III. Final discussions and the conclusion may be
found in Section IV.

II. DEFINITION OF THE MODEL

We consider a semi-flexible generalized self-avoiding
trail (sISAT) model. In this model, each lattice edge
can be occupied by at most one polymer bond, which
has an activity z = exp(βµ), where β = 1/(kBT ) and µ
is the chemical potential of a bond. The bonds connect
monomers, which are placed on the sites of the lattice.
For a lattice with coordination number q, each lattice site
can be occupied by up to q/2 (for even q) and (q − 1)/2
(for odd q) monomers. In two dimensions, walks meeting
at a lattice site may either cross or collide, as is appar-
ent in the generalized ISAT model on a square lattice
depicted in Fig. 1. In higher dimensions, however, the
distinction between collisions and crossings is no longer
clear. We will restrict our attention to lattices with q = 4
here, whose solutions may be compared with results for
the square lattice. Statistical weights τx and τc will be
associated for each crossing and collision of the chains,
respectively. Note that when τx = τc we recover the
classical ISAT model, while in the case τx = 0 (crossings
forbidden) the VISAW model is obtained. In order to an-
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FIG. 1: Illustration of a self-avoiding trail on a square lat-
tice. Collisions and crossings are indicated by τc and τx, re-
spectively, while bends at sites with two incoming bonds are
indicated by ω.

alyze the effects of the polymer stiffness in such models,
an additional weight ω = exp(−βǫb) is introduced, asso-
ciated to one polymer bend. If the energy ǫb associated
to an elementary bend of the trails is positive (ω < 1),
we say that the walks are semi-flexible. This is also illus-
trated in Fig. 1. The grand-canonical partition function
of the model is given by

Y =
∑

zNτNc
c τNx

x ωNb , (1)

where N , Nc and Nx are the numbers of bonds, colli-
sions and crossings in the system, respectively. Nb is the
number of bends in sites with a single monomer, since
the bends in double visited sites are accounted for in the
weight τc, so that τc = ω2τ∗, where τ∗ is the weight of
the collision itself, i. e., of the on-site monomer-monomer
interaction at colliding sites. We will mostly restrict our-
selves in the discussions to τx = τ∗ = exp(−βǫ), so that
the monomer-monomer interaction energy ǫ is the same
for crossings and collisions, but it is easy to consider
ǫc 6= ǫx, and this will be done in part of the comments
below. The sum in Eq. (1) is over all allowed configura-
tions of the walks on the lattice we are considering, which
will be the four coordinated Bethe lattice here.

III. SOLUTION ON THE BETHE LATTICE

We solve the model on a four coordinated Bethe lattice,
which corresponds to the core of a Cayley tree as shown in
Fig. 2. The extremal monomers of each chain are placed
on the surface of the tree. One possible configuration of
three chains on a Cayley tree with four generations of
sites is shown in Fig. 2.

FIG. 2: A configuration of three chains placed on a Cayley
tree with four generations of sites. The statistical weight of
this configuration is z16ω3τcτx.

To solve the model on the Bethe lattice we consider
sub-trees, defining partial partition functions (ppf’s) for
them for a fixed configuration of the root edge [23]. For
the Bethe lattice, usually only two root configurations
are needed, corresponding to the possibilities of empty
or occupied (by chain bonds) root edges. However, as
discussed above, in the semi-flexible case one may ex-
pect the appearance of anisotropic phases, which dis-
play orientational (nematic) ordering, so that bonds in
one or more directions are favored. The study of mod-
els which present nematic ordering on such hierarchical
lattices presents some difficulties, particularly for q > 4.
One way to avoid them is to solve these models on other
treelike lattices for which the exact solution is the Bethe
approximation on regular lattices with the same coordi-
nation number. One of such lattices is the random locally
treelike layered (RLTL) lattice introduced by Dhar, Ra-
jesh and Stilck [24] to study nematic ordering of monodis-
persed rigid rods. Here we will follow a simpler option,
assuming that at each site of the q = 4 Bethe lattice two
incoming bonds are in one direction and the two remain-
ing ones are in a perpendicular direction. Actually, one
should keep in mind that in the thermodynamic limit this
lattice is effectively infinite dimensional, as was shown
by Baxter [23]. Thus, for example, to correctly measure
the Euclidean distance between two sites on an even-
coordinated Bethe lattice, one may embed it in a hyper-
cubic lattice whose dimension increases with the number
of generations [25]. Therefore, we will define partial par-
tition functions for four root configurations: g0,1 for a
root edge in direction 1 not occupied by a bond, g0,2 for
a empty root edge in direction 2, and g1,1 and g1,2 for
subtrees with occupied root edges in directions 1 and 2,
respectively.

We now may obtain recursion relations for the ppf’s of
a sub-tree with an additional generation, considering the
operation of attaching a new root site and edge to three
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sub-trees of the preceding generation. The results are:

g′0,1 = g0,1g
2
0,2 + g0,1g

2
1,2 + 2ωg1,1g1,2g0,2, (2a)

g′0,2 = g20,1g0,2 + g21,1g0,2 + 2ωg0,1g1,1g1,2, (2b)

g′1,1 = z1[g1,1g
2
0,2 + 2ωg0,1g0,2g1,2 + τg1,1g

2
1,2], (2c)

g′1,2 = z2[g
2
0,1g1,2 + 2ωg0,1g1,1g0,2 + τg21,1g1,2], (2d)

where τ ≡ τx+2τc is the only combination of the weights
of double occupied sites that appears in the Bethe lat-
tice solution; this will change if longer range correlations
are taken into account, such as on the Husimi lattice.
We note that we include the possibility of bonds in the
two directions having different activities, although we will
discuss the thermodynamic behavior of the model only
for z1 = z2 = z.
Here, gi,j and g′i,j are ppf’s of sub-trees with M and

M + 1 generations, respectively. Usually, the ppf’s di-
verge in the thermodynamic limit (whenM → ∞). Thus,
it is suitable to define the ratios:

R1 =
g1,1
g0,1

, (3a)

R2 =
g1,2
g0,2

, (3b)

which should remain finite for non-dense phases, where a
finite fraction of the lattice sites is empty. The recursion
relations for these ratios are:

R′
1 = z1

R1 + 2ωR2 + τR1R
2
2

1 +R2
2 + 2ωR1R2

, (4a)

R′
2 = z2

R2 + 2ωR1 + τR2
1R2

1 +R2
1 + 2ωR1R2

. (4b)

We find four distinct fixed points for these recursion
relations when z1 = z2 = z, which are stable in distinct
regions of the parameter space (z, ω, τ). They are:

• A non-polymerized (NP) phase: R1 = 0, R2 = 0.

• A regular polymerized (P) phase: R1 = R2 6= 0
and finite.

• A dense polymerized (DP) phase: R1 = R2 → ∞.

• A dense anisotropic and nematic (AN) phase:
R1 → ∞ and R2 → 0 or R1 → 0 and R2 → ∞.

In the dense phases, the edges corresponding to the direc-
tion of the ratio which diverges are all occupied by bonds.
It is useful to define the reciprocal ratios Si = 1/Ri

to study the fixed points which are associated to these
phases. For the DP phase we may rewrite the recursion
relation Eqs. (4) as:

S′
1 =

1

z

S1S
2
2 + S1 + 2ωS2

S2
2 + 2ωS1S2 + τ

, (5a)

S′
2 =

1

z

S2
1S2 + S2 + 2ωS1

S2
1 + 2ωS1S2 + τ

. (5b)

So that the DP fixed point is now located at the origin
S1 = 0, S2 = 0. For the anisotropic AN phase, there
are two equivalent fixed points where the chains occupy
bonds in one of the two directions. If we consider the
fixed point with bonds in the 1 direction, the recursion
relations may be written in terms of the variables S1 and
R2, so that the fixed point again is located at the origin.
The result is:

S′
1 =

1

z

S1 + S1R
2
2 + 2ωR2

1 + 2ωS1R2 + τR2
2

, (6a)

R′
2 = z

S2
1R2 + 2ωS1 + τR2

1 + S2
1 + 2ωS1R2

. (6b)

We notice that the product P = R1R2 attains a finite
value at the AN fixed point, given by:

P =
z2τ − 1 +

√

(z2τ − 1)2 + 16z2ω2

4ω
(7)

The region of the parameter space where each fixed
point is stable may be found by studying the eigenvalues
of the Jacobian of the recursion relations:

Ji,j =
∂Q′

i

∂Qj
, (8)

where the Q’s are the appropriate ratios in each case. In
the NP fixed point R1 = R2 = 0, the secular equation
of the recursion relation (4) is

(z − λ)2 − 4z2ω2 = 0, (9)

so that this fixed point is stable for:

z ≤ 1/(1 + 2ω). (10)

The secular equation associated to the DP fixed point
S1 = S2 = 0 is:

(

1

zτ
− λ

)2

−

(

2ω

zτ

)2

= 0, (11)

and thus the region where this phase is stable will be:

τ ≥
1 + 2ω

z
(12)

The secular equation for the AN fixed point S1 = 0,
R1 = 0 is:

λ2 −

(

1

z
+ zτ

)

λ+ τ − 4ω2 = 0. (13)

From which it follows that this fixed point is stable if

τ ≤
1

z
−

4ω2

z − 1
. (14)

Since τ (as well as z and ω) are non-negative, the AN

phase is stable for allowed values of τ if z ≥ 1/(1− 4ω2),
so that it exists only when ω < 1/2. This is expected
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since the chains should be sufficiently stiff to generate
nematic order.
For the isotropic polymerized fixed point P, where

R1 = R2 = R, the elements of the Jacobian are J1,1 =
J2,2 = A and J1,2 = J2,1 = B, with:

A =
z + (τz − 2ω)R2

1 + (1 + 2ω)R2
, (15a)

B = 2
ωz + (τz − 1− ω)R2

1 + (1 + 2ω)R2
, (15b)

where the squared ratio of ppf’s is given by:

R2 =
(1 + 2ω)z − 1

1 + 2ω − zτ
, (16)

and thus the stability condition for this fixed point will
be

A+B ≤ 1 (17a)

A−B ≤ 1. (17b)

We find that this condition is obeyed in the region of
the parameter space between the surfaces z = 1/(1 +
2ω), zτ = 1 + 2ω, and τ = 1/z − 4ω2/(z − 1), which
correspond to the stability limits of the NP, DP, and
AN fixed points, respectively. Note that τAN → τDP

when ω → 0, so that the P phase disappears in this limit.
As will be shown below, although the order parameter is
discontinuous at the P-AN transition, the two stability
limits meet at the transition surface. For ω > 0, the two
critical surfaces NP-P and DP-P meet at the bicritical
line, located at:

z =
1

1 + 2ω
(18a)

τ = (1 + 2ω)2. (18b)

Before proceeding, we will discuss the possibility of
regular polymerized phases with nematic order, with dis-
tinct and finite ratios in both directions. Summing and
subtracting the fixed point equations (R′

i = Ri in Eqs.
(4)) we obtain:

(R1 +R2)[(2ω − zτ + 1)P − z(1 + 2ω) + 1] = 0, (19a)

(R1 −R2)[(2ω + zτ − 1)P − z(1− 2ω) + 1] = 0,(19b)

where we recall that P = R1R2. If the phase is polymer-
ized and nematic, the second factors of both equations
have to vanish. This leads to:

P =
z − 1

2ω
, (20a)

P =
2ωz

1− zτ
. (20b)

We notice that the conditions z > 1 and τz < 1 must be
satisfied, and also the three parameters of the model are

not independent in the nematic phase with finite ratios,
since they are related by the equation:

z − 1

2ω
=

2ωz

1− zτ
, (21)

which happens to be equivalent to the stability limit
of the AN phase above, Eq. (14). Thus, on this sur-
face of the parameter space, we have a continuous set of
marginally stable (with λ = 1) fixed points P = const,
which includes the regular polymerized fixed point R1 =
R2 and the AN fixed point R1 → ∞, R2 → 0. There-
fore, we have a discontinuous transition between these
two phases, but the transition surface is not between two
spinodal surfaces of the two phases which coexist. Inci-
dentally, we notice that the value of the product of ratios
in the AN phase [Eq. (7)] reduces to Eq. (20b) on the
stability limit of this phase. This rather unusual fea-
ture of the AN-P transition, which is critical but has
a discontinuous order parameter, has been discussed in
the literature before. One simple situation of this kind
is the one-dimensional Ising model with interactions de-
caying with the distance between spins as 1/r2 [26]. At
zero field, in this model a discontinuous magnetization
is found at the critical point. The one-dimensional Ising
model with nearest-neighbor interactions has also been
studied via exact renormalization-group transformations
by Nelson and Fisher [27], and, although the phase transi-
tion there is degenerate, since it happens at zero temper-
ature, it may be interpreted also as a critical discontinu-
ous transition. The possibility of such transitions in the
framework of the renormalization group was discussed in
general by Fisher and Berker [28]. This unusual criti-
cal behavior was also found in the stationary behavior
of non-equilibrium models associated to the Ising model
and in the threshold contact process [29].

The partition function of the model on the whole Cay-
ley tree is obtained considering the operation of connect-
ing four subtrees to the central site. The result is:

Y = (g0,1g0,2)
2 + (g1,1g0,2)

2 + (g0,1g1,2)
2 +

4ωg1,1g0,1g1,2g0,2 + τ(g1,1g1,2)
2, (22)

where the first term corresponds to the configuration
with no bond incident on the central site, the next three
have two incident bonds and in the last all four edges
are occupied. This expression may also be written as
Y = (g0,1g0,2)

2y, with

y = 1 +R2
1 +R2

2 + 4ωR1R2 + τ(R1R2)
2. (23)

The densities of bonds in both directions, and bends (in
non-colliding sites), collisions and crossings at the central
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site are given respectively by:

ρz,1 =
R2

1 + 2ωR1R2 + τR2
1R

2
2

y
(24)

ρz,2 =
R2

2 + 2ωR1R2 + τR2
1R

2
2

y
(25)

ρω =
4ωR1R2

y
(26)

ρc =
2τcR

2
1R

2
2

y
(27)

ρx =
τxR

2
1R

2
2

y
(28)

As discussed before, the total density of bends is ρb =
ρω+2ρc. In theNP phase all densities vanish. In theAN

phase with R1 → ∞ and R2 → 0, ρz,1 = 1 and all other
densities vanish. In the DP phase, ρz,1 = ρz,2 = 1, ρω =
0, ρc = 2τx/(2τz + τx), and ρx = τx/(2τc + τx). Finally,
in the P phase, ρz,1 = ρz,2 = [z(1+2ω)−1]/[2z(1+2ω)−
1− τz2], ρω = 4ωR2/y, ρc = 2τcR

4/y, and ρx = τxR
4/y,

where the ratio R is given by Eq. (16).
The bulk free energy per site on the BL, which differs

from the one obtained before in Eq. (22) by the contri-
bution of the surface of the Cayley tree, may be found
following an Ansatz by Gujrati [30]. The result is:

φb

kBT
= − lim

M→∞

1

2
ln

YM+1

Y 3
M

. (29)

From the recursion relations (Eqs. (2)) we have that:

φb

kBT
= −

1

2
ln

Y ′

Y 3
, (30)

where Y ′ is the partition function calculated with ppf’s
of subtrees with an additional generation with respect to
the unprimed ppf’s and the thermodynamic limit is im-
plicit. In the NP fixed point, g0,1 and g0,2 are dominant
over the other terms in the partition function Eq. (22),
so that we may rewrite Eq. (30) as:

φ
(NP )
b = −

kBT

2
ln

(g′0,1)
2(g′0,2)

2

[g20,1g
2
0,2]

3
= 0, (31)

where we have used the recursion relations in Eqs. (2).
This result is consistent with the fact that this phase
corresponds to an empty lattice. In the DP phase, the
last term of the partition function dominates over the
others, so that:

φ
(DP )
b = −

kBT

2
ln

τ(g′1,1)
2(g′1,2)

2

(τg21,1g
2
1,2)

3
= −kBT ln(z2τ) =

ǫ− 2µ− kBT ln[1 + exp(−2βǫB)], (32)

where we recall that in this phase four bonds are incident
on each site. In the AN phase, supposing that the bonds

are in the 1 direction, the second term of the partition
function dominates, so that:

φ
(AN)
b = −

kBT

2
ln

(g′1,1)
2(g′0,2)

2

(g21,1g
2
0,2)

3
= −kBT ln z = −µ,

(33)
and again this confirms that in this phase each site has
two bonds in direction 1 incident on it. Finally, in the
regular polymerized phase P, where R1 = R2 = R, we
may rewrite Eq. (30) as:

φ
(P )
b = −

kBT

2
ln

(g′0,1)
2(g′0,2)

2

(g0,1g0,2)6y2
=

−kBT ln
[τ − (1 + 2ω)2]z2

1− 2(1 + 2ω)z + τz2
. (34)

A. Phase diagrams

Beyond the critical surfaces (continuous for the NP-

P transition and P-DP and discontinuous for P-AN

transition), we note that the NP and DP phases coexist
in the region z < 1/(1 + 2ω) and τ > (1 + 2ω)/z. The
discontinuousNP-DP transition is located at the surface
where the bulk free energies per site of the two phases are
equal and, from Eqs. (31) and (32), we find it at τ = 1/z2.
This surface ends at the bicritical line (Eqs. 18). As
expected, at all other transition surfaces the respective
bulk free energies of the involved phases are also equal.
As discussed above, for ω ≥ 1/2 the AN phase is not

present in the phase diagrams, see an example in Fig. 3(a)
for ω = 0.75, which is qualitatively similar to the one
obtained in the flexible case (ω = 1) [17]. For ω < 1/2,
the thermodynamic behavior is still the same, except for
the presence of the AN phase, as well as the critical
discontinuous P-AN surface. Diagrams for ω = 0.25
and ω = 0.1 are shown in Figs. 3(b) and (c), respectively,
where one sees that by decreasing ω the region occupied
by the P phase decreases, whilst that by the AN phase
increases.
Indeed, in the limit of rigid trails ω → 0 (ǫb → ∞),

only the two dense phases appear, besides the NP phase,
since the P phase between them is absent. The roots of
the secular equation related to the AN phase [Eq. (13)]
are 1/z and τxz in this case, so that the stability limit of
this phase for z > 1 is τx = 1/z, which coincides with the
stability limit of the DP phase [Eq. (12)] (since there are
no bends, τ = τx). Also, the stability limits of the AN

and NP phases meet at z = 1. As always, the NP and
the DP phases coexist on the line τx = 1/z2. The three
transition lines meet at z = τx = 1, as may be seen in
Eq. (18). As ω → 0, at the discontinuous AN-NP tran-
sition line, located at z = 1, the NP-P critical surface
and the P-AN discontinuous critical surface meet, while
the DP-P critical surface and the P-AN discontinuous
critical surface meet at theDP-AN discontinuous transi-
tion line, located at τx = 1/z. The phase diagram in this
limit is shown in Fig. 3(d). Actually, it is quite simple
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FIG. 3: Phase diagrams for (a) ω = 0.75, (b) ω = 0.25, (c)
ω = 0.1 and (d) ω = 0.0. Regular continuous transitions are
shown as solid lines, discontinuous transitions are represented
as dashed lines and the dash-dotted line corresponds to the
critical discontinuous transitions. The dot in (d) the endpoint
of the bicritical line, where the three discontinuous transition
lines meet.

to obtain the free energy of the model on the square lat-
tice in this limit of rods, and the same phase diagram is
obtained. This calculation is presented in the appendix.

B. Densities

In this subsection, we investigate the behavior of the
densities at the different transitions. We start noting that
the total density of bonds ρ = (ρz,1+ρz,2)/2 assumes the
values: ρ = 0 in the NP phase, ρ = 1 in the DP phase,
ρ = 1/2 in the AN phase, and 0 < ρ < 1 in the P phase.
It may be useful to recall that the order parameter of
the polymerization transition is actually m = ρ1/2, as is
shown by the mapping of the problem onto the magnetic
n-vector model in the limit n → 0 [31]. Moreover, we

0 1 2 3
z

0.0

0.2

0.4

0.6

0.8

1.0

ρ

DP

NP

P

(a)

0 1 2 3
z

0.0

0.2

0.4

0.6

0.8

1.0

ρ

DP

NP
P

(b)

P

AN

0 1 2 3
z

0.0

0.2

0.4

0.6

0.8

1.0

ρ

DP

NP

(c)
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FIG. 4: Total densities of bonds as functions of z for τ = 0.5
and (a) ω = 0.25, (b) ω = 0.1 and (c) ω = 0.0.
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may define a nematic order parameter as:

Q = ρz,1 − ρz,2 =
R2

1 −R2
2

1 +R2
1 +R2

2 + 4ωR1R2 + τR2
1R

2
2

,

(35)
which is |Q| = 1 in the AN phase and Q = 0 otherwise,
indicating that any transition to AN phase is discontin-
uous. Indeed, this is confirmed in Fig. 4, which shows
the variation of ρ with z, for τ = 0.5 and several values
of ω. Close to the NP-P transition we have ρ ≈ (z−zc),
consistent with an mean field exponent β = 1/2 for the
order parameter.
Along the P-AN transition surface, we have ρ(P ) =

(z − 1)/(z − 1 + 2ωz) for the P phase, which increases
with z, from ρ = 2ω/(1 + 2ω) (at z = 1/(1 − 4ω2)) to
ρ = 1/(1 + 2ω) (for z → ∞). Between these limits,
there exists a line, given by z = 1/(1 − 2ω), where ρ
is continuous (i.e., ρ(P ) = ρ(AN) = 1/2), but Q (and
so, the transition) is still discontinuous. Still on the P-

AN critical surface, the infinite set of marginally stable
solutions R1R2 = const. have densities ρ1 = R2

1/(z+R2
1)

and ρ2 = (z−1)2/((z−1)2+4ω2zR1). Thereby, for fixed
ω and z, ρ1 increases (ρ2 decreases) from 0 to 1 (from 1
to 0) when R1 changes from 0 to ∞. In both limits, we
recover the AN result and, when ρ1 = ρ2 the P phase
is obtained. We note that in this phase, ρ 6= 1/2 for all
values of ω, z and R1, except at the line z = 1/(1− 2ω),
where ρ = 1/2 regardless the value of R1.

C. Nematic susceptibility

Let us discuss in some more detail theAN-P transition
by studying the behavior of the appropriate susceptibility

close to it. Given the activities z1 and z2 of bonds in each
direction, we may define

z =
z1 + z2

2
(36)

and

z̄ =
z1 − z2

2
. (37)

The activity z̄ is the appropriate field-like variable conju-
gated to the nematic order parameter, so that we define
the nematic susceptibility as:

χN =

(

∂Q

∂z̄

)

z,ω,τ

, (38)

where the nematic order parameter Q is defined in
Eq. (35). To obtain an expression for χN in the P

phase, we start with the fixed point equations which fol-
low from the recursion relations Eqs. (4), remembering
that z1 = z + z̄ and z2 = z − z̄. Differentiating these
equations with respect to z̄, we obtain a system of linear
equations for the derivatives of the ratios, whose solution
is (for z̄ = 0):

(

∂R1

∂z̄

)

z,ω,τ

=
F (R1, R2; z, ω, τ)

D(R1, R2; z, ω, τ)
, (39a)

(

∂R2

∂z̄

)

z,ω,τ

= −
F (R2, R1; z, ω, τ)

D(R2, R1; z, ω, τ)
, (39b)

where we have

F (R1, R2; z, ω, τ) = (1− z − 4ω2z)R1 + 2ω(1− 2z)R2 + (1 + 4ω2 − τz)R3
1 + 4ω(3− 2τz)R2

1R2 +

(2 + τ + 8ω2 − 3τz)R1R
2
2 + 3τ(1− τz)R3

1R
2
2 + 4τωR2

1R
3
2 + 2τωR4

1R2, (40)

D(R1, R2; z, ω, τ) = 1 + z2 − 2z(1 + 2ω2z) + [4ω2z + (1− τz)(1− z)](R2
1 +R2

2) +

8ω(1− τz2)R1R2 + 3[4ω2 − (1 − τz)2]R2
1R

2
2. (41)

Now we may obtain an expression for the susceptibility
as a function of the parameters z, τ , and ω, as well as of
the ratios R1 and R2 and their derivatives with respect
to z̄. The expression is too long to be given here, but if
we particularize it to the P phase, where R1 = R2 = R,
with R given by Eq. (16) it simplifies to:

χN =
2(1 + 2ω − τz)(1− z − 2ωz)

[1− 2(1 + 2ω)z + τz2][1− (1 + τ − 4ω2)z + τz2]
.

(42)
At the P-AN transition τcritical = 1/z− 4ω2/(z − 1), as
expected the denominator in Eq. (42) vanishes, and thus

we may write this equation as:

χN =
2(1 + 2ω − τz)(1 − z − 2ωz)

z(z − 1)[1− 2(1 + 2ω)z + τz2](τ − τcritical)
.

(43)
We thus conclude that, in agreement with the findings of
Fisher and Berker [28] for discontinuous critical transi-
tions, the transition from the regular polymerized to the
nematic phase is characterized by the critical exponents
β = 0, since the nematic order parameter is discontinu-
ous, and γ = 1, as is clear in Eq. (43). Of course, the
divergence may also be seen if we cross the critical line in
another direction, such as parallel to the axis which rep-
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FIG. 5: Susceptibility χN in the P phase as a function of the
bond activity z for τ = 0.1, close to the P-AN transition.
The curves, from left to right, correspond to ω = 0.15 (blue),
ω = 0.20 (red) and ω = 0.25 (black). Dashed lines indicate
the corresponding critical activities.

resents the bond activity z, as long as we really cross it
and do not touch the critical line tangentially. In Fig. (5)
some of these curves are shown close to the transition ac-
tivity.

IV. FINAL DISCUSSIONS AND CONCLUSION

Semi-flexible trails on a Bethe lattice with coordina-
tion number equal to 4 show a very rich phase diagram
in the parameter space defined by the activity of a bond
(z), the statistical weights of a crossing and a collision
(τc and τx), and the statistical weight of an elementary
bend in the trail (ω). For sufficiently flexible chains
(ω > 1/2) the phase diagrams are qualitatively similar
to the one found in the flexible case (ω = 1), studied
in [17], with non-polymerized (NP), regular polymerized
(P) and dense polymerized (DP) phases meeting at a
bicritical point. When the Boltzmann factor of bends
is smaller than 1/2, an additional polymerized phase ap-
pears inside the P phase. In this phase all lattice sites are
visited by the trails and all bonds are in one of the two
possible directions, thus characterizing it as anisotropic
and nematic (AN). The nature of the P-AN transition
is quite unusual: while the nematic order parameter is
discontinuous, it also has a critical nature, characterized
by the fact that the stability limits of both phases coin-
cide with the transition line. This type of criticality was
studied in the framework of the renormalization group by
Fisher and Berker [28], and for the present case we have
verified their result that the susceptibility critical expo-
nent γ should be equal to 1. In the limit of rigid chains
ω = 0 the P phase is no longer stable, and three coexis-
tence lines (AN-NP, AN-DP, and NP-DP) meet at a
triple point which is the endpoint of the bicritical line.
Some features of the results presented here may be due

to the particular lattice on which the model is solved. On
the Bethe lattice, since there are no closed paths, any

0.0 0.2 0.4 0.6 0.8 1.0
ω

0

5

10

15

20

τ*

VISAW

ISAT

FIG. 6: Bicritical lines in terms of (on-site) monomer-
monomer interaction τ c

∗ against ω for ISAT and VISAW
models.

collision may be replaced by a crossing and vice-versa, so
that the two statistical weights associated to these con-
figurations only appear in the combination τx +2τc; this
should no longer be true on a lattice with closed paths.
Also, the phases DP and AN are totally frozen in the
Bethe lattice solution: all lattice edges are occupied by
bonds in the former, the same happening for all edges in
one of the two directions in the latter. This also should
change on lattices which are closer to regular ones. It is
thus of interest to study this problem on the Husimi lat-
tice, where small loops are present, and we are presently
working on this.
It is interesting to compare the behavior of the ISAT

model, where we choose τx = τ∗ and τc = ω2τ∗, and
the VISAW model, for which τx = 0 and τc = ω2τ∗.
In the former, the bicritical line is located at τ∗BC =
(1 + 2ω)2/(1 + 2ω2), while for the VISAW model it is
at τ∗BC = (1 + 2ω)2/2ω2. These behaviors are compared
in Fig. 6. In the ISAT model, as the stiffness of the chains
is increased, the collapse transition becomes easier, since
τ∗ decreases as ω decreases. For the VISAW model, we
notice an opposite behavior, with τ∗ → ∞ when ω → 0,
so that an infinite (on-site) monomer-monomer interac-
tion is needed to collapse the chains. This is expected,
since crossings are forbidden in VISAW and, thus, the
stiffness will make the collapse more difficult. Moreover,
this suggests that the globule phase for VISAW is simi-
lar to the one in the SASAW model. On the other hand,
the results for ISAT’s show that its collapsed phase is
quite different from the one found in previous models.
Again we could expect that such behavior should change
on lattices with closed paths, as suggested by the results
for the semi-flexible VISAW on the square lattice [15].
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Appendix: Rods (ω = 0) on the square lattice

The particular case of the model where bends are for-
bidden (ω = 0) and therefore there are also no collisions
(since τc = 0) as well, allows for a simple solution on the
square lattice, which is a generalization of the case with
no crossings discussed in [32]. We may use a transfer
matrix calculation to calculate the free energy, although
this may also be done using combinatorial arguments.
We start defining the model on a strip of the square lat-
tice in the (x, y) plane with finite width Ly and length
Lx, as shown in Fig. 7. Boundary conditions are periodic
in both directions.
The states of the transfer matrix T will be defined

by the set of Ly horizontal edges between two successive
vertical lines of the lattice. We therefore have Nc = 2Ly

possible configurations, which may be defined by a vector
|j〉 = (η1,j , η2,j , . . . , ηLy,j), where ηi,j = 0 (1) if the edge
i is empty (occupied). The grand partition function will
be

Ξ = TrTLx =

Nc
∑

i=1

λLx

i , (A.1)

where λi are the eigenvalues of the transfer matrix. In the
thermodynamic limit Lx → ∞, the partition function is
dominated by the leading eigenvalue λ1, so that the free
energy per site will be:

φb = − lim
Lx→∞

ln Ξ

LxLy
=

lnλ1

Ly
. (A.2)

y

x

FIG. 7: A possible configuration of one vertical and two hor-
izontal rods on a strip with Lx = 5 and Ly = 3. The element
of the transfer matrix corresponding to the two successive
(1, 0, 1) configurations of horizontal edges indicated by the
dashed lines is z21z

3

2τ
2

x .

By construction, the transfer matrix is diagonal, and its
eigenvalues are

λi = Ti,i = 〈i|T|i〉 = zsi1 + z
Ly

2 (z1τx)
si , (A.3)

where si = sj =
∑

k=1,Ly
ηk is the number of hor-

izontal rods and z1 and z2 are the activities of hori-
zontal and vertical rods, respectively. The two contri-
butions in the right hand side of Eq. (A.3) correspond
to having or not a vertical rod between the two hor-
izontal edge sets, respectively. The number of states
with si rods is Ly!/[si!(Ly − si)!]. The functions λi(s)
are convex, so that the maxima should be located at

s = 0 or s = Ly. Now λ(0) = 1 + z
Ly

2 , and λ(Ly) =

z
Ly

1 + (z1z2τx)
Ly . The transition between these two

phases occurs at z
Ly

1 − z
Ly

2 + (z1z2τx)
Ly = 1, which re-

duces to z2τx = 1 in the symmetric case z1 = z2 = z.
Thus, even in one dimension (finite values of Ly), a dis-
continuous phase transition happens between a phase A

with no horizontal rods (ρ1 = 0) and a density

ρ2 =
z2

Lyλ(0)

∂λ(0)

∂z2
=

z
Ly

2

1 + z
Ly

2

(A.4)

for vertical ones, and a phaseB where all horizontal edges
are occupied by bonds (ρ1 = 1) and the density of vertical
bonds is ρ2 = (z2τx)

Ly/[1 + (z2τx)
Ly ].

In the two-dimensional limit Ly → ∞, we find three
phases, and the regions in the parameter space where
each of them minimizes the free energy will be determined
by x = max(1, z1, z2, z1z2τx)

• Non-polymerized NP, where the densities of rods
vanish (ρ1 = ρ2 = 0), if x = 1.

• Anisotropic nematic (AN), where all horizontal
edges and no vertical edge is occupied (ρ1 = 1 and
ρ2 = 0), if x = z1; or all vertical and no horizontal
edge is occupied (ρ1 = 0 and ρ2 = 1), if x = z2.

• A dense polymerized (DP) phase, where all edges
are occupied (ρ1 = 1 and ρ2 = 1), if x = z1z2τx.

In the symmetric case, when z1 = z2 = z, the NP phase
is stable for z 6 1, the AN phase is stable in the region
of the parameter space where z > 1 and τx 6 1/z and
finally the stability region of the DP phase is given by
τx > 1/z. Recalling that NP and DP phases came out
from λi(0) and λi(Ly), respectively, they coexist at τx =
1/z2. These results turn out to be identical to the ones
for the Bethe lattice solution (in this particular case, with
ω = 0), leading to the phase diagram obtained above and
depicted in Fig. 3(d).
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