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Abstract This paper provides novel observations linking the connections between spatially distributed
bed load transport pathways, hydraulic patterns, and morphological change in a shallow, gravel bed braided
river. These observations shed light on the mechanics of braiding processes and illustrate the potential to
quantify coupled material fluxes using remotely sensed methods. The paper focuses upon a 300 m long segment
of the Rees River, New Zealand, and utilizes spatially dense observations from a mobile acoustic Doppler current
profiler (aDcp) to map depth, velocity, and channel topography through a sequence of high-flow events.
Apparent bed load velocity is estimated from the bias in aDcp bottom tracking and mapped to indicate bed load
transport pathways. Terrestrial laser scanning (TLS) of exposed bar surfaces is fused with the aDcp surveys to
generate spatially continuous digital elevation models, which quantify morphological change through the
sequence of events. Results map spatially distributed bed load pathways that were likely to link zones of erosion
and deposition. The coherence between the channel thalweg, zone of maximum hydraulic forcing, and
maximum apparent bed load pathways varied. This suggests that, in places, local sediment supply sources
exerted a strong control on the distribution of bed load, distinct from hydraulic forcing. The principal braiding
mechanisms observed were channel choking, leading to subsequent bifurcation. Results show the connection
between sediment sources, pathways, and sinks and their influence on channel morphology and flow path
directions. The methodology of coupling spatially dense aDcp surveys with TLS has considerable potential to
understand connections between processes and morphological change in dynamic fluvial settings.

1. Introduction

Braided rivers are fundamentally unstable due to high rates of lateral bank migration associated with rapid
erosion and deposition [Lane et al., 1995; Ashmore, 2013]. Linking the associated patterns of hydraulics and
bed load transport that contribute to such rapid channel change is essential to gain insight into the physical
mechanisms of braiding over a wide range of spatial scales. This approach demands concurrent, spatially
distributed measurements, which represents a nontrivial task in the natural environment. These challenges
are especially apparent during periods of high flow, when considerable morphological activity occurs, but
obtaining measurements is challenging, particularly in shallow gravel bed braided rivers where crewed boats
cannot be used safely and the bed is obscured by turbid water. Nevertheless, acquiring data through a range
of flows is necessary to examine the coherence between zones of erosion and deposition.

1.1. Bed Load Transport and Morphodynamics

Two interrelated issues demand attention to further understand the links between bed load transport, flow
dynamics, and morphological change. These are (i) determining the form and scale of connections between
zones of erosion and deposition and (ii) the difficulty of obtaining distributed measurements of flow and
bed load transport in shallow, gravel bed braided rivers due to their wide, shallow, fast, and turbulent flows.
These issues are expanded upon below; section 1.2 then assesses how contemporary remote survey
technologies can be used to address these problems in shallow, gravel bed braided rivers.

The first issue is the need for distributed measurements of flow and sediment transport to support the
interpretation of morphological change. Pioneering studies that identified erosional and depositional
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mechanisms of braided river channel change primarily relied upon the planimetric analysis of aerial or
oblique photography [Ashmore, 1991; Ferguson, 1993]. The availability of high-resolution digital elevation
models (DEMs) of braided river topography and the application of DEM differencing [Brasington et al., 2000;
Williams, 2012] with suitable uncertainty analysis [Wheaton et al., 2010] have enabled the mapping of spatial
patterns of braided river erosion and deposition [e.g., Hicks et al., 2002; Brasington et al., 2003; Lane et al., 2003;
Milan et al., 2007; Williams et al., 2011; Wheaton et al., 2013; Lallias-Tacon et al., 2014]. The classification of
“morphodynamic signatures” from DEMs of Differences (DoDs) has considerable potential for identifying
mechanisms of channel change [Wheaton et al., 2013]. However, while DoDs offer insight into the pattern of
channel changes between surveys, connection between zones of erosion and deposition can only be inferred
indirectly. To close this circle, in addition to capturing snapshots of topography, observations of bed load
transport along key flow pathways are needed [Ashmore and Gardner, 2008; Ashmore, 2013]. Moreover, the
frequency of repeat topographic and bed load transport pathway surveys needs to be sufficiently high to
account for bed level compensation effects associated with cycles of erosion and deposition. Establishing
the connection between the supply, transport, and deposition of sediment is also needed to improve the
parameterization and testing of physics-based [Nicholas, 2013a] numerical morphodynamic models of
braided rivers [e.g., Jang and Shimizu, 2005; Nicholas, 2013b, 2013¢; Schuurman et al., 2013; Ziliani et al., 2013].

The second, interconnected issue is to relate the spatial distribution of hydraulics and bed load transport
during high flows. The shallow vertical relief of braidplain topography results in rapid expansion of inundated
area with increasing discharge, facilitated by the reoccupation of high stage channels. However, with
increased discharge accommodated largely by changes in wetted width, the frequency distributions of water
depth, depth-averaged velocity, and shear stress may remain largely unchanged except in very high flows
[Mosley, 1982, 1983; Ashmore and Sauks, 2006]. Such flood conditions pose severe logistical challenges for
acquiring spatially distributed measurements of bed load transport and hydraulics in shallow, gravel bed
rivers. Bankside measurements are of limited value, while in-channel conditions are too dangerous for
wading and flows are too shallow to navigate by boat. Existing evidence from physical sampling suggests
that bed load transport in braided rivers may be confined to narrow threads [Thompson, 1985; Gomez,
1991; Ferguson et al., 1992; Warburton, 1992]. However, such evidence is often interpreted with scepticism
due to an awareness of the temporal variation in bed load transport and the difficulty in acquiring spatially
distributed measurements at high flow. Moreover, in the absence of spatially distributed flow depth and
velocity measurements, the relation between the location of narrow bed load transport bands, the thalweg,
and zones of greatest hydraulic forcing are not known. There is thus a need to develop and test field
methodologies that can be deployed in shallow, gravel bed braided rivers to map both flow dynamics and
bed load transport pathways simultaneously during high flows.

1.2. Opportunities From Contemporary Remote Sensing Technologies

In response to these issues, it is useful to consider how existing sampling and remote sensing techniques
can be used to shed light on the linkages between bed load transport pathways, flow dynamics, and
morphological change. The first step in connecting zones of erosion and deposition is to produce DoDs that
are characterized by high signal-to-noise ratios. Williams et al. [2014] identified a threefold set of challenges
associated with surveying braided river topography which they deemed the “morphological,” “wetted
channel,” and “mobility” problems. To address these challenges, they presented a data fusion methodology
that combined mobile terrestrial laser scanning (TLS) with optical bathymetric mapping to produce a

DEM that had vertical errors of 0.03 and 0.12m in exposed and inundated areas, respectively. The second
step in identifying connections between zones of erosion and deposition requires bed load transport
measurements, a notoriously challenging task that does not always achieve acceptable levels of accuracy
[Wilcock et al., 2001]. Traditional techniques, including pressure difference bed load samplers [Helley and
Smith, 1971] or portable bed load traps [Hicks and Gomez, 2005], are of limited value for acquiring spatially
distributed measurement not only due to bias in their sampling efficiency [Glysson, 1993; Childers, 1999; Bunte
et al., 2003; Vericat et al., 2006] but because sampling also requires prolonged steady flow. Bed load traps or
settling ponds yield more stable estimates compared to at-a-point bed load samplers [Reid et al., 1980; Garcia
et al., 1999; Habersack et al., 2001; Vericat and Batalla, 2010; Rickenmann et al., 2012] but cannot capture
spatial variability and are unsuitable for deployment in wide rivers. Indirect or surrogate observational
methods [Barton et al., 2010; Gray et al., 2010; Burtin et al., 2011] offer new opportunities to help quantify bed
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load transport, although these approaches require calibration against reference rates which are themselves
inevitably bedevilled by uncertainty. Active acoustic methods have been used to measure apparent bed load
velocity, v,, by determining the bias in aDcp bottom-track estimates of sensor velocity using independent
GPS observations [Rennie et al., 2002]. Coincident direct sampling of bed load and active acoustic surveys
at quasi-stationary points shows that apparent bed load velocity is correlated with bed load transport rate
[Rennie and Villard, 2004; Gaeuman and Pittman, 2007; Holmes, 2007; Villard et al., 2005; C. D. Rennie et al,,
Calibration of aDcp apparent bed load velocity to bed load transport rate, in Gravel Bed Rivers: Processes and
Disasters, edited by D. Tsutumi and J. Laronne, John Wiley, Chichester, West Sussex, U. K, in review]. A major
advantage of v, compared to physical bed load sampling is that it can be measured from a moving boat and thus
used to map spatial variability in bed load throughout a reach [Rennie and Millar, 2004; Jacobson et al., 2009; Rennie
and Church, 2010; Jamieson et al., 2011b, 2011a]. Mapping v, during morphologically competent flows thus
provides an opportunity to study bed load transport pathways and connect zones of erosion and deposition.

Acquiring aDcp measurements during high flows is straightforward, if flows are sufficiently deep for
navigation using crewed boats, and has provided insight into flow structures of large sand bed rivers [Muste
et al., 2004; Dinehart and Burau, 2005; Parsons et al., 2005, 2007; Szupiany et al., 2009, 2012; Parsons et al.,
2013]. Where transects are tightly spaced in a streamwise direction, depth-averaged [Rennie and Millar, 2004;
Rennie and Church, 2010; Guerrero and Lamberti, 2011] or three-dimensional [Jamieson et al., 2011a; Tsubaki et al.,
2012] hydraulic data have been interpolated to produce spatially continuous maps of depth and velocity. Spatially
distributed apparent bed load velocity has also been mapped in large, gravel bed rivers [Rennie and Church, 2010].
While crewed operations offer opportunities to study hydrodynamic processes in large rivers, shallow braided
rivers with complex anabranch networks pose hazards for navigation with the necessary large boats. Access may
sometimes be afforded using jet boats; however, the high speed of these vessels makes them unsuitable for
aDcp sampling. At present, the most feasible sampling option is therefore to utilize tethered boats to acquire
transect data [Entwistle et al., 2010; Riley and Rhoads, 2012]. This approach requires operators to stand on either
side of an anabranch, and this is often feasible in all but the highest of flows. Moreover, assessing the utility of v,
and flow pattern mapping using a tethered approach will provide the foundations for the development of
suitable control systems that will enable remote-controlled boats, with aDcp platforms (e.g., OceanScience
Q-Boat, HR Wallingford ARC-Boat), to acquire closely spaced transect surveys in relatively high-velocity flow.

1.3. Aim and Structure

This paper aims to mesh precise and accurate geomatics and acoustic technologies to investigate connections
between morphological evolution, bed load transport pathways, and flow patterns during high-flow events
using a comprehensive set of field surveys from the braided Rees River, New Zealand. The simultaneous
acquisition of TLS and aDcp surveys and associated data processing addresses the two issues identified above,
namely, connecting zones of erosion and deposition and mapping bed load pathways and flow pattern during
high flows. The resulting synoptic surveys cover a wide range of competent discharges, and as far as we are
aware, similar data have not previously been presented for a shallow, gravel bed river. This paper builds upon a
preliminary field survey described by Rennie [2012].

The paper is structured in four sections. In the first section, we describe the characteristics of the Rees River
and the study reach. The subsequent section describes the aDcp and TLS surveys; the procedures used to
map depth, velocity, v,, and topography; and the technique used to calculate DoDs. Next, the results from
five sets of surveys are presented and interpreted. Finally, a discussion considers how the deployment of TLS
and aDcp addresses the challenge of inferring links between the spatial distribution of bed load, morphological
change, and braiding mechanisms.

2, Study Area

The Rees River drains a 420 km? catchment in the Southern Alps of New Zealand. Cook et al. [2013] describe
the geomorphology of the Rees River. Williams et al. [2013] describe catchment hydrology and broad-scale
morphodynamics of the study reach. The specific study reach is located toward the downstream end, in a
2.5 km long braided section (with a longitudinal slope of 0.005) that had previously been monitored through
a sequence of high-flow events from September 2009 to May 2010 [Brasington, 2010; Williams et al., 2011,
2014]. Figure 1a shows an aerial image of the study area that was acquired on 27 February 2011, during the
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Figure 1. (a) Extent of aDcp surveys and aerial image of the study area. The aerial image was acquired on 27 February 2011
before the penultimate high-flow event and survey E (see hydrograph shown in Figure 2). The image is a mosaic of three
nonmetric aerial photos that were acquired from a R-22 helicopter using a 12 megapixel single lens reflex Nikon Dgq
camera, with fixed 28 mm lens and a polarizing filter to minimize Sun glint. Each image was georeferenced using natural
object control points that were surveyed using RTK-GPS. Maps showing the topography of the Rees River catchment, and its
location in New Zealand, can be found in Williams et al. [2013, 2014]. The coordinate grid is in New Zealand Transverse
Mercator. (b) Location of the study area in New Zealand. In the WGS84 coordinate system, the upstream boundary of the
study reach is at 44°47'05"S, 168°23'57"E. (c) Rees River hydrograph showing survey times and timing of aerial image. The
gauging station was located approximately 8 km upstream of the study site, in a bedrock gorge. Since flow was routed
across the braidplain during high-flow events, the total flow recorded at Invincible was not necessarily equal to the flow
entering the braid-bar unit. However, the hydrograph indicates the flow conditions during each survey.

monitoring campaign undertaken for this paper. The extent of each survey is indicated in the figure.
Upstream, the main anabranch flowed close to the braidplain’s true right bank. Approximately 200 m
upstream, this principal anabranch bifurcated around a midchannel bar, which extended for about 120 m
downstream. This bar was dissected by chutes indicative of a large pulse of sediment moving downstream.
The main anabranch in the study area flows from the true right of the braidplain, where the banks are
vegetated with crack willow (Salix fragilis) toward the true left. The actual study reach is unvegetated and
composed of unconsolidated sand and gravel. Subsurface grain size distributions were estimated from four
volumetric bulk samples in which the largest particle in the subsurface layer did not exceed 1% of the
sample weight [Church et al., 1987]. Total sample weights ranged between 176 and 395 kg. The depth of
each sample hole was determined by estimating the thickness of the most recently deposited sediment
layer. Grain size distributions, with associated standard deviations from the four samples, are characterized
by D1=0.84+0.15mm, Dsg=7.5+1.6 mm, Dgs=27.9+ 9.7 mm, and Dgg=40.5+21.9 mm (where D¢, Dsp,
Dg4, and Dyg represent the percentiles of the grain size distribution by mass). Surface grain size distributions
were also sampled, using the standard grid-counting technique, analogous to standard Wolman’s [1954]
pebble counts. Grain size distributions, with associated standard deviations from the 28 samples (2800
particles), are characterized by D16=10.4+5.0 mm, D5q=19.9+10.4 mm, and Dg4=35.2+19.2 mm. Dead
wood was deposited on bar tops, but there was no significant woody debris in the active anabranches.
Given the ongoing morphological change during the study period, detailed descriptions of the braid bar
unit configuration at the time of each survey are left to the Results section. During the 2010-2011
hydrological years, mean discharge at Invincible (8 km upstream from the study site) was 20m>s~". The
three maximum flows during this period were 407, 419, and 475 m>s™". Flow peaks for the same high-flow
events in the adjacent Dart catchment were all greater than the Dart’s mean annual maximum flow, based
upon the 1997-2011 record.

3. Methodology

Five surveys of the study area were undertaken between 29 January and 2 March 2011, during a sequence of
high-flow events (Figure 1c). Survey A was undertaken on the falling limb of a high-flow event that peaked
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Table 1. Timing, Duration, and Flow Conditions for Each aDcp Surveya

Invincible Gauge

Discharge (m3 571)b Time Elapsed Between

Previous High-Flow

Duration Start End Difference Peak Discharge and
Survey Time and Date of Survey (h)  of Survey of Survey During Survey Start of Survey (h)
A 09:31, 29 January 2011 3 22 19 -3 7
B 16:00, 7 February 2011 3 75 70 —4 17
C 07:35, 10 February 2011 35 40 40 +0 81
D 17:10, 16 February 2011 3 20 21 +1 234
E 16:29, 2 March 2011 35 39 30 -9 11

*The Invincible gauging station was located 8 km upstream of the study area, where the Rees River is confined in a
bedrock gorge.
Not all flow was routed through the braid-bar unit during all surveys due to the presence of additional anabranches
on the braidplain.

at 54m3s™". Surveys B, C, and D were all undertaken on the falling limb of one 475m>?s™" flow event. This
event had the highest recorded discharge in the 18 month long (September 2009-March 2011) record at the
upstream Invincible gauge. The same event produced the highest discharge recorded (1997-2011) in the
adjacent Dart River catchment, which has a hydrological response similar to the Rees River. Survey E was
undertaken on the falling limb of a 175 m>s~" flow event.

Table 1 lists the timing and duration of each survey. It also details the discharge at Invincible at the start and
end of each survey and the time elapsed since the previous peak flow event. Flows remained relatively steady
during surveys A, C, and D. However, flow at Invincible fell by 4m>®s™" and 9m*s™" during surveys B and E,
respectively. This was unavoidable because the aDcp survey required several hours to complete, and both
these surveys were undertaken on the falling limb shortly after peak flows. Bed elevation, depth, and velocity
measurements from aDcp samples acquired during surveys B, C, and D have been used to calibrate hydraulic
model simulations of braided river flow [Williams et al., 2013] but have not previously been utilized to map
flow pattern, v,, and morphological change.

Figure 2 shows an overview of the data acquisition and postprocessing strategy. Each survey involved the
deployment of (i) an aDcp to map depth, depth-averaged velocity, and v, and (ii) a terrestrial laser scanner
to survey exposed topography. The steps involved in acquiring and postprocessing survey data are
outlined below.

3.1. aDcp Survey

Acoustic surveys were undertaken with either a Sontek S5 (survey A) or M9 (surveys B, C, D, and E)
RiverSurveyor mounted on a Sontek hydroboard or Oceanscience Riverboat trimaran, respectively. Due
to the shallow-flow conditions, both RiverSurveyor instruments used four 3 MHz transducers for water
velocities and bottom tracking. The S5 is equipped with a 1.0 MHz vertical beam transducer, while

the equivalent transducer on the M9 operates at 0.5 MHz. For each survey, the RiverSurveyor platform was
tethered at the bow with two ropes. Operators standing on opposite banks maneuvered the platform along
zigzag transects, with a nominal 1-2 m streamwise spacing. The platform was moved at a speed lower than
the mean water velocity. A GPS antenna was mounted on the platform, with positioning of the S5 supported
by a Leica 1200 Real Time Kinematic (RTK)-GPS unit, while the M9 positioning fix was obtained using a Novatel
RTK-GPS. Position corrections were received in real time from a base station and delivered directly to the
RiverSurveyor system, facilitating centimeter-scale, three-dimensional positional accuracy. Measurements of
water surface elevation, depth, and 0.1 m vertical bins of velocity in the x and y directions were acquired in 1 Hz
ensembles based on higher-frequency, 10 Hz sampling. Due to aDcp submergence and blanking distance,

a minimum water depth of 0.4 m was required to record water velocity, and the top of the first water velocity
bin was at 0.2 m below the water surface. Bottom-track velocities and RTK-GPS positions were recorded
concurrently at the same frequency. Bottom-track velocities were recorded in water depths as low as 0.23 m,
which is the limit of measuring depth using the S5. For surveys B, C, and D, an RTK-GPS survey of the water edge
was undertaken. This enabled a comparison between the extent of total wetted area and the extent of the aDcp
survey. Results show that the extent of the aDcp survey represented 69%, 63%, and 70% of the total inundated
area for surveys B, C, and D, respectively.
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Figure 2. Data acquisition and processing workflow for each survey. TLS workflow is based on Williams et al. [2014].

3.2. Depth, Velocity, and Apparent Bed Load Velocity Mapping

Depth and depth-averaged velocity measurements were plotted using RTK-GPS for positions and boat
velocities, rather than bottom tracking, due to the mobile bed conditions that were observed during each
survey. Bottom track depth measurements were plotted in preference to vertical beam depth measurements
as this metric averages samples from the four 3 MHz transducers and so smoothes bed irregularities and
roughness. The four transducers are configured at a 25° angle from vertical, with 90° spacing between one
another. This results in the diameter of sampling at the bed being approximately equal to the depth. Bottom
track depth measurements were first corrected for the attitude of the boat [Rennie et al., 2002] which is
also logged at 1 Hz. Depth was then interpolated using ordinary kriging, adopting the same method as Rennie
and Millar [2004]. Anisotropic model variograms were fitted to empirical variograms, and gridding was
undertaken at a 2 m resolution, consistent with the streamwise transect spacing and sample density.

Depth-averaged water velocities, U, were calculated for each measured profile [see Rennie and Church, 2010]
and then interpolated using the same approach applied to depth measurements. The primary anabranch
had a streamwise flow direction that closely followed cardinal direction, so interpolation was undertaken
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in north and east directions for the primary and secondary flow components. Velocity magnitude was
calculated by taking the square root of the sum of the squared velocities in the north and east directions.

Apparent bed load velocity, v, was determined from the vector difference between boat velocity estimated
from bottom tracking, v, and boat velocity estimated from the actual boat track, vrrk.gps [Rennie et al., 2002]:

Va = VRTK-GPS — VBT (1)

The vectors were then interpolated using ordinary kriging for the easterly and northerly components, using
the same procedure applied to depth-averaged velocity.

Zones of statistically significant v, were identified using the method outlined in Rennie and Church [2010],
adapted for the four-beam M9 transducer configuration. First, a compound Poisson gamma (CPG) signal plus
noise model [Rennie and Millar, 2007] was fitted to the observed probability density function of a v, time
series acquired from a stationary boat positioned in the study area main anabranch on 23 February 2011.
The CPG distribution developed in Rennie and Millar [2007] describes the distribution of bed load particle
velocities, spatially averaged within the insonified bottom track beam footprint. It assumes that bed load
transport is a stochastic phenomenon that is best described by a Poisson process and the distribution of bed
load particle velocities follows a gamma probability distribution. Rennie and Millar [2007] presented a method
that, while considering beam geometry, estimates the actual bed load velocity CPG by fitting a convolution
of the estimated CPG signal and Gaussian measurement noise distributions to the observed distribution

of a v, time series. The mean and standard deviation of the streamwise component of v,, during this 1.8 h
time series were, respectively, 0081 ms™' and 0.191 ms™'. A good fit was achieved with the convolution
technique, and the estimated CPG model parameters for particle velocity mean (v,=0.22m s~") and
standard deviation (6,,=1.72m s~ 1) were similar to those estimated for the Fraser River [Rennie and
Church, 2010]. This CPG model was used to estimate the real temporal variability in v,, assuming that
the measured v, magnitude for each sample in the spatial distributions represented the local mean. The
magnitude of v, was utilized instead of the streamwise component because water velocity data were often
not available in shallow areas for the calculation of streamwise direction.

Sampling errors were also estimated. These arise from bottom tracking, compass, and RTK-GPS measurement
errors. Bottom track error velocity (v,) was used to estimate bottom-track errors for each ensemble, accounting
for both acoustic noise and heterogeneous bed load velocities between the four-beam sampling areas [see

Rennie and Church, 2010]. Sontek reports the difference in two measurements of bottom track vertical velocity
(vz1 and vy,) from independent beam pairs as the “difference velocity” (v,). This difference velocity should be

—bz—b47—b1 —b3_b1 — by + b3z — by
2cos 6 2cos0 2cos6

Vg =Vy —Vp = 2
where b; represents a bottom track beam velocity. However, v, reported by Sontek is half this value

(D. Mueller, personal communication, 2013, and confirmed by the authors). Furthermore, the vertical velocity
difference can be converted to a horizontal velocity error (v) using the following transform [Teledyne RD
Instruments, 2010]:

:b1fb2+b3fb4

v
¢ 2v/2sin@

3)

Thus, v, was calculated from reported vy by multiplying by a factor of 2°>cot0 = 3.03. The compass error
for the calibrated RiverSurveyor compass was assumed to be 2° [Marsden, 2012], and the resulting error in
bottom-track velocity was calculated for every ensemble using equation (A7) of Rennie and Church [2010].
The error in RTK-GPS-derived velocity was assumed to be 0.031 ms™"' [Rennie and Rainville, 2006]. Finally, the
total uncertainty due to both bed load temporal variability and measurement errors was calculated using the
root sum of squares [Rennie and Church, 2010, equation (A6)]. Similar to the findings of Rennie and Church
[2010], total uncertainty was dominated by estimated temporal variability of bed load, and uncertainty of v,
maps was large due to both total uncertainty of individual v, estimates and the interpolation procedure
(Table 2). The particularly high uncertainty in the Rees River data was due to the large observed apparent bed
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Table 2. Summary of Apparent Bed Load Velocity Mean Statistics for Measurements and Error Model®

Va_prim Ova_prim Va_mag Ova_mag Op| Opbs Okb
Survey (m 571) (msq) (msq) (m 571) (m 571) (m 571) (msq)
A 0.126 0.271 0.300 0.222 0.239 0.262 0.340
B 0.202 0.459 0.484 0.339 0.293 0.330 0.486
C 0.107 0.353 0.363 0.283 0.261 0.286 0.391
D 0.112 0.338 0.315 0.300 0.246 0262 0.372
E 0.219 0416 0.427 0.293 0.292 0.332 0.400

ava_prim is the mean single ensemble apparent bed load velocity resolved in the streamwise direction, va_mag and
Ova_mag are the mean and standard deviation of single ensemble apparent bed load velocity magnitude, oy, is the mean
uncertainty of v, due to real bed load temporal variability, o5 is the mean total uncertainty of v, and oy, is the
uncertainty of v, mapping as represented by the mean of v, kriging standard deviation magnitudes.

load velocities, which resulted in large uncertainty due to real temporal variability of bed load. As will be seen
below, the mean values of v, are resolved in the primary streamwise direction (v, orim) for five different
Rees River surveys that ranged from 0.11 to 0.22 ms™ ', whereas during two different surveys on the Fraser
River [Rennie and Church, 2010], Va_prim Was only 0.06 m s~". Regardless, for each Rees River survey, it was
possible to identify and map locations within the study area where relatively high bed load occurred and
there was 87% confidence that v, was greater than zero.

3.3. TLS Survey

Exposed braidplain topography was surveyed using a Leica HDS6100 phase-based terrestrial laser scanner.
Scanning procedures were similar to those reported by Williams et al. [2014] except that the scanner
wasmounted on a tripod rather than a vehicle. Between 14 and 20, scans were acquired of the braid bar
unit during each survey. Scan stations were located at anabranch edges, or on midchannel bars, and
positioned to maximize survey point density and minimize any shadow effects from banks, following
standard scanning guidance [Heritage and Hetherington, 2007]. The maximum spacing between scan
stations was 50 m and typically acquired a cloud of 10 to 15 million points. A floating control network was
provided by two highly reflective targets positioned 10 to 15 m from the scanner at an angle of 120° to one
another. The targets were positioned using a Leica 1200 GPS employing RTK processing until a minimum
three-dimensional point quality of 15 mm was achieved. The mean point quality from targets across all
surveys was 10 mm.

3.4. DEM Construction

A DEM for each survey was constructed by first processing inundated bed level aDcp data and then
processing exposed braidplain TLS data. The bed level aDcp data were interpolated using ordinary kriging,
mirroring the approach for mapping the hydraulic variables. Gridded data were resampled to point data,
for use in subsequent data fusion. TLS data were processed using the methodology developed by Williams
et al. [2014]. In brief, each point cloud was first georeferenced to the New Zealand Transverse Mercator
Projection using a resection from pairs of RTK-GPS-derived target locations. Georeferenced point clouds were
then unified into a single point cloud, decimated to a quasi-uniform point spacing of 0.02 m, edited to
remove survey artifacts and objects, and filtered spatially (using TOPCAT software [Brasington et al., 2012]) at
0.25 m resolution to yield precise coordinates of the minimum elevation in each 0.25 m cell. The aDcp bed
level and exposed braidplain TLS data sets were fused together using Delaunay triangulation, with breaklines
along channel edges, and resampled to a 0.25 m resolution.

3.5. DEM Differencing

DEM differencing techniques were used to map the spatial distribution of erosion and deposition between
surveys. Probabilistic thresholding was used to distinguish between real geomorphic change and model
noise [Brasington et al., 2003]. By assuming that errors associated with two DEMs were approximated by the
standard deviation error (SDE), the critical threshold error, Ui, is

Uerit = t\/ SDEZem: + SDEZewy “)
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Table 3. Summary of Maximum, Mean, and Root-Mean-Square Error  \where t is the two-tailed Student’s t
(RMSE) Statistics From Each Spatially Variable Standard Deviation Grid

; ) . S distribution for the 87% confidence
Associated With Bed Level Elevation Kriging

interval. The 87% confidence interval

S Maxi M RMSE . . .

urvey R () ean (m) (m) is consistent with that used to map
A 0.096 0.050 0.051 statistically significant v,. Spatially
E g-ug 8-8‘3‘2 8-8‘;2 constant values of the SDE were
. e s e estimated for the TLS 'and'aDcp bed
E 0.055 0.025 0.026 level surveys by considering the

dominant errors associated with the
elevation data acquired using each
technique. Uncertainty in the TLS-derived DEM was assumed to be a function of surface roughness, using
the Dy grain size of 40.5 mm. This assumption is based upon the low errors associated with TLS survey
relative to the microtopography of the braidplain. Errors in the aDcp-derived bathymetry were mapped
using grids of spatially variable standard deviations from kriging (Table 3). Although errors in depth
measurements and RTK-GPS vertical elevation estimates also contribute to errors in estimated bed levels,
the kriging standard deviations were considered to be the dominant source of error. Kriging errors were highest
for surveys where there were patches with no aDcp measurements due to difficulties in manipulating the
tethered boats at high flow.

4. Results and Interpretation of Bar-Scale Kinetics

The objective of this section is to describe the evolution of the study area during the monitoring period.
Emphasis is placed on the links that can be inferred between morphological change and distributions of
water velocity and apparent bed load velocity. A set of figures shows the sequence of surveys adjacent to one
another to aid cross comparison between surveys and variables. Figure 3 shows maps of U and v, for each
survey. Zones of statistically significant v,, at the 87% confidence interval, are identified on the v, maps.
Figure 4 shows the DEMs that were acquired after each aDcp survey and the resulting thresholded DoDs.
Figure 5 schematizes the observations from each of the five surveys. Several supporting figures show further
information to aid the result’s interpretation. Figure S1 in the supporting information shows maps of aDcp
observations and depth, while Figure S2 in the supporting information displays oblique photos that reveal
the evolution of the upper study area.

4.1. Survey A

Survey A was conducted on the falling limb of a 54 m> s~ flow event (Figure 1c). Discharge at Invincible was
22m>s™" at the start of the survey (Table 1). Flow was concentrated in the main anabranch at the upstream
end of the study area, where the highest velocity (A1 in Figure 3a) and depth (Figure S1f in the supporting
information) were on the channel true left. Some of this flow diverged into a minor anabranch at a diffluence in
the lower portion of the study reach (A2 in Figure 3a). This minor anabranch included a confluence with another
channel (A3 in Figure 3a), with a 1.1 m deep scour hole (A4 in Figure 3a). During fieldwork, a shear layer was
evident at the interface between the converging flows. Maximum flow velocities observed during survey A
were approximately 1.9ms ™' and were associated with deeper channel locations.

The v, map (Figure 3f; schematized in Figure 5) identified a significant bed load pathway on the true left
side of the main anabranch, at the upstream end of the study area. This pathway was evident along the true
left of the main anabranch farther downstream, although the statistically significant zones were not continuous.
At the diffluence, where flow diverges into a minor anabranch, a significant bed load pathway was identified
along the minor anabranch. This suggests that bed material was being transported into the minor anabranch.
Significant v, was also evident along the minor anabranch that joined at the scour hole.

4.2, Survey B

After survey A, four high-flow events occurred (Figure 1c). Survey B was acquired at a discharge of 75 m>s™"

(Table 1), during the falling limb of a 475 m3s™" high-flow event that inundated the entire braidplain.
Considerable morphological change was evident (Figure 4f; schematized in Figure 5) due to the series
of high-flow events that occurred between surveys A and B. This was reflected by the small area below the
estimated U, (i.e., 84% of the compared area was above the U). At the upstream end of the study area,
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there was considerable erosion of the transverse bar on the true right (1 in Figure 4f). The main anabranch
that was measured in survey A filled with sediment (2 in Figure 4f) and a central bar was formed. The v,
map showed a significant flux of sediment into the study area from the true right. This was likely to be
indicative of bed load flux during the high-flow events prior to survey; inflowing sediment stalled and a
positive feedback loop then developed between lateral flow expansion and bar accretion due to a loss of
flow competence. Central bar formation in braided rivers was described by Ferguson [1993] as a principal
mechanism of channel change and evolution; it was also previously identified by Leopold and Wolman
[1957] and Ashmore [1991]. The formation of the central bar forced flow to bifurcate (B1 in Figure 3b) at the
upstream end of the study area. Further downstream, flow diverged into a minor anabranch on the true
right, just downstream of the willow trees at the top of the study area (B2 in Figure 3b). This channel
was not surveyed because flow depths were less than the detection limits of the aDcp.

Compared to survey A, the v, magnitudes in survey B were higher. In addition to the connection between
bed load transport flux into the study area and central bar development, several further links were evident.
First, vectors indicate transport from true right to left across the submerged central bar, which was associated
with the development of a submerged chute (B3 in Figure 3g; schematized in Figure 5). Second, downstream
of the confluence, there were high vectors on the true left that indicated a bed load path toward the minor
anabranch that was identified, and measured, during survey A (B4 in Figure 3g). This minor anabranch was filled
with sediment, to depth of approximately 1 m (3 in Figure 4f), between surveys A and B. It is proposed that
the bed load transport pathway into this anabranch, which was observed in survey A, continued during the
high-flow events and consequently filled up and effectively choked off this anabranch. The source of material
was likely to have been from bank erosion immediately upstream (4 in Figure 4f). This was associated with
the constriction of the anabranch following central bar development, resulting in high shear stresses along
this channel.

The correspondence between the thalweg, zones of greatest hydraulic forcing, and v, distribution was variable.
Along the main anabranch, toward the downstream end of the study area, v, approximately followed the
thalweg, and lines of highest depth and velocity, moving from the true left to the true right (B5 in Figure 3g).
However, along the flow path on the true right of the central bar, the bed load vectors were higher to the true
right of this flow path than they were within the flow path itself (B6 in Figure 3g).

4.3. Survey C

Survey C was undertaken 3 days after survey B, on the falling limb on the same high-flow event. At the start of
the survey, the discharge at Invincible was 40 m®s~' (Table 1), considerably lower than survey B. The DoD
between surveys B and C showed significant erosion and deposition in a number of areas (Figure 4g).
Morphological change was less extensive than observed between surveys A and B, but the patterns were
coherent and indicate that morphological activity continued during the event recession even though flows were
relatively moderate (in this case 20% of the compared braidplain was above the U). Areas that were identified
with significant v, (Figure 3h) suggest that there was a flux of bed material into the study area along the true right
anabranch (C1 in Figure 3h; schematized in Figure 5). The elevation of the central bar continued to increase
between surveys B and C (1 in Figure 4q). It is proposed that flow across the bar diverged and decelerated,
thus causing bed load to stall, resulting in deposition. Subsequently, as flow receded, the hydraulic gradient
between the true right and left anabranches around the bar caused multiple chutes to form, dissecting [Ferguson,
1993] the bar surface (Figure S2c in the supporting information). Areas of significant v, were detected on the
true left side of the bar (C2 in Figure 3h). These areas correspond to confluences between chutes dissecting the
bar and the narrow anabranch. In the field, small submerged fans were observed at these confluences.

Further downstream, the primary pathway for bed load was around the true right of the central bar and
then down a steep chute (C3 in Figure 3c). The confluence of this chute with the main anabranch was
characterized by the highest observed flow velocity of approximately 2.0ms™'. A dominant pathway
appears to be associated with not only upstream sediment supply but also bar head erosion (2 in Figure 4g).
This is important, since it appears that a switch occurred during the 475 m>s™" event recession that changed
head over the central bar, resulting in different flow acceleration into banks, thus altering the location of
bank erosion. Downstream of the central bar, the bed load pathway was along the true right of the main
anabranch. Significantly, this pathway was not through the deepest (approximately 1.2 m) section of the
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confluence scour hole (C4 in Figure S1h in the supporting information) and was not coincident with the main
anabranch’s thalweg. The significant v, pathline does turn toward the true left at the point where the minor
anabranch was choked between surveys A and B (C5 in Figure 3h). This indicates that some materials may have
deposited toward the true left of the anabranch (3 in Figure 4g), continuing the process of choking. Expansion
of the primary anabranch was also observed (4 in Figure 4g).

4.4. Survey D

Survey D was conducted 6 days after survey C. At the time of survey, discharge had fallen to 21 m3s™"

(Table 1) and the central bar was aerially exposed (Figure S2d in the supporting information). The map of v,
for survey D is missing data for the anabranch to the true right of the midchannel bar. This was due to

the loss of RTK-GPS lock, and a resulting degradation of three-dimensional position estimates, for this
component of the survey. While patterns of depth-averaged velocity and depth could still be interpolated,
the position estimates were not resolved with sufficient accuracy to estimate v,. Importantly, however,
transects across the full width of the channel upstream of the diffluence around the bar were obtained. These
transects showed significant v, on the true left of the channel (D1 in Figure 3i). This sediment supply was
likely to be linked to bank erosion (1 in Figure 4h). It was notable that this bed load transport pathway was
along the channel to the true left of the bar, whereas for survey C, a pathway was not observed on this side
of the bar except for the formation of fans from minor chute channels (schematized in Figure 5). The bed
load pathway was coherent along the entire length of the surveyed anabranch and approximately followed
the thalweg. At the confluence, at the downstream end of the central bar, significant v, vectors remained
to the true left of the shear layer and an input of bed load was not identified from the true right.

The morphological evolution of the confluence at the downstream end of the central bar was particularly
striking. The scour hole at the confluence migrated laterally toward the true right between surveys C
and D (2 in Figure 4h). This lateral migration accounts for a high proportion of the morphological activity
observed during relatively low-flow conditions. The migration was likely a consequence of the relatively steep
gradient along the true right anabranch upstream of the confluence. The scour hole was also reorientated to
align with the maximum velocity vectors of this anabranch. Downstream of the confluence, on the true right
of the channel, low-magnitude bar accretion was observed (3 in Figure 4h), which was likely a response to
sediment scoured from the confluence. The reorientation of the scour hole caused changes in the near left-bank
flow field, causing bank erosion (4 in Figure 4h) at a location where flow velocities were highest against the bank
(D2 in Figure 3i). Significant v, vectors tracked the transport of this sediment toward the true right, following
the line of maximum velocity vectors, to a zone of deposition (5 in Figure 4h).

4.5. Survey E

Between surveys D and E, there were two high-flow events with peaks of 92 and 175 m>s~". It was upon
the falling limb of this latter high-flow event that survey E was acquired, when discharge was 39 m3s™"
(Table 1). Survey E shows that flow was predominantly constrained to one major anabranch at the
upstream end of the study area, although some flow did bifurcate to the true right in the same position as
the bifurcation at the bar head observed in surveys B, C, and D. However, flow toward the true right was
shallow and below the aDcp detection limit, as shown in Figure 3e. Flow was also shallow in the main
anabranch toward the downstream end of the study area (E1 in Figure 3e), resulting in a shorter surveyed
section than in the previous surveys.

The high-flow events between surveys D and E caused considerable morphological change within the study
reach (Figure 4i; schematized in Figure 5), resulting in flow paths and patterns that are distinct from those
observed during survey D. The process of bar dissection that was noted in surveys C and D continued during
the higher flows between surveys D and E resulting in complete erosion of the central bar (1 in Figure 4i),
illustrating a cycle of sediment deposition and subsequent erosion during the monitoring period. The v, map
indicated a sediment flux from upstream of the study area (E2 in Figure 3j). Bed load speeds were relatively
high in the region where flow converged from either side of the main anabranch (E3 in Figure 3j). The
significant bed load pathway was then predominantly along the true right of the main anabranch (E4 in
Figure 3j), adjacent to the zone of erosion along the true left of the former central bar.

In survey E, the bifurcation toward the downstream end of the study area was observed to have reactivated;
thus, a complete choking/reactivation cycle was observed during the monitoring period. The secondary
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anabranch was reactivated during the high flows that occur between surveys D and E due to deposition in
the primary anabranch. This caused the water level in the primary anabranch to rise. Flow then spilled over
the outside of the bend into the secondary anabranch. Overflowing water scoured the secondary anabranch,
causing headward incision and the capture of further flow. The v, vectors upstream of this diffluence
indicated that sediment was not being transported into the minor anabranch. Within this anabranch (E5 in
Figure 3j), there was a zone of significant transport located on the true left of the channel. Since the DoD
indicates that the true left bank of this anabranch eroded between surveys D and E (2 in Figure 4i), this bank
was likely to be connected to the initiation of this bed load transport pathway. Overall, the erosion of the
central bar and the reactivation of the downstream bifurcation result in a configuration of anabranches
during survey E that was very similar to that measured during survey A.

5. Discussion

5.1. Connecting Bed Load Transport to Morphological Change and Flow Dynamics

A number of braiding mechanisms are evident from the DoD and v, observations reported in this paper.
These include anabranch choking and reactivation, central bar development, bar dissection, scour pool
migration, and bank erosion. During the monitoring period, reworking of sediment resulted in morphological
changes that returned the study area to a configuration similar to that observed during the initial survey.
As well as observing the morphological signatures [Wheaton et al., 2013] of changes associated with
particular braiding mechanisms, the v, pathway observations provide evidence to make inferences about
lateral and longitudinal connections [Fryirs et al., 2007] between zones of erosion and deposition through
the channel network. This is possible because v, mapping confirms the presence of narrow bands of bed
load transport [Thompson, 1985; Gomez, 1991; Ferguson et al., 1992; Warburton, 1992]. This mapping
shows that pathways between zones of erosion and deposition were typically relatively short, i.e., from an
upstream source to the nearest downstream sink. Recent small-scale laboratory modeling of braided river
morphodynamics has utilized DoDs and fluorescent tracer particles to indicate connectivity between
zones of erosion and deposition [Kasprak et al., 2014]. While tracer particles were not utilized for the study
presented here, the inferences that can be derived from interpreting v, pathways between zones of
erosion and deposition document aspects of braided river processes that are challenging to measure in
laboratory models.

The choking and reactivation of the bifurcation toward the downstream end of the study area was one of the
clearest braiding mechanisms. Moreover, the example showed the connection between sediment sources,
pathways, and sinks. The v, surveys that were undertaken during surveys A and B clearly showed a bed load
pathway into the secondary anabranch. Based upon analysis of the DoD, it is proposed that bed material was
supplied to this pathway by erosion that occurred immediately upstream from a bar edge. Across all the
surveys, bank erosion was identified to be an important source of bed material since sediment in the study
area was unconsolidated and banks were not vegetated. This observation concerning the importance of
bank erosion is in line with observations made in other braided contexts [Carson and Griffiths, 1989; Bertoldi
et al., 2010; Wheaton et al., 2013]. The supply of material from bank erosion is influenced by changing flow
path directions and driven by changes in head through complex bar topography and the stochastic nature of
the collapse of the Rees’ banks.

In addition to considering connections between bed load pathways and morphological change, the data set
also enables analysis of the correspondence between flow patterns and bed load transport. In all the DoDs,
spatially discrete, elongated bands of bank erosion were identified on the outside of channel bends. These
zones of bank erosion were coupled to the locations where high velocities, and hence high shear stresses, were
mapped. Patterns of bed load transport observed during surveys that were undertaken at higher flows suggest
that sediment supply was a key control on the location of bed load pathways when morphological activity
was occurring at a high rate. For example, v, mapping from surveys A, C, and E indicated that bed load transport
pathways do not necessarily follow the path of greatest hydraulic forcing but neither do they cross it. In addition
to these broad trends, the routing of flow and bed load through the confluence downstream of the central
bar is notable since v, mapping (survey C) indicated that the predominant bed load pathway can be routed
around the scour hole at some flow stages. These dynamics around pools have also been observed by Milan
[2013] in clast tracer studies.
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Further work to analyze the correlation between bed load transport pathways and hydraulic forcing is
ongoing. This work is focusing upon mapping shear stress distribution, derived from aDcp depth and
depth-averaged velocity. We are also working to convert values of v, to bed load transport rates (in units of
kgm~"s™") using a site-specific calibration data set (C. D. Rennie et al, in review). Together, analysis of the
correlation between bed load transport pathways and hydraulic forcing, and calculation of bed load transport

rates, will provide data to verify two-dimensional model predictions of shear stress and entrainment.
5.2. Monitoring Dynamics at High Flows

The fusion of aDcp- and TLS-surveying methodologies as presented in this paper has provided the means to
relate the spatial distribution of bed load transport to flow patterns during high flows, in shallow gravel bed
braided rivers that cannot be navigated by crewed vessels. The maximum discharge that was surveyed
during the monitoring campaign was 75.0m>s " (at Invincible; survey B). While this flow was below the peak
of the high-flow events (Figure 1¢), the data acquired during the monitoring campaign demonstrate both the
efficacy of the technique and associated challenges. From a morphological perspective, while the high-flow
peak was not sampled, the recession flows were morphologically competent and their prolonged duration may
well have rendered them as effective at doing geomorphic work.

The concurrent acquisition of depth, flow velocity, v, and bed topography data from tightly spaced, moving
boat aDcp transects during relatively high flows was possible along the entire study reach within a few hours.
Obtaining such data from direct sampling in equivalent flows would be logistically challenging. For example,
Dietrich and Smith's [1984] physical sampling of downstream and cross-stream bed load transport through
a single meander bend required 8 days of sampling and necessitated a field site with steady, regulated
flow. The v, mapping also revealed longitudinal connections between the sediment dynamics of braided
channels upstream of the study area and those downstream [Ashmore, 1988; Hoey and Sutherland, 1991].
Indeed, the direction of sediment influx into the study reach strongly influenced morphological trajectories
immediately downstream.

Two issues emerge from the highest-flow survey. First, at higher flow, the feasibility of operating a tethered
boat would be compromised due to a wider inundated area and higher velocities. This would not only
be hazardous but the lack of control is likely to result in less spatially intensive sampling as seen in the
tracks for survey B, where it is evident that there were difficulties moving the boat along evenly spaced,
downstream-progressing transects during high velocities (Figure S1b in the supporting information).
Consequently, if transects were less evenly spaced, kriging standard deviations would be more variable.
Indeed, the kriging standard deviations obtained here were still large, owing to the high variance of
measured v, within a given survey (Table 2). The use of a remote-controlled boat as an aDcp platform could
possibly overcome this difficulty, but the feasibility of using remote-controlled craft for closely spaced
transect surveys in relatively high-velocity shallow rivers has yet to be established. Second, high turbidity
during higher flows may obscure bottom tracking. For the sampling undertaken here, turbidity was fairly
low in all but survey B, so only in survey B could v, have been influenced by the near-bed suspended load
[cf., Rennie and Millar, 2004]. However, the maximum values of v, were similar in all surveys, which suggests
that even in survey B, the observed v, was likely indicative of bed load transport.

5.3. Evolution at Low Flows

Observation of morphological change and bed load transport during relatively low flows (survey D
was undertaken at 20.7 m*s™') supports Bertoldi et al.'s [2010] assertion that morphological change in
natural braided rivers occurs at discharges well below bankfull. Time-lapse imagery of the braided
Waimakariri River indicates that at bankfull flows, morphological activity activates/creates large sheets
over the interfluves between the main braids, whereas activity is confined within the main braids at
lower flows [Hicks et al., 2002]. Morphological activity on the Waimakariri River thus continues during
low flows although at a lower rate and across a much narrower area. In contrast, in a more confined
setting, Claude et al. [2014] note that during periods of low flow, the hydrodynamic processes that drive
morphological evolution at high flows continue, albeit at a lower rate, because bar configuration and
flow structure do not alter much with discharge. Across the shallow Rees River, the extent of braidplain
that experiences morphological change is drastically reduced during low flows. Therefore, while the
initial series of large-magnitude events are associated with channel widening, central bar formation, and
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anabranch choking, during the low flows, the overall morphological configuration remains essentially
the same. As such, bed load transport during low flows occurs within existing anabranches previously
formed during high-flow events, with sediment supplied from locations with high bed or bank shear
stress due to locally increased water surface slope at lower-flow stage. An example observed herein
was the chute formation on the central bar tail during survey C. As stage diminished, flow cascaded over
the bar tail, leading to high bed material entrainment and bed load transport rates. Processes such as
these permit shallow braided gravel bed rivers to transport bed material even during low flows. The
surveys reported here are not across the entire braidplain width, so it is not possible to consider how the
spatial extent of bed load transport relates to active width [Ashmore et al., 2011] at a range of flows. A
monitoring campaign with full braidplain coverage, potentially with multiple boats to map v,, would
however provide an opportunity to address such questions at a large spatial scale.

6. Conclusion

The methodology presented in this paper provides novel observations that enable inferences about the
connection between spatially distributed bed load transport pathways, flow patterns, and morphological
change in a shallow, gravel bed braided river during high-flow events. Moreover, the methodology enables
the mapping of aspects of braided river processes that are difficult to quantify in small-scale laboratory
models. The fusion of TLS and aDcp bathymetric survey data enabled the generation of high-resolution DEMs
that were characterized by high vertical accuracy. DEM differencing was thus characterized by low errors,
enabling the identification of morphological signatures associated with different braiding mechanisms.
Moving boat aDcp surveys enabled the mapping of depth-averaged velocity, bathymetry, and apparent bed
load transport for five snapshots during the series of high-flow events.

Bed load moves in laterally narrow bands. Interpretation of bed load pathway maps indicated that these
bands appear to connect zones of erosion and deposition. When rates of morphological activity are relatively
high, the location of these bands was strongly influenced by local sediment supply. Each survey indicated
coherence between zones of erosion and deposition. For example, morphological change and bed load
pathway maps suggested bank erosion and head cutting were connected to anabranch choking and
transverse bar accretion. During the series of high-flow events, the study reach was shown to undergo cyclical
change, including the choking and reactivation of an anabranch, and central bar deposition and dissection.
At low flows, morphological activity still occurred, but it was confined to a small spatial extent and occurred at
a lower rate.

The coupling of aDcp and TLS surveys contributes to developing techniques to monitor the dynamics of
braided rivers during high flows. It is at these flows that rates of morphological activity are high, yet they are
also the most logistically challenging to measure. The approach of apparent bed load mapping provides
spatially distributed observations of bed load dynamics that cannot be obtained by direct sampling during
high flow. However, at flows higher than those surveyed here, a remote-controlled boat would be a necessary
alternative to tethered boat operation. The methodological and data processing workflow that is presented
here to couple aDcp and TLS topographic surveys can be utilized in dynamic fluvial settings across a range of
river styles. Such applications will enable the investigation of lateral and longitudinal connectivity between
sediment sources, bed load transport pathways, and sediment sinks within channel networks.
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