
Efficient Nonlinear Total Least Squares Estimation For Differentially
Flat Systems

Ji Liu, Guang Li, Sergio Mendoza, and Hosam Fathy∗

Abstract— This paper proposes a computationally efficient
framework for nonlinear total least square (TLS) estimation
problems by exploiting differential flatness with unknown initial
conditions. Classical ordinary least squares (OLS) assumes only
the dependent variables have noise and independent variables
are perfectly known. However, it is more realistic to formulate
TLS estimation problems because both dependent variable
and independent variables are assumed to be noisy. It is
challenging to solve general nonlinear TLS estimation problems
due to the fact that there is no analytical solutions and its
numerical solutions are computationally very expensive. This
paper addresses this challenge by exploiting differential flatness
and using pseudospectral methods. As a result, nonlinear
TLS problems are transformed into unconstrained nonlinear
programming problems with a small number of optimization
variables. This paper demonstrates the framework by solving a
state and input estimation problem for a mass-spring-damper
system. The results show that estimation errors are bounded
within one standard deviation, which is very accurate.

I. INTRODUCTION

This paper proposes a framework to solve general nonlin-
ear total least squares (TLS) estimation problems in a com-
putationally efficient manner by exploiting the differential
flatness property. TLS estimation problems in this paper refer
to state estimation problems that minimize squared estima-
tion errors and is subject to system dynamics given noisy
input and output measurement. Least squares estimation is
widely used in the literature, such as for curve fitting, state
and parameter estimation [1]–[4]. There are two categories
of least squares problems: ordinary least squares (OLS) and
TLS. The ordinary least squares optimization assumes only
the dependent variables (i.e., output variables in this paper)
have measurement noise and independent variables (i.e.,
input variables in this paper) are assumed to have no noise
and hence have true values. Because all data is corrupted by
noise especially in engineering field [5], it is more realistic
to use TLS which assumes all data is noisy [6].

However, it is challenging to solve TLS estimation prob-
lems due to two reasons. First, classical TLS problems
focus on linear curve fitting and can be solved using well-
developed singular value decomposition-based approaches
[4], [6]. For dynamic systems, even for linear systems, the
TLS problems is nonlinear in the sense that the output
variables (i.e., dependent variables) have nonlinear relation-
ship with input variables (i.e., independent variables) [7].
Therefore, there is no analytical solution to solve estimation
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problems for dynamic systems using TLS. Thus, numerical
methods have to be used to solve TLS estimation problems.
This brings the second challenge: it is computationally
expensive to solve TLS estimation problems for general
dynamic systems. Since both input and output variables are
corrupted with noise in TLS problems, optimization variables
include all the input and state variables at each sampling
points. Therefore, this can easily result in a optimization
problem with hundreds of optimization variables and there-
fore can be infeasible to solve.

This paper proposes a computationally efficient frame-
work by exploiting differential flatness and pseudospectral
methods. We formulate estimation problems as an opti-
mization problem with the cost function in TLS form and
solve the resulting optimization problems numerically in a
computationally efficient manner. First, this paper exploits
the differential flatness property, which makes it possible to
express system dynamics using only the trajectory of one
fictitious variable (with the same dimension as the input).
The concept of differential flatness is introduced by Fliess
et al. [8]. A system is differentially flat if the state and
input variables can be expressed by the flat output and a
finite number of its derivatives and if the flat output can be
expressed in terms of state, input, and a finite number of
its derivatives. The differential flatness can be seen as the
nonlinear extension of controllability for nonlinear systems
and for linear system it is equivalent to the controllability [8],
[9]. Transforming a system from the state space to the flat
output space enables one to represent system dynamics (i.e.,
trajectories of states and inputs) using only the trajectory
of flat output. Since the transformation process implicitly
implies system dynamics, one major benefit of flat systems is
that transformed optimization problems do not have dynamic
equality constraint, which makes problems numerically eas-
ier to solve.

Second, this paper uses pseudospectral methods to opti-
mize flat output trajectory to achieve similar accuracy with
a much smaller number of discretization points compared
to traditional methods. Pseudospectral methods transform
original problems into nonlinear programming (NLP) prob-
lems which are solved using well-developed NLP algorithms
[9], [10]. The original problems are discretized at unevenly
distributed collocation points where constraints are enforced.
It is shown that the discretization using collocation points is
more efficient compared to traditional discretization meth-
ods, such as finite difference methods, in the sense that it
demonstrates significantly faster convergence rate [10].

To the best of authors’ knowledge, this is the first paper



to solve general nonlinear TLS problems in the flat output
space using pseudospectral methods. The end product of ap-
plying the proposed framework is unconstrained optimization
problems with a smaller number of optimization variables.
In addition, since the initial condition is included as opti-
mization variables, it does not need accurate initial condition
to get accurate estimation results. This paper demonstrates it
by estimating the state and input variables for a mass-spring-
damper system given noisy input and output measurement.
The results show that the estimated state and input variables
converge to true values accurately.

The remainder of this paper is organized as follows.
Section 2 introduces general total least squares problems and
formulates the estimation problem. Section 3 presents the
differentially flat systems and their properties. The Legendre
pseudospectral method is introduced in section 4. In section
5, this paper demonstrates the proposed idea by estimating
the state and input variables for a mass-spring-damper sys-
tem. Finally, the paper is concluded in section 6.

II. GENERAL TOTAL LEAST SQUARES
ESTIMATION

Fig. 1: Comparison between OLS (left) and TLS (right)

This section introduces TLS estimation problems and
formulate the TLS estimation problem. In this paper all noise
is assumed to be independently, identically distributed (iid).

First, consider a general continuous dynamic system as
follows

ẋ = f (x,u)

y = g(x,u)
(1)

with x ∈ Rnx , u ∈ Rnu and f : Rnx ×Rnu 7→ Rnx and g :
Rnx ×Rnu 7→ Rny .

The difference of OLS and TLS is apparent in Fig. 1 which
is to estimate a nonlinear curve using least squares. OLS
assumes that only the output variables are corrupted with
noise and the input variables are exactly as demanded. The
discretized system with the same dynamics as system (1) is

xk+1 = fk(xk,uk)

yk = g(xk,uk)
(2)

where k = 1,2, . . . ,n with n is the number of data points and
vk is the observation noise. The state xk is the state evaluated
at sampling time tk, i.e., xk = x(tk). This paper simplifies
the notation using subscript k to indicate this variable is

evaluated at time tk. The measured output ym,k at sampling
time tk is the true but unknown output yk plus measurement
noise vk, i.e., ym,k = yk + vk. Since the input is accurate and
noise is iid, each data point can move around itself in a the
y direction. As a result, OLS minimizes the sum of squared
vertical distance from each data point to the estimated curve
as shown in Fig. 1. The OLS problem then can be formulated
as

min
xk

J =
n

∑
k=1

(yk− ym,k)
2

subject to: system dynamics (2)
(3)

In contrast, the TLS, also called orthogonal distance
regression, makes more realistic assumption on noise that
both the input and output variables cannot be measured
perfectly and there are noises associated with these variables
[6]. The measured input um,k is the true but unknown input
uk corrupted with noise wk, i.e., um,k = uk +wk. Because all
data are noisy and the noise is iid, the maximum possible
location of each data each data point can move in both u and
y direction. TLS minimizes the sum of orthogonal squared
distance from data points to the estimated curve. TLS can be
applied to different fields, such as state/parameter estimation
in optimal control and curve fitting in statistics.

This paper focus on solving the following TLS estimation
problem for dynamic systems given noisy input and output
with unknown initial condition

min
xk,uk

J =
∑

n
k=1(yk− ym,k)

2

δ 2
y

+
∑

n
k=1(uk−um,k)

2

δ 2
u

subject to: equatiuon (2)
(4)

The cost function J has two weighted squared errors: (i) the
difference between the estimated output yk and the measured
output ym,k (ii) the difference between true but unknown
input uk and the measured input um,k. The sum of squares
of output and input are weighted by the their variances δ 2

y
and δ 2

u respectively. The weights represent the confidence
the estimator puts on input and output data. For instance,
with a very noisy output (i.e., larger δy) the estimator tends
to trust more on the input data to extract more information.
The optimization tries to minimize the weighted and squared
estimation error subject to system dynamics.

There are two challenges when one solves the estimation
problem (4). First, the optimization problem always has a
high dimension, which makes it infeasible to solve. The op-
timization variables are always all of the input uk and state xk
at each sampling time, which results an optimization problem
with n× (nu + nx) variables and it can easily be hundreds
of variables. Second, the dynamic equality constraint (2)
makes the problem more difficult to be solved, especially for
nonlinear systems. The proposed framework can transform
the problem (4) into an unconstrained optimization problem
with only N × nu variables, where N is the number of
collocation points and is typically much smaller than the
number of data points.



III. DIFFERENTIALLY FLAT SYSTEMS

The system (1) is differentially flat if there exists a
fictitious variable, flat output z, such that [8], [11]

1) the state x and input u can be expressed in terms of
the flat output z and a finite number of its derivatives
as

x = φx(z, ż, . . . ,z(α)) (5a)

u = φu(z, ż, . . . ,z(β )) (5b)

2) the flat output z can be expressed in terms of state x,
input u, and a finite number of input’s derivatives

z = φz(x,u, u̇, . . . ,u(γ)), (6)

where α,β ,γ are integers which vary for different systems
and z(r) is the rth derivative with respect of time.

Suppose system (1) is flat and we simplify the notation
in (5) using z to express the flat output z and its derivatives,
since if the derivatives are known given the trajectory of z.
According to the description of flat systems, the optimization
problem (4) can be transformed into the following

min
z

J =
∑

n
k=1(gk(φx(z),φu(z))− ym,k)

2

δ 2
y

+
∑

n
k=1(φu,k(z)−um,k)

2

δ 2
u

=
∑

n
k=1(Gz,k(z)− ym,k)

2

δ 2
y

+
∑

n
k=1(φu,k(z)−um,k)

2

δ 2
u

(7)

where the function gk(·) and φu,k(·) are the functions g(·)
and φu(·) evaluated at sampling time tk and are the functions
of flat output z. Note that gk(z) 6= g(zk) and φu,k(z) 6= φu(zk)
because that the information of the whole trajectory of flat
output is required to calculate the derivatives of z.

Essentially, the problem (4) is transformed into the flat
output space where one only needs to optimize z, the
trajectory of flat output, with which one can express the
derivatives of flat output. Since the exploitation of differen-
tial flatness implies system dynamics, the system dynamics
are automatically satisfied and there is no system dynamic
equality constraint. The end product is the problem (7), an
unconstrained optimization problem.

IV. LEGENDRE PSEUDOSPECTRAL METHODS
WITH THE FLATNESS

This paper uses pseudospectral methods to solve the
trajectory of flat output z, which furnishes a more efficient
discretization method compared to traditional evenly dis-
tributed discretization points. This section briefly introduces
the implementation of the Legendre pseudospectral method
(LPM) for differentially flat systems.

As a class of efficient direct methods, Pseudospectral
methods are widely used in different fields [9], [12]. One
advantage of pseudospectral methods is that pseudospectral
methods have a exponential convergence rate for smooth
problems [13]. These methods discretize the optimization

problem using collocation points which are unevenly dis-
tributed in temporal domain. The choice of collocation points
features different versions of pseudospectral methods, such
as the LPM and the Gauss pseudospectral method (GPM).
Finally, original problems are transformed into NLP prob-
lems.

This paper adopts the LPM. The LPM uses Legendre-
Gauss-Lobatto (LGL) points as collocation points which are
the roots of the first derivative of Nth-degree of Legen-
dre polynomial, PN [10], [12], where N is the number of
discretization points (which is the same set as collocation
points). The LGL points are located in the range [−1,1].
Thus, to use this set of collocation points as discretization
points, time should be mapped from t ∈ [t0, t f ] to τ ∈ [−1,1]

t =
(t f − t0)τ +(t f + t0)

2
(8)

where t0 and t f are the initial time and final time of
optimization.

The flat output z(τ) is approximated by a basis of N
Lagrange polynomials based on the N collocation points

z(τ)≈ z(τ) =
N

∑
j=1

L j(τ)z(τ j) (9)

where z is the interpolated flat output trajectory and the
Lagrange polynomial bases are

L j(τ) =
N

∏
i=0
i6= j

τ− τi

τ j− τi
(10)

These Lagrange polynomials have the property

L j(τi) =

{
1 if i = j
0 if i 6= j (11)

This gives accurate interpolated flat output at collocation
points, that is

z(τ j) = z(τ j) (12)

One benefit of the LPM is that the derivatives can be
calculated analytically using the Lagrange polynomials. The
first order derivation of flat output z can be expressed as

ż(τi) =
N

∑
j=1

L̇ j(τi)z(τ j) = D1( j, i)Z (13)

with Z := [z(τ1), . . . ,z(τN)]
T and D1 ∈ RN×N is the pseu-

dospectral differentiation matrix which has the relationship
D1 = L̇ j(τi). The differentiation matrix can be calculated
either using (10) or using the following formula

D1( j, i) =


PN−1(τk)
PN−1(τi)

1
τk−τi

if k = i

− (N−1)N
4 if k = i = 1

(N−1)N
4 if k = i = N

0 otherwise

(14)
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(a) Estimation results with δu = 1 and δy = 0.1
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(b) Estimation results with δu = 0.1 and δy = 0.1

Fig. 2: Estimation results using sine wave sin(5t) with noise

The rth order derivatives of flat output z can be expressed
as

zr(τi) =
N

∑
j=1

L(r)
j (τi)z(τ j) = Dr( j, i)Z (15)

It is shown that the high order differentiation matrix Dr can
be expressed as the rth power of D1, that is, Dr = Dr

1.
The lth order derivative of the flat output z(l) can be

derived by iteratively calculating the first derivative of Eqn.
(9) l times with the consideration of the initial state x(τ0).
The first derivative of the flat output evaluating at the
collocation points gives

where z(τ0) is the initial flat output which can be derived
based on the given initial state x(t0). And L̇ j(τ) represents
the first derivative of Lagrange polynomials L j(τ) for j = 0,
. . ., N.

Substituting Eqn. (13) into Eqn. (5) gives the mappings
from z to x and u

x(τi) = φx,i(z(τ1), . . . ,z(τN)) (16a)
u(τi) = φu,i(z(τ1), . . . ,z(τN)) (16b)

where the mappings are φx,i : RN 7→ Rn
x and φu,i : RN 7→ Rn

u.
Then the cost function is then calculated. For traditional

pseudospectral methods which is used to solve optimal
control input, the cost function is calculated using quadrature
rule at collocation points. This requires the data of state and
input variables at collocation points and typically optimal
control problems have this data because the state and input
variables evaluated at collocation points are the optimization
variables. The measurement data in estimation problems,

however, is only available at sampling time, unlike collo-
cation points, is always evenly distributed. There are two
ways to calculate the cost function in problem (4): (i) adopts
the quadrature rule at collocation points by interpolating the
data [14]; (ii) calculates the summation of squared errors at
each sampling time by interpolating the flat output z. This
paper chooses the second way, since this guarantees that the
data used for cost function calculation is real data rather
than interpolated and approximated data. The flat output z is
interpolated using Lagrange polynomial following (9).

Finally, the constrained optimization problem can be trans-
formed as an unconstrained NLP problem

min
Z

J =
∑

n
k=1(Gz,k(z)− ym,k)

2

δ 2
y

+
∑

n
k=1(φu,k(z)−um,k)

2

δ 2
u

(17)

where the optimization variable is Z ∈ RNnu . Compared to
the original problem (4), the resulting problem (17) is an un-
constrained NLP problem with N×nu optimization variables
and can be solved with well-developed algorithms. System
dynamics are automatically satisfied by the exploitation of
differential flatness using (5). Note that if the problem (4)
is solved using the traditional way (i.e., using the state and
input variables at each sampling time as the optimization
variables), the total number of optimization variables would
be n× (nu +nx).

V. AN ILLUSTRATIVE EXAMPLE

This paper demonstrates the proposed flatness-based pseu-
dospectral methods for TLS estimation using a second order
mass-spring-damper system.
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(a) Estimation results with δu = 1 and δy = 0.1
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(b) Estimation results with δu = 0.1 and δy = 0.1

Fig. 3: Estimation results using affine input with noise

A. Estimation Problem Formulation

The estimation problem can be formulated as follows.
First, the dynamics of the mass-spring-damper system in the
state-space representation are

ẋ1 = x2

ẋ2 =−
k
m

x1−
c
m

x2 +
1
m

u

y = x1

(18)

where x1 and x2 are the displacement and velocity of the
mass with the mass m = 1kg, spring constant k = 1N/m, and
the damping coefficient c = 1N · s/m. The measured output
ym,k is the true but unknown displacement yk corrupted by
measurement noise vk. Similarly, the measured output um,k
is uk the true force acted on the system with noise wk.

Then the TLS estimation problems can be formulated as

min
xk,uk

J =
∑

n
i=1(yk− ym,k)

2

δ 2
y

+
∑

n
i=1(uk−um,k)

2

δ 2
u

subject to: dynamic model (18)
(19)

The goal of this estimation problem (19) is to estimate
the displacement x1, velocity x2, and true input uk, given
measured noisy output ym,k. The noise is assumed to be
white Gaussian noise. To solve this estimation problem,
the flatness-based pseudospectral methods are adopted. First,
since the system (18) is in controllable canonical form,
the structure of controllable canonical form automatically
implies the system is differentially flat. Thus, it is possible
to transform the problem (19) into the flat output space. The
flat output is chosen to be the displacement, i.e., z = x1.

Second, the trajectory of the flat output is optimized using
the pseudospectral method.

B. Results

This paper adopts two kinds of input to test the TLS
estimator: the first input is a sine wave and second is an
affine input. First, Fig. 2 depicts the estimation results using
sine wave are with different standard deviation on input and
output. The variables x̂1, x̂2, û are estimated displacement,
velocity, and input, respectively. The duration of the problem
is t ∈ [0s,5s] with the sampling time ∆t = 0.01s, which
implies the number of sampling points n = 501. The number
of collocation points is set to be N = 30. The computa-
tional advantage of adopting the proposed framework for
TLS estimation is apparent: the resulting problem is an
unconstrained NLP problem with N× nu = 30 optimization
variables. However, if the problem is discretized using the
finite difference method, it would result in a problem with
n×(nu+nx)= 1503 optimization variables and n×nx = 1002
dynamical equality constraints.

Additionally, the other advantage of the proposed frame-
work is that the estimator does not require accurate initial
condition. Actually, the initial condition is included as op-
timization variable and is optimized. This paper adopts the
true initial condition as x(t1) = [0,0]T and the initial guess
for TLS estimator is set to be x̂(t1) = [−10,−10]T . Although
the initial guess for the estimator is incorrect, the estimator
can estimate the initial states and input relatively accurately.

The estimation results shown in Fig. 3 and Fig. 2 estimate
state and input variables relatively accurately. Since the
displacement has slower dynamics than the velocity and



the output measures the displacement, the estimated dis-
placement x̂1 always has higher accuracy than the estimated
velocity x̂1 Additionally, the Fig. 2a and Fig. 3a have large
uncertainty in the input and therefore the estimated input
has larger absolute error, which is still bounded in the one
standard deviations.
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Fig. 4: Monte Carlo simulation of averaged absolute errors

This paper also conducts a Monte-Carlo simulation to
show that the TLS estimator together with the proposed
flatness-based LPM works as expected by showing the errors
are within three standard deviations (actually, it is bounded
within one standard deviation). The Monte Carlo simulation
has 100 estimation runs which use the same statistical
parameter set with the one used in Fig. 2. Each simulation
run records the absolute values of estimation errors and at
the end of Monte Carlo simulation the errors are averaged
by dividing the total number of simulation. The final results
shown in Fig. 4 represents the general statistical property of
the TLS estimator. It can be seen that the TCL estimator
using the proposed framework is very accurate.

VI. CONCLUSION

This paper proposes a computationally efficient frame-
work for total least squares (TLS) estimation for dynamics
systems. This framework exploits the differential flatness
property of flat systems, which transforms the original sys-
tem in flat output space. The trajectory of the resulting flat
output is then optimized using pseudospectral methods. For
TLS estimation problem, the advantages using the proposed
framework are the following. (i) it significantly reduces the
number of optimization variables to make TLS hesitation
problems feasible to solved with high speed; (ii) the end
product is an unconstrained nonlinear programming (NLP)

problem which is relatively easy to solve; (iii) it does not
require accurate initial condition, since the initial condition
is included in the optimization process. Moreover, this paper
uses the proposed framework to solve an TLS estimation
problem with a second order mass-spring-damper system.
The results demonstrate the accuracy of the estimation pro-
cess by showing estimation errors are within the tight one
standard deviations.
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