Preparation and Properties of MCT Ceramics for RF and THz Applications

Zhaoxian Xiong*, Zhangzhao Weng*, Jinbao Huang*, Bin Yang*, R. Donnan*, Haixue Yan and M.J. Reece

*Department of Materials Science and Engineering, Xiamen University, Xiamen 361005, China
#School of Electronic Engineering, Queen Mary University of London, London E14NS, UK
School of Engineering and Material Sciences, Queen Mary University of London, London E1 4NS, UK

*Email: zxxiong@xmu.edu.cn

Abstract — Dielectric ceramics of 0.95MgTiO₃-0.05CaTiO₃ were prepared via a solid-state reaction method. It is evident that high permittivity and low loss are correlated to high density and high purity in the THz frequency domain. Best dielectric properties were obtained for samples sintered at 1260 °C, which is attributable to their high density and high purity. However, the dielectric properties of the ceramics deteriorated when sintered above 1260 °C, which is attributed to the significantly increased content of second phase produced by ‘over’ sintering.

Index Terms — Dielectric ceramics, THz application, resonators, filters.

I. INTRODUCTION

In the past ten years, Terahertz (THz) technology has demonstrated extraordinary prospects due to its attractive applications in material, chemical, communication and life sciences [1–5]. Portable, low loss and light weighted THz devices are developed, for example sensors [6], resonators [7] and filters [8], to accelerate applications of THz technologies. However, the lack of advanced materials in the THz band is a major limited factor. Although obvious progress has been achieved in the reliable measurement systems to test dielectric properties of materials in the THz band [9,10], systematic study on the materials with suitable dielectric properties was rarely reported. MgTiO₃, chemically a rhombohedral structure with space group R3c [11], is a popular microwave material which displays a relatively low permittivity (ε_r=17), high quality factor (Qf=160,000 at 7GHz) and negative temperature coefficient of resonant frequency (τ_f=-50 ppm/°C) [12]. Beside a high permittivity and quality factor, a near-zero temperature coefficient of resonant frequency is also demanded for commercial applications. It is found that with a small addition of 5mol% CaTiO₃ (orthorhombic structure with space group Pbnm) to the samples produces improved permittivity [21], quality factor (Qf=56,000 at 7GHz) and near zero τ_f [12]. It is reported that MgTiO₃ and CaTiO₃ do not react into solid solutions but separate phases due to the different crystal structures [13]. In this paper, 0.95MgTiO₃-0.05CaTiO₃ ceramics, i.e., MCT, were prepared under different sintering conditions. The effects of density, phase purity and microstructure on the dielectric properties of the samples were investigated in the THz spectral domain.

II. EXPERIMENTAL PROCEDURES

Ceramics of 0.95MgTiO₃-0.05CaTiO₃ were prepared via a conventional solid-state reaction route, with chemical reagents of MgO (CP, 99%), CaCO₃ (CP, 99%) and TiO₂ (CP, 99%). The reagents were firstly weighed based on the stoichiometry of 0.95MgTiO₃-0.05CaTiO₃. The mixed powder was then calcined at 1150 °C for 2h with 1wt% of ZnO added as a sintering aid. Green bodies were pressed and sintered at different temperatures, 1240 °C, 1260 °C, 1280 °C and 1300 °C for 3h in air, respectively.

The crystal structures of the samples were identified with X-ray diffraction (XRD) using CuKα radiation (X’pert PRO, Panalytical, Holand). The microstructure of the specimens was observed by a scanning electron microscope (SEM, TM-3000, Hitachi, Japan). Element analysis was carried out with Energy-Dispersive X-ray spectroscopy (EDX, Oxford instrument). Densities were obtained using the Archimedes’ method. Microwave dielectric properties of the ceramics, including ε_r, Qf and τ_f, were measured with the parallel plate resonator method connected with a vector network analyzer (VNA) at 8.2GHz. The THz dielectric behavior of the samples between 0.22THz and 0.32THz were measured using a VNAZ2-driven quasi-optical transmission meter [14].

III. RESULTS AND DISCUSSION

The density of ceramics sintered at 1240 °C, 1260 °C, 1280 °C and 1300 °C were determined to be 3.778g/cm³, 3.790g/cm³, 3.790g/cm³ and 3.790g/cm³, respectively. The apparent density increased with increasing sintering temperature and a near constant density was achieved for samples sintered above 1260 °C. The XRD patterns of dense ceramics sintered at 1260 °C, 1280 °C and 1300 °C are shown in Fig. 1. The samples are multi-phase, with a main crystal phase of MgTiO₃ (JCPDS#79-0831), and minor ones of CaTiO₃ (JCPDS#22-0153) and MgTi₂O₅ (JCPDS#76-2673). In Fig. 1, MgTiO₃ is indexed in the XRD for 1260 °C, MgTi₂O₅ is indexed for 1280 °C and CaTiO₃ is indexed for 1260 °C. The formation of the impurity phase MgTi₂O₅ is
possibly resulted from the decomposition of MgTiO$_3$ [15].
With increasing sintering temperature, MgO may be partially
dissolved in the near region of grain boundary [15]. Therefore,
the XRD peak intensity of MgTi$_2$O$_5$ increased with increasing
sintering temperature. It is reported that MgTi$_2$O$_5$ could not
be fully eliminated when ceramics were prepared using
conventional sintering [16]. Here, the amount of ZnO and
MgO is too small to be detected by XRD.

The microwave dielectric properties at 8.2GHz for ceramics
sintered at different temperatures are revealed in Fig. 3. The
improvement of microwave dielectric properties for samples
sintered from 1240 °C to 1260 °C for 3h is attributed to the
increase of the density. The maximum value of
$Q_f=91,238$GHz (at 8.2GHz) and $\varepsilon_r=20.5$ were obtained for
the ceramic sintered at 1260 °C. The grain size increases with
increasing sintering temperature so that the total area of the
grain boundary is reduced, leading to an increase of the
quality factor. However, the permittivity and Q_f for samples
sintered above 1260 °C both decreased. The reason for this is
probably due to the increasing second phase content, as
identified by XRD and SEM analysis, rather than the grain size
effect in the dense samples. The sample sintered at 1240 °C
was eliminated from the THz investigation because of its low
density and low permittivity. According to the algorithm in the
work of Yang et al. [9], dielectric properties (permittivity and
loss tangent) can be obtained through complex transmission
spectra of ceramics measured over a broad band frequency
domain, i.e. 0.22THz to 0.32THz. The permittivity of
ceramics sintered at 1260 °C, 1280 °C and 1300 °C for 3h
were around 18, exhibiting minimal dispersion. The dielectric
losses of the samples varied significantly from 0.0019
(sintered at 1260 °C) to 0.0072 (sintered at 1300 °C) at
0.22THz as displayed in Fig. 4. This indicates that the
MgTi$_2$O$_5$ second phase had an obvious influence on the
increase of loss not only in the microwave frequency domain
[17] but also in the THz frequency domain (Fig. 4).

Fig. 1 XRD patterns of ceramics sintered at 1260 °C, 1280 °C and
1300 °C for 3h. Here, MgTi$_2$O$_5$ is indexed for 1300 °C, MgTiO$_3$ is
for 1280 °C, and CaTiO$_3$ is only for 1260 °C.

Fig. 2 SEM image of ceramic sintered at 1280 °C for 3h.

Fig. 3 Dielectric properties at 8.2GHz of ceramics sintered at
1240 °C, 1260 °C, 1280 °C and 1300 °C for 3h.
Dielectric ceramics of 0.95MgTiO3-0.05CaTiO3 were prepared via a solid-state reaction method. Best dielectric properties were achieved for samples sintered at 1260 °C for 3h in the frequency range 0.22-0.32THz.

IV. CONCLUSION

Dielectric ceramics of 0.95MgTiO3-0.05CaTiO3 were prepared via a solid-state reaction method. Best dielectric properties were achieved for samples sintered at 1260 °C for 3h, which is attributable to their high density and high purity. However, the dielectric properties of the samples deteriorated when sintered above 1260 °C. This is attributed to the significantly increased content of second phase due to over sintering of samples. It is evident that high permittivity and low loss are correlated to high density and high purity in the THz frequency domain.

ACKNOWLEDGEMENT

The authors would like to thank the Engineering and Physical Sciences Research Council (EPSRC) of UK for financial support under Grant EP/I014845, and, Fujian Provincial Department of Science and Technology of China for financial support under Grant No. 2013H6020.

REFERENCES