
A J-integral-based arc-length solver for brittle and ductile crack propagation in
hyperelastic solids

Ettore Barbieria,∗, Federica Ongaroa, Nicola Maria Pugnob,c,a

aSchool of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS, London, UK
bLaboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of

Trento, Via Mesiano 77, I-38123 Trento, Italy
cCentre for Materials and Microsystems, Fondazione Bruno Kessler, Via Sommarive 18, I-38123 Povo (Trento), Italy

Abstract

Arc-length methods based on Newton-Rahpson iterative numerical solvers are indispensable in non-linear mechan-

ics to trace the equilibrium curves of systems with snap-back or snap-through behaviours. An example is a crack

propagating in a rubber-like solid, which can generate extremely sharp snap-backs when the elastic energy is released.

A standard arc-length solver satisfies the arc-length constraint which only limits the increment in displacements

and in load level to a fixed amount. Thus, it cannot guarantee the satisfaction of the energy balance in the rate form.

This work proposes an arc-length based on the J-integral, and assumes the Griffith balance as a constraint equation.

Firstly, a fracture criterion (critical load and direction of crack increment) is formulated, consistent with the ther-

modynamic principle of maximum dissipation: a crack propagates in the direction of the maximum strain energy

release rate. For this purpose, this paper provides an explicit and simple expression of the J-integral for varying an-

gles. This fracture criterion does not require the computation of mixed mode Stress Intensity Factors, or asymptotic

solutions or derivatives of the tangent stiffness matrix. By doing so, it is shown that the proposed method easily

reconciles with the theory of Configurational Forces.

Secondly, because of the explicit expression of J provided in this paper, it is easy to linearize the discretized

equations of motions consistently.

The method proves able to handle very sudden snap-backs occurring under large strains, and both brittle and duc-

tile crack propagation. A particular example of such behaviour are kirigami (paper-cuts) structures made of graphene.

The proposed arc-length can capture, for these structures, the transitions from brittle into ductile crack propagation

for the same crack patterns, but different pre-crack lengths.
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1. Introduction

The response of a dynamical system (not necessarily mechanical) is given by a set of non-linear first order Or-

dinary Differential Equations (ODEs). The functional expression of these ODEs might contain several (structural)

parameters, and it is often of interest to compute the susceptibility of the static response to such parameters. In static

conditions, the initial system of ODEs reduces to a non-linear systems of algebraic equations. The roots of this system

constitute its equilibrium curves, and the techniques to obtain these curves fall under the name of numerical contin-

uation. Numerical continuation is a well-established branch of the theory of dynamical systems, and a vast literature

exists on this topic. The interested reader can refer to the following cardinal textbooks for an introduction and more

detailed references (Abbott, 1977; Allgower and Georg, 1990, 2003).

In mechanics, the equilibrium is, from a dynamical systems perspective, a single-parameter non-linear problem,

with the parameter being a proportional scaling factor of the external forces (Lacarbonara, 2013). The equilibrium

curves of a mechanical system are, for this reason, often displayed as force-displacement diagrams. Equilibrium

curves in mechanical systems permit, for example, the computation of the maximum sustainable force, and the detec-

tion of critical points of instability and bifurcations. To track the equilibrium curves, one could increase the load level

(load-control) by small increments; nonetheless, this approach would fail for systems with non-monotonic loadings.

Then, for these cases, another option would be to apply displacements, instead of forces, (displacement-control): how-

ever, this approach would fail when displacements vary non-monotonically. These situations are known as snap-backs

(figure 1). Riks (Riks, 1972, 1979) was the first to propose an arc-length method able to trace snap-backs. The idea

in the Riks’ method is to add a constraint equation to the nonlinear system, which would limit both the variations

in load level and displacements (figure 1). Several variants were proposed to the original algorithm: to name just a

few, we mention the line-search (Crisfield, 1983), local arc-length (Alfano and Crisfield, 2003), local arc-length for

strain softening (De Borst, 1987; May and Duan, 1997), orthogonal methods (Forde and Stiemer, 1987), asymptotic-

numerical methods based on Pade approximants (Cochelin et al., 1994; Elhage-Hussein et al., 2000; Hamdaoui et al.,

2016), dissipation-based arc-length (Gutierrez, 2004; Verhoosel et al., 2009; Singh et al., 2016; May et al., 2016) and

kinetic damping (Lee et al., 2011).

Recent novel contributions to the field include parallelization (Aruliah et al., 2016), gluing of multiple Partial

Differential Equations (PDEs) into a single numerical continuation framework (Kuehn, 2015) and gradient-constrained

methods (Hintermueller and Rasch, 2015). It is also worth to mention the availability of free Matlab software (Uecker

et al., 2014) for continuation and bifurcation in 2D elliptic systems.

When considering fracture of hyperelastic media in finite deformation, the application of the standard Riks’ arc-

length would result in overestimating the equilibrium force required to satisfy the Griffith criterion (Griffith, 1921).

This will be illustrated with a numerical example in section 7.3. The reason is that a standard arc-length method only

limits the increments in load and displacement, disregarding the energy balance. The dissipation-based arc-length

proposed in (Gutierrez, 2004; Verhoosel et al., 2009) does instead limit the increments in dissipated energy. We
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discuss the differences between our method and the dissipation-based arc-length more in detail in section 4.2. For

example, (Verhoosel et al., 2009) applied their method to geometrically non-linear models coupled with plasticity

and cohesive zone elements. Instead, in this work we propose a framework with non-linearities for both, geometry

and material (hyperelasticity), combined with an explicit treatment of strong discontinuities based on a meshfree

discretisation. Building on the merits of the idea of an energy-release control method, we anticipate that a J-integral

based approach provides a more direct way to the satisfaction of the Griffith criterion, on the rate (in the fracture

mechanics’ sense) of the energy release.

Moreover, the arc-length proposed in this paper allows simultaneously the incorporation of a criterion for the crack

direction. Strictly speaking the non-linear problem becomes a two-parameters numerical continuation (the load level

λ and the crack orientation θ), as showed in section 4.3. However, it is showed that it can be transformed into a single-

parameter continuation, thanks to an explicit expression of the J-integral as a function of θ. This approach allows

our method to reconcile with the framework of configurational forces for fracture in finite deformation, contained in

a series of seminal works (Maugin, 1995), (Gurtin and Podio-Guidugli, 1996), (Gurtin and Podio-Guidugli, 1998),

(Steinmann, 2000), (Steinmann et al., 2001) and (Podio-Guidugli, 2002).

To conclude, section 7 presents several numerical examples. Firstly, the numerical J-integral is validated against

an analytical solution of (subsection 7.1) from (Thomas, 1955, 1958, 1960); then, the hypothesis behind the fracture

criterion is verified by introducing small kinked cracks at the tips of an inclined centred larger crack (subsection

7.2); subsequently the proposed method is compared to a standard arc-length, and it is shown its ability to verify the

Griffith balance (subsection 7.3); next, the propagation of two aligned and misaligned edge-notched cracks (subsection

7.4) is studied, with comparisons with the maximum hoop stress criterion in the limits of infinitesimal deformations

(subsection 7.5). Finally, the arc-length is tested for a type of graphene kirigami structure that contains multiple cracks

(subsection 7.6).

2. Governing equations

2.1. Variational formulation

In this section, the adopted continuum formulation is Total Lagrangian, with B0 ⊂ Rk, k = 2, 3 being the reference

configuration at initial time t0, and Bt the deformed configuration at a generic time t. In the following, X denote the

material coordinates and x the deformation. The deformation is given by the admissible mapping

x = ϕ(X, t) ϕ :
(
B0 \ Γ0

c

)
× [t0, t f ] 7→ Bt \ Γc k = 2, 3 (1)

with t f being the final time and Γc the image of the current configuration of Γ0
c . We assume that the mapping is

bijective everywhere on B0 with the exception of Γ0
c

Γ0
c = ∪

nc
i=1Γ0

ci
Γ0

ci
⊂ Rk−1 (2)
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Figure 1: Spherical arc-length scheme: (d0, λ0) is the previously converged state, (d, λ) is the next solution on the path. (∆dk ,∆λk) is the increment

at the k-th iteration. (δdk , δλk) is the iterative step to the increment.

with Γ0
ci

being the i-th crack surface and nc the number of crack surfaces. It is assumed in the proceeding, that each

Γ0
ci

can be a piecewise set of segments for two-dimensional problems, or polygonal flat surfaces for three-dimensional

problems. In 2D, for example, for a straight crack,

Γ0
ci

=
{
X ∈ B0 : X = XΓ0

ci

}
XΓ0

ci
: [s0, s f ] ∈ R 7→ Rk−1 XΓ0

ci
(s) = X0(1 − s) + X1s (3)

with s being the parameter, s0 and s f being respectively the initial and final value at time t0 and t f , and X0 and X1 the

crack-tips. If X0,X1 ∈ B0 \ ∂B0, then the crack is internal, otherwise, if any of the two tips are on the boundary or

outside, the crack is named edge crack.

The deformation gradient F is readily obtained as

F = ∇0 ϕ(X, t) J = det(F) > 0 X ∈ B0 \ Γ0
c (4)

where the subscript 0 refers to the material coordinates. We then define the following functionals: the internal energy

W

W
[
ϕ
]

=

∫
B0

w(F)dV (5)

with w being the strain energy function of the hyperelastic constitutive model; the external work functional (in absence

of body forces)

P
[
ϕ
]

= λ

∫
Γ0

t

t̂T
0 u dS + λ

∫
Γ0

u

γ (u − ū)T (u − ū) dS (6)

where u is the displacement field u = ϕ(X) − X, and λ is the load level (the continuation parameter); the boundary

Γ0
t ⊂ ∂B0 is where the traction λ t̂0 is prescribed, with t̂0 being a unit vector and λ the load level; Γ0

u ⊂ ∂B0 is the
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boundary where the displacement ū is prescribed, and γ is a penalty factor. Finally, we introduce the potential energy

functional as

Π
[
ϕ
]

=W
[
ϕ
]
− P

[
ϕ
]

(7)

Figures 2 showW, P and Π in a simplified one-dimensional example. The problem is then formulated as: find the

motion ϕ or the displacement field u such that

ϕ = arg min
ϕ∈H1(B0)

Π
[
ϕ
]

(8)

whereH1 (B0) is the space of vectorial functions inL2 (B0) that are square-integrable along with their first derivatives.

Since we are interested in equilibrium conditions, the kinetic energy functional is not considered here. However, for

the sake of an iterative numerical scheme, it is appropriate to define the rate quantities and the variations of the

functionals in equations (5), (6) and (7).

Ẇ
[
ϕ̇,ϕ

]
=

∫
B0

ẇ(F)dV =

∫
B0

∂w
∂C

: Ċ dV =

∫
B0

1
2

S : 2Ė dV =

∫
B0

S : Ė dV (9)

where C is the Right Cauchy-Green tensor, E is the Green-Lagrange strain tensor, S is the Second Piola-Kirchhoff

stress tensor

C = FT F E =
1
2

(C − I) S = 2
∂w
∂C

(10)

and the corresponding variation is

δW
[
δϕ,ϕ

]
=

∫
B0

S : δE dV (11)

The rate of the external work is

Ṗ
[
ϕ̇,ϕ

]
= λ

∫
Γ0

t

t̂T
0 u̇ dS + λ

∫
Γ0

u

γu̇T (u − ū) dS (12)

with the corresponding variation

δP
[
δϕ,ϕ

]
= λ

∫
Γ0

t

t̂T
0 δu dS + λ

∫
Γ0

u

γ δuT (u − ū) dS (13)

Equation (8) can be reformulated as

δΠ
[
δϕ,ϕ

]
= δΠ [δu,u] = 0 (14)

that is ∫
B0

δE : SdV −
∫

Γ0
t

δuT λt̂0 dS − γ
∫

Γ0
u

δuT (u − ū) dS = 0 (15)

Another rate of interest is the strain energy release rate G.

G
[
ϕa

]
= −

∂Π
[
ϕa

]
∂A

=
∂P

[
ϕa

]
∂A

−
∂W

[
ϕa

]
∂A

=
1

2B
lim

∆a→0
−
Π

[
ϕa+∆a

]
− Π

[
ϕa

]
∆a

(16)

where A = 2 B a is the crack surface area, where B is the thickness of the body (in 2D), and a is the crack length.

a =

∫
Γ0

c

ds (17)

The subscript a in equation (16) indicate the motion of the body B0 containing cracks Γ0
c of measure a. The term rate

is intended in the fracture mechanics’ sense, meaning with respect to the fracture area, and not with respect to time.
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2.2. Discretized equations of motion

Because of the ease of introducing discrete cracks without remeshing, we will use a meshfree setting, namely the

Reproducing Kernel Particle Method (RKPM) (Liu et al., 1995). For the explicit treatment of cracks, we follow the

intrinsic enrichment presented in (Barbieri et al., 2012; Barbieri and Petrinic, 2013b,a).

Let us first define the functional spaces for the test and the trial functions. We adopt a Bubnov-Galerkin method,

for which test δu(X) and trial u(X) vectorial functions are chosen in affine spaces. For the test functions, we select the

following Sobolev spaceV defined as:

δu(X) ∈ V V =
{
δu(X) ∈ H1 (B0) | δu(X) = 0 ∈ Γu

}
(18)

whilst for the trial functions, we select the Sobolev space S

u(X) ∈ S S =
{
u(X) ∈ H1 (B0)

}
(19)

In the definition (19) we purposely left out the constraints imposed by the essential boundary conditions since the

RKPM approximation used in the weak form does not satisfy the Kronecker condition. Therefore, essential boundary

conditions will be enforced through penalty conditions. Furthermore, we pose no restrictions on the continuity of

these functions, since we are seeking a discontinuous approximation.

2.3. RKPM approximation

We discretize the body B0 with a cover of N overlapping spheres QI ⊂ B0 of variable radii rI , I = 1, . . . ,Ni, such

that B0 ⊂
⋃N

I=1 QI . We call nodes the centres of these spheres XI , and we consider h as an average measure of the

distance between two neighbouring nodes. Because of the overlap, h < rI , I = 1, . . . ,N.

We can then define the finite dimensional subspacesVh ⊂ V and Sh ⊂ S of approximating functions

Sh =
{
uh ∈ H1 (B0) | uh ∈ R1 (B0)

}
(20)

where R1 is the functional space of the RKPM functions, with reproducibility up to the first order. Conversely to finite

element functional spaces, functions in R1 are defined globally over the body B0: the local character is maintained

because the shape functions are compact support functions, that is they are null beyond the radius rI . Furthermore,

functions in R1 remain in this space even if they are discontinuous.

The functions uh ∈ Sh (and similarly δuh ∈ Vh) are expressed as a linear combination

uh(X, t) =

Ni∑
I=1

φI(X) dI(t) (21)

δuT
h (X) =

Ni∑
I=1

δd T
I φT

I (X) (22)

where dI(t) are nodal coefficients (not nodal values) and φI(X) shape functions centred in XI

dT
I =

[
U T

I V T
I W T

I

]
(23)
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The shape functions are computed as

φI(X) = ω(XI ,X)P(X)T M−1(X)P(XI) (24)

where the weighting function is defined as

ω(XI ,X) = ∆VIw
(
|XI − X|

rI

)
(25)

with ∆VI a measure of the sphere of radius rI centred in XI , P(X) denotes a complete basis of the subspace of

polynomials of degree k, P(X) = {p0(X), p1(X), . . . , pk(X)}, and M is the moment matrix

M(X) =
∑

I∈SX
r

ω(XI ,X)P(XI)P(XI)T (26)

where the index set SX
r

SX
r =

{
J ∈ {1, 2, . . . ,N} | ‖X − XJ‖ ≤ rJ

}
(27)

The moment matrix M can also be viewed as a Gram matrix defined with a discrete scalar product

〈u, v〉X =
∑

I∈SX
r

ω(XI ,X)u(XI)v(XI) (28)

and, from a numerical point of view, it is convenient to work with a centred and scaled version to enhance the condition

number of the system of normal equations. This correction implies that the following definition of M is adopted here

M(X) =
∑

I∈SX
r

ω(XI ,X)P
(

XI − X
r

)
PT

(
XI − X

r

)
(29)

where r denotes the average of all the compact support radii. The matrix M can be inverted quickly using an interative

algorithm based on the Sherman-Morrison formula (Barbieri and Meo, 2012) which provides explicit equations for

M−1 and proved to reduce sensibly the computational costs associated with equations (29) and (24).

The continuity properties of the RKPM shape functions are clearly linked to the continuity properties of the

function w in Equation (25), which is usually referred to as the kernel of the approximation. This work considers the

so-called 2k-th order spline, which is the Ck−1 function given by

w(ξ) =


(1 − ξ2)k 0 ≤ ξ ≤ 1

0 ξ > 1
(30)

The reproducibility is given by using as nodal coefficients the polynomial basis P computed in the nodes xI :

uh(X) =

Ni∑
I=1

φI(X)P(XI)T = P(X)T M−1(X)
Ni∑

I=1

ω(XI ,X)P(XI)P(XI)T = P(X)T M−1(X)M(X) = P(X)T (31)

meaning that the approximation uh(X) is interpolative to all the functions in the basis P. To impose the discontinuity

introduced by the presence of a crack, we use an intrinsic enrichment, where the RKPM shape functions (24) are

rendered simultaneously discontinuous over the crack segments, and continuous around the crack tips. For a more

complete description, the reader is invited to refer to (Barbieri et al., 2012; Barbieri and Petrinic, 2013b), and (Sevilla

and Barbieri, 2014) for curved cracks described by NURBS parametrizations.
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2.4. Discrete balance equations

Following (Belytschko et al., 2000), using equation (21), the discretized variation of the deformation gradient

becomes

δFh = δd BT
0 (32)

with

BT
0 =

[
∂φT

∂X1

∂φT

∂X2

]
(33)

and the following holds

δF : P = δE : S (34)

Replacing (21) into (15), the following equilibrium equations are obtained

F(i)(d) − λF(e) = 0 (35)

where λ is the load level, F(e) is the external forces vector

F(e) =

∫
Γu


φT 0

0 φT

 t̂0dΓu (36)

F(i) is the internal forces vector that depends on the constitutive model of the material

δdT F(i)(d) =

∫
B0

δEh : Sh dV =

∫
B0

δFh : Ph dV = δdT
∫
B0


∂φ

∂X1
Ph

11(d) +
∂φ

∂X2
Ph

21(d)

∂φ

∂X1
Ph

12(d) +
∂φ

∂X2
Ph

22(d)

 dV (37)

hence

F(i) =

∫
B0


∂φ

∂X1
Ph

11(d) +
∂φ

∂X2
Ph

21(d)

∂φ

∂X1
Ph

12(d) +
∂φ

∂X2
Ph

22(d)

 dV (38)

2.5. Tangent stiffness matrix

For each iteration, it is necessary to compute the tangent stiffness matrix KT of the internal forces. It can be shown

that

KT =
∂F
∂d

(i)

= Kg
T + Km

T (39)

where superscript (·)g stands for geometric part, which takes into account geometrical nonlinearities

Kg
T =

∫
B0

BT
0 Sh(uh)B0

BT
0 Sh(uh)B0

 dV (40)
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where S is in Voigt notation. Instead, (·)m stands for the material part, which takes into account material nonlinearities

Km
T =

∫
Ω0

Bh T (uh) ASE(uh) Bh(uh) dV (41)

where

Bh (d) =



Fh
11
∂φ

∂X1

T

Fh
21
∂φ

∂X1

T

Fh
12
∂φ

∂X2

T

Fh
22
∂φ

∂X2

T

Fh
11
∂φ

∂X2

T

+ Fh
12
∂φ

∂X1

T

Fh
21
∂φ

∂X2

T

+ Fh
22
∂φ

∂X1

T


(42)

and ASE is the Second Elasticity Tensor in Voigt form, defined, in tensorial form, as

A(2) =
∂S
∂E

(43)

2.6. The constitutive model

In all the following examples, we will assume plane stress and incompressible Neo-Hookean material. In this

case, the pressure p can be explicitly determined. Indeed, following (Legrain et al., 2005), the strain energy density

function w is

w(C) =
1
2
µ0 (I1 − 3) (44)

where µ0 is the initial shear modulus, I1 is the first invariant of the Right Cauchy Green tensor

The corresponding Second Piola-Kirchhoff Stress is

S = µ0I − pC−1 (45)

The pressure is given by

p =
1

det
(
C̄
) C̄−1 (46)

where the bar indicates the 2 × 2 in-plane components of the tensor.

The second elasticity tensor is

A(2) = 2µ
1

det
(
C̄
) (

C̄−1 ⊗ C̄−1 + I
)

(47)

where

I =
∂C̄−1

∂C̄−1
(48)

3. Crack propagation criterion

The Griffith criterion (Griffith, 1921) states that for a crack of initial length a to grow, the following condition

needs to verify

G
[
ϕa

]
−Gc(a) = 0 (49)
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where Gc is the critical strain energy release rate of the material, and G is defined in equation (16). For brittle fracture,

Gc is independent of the crack length a, for ductile fracture instead, Gc = Gc(a). The functional P (in equation (6))

for a discretized medium, becomes, for deformation-independent loads

P
[
ϕh

a

]
= λF(e) T d = F(i) T d (50)

where the last step used the equation (35).

The rate of the internal energy, in equation (9), becomes

Ẇ
[
ϕ̇h

a,ϕ
h
a

]
= F(i) T ḋ (51)

For large displacements and small strains, there is a linear relation between the Green-Lagrange Strain E and the

Second Piola-Kirchhoff stress S. Therefore,W can be simply written as

W
[
ϕh

a

]
=

1
2

∫
Ω0

S : E dV =
1
2

F(i) T d =
1
2

P (52)

For geometrically non-linear constitutive material models, with both displacements and strains being large, the

equation (52) is not valid. Integrating by parts equation (51)

W
[
ϕh

a

]
=

∫ d

0
F(i) T d d = F(i) T d −

∫ d

0

(
∂F(i) T

∂d
d
)T

d d = P −
∫ d

0
dT KT d d =

∫ d

0
dT dF(i) (53)

where in the last step we used the definition of tangent stiffness matrix Therefore,

−Π
[
ϕh

a

]
= P

[
ϕh

a

]
−W

[
ϕh

a

]
=

∫ d

0
dT dF(i) =

∫ d

0
dF(i) T d (54)

which, for the Griffith criterion,

G
[
ϕh

a

]
= −

∂Π
[
ϕh

a

]
∂A

=
∂

∂A

∫ d

0
dF(i) T d = Gc(a) (55)

Figure 3 depicts the proposed fracture criterion. The initial crack of length a0 will propagate in the direction θmax

of maximum strain energy release rate G. This criterion is commonly adopted in fracture mechanics (Gurtin and

Podio-Guidugli, 1996, 1998). The assumption in this paper is that the G at crack a0 + δa is computed before the

crack is actually introduced, that is, at crack length a0. In fact, we hypothesize that the initial crack grows with an

infinitesimal virtual kink δa, much smaller than the original length. In this case, the stress states at a0 and a0 + δa are

not substantially different. Therefore, G at a0 + δa can be computed by rotating of an angle θ the relevant quantities

(stress and displacement gradients) at a0. This variation of the J-integral with the angle has an explicit expression, as

explained in the proceeding of the section. This means that J at any angle θ can be computed from the fields in the

original frame X = [X1, X2] (see figure 3). This explicit expression turns out to be a simple trigonometric function,

easy to maximize. The hypothesis behind the criterion is verified in an example in section 7.2.
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Figure 2: Definition of strain energy release rate between two equilibrium states: G = −
∂Π

∂A
, with A being the crack area.
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Figure 3: Fracture criterion: a crack of length a0 (black thick line) with initial inclination θ0 propagates as an infinitesimal virtual kink (blue thick

line) δa << a0 in the direction θmax of maximum energy release rate.

The J-integral for finite deformation can be written as

J
[
ϕa

]
= [1 0]

∫
Dρ

(
∇∗0u∗T P∗ − wI

)
∇∗0qdS (56)

where the domain Dρ is a circle around the crack-tip of radius ρ, P is the First Piola-Kirchhoff stress, w is the strain

energy density function and q is a weight function

q : Dρ ⊂ B0 7→ [0, 1] q(X) =


0 X ∈ ∂Dρ

1 X is a crack − tip
(57)

The tensors in equation (56) need to be rotated in the local reference frame, indicated by the superscript ∗. The

quantities in equation (56) transform according to the following laws:

∇∗0u∗ = R(θ)T ∇0u R(θ) (58)

because the displacement gradient transforms as a second-order tensor, with rotation tensor R

R(θ) =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 (59)

∇∗0q = R(θ)T∇0q (60)

The First Piola-Kirchhoff, instead, transforms as a vector.

P∗ = R(θ)T P (61)

12



On the basis of an infinitesimal crack kink, the J-integral at a propagating crack tip can be expressed in a rotated

coordinate system as

J
[
ϕh

a

]
= J(d, θ) = [1 0]

∫
Dρ

[ (
R(θ)T ∇0uh R(θ)

)T (
R(θ)T Ph

)
− whI

]
R(θ)T∇0q dS (62)

that can be rearranged as

J(d, θ) = [1 0]
∫
Dρ

R(θ)T
(
∇0uhT Ph − whI

)
R(θ)T∇0qdS (63)

where the term in the round brackets depends on d.

Expanding equation (63), it is possible to obtain

J(d, θ) = J1(d) cos(θ) + J2(d) sin(θ) = jh(d) · e (64)

where e = e(θ) = [cos(θ), sin(θ)] is the unit vector of the direction of propagation of the crack, and jh = jh(d) =

[J1(d), J2(d)].

J1(d) =

∫
S

∂q
∂X1

(
∂u1

∂X1
P11 +

∂u2

∂X1
P21 −W

)
+

∂q
∂X2

(
∂u1

∂X1
P12 +

∂u2

∂X1
P22

)
dS (65)

J2(d) =

∫
S

∂q
∂X1

(
∂u1

∂X2
P11 +

∂u2

∂X2
P21

)
+

∂q
∂X2

(
∂u1

∂X2
P12 +

∂u2

∂X2
P22 −W

)
dS (66)

It must be noted that the notation used is the same as (Gurtin and Podio-Guidugli, 1996, 1998), and our findings

reconcile with their results (see section 5).

Differentiating J with respect to d requires more effort. Indeed,

∂J
∂d

=
∂J1

∂d
cos(θ) +

∂J2

∂d
sin(θ) (67)

Considering that d = diI , i = 1, 2 I = 1, . . . ,N, with N the number of nodes and that

ui = φIdiI (68)

then
∂u
∂X

=
∂ui

∂X j
=
∂φI

∂X j
diI (69)

hence
∂

∂d
∂u
∂X

=
∂

∂dkI

∂ui

∂X j
=
∂φI

∂X j

∂diI

∂dkI
=
∂φI

∂X j
δik (70)

∂W
∂d

=
∂W
∂F

∂F
∂d

= P
∂F
∂d

= P
∂

∂d
∂u
∂X

= Pi j
∂φI

∂X j
δik (71)

∂P
∂d

=
∂P
∂F

∂F
∂d

= A(1) ∂

∂d
∂u
∂X

(72)
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whereA(1) is the First Elasticity Tensor (a fourth order tensor). Equation (72) in index notation is

∂Pi j

∂dkI
= A

(1)
i jkl
∂φI

∂Xl
(73)

∂A1

∂d
=

∫
S

∂q
∂X1

(
∂

∂d
∂u1

∂X1
P11 +

∂u1

∂X1

∂P11

∂d
+

∂

∂d
∂u2

∂X1
P21 +

∂u2

∂X1

∂P21

∂d
−
∂W
∂d

)
+

+
∂q
∂X2

(
∂

∂d
∂u1

∂X1
P12 +

∂u1

∂X1

∂P12

∂d
+

∂

∂d
∂u2

∂X1
P22 +

∂u2

∂X1

∂P22

∂d

)
dS (74)

∂A2

∂d
=

∫
S

∂q
∂X1

(
∂

∂d
∂u1

∂X2
P11 +

∂u1

∂X2

∂P11

∂d
+

∂

∂d
∂u2

∂X2
P21 +

∂u2

∂X2

∂P21

∂d

)
+

+
∂q
∂X2

(
∂

∂d
∂u1

∂X2
P12 +

∂u1

∂X2

∂P12

∂d
+

∂

∂d
∂u2

∂X2
P22 +

∂u2

∂X2

∂P22

∂d
−
∂W
∂d

)
dS (75)

To facilitate the reproducibility of the results by the reader, Appendix A reports the complete expanded expressions

for the derivatives in equations (75) and (74).

4. The J-integral based arc-length solver

4.1. The standard arc-length method

A classical arc-length solver seeks the solution (d, λ) for the discretized equation of equilibrium.

Ψ(d, λ) = F(i)(d) − λF(e) = 0 (76)

with F(i)(d) being the internal force vector, P is the external force vector and λ is the load level. Equation (76) is a

non-linear system of 2N equations in 2N + 1 unknowns. Hence, it is necessary to add an equation, normally called

the spherical arc-length constraint

g(d, λ) = ∆dT ∆d + ψ2 ∆λ2F(e) T F(e) − l2 = 0 (77)

where l is the arc-length parameter, and ∆d = d − d0, where d0 is a previously converged state, ψ is a parameter that

is inserted to balance the contributions from both the displacement and the load level (De Borst et al., 2012). Figure 1

depicts the scheme in a simplified one-dimensional example with ψ , 0 in equation (77). With ψ = 0, equation (77)

is known as cylindrical arc-length constraint.

In an iterative scheme, the increment ∆d towards the next converged state (d, λ) is given by

∆dk+1 = ∆dk + δdk ∆λk+1 = ∆λk + δλk (78)

where

δλk = −
1
κ

(hT dψ + gk) (79)

δdk = dψ + δλkde (80)
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where

κ = w + hT de (81)

h =

(
∂g
∂d

)
k

(82)

w =

(
∂g
∂λ

)
k

(83)

gk = ∆dT
k ∆dk + ψ2∆λ2

kF(e) T F(e) − l2 (84)

de = K−1
T F(e) (85)

where KT is the tangent stiffness matrix

KT =

(
∂F(i)

∂d

)
k

(86)

dψ = −K−1
T Ψk (87)

where

Ψk = F(i)(d0 + ∆dk) − (λ0 + ∆λk)F(e) (88)

4.2. Dissipation-based arc-length

(Gutierrez, 2004) and (Verhoosel et al., 2009) proposed an energy release control for failure in brittle and ductile

solids. The arc-length constraint is

g = ∆G − τ (89)

where τ is size of the step, and G is the proper strain energy release rate, defined as time derivative of energetic

quantities

G = Ṗ − Ẇ (90)

where Ṗ is the power of the external forces and Ẇ the rate of the strain energy. It must be remarked that in fracture

mechanics, G can also be expressed as a change in fracture area cf. equation (55). Particularly, they presented a

scheme for geometrical non-linear constitutive models, that is with large displacements and small strains. In these

assumptions, the equation (52) is valid. Instead, in this paper we present a full large strain-large displacement model.

To retain the advantageous and clever idea of a dissipation-based arc-length, in this work we propose to compute

the strain energy release rate from the J-integral, and modify the arc-length constraint to reflect a fracture criterion

commonly adopted in fracture mechanics, that is the critical load for crack initiation is such that

G = Gc (91)

where Gc is the critical strain energy release rate, often referred in the literature as fracture energy. In addition to

the arc-length proposed by Gutierrez (2004); Verhoosel et al. (2009), the one proposed in this paper incorporates
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a criterion for the direction of crack propagation. In addition, the proposed solver operates on actual rates (in the

fracture mechanics sense) of energy, rather than increments of energy.

4.3. The proposed J-integral arc-length constraint

The scheme in section 4.1 will not necessarily enforce the Griffith energy balance (49) in presence of a propagating

crack, as the numerical example in section 7.3 demonstrates. Therefore, the constraint in equation (77) is replaced by

g = J(d, θmax) −Gc (92)

where G = J was exploited. In addition, J depends on the orientation of the crack increment. It is reasonable to accept

that the crack will propagate in the direction θmax of maximum strain energy release rate

θmax = arg max
θ ∈[0,2π]

J(d, θ) (93)

To summarize, the scheme becomes a two parameters arc-length continuation, in θ and λ. For simplicity, only one

crack-tip is assumed, but similar arguments can be made for multiple crack tips.


F(i)(d) − λF(e) = Ψ(d, λ) = 0

J(d, θmax) −Gc = g(d, θ) = 0

θ − θmax = f (d, θ) = 0

(94)

Hence, in an iterative perspective, the following Newtow-Rahpson step is required:


δdk+1

δλk+1

δθk+1

 =


KT −F(e) 0

hT 0
∂J
∂θ

∂ f
∂d

T

0
∂ f
∂θ




−Ψk

−gk

− fk

 (95)

However, the two-parameters continuation in equation (94) can be re-formulated as a standard continuation as in

section 4.1. Indeed, equation (93) can be solved analytically, (102), as it consists in finding the maximum of function

J(d, θ) as in equation (64). It must be remarked that J(d, θ) can physically only be non-negative, and that it is a

continuous periodic function in θ, as J(d, 0) = J(d, 2π). Hence, a local maximum can be easily obtained, as it will be

shown in section 5.

Therefore, assuming that θmax is readily obtainable at each iteration, the continuation (94) becomes
F(i)(d) − λF(e) = Ψ(d, λ) = 0

J(d, θmax) −Gc = g(d) = 0
(96)

where F(e) is defined in equation (36) and F(i) in equation (38) and and the Newton-Rahpson stepδdk+1

δλk+1

 =


KT −F(e)

hT 0


−Ψk

−gk

 (97)
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where h =
∂J
∂d

is given by equation (67).

5. Link with a constitutive theory based on configurational forces (Gurtin and Podio-Guidugli, 1998)

Indeed, with the positions

J1 = | j | cos(β) J2 = | j | sin(β) (98)

equation (64) can be arranged as

J(d, θ) = | j | (cos(β) cos(θ) + sin(β) sin(θ)) = | j | cos(β − θ) (99)

Therefore, the maximum of J(d, θ) is given by the angle θ satisfying

∂J
∂θ

= 0
∂2J
∂θ2 < 0 (100)

which means
∂J
∂θ

= −| j | sin (β − θ)
∂2J
∂θ2 = −| j | cos (β − θ) (101)

Equations (101) are simultaneously satisfied by

θmax = β = arctan2(J2, J1) (102)

which means that the crack propagation direction (for a constitutively isotropic material) e points in the same direction

as the vector j

e =
j
| j |

(103)

which is the same result found in (Gurtin and Podio-Guidugli, 1998) (equation 8.11 of their paper). In addition,

because of equation (99) it is possible to compute explicitly the Frank diagram of J.

The Frank diagram of a function ϕ(θ) describing a curve in polar form r = ϕ(θ) is defined as

Frank(ϕ) =

{
(r, θ) : r =

1
ϕ(θ)

}
(104)

Therefore,

Frank(J) =

{
(r, θ) : r =

1
| j | cos(β − θ)

}
(105)

which represents the polar equation of a straight line, as reported in equation 7.18 of (Gurtin and Podio-Guidugli,

1998). In addition, for isotropic crack-tips with fracture energy Gc independent of the orientation θ, there is at most

one possible kinking angle θ, which correspond to θmax in equation (103). Our finding is then in agreement with this

corollary of their Criticality Theorem.
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6. Strategies for continuation

6.1. Line Search

When det (KT ) is close to zero, the step from equations (79) and (80) can become larger than the radius of conver-

gence of a Newton-Rahpson (NR) scheme. In this case, the residual might increase, while it should, instead, decrease.

To recover a descent in the norm of a residual, it is opportune to combine a Newton-Rahpson scheme with a Line-

Search (LS) algorithm (Crisfield, 1983). The idea of a LS is to search for an adequate decrease of the norm of the

residual. The problem in equation (96) is re-formulated as

(d, λ) = arg min
(d,λ)

F(d, λ) F(d, λ) =
1
2
Ψ(d, λ)TΨ(d, λ) +

1
2

g(d)2 (106)

Since F is a non-negative function in (d, λ), its minimum is also a zero. Hence, equations (106) and (96) have the

same solutions.

Instead of taking the full NR step, LS seeks for a fraction η

∆dk+1 = ∆dk + η δdk ∆λk+1 = ∆λk + η δλk (107)

such that

F(dk+1, λk+1) ≤ F(dk, λk) + η
∂F
∂∆d

T

∆dk + η
∂F
∂∆λ

∆λk (108)

The value of η is given by the minimum of the function f (η) = F(dk + η∆dk, λk + η∆λk). Since the actual function

f (η) is not known a priori, it is assumed quadratic or cubic

f (η) ≈
(

f (1) − f (0) −
d f
dη

(0)
)
η2 +

d f
dη

(0) η + f (0) (109)

with

f (0) = F(dk, λk) f (1) = F(dk+1, λk+1)

d f
dη

(0) =
∂F
∂∆d

∆dk +
∂F
∂∆λ

∆λk =
(
ΨT KT + gh

)T
∆dk + (−F(e)TΨ)∆λk (110)

6.2. Pseudo J-integral arc-length for the pre-propagation stage

Figures 4 show a typical snap-back in a force-displacement curve occurring for a crack propagating in an elastic

solid. The phase OF is the response for an initial crack of length a0, then at point F the crack starts growing, at which

G = Gc. All the points in OF are characterized by a value of the strain energy release rate inferior to the critical one.

To get to the point F from an initial position 0, one could follow the spherical arc-length (figure 4a) and then switch

to a J-integral arc-length. This is because applying the J-integral arc-length from point O, would result in getting

straight to the point F. It would appear then that the J-integral does not capture the intermediate states. In addition, it

is sometimes required to proceed through intermediate steps, especially if the displacement at point F is quite large.

In fact, this could avoid excessive distortions during each iteration, which could lead to negative Jacobian.
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Figure 4: Pre-propagation stage OF for initial crack length a0.

Nonetheless, the proposed arc-length can be easily modified to capture the intermediate states in OF. Indeed, it

suffices to replace Gc in equation (92) with a value G0 < Gc, and increase it after each converged step until it reaches

the critical value Gc. The increment ∆G can be decided, for example, by the number of desired iterations kd and the

number of the actual corrector iterations kc achieved at the previous state. For example, the following law provides a

balanced increment in G:

G0,new = min
(
G0,old + ∆Gnew,Gc

)
∆Gnew = ∆Gold

(
kd

kc

)0.5

(111)

In this paper, we only considered one crack tip, the one with the maximum value of the J- integral. It is possible, in

principle, to apply it for each crack-tip and have separate increments of ∆G.

7. Numerical Examples

Unless stated otherwise, the examples in this section assume an incompressible Neo-Hookean material model in

plane stress (44), with µ = 0.4225 MPa and Gc = 10 kJ/m2, values typical of natural rubber.

7.1. Comparison of the J-integral with an analytical solution

Firstly, the accuracy of the numerical J-integral (equation 63) is verified through comparison with an analytical

expression (Thomas, 1955). The test is shown in figure 5, where, for a Neo-Hookean incompressible solid in plane

stress

J = µ h0

(
α −

1
α

)
(112)

where the stretch α results from

α = 1 +
v̄
h0

(113)
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where v̄ is an applied displacement. To mimic an infinitely long strip, the domain of study is rectangular, with height

being 2 h0 and length 40 h0, with h0 = 0.025 m. The mesh size ∆h used is 0.01 m, and the domainDρ for the J-integral

had radius ρ = h0. It was seen path-independence for relatively small values of ρ/h. Figure 6 shows a comparison

between computed values of J-integral and equation (112). The curves are almost overlapping, with an error of at

most 1%.

ҧ𝑣

ҧ𝑣

2 ℎ040 ℎ0

Figure 5: Tensile test for the J-integral solution in (ref): an infinitely long strip of a thin rubber sheet of height 2h0, clamped at the top and bottom

edges, with an applied displacement v̄.
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Figure 6: Validation against the analytical solution in equation (112): continuous line: numerical; dashed line: analytical. The error is within 1%.
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7.2. Verification of the fracture criterion

After having verified the accuracy of the numerical J-integral, we proceed in testing the validity of the assumption

at the basis of the fracture criterion in section 3 and figure 3. The idea is recalled and further explained in figure 7 for

an inclined central crack of a sample stretched uni-axially under displacement control: the value of the J-integral at

the tip of a kinked crack ∆a inclined of θ from an initial crack a0 inclined of β is the same as the value of the J-integral

for the initial crack a0 without the kinks, obtained by simply rotating of θ the relevant fields. Two values of the stretch

α are considered, namely α = 1.2 and α = 1.4, where the stretch α is computed according to equation (113). For

simplicity, the same value is applied before and after introducing the kinks. Therefore, the value of J after the kinks,

will be inevitably higher (figures 8a and 9a). Hence, for a better comparison, the values after the kinks are normalized

with respect to the maximum value (figures 8b and 9b). For the loading conditions in figure 7, it is known that the

crack will tend to kink and propagate in a direction orthogonal to the loading (θ = 0). In fact, figures 8,9 show a

maximum at θ = 0, and the shapes of the normalized curves are indeed very similar, with minor discrepancies due

to the finiteness of the kinks, whose minimum length is limited by the mesh size ∆h. In fact, in principle the kinks

∆a should be chosen as small as possible, to be consistent with the infinitesimal assumption of the virtual kinks; but,

in practice, ∆a needs to be sufficiently larger than the value of the radius ρ in Dρ, which guarantees an accurate and

path-independent value of the J-integral. This value of ρ is dictated, in turn, by the mesh size ∆h, according to the

findings of section 7.1. In this example, the value of ∆h is 5 mm, whilst ∆a = 15 mm.

?
9

9 :

;
=*
>

@
Δ=

Figure 7: Verification of the maximum dissipation assumption: a sample with an inclined central crack of length 2a0, a0 = 0.1 L and initial angle

β is stretched (with α being the stretch) uni-axially in displacement control. Given these conditions, two crack kinks (red lines) of inclination θ are

added asymmetrically to simulate a crack growth scenario.
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Figure 8: Variation of J with the inclination θ of the kink for an inclined central crack of β = 30◦ under tensile stretch α = 1.2: continuous line,

equation (64) used at initial crack a0; dots, numerical values with explicit cracks a0 + ∆a.
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Figure 9: Variation of J with the inclination θ of the kink for an inclined central crack of β = 30◦ under tensile stretch α = 1.4: continuous line,

equation (64) used at initial crack a0; dots, numerical values with explicit cracks a0 + ∆a.
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7.3. Crack propagation with the cylindrical, spherical and proposed arc-length

After having verified the fracture criterion, we proceed next to show that a cylindrical or a spherical arc-length

criterion (equation (77)) does not necessarily satisfy the onset of the Griffith criterion (equation (49)), hence cannot

be used in tracing equilibrium curves. The geometry and the boundary conditions are showed in figure 10. Figures

11 show the equilibrium curves obtained with a cylindrical arc-length (equation (77) with ψ = 0) and a spherical

arc-length (equation (77) with ψ = 1). The value of the J-integral (figure 11b) exceeds the critical value Gc. Even if

they satisfy the Griffith inequality G ≥ Gc, they do not provide correct information on the onset of crack propagation

for various crack lengths. Instead, figure 12b illustrates that the value of J remains fixed at the critical Gc for all the

subsequent steps. In addition, the equilibrium curve in figure 12a interestingly shows a double snap-back behaviour.

The related deformations to critical points 1 − 4, with the crack openings, are showed in figures 13.

"
9

9 :

;
2= >

Figure 10: Numerical example for the cylindrical, spherical and the proposed arc-length method: L = 1 m, a = 0.1 L, β = 30◦.

7.4. Double Edge Notched Tensile (DENT)

In this section we consider the crack propagation and interaction of two edge cracks in a specimen under displace-

ment control conditions. In these conditions, the arc-length parameter is the stretch α, and the nominal traction λ is

computed as a reaction force. The two cracks are separated by a distance h, symmetrically positioned with respect to

the mid-plane of the sample (y = 0). Different values of h are considered, including the collinear case with h = 0. For

collinear cracks, both cracks will propagate in a straight direction, until they merge (figure 15).

For h > 0, the cracks tend to bend anti-symmetrically, to form a lenticular fragment: figure 16 shows the equilib-

rium curve for h/L = 0.3 with the relative deformed configurations. The curving of the cracks brings considerable
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(a) Applied traction level λ as a function of resulting vertical stretch α.
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(b) Applied traction level λ as a function of resulting maximum J value.

Figure 11: Failure of the cylindrical and spherical arc-length in capturing snap back and the correct values of Gc for a growing crack; dotted black

line is the cylindrical arc-length, blue thin line is the spherical arc-length with ψ = 1.
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(a) Applied traction level λ as a function of resulting vertical stretch α.
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(b) Applied traction level λ as a function of resulting maximum J value.

Figure 12: J-integral-based arc-length: it captures snap back and the correct values of Gc (vertical blue line) for a growing crack.
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(a) (α1, λ1) (b) (α2, λ2)

(c) (α3, λ3) (d) (α4, λ4)

Figure 13: Deformations of the snap-backs in figure 12. Colours show σ22. There is a double snap-back: even if the crack is larger at point 3, its

maximum vertical displacement is slightly higher than point 2.
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additional stretchability to the structure: for example, with h/L = 0.3, the final stretch at complete fracture is higher

than the case with h = 0, as it can also be seen from the equilibrium curves (figure 17).

The misalignment length h has a minor effect on the overall strength, but a major non-proportional influence on

the stretch at fracture. On one hand increasing h can bring the cracks too far apart to intersect (figure 18); on the other

hand, decreasing h can lead the crack path to intersect too soon (for example h/L = 0.05) leading to a more ductile

behaviour, but lower stretch at fracture.

A trend seems to appear, towards an optimal value of h that maximises the stretch at fracture. For such value, the

two cracks intersect in a point that is, at the same time, located on the boundary: for this reason, we will refer to this

intersection as a triple point.

The value of h/L = 0.14 provides this condition, and it seems to be an optimal value for the maximum stretch at

fracture (figure 19).

Finally, it must be noted that for relatively high values of h/L, counter-intuitively, the top crack tends to curve

downwards. This is a consequence of the large deformations and strains, and it is an effect not predictable by the

linear theories. Indeed, for Linear Elastic Fracture Mechanics (LEFM), the path of the crack at the top for h/L = 0.8

should have initially curved upwards, and then steadily proceed horizontally. This effect is explained more in detail

in the next section.

𝛼

𝑥

𝑦

𝑎0
ℎ

𝑎0

𝑤

𝐿

Figure 14: Double edge cracks tensile tests with applied stretch α: W = 0.08 m, L = 0.2 m, a0 = 16 mm.
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Figure 15: Double edge collinear cracks tensile tests with applied stretch α: W = 0.08 m, L = 0.2 m, a0 = 16 mm. Traction-stretch equilibrium

curve, along with deformed configurations at dotted points; the star indicates the stretch at complete fracture.

Figure 16: Double edge non-collinear cracks tensile tests with applied stretch α: W = 0.08 m, L = 0.2 m, h = 0.06 m, h/L = 0.3, a0 = 16 mm.

Traction-stretch equilibrium curve, along with deformed configurations at dotted points; crack paths on the undeformed configuration are shown

on the left. The star indicates the stretch at complete fracture.
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Figure 17: Double edge non-collinear cracks tensile tests: comparison of equilibrium curves for increasing h/L. The star at the end of each curve

indicates the stretch at complete fracture.
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Figure 18: Double edge non-collinear cracks tensile tests: comparison of crack paths in the reference configuration for varying h.
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Figure 19: Double edge non-collinear cracks tensile tests: optimal h/L for maximum stretch at fracture. The value of h/L = 0.14 causes the crack

paths to join at a triple point. The star at the end of each curve indicates the stretch at complete fracture.

7.5. Comparison with the Maximum Hoop Stress criterion for Linear Elastic Fracture Mechanics (LEFM)

To fit the assumptions of the LEFM, the proposed arc-length method was tested for a ceramic material (Alumina),

which exhibits high Young Modulus (corresponding to a shear Modulus µ = 165 GPa), but very low fracture energy

Gc = 60 J/m2, or, in terms of fracture toughness, Kc = 5 MPa
√

m. The test in figure 14 was carried out for h/L = 0.6

with two different solvers: (i) the fully non-linear finite deformation with an hyperelastic constitutive model, with the

J-integral-based arc-length and the fracture criterion proposed in this paper, (ii) a linear elastic solver with a maximum

hoop stress criterion (Erdogan and Sih, 1963). The proposed arc-length returns the same results of the maximum hoop

stress criterion, in terms of crack paths (figure 20) and equilibrium curve (figure 21). In addition, figure 21 shows that

the maximum strain at fracture is around 0.18%, which is consistent with the assumptions of the linear theories.

As anticipated at the end of section 7.4, the path for the crack at the top predicted by the LEFM, tends to slightly

curve upwards, and then propagate orthogonally to the loading direction: instead, for a material with high toughness,

the same crack tends to curve downwards, as a result of the large deformations.

7.6. Graphene Kirigami structures

The previous example showed that it is possible to transition from a brittle into a ductile fracture just by changing

the positions of the cracks. Kirigami (from the Japanese kiru = to cut, kami = paper) is the ancient Japanese art of

paper sculptures, and it consists in cutting and stretching a single sheet of paper. The stretch causes the cracks to open,

and display the artistic pattern, as showed in figure 22. Recently, many authors attempted to design flexible structures
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Figure 20: Double edge non-collinear cracks tensile tests for alumina and for h/L = 0.6: comparison of crack paths between the proposed arc-length

(red line) and the maximum hoop stress criterion (black line).
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Figure 21: Double edge non-collinear cracks tensile tests for alumina and for h/L = 0.6: comparison of equilibrium curves between the proposed

arc-length (red line) and the maximum hoop stress criterion (black line).
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following this idea (Chen et al., 2013; Neville et al., 2014; Shyu et al., 2015; Yang et al., 2016; Zhang et al., 2015;

Hanakata et al., 2016; Neville et al., 2016), and notably (Qi et al., 2014; Blees et al., 2015; Grosso and Mele, 2015)

applied the kirigami idea to graphene materials. The novelty of this paper is that the proposed arc-length method,

combined with the ability of introducing cracks, can predict the maximum stretch at fracture and strength of graphene

kirigami sheets. As an example, figure 23 depicts a kirigami-style structure, with an alternating pattern of cracks,

along the lines of the example in section 7.4. A sophisticated constitutive model for finite deformation of graphene

can be found in (Xu et al., 2012): however, for the sake of simplicity, a compressible Neo-Hookean model is used,

with energy function

W =
1
2
µ0 (I1 − 3) + λ0

1
2

(
log J

)2
− µ0 log J (114)

where µ0 is the initial shear modulus, λ0 the initial bulk modulus. For graphene, the following values are used (Xu

et al., 2012): E = 1.030 TPa and ν = 0.231, while the fracture energy Gc = 15.9 J/m2 (Zhang et al., 2014). With

reference to figure 23, D = 100 Å, and L = 340 Å. Figure 24 shows two equilibrium curves for the same type of

kirigami structures (same pre-crack patterns): the spacing d between the cuts is the same, but the cuts have different

length. It is interesting to see that the structure with shorter cracks has higher strength, but brittle behaviour and lower

stretch-at-fracture; instead, the one with the longer cracks, exhibits a ductile behaviour, with much higher stretch at

fracture, albeit with lower strength. Figure 25 shows all the crack propagation steps for various points on the curve.

Ideally, one could use the arc-length in this paper to optimise the design of the cuts such that both high strength and

high toughness are achieved.

8. Conclusions

This paper proposed a path-following method for tracing the bifurcation diagram of crack propagation in hyper-

elastic media, which account for both geometrical and material nonlinearities. Unlike other methods available in the

literature, the one presented here does not require the computation of mixed-mode Stress Intensity Factors, and, conse-

quently, the knowledge of asymptotic near crack-tip solutions. This approach incorporates the principle of maximum

dissipation rate and thus is thermodynamically consistent. The basis of the proposed method is the rate form of the

Griffith balance (equation (49)), and requires only the computation of the J-integral for rotated stress and displacement

gradient fields (equation (56)). The assumption behind the method (verified in this paper) is that the fields produced

by small kinked cracks (figure 3) are not substantially different from the ones produced by the initial crack.

The maximum dissipation assumption leads to an explicit formula for J for varying angles of propagation (equa-

tion (64)). The maximization of such equation allows to reconcile with a constitutive theory for kinking and curving

of cracks based on the theory of Configurational Forces ((Gurtin and Podio-Guidugli, 1998)).

The results show that the proposed arc-length can handle very sharp snap-back paths in the equilibrium curve (for

example, figures 12, 17, 24), and for multiple crack problems. In particular, these examples show that misaligned

cracks combined with hyperelastic materials can lead to very deformable structures. The idea of non-collinear cracks
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Figure 22: Paper sculpture of St Paul’s Cathedral in London, obtained using kirigami. Taken from

https://www.flickr.com/photos/bharathkishore/5501377879. The artist is Bharath Kishore and the image is shared under a Creative Com-

mon license.
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Figure 23: Tensile test in displacement control of a graphene kirigami structure.

Figure 24: Equilibrium curve for a tensile test in displacement control of a graphene kirigami structure: red line d = 36 Å, a = 41 Å; black line

d = 36 Å, a = 76 Å.
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Figure 25: Graphene kirigami structure with d = 36 Å, a = 41 Å (figure 23): traction-stretch equilibrium curve, along with deformed configurations

at points. Beyond the critical fracture initiation point (indicated by the cross), the crack pattern is stable, such that it allows further stretching. The

same pattern, but with shorter cracks, instead propagates in an unstable manner (red line of figure 24).
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can be exploited to design extremely stretchable structures, similar to the Japanese art of paper sculpture (kirigami).

In combination with the use of high-strength materials, like graphene, it is believed that this could be a pathway to

obtain sheets with simultaneous high strength and high toughness.

The examples show the ability of the arc-length solver to predict the large deformations of graphene kirigami

sheets, and to capture the transition from brittle into ductile for the same pattern, but with different lengths (figures

24, 25).
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Appendix A. Full expressions of the consistent linearisation of the J-integral

In the following,

φT =

[
φ1(X) φ2(X) . . . φN(X)

]
I = 1, . . . ,N (A.1)
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The First Elasticity Tensor A(1) can be obtained by the Second Elasticity Tensor A(2) from

A
(1)
i jkl = δikδ jl + FinA

(2)
n jmlFkm (A.11)

where Fi j is the deformation gradient

A(2) = 4
∂2W
∂C∂C

= 2
∂S
∂C

(A.12)
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