Measurement of neutrino oscillation parameters from muon neutrino disappearance with an off-axis beam.

Abe, K; Adam, J; Alhara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Ariga, T; Assylbekov, S; Autiero, D; Barbì, M; Barker, GJ; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Bentham, SW; Berardi, V; Berger, BE; Berkman, S; Bertram, I; Bhadra, S; Blaszczyk, FD; Blondel, A; Bojeckho, C; Bordoni, S; Boyd, SB; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, RG; Caravaca Rodríguez, J; Cartwright, SL; Castillo, R; Catanesi, MG; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, SJ; Collazuol, G; Connolly, K; Cremonesi, L; Curioni, A; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, SR; Densham, C; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dufour, F; Dumarchez, J; Dytmant, S; Dziewiecki, M; Emery, S; Ereditato, A; Escudero, L; Finch, AJ; Frank, E; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, AP; Galymov, V; Gaudin, A; Giffin, S; Giganti, C; Gilje, K; Golan, T; Gomez-Cadenas, JJ; Gonin, M; Grant, N; Gudin, D; Hadley, DR; Haesler, A; Haigh, MD; Hamilton, P; Hansen, D; Haras, T; Hartz, M; Hasegawa, T; Hastings, NC; Hayato, Y; Heartly, C; Helmer, RL; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, AK; Ikei, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, TJ; Ishida, T; Ishii, T; Ives, SJ; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, RA; Jo, JH; Jonsson, P; Joo, KK; Jung, CK; Kaboth, AC; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; Kim, SB; Kissei, J; Kitching, P; Kobayashi, T; Kogan, G; Kolaceke, A; Konaka, A; Kornos, LL; Korzenev, A; Koseki, K; Koshio, Y; Kreslo, I; Kropp, W; Kubo, H; Kunenko, Y; Kumaratunga, S; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Laveder, M; Lawe, M; Lazos, M; Lee, KP; Licciardi, C; Lim, IT; Lindner, T; Lister, C; Litchfield, RP; Longhin, A; Lopez, GD; Ludovici, L; Macaire, M; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, AD; Marche, J; Martin, JF; Maruyama, T; Marzec, J; Masliah, P; Mathie, EL; Matveev, V; Mavrokoridis, K; Mazzuccato, E; McCarthy, M; McCreary, J; McFarland, KS; McGrew, C; Mefelko, C; Mijakowski, P; Miller, CA; Minaimo, A; Minee, O; Mine, S; Missert, A; Miura, M; Monfregola, L; Moriyama, S; Mueller, TA; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nagasaki, T; Nakadaira, T; Nakahama, M; Nakai, T; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Nakayoshi, M; Naoki, T; Naoki, K; Nishikawa, K; Nishimura, Y; O'Keeffe, HM; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, SM; Otani, M; Owen, RA; Oyama, Y; Pac, MY; Palladino, V; Paolone, V; Payne, D; Pearce, GF; Peresozhikov, O; Perkin, JD; Petrov, Y; Pinzon Guerra, ES; Pistillo, C; Ponski, P; Poplawska, E; Popov, B; Posiadala, M; Poultissou, JM; Poultissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, PN; Ravonel, M; Rayner, MA; Redi, A; Reeves, M; Reinherz-Aronis, E; Retiere, F; Robert, A; Rodrigues, PA; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; Sanchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schwoer, J; Scott, M; Seiya, Y;
Measurement of Neutrino Oscillation Parameters from Muon Neutrino Disappearance with an Off-axis Beam

(The T2K Collaboration)

1University of Alberta, Centre for Particle Physics, Edmonton, Alberta, Canada
2University of Bern, Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), Bern, Switzerland
The T2K collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01×10^{20} protons on target. In the absence of neutrino oscillations, 205 ± 17 (syst.) events are expected to be detected while only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum assuming three neutrino flavors and normal mass hierarchy yields a best-fit mixing angle $\sin^2(\theta_{23}) = 0.514 \pm 0.082$ and mass splitting $|\Delta m^2_{32}| = 2.44^{+0.17}_{-0.15} \times 10^{-3}$ eV2/c4. Our result corresponds to the maximal oscillation disappearance probability.

PACS numbers: 14.60.Pq,14.60.Lm,12.27.-a,29.40.ka

Introduction.—Oscillations between different neutrino flavor states are a physics process well described by the 3×3 Pontecorvo-Maki-Nakagawa-Sakata mixing matrix \mathbf{U}, which is parametrized \mathbf{U} by three mixing angles $\theta_{12}, \theta_{23}, \theta_{13}$, and a CP violating phase δ_{CP}. In this mixing scheme, the angle θ_{23} and mass splitting $|\Delta m^2_{32}|$ are the main parameters that govern atmospheric and long-baseline ν_μ disappearance oscillations. The oscillation probability in the limit $|\Delta m^2_{32}| \gg |\Delta m^2_{21}|$ is

$$P(\nu_\mu \rightarrow \nu_\mu) \simeq 1 - 4 \cos^2(\theta_{13}) \sin^2(\theta_{23}) [1 - \cos^2(\theta_{13})$$
$$\times \sin^2(\theta_{23})] \sin^2(1.27 |\Delta m^2_{32}| L / E_\nu),$$

where L (km) is the neutrino propagation distance, E_ν (GeV) is the neutrino energy and $|\Delta m^2_{32}|$ is the neutrino mass splitting. Recent measurements $\mathbf{1,2}$ are consistent with maximal ν_μ disappearance for which θ_{23} is approximately $\pi/4$. Improved knowledge of this angle has an important impact on neutrino mass models and on the interpretation of the ν_μ appearance results, given the recent findings of non-zero θ_{13} measurements $\mathbf{7}$. In this paper, we report on new measurements on the values of $\sin^2(\theta_{23})$ and $|\Delta m^2_{32}|$.

T2K Experiment.—The T2K experiment $\mathbf{8}$ uses a 30 GeV proton beam from the J-PARC accelerator facility. This combines (1) a mu neutrino beam line, (2) the near detector complex, which is located 280 m downstream of the neutrino production target and measures the neutrino beam, which constrains the neutrino flux parametrization and cross sections, and (3) the far detector, Super-Kamiokande (SK), which detects neutrinos at a baseline distance of $L = 295$ km from the target. The neutrino beam is directed 2.5$^\circ$ away from SK producing a narrow-band ν_μ beam $\mathbf{9}$ at the far detector whose energy peaks at $E_\nu = |\Delta m^2_{32}| L / 2\pi \approx 0.6$ GeV which corresponds to the first oscillation minimum of the ν_μ survival probability at SK. This enhances the sensitivity to determine θ_{23} from the oscillation measurements and reduces backgrounds from higher-energy neutrino interactions at SK.

The J-PARC main ring accelerator produces a fast-extracted proton beam. The primary beam line has 21 electrostatic beam position monitors, 19 secondary emission monitors, an optical transition radiation monitor, and five current transformers which measure the proton current before a graphite target. Pions and kaons produced in the target decay in the secondary beam line, which contains three focusing horns and a 96-m-long decay tunnel. This is followed by a beam dump and a set of muon monitors.

The near detector complex contains an on-axis Interactive Neutrino Grid detector (INGRID) $\mathbf{10}$ and an off-axis magnetic detector, ND280. A schematic detector layout is published elsewhere $\mathbf{8}$. The INGRID detector has 14 seven-ton iron-scintillator tracker modules arranged in a 10-m horizontal by 10-m vertical crossed array. This detector provides high-statistics monitoring of the beam intensity, direction, profile, and stability. The off-axis detector is enclosed in a 0.2-T magnet that contains a subdetector optimized to measure π^0s (PÔD) $\mathbf{11}$, three time projection chambers (TPC1,2,3) $\mathbf{12}$ alternating with two one-ton fine grained detectors (FGD1,2) $\mathbf{13}$, and an electromagnetic calorimeter (ECal) $\mathbf{14}$ that surrounds the TPC, FGD, and PÔD detectors. A side muon range detector (SMRD) $\mathbf{15}$, built into slots in the magnet flux return steel, identifies muons that exit or stop in the magnet steel when the path length exceeds the energy loss range.

The SK water Cherenkov far detector $\mathbf{16}$ has a 22.5 kt fiducial volume within a cylindrical inner detector (ID) instrumented with 11129 inward facing 20-inch phototubes. Surrounding the ID is a 2-meter wide outer detector (OD) with 1885 outward-facing 8-inch phototubes. A Global Positioning System with <150 ns precision synchronizes the timing between SK events and the J-PARC beam spill.

These results are based on three periods: Run 1 (January-June 2010), Run 2 (November 2010-March 2011), and Run 3 (January-June 2012). The proton beam power on the target steadily increased from Run 1, reaching 200 kW with about 10^{14} protons per pulse on the target by the end of Run 3. The total neutrino beam ex-
Posure on the SK detector corresponds to an integrated 3.01×10^{20} protons on target (POT).

Analysis Strategy.—The analysis method estimates oscillation parameters by comparing the observed and predicted ν_μ interaction rate and energy spectrum at the far detector. The rate and spectrum depend on the oscillation parameters, the incident neutrino flux, neutrino interaction cross sections, and the detector response. The initial estimate of the neutrino flux is determined by detailed simulations incorporating proton beam measurements, INGRID measurements, and the pion and kaon production measured by the NA61/SHINE [17] experiment. The ND280 detector measurement of ν_μ charged current (CC) events constrains the initial flux estimates and parameters of the neutrino interaction models that affect the predicted rate and spectrum of neutrino interactions at both ND280 and SK. At SK, ν_μ charged current quasi-elastic (CCQE) events are selected and efficiencies are determined, along with their dependence on final state interactions (FSI) inside the nucleus and secondary pion interactions (SI) in the detector material. These are used in a binned likelihood ratio fit to determine the oscillation parameters.

Initial Neutrino Flux Model.—To predict the neutrino flux at the near and far detectors, the interactions of the primary beam protons and subsequent secondary particles in a graphite target are modeled with a FLUKA2008 [18] simulation. GEANT3 [19] simulations model the secondary particles in the magnetic horns and the decay region, and their decays into neutrinos. The hadron interactions are modeled with GCALOR [20]. The simulation is tuned using measurements of the primary proton beam profile and the T2K horn magnetic fields and the NA61/SHINE hadron production results [17]. The beam direction and neutrino rate per proton on target are monitored continuously with INGRID, and the variations are less than the assigned systematic uncertainties [21]. The uncertainties in the flux are 10-20% in the relevant energy range, dominated by the hadron production uncertainties. The detailed flux calculations are described elsewhere [22].

Neutrino Interaction Simulations and Cross Section Parameters—Neutrino interactions in the ND280 and SK detectors are simulated with the NEUT Monte Carlo generator [22]. External data, primarily from the MiniBooNE experiment [23], are used to tune some NEUT neutrino interaction parameters. These determine the input parameter uncertainties used in the fit to the ND280 data [21]. Neutrino interaction parameters fall into two categories: parameters that are common between ND280 and SK, and independent parameters affecting interactions at only one of the detectors. The common parameters include the axial masses for CCQE and resonant pion production, as well as 5 energy dependent normalizations; these are included in the fit to the ND280 data, which is discussed in the next section. Since the ND280 target is mainly carbon and differs from the SK target which is mainly oxygen, additional independent parameters are required. These affect the nuclear model for CCQE (Fermi momentum, binding energy and spectral function modeling) and include five cross section parameters related to pion production, the neutral current (NC) cross section, the ν_p/ν_n CC cross section ratio, and the $\nu/\bar{\nu}$ CC cross section ratio. These independent cross section uncertainties (11 parameters) produce a 6.3% fractional error in the expected number of SK events as listed in Table I. Not simulated by NEUT are multi-nucleon knock-out processes [24] that may affect oscillation parameter determination strongly. Our estimation of the bias on the oscillation parameters from these processes appears to be smaller than the current statistical precision.

ND280 Measurements, Flux and Common Cross Section fits.—The ND280 detector measures inclusive CC events with a vertex in FGD1 located upstream of FGD2 and with the muon passing through TPC2. The event selection uses the highest-momentum negatively charged track entering TPC2 that matches a vertex inside the upstream FGD1 fiducial volume. In addition, the measured track energy loss in TPC2 must be compatible with a muon. Events originating from interactions in upstream detectors are vetoed by excluding events with a track in the TPC1 upstream of FGD1. This suppresses events with interactions occurring upstream of FGD1 or with a charged particle going backwards from FGD1 into TPC1. Using an inclusive CC selection, the efficiency is 47.6% with a purity of 88.1%. The main backgrounds are events where the neutrino interactions occur outside FGD1 and migrate into the fiducial volume due to mis-reconstruction, or from neutral particles interacting within the FGD1.

The CC inclusive sample is further subdivided into two samples called CCQE and CCnQE. The CCQE sample is optimized to select charged current quasi-elastic events and the CCnQE sample contains the remaining events. This separation is made to improve constraints on the neutrino flux and cross section parameters. The CCQE selection vetoes events with additional tracks that cross FGD1 and TPC2 or have electrons from muon decay found inside FGD1. After beam and data quality cuts, there are 5841 CCQE and 5214 CCnQE events that correspond to an integrated dataset of 2.66×10^{20} POT. These two data selections are each subdivided into 5(momentum) \times 4(angular) bins which produces a 40-bin histogram used in a fit to the ND280 data.

The 40-bin histogram and cosmic ray control samples are fit to estimate the neutrino flux crossing ND280 in 11 bins of E_{ν_μ}, 7 common and 4 ND280 neutrino interaction parameters, detector response parameters, and their covariance. This ND280 fit also estimates the SK flux parameters, which are constrained through their prior covariance with the ND280 flux parameters as calculated by the beam simulation described earlier. The absolute track momentum scale, pion secondary interactions, and background uncertainties are the largest detector systematics. The reconstructed ND280 μ^- momentum distri-
The events must satisfy: visible energy outer detector activity to reject entering background, expected neutrino arrival time, and there must be low p, where E is the proton, neutron, and muon, respectively, and there must be low p, where E is the proton, neutron, and muon, respectively, and there must be low p, where E is the proton, neutron, and muon, respectively, and

\[E_{\text{reco}} = \frac{m_p^2 - (m_n - E_b)^2 - m_{\mu}^2 + 2(m_n - E_b)p_{\mu} \cos \theta_{\mu}}{2(m_n - E_b - E_{\mu} + p_{\mu} \cos \theta_{\mu})}, \]

where p_{μ}, E_{μ}, and θ_{μ} are the reconstructed muon momentum, energy, and the angle with respect to the beam direction, respectively; m_p, m_n, and m_{μ} are masses of the proton, neutron, and muon, respectively, and $E_b = 27$ MeV is the average binding energy of a nucleon in ^{16}O. The E_{reco} distribution of the 58 events satisfying the selection criteria is shown in Fig. 2. The no-oscillation hypothesis prediction is the solid line in Fig. 2 and the MC expectation is 205 ± 17 (syst.) events, of which 77.7% are $\nu_\mu + \bar{\nu}_\mu$ CCQE, 20.7% are $\nu_\mu + \bar{\nu}_\mu$ CCnQE, 1.6% are NC and 0.02% are $\tau_\mu + \bar{\tau}_\mu$ CC. The expected resolution on reconstructed energy for $\nu_\mu + \bar{\nu}_\mu$ CCQE events around the oscillation maximum is ~ 0.1 GeV.

Eight SK detector systematic uncertainties are associated with event selection and reconstruction. The SK energy scale uncertainty is evaluated by comparing energy loss in data and MC for samples of cosmic-ray stopping muons and associated decay-electrons, as well as by comparing reconstructed invariant mass for data and MC for π^0s produced by atmospheric neutrinos. The other seven SK event-selection-related uncertainties are also evaluated by comparing atmospheric neutrino MC and data samples. The $\nu_\mu + \bar{\nu}_\mu$ CCQE ring-counting-based selection uncertainty is evaluated in three energy bins, including correlations between energy bins. Other uncertainties result from selection criteria on the $\nu_\mu + \bar{\nu}_\mu$ CCQE, $\nu_\mu + \bar{\nu}_\mu$ CCnQE, $\nu_\tau + \bar{\nu}_\tau$ CC, and NC events. These uncertainties (8 parameters) produce a 10.1% fractional error on the expected number of SK events, as listed in Table II. Systematic uncertainties on pion interactions in the target nucleus (FSI) and SK detector (SI) are evaluated by varying underlying pion scattering cross sections in the NEUT and SK detector simulations. These uncertainties are evaluated separately for $\nu_\mu + \bar{\nu}_\mu$ CCQE in three energy bins, $\nu_\mu + \bar{\nu}_\mu$ CCnQE, $\nu_\tau + \bar{\nu}_\tau$ CC, and NC events. The total FSI+SI uncertainty (6 parameters) on the predicted SK event rate is 3.5% as listed in Table II.

Oscillation Fits.—The oscillation parameters are estimated using a binned likelihood ratio to fit the SK spectrum in the parameter space of $\sin^2(\theta_{23})$, $|\Delta m_{32}^2|$, and all
48 systematic parameters, \(f \), by minimizing

\[
\chi^2(\sin^2(\theta_{23}), |\Delta m^2_{32}|; f) = (f - f_0)^T \cdot C^{-1} \cdot (f - f_0)
\]

\[
+ 2 \sum_{i=1}^{3} n_i^{\text{obs}} \ln(n_i^{\text{obs}}/n_i^{\text{exp}}) + (n_i^{\text{exp}} - n_i^{\text{obs}}). \tag{3}
\]

\(f_0 \) is a 48-dimensional vector with the prior values of the systematic parameters, \(C \) is the 48 \(\times \) 48 systematic parameter covariance matrix, \(n_i^{\text{obs}} \) is the observed number of events in the \(i^{th} \) bin and \(n_i^{\text{exp}} = n_i^{\text{exp}}(\sin^2(\theta_{23}), |\Delta m^2_{32}|; f) \) is the corresponding expected number of events. The sum is over 73 variable-width energy bins, with finer binning in the oscillation peak region. Oscillation probabilities are calculated using the full three neutrino oscillation framework. Normal mass hierarchy is assumed, matter effects are included with an Earth density of \(\rho = 2.6 \text{ g/cm}^3 \) \cite{26}, and other oscillation parameters are fixed at the 2012 PDG recommended values \cite{2}. \((\sin^2(2\theta_{13}) = 0.098, |\Delta m^2_{31}| = 7.5 \times 10^{-5} \text{ eV}^2/\text{c}^4, \sin^2(2\theta_{12}) = 0.857) \), and with \(\delta_{CP} = 0 \).

The fit to the 58 events using Eq. 3 results in the best-fit point at \(\sin^2(\theta_{23}) = 0.514 \pm 0.082 \) and \(|\Delta m^2_{32}| = 2.44^{+0.17}_{-0.15} \times 10^{-3} \text{ eV}^2/\text{c}^4 \), with \(\chi^2/ndf = 56.03/71 \). The best-fit neutrino energy spectrum is shown in Fig. 2. The point estimates of the 48 nuisance parameters are all within 0.35 standard deviations of their prior values. This fit result value combined with \(\sin^2(2\theta_{13}) = 0.098 \) corresponds to the maximal possible oscillation disappearance probability where \(\cos^2(\theta_{13}) \sin^2(\theta_{23}) = 0.5 \).

The 2D confidence regions for the oscillation parameters \(\sin^2(\theta_{23}) \) and \(|\Delta m^2_{32}| \) are constructed using the constant \(\Delta \chi^2 \) method \cite{2}. The 68\% and 90\% contour regions are shown in Fig. 3. Also shown in this figure are the 1D profile likelihoods for each oscillation parameter separately.

An alternative analysis employing a maximum likelihood fit was performed with the following likelihood function:

\[
L = L_{\text{norm}}(\sin^2(\theta_{23}), |\Delta m^2_{32}|, f) \times L_{\text{shape}}(\sin^2(\theta_{23}), |\Delta m^2_{32}|, f) L_{\text{syst}}(f), \tag{4}
\]

where \(L_{\text{norm}} \) is the Poisson probability for the observed number of events, \(L_{\text{shape}} \) is the likelihood for the reconstructed energy spectrum, and \(L_{\text{syst}} \) is analogous to the first term in Eq. 3. The best-fit point is at \(\sin^2(\theta_{23}) = 0.514 \) and \(|\Delta m^2_{32}| = 2.44 \times 10^{-3} \text{ eV}^2/\text{c}^4 \). The primary and alternative analyses are consistent; the binned maximum fractional difference between best-fit spectra is 1.8\%, and the confidence regions are almost identical.

A complementary analysis was performed, using Markov Chain Monte Carlo \cite{2} methods to produce a sample of points in the full parameter space distributed according to the posterior probability density. This analysis uses both ND280 and SK data simultaneously, rather than separately fitting the ND280 and SK measurements; the likelihood is the product of the ND280 and SK likelihoods, with the shared systematics treated jointly. The maximum probability density is found to be \(\sin^2(\theta_{23}) = 0.516 \) and \(|\Delta m^2_{32}| = 2.46 \times 10^{-3} \text{ eV}^2/\text{c}^4 \), using a uniform prior probability distribution in both \(\sin^2(\theta_{23}) \) and \(|\Delta m^2_{32}| \). The contours from this analysis are similar in shape and size to the two previously described analyses, but are not expected to be identical due to the difference between Bayesian and classical priors.

This analysis also has similar results to the ND280 data fit described previously and provides a cross check.

Conclusions.—The T2K primary result (90\% C.L. region) is consistent with maximal mixing and compared to other recent experimental results in Figure 4. In this paper the \(\nu_\mu \) disappearance analysis, based on the 3.01 \times 10^{20} \text{ POT off-axis beam exposure}, has a best-fit mass splitting of \(|\Delta m^2_{32}| = 2.44^{+0.17}_{-0.15} \times 10^{-3} \text{ eV}^2/\text{c}^4 \) and mixing angle, \(\sin^2(\theta_{23}) = 0.514 \pm 0.082 \). We anticipate future T2K data will improve our neutrino disappearance measurements, and our own measurements combined with other accelerator and reactor measurements will lead to important constraints and more precise determinations of the fundamental neutrino mixing parameters.

We thank the J-PARC for the superb accelerator performance and the CERN NA61 collaboration for providing valuable particle production data. We acknowledge...
FIG. 4. The 90% C.L. contour region for $\sin^2(2\theta_{23})$ and $|\Delta m^2_{32}|$ for the primary T2K analysis is calculated by the profiling over the octant. The T2K 2011 [3], SK [27], and MINOS [6] 90% C.L. contours with different flavor assumptions are shown for comparison.

[9] K. Abe et al. (T2K Collaboration), Phys. Rev. D 87, 012001 (2013) see the predicted flux at SK reweighted with the NA61/SHINE measurement in Fig. 39 and the neutrino events per POT as measured by the INGRID sub-detector in Fig. 12.

