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Abstract
For anti-ferromagnetic 2-spin systems, a beautiful connection has been established, namely that
the following three notions align perfectly: the uniqueness of Gibbs measures in infinite regular
trees, the decay of correlations (also known as spatial mixing), and the approximability of the
partition function. The uniqueness condition implies spatial mixing, and an FPTAS for the
partition function exists based on spatial mixing. On the other hand, non-uniqueness implies
some long range correlation, based on which NP-hardness reductions are built.

These connections for ferromagnetic 2-spin systems are much less clear, despite their simil-
arities to anti-ferromagnetic systems. The celebrated Jerrum-Sinclair Markov chain [8] works
even if spatial mixing fails. Also, for a fixed degree the uniqueness condition is non-monotone
with respect to the external field, which seems to have no meaningful interpretation in terms
of computational complexity. However, it is still intriguing whether there are some relationship
underneath the apparent disparities among them.

We provide some answers to this question. Let β, γ be the (0, 0) and (1, 1) edge interactions
respectively (βγ > 1), and λ the external field for spin “0”. For graphs with degree bound
∆ ≤ ∆c + 1 where ∆c =

√
βγ+1√
βγ−1

, regardless of the field (even inconsistent fields are allowed),
correlation decay always holds and FPTAS exists. If all fields satisfy λ < λc (assuming β ≤ γ),
where λc = (γ/β)

∆c+1
2 , then a weaker version of spatial mixing holds in all trees. Moreover, if

β ≤ 1, then λ < λc is sufficient to guarantee strong spatial mixing and FPTAS. This improves
the best previous algorithm, a Markov chain based FPRAS for λ ≤ γ/β [13].

The bound λc is almost optimal and can be viewed as a variant of the uniqueness condition
with the degree d relaxed to be a real number instead of an integer. When β ≤ 1, uniqueness
holds in all infinite regular trees, if and only if λ ≤ λintc , where λintc = (γ/β)

d∆ce+1
2 . If we

allow fields λ > λintc
′, where λintc

′ = (γ/β)
b∆cc+2

2 , then approximating the partition function is
#BIS-hard.

Interestingly, unless ∆c is an integer, neither λc nor λintc is the tight bound in each own respect.
We provide examples where correlation decay continues to hold in a small interval beyond λc,
and irregular trees in which spatial mixing fails for some λ < λintc .
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1 Introduction

Spin systems model nearest neighbor interactions. In this paper we study 2-state spin systems.
An instance is a graph G = (V,E), and a configuration σ assigns one of the two spins “0”
and “1” to each vertex; that is, σ is one of the 2|V | possible assignments σ : V → {0, 1}. The
local interaction along an edge is specified by a matrix A =

[
A0,0 A0,1
A1,0 A1,1

]
, where Ai,j is the

(non-negative) local weight when the two endpoints are assigned i and j respectively. We
study symmetric edge interactions, that is, A0,1 = A1,0. Normalize A so that A =

[
β 1
1 γ

]
.

Moreover, we also consider the external field, specified by a mapping π : V → R+. When a
vertex is assigned “0”, we give it a weight π(v). For a particular configuration σ, its weight
w(σ) is a product over all edge interactions and vertex weights, that is

w(σ) = βm0(σ)γm1(σ)
∏

v|σ(v)=0

π(v),

where m0(σ) is the number of (0, 0) edges under the configuration σ and m1(σ) is the number
of (1, 1) edges. An important special case is the Ising model, where β = γ. The Gibbs
measure is a natural distribution in which each configuration σ is drawn with probability
proportional to its weight, that is, PrG;β,γ,π(σ) ∼ w(σ). The normalizing factor of the Gibbs
measure is called the partition function, defined by Zβ,γ,π(G) =

∑
σ:V→{0,1} w(σ). The

partition function encodes rich information regarding the macroscopic behavior of the spin
system. We will be interested in the computational complexity of approximating Zβ,γ,π(G).
We also simply write Zβ,γ,λ(G) when the field is uniform, that is, π(v) = λ for all v ∈ V . A
system with uniform fields is specified by the three parameters (β, γ, λ).

Spin systems not only are interesting in statistical physics, but also find applications in
computer science, under the name of Markov random fields. In fact, a 2-state spin system
is equivalent to a binary Markov random field, and computing the partition function is
central to statistical inference. According to their physical and computational properties, spin
systems can be classified into two families: ferromagnetic systems where the edge interaction
is attractive (βγ > 1), and anti-ferromagnetic systems where it is repulsive (βγ < 1).

Recently, beautiful connections have been established regarding three different aspects
of anti-ferromagnetic 2-spin systems. The uniqueness of Gibbs measures in infinite regular
trees1 of degrees up to ∆ implies correlation decay2 in all graphs of maximum degree ∆,
and therefore the existence of fully polynomial-time approximation scheme (FPTAS) for the
partition function [19, 11, 17, 12]. On the other hand, if the tree uniqueness fails, then long
range correlation appears and the partition function has no fully polynomial-time randomized
approximation scheme (FPRAS) unless NP = RP [18, 4]. It suggests that the mathematical
property of tree uniqueness, the physical property of spatial mixing, and the computational
complexity of approximating the partition function, line up perfectly in anti-ferromagnetic
2-spin systems.

For ferromagnetic systems, the picture is much less clear. In a seminal paper [8], Jerrum
and Sinclair gave an FPRAS for the ferromagnetic Ising model β = γ > 1 with any consistent
external field λ for general graphs without degree bounds. Thus, there is no computational
complexity transition of approximating these models, whereas uniqueness and spatial mixing
do exhibit phase transition. This is in sharp contrast to anti-ferromagnetic Ising models

1 This property is called “tree uniqueness” or “uniqueness” for short. See Sections 2.2 and 6.1 for details.
2 That is, the correlation of any two vertices decay exponentially in distance. It is also called “spatial

mixing”.
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β = γ < 1, where computational and phase transitions align perfectly. It is not clear at all
whether spatial mixing or correlation decay plays any role in the computational complexity.

For more general ferromagnetic 2-spin systems with external fields, the threshold for
approximating the partition function is still open. On the complexity side, Goldberg and
Jerrum showed that any ferromagnetic 2-spin system is no harder than counting independent
sets in bipartite graphs (#BIS) [6], which is conjectured to have no FPRAS [3] (the
approximation complexity of #BIS is still open). Based on an earlier result [1], Liu, Lu and
Zhang showed that approximating the partition function is #BIS-hard if we allow external
fields beyond (γ/β)

b∆cc+2
2 where ∆c =

√
βγ+1√
βγ−1

[13].3

On the algorithmic side, by reducing to the Ising model, an MCMC based FPRAS is
known for the range of λ ≤

√
γ/β [7], which has been recently improved to λ ≤ γ/β [13].

On the other hand, if we apply the correlation decay algorithmic framework to various pairs
of parameters (β, γ), it is not hard to get bounds better than γ/β. However, such success for
individual problems does not seem to share meaningful inner connections. In particular, it is
not clear how far one can push this method, and to the best of our knowledge, no threshold
has even been conjectured.

1.1 Our Contribution
In this paper, we identify a new threshold that almost tightly maps out the boundary of

the correlation decay regime, that is, λc = (γ/β)
∆c+1

2 = (γ/β)
√
βγ√
βγ−1 . We show that for any

λ < λc a variant of spatial mixing holds (Theorem 1) for arbitrary trees. An interesting
feature of our work is that we do not restrict the degree or the shape of the tree. This is
almost tight since it does not hold if λ > (γ/β)

d∆ce+1
2 . This spatial mixing is weaker than

what an algorithm usually requires, but in the regime of β ≤ 1 it implies (and therefore is
equivalent to) strong spatial mixing. As an algorithmic consequence, we have FPTAS for all
β ≤ 1 < γ, βγ > 1, and λ < λc (Theorem 2). Recall that if we allow λ beyond (γ/β)

b∆cc+2
2 ,

then the problem is #BIS-hard [13]. Hence only an integral gap remains for the β ≤ 1 < γ

case.
Formally, let pv be the marginal probability of v (being assigned “0”).

I Theorem 1. Let (β, γ, λ) be a set of parameters of the system such that βγ > 1, β ≤ γ,
and λ < λc. Let Tv and T ′v′ be two trees with roots v and v′ respectively. If the two trees have
the same structure in the first ` levels, then |pv − pv′ | ≤ O(exp(−`)).

In other words, if we simply truncate a tree at depth `, the marginal probability of
its root will change by only at most O(exp(−`)). Surprisingly, if we replace λc by its
integral counterpart, then this implication no longer holds and there is a counterexample (see
Section 5). More precisely, it is no longer true that the uniqueness in infinite regular trees
implies correlation decay in graphs or even trees, since our counterexample is an irregular
tree. We note that this is in sharp contrast to anti-ferromagnetic systems, where (integral)
uniqueness implies correlation decay.

From the computational complexity point of view, we would like to get FPTAS for
the partition function, which requires a condition called strong spatial mixing (SSM). It is
stronger than the spatial mixing established in Theorem 1 by imposing arbitrary partial
configurations. We are able to prove SSM with λ < λc for the range of β ≤ 1. Indeed, if

3 Here and below we assume β ≤ γ due to symmetry.

APPROX/RANDOM’16
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β ≤ 1, then the two versions of spatial mixing are equivalent. Let I be an interval of the
form [λ1, λ2] or (λ1, λ2]. We consider the following problem.

Name: #2Spin(β, γ, I)
Instance: A graph G = (V,E) and a mapping π : V → R+, such that π(v) ∈ I for any

v ∈ V .
Output: Zβ,γ,π(G).

Then we have the following theorem.

I Theorem 2. Let (β, γ, λ) be a set of parameters of the system such that βγ > 1, β ≤ 1
and λ < λc. Then #2Spin(β, γ, (0, λ]) has an FPTAS.

Therefore, we get an almost tight dichotomy for ferromagnetic 2-spin systems when β ≤ 1,
since #2Spin(β, γ, (0, λ]) is #BIS-hard, if λ is larger than the integral counterpart of λc [13]
(see also Proposition 22).

The reason behind λc is a nice interplay among uniqueness, spatial mixing, and approx-
imability. We start with some purely mathematical observations on the symmetric tree
recursion fd(x) = λ

(
βx+1
x+γ

)d
, an increasing function in x. Relax the range of d in fd(x) to be

real numbers. Then ∆c is the critical (possibly fractional) degree and λc is the corresponding
critical external field for the recursion to have a unique fixed point. This set of critical
parameters enjoys some very nice mathematical properties. For d = ∆c and λ = λc, the
function fd(x) has a unique fixed point x̂ =

√
γ/β and f ′d(x̂) = 1. Moreover, it also satisfies

that f ′′d (x̂) = 0, which is a necessary condition for the contraction of the tree recursion (easily
derived using the heuristic of finding potential functions described in [12]). All these nice
mathematical properties prove to be useful in our later analysis. For degrees other than ∆c,
their critical external fields are much less convenient — the function fd(x) has two fixed
points: one is crossing and the other is tangent. Moreover, f ′′d (x̂) = 0 does not necessarily
hold.

The proof of Theorem 1 uses the potential method to analyze decay of correlation, which
is now streamlined (see e.g. [12]). The main difficulty is to find a good potential function. In
other words, we want to solve a variational problem minimizing the maximum of the decay
rate function. The main novelty in our solution is that we restrict variables to the range of
(0, λ

1+λ ] and our potential function is well-defined only in this range. This is in fact necessary,
as otherwise the statement does not hold, and is valid for the setting of Theorem 1. Also
note that with our choice, the proof is relatively clean and significantly simpler than similar
proofs in other settings. In particular, we do not need the “symmetrization” argument (see
e.g. [12, 16]). We also use a trick of truncating the potential to deal with unbounded degrees
(see Eq. (5)).

For the range of β > 1, SSM does not hold even if λ < λc. However, we conjecture that
Theorem 2 can be extended to the β > 1 range as well, mainly due to Theorem 1, which
does not require β ≤ 1. Moreover, we show that even if β > 1, the marginal probability in
any instance is within the range of (0, λ

1+λ ] given λ < λc (see Proposition 20). This seems to
imply that the main reason why our algorithm fails is due to pinnings (forcing a vertex to
be “0” or “1”) in the self-avoiding walk tree construction, whereas in a real instance these
pinnings cannot aggregate enough “bad” influence. However, to turn such intuition into an
algorithm requires a careful treatment of these pinnings to achieve an FPTAS without SSM.
We leave this as an important open question.

At last, we note that neither λc nor its integral counterpart is the exact threshold in each
own respect, even if β ≤ 1. Strong spatial mixing continues to hold even if λ > λc in a small
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interval. We give a concrete example to illustrate this point in Section 4, Proposition 21.
Moreover, as mentioned earlier, an irregular tree exists where the correlation decay threshold
is lower than the threshold for all infinite regular trees. This is discussed in Section 5. It
is another important open question to figure out the exact threshold between λc and its
integral counterpart(s).

2 Preliminaries

An instance of a 2-spin system is a graph G = (V,E). A configuration σ : V → {0, 1} assigns
one of the two spins “0” and “1” to each vertex. We normalize the edge interaction to be[
β 1
1 γ

]
, and also consider the external field, specified by a mapping π : V → R+. When a

vertex is assigned “0”, we give it a weight π(v). All parameters are non-negative. For a
particular configuration σ, its weight w(σ) is a product over all edge interactions and vertex
weights, that is

w(σ) = βm0(σ)γm1(σ)
∏

v|σ(v)=1

π(v), (1)

where m0(σ) is the number of (0, 0) edges given by the configuration σ and m1(σ) is the
number of (1, 1) edges. An important special case is the Ising model, where β = γ. Notice
that in the statistic physics literature, parameters are usually chosen to be the logarithms of
our parameters above. Different parameterizations do not affect the complexity of the same
system.

We also write λv := π(v). If π is a constant function such that λv = λ > 0 for all v ∈ V ,
we also denote it by λ. We say π has a lower bound (or an upper bound) λ > 0, if π satisfies
the guarantee that λv ≥ λ (or λv ≤ λ).

The Gibbs measure is a natural distribution in which each configuration σ is drawn with
probability proportional to its weight, that is, PrG;β,γ,π(σ) ∼ w(σ). The normalizing factor of
the Gibbs measure is called the partition function, defined by Zβ,γ,π(G) =

∑
σ:V→{0,1} w(σ).

Recall that we are interested in the computational problem #2Spin(β, γ, I), where I is an
interval of the form [λ1, λ2] or (λ1, λ2], for which Zβ,γ,π(G) is the output. When input graphs
are restricted to have a degree bound ∆, we write #∆-2Spin(β, γ, I) to denote the problem.
When the field is uniform, that is, λ is the only element in I, we simply write #2Spin(β, γ, λ).
Due to [2] and a standard diagonal transformation, for any constant λ > 0, #2Spin(β, γ, λ)
is #P-hard unless β = γ = 0 or βγ = 1.

2.1 The Self-Avoiding Walk Tree
We briefly describe Weitz’s algorithm [19]. Our algorithms presented later will follow roughly
the same paradigm.

The Gibbs measure defines a marginal distribution of spins for each vertex. Let pv
denote the probability of a vertex v being assigned “0”. Since the system is self-reducible,
#2Spin(β, γ, λ) is equivalent to computing pv for any vertex v [9] (for details, see for example
Lemma 8).

Let σΛ ∈ {0, 1}Λ be a configuration of Λ ⊂ V . We call vertices in Λ fixed and other vertices
free. We use pσΛ

v to denote the marginal probability of v being assigned “0” conditional on
the configuration σΛ of Λ.

Suppose the instance is a tree T with root v. Let RσΛ
T := pσΛ

v /(1 − pσΛ
v ) be the ratio

between the two probabilities that the root v is 0 and 1, while imposing some condition σΛ

APPROX/RANDOM’16
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(with the convention that RσΛ
T =∞ when pσΛ

v = 1). Suppose that v has d children vi, . . . vd.
Let Ti be the subtree with root vi. Due to the independence of subtrees, it is straightforward
to get the following recursion for calculating RσΛ

T :

RσΛ
T = Fd

(
RσΛ
T1
, . . . , RσΛ

Td

)
, (2)

where the function Fd(x1, . . . , xd) is defined as

Fd(x1, . . . , xd) := λv

d∏
i=1

βxi + 1
xi + γ

.

We allow xi’s to take the value ∞ as in that case the function Fd is clearly well defined. In
general we use capital letters like F,G,C, . . . to denote multivariate functions, and small
letters f, g, c, . . . to denote their symmetric versions, where all variables take the same value.
Here we define fd(x) := λ

(
βx+1
x+γ

)d
to be the symmetric version of Fd(x).

Let G(V,E) be a graph. Similarly define RσΛ
G,v := pσΛ

v /(1− pσΛ
v ). In contrast to the case

of trees, there is no easy recursion to calculate RσΛ
G,v for a general graph G. This is because of

dependencies introduced by cycles. Weitz [19] reduced computing the marginal distribution
of v in a general graph G to that in a tree, called the self-avoiding walk (SAW) tree, denoted
by TSAW(G, v). To be specific, given a graph G = (V,E) and a vertex v ∈ V , TSAW(G, v)
is a tree with root v that enumerates all self-avoiding walks originating from v in G, with
additional vertices closing cycles as leaves of the tree. Each vertex in the new vertex set
VSAW of TSAW(G, v) corresponds to a vertex in G, but a vertex in G may be mapped to more
than one vertices in VSAW. A boundary condition is imposed on leaves in VSAW that close
cycles. The imposed colors of such leaves depend on whether the cycle is formed from a small
vertex to a large vertex or conversely, where the ordering is arbitrarily chosen in G. Vertex
sets S ⊂ Λ ⊂ V are mapped to respectively SSAW ⊂ ΛSAW ⊂ VSAW, and any configuration
σΛ ∈ {0, 1}Λ is mapped to σΛSAW ∈ {0, 1}ΛSAW . With slight abuse of notations we may write
S = SSAW and σΛ = σΛSAW when no ambiguity is caused.

I Proposition 3 (Theorem 3.1 of Weitz [19]). Let G = (V,E) be a graph, v ∈ V , σΛ ∈ {0, 1}Λ
be a configuration on Λ ⊂ V , and S ⊂ V . Let T = TSAW(G, v) be constructed as above. It
holds that

RσΛ
G,v = RσΛ

T .

Moreover, the maximum degree of T is at most the maximum degree of G, distG(v, S) =
distT (v, SSAW), and any neighborhood of v in T can be constructed in time proportional to
the size of the neighborhood.

The SAW tree construction does not solve a #P-hard problem, since TSAW(G, v) is
potentially exponentially large in size of G. For a polynomial time approximation algorithm,
we may run the tree recursion within some polynomial size, or equivalently a logarithmic
depth. At the boundary where we stop, we plug in some arbitrary values. The question is
then how large is the error due to our random guess. To guarantee the performance of the
algorithm, we need the following notion of strong spatial mixing.

I Definition 4. A spin system on a family G of graphs is said to exhibit strong spatial mixing
(SSM) if for any graph G = (V,E) ∈ G, any v ∈ V,Λ ⊂ V and any σΛ, τΛ ∈ {0, 1}Λ,

|pσΛ
v − pτΛv | ≤ exp(−Ω(dist(v, S))),

where S ⊂ Λ is the subset on which σΛ and τΛ differ, and dist(v, S) is the shortest distance
from v to any vertex in S.
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Weak spatial mixing is defined similarly by measuring the decay with respect to dist(v,Λ)
instead of dist(v, S). Spatial mixing properties are also called correlation decay in statistical
physics.

If SSM holds, then the error caused by early termination in TSAW(G, v) and arbitrary
boundary values is only exponentially small in the depth. Hence the algorithm is an FPTAS.
In a lot of cases, the existence of an FPTAS boils down to establish SSM.

2.2 The Uniqueness Condition in Regular Trees
Let Td denote the infinite d-regular tree, also known as the Bethe lattice or the Cayley tree.
If we pick an arbitrary vertex as the root of Td, then the root has d children and every other
vertex has d− 1 children. Notice that the difference between Td and an infinite (d− 1)-ary
tree is only the degree of the root. We consider the uniqueness of Gibbs measures on Td,
where the field is uniformly λ > 0. Due to the symmetric structure of Td, the standard
recursion (2) thus becomes Rv = fd−1(Rvi) (for any vertex v other than the root), where

fd(x) = λ
(
βx+1
x+γ

)d
is the symmetrized version of Fd(x).

For anti-ferromagnetic systems, that is, βγ < 1, there is a unique fixed point to fd(x) = x,
denoted by x̂. It has been shown that the Gibbs measure in Td is unique if and only if∣∣f ′d−1(x̂)

∣∣ ≤ 1 [10, 5].
In contrast, if βγ > 1, then f ′d(x) > 0 for any x > 0. There may be 1 or 3 positive

fixed points such that x = fd(x). It is known [10, 5] that the Gibbs measure of two-state
spin systems in Td is unique if and only if there is only one fixed point for x = fd−1(x), or
equivalently, for all fixed points x̂d of fd(x), f ′d(x̂d) < 1.

Let ∆c :=
√
βγ+1√
βγ−1

. Then we have the following result.

I Proposition 5. If ∆− 1 < ∆c, then the uniqueness condition in T∆ holds regardless of
the field.

Note that the condition ∆− 1 < ∆c matches the exact threshold of fast mixing for Gibbs
samplers in the Ising model [15]. In Section 3.1, we will show that, SSM holds and there
exists an FPTAS for the partition function, in graphs with degree bound ∆ < ∆c + 1. This
is Theorem 13.

To study general graphs, one needs to consider infinite regular trees of all degrees. If
β > 1 (still assuming βγ > 1 and β ≤ γ), then there is no λ such that the uniqueness
condition holds in Td for all degrees d ≥ 2. In contrast, let λintc := (γ/β)

d∆ce+1
2 and we have

the following.

I Proposition 6. Let (β, γ) be two parameters such that βγ > 1 and β ≤ 1 < γ. The
uniqueness condition holds in Td for all degrees d ≥ 2 if and only if λ < λintc .

However, there exists (β, γ, λ) and an (irregular) tree T such that βγ > 1, β ≤ 1 < γ,
and λ < λintc and SSM does not hold in T . This is discussed in Section 5. Recall that
λc := (γ/β)

∆c+1
2 . If we replace λintc with λc ≤ λintc in the condition of Proposition 6, that is,

βγ > 1, β ≤ 1 < γ, and λ < λc, then SSM holds in all graphs and an FPTAS exists. This is
shown in Section 3.2, Theorem 18.

Details and proofs about Propositions 5 and 6 are given in Section 6.1.

2.3 The Potential Method
We would like to prove the strong spatial mixing in arbitrary trees, sometimes with bounded
degree ∆, under certain conditions. This is sufficient for approximation algorithms due to

APPROX/RANDOM’16
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the self-avoiding walk tree construction. Our main technique in the analysis is the potential
method. The analysis in this section is a standard routine, with some specialization to
ferromagnetic 2-spin models (cf. [12, 16]). To avoid interrupting the flow, we move all details
and proofs to Section 6.2.

Roughly speaking, instead of studying (2) directly, we use a potential function Φ(x) to
map the original recursion to a new domain (see the commutative diagram Figure 1). Morally
we can choose whatever function as the potential function. However, we would like to pick
“good” ones so as to help the analysis of the contraction. Define ϕ(x) := Φ′(x) and

Cϕ,d(x) := ϕ(Fd(x)) ·
d∑
i=1

∣∣∣∣∂Fd∂xi

∣∣∣∣ 1
ϕ(xi)

.

I Definition 7. Let Φ : R+ → R+ be a differentiable and monotonically increasing function.
Let ϕ(x) and Cϕ,d(x) be defined as above. Then Φ(x) is a good potential function for degree
d and field λ if it satisfies the following conditions:
1. there exists a constant C1, C2 > 0 such that C1 ≤ ϕ(x) ≤ C2 for all x ∈ [λγ−d, λβd];
2. there exists a constant α < 1 such that Cϕ,d(x) ≤ α for all xi ∈ [λγ−d, λβd].
We say Φ(x) is a good potential function for d and field π, if Φ(x) is a good potential function
for d and any λ in the codomain of π,

In Definition 7, Condition 1 is rather easy to satisfy. The crux is in fact Condition 2. We
call α in Condition 2 the amortized contraction ratio of Φ(x). It has the following algorithmic
implication. The proof is based on establishing strong spatial mixing.

I Lemma 8. Let (β, γ) be two parameters such that βγ > 1. Let G = (V,E) be a graph with
a maximum degree ∆ and n many vertices and π be a field on G. Let λ = maxv∈V {π(v)}.
If there exists a good potential function for π and all d ∈ [1,∆ − 1] with contraction ratio
α < 1, then Zβ,γ,π(G) can be approximated deterministically within a relative error ε in time

O

(
n
(
nλ
ε

) log(∆−1)
− logα

)
.

When the degree is unbounded, the SAW tree may grow super polynomially even if the
depth is of order logn. We use a refined metric replacing the naive graph distance used in
Definition 4. Strong spatial mixing under this metric is also called computationally efficient
correlation decay [11, 12].

I Definition 9. Let T be a rooted tree and M > 1 be a constant. For any vertex v in T ,
define the M-based depth of v, denoted `M (v), such that `M (v) = 0 if v is the root, and
`M (v) = `M (u) + dlogM (d+ 1)e if v is a child of u and u has degree d.

Let B(`) be the set of all vertices whose M -based depths of v is at most `. It is easy to
verify inductively such that |B(`)| ≤M ` in a tree. We then define a slightly stronger notion
of potential functions.

I Definition 10. Let Φ : R+ → R+ be a differentiable and monotonically increasing function.
Let ϕ(x) and Cϕ,d(x) defined in the same way as in Definition 7. Then Φ(x) is a universal
potential function for the field λ if it satisfies the following conditions:
1. there are two constants C1, C2 > 0 such that C1 ≤ ϕ(x) ≤ C2 for any x ∈ (0, λ];
2. there exists a constant α < 1 such that for all d, Cϕ,d(x) ≤ αdlogM (d+1)e for all xi ∈ (0, λ];

We say Φ(x) is a universal potential function for a field π, if Φ(x) is a universal potential
function for any λ in the codomain of π. We also call α the contraction ratio and call M the
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base. The following two lemmas show that our main theorems follow from the existence of a
universal potential function.

The way we define universal potential functions restricts them to only apply to the range
of (0, λ]. This will be true in our applications (see for example Claim 16).

I Lemma 11. Let (β, γ, λ) be three parameters such that βγ > 1, β ≤ γ, and λ < λc. Let T
and T ′ be two trees that agree on the first ` levels with root v and v′ respectively. If there
exists a universal potential function Φ(x), then |pv − pv′ | ≤ O(exp(−`)).

I Lemma 12. Let (β, γ) be two parameters such that βγ > 1 and β ≤ 1 < γ. Let G = (V,E)
be a graph with n many vertices and π be a field on G. Let λ = maxv∈V {π(v)}. If there
exists a universal potential function Φ(x) for π with contraction ratio α < 1 and base
M , then Zβ,γ,π(G) can be approximated deterministically within a relative error ε in time

O

(
n3 (nλ

ε

) logM
− logα

)
.

3 Correlation Decay below ∆c or λc

In this section, we show our main results. We will first show a folklore result for bounded
degree graphs with a very simple proof. Then we continue to show the main theorem
regarding general graphs. We carefully choose two appropriate potential functions and then
apply Lemma 8 or Lemma 12.

3.1 Bounded Degree Graphs
We first apply our framework to get FPTAS for graphs with degree bound ∆ < ∆c + 1 =

2
√
βγ√

βγ−1
. Correlation decay for graphs with such degree bounds is folklore and can be found

in [14] for the Ising model. Algorithmic implications are also shown, e.g. in [20]. As we
shall see, the proof is very simple in our framework. Note that λ, ∆, and α are considered
constants for the FPTAS.

I Theorem 13. Let (β, γ) be two parameters such that βγ > 1. Let G = (V,E) be a graph
with a maximum degree ∆ < ∆c + 1 and n many vertices, and let π be a field on G. Let
λ = maxv∈V {π(v)}. Then Zβ,γ,π(G) can be approximated deterministically within a relative

error ε in time O
(
n
(
nλ
ε

) log(∆−1)
− logα

)
, where α = ∆−1

∆c
.

Proof. We choose our potential function to be Φ1(x) = log x such that ϕ1(x) := Φ′1(x) = 1
x .

We verify the conditions of Definition 7. Condition 1 is trivial. For Condition 2, we have
that for any integer 1 ≤ d ≤ ∆− 1,

Cϕ1,d(x) = ϕ1(Fd(x))
d∑
i=1

∂Fd
∂xi
· 1
ϕ1(x)

= 1
Fd(x)

d∑
i=1

Fd(x) · βγ − 1
(xi + β)(γxi + 1) · xi

=
d∑
i=1

(βγ − 1)xi
(γxi + 1)(xi + β) ≤

d∑
i=1

1
∆c

= d

∆c
≤ ∆− 1

∆c
= α,

APPROX/RANDOM’16
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where we used the fact that for any x > 0,

(βγ − 1)x
(γx+ 1)(x+ β) ≤

1
∆c

.

Hence Φ1(x) is a good potential function for all degrees d ∈ [1,∆− 1] with contraction ratio
α. The theorem follows by Lemma 8. J

Note that Theorem 13 matches the uniqueness condition in Proposition 5 and, restricted
to the Ising model, the fast mixing bound of Gibbs samplers in [15].

3.2 General Graphs

Recall that λc =
(
γ
β

)∆c+1
2 =

(
γ
β

) √βγ√
βγ−1 . The following two technical lemmas show some

important properties regarding the threshold λc, which are keys to get our main theorems.
Proofs are given in Section 6.3.

I Lemma 14. Let β, γ be two parameters such that βγ > 1 and β ≤ γ. For any 0 < x ≤ λc,
βx+1
x+γ ≤ 1.

I Lemma 15. Let β, γ be two parameters such that βγ > 1 and β ≤ γ. For any 0 < x ≤ λc,
we have

(βγ − 1)x log λc
x
≤ (βx+ 1)(x+ γ) log x+ γ

βx+ 1 . (3)

In our applications, the quantity x in both lemmas will be the ratio of marginal prob-
abilities in trees, denoted by Rv for a vertex v. To make use of these properties, one key
requirement is that 0 < x ≤ λc. This is not necessarily true in trees with pinning (and
therefore not true in general SAW trees). Nevertheless, it does hold in trees without pinning.

I Claim 16. For (β, γ, λ) where βγ > 1, β ≤ γ, and λ < λc, Rv ∈ (0, λ] holds in trees
without pinning.

We prove Claim 16 by induction. For any tree Tv, if v is the only vertex, then Rv = λ

and the base case holds. Given Lemma 14 and λ < λc, the inductive step to show Claim 16
follows from the standard tree recursion (2).

In addition, it also holds when β ≤ 1, in trees even with pinning (but not counting the
pinned vertices). This includes the SAW tree construction as special cases. To see that, for
any vertex v, if one of v’s child, say u, is pinned to 0 (or 1), then we can just remove u and
change the field of v from λv to λ′v = λvβ (or λ′v = λv/γ), without affecting the marginal
probability of v and any other vertices. By our assumptions λv < λc and β ≤ 1 < γ, we have
that λ′v < λc as well. Hence, after removing all pinned vertices, we still have that λv ≤ λc
for all v ∈ V . This reduces to Claim 16.

Indeed, both of Theorem 1 and 2 can be generalized to the setting where vertices may
have different external fields as long as they are all below λc, as follows.

I Theorem 17. Let (β, γ) be two parameters such that βγ > 1, β ≤ γ, and λ < λc. Let
Tv and T ′v′ be two trees with roots v and v′ respectively. Let λ = maxu∈Tv∪T ′v′{π(u)}. If
λ < λc and in the first ` levels, Tv and T ′v′ have the same structure and external fields for
corresponding pairs of vertices, then |pv − pv′ | ≤ O(exp(−`)).
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I Theorem 18. Let (β, γ) be two parameters such that βγ > 1 and β ≤ 1 < γ. Let G = (V,E)
be a graph with n many vertices, and let π be a field on G. Let λ = maxv∈V {π(v)}. If
λ < λc, then Zβ,γ,π(G) can be approximated deterministically within a relative error ε in

time O
(
n
(
nλ
ε

) logM
− logα

)
, where M > 1 and α < 1 are two constants depending on (β, γ, λ).

To show Theorem 17 and Theorem 18, we will apply Lemma 11 and Lemma 12. Essentially
we only need to show the existence of a universal potential function.

Let gλ(x) := (βγ−1)x log λ
x

(βx+1)(x+γ) log x+γ
βx+1

. By Lemma 15, gλc(x) ≤ 1. For λ < λc, note that
limx→0 gλ(x) = 0. Hence there exists 0 < ε < λ and 0 < δ < 1 such that if 0 < x < ε,
gλ(x) < δ. Moreover, if ε ≤ x ≤ λ, then gλ(x)

gλc (x) = logλ−log x
logλc−log x ≤

logλ−log ε
logλc−log ε . Let

αλ := max
{
δ,

log λ− log ε
log λc − log ε

}
< 1.

Then we have the following lemma.

I Lemma 19. Let β, γ be two parameters such that βγ > 1 and β ≤ γ. If λ < λc, then
gλ(x) ≤ αλ for any 0 < x ≤ λ, where αλ < 1 is defined above.

Let t := αλγ
βγ−1 log λ+γ

βλ+1 so that for any 0 < x ≤ λ,

t ≤ αλ(βx+ 1)(x+ γ)
βγ − 1 log x+ γ

βx+ 1 .

We define ϕ2(x) := min
{

1
t ,

1
x log λ

x

}
. To be specific, note that x log λ

x ≤
λ
e for any 0 < x ≤ λ.

If t ≥ λ
e , then

1
x log λ

x

≥ 1
t for any 0 < x ≤ λ. In this case, we let

ϕ2(x) := 1
t
. (4)

Otherwise t < λ
e , and there are two roots to x log λ

x = t in (0, λ]. Denote them by x0 and
x1. We define

ϕ2(x) :=


1
t 0 ≤ x < x0;

1
x log λ

x

x0 ≤ x < x1;
1
t x1 ≤ x < λ.

(5)

We define Φ2(x) :=
∫ x

0 ϕ2(y)dy so that Φ′2(x) = ϕ2(x). By our choice of ϕ2(x), it always
holds that for any 0 < x ≤ λ,

ϕ2(x)x log λ
x
≤ 1, (6)

and by Lemma 14 and Lemma 19,

βγ − 1
(βx+ 1)(x+ γ) ·

1
ϕ2(x) ≤ αλ log x+ γ

βx+ 1 . (7)

Now, we are ready to prove Theorems 17 and 18.

Proof of Theorems 17 and 18. We claim that Φ2(x) is a universal potential function for
any field π with an upper bound λ, with contraction ratio αλ given above and base M that

APPROX/RANDOM’16
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will be determined shortly. Theorem 17 and Theorem 18 follow from Φ2(x) combined with
Lemma 11 and 12, respectively. We verify the two conditions in Definition 10.

For Condition 1, it is easy to see that in case (4), ϕ2(x) = 1
t for any x ∈ (0, λ], and in

case (5), eλ ≤ ϕ2(x) ≤ 1
t for any x ∈ (0, λ].

For Condition 2, we have that

Cϕ2,d(x) = ϕ2(Fd(x))
d∑
i=1

∂Fd
∂xi
· 1
ϕ2(xi)

= ϕ2(Fd(x))Fd(x)
d∑
i=1

βγ − 1
(βxi + 1)(xi + γ) ·

1
ϕ2(xi)

≤ ϕ2(Fd(x))Fd(x)
d∑
i=1

αλ log xi + γ

βxi + 1 (by (7))

= αλϕ2(Fd(x))Fd(x) log λ

Fd(x)
≤ αλ. (by (6))

Moreover, Fd(x) < λ
(
βλ+1
λ+γ

)d
for any xi ∈ (0, λ], and βλ+1

λ+γ < 1 by Lemma 14. Then there

exists d0 ≥ 1 such that
(
βλ+1
λ+γ

)d0
< e−1. Hence, for any d > d0,

Cϕ2,d(x) ≤ αλ
t
Fd(x) log λ

Fd(x)

≤ αλλ

t

(
βλ+ 1
λ+ γ

)d
d log βλ+ 1

λ+ γ
.

Therefore, there exists an integer M ≥ d0 such that for any 1 ≤ d < M , Cϕ2,d(x) ≤

αλ ≤ αdlogM (d+1)e
λ and for any d ≥M , Cϕ2,d(x) ≤ αλλ

t

(
βλ+1
λ+γ

)d
d log

(
βλ+1
λ+γ

)
≤ αdlogM (d+1)e

λ .
Condition 2 holds. J

3.3 Heuristics behind Φ2(x)
The most intricate part of our proofs of Theorem 17 and Theorem 18 is the choice of the
potential function Φ2(x) given by (5). Here we give a brief heuristic of deriving it. It is more
of an “educated guess” than a rigorous argument.

We want to pick Φ2(x) such that Condition 2 holds. In particular, we want

ϕ2(Fd(x))
d∑
i=1

∂Fd
∂xi
· 1
ϕ2(xi)

< 1.

It is fair to assume that the left hand side of the equation above takes its maximum when all
xi’s are equal. Hence, we hope the following to hold

ϕ2(fd(x))f ′d(x)
ϕ2(x) < 1, (8)

where fd(x) = λ
(
βx+1
x+γ

)d
is the symmetrized version of Fd(x). We will use z := fd(x) to

simplify notation. Since we want (8) to hold for all degrees d, we hope to eliminate d from
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the left hand side of (8). Notice that ϕ2(x) should be independent from d. Therefore, we
take the derivative of ϕ2(fd(x))f ′d(x) against d and get

∂ϕ2(fd(x))f ′d(x)
∂d

= βγ − 1
(βx+ 1)(x+ γ)

(
ϕ2(z)z + ϕ2(z)z log z

λ
+ ϕ′2(z)z2 log z

λ

)
= (βγ − 1)zϕ2(z)

(βx+ 1)(x+ γ)

(
1 + log z

λ
+ (logϕ2(z))′z log z

λ

)
.

We may achieve our goal of eliminating d by imposing the sum in the last parenthesis to be
0, namely

(logϕ2(z))′ = −1
z
− 1
z log z

λ

= −(log z)′ −
(

log log λ
z

)′
. (9)

From (9), it is easy to see that ϕ2(z) = 1
z log λ

z

satisfies our need. To get the full definition of
(5), we apply a thresholding trick to bound ϕ2(z) away from 0.

3.4 Discussion of the β > 1case
We cannot combine conditions of Theorem 17 and Theorem 18 together to have an FPTAS.
In particular, when β > 1 strong special mixing fails for any λ even if λ < λc. To see this,
given a ∆-ary tree T , we can append t many children to every vertex in T to get a new
tree T ′ and impose a partial configuration σ where all these new children are pinned to 0.
Effectively, the tree T ′ is equivalent to T where every vertex has a new external field of λβt,
which is larger than λintc if t is sufficiently large regardless of λ. Then by Proposition 6, long
range correlation exists in T ′ with the partial configuration σ, and strong spatial mixing fails.

On the other hand, it is easy to see from the proof that, Theorem 17 can be generalized
to allow a partial configuration σ on some subset Λ where the marginal probability of every
vertex v ∈ Λ satisfies pσv ≤ λc

λc+1 . This is not the case for the SAW tree which our algorithm
relies on when β > 1. However, the following observation shows that if λv ≤ λc ≤ γ−1

β−1 , then
the marginal probability of any instance G satisfies this requirement. Thus, it seems the only
piece missing to obtain an algorithm is to design a better recursion tree instead of the SAW
tree.

I Proposition 20. Let (β, γ) be two parameters such that 1 ≤ β ≤ γ and βγ > 1. Let
λ ≤ γ−1

β−1 be another parameter. For any graph G = (V,E), if π(v) ≤ λ for all v ∈ V , then
pv ≤ λ

λ+1 .

To prove this proposition, we need to use the random cluster formulation of 2-spin models.
Let G be a graph and e = (v1, v2) be one of its edges. Let G+ be the graph where the
edge e is contracted, and G− be the graph where e is removed. Moreover, in G+, we assign
π+(ṽ) = λv1λv2

β−1
γ−1 , where ṽ is the vertex obtained from contacting e. Then we have that

Z(G) = Z(G−) + (γ − 1)Z(G+), (10)

where we write Z(G) instead of Zβ,γ,π(G) to simplify the notation. To show the equation
above we only need a simple adapation of the random cluster formulation of the Ising model
to the 2-spin setting.

APPROX/RANDOM’16
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Proof of Proposition 20. Suppose G = (V,E) where |V | = n and |E| = m. We show the
claim by inducting on (m,n). Clearly the statement holds when m = 0 or n = 1. Hence we
may assume the claim holds for (m′, n) where m′ < m as well as (m′, n′) where n′ < n, and
show that the claim holds for (m,n).

Pick an arbitrary edge e = (v1, v2) in G. Let G+ and G− be as in the random cluster
formulation. It is easy to see that π(ṽ) = λv1λv2

β−1
γ−1 ≤ λ. Hence both G+ and G− satisfy

the induction hypothesis. It implies that pG−;v ≤ λ
λ+1 for any v, where pG−;v is the mariginal

probability of v in G−. Moreover, pG+;v ≤ λ
λ+1 for any v ∈ V +, where V + is the vertex set

of G+. Let δ be a mapping V → V + such that δ(v) = v if v 6= v1, v2 and δ(v1) = δ(v2) = ṽ.
Then using (10) we have that for any vertex v ∈ V ,

pG;v = Zσ(v)=0(G)
Z(G) = Zσ(v)=0(G−) + (γ − 1)Zσ(δ(v))=0(G+)

Z(G−) + (γ − 1)Z(G+)

= pG−;v ·
Z(G−)

Z(G−) + (γ − 1)Z(G+) + pG+;δ(v) ·
(γ − 1)Z(G+)

Z(G−) + (γ − 1)Z(G+)

≤ λ

λ+ 1 ·
Z(G−)

Z(G−) + Z(G+) + λ

λ+ 1 ·
(γ − 1)Z(G+)

Z(G−) + (γ − 1)Z(G+) = λ

λ+ 1 ,

where in the last line we use the induction hypotheses. J

4 Correlation Decay Beyond λc

Let β, γ be two parameters such that β ≤ 1 < γ and βγ > 1. In this section we give an
example to show that if ∆c is not an integer, then correlation decay still holds for a small
interval beyond λc. To simplify the presentation, we assume that π is a uniform field such
that π(v) = λ. Note that the potential function ϕ2(x) does not extend beyond λc.

Let β = 0.6 and γ = 2. Then ∆c =
√
βγ+1√
βγ−1

≈ 21.95 and λc = (γ/β)
∆c+1

2 < 1002761. Let
λ = 1002762 > λc. We will show that #2Spin(β, γ, λ) still has an FPTAS.

Define a constant t as

t :=
√
βγ + 1√
βγ − 1

·
log
√
γ/β√

γ/β + 1
− log

(
1 +

√
β/γ

)
≈ 4.24032. (11)

We consider the potential function Φ3(x) so that ϕ3(x) := 1
x(log(1+1/x)+t) . With this choice,

Cϕ3,d(x) = ϕ3(Fd(x))
d∑
i=1

∂Fd
∂xi
· 1
ϕ3(x)

= βγ − 1
log (1 + 1/Fd(x)) + t

d∑
i=1

xi (log(1 + 1/xi) + t)
(βxi + 1)(xi + γ) .

We do a change of variables. Let ri = βxi+1
xi+γ . Then xi = γri−1

β−ri , βxi + 1 = ri(βγ−1)
β−ri , and

xi + γ = βγ−1
β−ri . Hence,

d∑
i=1

xi(log(1 + 1/xi) + t)
(βxi + 1)(xi + γ) =

d∑
i=1

(γri − 1)(β − ri)
ri(βγ − 1)2 ·

(
log
(

1 + β − ri
γri − 1

)
+ t

)

= 1
(βγ − 1)2

d∑
i=1

(
1 + βγ − β

ri
− γri

)(
log
(

1 + β − ri
γri − 1

)
+ t

)
.
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Furthermore, let si = log ri. As ri ∈
(

1
γ , β

)
, si ∈ (− log γ, log β). Let

ρ(x) :=
(
1 + βγ − βe−x − γex

)(
log
(

1 + β − ex

γex − 1

)
+ t

)
.

Then ρ(x) is concave for any x ∈ (− log γ, log β). It can be easily verified, as the second
derivative is

ρ′′(x) = (β + 1)(βγ − 1)
β − 1 + ex(γ − 1) + γ(βγ − 1)

γ − 1 − β(βγ − 1)
β − ex

− (β − 1)(βγ − 1)2

(γ − 1)(β − 1 + ex(γ − 1))2

− βte−x − γtex − e−x
(
β + e2xγ

)
Log

(
1 + γex − 1

β − ex

)
.

≤ γ(β + 1) + γ(βγ − 1)
γ − 1 − βγ − β − 1

γ − 1 − 2t < −5.68 < 0, (12)

where in the last line we used (11) and the fact that 1/γ ≤ ex ≤ β. Hence, by concavity, we
have that for any xi ∈ (0, λ],

Cϕ3,d(x) = βγ − 1
log (1 + 1/Fd(x)) + t

d∑
i=1

xi (log(1 + 1/xi) + t)
(βxi + 1)(xi + γ) ,

≤ βγ − 1
log (1 + 1/fd(x̃)) + t

·
dx̃
(
log(1 + x̃−1) + t

)
(βx̃+ 1)(x̃+ γ) = cϕ3,d(x̃), (13)

where x̃ > 0 is the unique solution such that fd(x̃) = Fd(x).
Next we show that there exists an α < 1 such that for any integer d and x > 0,

cϕ3,d(x) < α. In fact, by (11), our choice of t, it is not hard to show that the maximum of
cϕ3,d(x) is achieved at x =

√
γ/β and d = ∆c, which is 1 if λ = λc and is larger than 1 if

λ > λc. However, since the degree d has to be an integer, we can verify that for any integer
1 ≤ d ≤ 100, the maximum of cϕ3,d(x) is cϕ3,22(x22) = 0.999983 where x22 ≈ 1.83066. If
d > 100, then

cϕ3,d(x) = d(βγ − 1)
log (1 + 1/fd(x)) + t

·
x
(
log(1 + x−1) + t

)
(βx+ 1)(x+ γ)

≤ C0 · C1 < 1,

where C0 < 1.07191 is the maximum of x(log(1+x−1)+t)
(βx+1)(x+γ) for any x > 0, and C1 < 0.481875 is

the maximum of d(βγ−1)
log(1+λ−1β−d)+t for any d > 100. Then, due to (13), we have that for any

xi ∈ (0, λ], Cϕ3,d(x) < α = 0.999983 < 1. This is the counterpart of Cϕ2,d(x) < αλ in the
proof of Theorem 18. To make ϕ3(x) satisfy Condition 1 and Condition 2 in Definition 10, it
is sufficient to do a simple “chop-off” trick to ϕ3(x) as in (5). We will omit the detail here.

I Proposition 21. For β = 0.6, γ = 2, and λ = 1002762 > λc, #2Spin(β, γ, λ) has an
FPTAS.

It is easy to see that the argument above works for any β ≤ 1 < γ and βγ > 1 except
(12), the concavity of ρ(x). Indeed, the concavity does not hold if, say, β = 1 and γ = 2.
Nevertheless, the key point here is that λc is not the tight bound for FPTAS. Short of
a conjectured optimal bound, we did not try to optimize the potential function nor the
applicable range of the proof above.

APPROX/RANDOM’16
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5 Limitations of Correlation Decay

In this section, we discuss some limitations of approximation algorithms for ferromagnetic
2-spin models based on correlation decay analysis.

The problem of counting independent sets in bipartite graphs (#BIS) plays an important
role in classifying approximate counting complexity. #BIS is not known to have any efficient
approximation algorithm, despite many attempts. However there is no known approximation
preserving reduction (AP-reduction) to reduce #BIS from #Sat either. It is conjectured to
have intermediate approximation complexity, and in particular, to have no FPRAS [3].

Goldberg and Jerrum [6] showed that for any βγ > 1, approximating #2Spin(β, γ, (0,∞))
can be reduced to approximating #BIS. This is the (approximation) complexity upper bound
of all ferromagnetic 2-spin models. In contrast, by Theorem 13, #∆-2Spin(β, γ, (0,∞))
has an FPTAS, if ∆ < ∆c + 1. Note that when we write #2Spin(β, γ, (0,∞)) the field is
implicitly assumed to be at most polynomial in size of the graph (or in unary).

We then consider fields with some constant bounds. Recall that λintc = (γ/β)
d∆ce+1

2 .
Let λintc

′ = (γ/β)
b∆cc+2

2 . Then λintc
′ = λintc unless ∆c is an integer. By reducing to anti-

ferromagnetic 2-spin models in bipartite graphs, we have the following hardness result, which
is first observed in [13, Theorem 3].

I Proposition 22. Let (β, γ, λ) be a set of parameters such that β < γ, βγ > 1, and λ > λintc
′.

Then #2Spin(β, γ, (0, λ]) is #BIS-hard.

The reduction goes as follows. Anti-ferromagnetic Ising models with a constant non-trivial
field in bounded degree bipartite graphs are #BIS-hard, if the uniqueness condition fails
[1]. Given such an instance, we may first flip the truth table of one side. This effectively
results in a ferromagnetic Ising model in the same bipartite graph, with two different fields
on each side. By a standard diagonal transformation, we can transform such an Ising model
to any ferromagnetic 2-spin model, with various local fields depending on the degree. It can
be verified that for any λ > λintc

′, we may pick a field in the anti-ferromagnetic Ising model
to start with, such that uniqueness fails and after the transformation, the largest field in use
is at most λ.

The hardness bound in Proposition 22 matches the failure of uniqueness due to Propos-
ition 6, unless ∆c is an integer. In contrast to Proposition 22, Theorem 18 implies that
if β ≤ 1 < γ and λ < λc = (γ/β)

∆c+1
2 , then #2Spin(β, γ, (0, λ]) has an FPTAS. Hence

Theorem 18 is almost optimal, up to an integrality gap.
We note that λc is not the tight bound for FPTAS, as observed in Proposition 21. Since

the degree d has to be an integer, with an appropriate choice of the potential function, there
is a small interval beyond λc such that strong spatial mixing still holds. Interestingly, it seems
that λintc is not the right bound either. Let us make a concrete example. Let β = 1 and γ = 2.
Then ∆c =

√
βγ+1√
βγ−1

=
√

2+1√
2−1 ≈ 5.82843. Hence λc ≈ 10.6606 and λintc = (2) 6+1

2 ≈ 11.3137.

However, even if λ < λintc , the system may not exhibit spatial mixing, neither in the strong
nor in the weak sense.

In fact, even the spatial mixing in the sense of Theorem 1 does not necessarily hold if
λ < λintc . To see this, we take any λ ∈ [10.9759, 10.9965] so that λc < λ < λintc . Consider
an infinite tree where at even layers, each vertex has 5 children, and at odd layers, each
vertex has 7 children. There are more than one Gibbs measures in this tree. This can be
easily verified from the fact that the two layer recursion function f5(f7(x)) has three fixed
points such that x = f5(f7(x)). In addition, all three fixed points x̂i satisfy that x̂i < λc
for i = 1, 2, 3. Consider a tree T with alternating degrees 5 and 7 of depth 2`, and another
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tree T ′ of the same structure in the first 2` layers as T but with one more layer where each
vertex has, say, 50 children. It is not hard to verify that as ` increases, the marginal ratio at
the root of T converges to x̂3, but the ratio at the root of T ′ converges to x̂1. This example
indicates that one should not expect correlation decay algorithms to work all the way up to
λintc .

At last, if we consider the uniform field case #2Spin(β, γ, λ), then our tractability results
still holds. However, to extend the hardness results as in Proposition 22 from an interval
of fields to a uniform one, there seems to be some technical difficulty. Suppose we want to
construct a combinatorial gadget to effectively realize another field. There is a gap between
λ and the next largest possible field to realize. This is why in [13], there are some extra
conditions transiting from an interval of fields to the uniform case. The observation above
about the failure of SSM in irregular trees may suggest a random bipartite construction of
uneven degrees. However, to analyze such a gadget is beyond the scope of the current paper.

6 Missing Proofs

At last, we gather technical details and proofs that are omitted in Section 2.2, Section 2.3,
and Section 3.2.

6.1 Details about the Uniqueness Threshold
We want to prove Propositions 5 and Proposition 6. Technically by only considering the
symmetric recursion fd(x) = λ

(
βx+1
x+γ

)d
, we are implicitly assuming uniform boundary

conditions. If there are more than one fixed points for fd(x), then clearly there are multiple
Gibbs measures. Hence, fd(x) having only one fixed point is a necessary condition for the
uniqueness condition in Td+1. Moreover, it is also sufficient. The reason is that the influence
on the root of an arbitrary boundary condition is bounded between those of the all “0” and
all “1” boundary conditions.

First do some calculation here. Take the derivative of fd(x):

f ′d(x) = d(βγ − 1)fd(x)
(βx+ 1)(x+ γ) . (14)

Then take the second derivative:

f ′′d (x) = f ′d(x)
fd(x) −

β

βx+ 1 −
1

x+ γ
= d(βγ − 1)− βγ − 1− 2βx

(βx+ 1)(x+ γ) .

Therefore, at x∗ := d(βγ−1)−(βγ+1)
2β , f ′′d (x∗) = 0. It’s easy to see when d < βγ+1

βγ−1 , f
′′
d (x) < 0

for all x > 0. So fd(x) is concave and therefore has only one fixed point.
Since fd(x) has only one inflection point, there are at most three fixed points. Moreover,

the uniqueness condition is equivalent to say that for all fixed points x̂d of fd(x), f ′d(x̂d) < 1.
For a fixed point x̂d, we plug it in (14):

f ′d(x̂d) = d(βγ − 1)x̂d
(βx̂d + 1)(x̂d + γ) .

Recall that ∆c :=
√
βγ+1√
βγ−1

. If d < ∆c, we have that for any x,

(βx+ 1)(x+ γ)− d(βγ − 1)x = βx2 + ((βγ + 1)− d(βγ − 1))x+ γ

> βx2 + (βγ + 1− (
√
βγ + 1)2)x+ γ

= (
√
βx−√γ)2 ≥ 0.

APPROX/RANDOM’16
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Hence (βx+ 1)(x+ γ) > d(βγ − 1)x. In particular, f ′d(x̂d) < 1 for any fixed point x̂d and
the uniqueness condition holds. This proves Proposition 5.

To show Proposition 6, we may assume that d ≥ ∆c. We may also assume that β ≤ γ.
The equation (βx+ 1)(γ + x) = d(βγ − 1)x has two solutions, which are

x0 = x∗ −
√

((βγ + 1)− d(βγ − 1))2 − 4βγ
2β

and x1 = x∗ +
√

((βγ + 1)− d(βγ − 1))2 − 4βγ
2β .

Notice that both of them are positive since x0 + x1 = 2x∗ > 0 and x0x1 = β/γ.
We show that fd(x0) > x0 or fd(x1) < x1 is equivalent to the uniqueness condition.

First we assume this condition doesn’t hold, that is fd(x0) ≤ x0 and fd(x1) ≥ x1. If any
of the equation holds, then x0 or x1 is a fixed point and the derivative is 1. So we have
non-uniqueness. Otherwise, we have fd(x0) < x0 and fd(x1) > x1. Since x0 < x1, there is
some fixed point x̃ satisfying fd(x̃) = x̃ and x0 < x̃ < x1. The second inequality implies that
(βx̃+ 1)(x̃+ γ) < d(βγ − 1)x̃. Therefore f ′d(x̃) > 1 and non-uniqueness holds.

To show the other direction, if fd(x0) > x0, then

f ′d(x0) = d(βγ − 1)f(x0)
(βx0 + 1)(x0 + γ) >

d(βγ − 1)x0

(βx0 + 1)(x0 + γ) = 1.

Assume for contradiction that fd(x) has three fixed points, denoted by x̃0 < x̃1 < x̃2. Then
the middle fixed point x̃1 satisfies f ′d(x̃1) > 1. Therefore x̃1 > x0 and there are two fixed
points larger than x0. However, for x0 < x ≤ x∗, f ′d(x) > 1 and fd(x0) > x0. Hence there
is no fixed point in this interval. For x > x∗, the function is concave and has exactly one
fixed point. So there is only 1 fixed point larger than x0. Contradiction. The case that
fd(x1) < x1 is similar.

These two conditions could be rewritten as

λ >
x0(x0 + γ)d

(βx0 + 1)d (15)

and

λ <
x1(x1 + γ)d

(βx1 + 1)d . (16)

Notice that the right hand side has nothing to do with λ in both (15) and (16).
We want to see how conditions (15) and (16) change as d changes. Treat d as a continuous

variable. Define

gi(d) := xi(xi + γ)d

(βxi + 1)d .

where i = 0, 1 and xi is defined above depending on β, γ and d. Take the derivative:

g′i(d)
gi(d) = ∂xi

∂d

(
1
xi

+ d

xi + γ
− dβ

βxi + 1

)
+ log(xi + γ)− log(βxi + 1)

= ∂xi
∂d

(
1
xi

+ d(1− βγ)
(xi + γ)(βxi + 1)

)
+ log xi + γ

βxi + 1

= ∂xi
∂d

(
1
xi
− 1
xi

)
+ log xi + γ

βxi + 1 = log xi + γ

βxi + 1 .
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If β ≤ 1 these two functions are increasing in d. Recall that ∆c =
√
βγ+1√
βγ−1

, and λintc =

g1(d∆ce) = (γ/β)
d∆c+1e

2 . Thus if λ < λintc , (16) holds for all integers d. On the other hand,

g0(d) = x0(x0 + γ)d

(βx0 + 1)d > x0β
−d = β

γx1
β−d >

β

γ2x∗ β
−d

= β2

γ(d(βγ − 1)− (βγ + 1)) · β
−d

→∞ as d goes to ∞.

Hence there is no λ such that (15) holds for all integers d. This proves Proposition 6.
If β > 1, then neither (15) nor (16) can hold for all integers d. The reason is

g0(d) = x0(x0 + γ)d

(βx0 + 1)d = x0(x0 + γ)2d

(d(βγ − 1)x0)d > x0

(
γ

d(βγ − 1)x0

)d
→∞ as d goes to ∞,

as d(βγ − 1)x0 < γ for sufficiently large d, and

g1(d) = x1(x1 + γ)d

(βx1 + 1)d = x1(d(βγ − 1)x1)d

(βx1 + 1)2d < x1

(
d(βγ − 1)
β2x1

)d
→ 0 as d goes to ∞,

as β2x1 > d(βγ − 1) for sufficiently large d.

6.2 Details about the Potential Method
In this section we provide missing details and proofs in Section 2.3.

To study correlation decay on trees, we use the standard recursion given in (2). Recall
that T is a tree with root v. Vertices v1, . . . , vd are d children of v, and Ti is the subtree
rooted by vi. A configuration σΛ is on a subset Λ of vertices, and RσT denote the ratio of
marginal probabilities at v given a partial configuration σ on T .

We want to study the influence of another set of vertices, say S, upon v. In particular,
we want to study the range of ratios at v over all possible configurations on S. To this end,
we define the lower and upper bounds as follows. Notice that as S will be fixed, we may
assume that it is a subset of Λ.

I Definition 23. Let T, v,Λ, σΛ, S,R
σ
T be as above. Define Rv := minτΛ R

τΛ
T and Rv :=

maxτΛ R
τΛ
T , where τλ can only differ from σΛ on S. Define δv := Rv −Rv.

Our goal is thus to prove that δv ≤ exp(−Ω(dist(v, S))). We can recursively calculate Rv
and Rv as follows. The base cases are:
1. v ∈ S, in which case Rv = 0 and Rv =∞ and δv =∞;
2. v ∈ Λ \ S, i.e. v is fixed to be the same value in all τΛ, in which case Rv = Rv = 0 (or ∞)

if v is fixed to be blue (or green), and δv = 0;
3. v 6∈ Λ and v is the only node of T , in which case Rv = Rv = λ and δv = 0.
For v 6∈ Λ, since Fd is monotonically increasing with respect to any xi for any βγ > 1,

Rv = Fd(Rv1 , ..., Rvd) and Rv = Fd(Rv1 , ..., Rvd),

where Rvi and Rvi are recursively defined lower and upper bounds of RτΛTi for 1 ≤ i ≤ d.

APPROX/RANDOM’16
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x y

Fd(x) Gd(y)

Φ

Fd Gd

Φ−1

Φ

Φ−1

Figure 1 Commutative diagram between Fd and Gd.

Our goal is to show that δv decays exponentially in the depth of the recursion under
certain conditions such as the uniqueness. A straightforward approach would be to prove
that δv contracts by a constant ratio at each recursion step. This is a sufficient, but not
necessary condition for the exponential decay. Indeed there are circumstances that δv does
not necessarily decay in every step but does decay in the long run. To amortize this behaviour,
we use a potential function Φ(x) and show that the correlation of a new recursion decays by
a constant ratio.

To be more precise, the potential function Φ : R+ → R+ is a differentiable and monoton-
ically increasing function. It maps the domain of the original recursion to a new one. Let
yi = Φ(xi). We want to consider the recursion for yi’s. The new recursion function, which is
the pullback of Fd, is defined as

Gd(y1, . . . , yd) := Φ(Fd(Φ−1(x1), . . . ,Φ−1(xd))).

The relationship between Fd(x) and Gd(y) is illustrated in Figure 1.
We want to prove Lemma 8 and Lemma 12. To do so, we also define the upper and lower

bounds of y. Define yv = Φ(Rv) and accordingly yvi = Φ(Rvi), for 1 ≤ i ≤ d, as well as
yv = Φ(Rv) and yvi = Φ(Rvi), for 1 ≤ i ≤ d. We have that

yv = Gd(yv1 , . . . , yvd) and yv = Gd(yv1 , . . . , yvd). (17)

Let εv = yv − yv. For a good potential function, exponential decay of εv is sufficient to imply
that of δv.

I Lemma 24. Let Φ(x) be a good potential function for the field λ at v. Then there exists a
constant C such that δv ≤ Cεv for any dist(v, S) ≥ 2.

Proof. By (17) and the Mean Value Theorem, there exists an R̃ ∈ [Rv, Rv] such that

εv = Φ(Rv)− Φ(Rv) = Φ′(R̃) · δv = ϕ(R̃) · δv. (18)

Since dist(v, S) ≥ 2, we have that Rv ≥ λγ−d and Rv ≤ λβd. Hence R̃ ∈ [λγ−d, λβd], and
by Condition 1 of Definition 7, there exists a constant C1 such that ϕ(R̃) ≥ C1. Therefore
δv ≤ 1/C1εv. J

The next lemma explains Condition 2 of Definition 7.

I Lemma 25. Let Φ(x) be a good potential function with contraction ratio α. Then,

εv ≤ α max
1≤i≤d

{εvi}.
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Proof. First we use (17):

εv = yv − yv = Gd(yv1 , . . . , yvd)−Gd(yv1 , . . . , yvd).

Let y1 = (yv1 , . . . , yvd) and y0 = (yv1 , . . . , yvd). Let z(t) = ty1 + (1 − t)y0 be a linear
combination of y0 and y1 where t ∈ [0, 1]. Then we have that

εv = Gd(z(1))−Gd(z(0)).

By the Mean Value Theorem, there exist t̃ such that εv = dGd(z(t))
d t

∣∣∣
t=t̃

. Let ỹi = t̃yvi + (1−
t̃)yvi for all 1 ≤ i ≤ d. Then we have that

εv = |∇Gd(ỹ1, . . . , ỹd) · (εv1 , . . . , εvd)| . (19)

It is straightforward to calculate that

∂Gd(y)
∂yi

= ϕ(Fd(R))
ϕ(Ri)

· ∂Fd(R)
∂Ri

, (20)

where Ri = Φ−1(yi) and y and R are vectors composed by yi’s and Ri’s. Plugging (20) into
(19) we get that

εv = ϕ(Fd(R̃)) ·
d∑
i=1

∣∣∣∣∂Fd∂Ri

∣∣∣∣ 1
ϕ(R̃i)

· εvi

≤ Cϕ,d(R̃1, . . . , R̃d) · max
1≤i≤d

{εvi} ≤ α max
1≤i≤d

{εvi},

where R̃i = Φ−1(ỹi), R̃ is the vector composed by R̃i’s, and in the last line we use Condition 2
of Definition 7. J

Note that the two conditions of a good potential function does not necessarily deal with
all cases in the tree recursion. At the root we have one more child than other vertices in
a SAW tree. Also, if v has a child u ∈ S, then εu = ∞ and the range in both conditions
of Definition 7 does not apply. To bound the recursion at the root, we have the following
straightforward bound of the original recursion.

I Lemma 26. Let (β, γ) be two parameters such that βγ > 1 and β < γ. Let v be a vertex
and vi be its children for 1 ≤ i ≤ d. Suppose δvi ≤ C for some C > 0 and all 1 ≤ i ≤ d.
Then,

δv ≤ dλv(βγ − 1)γ−1βdC.

Proof. It is easy to see that γ ≥ 1. By the same argument as in Lemma 25 and (2), there
exists xi’s such that

δv = |∇Fd(x1, . . . , xd) · (δv1 , . . . , δvd)| ≤ C
d∑
i=1

∣∣∣∣∂Fd(x)
∂xi

∣∣∣∣ ,
where x is the vector composed by xi’s. Then, we have that∣∣∣∣∂Fd(x)

∂xi

∣∣∣∣ = d(βγ − 1)Fd(x)
(xi + γ)(βxi + 1) ≤ dλv(βγ − 1)γ−1βd,

where we use the fact that Fd(x) ≤ λvβ
d for any xi ∈ [0,∞) and βγ > 1. The lemma

follows. J

APPROX/RANDOM’16
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Now we are ready to prove Lemma 8.

Proof of Lemma 8. Given G and a partial configuration σΛ on a subset Λ ⊆ V of vertices,
we first claim that we can approximate pσΛ

v within additive error ε deterministically in time
O
(
ε

log ∆
logα

)
. We construct the SAW tree T = TSAW(G, v). Due to Proposition 3, we only need

to approximate pσΛ
v in T , with respect to v and an arbitrary vertex set S. We will also use

σΛ to denote the configuration in T on ΛSAW . Let S be the set of vertices whose distance to
v is larger than t, where t is a parameter that we will specify later. Let δv be defined as in
Definition 23 with respect to T , v, Λ, σΛ, and S. We want to show that δv = O(λαt).

The maximum degree of T is at most ∆. Thus the root v has at most ∆ children in
T , and any other vertex in T has at most ∆− 1 children. Assume v has k ≥ 1 children as
otherwise we are done. We may also assume that v 6∈ S and let t = dist(v, S)− 1 ≥ 1. We
recursively construct a path u0 = v, u1,. . . ,ul of length l ≤ t as follows. Given ui, if there is
no child of ui, then we stop and let l = i. Otherwise ui has at least one child. If i = t then
we stop and let l = t. Otherwise l < t and let ui+1 be the child of ui such that εui+1 takes
the maximum ε among all children of ui. In other words, by Lemma 25, we have that

εui ≤ αεui+1 , (21)

for all 1 ≤ i ≤ l − 1. Notice that (21) may not hold for i = 0 since v = u0 has possibly ∆
children.

First we note that for all 1 ≤ i ≤ l, dist(v, ui) = i ≤ l ≤ t, and therefore ui 6∈ S. If we
met any vertex ul with no child, then we claim that εul = 0. This is because ul is either
a free vertex with no child or ul ∈ Λ but ul 6∈ S. However since εul takes the maximum ε

among all children of ul−1, we have that for all children of ui−1, ε = 0, which implies that
εui−1 = 0. Recursively we get that εv = εu0 = 0 and clearly the theorem holds by (18).

Hence we may assume that l = t. Since ul 6∈ S, we have that δul ≤ λulβ−(∆−1) if β > 1,
or δul ≤ λul if β ≤ 1. Hence by (18) and Condition 1 in Definition 7, we have that εul ≤ C0
for some constant C0. Applying (21) inductively we have that

εu1 ≤ αlεul ≤ αtC0.

Hence by Lemma 24, we there exists another constant C1 such that δu1 ≤ αtC1. To get a
bound on δu0 , we use Lemma 26, which states that

δu0 ≤ d0λv(βγ − 1)γ−1βd0δu1 ≤ d0λv(βγ − 1)γ−1βd0αtC1 = O(λαt),

where d0 ≤ ∆ is the degree of v = u0.
Hence the recursive procedure returns Rv and Rv such that Rv ≤ RσΛ

T ≤ Rv, and
Rv − Rv = O(λαt) where α < 1 is the contraction ratio. Note that RσΛ

T = RσΛ
G,v = p

σΛ
v

1−pσΛ
v

.
Let p0 = Rv

Rv+1 and p1 = Rv

Rv+1 . Then p0 ≤ pσΛ
v ≤ p1 and

p1 − p0 = Rv

Rv + 1 −
Rv

Rv + 1 ≤ R
v −Rv = O(λαt). (22)

The recursive procedure runs in time O(∆t) since it only needs to construct the first t
levels of the self-avoiding walk tree. For any ε > 0, let t = O(logα ε − logα λ) so that
Rv −Rv < ε. This gives an algorithm which approximates pσΛ

v within an additive error ε in

time O
((

ε
λ

) log ∆
logα

)
.

Then we use self-reducibility to reduce computing Zβ,γ,π(G) to computing conditional
marginal probabilities. To be specific, let σ be a configuration on a subset of V and τ be
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sampled according to the Gibbs measure. Let pσv := Pr (τ(v) = 1 | σ) be the conditional
marginal probability. We can compute Zβ,γ,π(G) from pσv by the following standard procedure.
Let v1, . . . , vn enumerate vertices in G. For 0 ≤ i ≤ n, let σi be the configuration fixing the
first i vertices v1, . . . , vi as follows: σi(vj) = σi−1(vj) for 1 ≤ j ≤ i− 1 and σi(vi) is fixed to
the spin s so that pi := Pr (τ(vi) = s | σi−1) ≥ 1/3. This is always possible because clearly

Pr (τ(vi) = 0 | σi−1) + Pr (τ(vi) = 1 | σi−1) = 1.

In particular, σn ∈ {0, 1}V is a configuration of V . The Gibbs measure of σn is ρ(σn) =
w(σn)

Zβ,γ,π(G) . On the other hand, we can rewrite ρ(σn) = p1p2 · · · pn by conditional probabilities.
Thus Zβ,γ,π(G) = w(σn)

p1p2···pn . The weight w(σn) given in (1) can be computed exactly in time
polynomial in n. Note that pi equals to either pσi−1

vi or 1− pσi−1
vi . Since we can approximate

pσΛ
v within an additive error ε in time O

((
ε
λ

) log ∆
logα

)
, the configurations σi can be efficiently

constructed, which guarantees that all pi’s are bounded away from 0. Thus the product

p1p2 · · · pn can be approximated within a factor of (1± nε′) in time O
(
n
(
ε′

λ

) log ∆
logα

)
. Now

let ε′ = ε
n . We get the claimed FPTAS for Zβ,γ,π(G). J

Lemma 11 follows almost immediately from Lemmas 24, 25, and 26 as in the proof above.
The only issue is that the range of x should be restricted to (0, λ]. This is guaranteed by
Claim 16.

Finally we show Lemma 12.

Proof of Lemma 12. By the same proof of Lemma 8, we only need to approximate the mar-
ginal probability at the root v of a tree T . By Condition 2 of Definition 10, Cϕ,d(x1, · · · , xd) <
αdlogM (d+1)e. Denote by B(`) the set of all vertices whose M -based depths of v is at most `
in T . Hence |B(`)| ≤M `. Let S = {u | dist(u,B(`)) > 1}, which is essentially the same S
as in Lemma 8, but under a different metric. We can recursively compute upper and lower
bounds Rv and Rv of RσΛ

T such that Rv ≤ RσΛ
T ≤ Rv, with the base case that for any vertex

u ∈ S trivial bounds Ru = 0 and Ru =∞ are used.
We proceed as in the proof of Lemma 8. Without loss of generality, we construct a path

u0u1 · · ·uk in T from the root u0 = v to a uk with `M (uk−1) ≤ ` and `M (uk) > `. As in the
proof of Lemma 25, εuj ≤ Cϕdj (xj,1, . . . , xj,dj ) · εuj+1 for all 0 ≤ j ≤ k − 1, where dj is the
number of children of uj and xj,i ∈ [0,∞), 1 ≤ i ≤ dj . Hence we have that

εv ≤ εuk ·
k−1∏
j=0

αdlogM (dj+1)e ≤ εuk · α
∑k−1

j=0
dlogM (dj+1)e

= εuk · α`M (uk) ≤ εuk · α`.

Note that dist(uk, B(`)) = 1 and hence uk 6∈ S. So δuk < λuk ≤ λ. By (18), we have
that εuk ≤ ϕ(R̃)δuk , for some R̃ ∈ [λukγ−dk , λukβdk ]. Hence εuk < C2λ by Condition 1 of
Definition 10, and εv < λα`C2. By (18) and Condition 1 of Definition 10 again, we have that
δv ≤ λα`C2/C1.

The rest of the proof goes the same as that of Lemma 8. The running time has an extra
n2 factor since we need to go down two more levels (in the worst case) outside of B(`). J

6.3 Proofs of Lemma 14 and Lemma 15
In this section we show Lemma 14 and Lemma 15. We prove Lemma 14 first, and then use
it to show Lemma 15.

APPROX/RANDOM’16
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Proof of Lemma 14. It is trivial if β ≤ 1. Now assume that β > 1. As βx+1
x+γ is increasing

in x, it is equivalent to show that

γ − 1
β − 1 ≥ λc =

(
γ

β

) √
βγ√
βγ−1

⇔ log(γ − 1)− log(β − 1) ≥
√
βγ√

βγ − 1
log
(
γ

β

)
.

Let γ = k2β with k ≥ 1. We only need to show that r(k) ≥ 0 for k ≥ 1, where r(k) is defined
as

r(k) := log(βk2 − 1)− log(β − 1)− 2βk
βk − 1 log k.

Since r(1) = 0, it is enough to prove that r(k) is increasing for k ≥ 1. It can be easily verified
as

r′(k) = 2βk
βk2 − 1 −

2β
βk − 1 + 2β

(βk − 1)2 log k

= 2β
(βk − 1)2(βk2 − 1)

(
(βk2 − 1) log k − (k − 1)(βk − 1)

)
.

So, it is sufficient to show that

(βk2 − 1) log k − (k − 1)(βk − 1) ≥ 0.

Since k ≥ 1, we have that log k ≥ 1− 1
k . It implies that

(βk2 − 1) log k − (k − 1)(βk − 1) ≥ (βk2 − 1)(1− 1
k

)− (k − 1)(βk − 1) = (k − 1)2

k
≥ 0.

This completes the proof. J

Then we show Lemma 15.

Proof of Lemma 15. Let g(x) := (βγ − 1)x log λc
x − (βx + 1)(x + γ) log x+γ

βx+1 . Hence it is
equivalent to show that g(x) ≤ 0 for all 0 < x < λc. Take the derivative of g(x) and we have
that

g′(x) = (βγ − 1)(log λc
x
− 1)− (2βx+ βγ + 1) log x+ γ

βx+ 1

− (βx+ 1)(x+ γ)
(

1
x+ γ

− β

βx+ 1

)
= (βγ − 1) log λc

x
− (2βx+ βγ + 1) log x+ γ

βx+ 1 .

By direct calculation, g
(√

γ
β

)
= 0 and g′

(√
γ
β

)
= 0. Then we prove (3) for the case of

0 < x <
√

γ
β and

√
γ
β < x < λc separately.

If 0 < x <
√

γ
β , it is sufficient to verify that g′(x) > 0. We only need to show that g′(x)

is decreasing since g′
(√

γ
β

)
= 0. It is easily verified by taking the derivative again:

g′′(x) = −βγ − 1
x

− 2β log x+ γ

βx+ 1 − (2βx+ βγ + 1)
(

1
x+ γ

− β

βx+ 1

)
= −2β log x+ γ

βx+ 1 − (βγ − 1)
(

1
x
− 2βx+ βγ + 1

(x+ γ)(βx+ 1)

)
= −2β log x+ γ

βx+ 1 − (βγ − 1) r − βx2

x(x+ γ)(βx+ 1) < 0,
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where the last inequality uses the fact that x+γ
βx+1 ≥ 1 by Lemma 14 and x <

√
γ
β .

If
√

γ
β < x < λc, then we show (3) directly. First notice that as x 6=

√
γ
β ,

x

(βx+ 1)(x+ γ) = 1
βx+ γ

x + βγ + 1 < (
√
βγ + 1)−2,

Given this, in order to get (3), it is sufficient to show that h(x) < 0 where

h(x) :=
√
βγ − 1√
βγ + 1

log λc
x
− log x+ γ

βx+ 1 .

In fact, h(x) is a decreasing function as

h′(x) = −
√
βγ − 1

x(
√
βγ + 1)

− 1
x+ γ

+ β

βx+ 1

= −
(
√
βγ − 1)

(
(x+ γ)(βx+ 1)− (

√
βγ + 1)2x

)
x(
√
βγ + 1)(x+ γ)(βx+ 1)

= −
(
√
βγ − 1)

(√
βx−√γ

)2
x(
√
βγ + 1)(x+ γ)(βx+ 1)

≤ 0.

Notice that h
(√

γ
β

)
= 0. It implies that h(x) < 0 for all x >

√
γ
β . This completes the

proof. J

Acknowledgement. We thank Liang Li, Jingcheng Liu, and Chihao Zhang for some stimu-
lating discussion. In particular, the example of the 5-7 tree in Section 5 is an outcome from
such discussion. We also thank organizers of the “IMA-GaTech Workshop on the Power
of Randomness in Computation” in March 2015. The current work stems from discussions
during the workshop.

References

1 Jin-Yi Cai, Andreas Galanis, Leslie Ann Goldberg, Heng Guo, Mark Jerrum, Daniel Šte-
fankovič, and Eric Vigoda. #BIS-hardness for 2-spin systems on bipartite bounded degree
graphs in the tree non-uniqueness region. In RANDOM, pages 582–595, 2014.

2 Jin-Yi Cai and Michael Kowalczyk. Spin systems on k-regular graphs with complex edge
functions. Theor. Comput. Sci., 461:2–16, 2012.

3 Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, and Mark Jerrum. The
relative complexity of approximate counting problems. Algorithmica, 38(3):471–500, 2003.

4 Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability of the partition
function for the antiferromagnetic Ising and Hard-Core models. CoRR,, 2012. URL: http:
//arxiv.org/abs/1203.2226.

5 Hans-Otto Georgii. Gibbs Measures and Phase Transitions, volume 9 of De Gruyter Studies
in Mathematics. de Gruyter, Berlin, second edition, 2011.

6 Leslie Ann Goldberg and Mark Jerrum. The complexity of ferromagnetic Ising with local
fields. Combinatorics, Probability & Computing, 16(1):43–61, 2007.

7 Leslie Ann Goldberg, Mark Jerrum, and Mike Paterson. The computational complexity of
two-state spin systems. Random Struct. Algorithms, 23(2):133–154, 2003.

8 Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the Ising
model. SIAM J. Comput., 22(5):1087–1116, 1993.

APPROX/RANDOM’16

http://arxiv.org/abs/1203.2226
http://arxiv.org/abs/1203.2226


31:26 Uniqueness, Spatial Mixing, and Approximation for Ferromagnetic 2-Spin Systems

9 Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theor. Comput. Sci., 43:169–188, 1986.

10 Frank P. Kelly. Stochastic models of computer communication systems. Journal of the
Royal Statistical Society. Series B (Methodological), 47(3):379–395, 1985.

11 Liang Li, Pinyan Lu, and Yitong Yin. Approximate counting via correlation decay in spin
systems. In SODA, pages 922–940, 2012.

12 Liang Li, Pinyan Lu, and Yitong Yin. Correlation decay up to uniqueness in spin systems.
In SODA, pages 67–84, 2013.

13 Jingcheng Liu, Pinyan Lu, and Chihao Zhang. The complexity of ferromagnetic two-spin
systems with external fields. In RANDOM, pages 843–856, 2014.

14 Russell Lyons. The Ising model and percolation on trees and tree-like graphs. Comm. Math.
Phys., 125(2):337–353, 1989.

15 Elchanan Mossel and Allan Sly. Exact thresholds for Ising-Gibbs samplers on general
graphs. Annals of Probability, 41(1):294–328, 2013.

16 Alistair Sinclair, Piyush Srivastava, Daniel Štefankovič, and Yitong Yin. Spatial mixing
and the connective constant: Optimal bounds. In SODA, pages 1549–1563, 2015.

17 Alistair Sinclair, Piyush Srivastava, and Marc Thurley. Approximation algorithms for two-
state anti-ferromagnetic spin systems on bounded degree graphs. In SODA, pages 941–953,
2012.

18 Allan Sly and Nike Sun. The computational hardness of counting in two-spin models on
d-regular graphs. The Annals of Probability, 42(6):2383–2416, 2014.

19 Dror Weitz. Counting independent sets up to the tree threshold. In STOC, pages 140–149,
2006.

20 Jinshan Zhang, Heng Liang, and Fengshan Bai. Approximating partition functions of the
two-state spin system. Inf. Process. Lett., 111(14):702–710, 2011.


	Introduction
	Our Contribution

	Preliminaries
	The Self-Avoiding Walk Tree
	The Uniqueness Condition in Regular Trees
	The Potential Method

	Correlation Decay below the Critical Degree or the Critical Field
	Bounded Degree Graphs
	General Graphs
	Heuristics behind Phi-2(x)
	Discussion of the beta>1case

	Correlation Decay Beyond the Critical Field
	Limitations of Correlation Decay
	Missing Proofs
	Details about the Uniqueness Threshold
	Details about the Potential Method
	Proofs of Lemma 14 and Lemma 15


