
A Step Counting Hill Climbing algorithm 

Yuri Bykov, Sanja Petrovic 

Nottingham University Business School, Jubilee Campus, Wollaton Road, 

Nottingham, NG8 1BB, UK 

mail@yuribykov.com 

sanja.petrovic@nottingham.ac.uk 

Abstract 

This paper presents a new single-parameter local search heuristic named Step Counting Hill Climbing 

algorithm (SCHC). It is a very simple method in which the current cost serves as an acceptance bound 

for a number of consecutive steps. This is the only parameter in the method that should be set up by 

the user. Furthermore, the counting of steps can be organized in different ways; therefore the proposed 

method can generate a large number of variants and also extensions. In this paper, we investigate the 

behaviour of the three basic variants of SCHC on the university exam timetabling problem. Our 

experiments demonstrate that the proposed method shares the main properties with the Late 

Acceptance Hill Climbing method, namely its convergence time is proportional to the value of its 

parameter and a non-linear rescaling of a problem does not affect its search performance. However, 

our new method has two additional advantages: a more flexible acceptance condition and better 

overall performance. In this study we compare the new method with Late Acceptance Hill Climbing, 

Simulated Annealing and Great Deluge Algorithm. The Step Counting Hill Climbing has shown the 

strongest performance on the most of our benchmark problems used. 

Keywords: Optimisation, Metaheuristics, Simulated Annealing, Late Acceptance Hill Climbing, Step 

Counting Hill Climbing, Exam Timetabling. 

1. Introduction 

A single parameter local search metaheuristic called Late Acceptance Hill Climbing algorithm 

(LAHC) was proposed by Burke and Bykov (2008). The main idea of LAHC is to compare in each 

iteration a candidate solution with the solution that has been chosen to be the current one several 

iterations before and to accept the candidate if it is better. The number of the backward iterations is 

the only LAHC parameter referred to as “history length”. An extensive study of LAHC was carried in 

(Burke and Bykov 2012) where the salient properties of the method have been discussed. First, its 

total search/convergence time was proportional to the history length, which was essential for its 

practical use. Also, it was found that despite apparent similarities with other local search 

metaheuristics such as Simulated Annealing (SA) and Great Deluge Algorithm (GDA), LAHC had 

the underlying distinction, namely it did not require a guiding mechanism like, for example, cooling 

schedule in SA. This provided the method with effectiveness and reliability. It was demonstrated that 



LAHC was able to work well in situations where the other two heuristics failed to produce good 

results. 

Although LAHC is a relatively new algorithm, its unique characteristics attracted a particular 

attention of the research community. A number of authors have published their own studies on LAHC 

applied to different problems, such as lock scheduling (Verstichel and Vanden Berghe 2009), liner 

shipping fleet repositioning (Tierney 2013), balancing two-sided assembly lines (Yuan at al. 2013), 

travelling purchaser problem (Goerler et al 2013), etc. In addition, several modifications of this 

method were proposed, such as Late Acceptance Randomized Descent algorithm (Abuhamdah 2010) 

and Multiobjective Late Acceptance algorithm (Vancroonenburg and Wauters 2013). A reheating 

mechanism was embedded in LAHC by Swan et al (2013). Also, LAHC was hybridised with other 

techniques (Abdullah and Alzaqebah 2014). Also LAHC was successfully employed in the recently 

developed hyper-heuristic approach, see (Ozcan et al 2009) and (Jackson et al 2013). 

Besides its presence in the scientific literature, LAHC appeared to be beneficial in the scientific 

competitions and real-world applications. This method won the 1
st
 place prize in the International 

Optimisation Competition (http://www.solveitsoftware.com/competition) in December 2011. 

Furthermore, this method was employed in entry algorithms by two research groups (J17 and S5) in 

ROADEF/EURO Challenge 2012 (http://challenge.roadef.org/2012/en/). They won 4
th
 and 8

th
 places 

respectfully in their categories. LAHC won the 1
st
 place prize in VeRoLog Solver Challenge 2014 in 

June 2014 (http://verolog.deis.unibo.it/news-events/general-news/verolog-solver-challenge-2014-

final-results). Also, LAHC is currently employed in at least two real-world software systems: Rasta 

Converter project hosted by GitHub Inc. (US) (https://github.com/ilmenit/RastaConverter) and 

OptaPlanner, an open source project by Red Hat (http://www.optaplanner.org). 

Motivated by the success of LAHC, the idea of single-parameter and cooling schedule free local 

search methodology is developed furter (Bykov and Petrovic 2013). We propose a new metaheuristic, 

which keeps all the good characteristics of LAHC but it is even simpler, more powerful and offers 

some additional advantages. The method is named Step Counting Hill Climbing algorithm (SCHC). In 

this study, we present a comprehensive investigation into the properties of this algorithm. The 

evaluation of SCHC is carried out on the University Exam Timetabling Problem. In the choice of the 

problem domain we follow many previous authors who consider the exam timetabling to be a good 

benchmark in their experiments. Over the years almost all metaheuristic methods were applied to the 

examination timetabling, such as Simulated Annealing (Thomson and Dowsland 1996), Tabu Search 

(Di Gaspero and Schaerf, 2001), Great Deluge algorithm (Burke et al 2004), Evolutionary methods 

(Erben, 2001), Multi-criteria methods, (Petrovic and Bykov 2003), Fuzzy methods (Petrovic et al, 

2005) and Grid computing (Gogos et al 2010). In addition, the exam timetabling was widely used in 

the evaluation of different hybrid methods (Merlot et al, 2003), (Abdullah and Alzaqebah 2014), as 

well as hyper-heuristics (Burke et al, 2007). The initial study of the Late Acceptance Hill Climbing 

http://www.solveitsoftware.com/competition
http://challenge.roadef.org/2012/en/
https://github.com/ilmenit/RastaConverter
http://www.optaplanner.org/


algorithm was also done on the exam timetabling problems (Burke and Bykov 2008). More 

information about the exam timetabling studies can be found in a number of survey papers, including 

(Carter and Laporte, 1996), (Schaerf, 1999), (Burke and Petrovic, 2002), and (Qu et al, 2009). 

The exam timetabling is usually defined as a minimization problem. Hence, to make the 

description of the algorithm consistent with our experiments in the rest of our paper we assume a 

lower value of the cost function the better quality of a result 

The paper is organised as follows: the description of SCHC is given in the next section. In Section 

3, we describe our experimental environment including the benchmark datasets and experimental 

software. The investigation into the properties of our method is presented in Section 4, while Section 

5 is devoted to the performance of SCHC and its comparison with other techniques. Finally, Section 6 

presents the comparison of the SCHC results with the published ones, followed by some conclusions 

and discussion about the future work. 

2. Step Counting Hill Climbing Algorithm 

2.1. Description of the basic SCHC heuristic  

The idea of the Step Counting Hill Climbing (SCHC) is to embed a counting mechanism into the Hill 

Climbing (HC) algorithm in order to deliver a new quality to the method. Similar to HC, our heuristic 

operates with a control parameter, which we refer to as a “cost bound” (Bc). The cost bound denotes 

the best non-acceptable value of the candidate cost function, i.e. at each iteration the algorithm 

accepts any candidate solution with the cost lower (better) than Bc and rejects the ones whose cost is 

higher (worse) than Bc . The acceptance of the candidates with cost equal to Bc depends on particular 

situation (see below). From this point of view, in the greedy HC the cost bound is equal to the cost of 

the best found solution, which can be changed at any iteration. In contrast, the main idea of the Step 

Counting HC is to keep the given cost bound not just for one, but for a number of consecutive 

iterations. 

As other local search heuristics, SCHC starts from a random initial solution and the value of Bc is 

equal to the initial cost function. Then the algorithm starts counting the consecutive steps (nc) and 

when their number exceeds a given counter limit (Lc) the cost bound is updated, i.e. we make it equal 

to the new current cost while the counter nc is reset to 0. After further Lc steps Bc is updated and nc is 

reset again and this is repeated until a stopping condition is met. Throughout the search the algorithm 

accepts only candidates with the cost less than the current cost bound, which means that with each 

update the value of the cost bound becomes lower and lower; this guarantees the search progresses 

towards the best achievable solution. 

The proposed algorithm has only one input parameter and that is the value of the counter limit Lc , 

which should be specified by the user. Apart from that no additional initialisation is required in the 



method. Our preliminary tests have shown that in order to guarantee the progress of the search SCHC 

has to accept candidate solutions with the cost only better (not better or equal) than Bc. However, there 

is one exception to this rule; it is worthy to accept the candidates with the cost equal to Bc when the 

current cost is also equal to Bc , which happens after the update of the cost bound. This is provided by 

a combination of the SCHC acceptance rule with the greedy rule, i.e. a candidate is also accepted if it 

is better or equal to the current cost. This enhancement of the acceptance rule provides an extra 

effectiveness of the search, especially at its final stage where it helps to avoid the effect of “premature 

convergence”. Thus, at each iteration the SCHC acceptance rule can be expressed by formula (1). 

C(s*) < Bc   or    C(s*)  C(s) (1) 

In this formula, C(s) represents the current cost and C(s*) the candidate cost, where s and s* are the 

current and the candidate solutions respectively. The complete pseudocode of the initial variant of the 

Step Counting Hill Climbing algorithm, which will be called in the rest of this study as “SCHC-all” 

heuristic is presented in Fig. 1. 

 

 

 

 

 

 

Figure 1. The pseudocode of SCHC-all heuristic 

2.2. Further variants of SCHC 

Apart from the basic counting mechanism introduced in the previous section there are many other 

ways to count the steps during the search. This is a major source of flexibility in the method. For 

example, we can make it dependent on the quality of candidate solutions. Among possible 

implementations of this idea, in this study we focus our investigations on 3 variants of SCHC, which:  

1. Counts all moves (SCHC-all). 

2. Counts only accepted moves (SCHC-acp). 

3. Counts only improving moves (SCHC-imp). 

As two additional SCHC heuristics, SCHC-acp and SCHC-imp, are different from SCHC-all by their 

counting mechanisms only, we present the pseudocodes of just these mechanisms. They are depicted 

Produce an initial solution s 

Calculate an initial cost function C(s) 

Initial cost bound Bc:=C(s) 

Initial counter nc:=0 

Specify Lc 

Do until a chosen stopping condition 

   Construct a candidate solution s* 

   Calculate the candidate cost function C(s*) 

   If C(s*)<Bc or C(s*)C(s) 

      Then accept the candidate s:=s*; 

      Else reject the candidate s:=s 

   Increment the counter nc:=nc+1 

   If nc ≥ Lc 

      Then update the bound Bc:=C(s); 

           reset the counter nc:=0 



in Fig. 2 and 3, which contain only the parts different from Fig.1, while the main search loop written 

in the first 8 lines of Fig. 1 is the same for all variants. 

 

 

 

Figure 2. The counting/acceptance mechanism of the SCHC-acp heuristic 

 

 

 

Figure 3. The counting/acceptance mechanism of SCHC-imp heuristic 

Of course, the variety of potential counting mechanisms is not limited to the ones discussed above. 

For example, it is possible to develop an intermediate heuristic between SCHC-all and SCHC-acp. 

This can be done when incrementing the counter nc by 1 at all moves and by 2 at accepted moves. 

Also, we can count unaccepted moves or accepted worsening ones either alone or in any combination. 

Furthermore, if overlooking the single-parameter conception, we can propose SCHC allowing Lc to 

vary. For example, we can select two different values of the counter limit and interchange them 

during the search in order to adapt it to some particular search conditions, or we can increase Lc as the 

run progresses, for example, each time the search goes idle. Along with that, any alternative rule for 

the variation of Lc could be defined. Interestingly, the SCHC-acp with fixed Lc can be regarded as 

SCHC-all with variable Lc and vice versa. Finally, the whole counting mechanism can be completely 

transformed at any point of the search. Thus, the simplicity of the dynamic adjustment of the search 

process suggests that SCHC can serve as a good platform for experiments with different search 

patterns, for investigating the search behaviour and for developing self-adaptive heuristics. 

3. The experimental environment 

3.1. Exam timetabling problem 

The University Exam Timetabling Problem, on which we evaluate the proposed Step Counting Hill 

Climbing algorithm is a difficult NP-hard problem. It represents mathematically a real-world task of 

assigning university exams to timeslots and usually rooms. Generally, these problems contain a high 

variety of hard and soft constraints. The hard constraints should not be violated in a feasible solution, 

while the violations of the soft constraints should be minimised. The remaining number of the 

violations of soft constraints in a solution denotes its quality, measured by a cost function. The most 

common hard constraint is that no students should sit two exams in the same time. Other hard 

   If C(s*)<Bc or C(s*)C(s) 

      Then accept the candidate s:=s*; 

           increment the counter nc:=nc+1 

      Else reject the candidate s:=s 

   If nc ≥ Lc 

      Then update the bound Bc:=C(s); 

           reset the counter nc:=0 

   If C(s*)<C(s) 

      Then increment the counter nc:=nc+1 

   If C(s*)<Bc or C(s*)C(s) 

      Then accept the candidate s:=s*; 

      Else reject the candidate s:=s 

   If nc ≥ Lc 

      Then update the bound Bc:=C(s); 

           reset the counter nc:=0 



constraints reflect the limitations on room capacities, the utilisation of specific equipment, pre-defined 

sequences of exams, etc. The soft constraints represent students, examiners and administration 

preferences, such as time intervals between student’s exams, additional time for marking large exams, 

etc. 

Although the exam timetabling requirements are different in different institutions, in this study we 

use the specification given in the examination track of the Second International Timetabling 

Competition ITC2007 (http:www.cs.qub.ac.uk/itc2007/). This site contains a collection of 12 real-

world exam timetabling instances, which we use as benchmarks in our experiments with SCHC. Also, 

this site provides an on-line validator of the results and a complete description of the hard and soft 

constraints, which is also published in (McCollum et al 2010). The characteristics of the instances are 

presented in Table 2 in Section 4.3, in order to facilitate a study into relation between the problem 

characteristics and the results of our experiments. 

3.2. Application details 

In this study we adopted software, which was used in experiments with LAHC and described in 

(Burke and Bykov 2012). It is developed in Delphi 2007 and run on PC Intel Core i7-3820 3.6 GHz, 

32 GB RAM under OS Windows 7 64 bit. 

The search algorithm starts from the generation of a feasible initial solution. The exams are 

assigned to timeslots using the Saturation Degree graph colouring heuristic. At the same time the 

exams are randomly assigned to rooms. If the solution is not feasible, then some exams are 

rescheduled and the initialization procedure starts again. After the generation of the initial solution the 

heuristic search is run where at each iteration a candidate solution is produced using four types of 

moves: 

 Room move: a random exam is moved into a different, randomly chosen room within the 

same timeslot. 

 Shift move: a random exam is moved into different, randomly chosen timeslot and room. If 

this move generates an infeasible solution, the algorithm tries to restore the feasibility using 

the Kempe Chain procedure, which was studied for Graph Colouring Problem by Johnson et 

al (1991). 

 Swap move: the algorithm selects two random exams and swaps their timeslots. The rooms 

again are chosen randomly, while the Kempe Chains are used in case of infeasibility. 

 Slot move: two randomly chosen timeslots are interchanged including all their exams and 

rooms. 

These four types of moves are selected randomly in equal proportions. If the move produces an 

infeasible candidate, it is just rejected and a new iteration is started. The iteration loop is terminated 



when no further improvement is possible, i.e. at the convergence state. This state is detected when the 

number of non-improving (idle) moves since the last improvement reaches at least 1% of the total 

number of moves. Also the number of idle moves should be greater than 100 in order to prevent the 

termination at the beginning. The reason of the use of this stopping condition is discussed in the next 

section. 

4. The investigation into the properties of SCHC 

4.1 Cost drop diagrams with different Lc 

The study of the properties of SCHC starts from the analysis of the algorithmic response to the 

variation of its single parameter. Hence, in our first experiment, we investigate the algorithm’s cost 

drop diagrams. To produce these diagrams we run each variant of SCHC three times with different 

values of Lc = 2000, 10000 and 20000. Each second the current cost was depicted as a point on a plot 

where the horizontal axis represents the current time and the vertical axis represents the current cost. 

An example of such a diagram for Exam_1 problem produced by SCHC-all heuristic is given in Fig. 

4. The diagrams produced for other instances by all three studied SCHC heuristics are similar to the 

presented one. The difference between these diagrams is just in their time and cost scales and that will 

be discussed in detail in the next section.  

 

Figure 4. The cost drop diagram of SCHC-all heuristic 

 applied to Exam_1 problem with different values of Lc 

The diagram in this figure demonstrates two major properties of SCHC: 

1. This algorithm converges, i.e. the heuristic search procedure lowers the cost until a certain 

value, after which it does not provide any further improvement. This property is the same as 

for other local search methods including HC, SA, LAHC, etc. The presence of this property 

suggests the use of a common termination condition for such a technique; the search should 

be stopped exactly at the moment of convergence (the earlier or later termination reduces the 

effectiveness of the method (see Burke and Bykov (2012)). The identification of the 

convergence state can be done by a well-established procedure available in the literature 

described in the previous section, i.e. when the number of idle moves exceeds a given limit. 



2. The variation of Lc affects the convergence time. The larger the counter limit the slower the 

current cost drops and it takes longer time to reach the convergence state. Having a search 

that is automatically terminated at the point of convergence, a user can regulate the total 

search time by varying Lc. This property has also similarities with other methods. For 

example, in LAHC the history length also affects the convergence time while in SA the 

search time can be regulated by the user-defined cooling schedule. 

4.2 The comparison of SCHC with Hill Climbing 

An analysis of the second property of SCHC suggests that its search time can be prolonged to any 

extent with the increase of the counter limit, i.e. the value of Lc has no theoretical upper bound. 

However, it has the lower bound, which is 0. In this case the counter is updated at each iteration and 

all three proposed variants of the method degenerate into greedy Hill Climbing. The same effect will 

be achieved when assigning any negative value to Lc. This is the fastest variant of SCHC, so the 

increase of the counter limit does make sense only if this allows to achieve better final results than 

HC. 

To demonstrate that, in the next series of experiments we have applied the discussed above 

termination rule and run SCHC with Lc = 0, which is the equivalent to HC, and all three variants with 

Lc = 200. Each variant was run on each benchmark instance 50 times. The average results and run 

times are presented in Table 1. 

Table 1. The average results of SCHC with Lc = 0 and Lc = 200. 

Instance Lc = 0 (HC) 
Lc = 200 

SCHC-all SCHC-acp SCHC-imp 

Cost Time (sec) Cost Time (sec) Cost Time (sec) Cost Time (sec) 

Exam_1 6664 0.655 5961 1.27 4866 9.2 4777 11.1 

Exam_2 972 0.218 794 0.53 700 1.2 684 1.33 

Exam_3 12967 1.65 11082 3.18 10006 7.78 9867 8.34 

Exam_4 18183 0.494 16585 0.97 14673 14.9 14276 20.4 

Exam_5 4007 0.392 3444 0.99 3321 1.54 3220 2.0 

Exam_6 27456 0.116 26814 0.242 26457 0.75 26434 0.84 

Exam_7 6501 0.775 5811 1.69 5057 6.04 5012 6.6 

Exam_8 10115 0.414 9267 0.826 8086 7.08 7999 7.52 

Exam_9 1392 0.054 1284 0.097 1179 0.24 1176 0.26 

Exam_10 14070 0.1 13590 0.185 13415 0.344 13384 0.377 

Exam_11 37253 2.44 32305 5.06 29431 13.1 28956 14.0 

Exam_12 5707 0.024 5559 0.038 5436 0.074 5429 0.08 

In this table all results produced by either variant of SCHC with Lc = 200 are better than that of HC, 

although to a different extent. In SCHC-all the search time is approximately twice longer than in HC, 

which causes a modest improvement of the results. However, in SCHC-acp and SCHC-imp the 

increase of the search time is relatively higher and, correspondingly, the improvement of the results is 

even more distinct. 



4.3 The investigation into Lc-diagrams 

In our next series of experiments, the time-related properties of SCHC are investigated more deeply 

by analysing Lc-time and Lc-cost diagrams. To construct these diagrams we run the three studied 

variants of SCHC on each benchmark instance large number of times (over 1500) while randomly 

varying Lc. At each run the specified counter limit and the resulting run time and cost were recorded. 

After completing the calculations the experimental data was aggregated in a form of diagram. Fig. 5 

demonstrates the dependence of the run time on Lc for Exam_1 dataset solved by SCHC-all heuristic. 

Here each point represents the result of a single run, and its position corresponds to the specified Lc 

(in the horizontal axis) and the resulting run time T (in the vertical axis). 

 

Figure 5. The dependence of the run time on Lc for Exam_1 dataset with SCHC-all heuristic 

Although the points on this diagram are relatively scattered, which is typical to any stochastic method, 

their general distribution forms more or less a straight line. This suggests that the convergence time is 

approximately proportional to the value of the algorithmic parameter Lc. This property of SCHC is 

similar to the LAHC one studied by Burke and Bykov (2012), where the authors mentioned its high 

practical importance; i.e. when the angle coefficient (ratio T/Lc) of the distribution is known, the 

complete search procedure can be fitted into a given available time. The importance of the pre-

definition of the search time was underlined in (Burke et al 2004) especially for long-time searches, 

which are practiced in pursuit for a higher quality of results. 

Our further experiments reveal that the above property is common for SCHC. Although Fig. 5 

presents the linear behaviour of SCHC-all variant applied to Exam_1 instance, in all other diagrams 

for 3 variants of SCHC and 12 benchmark instances the points are also distributed linearly. The 

diagrams differentiate only by the angles of the produced distributions, i.e. the angle coefficients T/Lc 

are highly different for different instances and variants of SCHC. However, our preliminary 

observations have revealed certain tendencies in the values of these coefficients. In particular, the 

highest values are typical for SCHC-imp, slightly lower for SCHC-acp and much lower for SCHC-all 

heuristics. Considering a single variant of SCHC, a certain dependency of the coefficients on the size 



of a dataset can be also noticed. The general tendency is the following: the larger the instance, the 

larger the angle coefficient. The coefficients together with the main characteristic of our benchmark 

instances sorted by the number of exams are shown in Table 2. 

Table 2. The characteristics of the ITC2007 instances and their T/ Lc coefficients. 

Instance 
Number of 

exams 

Number of 

timeslots 

Number of 

rooms 
Density 

 Coefficient T/Lc (*10
-3

)  

SCHC-all SCHC-acp SCHC-imp 

Exam_12 78 12 50 0.18 0.105 0.23 0.28 

Exam_9 169 25 3 0.078 0.26 0.99 1.12 

Exam_10 214 32 48 0.05 0.47 1.17 1.35 

Exam_6 242 16 8 0.062 0.64 3.4 3.8 

Exam_4 273 21 1 0.15 1.72 56 73 

Exam_8 598 80 8 0.046 3.1 36 42 

Exam_1 607 54 7 0.5 4.2 59 65 

Exam_2 870 40 49 0.012 1.94 4.8 5.5 

Exam_3 934 36 48 0.026 8.7 29 31 

Exam_11 934 26 40 0.026 12.8 47 53 

Exam_5 1018 42 3 0.0087 3.5 7.1 7.6 

Exam_7 1096 80 15 0.019 6.3 28 33 

In this table, the proposed tendency of the dependence of T/Lc on the instance size can be observed for 

the majority of problems. However, there are a number of exceptions to this rule. For example, the 

coefficients for Exam_2 instance are much smaller than for the other problems of the same or even 

lower size. Another anomaly is in Exam_4 problem. This dataset has only one room, so the “room 

moves”, described in Section 3.2 are not applicable here. De-facto, we are dealing here with a 

different problem formulation. The oddity of this problem is also seen in its coefficients. The 

coefficient for SCHC-all fits into the above tendency, but coefficients for both SCHC-acp and SCHC-

imp are much higher than can be expected for a problem of this size. In addition, Exam_3 and 

Exam_11 instances represent the same dataset where Exam_11 is just a more constrained variant, i.e. 

it should be scheduled into a less number of timeslots and rooms. Correspondingly, we see the 

different values of T/Lc for these problems in Table 2. 

This tendency was also observed in LAHC by (Burke and Bykov 2012), who proposed that some 

other factors, together with the size of problems, could also affect the values of the angle coefficients, 

such as constraints, conflict density, etc. If assuming that the amount of these factors somehow 

defines the hardness of a problem, then the angle coefficient might reflect, to some extent, this “bulk” 

hardness. The investigation into the hardness of different problems represents an important area of 

combinatorial optimisation studies. There are a number of theoretical publications, where the authors 

investigate the hardness based on the analysis of problem characteristics, for example (Smith-Miles 

and Lopes 2012). However, the idea proposed here suggests an alternative way, i.e. to use a heuristic 

measure of the hardness of different problems. This means that a heuristic algorithm can serve not just 

for solving a problem, but also as a tool for measuring its hardness. 



To advocate the importance of the investigations into the hardness of optimisation problems we 

analyse Lc-cost diagrams of the datasets. These diagrams are plotted using the previous experimental 

data, which was already used in the diagram in Fig. 5, but now the diagrams show the dependence of 

the final cost on the specified Lc. The example of such a diagram for SCHC-all heuristic applied to 

Exam_1 problem is shown in Fig. 6. Here, once again, the result of each run is depicted as a point, 

whose horizontal coordinate represents Lc and the vertical coordinate represents the final cost. 

 

Figure 6. The dependence of the final cost on Lc for Exam_1 problem with SCHC-all heuristic 

This diagram demonstrates a clear dependence of the final cost on Lc and correspondingly on the total 

run time as the time is linearly dependent on Lc , i.e. the larger the counter limit (the longer the search) 

– the better the result. For example, despite the scatter, any, even the worst one, result with Lc = 50000 

is guaranteed better than any of the results with Lc = 5000. Obviously, this diagram confirms the 

opinion of Johnson et al (1989) for SA that “up to a certain point, it seems to be better to perform one 

long run than to take the best of a time-equivalent collection of shorter runs”. 

However, an opinion exactly opposite to the Johnson’s ones present in the literature. Many 

authors consider to be more effective to produce a number of short runs while employing various 

“multi-start” or “reheating” strategies and then to pick up the best result. For example, Boese et al 

(1994) indicated that “several studies have shown greedy multi-start superior to simulated annealing 

in terms of both solution quality and run time”. 

Having two so contrasting opinions from the trusted sources we can assume that the origin of such 

a dilemma is in the diversity of the studied problems. For example, in our exam timetabling collection 

the shape of Lc-cost diagrams is not the same for all benchmark datasets in contrast to the Lc-time 

diagrams, which are quite similar. As an illustration, Fig. 7 depicts the Lc-cost diagram for Exam_10 

problem, whose shape is quite different from Fig. 6.  



 

Figure 7. The dependence of the final cost on Lc for Exam_10 problem with SCHC-all heuristic 

Except for the very small values of Lc, this diagram does not expose a sensible dependence of the final 

cost on the value of the counter limit, i.e. the average and the best costs are almost the same either 

with smaller Lc or with larger Lc , although the latter causes a longer search time. In this situation, a 

more effective strategy is to produce multiple short runs and pick up the best result among them. 

However, the idea of the selection of the best search strategy by plotting the Lc-cost diagrams has 

no practical value. First, this diagram can be obtained only after running the algorithm a large number 

of times, which incurs huge computational expenses (in our experiments it took around 4 days of 

continuous runs for each diagram). Second, after all these runs the problem is already solved and the 

best search strategy is identified just post-factum. 

In this study we propose an idea of how to overcome this handicap and to bring the above 

reasoning close to the practice. Our hypothesis is that the research into the problem hardness could 

help us to make the choice of a suitable optimisation method with far less efforts. To support this 

hypothesis, we have analysed the Lc-cost diagrams for all our instances. They are not presented in this 

paper in order to avoid a cumbrousness but all of them are available in the journal’s online 

supplement (currently can be downloaded from http://www.yuribykov.com/SCHC_supplement/). The 

generated diagrams can be classified by their shapes into two groups. Diagrams, which follow the 

pattern shown in Fig. 6, are characteristic to 6 out of 12 datasets: Exam_1, Exam_3, Exam_5, Exam_7, 

Exam_8 and Exam_11. For the remaining 6 datasets: Exam_2, Exam_4, Exam_6, Exam_9, Exam_10 

and Exam_12 the shapes are close to the one given in Fig. 7. When comparing these two groups with 

Table 2, we can observe quite a strong correlation between the shape of the diagram and the value of 

T/Lc. The problems with the larger values of T/Lc (harder ones) have more distinct dependence of cost 

on Lc , i.e. the shapes are close to Fig. 6, while the diagrams with the shape shown in Fig. 7 are more 

typical to the problems with the smaller values of T/Lc , which are presumably less hard ones. It seems 

that the revealed connection between the shape of the Lc-cost diagram and the T/Lc coefficient is 

stronger than the connection between the shape of the diagram and the size of a problem. 



Although this study presents experiments with 12 instances and three SCHC heuristics only, the 

results have demonstrated that for at least these datasets we can already skip the awkward diagram 

building stage and identify the best search strategy based just on the value of T/Lc , which is 

obtainable by a single short-time run, i.e. if this value is relatively low, then a multistart approach is 

preferred. Otherwise, if this value is relatively high, a single long run will be more effective. Of 

course, the justification of this hypothesis and its practical implementation require much more 

extensive study on a larger number of benchmark problems and with other SCHC heuristics. 

However, our preliminary tests with the Travelling Salesman and Grid Scheduling problems have 

revealed the same algorithmic behaviour. Therefore, we believe that this represents a very promising 

direction of a future research. 

4.4 Cost drop diagrams of different variants of SCHC 

The question about the choice of the best search strategy is not limited to the above example. The 

investigations in this field are especially relevant to SCHC, which supposes a large number of variants 

and extensions where it is necessary to make a choice between them. In this situation it is important to 

estimate the difference in the search behaviour between different heuristics. Hence, the following 

series of experiments are designed to analyse search strategies employed by our three variants of 

SCHC. Similar to the first experiment we do that by plotting their cost drop diagrams. Moreover, 

taking into consideration the T/Lc coefficients we can now tune our SCHC heuristics in order to 

provide the same convergence time for each of the variants. The value of Lc can be calculated by 

dividing the required time by the T/Lc coefficient from Table 2. In our test, the three heuristics were 

run with Exam_1 dataset for 100 seconds, hence the calculated values of Lc were: SCHC-all: 23800, 

SCHC-acp: 1695 and SCHC-imp: 1538. The resulting cost drop diagrams are presented in Fig. 8. 

 

Figure 8. The cost drop diagrams of different SCHC heuristics with Exam_1 instance 

The analysis of these diagrams gives an idea about the difference in search strategies between these 

heuristics. SCHC-imp jumps quickly into the region of low cost solutions and then spends the most of 

the search time in this region while slowly improving the quality of result. The SCHC-acp heuristic 

does the same, but slightly smoother; it goes into the region of low cost solutions more slowly and 



spends less time staying there. In contrast, the SCHC-all heuristic pays much more attention to 

exploring the high cost solutions. It spends in that region about a half of the search time while the 

time spent for the final improvement is much shorter. 

The convergence time in these diagrams is the same for each heuristic so the quality of a final 

result might be dependent on how the particular search strategy fits into the problem’s landscape. Our 

experiments presented in the next section show that there is no general preference to any of the 

heuristics. Their performance is highly problem-dependent and different problems will have different 

best performed strategy. However, together with the shapes of the diagrams some other internal 

properties of these variants could affect their performance on different instances. This issue warrants a 

further investigation. 

5. A Comparison of SCHC with other methods 

The developed variants of SCHC were compared with Simulated Annealing, Great Deluge and Late 

Acceptance Hill Climbing algorithms. Firstly we test the performance of these methods on original 

ITC2007 problems. At second, we test the reliability of these methods using an artificially created 

non-linear optimisation problem. 

5.1 A performance test 

In Section 4.3 we have demonstrated that the performance of SCHC can be represented in the form of 

time-cost diagrams depicted in Fig. 6 and 7. Such diagrams show that for some problems there could 

be an evident dependence of the quality of results on the total search time. Moreover, the final results 

produced by SCHC even in the same CPU time are scattered within certain cost interval. Obviously a 

good comparison method should take into consideration such a behaviour of SCHC as well as the 

behaviour of the other methods. 

To investigate that, we repeated the experiment described in Section 4.3 with the methods selected for 

the comparison, i.e. we run them many times (around 500) while randomly varying their time-related 

parameters: cooling factor in SA, decay rate in GDA and history length in LAHC. The random 

variation of the parameters was organised in such a way, that we got uniform time-cost diagrams 

similar to the ones presented in Fig. 6 and 7. An interested reader can found these diagrams for all 

benchmark datasets produced by SA together with the ones for SCHC in the journal online 

supplement. A visual comparison of these diagrams indicates that for each dataset the diagram shapes 

of SA and SCHC are quite similar, which implies the similar behaviour of these methods. The same is 

also relevant to GDA and LAHC. As an illustration, the time-cost diagrams produced by SA for 

Exam_1 and Exam_10 problems are presented in Fig. 9 and 10. When comparing them with Fig. 6 

and 7 respectively we can see that for the same instances the shapes of the diagrams are very similar 

even being produced by different methods. 



 

Figure 9. The time-cost diagram produced by SA for Exam_1 problem 

 

Figure 10. The time-cost diagram produced by SA for Exam_10 problem 

When different algorithms show similar behaviour in respect of computing time the differences 

between them should be evaluated to make conclusions about their performance. To rely only on the 

visual comparison of noisy curves is not satisfactory, so in order to get a more detailed information 

we apply a “cut-off” approach proposed in (Burke and Bykov 2012). To explain this method we 

divided the diagrams in Fig. 9 and 10 by vertical gridlines into equal segments of 20 seconds length, 

which gives in total 10 segments. When observing these segments separately, the distribution of 

points within each of them gives an idea about the performance of the method being run within the 

corresponding time boundaries. For example, the points in segment (160,180) in Figure 9 show that 

SA being run on Exam_1 problem for 160-180 seconds is able to achieve final cost values 

approximately between 3850 and 4150, which is on average 4000. The cut-off approach employs a 

usual evaluation of average costs but takes into account the computing time. In this method the 

average performance of an algorithm is represented by a set of average values calculated for all 

segments. This enables the sets produced by different method to be compared in a table.  

In our experiments, we have produced the cut-off sets for SA, GDA, LAHC and the three studied 

variants of SCHC for all our benchmark instances. To ensure the adequate performance of SA we use 

general suggestions from the literature for its parameterization. We employ a geometric cooling 

schedule while the initial temperature is set up in such a way so that in the initial phase of the search 

the algorithm accepts 85% of non-improving moves. In contrast, GDA, LAHC and SCHC do not 



require any special initialization procedure. Table 3 presents the resulting cut-offs for Exam_1 dataset, 

where the best results over 6 heuristics are highlighted in bold. 

Table 3. The cut-offs for SA, GDA, LAHC and SCHC (all, acp, imp) for Exam_1 dataset. 

CPU time  

(seconds) 
SA GDA LAHC SCHC-all SCHC-acp SCHC-imp 

0-20 4879 5224 4640 4646 4656 4711 

20-40 4513 4804 4305 4330 4276 4286 

40-60 4342 4593 4190 4150 4147 4129 

60-80 4228 4496 4084 4061 4066 4053 

80-100 4175 4439 4029 4029 4007 3985 

100-120 4109 4358 3986 3978 3927 3952 

120-140 4087 4335 3939 3924 3906 3900 

140-160 4041 4300 3912 3890 3872 3863 

160-180 3982 4251 3899 3869 3851 3859 

180-200 3996 4213 3864 3852 3809 3819 

This table demonstrates the clear superiority of two variants of SCHC (acp and imp) over the other 

methods on runs longer than 20 seconds. On shorter runs LAHC performs better, but both LAHC and 

SCHC-all slightly underperform on the longer runs. Nevertheless, SA performs much inferior to both 

LAHC and all variants of SCHC on the runs of any length. Finally, GDA has the worst performance 

than any other method.  

We produced the same tables for all benchmark instances, which show quite problem-dependent 

performance of different methods. They are not included in the paper, but are available in the online 

supplement. To give an idea about this performance, in Table 4 a compilation of the collection of cut-

offs for all datasets for the middle interval of 100-120 seconds is presented. 

Table 4. The time cut-offs for SA, LAHC and SCHC (all, acp, imp) for other ITC2007 datasets. 

Instance SA GDA LAHC SCHC-all SCHC-acp SCHC-imp 

Exam_2 392 436 405 404 401 405 

Exam_3 8177 8750 7967 7945 7916 7987 

Exam_4 12982 13496 12705 12746 13297 13291 

Exam_5 2598 2903 2591 2581 2569 2575 

Exam_6 25445 25566 25388 25455 25447 25465 

Exam_7 4015 4334 3877 3905 3859 3855 

Exam_8 7119 7688 6901 6899 6951 6916 

Exam_9 958 999 958 951 953 944 

Exam_10 13008 13081 12996 12992 12985 12995 

Exam_11 25525 26926 24782 24535 24825 24791 

Exam_12 5156 5216 5189 5179 5190 5195 

In the given running time the three variants of SCHC have produced in total 8 over 12 best results, 

LAHC has got just 2 overall best results, but for 7 problems it performs better than at least one variant 

of SCHC. The general performance of SA is considerably weaker, namely on 8 problems its results 

are worse than results of either LAHC or SCHC and only on two instances SA performs the best. 

Once again, GDA has the worst performance over six methods. 



To further study the general tendencies in the performance of the compared methods on different 

datasets we present another compilation of the cut-off results for all instances. For each instance we 

count the number of segments over the whole time interval where each method performs the best. 

Table 5 presents such numbers for all 12 datasets, where the largest numbers of the "winning" 

segments are highlighted by bold. 

 Table 5. The numbers of winning segments of SA, LAHC and SCHC (all, acp, imp) for all datasets. 

Instance SA GDA LAHC SCHC-all SCHC-acp SCHC-imp 

Exam_1 0 0 1 0 4 5 

Exam_2 9 0 0 0 1 0 

Exam_3 0 0 0 4 3 3 

Exam_4 1 0 3 6 0 0 

Exam_5 0 0 0 1 7 3 

Exam_6 0 0 2 7 2 0 

Exam_7 0 0 1 0 6 4 

Exam_8 0 0 4 7 0 0 

Exam_9 0 0 0 1 1 8 

Exam_10 0 0 0 1 5 4 

Exam_11 0 0 1 9 0 0 

Exam_12 9 0 1 0 0 0 

The analysis of this table confirms a distinctive good performance of SA on Exam_2 and 

Exam_12 problems. In both cases it wins in 9 over 10 time segments. For other 10 problems different 

variants of SCHC perform the best across segments. For example, SCHC-all has a distinctive 

performance on Exam_6, Exam_8 and Exam_11 problems, SCHC-imp has a distinctive performance 

on Exam_9, while SCHC-acp and SCHC-imp both have a good performance on Exam_1, Exam_7 and 

Exam_10 problems. Finally, on Exam_3 all three variants of SCHC have approximately the same 

performance. 

In our analysis, of a particular interest is the comparison of the results given in Tables 4 and 5 

with the values of T/Lc in Table 2, which seems to reflect the problem hardness. First, SCHC wins on 

all 6 relatively harder problems. Second, SA shows a good performance just on datasets that are to 

some extent uncommon. For example: Exam_12 is exceptionally small problem; Exam_2 problem has 

disproportionally low values of T/Lc (see Section 4.3). The oddity of Exam_4 problem was also 

discussed previously. It could happen that the performance of SCHC with the single-room problem is 

more dependent on the shape of cost-drop diagram (see Fig. 8) than with other ones. 

5.2 A reliability test 

In their study of the LAHC algorithm Burke and Bykov (2012) concluded that the absence of a 

cooling schedule made LAHC more reliable than the cooling schedule based local search methods. 

This was demonstrated by evaluating the performance of different algorithms on a specially designed 

artificial problem whose cost function is non-linearly rescaled. This approach is adopted for the 

evaluation of the SCHC algorithm. In this series of experiments, Exam_1 dataset was used with 



transformation (2) applied to its cost function. Thus, in the new problem, the cost function C
res

 is 

represented as a cubical polynomial of the original cost C. 

C
res

 = C
3 
– 48000*C

2 
+ 770*10

6
*C (2) 

Expression (2) represents a monotonically increasing function because its first derivative is a 

quadratic polynomial with a positive first coefficient and a negative discriminant, and therefore, this 

derivative is always positive. Hence, all original local and global optima are preserved in the new 

problem, i.e. when solution A has a higher cost than solution B in the original problem, it holds true in 

the new problem also. The new and the original problems are the same from the point of view of 

dominance relations between solutions, while the rescaling differentiates only the distances between 

solutions (usually called as "delta costs"). Consequently, rescaling expressed by (2) affects the 

performance of algorithms which evaluate delta costs, such algorithms are SA or GDA. However, it 

has no effect on algorithms which employ the ranking of solutions such as HC or LAHC. With the 

same initial randomization, the search paths of these algorithms is the same for the original and the 

rescaled problems and they will achieve the same final results. The proposed SCHC is also based on 

the solution ranking and does not evaluate delta costs (see pseudocodes in Fig. 1, 2 and 3), therefore a 

monotonic rescaling of the cost function should not affect the performance of the algorithm. 

To verify empirically this proposition we run the same experiment as in Section 5.1 on the 

rescaled problem. Apart from the new problem formulation, all other experimental conditions remain 

the same as explained. Only the initial temperature of SA was tuned again in order to comply with the 

literature suggestion that there is 85% of non-improving moves at the beginning. The results of this 

test are shown in Table 6. To simplify an assessment of these results we present in this table their non-

rescaled values. 

Table 6. The cut-offs for SA, GDA, LAHC and SCHC (all, acp, imp) for Exam_1 dataset with the 

rescaled cost function. 

CPU time 

(seconds) 
SA GDA LAHC SCHC-all SCHC-acp SCHC-imp 

0-20 5487 5526 4636 4671 4657 4663 

20-40 5227 5089 4307 4322 4277 4285 

40-60 5091 4893 4152 4138 4116 4096 

60-80 5013 4792 4073 4071 4029 4033 

80-100 4977 4773 4003 4027 3958 3943 

100-120 4929 4710 3953 3973 3922 3934 

120-140 4907 4604 3921 3910 3885 3892 

140-160 4892 4574 3891 3875 3862 3858 

160-180 4852 4495 3854 3864 3828 3839 

180-200 4845 4445 3828 3827 3794 3808 

The results confirm that the rescaling given by (2) considerably deteriorates the performance of SA 

and to the less extent GDA but does not affect any studied variant of SCHC in the same way as 

LAHC. This example supports a contention that SCHC is more reliable than SA. In this experiment 



we resort to a highly non-linear artificial problem specially designed for the purpose of enhancing the 

effect of the non-linearity on the search process. However, when the non-linearity of a problem is not 

so distinct, the deterioration of the SA performance might be less clear, although it is still present. If 

we assume that the presence of a high number of hard constraints, which exclude infeasible solutions 

from the search space, somehow provides a non-linear effect, then this could explain the 

underperformance of SA also on the original problems. 

6. Comparison with published results 

To complete the evaluation of SCHC performance we compare its results with the actual best 

ITC2007 results and with the results presented in pre-competition (Muller 2008) and post-competition 

publications: (McCollum et al 2009) and (Gogos et al 2010). In this series of experiments, we respect 

the ITC2007 restrictions on the maximum run time and the number of independent runs. The 

maximum run time was calculated using the ITC2007 benchmarking application; for our experimental 

PC it was 204 seconds. Also, the best result was selected over 10 independent runs on each 

benchmark problem. Our best results together with the published ones are presented in Table 7 where 

the best results are highlighted in bold. All our best results are verified using the on-line validator 

provided by ITC2007 organizers. 

In this comparison, we use SCHC-acp variant because in our previous experiments it has shown the 

strongest performance (see Table 4). To provide the convergence of the algorithm exactly in the given 

time, the value of Lc was calculated for each instance based on the values of T/Lc from Table 2. In 

such a way we employ some beforehand collected information about the algorithmic behaviour on 

benchmark instances and therefore we do not claim that this series of experiments mimics our 

participation in the competition. The most of the post-competition studies do not pursue that goal 

either which is in line with the discussion by McCollum et al (2009) that adherence to the competition 

rules in any post-competition publication is rather artificial because many additional factors should be 

taken into account. The results of Gogos et al (2010) can be considered as the best up to date; 

however the authors indicated that they were produced "under no hardware or time limit", i.e. without 

following ITC2007 rules at all. Hence, in this comparison, we have an advantageous position over the 

actual ITC2007 results, the same position with Muller (2008) and McCollum et.al. (2009) but the 

position of Gogos et al (2010) is more advantageous than ours. 



Table 7. The comparison of our best results with ITC2007 and post-competition ones. 

Instance 
ITC2007 web 

best 
Muller 2008 

McCollum et 

al 2009 

Gogos et al 

2010 
SCHC-acp 

Exam_1 4370 4356 4633 4128 3647 

Exam_2 400 390 405 380 385 

Exam_3 10049 9568 9064 7769 7487 

Exam_4 18141 16591 15663 13103 11779 

Exam_5 2988 2941 3402 2513 2447 

Exam_6 26585 25775 25880 25330 25210 

Exam_7 4213 4088 4037 3537 3563 

Exam_8 7742 7565 7461 7087 6614 

Exam_9 1030 - 1071 913 924 

Exam_10 14778 - 14374 13053 12931 

Exam_11 34129 - 29180 24369 23784 

Exam_12 5264 - 5693 5095 5097 

This table once again demonstrates the strong performance of our proposed method. For 8 benchmark 

problems SCHC has achieved results better than the best previously published ones. Although for 4 

remaining problems our results are inferior to Gogos et al (2010), they are still very competitive. It is 

interesting to observe that Exam_2 and Exam_12 are among the instances on which the method by 

Gogos et al (2010) performed better, which complies with the discussions provided in the previous 

sections. 

7. Conclusions 

In this study we proposed a new local search algorithm: SCHC (Step Counting Hill Climbing) and 

investigated its behaviour. The exam timetabling problem was chosen as benchmark. Our experiments 

have revealed that SCHC shares a number of properties with LAHC: 

 SCHC has a strong performance on the benchmark problems. 

 SCHC operates with a single input parameter, counter limit Lc, which affects the 

search/convergence time. 

 The search time is approximately proportional to Lc and the coefficient of proportionality is 

usually larger for the problems, which seemed to be harder. 

 SCHC does not employ any type of cooling schedule. 

 SCHC is more reliable than cooling schedule based methods (e.g. SA), i.e. it works well on 

specific problems where SA fails to produce good results. 

However, SCHC has several additional distinct properties: 

 The counting mechanism can be implemented in a variety of ways. So, for each particular 

problem we can find the most suitable variant of SCHC. 

 The counting mechanism in SCHC is very flexible. During the search the value of the counter 

limit can be easily adjusted at any iteration to respond to the obtained results. Moreover, the 



whole counting mechanism can be changed throughout the search. Therefore, SCHC can 

serve as a good platform for developing various self-adaptive methods. 

 SCHC is a very simple and transparent method, easy to understand and implement. Hence, it 

has a high potential in the education area. By studying SCHC as a first metaheuristic, the 

students could quicker get into the ABC’s of search methodologies. For this purpose we have 

included SCHC into our "Multi-Heuristic Solver" software application, which is available for 

download from http://www.yuribykov.com/MHsolver/. 

The main emphasis of this paper is on the investigation into the behaviour of the proposed algorithm. 

Some observed dependencies in this behaviour motivated the hypothesis that in addition to the solving 

optimisation problems SCHC can be also used as a tool for heuristic measuring their hardness. We 

have proposed that the research into the hardness of different problems might help to identify an 

optimal search strategy for a particular dataset. The results of our experiments provide some empirical 

support for our ideas. However, the justification of these hypotheses requires further and much wider 

investigations with different problems and variants of SCHC. Apart from that, the research into the 

further properties of SCHC, its behaviour with different problems and the modifications of this 

method (especially the self-adaptive ones) as well, as its practical and educational applications is also 

seen as a quite interesting subject of a future work. 

Acknowledgements 

The work described in this paper was carried out under a grant (EP/F033214/1) awarded by the UK 

Engineering and Physical Sciences Research Council (EPSRC). 

References 

Abuhamdah, A. (2010) Experimental result of late acceptance randomized descent algorithm for 

solving course timetabling problems. Internat. J. of Comput. Sci. and Network Security 10, 192-200. 

Abdullah, S., M. Alzaqebah (2014) An adaptive artificial bee colony and late acceptance hill-climbing 

algorithm for examination timetabling. Journal of Scheduling 17, 249-262. 

Boese, K. D., A. B. Kahng, S. Muddu (1994) A new adaptive multi-start technique for combinatorial 

global optimizations. Operations Research Letters 16, 101-113. 

Burke, E. K., Y. Bykov, J. Newall, S. Petrovic (2004) A time-predefined local search approach to 

exam timetabling problems. IIE Trans. 36(6) 509-528. 

Burke E. K., Y. Bykov (2008) A late acceptance strategy in Hill-Climbing for exam timetabling 

problems. Proceedings of the 7th International Conference on the Practice and Theory of Automated 

Timetabling (PATAT2008), Montreal, Canada. 



Burke E. K., Y. Bykov (2012) The Late Acceptance Hill Climbing heuristic. Technical report CSM-

192, Computing Science and Mathematics, University of Stirling, UK. 

Burke, E.K., B. McColumn, A. Meisels, S. Petrovic, R. Qu (2007) A graph-based hyper-heuristic for 

educational timetabling problems. European Journal of Operational Research 176, 177-192. 

Bykov Y., S. Petrovic. (2013) An initial study of a novel Step Counting Hill Climbing heuristic 

applied to timetabling problems. Proceedings of 6
th
 Multidisciplinary International Scheduling 

Conference (MISTA 2013), Gent, Belgium. 

Carter, M.W., G. Laporte, S. Lee (1996) Examination timetabling: algorithmic strategies and 

applications. Journal of the Operational Research Society, 47 373-383. 

Di Gaspero, L., A. Schaerf (2001) Tabu search techniques for examination timetabling. Practice and 

Theory of Automated Timetabling III, Lecture Notes in Computer Science 2079, 104-117. 

Erben, W. (2001) A grouping genetic algorithm for graph colouring and exam timetabling. Practice 

and Theory of Automated Timetabling III, Lecture Notes in Computer Science 2079, 132-156. 

Goerler, A., F. Schulte, S. Voss (2013) An application of Late Acceptance Hill Climbing to the 

Traveling Purchaser Problem. Computational Logistics, Lecture Notes in Computer Science 8197, 

173-183. 

Gogos, C., G. Goulas, P. Alefragis, V. Kolonias, E. Housos. 2010. Distributed Scatter Search for the 

examination timetabling problem. PATAT 2010 Proceedings of the 8th International Conference on 

the Practice and Theory of Automated Timetabling, Belfast, UK, August 2010. 

Jackson W., E. Özcan, J. H. Drake (2013) Late Acceptance-based Selection Hyper-heuristics for 

Cross-domain Heuristic Search. The 13th Annual Workshop on Computational Intelligence, to 

appear. 

Johnson, D. S., C. R. Aragon, L. A. McGeoch, C. Schevon (1989) Optimization by simulated 

annealing: an experimental evaluation; part I, graph partitioning. Oper. Res. 37(3), 865-892. 

Johnson, D. S., C. R. Aragon, L. A. McGeoch, C. Schevon (1991) Optimization by simulated 

annealing: an experimental evaluation; part II, graph coloring and number partitioning. Oper. Res. 

39(3), 378-406. 

McCollum, B., P. J. McMullan, A. J. Parkes, E. K. Burke, S. Abdullah (2009) An extended great 

deluge approach to the examination timetabling problem. Proceedings of the 4th Multidisciplinary 

International Conference on Scheduling: Theory and Applications (MISTA09), Dublin, Ireland, 424-

434. 



McCollum, B., A. Schaerf, B. Paechter, P. J. McMullan, R. Lewis, A. J. Parkes, L. Di Gaspero, E. K. 

Burke, R. Qu (2010) Setting the research agenda in automated timetabling: The second international 

timetabling competition, INFORMS Journal on Computing 22, 120-130. 

Merlot, L., N. Boland, B. Hughes, P. Stuckey (2003) A hybrid algorithm for the examination 

timetabling problem. Practice and Theory of Automated Timetabling IV, Lecture Notes in Computer 

Science 2740, 207-231. 

Muller, T. (2008) ITC2007 solver description: a hybrid approach. Proceedings of the 7th International 

Conference on the Practice and Theory of Automated Timetabling (PATAT 2008), Montreal, Canada.  

Özcan E., Y. Bykov, M. Birben and E. K. Burke. (2009) Examination Timetabling using Late 

Acceptance Hyper-heuristics. Proceedings of the 2009 IEEE Congress on Evolutionary Computation 

(CEC’09), Trondheim, Norway.  

Qu, R., E.K. Burke, B. McCollum, L.T.G. Merlot, S.Y. Lee (2009) A survey of search methodologies 

and automated system development for examination timetabling. Journal of Scheduling 12, 55-89. 

Petrovic, S., Y. Bykov ( 2003) A multiobjective optimisation technique for exam timetabling based on 

trajectories. Practice and Theory of Automated Timetabling IV, Lecture Notes in Computer Science 

2740, 179-192. 

Petrovic, S., V.Patel, Y. Young (2005) University Timetabling with Fuzzy Constraints. Practice and 

Theory of Automated Timetabling V, Lecture Notes in Computer Science 3616. 

Schaerf, A. (1999) A survey of automated timetabling. Artificial Intelligence Review 13, 87-127. 

Smith-Miles, K., L. Lopes (2012) Measuring instance difficulty for combinatorial optimization 

problems. Computers and Operations Research 39, 875-889 

Swan, J., J. Drake, E. Ozcan, J. Goulding, J.Woodward (2013) A comparison of acceptance criteria 

for the Daily Car-Pooling problem. Computer and Information Sciences III, 477-483. 

Thompson, J.M., K.A. Dowsland (1996) Variants of simulated annealing for the examination 

timetabling problem. Annals of Operations Research 63, 105-128. 

Tierney K. (2013) Late Acceptance Hill Climbing for the Liner Shipping Fleet Repositioning. 

Proceedings of the 14th EU/ME Workshop, 21-27. 

Verstichel J., G. Vanden Berghe (2009) A late acceptance algorithm for the lock scheduling problem. 

Logistic Management 2009 (5), 457-478. 

Vancroonenburg W., T. Wauters (2013) Extending the late acceptance metaheuristic for multi-

objective optimization. Proceedings of the 6
th
 Multidisciplinary International Scheduling conference: 

Theory & Applications (MISTA2013). Ghent, Belgium. 



Yuan B., C. Zhang, X. Shao (2013) A late acceptance hill-climbing algorithm for balancing two-sided 

assembly lines with multiple constraints. Journal of Intelligent Manufacturing. Published online. April 

2013. 


