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ABSTRACT

We consider the effects of large structures in the Universe on the Hubble diagram. This
problem is treated non-linearly by considering a Swiss Cheese model of the Universe
in which under-dense voids are represented as negatively curved regions of space-time.
Exact expressions for luminosity distances and redshifts are used to investigate the
non-linear effects of structure on the magnitudes of astrophysical sources. It is found
that the intervening voids we consider, between the observer and source, produce
changes in apparent magnitude of less than 0.012. Sources inside voids, however, can
be affected considerably at redshifts below z ~ 0.5. By averaging observable quantities
over many randomly generated distributions of voids we find that the presence of these
structures has the effect of introducing a dispersion around the mean, which itself can
be displaced the background value. Observers in an inhomogeneous universe, who
take averages of observables along many different lines of sight, may then introduce
systematic biases, and under-estimate errors, if these effects are not taken into account.
Estimates of the potential size of these effects are made using data from simulated

large-scale structure.

Key words: cosmology: theory — relativity — large scale structure of Universe —
supernovae: general — cosmological parameters

1 INTRODUCTION

Hubble diagrams play a key role in our understanding of
the evolution of the Universe. It was Hubble diagrams that
first led to widespread acknowledgement of the expanding
Universe paradigm, and today, in the form of type Ia su-
pernova observations, they provide important evidence for
the Dark Energy that is at the heart of the ACDM model
of the Universe. Ongoing and future projects aim to collect
more and more data in order to reconstruct the expansion
history of the Universe to ever increasing accuracy, and to
test hypotheses about the nature of Dark Energy itself.
Given the extraordinary implications of the supernova
results, and the large amounts of resources that are being
invested in them, it seems prudent to make sure we fully
understand all physical effects that may bias, or influence,
the conclusions which are drawn from them. To this end, we
perform a detailed, and fully non-linear, investigation of the
effects of the simplest large structures on Hubble diagrams.
That structure exists on small scales in the Universe
is, of course, indisputable, but while some studies of galaxy
surveys have pointed toward homogeneity on scales of ~

70h71Mpc , others have concluded that

the largest structures SO far detected are limited only by the

size of the surveys that found them (Sylos Labini et al![2008,
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JE The apparent recent detection of an anomalously

large local bulk flow (Watkins, Feldman & Hudson 2008),

as well as the existence of unexpected features in the CMB
(Land & Magueijd [2005; [Inoue & SilK [2006), and the CMB
dipole itself, also hint at the possibility of large structures
existing in the Universe. Here we do not wish to debate the
evidence for or against structure existing on different scales,
but rather to calculate the effects that different structures
have on Hubble diagrams.

The majority of studies in this area have been
performed within the context of linear perturbation

theory (Dyer & Roeder [1972, 11973, [1974; |Sasaki [1987;
Futamase & Sasaki m Kasai, Futam Takahar

11990; M 11996; M Lm
uﬁﬂ]; Bonvin, Durrer & Ahge Gaspari ni m,
Hui & Qrggnd u)ﬂﬂ) Here we treat the problem non-
perturbatively by modelling the Universe as a Friedmann-
Robertson-Walker (FRW) background, with spherical
sections removed and replaced by regions of Lemaitre-
Tolman—Bond LTB) space-time (Lemaitre 1933; [Tolmarl
). With an appropriate choice of boundary
COIldlthIlS between the FRW and LTB regions, the resulting
geometry is an exact solution of Einstein’s equations. Such
a solution is often referred to as a Swiss Cheese universe,
although the replaced regions here are not completely
empty. This method should be considered complimentary
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to studies performed in the linear frame-work: Both require
some degree of approximation, but different types of
approximation in each case.

The Swiss Cheese approach has a number of draw-
backs, but its great benefit is that it allows calcu-
lations to be performed beyond the linear level. As
the solution is exact, and as it is possible to de-
rive simple expressions for redshift and luminosity dis-
tances within it, all higher order and non-perturbative ef-
fects are automatically included. Luminosity distances in
LTB Swiss Cheese universes have been studied previously
by Biswas & Notari (2008); Biswas, Mansouri & Notari
(2000); Brouzakis, Tetradis & Tzavara (2007, 12008) and
Marra et all (2007). We will compare our results with these
studies as we proceed.

It has been suggested in the literature that non-linear
effects from large-scale inhomogeneities may be responsible
for the apparent detection of Dark Energy (see, for example,
Mattsson (2007)). Our goal here is not to construct a situa-
tion in which one can fit for the observations without Dark
Energy, but rather to attempt to calculate the effect of inho-
mogeneities on Hubble diagrams for the purposes of better
understanding their influence on parameter estimation, or,
conversely, on constraining structure, if cosmological param-
eters are deemed to be known from elsewhere. Our results
indicate that the type of structures expected to exist in the
Universe are highly unlikely to be capable of successfully
mimicking Dark Energy.

In section [2l we introduce the theory. We will briefly dis-
cuss the LTB solution, and how it can be embedded into an
FRW universe. We then go on to a more detailed discussion
of redshifts and luminosity distances in the resulting space-
time. This is done by considering bundles of null geodesics,
and the Sachs optical equations.

In section [3] we investigate the effect of a single large
void in the Universe on luminosity distances as functions of
redshift. Measures of distance to objects on the other side
of the void appear largely unaffected by its presence, with
changes in apparent magnitude of less than 0.012, for the
voids we consider. This is consistent with linear treatments,
such as that of|[Frieman (1996), as well as previous non-linear
treatments, such as that of |IBrouzakis, Tetradis & Tzavara
(2007, 2008). Observations of objects that reside inside the
void, however, can be considerably affected by the void’s
presence, with shifts in apparent magnitude of up to 0.2 be-
ing easily obtainable at low redshifts (z < 0.2). At higher
redshifts the effect on objects inside the void drops off, and
becomes sub-dominant compared to the small effect of look-
ing through them. We present results for the change in lumi-
nosity distance that can result from voids of varying depths,
widths and at different redshifts. Results here are limited to
the case of looking through the centre of voids.

Section [l contains an analysis of the effect of looking
through many voids in a row. In this section the voids are
drawn from idealised distributions. Examples are presented,
and the case of averaging over many lines of sight is anal-
ysed. Such averaging of luminosity distances, for specified
geometries, appears to us to be a preferable, if more cum-
bersome method, than averaging the mass distribution, and
calculating a single luminosity distance in the corresponding
geometry. We present results for the dispersion, and devia-
tion, of Hubble diagrams that results from different distribu-

tions of voids. As the considerations of single voids suggests,
the effect of objects located inside voids contributes most of
the dispersion at low redshifts, while at high redshifts the
dispersion is mainly due to the cumulative effect of looking
through voids.

In section [flwe make an attempt at linking the idealised
cosmologies, considered in previous sections, to some more
realistic distributions of matter. The idea here is that instead
of taking purely idealised distributions of voids, we take den-
sity profiles from simulated large-scale structure, and then
use these distributions to motivate our Swiss Cheese mod-
els. To achieve this we consider simulated structure gener-
ated from the Millennium Simulation. These profiles are pro-
duced by a process of averaging over different length scales.
The profiles obtained are then idealised, so as to fit into
the framework developed in the preceding sections, and the
results on Hubble diagrams are calculated. This method is
not proposed as a way of superseding the linear treatment
of distance measures within these space-times (which would
manifestly be applicable here, as they are created in the lin-
ear regime). Rather, we intend it to be a method of obtaining
realistic distributions of voids from a well motivated source.

Finally, in section [l we conclude. The Appendix shows
an interesting example of another case that can be solved
for exactly.

2 SWISS CHEESE COSMOLOGY

The cosmology we consider here is an FRW background with
spherical regions removed and replaced with LTB space-
times, in order to model inhomogeneities. Sub-sections 2T}
23] recap results on LTB space-times, boundary conditions
for embedding LTB patches into FRW, and expressions for
null geodesics and redshifts in LTB. Sub-section [2.4] then
contains a discussion of luminosity distances in these space-
times, for both observer and source away from the centre of
symmetry. The FRW and observer centred limits of these
expressions are found in sub-section

2.1 The LTB Solution

The LTB line-element is given by (Lemaitre [1933; [Tolman
1934; [Bondi 11947)

R/2
(1—Fkr2)
where R = R(t,r), k = k(r) and prime denotes partial dif-

ferentiation with respect to r. For A = 0 and £ < 0 we can
write R in parametric form as

ds® = —dt* + dr® + R*dQ°, (1)

m(1 — cosh ©)
Ro= T @
_ m(sinh 20 — 20)
t—to = 2(—kr2)3/2 ®3)

where to = to(r) and m = m(r). Exact solutions exist for
A # 0, and are given in terms of elliptic functions by |Zecca
(1991)). It is also possible to solve for the case with k > 0,
but this will not be required here. The geometry () is an
exact solution of Einstein’s equations in the presence of a
perfect fluid of pressureless dust with energy density
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Gauge freedoms allow us to transform into a coordinate sys-
tem in which to = constant, without loss of generality. The
LTB space-time is then completely specified by a choice of
k(r) and m(r), and reduces to FRW in the limit k(r) and
m(r) =constant. We will refer to k(r) as the spatial curva-
ture and m(r) as the gravitational mass distribution.

2.2 Boundary Conditions

We now wish to replace regions of FRW with the LTB ge-
ometry described above. To do this we need the conditions

required to match a manifold with metric () to one with
FRW metric

ds® = —dt* + a*(t) (dm2 + f? (x)dQ2) (5)

at a boundary of constant r = z = ¥. The Darmois junc-
tion conditions imply that the matching is a solution of
Einstein’s equations if the first and second fundamental
form on the hyper-surface at 3 are identical on either side
(Bonnor & Vickers [1981). This corresponds to the two con-
ditions (Ribeird1992)

Rls =afls (6)

\/1—]437’2|2 :f/|2. (7)

It can be shown that equations (6) and (@) imply that the
‘Bondi mass’ inside the excised region should equal the mass
of the FRW region that was removed (Ribeirg [1992):

mETB) 47r/pR/R2d7'
= 47T/pa3f2f'd:c =drpa®f? = m(FRW)7 (8)
where mET5) in the mass from Eq. ). These conditions

can be verified to describe the requirement that the LTB
metric should reduce to FRW at the boundary.

2.3 Null Geodesics and Redshifts

Now consider a null geodesic in ([{]) with affine parameter A,
and with a tangent vector k% = dz®/d\. If n® is the unit
vector in the direction of k%, in the rest space of an observer
with 4-velocity u®, then k* can be decomposed as

kY = (—upk”) (u” +n%), )

where u,u® = —1, nen® = 1 and u,n® = 0. Thus, for
a radial null geodesic, and an observer co-moving with
the coordinate system (), we have u® = (1,0,0,0) and
n® = (0,4++v1 — kr2/R’,0,0). The =+ sign here corresponds
to geodesics directed away, or toward, the centre of symme-
try, and we have chosen A to increase with t. According to
@, an infinitesimal increment in affine parameter, dX, will
then be seen by the observer following u“ as changes in time
and position of

dt = —wugk®d\ (10)

oV1—kr?

dr = Fudk Td)\. (11)
This agrees with the equation for radial null geodesics, which
can be read off from () as

dr n V1 —kr2
dat R
The tangent vectors for radial geodesics can now be written
as k* = (A,B,0,0), where A = A(t,r) and B = B(t,r).
The trajectories to which k% are tangent are both null and
geodesic, so that k°k, = 0 and kakb;a = 0. This gives B =
+AvV1 —kr?2/R’, and
VIZE?
T )

(12)

K= A (17 + (13)

where A as the solution of
+ /1 —kr2A' + AR + AR = %R’+AR’:O. (14)

This expression integrates to

Aocexp{—/%dt}. (15)

As always, the redshift of a photon is given by

(uka)e
(ubkp)o’

where subscript e denotes a quantity at the point where the
photon is emitted, and subscript o a quantity at the point
it is observed. In the present situation we have u%k, = —A,
so the redshift is

Ac s
1—|—z:A—O:exp{/€ ﬁdt}7 17)

in agreement with the source centred case considered by
Bondi (1947), and the observer centric case considered by
Ribeiro (1992). This expression is valid for any source and
observer connected by a radial geodesic, if they are centred
or not.

1+2z=

(16)

2.4 Luminosity Distances

Consider a bundle of null geodesics with cross-sectional area
do, and tangent vector k. The rate of change of do along
the bundle is

d(do)

dX

and is independent of the 4-velocity of the screen onto which
it is projected (Sachs [1961). Differentiating this expression
with respect to A gives the second order Sachs optical equa-
tion:

1 d*Vd 1 a
ﬁT‘ZU — (|<|2 + 0+ SRk kb> 7 (19)

where [¢|? = k(4,5)k*?/2 — (k%:a)?/4 is the shear, and w?® =
k[a;b]k“;b/2 is the rotation of the bundle. For radial geodesics
we then have ¢ = 0, from symmetry considerations, and
we can set w = 0, as the sources under consideration are
effectively point-like.

For the radial geodesics ([[3), in the space-time (), the
right hand side of equation (I9]) can be shown to be given
by (Biswas, Mansouri & Notari [2006)

1 d°Vdo 1d°R
Vdo d)?  Rd)?’
which can be verified using ([I0)), (1)) and ([@4). The solution
to this equation is given by

= k%,.do, (18)

(20)
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\/@KR/%, (21)

where the constant of proportionality can be found by con-
sidering the limit do — 0, when the beam is focused at the
observer. We then have

dvdo
d\
where df2 is the square root of the solid angle subtended by
the beam. Enforcing this limit in equation 2I]) gives

dX
ﬁ7

— dQ, (22)

Vdo =dQR.R (23)
where R, is the value of R at the observer, where the beam
is focused.

The angular diameter distance along a radial geodesic
in this space-time is then given by

ra= Y% _pop / dA (24)

dQ R2’

which is the expression obtained by
Biswas, Mansouri & Notari (2006). The galactic angu-
lar distance, along the same geodesic, is then given by
Etherington’s theorem (Etherington 11933) as

°dX
re = (14 z)RoRe / 3 (25)
and the luminosity distance is

)
rL = (1 + Z)zRoRe E (26)

o

This is the required expression for luminosity distance, ap-
plicable when both source and observer are off centre.

2.5 FRW and Observer-Centric Limits

To clarify how the redshifts and distance measures described
above relate to more usual expressions we will now consider
the FRW, and observer centred LTB limits of these equa-
tions.

In the FRW limit of LTB space-times we have that k(r)
and m(r) —constant and, consequently, R(¢,r) — a(t)r. In
this limit the LTB line-element () reduces to its FRW coun-
terpart. It can also be seen that the expression for redshift,
equation (7)), reduces to

1—|—z—>exp{/ gdt}:%7 (27)

which is, of course, the usual FRW expression.
If we now consider the angular diameter distance, (24)),
we can see that, using (II) and (4], this reduces to

e

© dr

TA — A0QeToTe = AoQcToTe

a4 / 21— k2
as, in this limit, we have A & 1/a. To confirm that this is
the usual FRW angular diameter distance it is convenient
to transform to the proper radial coordinate, I, via r = f(1),
where:

f(x) = sin(x) k=1

fle)==z for E=0 (29)

f(x) = sinh(z) kE=-1

,(28)

The FRW limit of the angular diameter distance can then
be written in the more familiar form

f(AD)
(1+2)

where Al = |l — l,|. The Minkowski limit follows from this,
with @ =constant and k& = 0, and is given by r4 — Ar.

Finally, let us consider the observer centric case, which
should follow from the more general expressions above when
R, — 0. The most convenient way to find this limit is to
differentiate ([24)), with respect to A, to obtain

rA — (30)

1 dra ra dRe R,
R—eﬁ—R—gW:R—gHO. (31)

Integrating the left-hand side of this then gives
A X Re, (32)

which is the expected form of the angular diameter distance
for an observer at the centre of symmetry (Bondi [1947).
The expression for redshift, (I7), can immediately be seen
to reduce to the observer centred case considered by [Ribeird
(1992), as 7, — 0.

The expressions for redshift and luminosity distance,
([I@) and (24), therefore have the correct FRW, Minkowski
and observer centred limits, and reduce to the known ex-
pressions as they are approached.

3 A SINGLE VOID

We will now consider the case of a flat FRW Universe con-
taining a single void. We can choose coordinates, without
loss of generality, such that ¢y =constant, and so that the
big bang occurs simultaneously at all points in space. This
condition is automatically satisfied in FRW if surfaces of
constant density are chosen to be surfaces of equal time. We
also choose initial conditions such that m o 3, so that the
gravitational mass is initially evenly distributed. The form
of the void is then specified by the function k(r), which we
will take to be a smooth curve of the form

k= % [1+cos (ﬂ'%)} , (33)

where ko < 0 and 7o > 0 are constants specifying the depth
and width of the void, respectively. This negative perturba-
tion in k is a smoothly varying function of r, that reduces
to 0 at the edge of the void, r = ro9. The negative curva-
ture causes the space inside the void to expand faster than
that outside, so that the energy density inside the void is
dissipated more rapidly. An under-density then occurs, not
due to any any decrease in gravitational mass, but due to
an increase in spatial volume. Although the choices above
appear reasonably natural, one may consider more general
space-times, either by changing the functional form of m(r)
and k(r), or by considering less symmetric space-times than
that of LTB. We will postpone considering the effects of
such generalisations here, so that we can first concentrate
on the simple case of the smooth perturbation in curvature
outlined above.
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Figure 1. The upper panel shows the fractional energy density
experienced by the photon, where the long-dashed, short-dashed
and dotted lines correspond to voids that are 25%, 50% and 75%
under-dense today. The lower panel show how these three voids
effect the distance modulus. The solid, dot-dashed and double-
dot-dashed lines in this plot correspond to EdS, dS and ACDM
with Qp = 0.7, respectively. These results are with an EdS back-
ground.

3.1 An Einstein-de Sitter background

Consider the case of a void in a space-time that is asymp-
totically a spatially flat Einstein-de Sitter (EdS) universe,
as v — 1o in (). In this case A = 0, and the metric func-
tional R(¢,r) is given parametrically by equations (2) and
@). The functions t = t(z) and r = r(z), along past null
geodesics, can then be found by integrating equations ([I2])
and (7). Substituting these expressions into equation (26)
gives 71 (z). Here we will use this result to investigate the
effects such structures have on Hubble diagrams, when ob-
servers look through them.

We begin by considering the effect of voids with varying
width and depth, at the same position. For ease of compu-
tation we consider the space-time as an LTB under-density
matched to an FRW background under the conditions (@)
and (@), at » = ro. The geodesic equations, and redshift
relations, must now be integrated in each space-time and
r(z) and t(z) matched at the boundaries. The cumulative
redshift, 1 + zp, is given in the usual way by the expression

(1+2r) = [+ 20,
i
where 1+ z; is the redshift along a portion, i, of the geodesic.
The effects of three voids with different depths, all ap-
proximately the same width and located at the same redshift
(z ~ 0.1) are shown in Figure [l The upper plot shows the
energy density encountered by a photon as it travels through
the three different voids, and the lower plot shows the corre-
sponding distance modulus, Adm, as a function of redshift,

0.00 0.05 0.10 0.15 0.20 0.25

0.1r

0.0

Adm

—01} \/ \\ o § il

-0.2t. . . . ol .
0.00 0.05 0.10 0.15 0.20 0.25

z

Figure 2. The upper panel shows the fractional energy density
for three voids of the same depth, but with varying widths. The
lower panel shows the corresponding effect on the distance modu-
lus. Dot-dashed, double-dot-dashed and solid lines are as in Figure
[0l These results are with an EdS background.

z. Distance modulus is defined as the magnitude an object
appears at, minus the magnitude it would have at the same
redshift in a empty, negatively curved Milne universe. It can
be written in terms of luminosity distance as

Adm = 5log,qrr — 5log oL, (34)

where 7, is given by @8), and r7" = z + 22/2 is the ex-
pansion normalised luminosity distance in a Milne universe.
Anything below Adm=0 in Figure [Il is then interpreted as
a decelerating universe, and anything above it as accelerat-
ing. For reference, we have included in this plot the distance
moduli for an EdS universe, as the solid line, and for a de
Sitter (dS) space, as the dot-dashed line. A ACDM cosmol-
ogy, with Q24 = 0.7, is shown as the double-dot-dashed line.

It can be seen from the upper plot of Figure [ that,
although the spatial curvature k is always negative, the en-
ergy density can reach values in excess of the asymptotic
value at the edge of the void. This is due to the analogue of
the radial scale factor, R’, being lower than its asymptotic
value in this region. Aside from these small over-densities, at
the edges of the void, it can clearly be seen that the energy
density in the centre of the void has been dissipated as a
result of the more rapid expansion there, caused by the neg-
ative curvature perturbation. The three voids shown in this
plot are chosen such that at the their centres they are 25%,
50% and 75% under-dense at the present time. The upper
plot shows these regions to be slightly less under-dense than
this at their minima, as what is depicted is the energy den-
sity experienced by the photon as it passed through them,
sometime before the present.

The lower plot in Figure [I] shows that there is no no-
ticeable effect, due to the void, on viewing objects that are
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Figure 3. The effect of changing the location of the void. The
three voids from Figure [Ilare moved to different redshift between
z = 0.1 and 1. The upper panel shows how the fractional en-
ergy density at the centre of the voids varies with redshift. The
lower panel shows the maximum displacement in distance mod-
ulus, from the background value, that these voids cause. These
results are with an EdS background.

beyond it. While the presence of the voids causes a de-
viation from the EdS background in their vicinity, it can
be seen their distance moduli return to within 0.01 of the
background value at redshifts beyond. Weak lensing effects
are expected to be within this order of magnitude (see e.g.
Frieman (1996)) as well as the late-time integrated Sachs-
Wolfe effect (see e.g. (Granett, Neyrinck & Szapudi (2008)).
However, it seems unlikely that such small effects will be
detectable in Hubble diagrams that are constructed from
supernovae observations, at least in the foreseeable futurd].
Hence, the principle effect of these structures appears to be
on objects that are inside the voids themselves, in which case
the deviation from the background value can be seen to be
considerable for the examples shown here. Clearly these de-
viations are a function of the void depth, and increase in
a proportionate way. We note this effect is appears to be
largely due to the 0.1 — 0.3 perturbations that appear in
the metric functional R(t,r). Such large metric perturba-
tions are unlikely to develop in the linear approach, and so
this effect may not show up in such a pronounced way in
treatments of that kind.

The small effect of the voids on viewing ob-
jects behind them is in accordance with the stud-
ies of Brouzakis, Tetradis & Tzavara (2007, 2008) and
Biswas & Notari (2008), who found similar results in their
studies of luminosity distances in Swiss cheese. The max-
imum shift in apparent magnitude for objects also seems

1 The ‘intrinsic errors’ in the magnitude of supernovae are cur-
rently of the order 0.1 — 0.2.

0.00 0.05 0.10 0.15 0.26

o
N
=]

Adm
\

0.00

-0.05} T 1

-0.10F ST

0.00 0.05 0.10 0.15 0.20
y4

Figure 4. The upper panel is the same as in Figure [II but
the background is now ACDM with Q4 = 0.7. The lower panel
shows the corresponding distance moduli. The solid line in this
plot again shows the background, which is now ACDM, and the
double-dot-dashed line shows EdS.

consistent with the results of [Biswas & Notari (2008), who
find the effect of a void with a 50% under-density at its cen-
tre produces a change in apparent magnitude of Adm~ 0.4.
This can be seen to be similar to that found in Figure [l

As well as varying the depth of a void, we will also be
interested in the effect of varying its width, and its distance
from us. This is shown in Figures 2] and Bl In Figure 2] all
three example voids are now chosen to have the same depth,
so that they are 75% under-dense today, while their width is
varied. The deviation from the background distance modu-
lus changes its width accordingly, and as would be expected.
We note that the maximum deviation is larger for the widest
voids, decreasing substantially as the width of the void is de-
creased.

In Figure Bl we show the effect of considering voids
at different distances from us. We consider three sets of
voids, one set that is 25% under-dense today, another that
is 50% under-dense, and a third that is 75% under-dense.
The upper plot in this figure shows how the maximum
depth of void varies with redshift, for each set of voids.
As expected, as the centre of the void is moved to greater
redshifts, the minimum density experienced by the photon
increases. This is due to the depth of voids increasing
with time. All the voids considered here are 0.1 redshifts
wide today. We do not consider voids that are centred
at z < 0.1, as we are interested in the effect of distant
voids, and not the effect of us living in a void, which
is considerable in itself (Alexander, Biswas & Notari
2007; Alnes, Amarzguioui & Gren 2006
Garcia-Bellido & Haugboelle 2008;
Clifton, Ferreira & Land 12008; [Bolejko & Wyithd 2008). In
the lower plot of Figure [3l we show the maximum deviation
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Figure 5. The upper panel is the same as Figure 2] but now
with a ACDM background with Q24 = 0.7. The lower panel shows

the corresponding distance moduli, with the solid and double-
dot-dashed lines as in Figure @l

in distance modulus, from the background value, for each
of the three sets of voids. This maximum deviation can
again be seen to be proportionate to the maximum depth
of void, as experienced by the photon, and shown in the
upper plot. It can be seen that the maximum deviation in
distance modulus is highly sensitive to the location of the
void, and increases steeply at low z.

3.2 A ACDM background

As well as a spatially flat, dust dominated EdS background,
we are also interested in backgrounds containing a non-zero
A. To achieve an understanding of this we will repeat the
analysis above for the case of a single void in an asymp-
totically ACDM universe with Q4 = 0.7 E In this case the
equations for r(t), z(t) and rr are unchanged, with the func-
tional form of R(t,r) modified from that given in (@) and (3],
in order to include the effects of A (Zecca [1991).

Figure Ml shows the same three voids as Figure [T with
under-densities of 25%, 50% and 75% and centred at z ~ 0.1.
The background is again given by a solid line, but this now
corresponds to ACDM with Qx = 0.7. The EdS distance
modulus is shown by the double-dot-dashed line. The ef-
fect of the void can be seen to be similar that shown in
Figure [Il when A = 0, but with a smaller magnitude. The
distance modulus returns to within 0.01 magnitudes of the
background at large z, and there is a considerable, though
smaller, displacement from the background value when look-
ing at objects inside the void. It can be seen that the energy

2 With radiation neglected, which should a good approximation
in the epochs under consideration.
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Figure 6. The same as Figure 3] but with a ACDM background
with Qp = 0.7.

density experienced by the photon is closer to the value of
the under-density today in this case, reflecting the fact that
the growth of structure slows when A comes to dominate.

Figure[lillustrates the dependence of the distance mod-
ulus on the width of void in this background, and the results
can be seen to be very similar to those deduced from Figure
[l but again with a smaller overall magnitude of the displace-
ment. The maximum deviation from the background is again
sensitive to the depth of the void, as well as its width. In
Figure [6l we consider the maximum deviation of the distance
modulus from its background value, for the same three sets
of voids as in Figure Bl The results are similar to the EdS
case, the principle differences appearing to be the smaller
magnitude of the displacement, and the weaker dependence
of the depth of under-density on z, due to the suppression
of structure formation in the presence of A. This manifests
itself in the upper plot of Figure [@] as a slightly shallower
gradient.

3.3 Lensing

The previous subsections have shown that at low redshift,
in both EAS and ACDM backgrounds, the principal effect
of large voids is on objects that are viewed within them. In
this case the displacement of the distance modulus due to in-
tervening voids is a smaller, sub-dominant, effect. At higher
redshifts, however, the effect of voids on objects within them
is much smaller. In this case the lensing effect, due to look-
ing through voids, becomes relatively more important. In
this subsection we quantify the size of this effect for differ-
ent sized voids, with different widths, at different redshifts,
in both EdS and ACDM backgrounds.

First let us consider an EdS background. In Figure [ we
plot the displacement from the distance modulus of the EdS
background due to a single void. We consider three depths
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Figure 7. The displacement from the background distance mod-
ulus when looking through a single void, at different distances, in
an EdS background. The long-dashed line corresponds to voids
with a central under-density of 25% today, the short-dashed line
to 50% today, and the dotted line to 75%. The energy density
experienced by the photon is given by the upper plot in Figure[3l
The values of §Adm are plotted at the redshift that the photon
leaves the void. All voids here have a width of Az = 0.1.
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Figure 8. The same as in Figure [[ but the voids considered
are now all 75% under-dense at their centre today. The long-
dashed, short-dashed and dotted lines now correspond to voids
with widths of Az = 0.05, 0.10 and 0.15. These results are with
as EdS background.

of void in this plot, with central under-densities today of
25%, 50% ad 75%. All the voids currently under consider-
ation have a width, measured by an observer standing at
their edge today, of Az = 0.1. The density profile experi-
enced by a photon for these three void depths, as they are
moved to different distances from the observer, are the same
as is shown in the upper plot of Figure [3] What is plotted
here is the displacement from the background distance mod-
ulus at the moment the photon leaves the void. It is clear
from Figure[7 that the lensing effect, while smaller than the
effects on the distance modulus shown in Figure [3] is con-
siderably less sensitive to the distance of the void, and, in
fact, increases somewhat as the void is moved further away.
Increasing the depth of the void increases the magnitude of
this effect, in a similar way to was shown in Figure Bl
Figure [8 shows the effect of looking through a single
void, at different distances, in an EdS background, but now
varying the width of the void, instead of its depth. All voids
are now 75% under-dense at their centre today, but now have
widths of Az = 0.05, 0.10 and 0.15, depicted as the long-
dashed, short-dashed and dotted lines, respectively. Again,
dAdm is given in this plot at the moment the photon leave
the void. It can be seen that the lensing affect is sensitive to
the void width, and increases with the width of the void.
Now let us consider a ACDM background, with Q) =
0.7. The results of considering voids with different depths,
at different distances, are shown in Figure The results
are similar to the EdS case, but the magnitude of the affect

0.0020} IR ]

£ 00015 e ]

\
\
\
\

0.00051 - — — — —7

0.0000f

Figure 9. The same as Figure [7 but in a ACDM background,
with 24 = 0.7. The long-dashed, short-dashed and dotted lines
correspond to voids with 25%, 50% and 75% under-densities.

0.005

Figure 10. The same as Figure[§] but in a ACDM background,
with 24 = 0.7. The long-dashed, short-dashed and dotted lines
correspond to voids with widths of Az = 0.05, 0.10 and 0.15.

is smaller, in keeping with the results found for looking at
objects inside the voids. In Figure [[Q] we consider voids with
different widths, and the same depth, at different distances.
Again, the results are comparable to those found in an EdS
background, but with a smaller magnitude.

4 MANY VOIDS

The effect of a single void on Hubble diagrams is of some
interest by itself. Such effects could be used to search for hy-
pothesised large structures, such as that which is supposed
to explain the CMB cold spot (Inoue & Silk|2006). However,
if we suppose that a single large void exists in the Universe,
then it is natural to think that there will be other struc-
ture on similar scales. In this section we consider just such
a scenario, with many LTB voids lined up back to back in
an FRW background.

4.1 An Einstein-de Sitter background

Again, we will first consider the case of a spatially flat EdS
background. Now instead of inserting a single void, satisfy-
ing the boundary conditions (@) and (@), we will insert a
number of voids. As before, we will match these voids to
the background cosmology at r = 1o, where they are locally
FRW. The choice of voids that can be used for this process
is quite arbitrary. Here we will randomly select voids from
a couple of different distributions, in order to gain some un-
derstanding. This process can, of course, be repeated for any
distribution of voids one may wish to consider.
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Figure 11. The upper panel shows a sample set of voids taken
from the deep distribution of voids, A. The lower plot shows the
corresponding distance modulus. The dot-dashed and double-dot-
dashed lines are as in Figure [l The dotted line is EdS. These
results are with an EdS background.
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Figure 12. The result of averaging the distance moduli of 1000
sets of voids randomly drawn from the deep distribution, A.
Displayed is the mean deviation from the EdS background, the
dashed line, and the standard deviation about that mean, the
grey area. Also displayed for reference is the deviation of ACDM
with Qp = 0.7 from EdS, as the double-dot-dashed line.

4.1.1 Distribution A: Deep voids

For this example we will consider voids with present day
depths drawn from a flat distribution between 0% under-
dense and 75% under-dense today. The width of voids will
be drawn from a flat probability distribution, and will be
between 0.01 and 0.19 redshifts wide when viewed by an ob-
server standing at their edge today. Although these choices
allow for the existence of large structures, we do not consider
them extreme (i.e. they are only a fraction under-dense, not
completely empty).

In Figure [I1] we show an example set of voids, out to
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Figure 13. The same as Figure [[I] but with voids drawn from
the shallow distribution, B.
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Figure 14. The same as Figure [[2] but with voids drawn from
the shallow distribution, B.

-0.05

z = 1, picked from this distribution. As was the case previ-
ously, the upper plot shows the energy density encountered
by a photon that reaches us at the present day. We ensure
that we are not in a void by placing the edge of the first
void at a redshift of z = 0.01 + w, where w is a random
number between 0 and 0.05 (the reason for introducing w
will be made clear shortly). The dotted line in the lower
plot is the background FRW universe, which here is EdS.
The dot-dashed lines and double-dot-dashed lines represent
the distance moduli of dS and ACDM withQ2x = 0.7, respec-
tively. While there are clear deviations from the background
distance modulus, it seems highly unlikely that a distribu-
tion of voids of this type could be mistaken for ACDM with
Qp =0.7.

Having considered an example set of voids, it is now
of interest to consider the average of many different sets
drawn from the same probability distribution. This may be
the type of process that one would wish to consider when col-
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Figure 15. The same as Figure[IT] but with a ACDM background
with Q4 = 0.7. This set of voids is from distribution A.
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Figure 16. The same as Figure[[2] but with a ACDM background
with Qp = 0.7. This set of voids is from distribution A.

lecting observations made over many different lines of sight,
at different points on the sky. Such an average is shown in
Figure Here 1000 different sets of voids have been gener-
ated, their distance moduli calculated, and an average taken.
Shown in the plot is the resulting mean deviation from the
background value, the central dashed line, and the standard
deviation from this value, the shaded region. The effect of
w here is to make the location of the edge of the first void
random (failing to include w leads to a correlation in the
location of the first void, and an increased mean at that
point).

The effect of looking at objects in an inhomogeneous
universe of this kind is two-fold. Firstly, there is a system-
atic deviation away from the distance modulus of the back-
ground. This appears to be largest at low redshift (z < 0.1),
when the effect of looking at objects inside voids is consid-
erable, and again at large distances (z > 0.5), when the
small lensing effect due to looking through voids accumu-
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Figure 17. The same as Figure [[5 but with the shallow void
distribution, B.
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Figure 18. The same as Figure [[6] but with the shallow void
distribution, B.

lates. These deviations are moderate for the void distri-
butions chosen here, with (§Adm) < 0.1, but are clearly
non-zero. Such an effect, if unaccounted for, could lead to a
systematic bias in extracting cosmological parameters. Sec-
ondly, there is a non-zero dispersion around the mean. The
effect of having a distribution of voids between us and the
source should be expected to result in a typical source being
somewhat displaced from the mean. Again, the effect caused
by this is largest at small redshifts (z < 0.2).

4.1.2  Distribution B: Shallow voids

Having considered one particular distribution of voids, let
us now consider a second so that we can better understand
the effect of the choice of voids on the resulting averaged
distance moduli. From the above considerations of single
voids, we know that the maximum displacement of distance
modulus is sensitive to the depth of void. We will therefore
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Figure 19. A slice through the Millennium Simulation, smoothed
on scales of 10Mpc. The field is 715 Mpc across, the full size of
the simulation. An example line of sight to a supernova is shown.

alter the probability distribution from which the void depth
is drawn. We will now consider voids from a flat distribution
that are between 0% and 50% under-dense at their centre
today, with the same distribution of widths as before. A
sample density profile and distance modulus plot, for voids
drawn from this new distribution, is shown in Figure[I3] This
can be seen to be similar to the results shown in Figure [I1]
but with the deviations from the background value reduced.

In order to find the mean, and standard deviation, for
this new distribution we will proceed as before. 1000 sets of
voids are generated, their distance moduli calculated, and
then averaged. The results of this are shown in Figure [T4l
These results are again similar to those obtained from the
previous distribution, except with the magnitude of the de-
viations from the background model decreasing in a propor-
tionate way to the void depth. The scatter around the mean
is similarly decreased.

4.2 A ACDM background

Having discussed the situation of looking through many
voids in an EdS background, we will also be interested in
space-times with a non-zero A. In this section we will con-
sider a background ACDM cosmology with Q4 = 0.7. We
will take voids from the same two distributions considered
above.

4.2.1 Distribution A: Deep voids

Using the same distribution of deep voids as above (that is
with central under-densities between 0% and 75% today), we
generate 1000 sets of randomly selected voids. An example
set is shown in Figure

In Figure [16] we show the result of averaging over 1000
different sets of randomly generated voids. What is shown
here is the deviation from the Q4 = 0.7 background value.
As before, the central dashed line shows mean deviation, and
the shaded region shows the standard deviation from this

Figure 20. The same Millennium Simulation slice as in Figure
19 but smoothed on 20Mpc scales.

mean. These results can be seen to be similar to those shown
in Figure [[2] but with a smaller displacement of the mean,
and dispersion around that mean. This is in keeping with
the result found in the single void case, that the deviation
of the distance modulus, due to the voids, is smaller with
non-zero A.

4.2.2  Distribution B: Shallow voids

Finally, let us consider Q24 = 0.7 with the distribution of
shallow voids, where the central under-densities are between
0% and 50%. An example set of voids, out to z = 1, is shown
in Figure[I7] The effect of these shallower voids is similar to
the results found above, but with smaller displacements of
distance modulus from the background value, as expected.

Figure [I8 shows the results of averaging over 1000 sets
of voids generated from this distribution. As with the case of
deeper voids, the results are similar to those obtained when
A = 0, shown in Figure [[4] but with smaller displacement
of the mean, and dispersion around that mean.

5 SIMULATED STRUCTURE

In sections [l and ] we used exact Swiss Cheese cosmologies
to determine the effect of large inhomogeneities on luminos-
ity distances. These situations are of interest as they allow
unambiguous, explicit calculations to be performed within
them. The draw-back of this formalism, however, is that
while the theory is non-perturbative, the mass distributions
that can be modelled must be highly symmetric. This is in
contrast to the linearised approach, where the theory is ap-
proximated, but can then be applied more straightforwardly
to general mass distributions. Despite these difficulties, we
will of course be interested in what the results we have found
imply for more realistic situations.

To address the problem of applying this formalism to
more realistic mass distributions we will take simulations
of what real density fields in the Universe are believed to
look like. These density fields will then be idealised so as
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Figure 21. The upper panel shows the density along the line of
sight path shown in Figure as the dotted line, and the energy
density of our idealised Swiss Cheese as the dashed line. The lower
panel shows the distance modulus generated by Swiss Cheese as
the dashed line. The smoothing scale here is 10Mpc.
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Figure 22. The same as Figure[I2, but for the Millennium Sim-
ulation smoothed on 10Mpc scales.

to appear as Swiss Cheese: Over-dense regions will be taken
as FRW cheese, and under-dense regions will be modelled as
LTB holes (with the appropriate width and depth). The real
Universe, of course, is not an exact Swiss Cheese, and so our
idealisation will require some considerable approximation.
In particular, under-densities will not in general be spheri-
cally symmetric, but will have different expansion rates in
different directions. Our goal here, then, must not be consid-
ered a precision calculation of luminosity distances in these
simulations, but rather to derive a well motivated distribu-
tion of voids that can be used in our Swiss Cheese models
(rather than just considering idealised distributions). One
would hope that results derived in this way would be more
indicative of what may be expected in the real Universe.
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Figure 23. The same line-of-sight density profile, fitted voids,

and distance modulus plots as in Figure 2I] but for the Millen-
nium Simulation smoothed on 20Mpc scales.
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Figure 24. The same as Figure[22] but for the Millennium Sim-
ulation smoothed on 20Mpc scales.

5.1 Density Fields

Extracting real density profiles from redshift surveys in the
face of limited survey regions, and redshift-space distortions,
is somewhat complex (Fisher et all|1995; [Erdogdu2004). In
addition, the formalism we have used up to this point takes
density along a space-like projection of a line of sight into
a surface of constant ¢, whereas real observations are made
along past light cones. We will therefore use simulations of
structure formation to generate line-of-sight profiles of the
energy density. These simulations all have Q24 = 0.7 in their
backgrounds.

While it is the case that the simulations we will be using
are derived within the regime of linear perturbations about
an FRW background, this does not stop us using these den-
sity fields to motivate ‘realistic’ distributions of voids. The
linear nature of the underlying simulations suggests that, in
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fact, a linear treatment of luminosity distances and redshifts
should be adequate to accurately calculate Hubble diagrams
in this space-time. The purpose of this section is not to su-
persede such studies, but rather to compliment them with a
study of Swiss cheese models.

As a simulation of non-linear structure we use the re-
sults of the Millennium N-body Simulation (Lemson et al.
2006; ISpringe] 2006). The Millennium Simulation modelled
a cubic region of space with a side length of 500/h Mpc,
where h = Ho/100 km s~ Mpc™" = 0.7. It modelled 10'°
dark matter particles in 256> cells with periodic boundary
conditions, which for our purposes are especially suitable
for smoothing on new scales. The database for the simu-
lationf] directly stores densities smoothed on various scales
from 1.25Mpc to 10.0Mpc.

The size of density fluctuations is determined, at least in
part, by the smoothing scale applied to the data (the radius
of the Gaussian kernel convolved with the data). Our choice
of smoothing scale for the non-linear simulation is critical.
On small smoothing scales fluctuations are very large, but
in these regimes the pressureless dust approximation of the
LTB model could break down. In addition, on very small
scales discrete particles (i.e. galaxies) may become resolv-
able, and the fluid approximation itself could then be in
question. However, if we choose the smoothing scale to be
too large then we will under-estimate the density fluctu-
ations, and hence the effect on the distance modulus. We
use smoothing scales of 10 and 20 Mpc; the former is di-
rect from the Millennium database and the latter is man-
ually smoothed with a Gaussian filter. Slices through the
smoothed Millennium Simulation are shown in Figures
and The former has a smoothing scale of 10Mpc, and
the latter is the same density field with a smoothing scale
of 20Mpc.

5.2 Distance Moduli

In the density fields under consideration, lines of sight are
taken in random directions from the centre of the simulation.
We then convert the density profiles along these lines into
sets of voids that can be used as input for the formalism de-
veloped above. We approximate any under-dense segments
of the line as being produced by a void generated from a
smooth negative perturbation (B3] in the curvature, k, with
the same depth and width as the segment. If an under-dense
region is split into two by a local maximum that is less than
half the depth of its shallowest neighbouring minima, then
such an under-density is considered as two voids back to
back. Over-dense regions are simply replaced by FRW ge-
ometry, with the same density as the background. We also
ignore the effect of the local void that, coincidently, hap-
pens to lie at the centre of the Millennium Simulation. As
mentioned above, local voids have a different effect to the
distant voids we are concerned with here.

Let us consider the density fields obtained from smooth-
ing the 10 particles of the Millennium Simulation on dif-
ferent scales. We will begin by considering a smoothing scale
of 10Mpc. In this case, the density profile along the example
line of sight from Figure[I9is shown in Figure[2Il The mean

3 http://www.mpa-garching.mpg.de/millennium/

displacement in distance modulus, and standard deviation
about that mean, are shown in Figure for a sample of
1000 lines of sight.

As mentioned above, the results we obtain in this sec-
tion are strongly dependent on the chosen scale of smooth-
ing. Of course, in reality there is only one local expansion
rate of space at any given point, but without any knowledge
of the smoothing scale to which this corresponds it seems
most prudent for us to illustrate the effect of choosing dif-
ferent scales. To this end, we will now consider the results
obtained from smoothing on a scale of 20Mpc. In this case
the density profile along the example line of sight from Fig-
ure 20] is shown in Figure 23] together with the correspond-
ing distance modulus plot.

The mean and standard deviation of the difference in
distance modulus from the background value, for 1000 lines
of sight, are shown in Figure This plot can be seen to be
significantly different to Figure Doubling the smooth-
ing scale has more than halved the magnitude of the dis-
placement and dispersion. Such strong dependence on the
smoothing scale shows that understanding the spatial vari-
ation of local expansion rates in an inhomogeneous universe
could be of critical importance in determining its Hubble
diagram.

Studies of luminosity distances in perturbed FRW
space-times, such as those of [Holz & Wald (1998) and
Hui & Greend (2006), find results that appear to be of a
similar order of magnitude, although derived in a very dif-
ferent frame-work. For example, [Holz & Wald (1998) find
that the maximum dimming of the distance modulus from
the background value is Adm~ 0.1 at z = 0.5, as well as
considerable brightening of some sources due to lensing. The
study of [Hui & Greene (2006) finds that a displacement of
dAdm~ 0.1 could be achieved at larger redshifts, z ~ 1,
and suggests the interesting possibility of peculiar velocities
having a considerable effect on low redshift supernovae, with
z<0.1.

6 DISCUSSION

We have considered here the effects of large structures
on Hubble diagrams in a non-perturbative way. Using the
spherically symmetric LTB exact solution of Einstein’s equa-
tions we have constructed a Swiss Cheese model of the Uni-
verse. In this model the background space-time is taken to be
a spatially flat FRW universe, filled with dust and a cosmo-
logical constant. Spherically symmetric regions of this back-
ground cosmology are then removed and replaced with the
regions of negatively curved LTB space-time, matched ap-
propriately at the boundary. The resulting cosmology has an
initially evenly distributed energy density. The regions with
negative spatial curvature then expand more quickly than
the background, and large under-dense voids form. These
voids behave like open FRW space-time at their centre and
transition smoothly to over-dense regions at their edge, be-
fore matching onto the background. Such a universe is an
exact inhomogeneous solution of Einstein’s equations, with
a simple enough geometry to allow calculations of luminosity
distances to be performed within it.

By considering the cross-sectional area of a bundle of
radial null geodesics, focused on an observer in the back-
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ground space-time, it is possible to obtain a simple analytic
expression for the angular diameter distances such an ob-
server will infer for objects in, and beyond, the void. The
luminosity distance then follows straightforwardly, and we
can calculate the Hubble diagram that our observer will see
along such a line of sight. The expressions used are limited
to spherically symmetric voids, and to lines of sight that
look directly through their centres, but have the great bene-
fit that they are exact. As such, all non-linear effects due to
position dependent spatial curvature, expansion rates, and
energy densities are automatically included.

We then consider the effect of a single large void on Hub-
ble diagrams constructed by an observer looking through it.
We find that observations of objects beyond the void are
not noticeably affected by its presence: Deviations from the
background value are less than 0.012 magnitudes, for the
voids considered. When viewing objects within the void,
however, the effect of the voids presence can be of some
size. We illustrate the differences witnessed by our observer
by considering the distance modulus of astrophysical ob-
jects. This is given by the magnitude of a source, minus the
magnitude it would have at the same redshift in an empty
Milne universe. We consider voids with an even distribution
of gravitational mass, and a smooth under-density in spa-
tial curvature. In this case the magnitude to an object in
the void is altered by the voids presence. This effect is most
pronounced at low redshifts (with z < 0.2), while at higher
redshifts it drops off, and becomes comparable to the small
effect of looking through voids. The maximum displacement
from the background distance modulus appears proportion-
ate to the fractional under-density at the centre of the void,
and decreases with increasing A. This can be seen from Fig-
ures [B] and [6] where the relation between void depth and
distance modulus displacement can be seen to mildly super-
linear. We note that this effect appears to be largely due to
0(0.1) perturbations in the metric functionals, and so may
be less apparent in a perturbative treatment.

Having studied the case of a single void, we then move
on to consider a universe containing many voids. In this case
we draw the void widths and depths randomly from prob-
ability distributions. We consider a shallow distribution of
voids, in which the void depths are between 0% and 50%
under-dense at their centre, and and a deeper distribution,
in which they are up to 75% under-dense. By generating
1000 sets of voids from each distribution, we produce a mean
deviation from the background distance modulus, and the
standard deviation that should be expected from that mean.
As found in the case of single voids, the displacement of
the distance modulus from the background value is propor-
tionate to the depth of voids considered. The dispersion is
similarly dependent on typical void depth.

Using data from the Millennium Simulation, we then
proceed to consider how structures in more realistic uni-
verses could affect the Hubble diagrams constructed by ob-
servers in them. To achieve this we take a number of dif-
ferent lines of sight from a central position in the simula-
tion. The density profile along these lines are determined by
smoothing on different scales. We then treat under-densities
as being formed from spherically symmetric, smooth, neg-
ative perturbations in k, and calculate the distance moduli
along lines of sight that pass through them. Over-densities

are replaced by regions of FRW space-time, with the back-
ground density and expansion rate.

The effects of the voids in the Millennium Simulation
are small, but non-zero. We find that such voids could have
a noticeable effect on the Hubble diagrams constructed by
observers in the space-time, by producing deviations and
dispersion in the distance modulus. The magnitude of this
effect, however, is strongly dependent on the depth of voids,
which is itself a function of how the smoothing from dis-
crete sources, to continuous fluid is performed. Increasing
the smoothing scale decreases the depth of void, and hence
decreases the effect on the Hubble diagram. Ultimately, it
appears that one needs to know the appropriate scale on
which to smooth, if one wants to make reliable quantitative
predictions. We do not attempt to solve this problem here.

We find the non-linear effects of inhomogeneity in the
Universe can both displace the average distance modulus
from its background value, and introduce dispersion around
that average. These effects, if improperly accounted for in
fitting data to FRW models, could lead to systematic er-
rors in extracting cosmological parameters, and an under-
estimation of the errors involved. Such an effect may be of
use for accounting for some of the ‘intrinsic error’ usually
added to supernovae data when fitting to cosmological mod-
els, and which is often a large fraction of the total error. We
find that the the magnitude of these effects is sensitive to
the depths of voids involved, their width, and their distance
from us.

The study we have performed here is limited in a
number of respects, and rather than being exhaustive is
instead intended to be a thorough investigation of the
simplest case. One will certainly be interested in the ef-
fects introduced by different void profiles. It will also
be of much interest to determine the effects of looking
through voids in an off-centre way. It was suggested by
Vanderveld, Flanagan & Wasserman (2008) that such ob-
servations can be considerably different to observations di-
rectly through the centre. Generalising the present study to
off-centre observations is not trivial, but is certainly pos-
sible, and we will consider this elsewhere. The studies of
Biswas & Notari (2008) and [Brouzakis, Tetradis & Tzavara
(2001, 12008) suggest that considering off-centre trajectories
could have important effects. There are also issues of bias
that one may wish to take into account in more detailed
studies. For instance, it may be the case that more super-
novae occur in denser regions of the Universe, or that super-
novae in less dense regions are easier to observe.

This study could be further generalised by consider-
ing non-spherical voids, and by better accounting for over-
dense regions of the Universe. The LTB voids considered
here are only solutions as long as pressure is negligible.
A similar study including anything approaching a realis-
tic over-density will therefore require solutions with more
general fluid content, which are considerably more difficult
to find. It is feasible that the inclusion of over-densities in
a more satisfactory way could cancel some of the displace-
ment effect, but it is hard to see how it could counteract
the dispersion. In Appendix [A] we consider the effect of
having spherically symmetric shells of under-density, rather
than spherical holes (an Onion universe, rather than Swiss
Cheese). In this case the effects of the under-densities pro-
duce deviations in the distance modulus with the same order
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of magnitude, but with the opposite sign, to Swiss Cheese.
This shows that a full understanding of the way that large
scale structure effects Hubble diagrams is likely to be a com-
plicated function of the detailed geometry of the inhomoge-
neous Universe. A specialised study of the effect on Hubble
diagrams of living in an Onion universe has been performed
by [Biswas, Mansouri & Notari (2006), and agrees with what
we find in Appendix [Al

Finally, one may speculate on the effects of large
scale structure as potentially mitigating the need for Dark
Energy. We find that the voids required to mistake an
Einstein-de Sitter background for ACDM with Q4 = 0.7
would have to be very deep. Even the void distribution con-
sidered in Figure[I4] does not come close. The voids involved
would likely have to be more than 75% under-dense at their
centre. Even if such voids did exist, their ability to mimic
the shape of the distance modulus of ACDM would rely on
some fortuitous correlations in their positions, so that the
mean Adm peaks at around z ~ 0.5 and drops off at lower
redshifts. Alternatively, one may consider extending the
present study so that the background Cheese is spatially
curved, or so that we are at the centre of a void. The effects
of a local void have been shown by a number of authors to
be able to mimic, at least to some degree, the presence of A
on the Hubble diagram (Alexander, Biswas & Notari
2007; Alnes, Amarzguioui & Gren 2006;
Garcia-Bellido & Haugboelle 2008;
Clifton, Ferreira & Land [2008; Bolejko & Wyithe [2008),
but requires a very deep and wide structure.
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APPENDIX A: AN ONION UNIVERSE

As an alternative to considering the Swiss Cheese model,
one can also use the LTB solution to consider an ‘Onion
Universe’, in which there are under-dense shells of matter in
a spherically symmetric space-time. Although less appealing
as a way of modelling the real inhomogeneous Universe, a
brief consideration of luminosity distances in such a space-
time will allow us to put the Swiss Cheese results in some
context. An example of the spatial curvature profile of an
Onion universe is given in Figure[AT] where a surface of con-
stant time is shown, with one spatial dimension suppressed.
Vertical displacement indicates a fluctuation in k, and dis-
tance from the centre is proportional to comoving distance,
.

The observer in this space-time is taken to be at the
centre of symmetry, so that the luminosity distance to a
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Figure Al. An illustration of k(x) in an Onion universe. The
surface displayed is a constant time slice, with one spatial dimen-
sion suppressed. Vertical displacement indicates a fluctuation in
k, and distance from the centre is proportional to the coordinate
distance, r.

source at (te,7e) is given by ([B2). In Figure [A2 we show a
couple of example cases. The radial profile of the curvature
perturbation in each of these cases is that of ([B3]), with its
minimum displaced from the centre of symmetry. The upper
panel in Figure shows the energy density, as a function
of redshift, experienced by the photon as it travels along our
past light cone. While the perturbation in k(r) is symmet-
ric, the resulting energy density distribution can be seen to
be highly asymmetric, with a considerable over-density on
the side of the under-dense shell that is furthest from the
observer.

In the lower panel of Figure [A2] we plot the distance
modulus that would be measured by an observer at the cen-
tre of symmetry, for these two different cases. It can be seen
that the under-density produces a considerable deviation
from the background EdS model. Comparing this effect with
that shown in Figure [I] for the Swiss Cheese case, one can
see that the magnitude of the deviation is of the same or-
der. More striking, however, is that the under-density in the
Onion universe causes a very different deviation in distance
modulus.
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Figure A2. The upper panel shows two example density profiles
resulting from smooth perturbations in k(r) of the form (B3),
with different depths. The lower panel shows the corresponding
distance moduli. The dot-dashed, double-dot-dashed and solid
lines are as in Figure [}
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