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Observational Constraints on the Completeness of Space near Astrophysical Objects
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We consider the observational effects of a deficit angle, w, in the topology of the solar system and
in the ‘double pulsar’ system PSR J0737-3039A/B. Using observations of the perihelion precession
of Mercury, and the gravitational deflection of light due to the Sun, we constrain the magnitude of
such a deficit angle in the solar system to be 2π(1−w), with 0 ≤ (1−w) < 10−9 at 95% confidence.
We calculate the effects of a deficit angle on the periastron advance, geodetic precession rate and
inclination angle of the double pulsar system and use the observational data to obtain the constraint
0 ≤ (1− w) < 2.4 × 10−8 at 95% confidence. Although this result is weaker than the solar system
bound, it is in a very different physical environment, where accumulating data is likely to lead to
tighter constraints in the future.

PACS numbers: 95.30.Sf, 97.60.Gb

I. INTRODUCTION

Metric-based gravity theories, like Einstein’s and its
close relatives, are routinely tested using observations
of astrophysical systems where gravitational fields are
strong and non-Newtonian. Following Eddington’s in-
troduction of a parameterised form of the metric in 1922
[1], and Nordvedt’s extension to more general configu-
rations by including further parameters [2], a sophisti-
cated frame-work has been devised [3], and a large num-
ber of careful observations made, in order to place strin-
gent constraints on the geometry of space-time. However,
most of these studies have assumed that the astrophysi-
cal systems they consider should have a trivial space-time
topology. Under such an assumption, it is possible to
make strong statements about the magnitude of any de-
viations from the predictions of general relativity. Here
we take a different approach: We assume a geometry that
is locally isometric to the predictions of general relativ-
ity, but which permits non-trivial global topologies. The
astrophysical observations can then be used to constrain
the topology of the systems in question. Of particular
interest for this study is the recently discovered ‘double
pulsar’ system, PSR J0737-3039A/B [4, 5].

Non-trivial topologies can exist in a number of as-
trophysically interesting situations, including magnetic
monopoles, cosmic strings, domain walls and textures [6],
all of which can arise in phase transitions in the early
universe [7]. A tell-tale sign of such topological defects
is the existence of a ‘deficit angle’, whereby a wedge of
space-time appears to have been removed, and the sur-
faces that remain have been identified. A simple example
of this feature, first found by Marder in 1959 [8], is the
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line-element

ds2 = −αdt2 +
dr2

α
+ r2dθ2 + w2r2 sin2 θdφ2, (1)

where α = 1− 2GM/r and w ∈ (0, 1] is a constant. This
is well known as the exact solution of a point-like mass
on an infinitely thin cosmic string [8, 9]. It is clearly
locally isometric to the Schwarzschild solution, but if we
allow φ to run from 0 to 2π, then we see it has a different
topology.

The line-element (1) may initially appear a trivial ma-
nipulation of the Schwarzschild solution. The effect of
introducing such a topological defect, however, has non-
trivial consequences for the geodesic equations. For the
metric above, these equations have recently been solved
completely by Hackmann et al. [10]. The missing wedge
of space-time causes new behaviour that is not present
in the Schwarzschild solution, such as a precession of the
angular momentum vector about the axis of the string
[11]. By using observational constraints on such phe-
nomena we can therefore constrain the amplitude of any
possible deficit angle, and hence place constraints on the
topologies of astrophysical systems.

In Section II we summarise how deficit angles affect
the geodesic equations, and observations of gravitational
phenomena in the solar system. in Section III, we pro-
ceed to consider the double pulsar. This over-constrained
system has a large number of well measured observables,
and provides an excellent laboratory to perform the type
of test we are considering. In Section IV we give our
conclusions.

II. SOLAR SYSTEM CONSTRAINTS

If we choose coordinates so that the orbit we consider
is in a plane of constant elevation (θ = π/2), then the
effect of a deficit angle on the equations of motion enters
only through the azimuthal coordinate, φ. To include
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such a defect, we can then write the range of φ as

0 ≤ φ ≤ 2π −∆ϕ (2)

where ∆ϕ ∈ [0, 2π) is the deficit angle. Alternatively, we
can change variables so that ∆ϕ = 2π(1 − w). Now, φ
covers the range

0 ≤ φ ≤ 2πw, (3)

which is equivalent to a simple coordinate redefinition

φ → wφ. (4)

A. Time-like orbits

Using the redefinition (4), the geodesic equations be-
come

u′′ + w2u =
GM

L2
+ 3GMw2u2 (5)

where u = 1/r, and where primes denote differentiation
with respect to φ. The angular momentum constant, L,
is given by

L = r2 sin(θ0)
dφ

dλ
, (6)

where λ parameterises distance along the curve. The
solution to (5) is then given by

u = w−2uGR(wφ), (7)

where uGR(φ) is the usual general relativistic solution
that occurs when w = 1. Therefore, we have

u =
1

r
=

GM

w2L2
[1 + e cos{w(φ− φ0 −∆φ0)}] (8)

where e is the eccentricity of the orbit, φ0 specifies the
phase, and ∆φ0 gives the correction due to relativistic
perihelion precession.
It can now be seen from (8) that the perihelion shift

per orbital revolution is

w∆φ =
6πG2M2

w2L2
+ 2π(1− w). (9)

If we now write

w = 1− δw, (10)

where δw ∈ [0, 1) is small, then to first order we should
expect the precession to be

∆φ ≃ ∆φGR + 2πδw, (11)

where ∆φGR = {∆φ}w=1 is just the usual general rela-
tivistic prediction with no defect. The precision of the
agreement with the current data therefore gives a bound
on δw, and hence on w.

In order to gain observations of ∆φ from the preces-
sion of the orbit of Mercury, with respect to the vernal
equinox of the Sun, it is necessary to take into account
the precession of the equinoxes on the coordinate sys-
tem (about 5025′′ per century), the perturbing effects of
the other planets (about 531′′ per century) and the ef-
fect of the quadrupole moment of the Sun (about 0.025′′

per century), on the perihelion precession of the objects
that orbit it. These challenges can be addressed in a
variety of different ways, and the result is authors claim-
ing slightly different observational bounds on the residual
∆φ. Rather than favoring any particular method here,
we prefer to quote a number of different precise calcula-
tions, obtained by various authors. These are displayed
in Table I. For further details the reader is referred to the
original papers, and references therein. For an overview
of the issues involved the reader is referred to [18].

Source ∆φ−∆φGR 1010 × δw

(arcsec/century) (2σ upper bound)

Anderson et al. [14] −0.04± 0.20 6.7

Anderson et al. [15] +0.15± 0.14 8.0

Krasinsky et al. [16]

EPM1988 +0.004 ± 0.061 2.3

DE200 −0.003 ± 0.061 2.2

Pitjeva [17]

EPM1988 −0.017 ± 0.052 1.6

DE200 −0.011 ± 0.052 1.7

TABLE I: The value of the perihelion precession of Mercury
obtained from observations by various authors, and the re-
sulting 2σ upper bound on the permissible values of δw. The
acronyms EPM1988 and DE200 refer to different numerical
ephemerides, which are reviewed in [12]. We take the sidereal
period of Mercury to be 0.24 years [13].

It can be seen from Table I that placing a constraint
on δw is not a clear-cut matter, and depends both on
the data used, and how it is treated. However, all of the
results in Table I are consistent with the conservative
statement that the 2σ bound on δw from observations of
the perihelion precession of Mercury is within the range

0 ≤ δw < 10−9. (12)

B. Null orbits

The geodesic equation for light rays is transformed in a
similar way, but there is now no L. Under the redefinition
(4), we therefore have simply

u′′ + w2u = 3GMw2u2, (13)

which has the solution

u = uGR(wφ), (14)
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where, again, uGR(φ) is the usual general relativistic so-
lution with w = 1. Taking this, together with φ = π+δφ,
we obtain

u =
1

r
=

4GM

R2
−

wδφ

R
+

π

R
(1 − w), (15)

where R is the impact parameter. The total deflection is
then

wδφ =
4GM

R
+ π(1− w) =

4GM

R
+ πδw, (16)

and the deflection caused by the defect is

δφ ≃ δφGR + πδw, (17)

where δφGR = {δφ}w=1 is the usual general relativistic
prediction. The bound on δw, and hence w, can now be
obtained by comparing (17) with observed deflections.
The best results available on light bending in gravi-

tational fields are those of Shapiro, Davis, Lebach and
Gregory [19]. These authors use almost 2 million obser-
vations of 541 radio sources by 87 Very-Long-Baseline
Interferometry (VLBI) sites to calculate the deflection
caused by the gravitational field of the Sun. Their result
is

δφ = (0.99992± 0.00023)δφGR, (18)

which gives us a 2σ bound on δw of

0 ≤ δw < 9.9× 10−10, (19)

where we have taken the general relativistic prediction
of light bending for an object whose light ray grazes the
Sun’s limb to be 1.75′′. This is almost exactly the same
bound as was achieved for the time-like case [27].

III. PULSAR CONSTRAINTS

The recent discovery of the ‘double pulsar’ system
[4, 5], PSR J0737-3039A/B, provides new opportunities
for testing ideas in relativistic gravity [20, 21]. These bi-
nary neutron stars are known to orbit each other with
a period of 2.45 hours, with much higher velocities
and accelerations than those found in other binary pul-
sar systems. By good fortune, this system is also rel-
atively near to the Sun, and oriented so that we ob-
serve it nearly edge-on, at an inclination angle of about
89◦. Most importantly, however, and unique to PSR
J0737-3039A/B, is the feature that both neutron stars
are detectable as radio pulsars, with periods of 22ms and
2.7s, respectively for PSR J0737-3039A and PSR J0737-
3039B. These properties make the double pulsar an excel-
lent tool for constraining the type of deviant gravitational
phenomena we are considering in this article.
To proceed further, we model the space-time geometry

as

ds2 = −(1− 2U)dt2 + (1 + 2U)δ̃ijdx
idxj (20)

where δ̃ij specifies the static geometry of the 3-space.
We can now assign orders of smallness in the usual way,
so that the Newtonian potential U is O(2) small, time
derivatives add an O(1) of smallness, and the 3-velocity
vi is O(1) small.
We will now consider relativistic effects that are good

candidates for constraining the existence of any deficit
angle in the double pulsar, before comparing our predic-
tions with the observational data.

A. Spin Precession

Geodetic precession of a body’s spin vector about its
orbital angular momentum vector is a well known predic-
tion of relativistic gravity, and has already been studied
in some binary pulsar systems [21–26]. However, while
it took over a decade for geodetic precession to be ob-
served in the Hulse-Taylor pulsar, PSR B1913+16 [23],
it has already been reported in the double pulsar [21].
We expect this effect to be particularly sensitive to the
existence of a deficit angle, as it involves integration over
an orbit. We shall therefore calculate its influence below,
before proceeding to infer constraints from observational
data later in the section.
First, we want the pulsar spin vector, Y µ, to be or-

thogonal to the world-line of a particle, uµ, and to be
parallel propagated along that curve, so that

dYµ

dτ
= gλσΓσµνYλ

dxν

dτ
= ΓσµνY

σ dx
ν

dτ
, (21)

where Γµνσ = gµρΓ
ρ
νσ, and τ is proper time along the

particle’s world-line. The orthogonality condition then
gives

Y0 = −viYi +O(3), (22)

where vi is the 3-velocity of the particle. Multiplying
through by dτ/dt we find that the spatial component of
Y µ obeys

dYi

dt
= Γ0i0v

jYj + Γji0Y
j + Γkijv

jY k +O(5) (23)

= δ̃ijU,0Y
j + (2δ̃kjU,i + δ̃ikU,j − δ̃ijU,k)v

jY k

+(1 + 2U)Γ̃kijv
jY k + g0[k,i]Y

k +O(5), (24)

where Γ̃ijk = 1
2 (δ̃ij,k + δ̃ik,j − δ̃jk,i). The magnitude of

the 4-vector Y µ should remain constant along the curve
specified by uµ, so that

d

dτ
(gµνYµYν) = 0, (25)

or, up to O(2),

− (viYi)
2 + (1− 2U)δ̃ijYiYj = constant. (26)

This implies that a spin 3-vector, Si, with constant mag-
nitude, δ̃ijSiSj , is given by

Yi = (1 + U)Si +
1

2
δ̃ijv

jvkSk +O(4). (27)
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Alternatively, inverting this expression gives

Si = (1− U)Yi −
1

2
δ̃ijv

jvkYk +O(4)

= (1 + U)δ̃ijY
j −

1

2
δ̃ij δ̃kmvjvkY m +O(4), (28)

which can now be differentiated with respect to t, and
dYi/dt can be substituted from above, to give

dSi

dt
=

[

3vj δ̃kmδ̃j[kU,i] + δ̃kmg0[k,i] + Γ̃m
ij v

j
]

Sm +O(4).

(29)
where we have used

dvi

dt
= δ̃ijUj − Γ̃i

jkv
jvk. (30)

For shorthand, one can also write

Ω̂ki ≡ 3vj δ̃j[kU,i] + g0[k,i] (31)

and

Ωj ≡
1

2
ǫjkiΩ̂ki (32)

so that

dSi

dt
=

[

Ωjǫjkiδ̃
km + Γ̃m

ij v
j
]

Sm +O(4). (33)

This is the general expression for spin precession in the
geometry (20).
To see the effect of a deficit angle on spin precession we

can now consider a 3-metric that is locally isometric to
Euclidean 3-space under the coordinate redefinition (4).
For an elliptic orbit in a plane of constant θ, and with a
potential of the form U = U(r), we then have vθ = 0 and
U,θ = U,φ = 0. From (33), we then find

dSr

dt
=

3

2
vφU,rSφ +

vφ

r
Sφ (34)

dSφ

dt
= −

3

2
vφr2w2U,rSr − rw2vφSr +

vr

r
Sφ. (35)

If we now define two new quantities, S̃φ ≡ Sφ/(rw) and
X ≡ (3vφrU,r/2 + vφ)w, these equations reduce to

dSr

dt
= XS̃φ (36)

dS̃φ

dt
= −XSr, (37)

which have the solutions

Sr = A sin

{
∫

Xdt

}

(38)

S̃φ = A cos

{
∫

Xdt

}

(39)

where A is a constant of integration. If we now use (10),
with δw being O(2) small, then we find that the preces-
sion rate integrated over an orbit is

Ω = 2π −

∫

Xdt

= 2π −
3

2

∫

vφrU,rdt− (1− δw)

∫

vφdt

= ΩGR + 2πδw, (40)

where ΩGR is the general relativistic precession rate,
when w = 0. The extra precession per orbit due to the
deficit angle is therefore 2πδw.
This result can be seen to be straightforwardly gen-

eralisable to more complicated orbits if we note that w
always enters as a multiplicative factor in the O(2) terms
in (33). The lowest-order effect of w then occurs when
it multiplies the O(0) terms, which are independent of
gravitational potentials and velocities.

B. Orbital Inclination

Binary pulsar observations are sensitive to the sine of
the inclination of the orbital plane with respect to the
line of sight of the observer:

s = sin i =
x

a
, (41)

where a is the semi-major axis of the elliptical orbit, and
x is the ‘projected’ semi-major axis. Although the value
of this quantity itself is not dependent on integration over
an orbit, it is usually determined in terms of another
quantity that is: The orbital period.
In the Newtonian 2-body problem the orbital period is

given by

Pb = 2π

√

a3

m
, (42)

where m = mp +mc is the total mass of the pulsar and
its companion (another pulsar, in the case of the double
pulsar). If there is a deficit angle then we should expect
this period to be reduced by a factor of w, due to the
shorter path length, so that

Pb = 2πw

√

a3

m
. (43)

Using this to eliminate a in (42) we then find that

s = w2/3

(

2π

Pb

)2/3

xp
(mp +mc)

2/3

mc
, (44)

where we have also used xp = xmc/(mp +mc), which is
a directly measurable quantity.
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C. Constraints

The constraints on periastron advance, inclination an-
gle and geodetic precession rate obtained in [20] and [21]
for the double pulsar system are displayed in Table II.
The first two of these are based on observations made be-
tween April 2003 and January 2006 using the 64m Parkes
radio telescope in New South Wales, the 76m Lovell radio
telescope at the Jodrell Bank Observatory, and the 100m
Green Bank telescope in West Virginia. The observations
of geodetic precession were made between December 2003
and November 2007 using the Green Bank telescope.

Parameter Observed value

Periastron advance, ω̇ 16.89947 (68) ◦/year

Orbital inclination, s = sin i 0.99974 (+16,-39)

Geodetic precession rate, ΩB 4.77 (+66,-65) ◦/year

TABLE II: Observational constraints on the periastron ad-
vance, ω̇, orbital inclination, s = sin i, and geodetic precession
rate of PSR J0737-3039B, ΩB , from [20] and [21].

Using the expressions found above, together with the
usual general relativistic (δw = 0) results, we can now
write down the periastron advance, inclination angle and
geodetic precession rates as

ω̇ = 3

(

2π

Pb

)5/3
(mp +mc)

2/3

(1− e2)
+

(

2π

Pb

)

δw, (45)

s =

(

1−
2

3
δw

)(

2π

Pb

)2/3

xp
(mp +mc)

2/3

mc
, (46)

and

ΩB =

(

2π

Pb

)5/3
1

(1− e2)

mc(4mp + 3mc)

2(mp +mc)4/3
+

(

2π

Pb

)

δw.

(47)
In all of these expressions Pb, xB and e can be mea-
sured directly, and are given in [20]. The ratio of masses
mA/mB is also known [20], but not the individual masses
themselves. We therefore need two observations to ob-
tain a constraint on the deficit angle. The first will give

enough information to find the two masses, and the sec-
ond can be used to compare predicted and observed val-
ues of a relativistic effect. We choose to use ω̇ as the
first observable in each case, as it is known to greatest
accuracy.
Using the additional constraint from geodetic preces-

sion, ΩB, then gives the 2σ bound [28]

0 ≤ δw < 1.5× 10−6. (48)

Alternatively, we can use the inclination angle, s, to get
the stronger 2σ bound

0 ≤ δw < 2.4× 10−8. (49)

IV. DISCUSSION

We have considered the effects of a deficit angle, w, in
the space-time metric for the solar system and the dou-
ble pulsar system. Using observations of the perihelion
precession of Mercury and the gravitational deflection of
light we constrain the magnitude of such a deficit angle
in the solar system to be 2π(1 − w), with

0 ≤ (1− w) < 10−9 (50)

to 95% confidence. Similarly, we have used observations
of periastron advance and inclination angle in the double
pulsar system PSR J0737-3039A/B to gain the constraint

0 ≤ (1− w) < 2.4× 10−8, (51)

also to 95% confidence. Although this result is weaker
than the solar system bound, it is in a very different
physical environment, where accuracy is likely to improve
in the future, as observational data on the double pulsar
accumulates.
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