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Abstract

In this review we present a thoroughly comprehensive survey of recent work on modi-
fied theories of gravity and their cosmological consequences. Amongst other things, we
cover General Relativity, Scalar-Tensor, Einstein-Aether, and Bimetric theories, as well
as TeVeS, f(R), general higher-order theories, Horava-Lifschitz gravity, Galileons, Ghost
Condensates, and models of extra dimensions including Kaluza-Klein, Randall-Sundrum,
DGP, and higher co-dimension braneworlds. We also review attempts to construct a Pa-
rameterised Post-Friedmannian formalism, that can be used to constrain deviations from
General Relativity in cosmology, and that is suitable for comparison with data on the
largest scales. These subjects have been intensively studied over the past decade, largely
motivated by rapid progress in the field of observational cosmology that now allows,
for the first time, precision tests of fundamental physics on the scale of the observable
Universe. The purpose of this review is to provide a reference tool for researchers and stu-
dents in cosmology and gravitational physics, as well as a self-contained, comprehensive
and up-to-date introduction to the subject as a whole.
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1. Introduction

The General Theory of Relativity is an astounding accomplishment: Together with
quantum field theory, it is now widely considered to be one of the two pillars of modern
physics. The theory itself is couched in the language of differential geometry, and was
a pioneer for the use of modern mathematics in physical theories, leading the way for
the gauge theories and string theories that have followed. It is no exaggeration to say
that General Relativity set a new tone for what a physical theory can be, and has truly
revolutionised our understanding of the Universe.

One of the most striking facts about General Relativity is that, after almost an entire
century, it remains completely unchanged: The field equations that Einstein communica-
tion to the Prussian Academy of Sciences in November 1915 are still our best description
of how space-time behaves on macroscopic scales. These are
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where G, is the Einstein tensor, T, is the energy momentum tensor, G is Newton’s
constant, and c is the speed of light. It is these equations that are thought to govern the
expansion of the Universe, the behaviour of black holes, the propagation of gravitational
waves, and the formation of all structures in the Universe from planets and stars all the
way up to the clusters and super-clusters of galaxies that we are discovering today. It
is only in the microscopic world of particles and high energies that General Relativity is
thought to be inadequate. On all other scales it remains the gold standard.

The great success of General Relativity, however, has not stopped alternatives being
proposed. Even during the very early days after Einstein’s publication of his theory there
were proposals being made on how to extend it, and incorporate it in a larger, more
unified theory. Notable examples of this are Eddington’s theory of connections, Weyl’s
scale independent theory, and the higher dimensional theories of Kaluza and Klein. To
some extent, these early papers were known to have been influential on Einstein himself.
They certainly influenced the physicists who came after him.

The ideas developed by Eddington during this period were later picked up by Dirac,
who pointed out the apparent coincidence between the magnitude of Newton’s constant
and the ratio of the mass and scale of the Universe. This relationship between a funda-
mental constant and the dynamical state of a particular solution led Dirac to conjecture
that Newton’s constant may, in fact, be varying with time. The possibility of a varying
Newton’s constant was picked up again in the 1960s by Brans and Dicke who developed
the prototypical version of what are now known as scalar-tensor theories of gravity. These
theories are still the subject of research today, and make up Section of our report.

Building on the work of Hermann Weyl, the Soviet physicist Andrei Sakharov pro-
posed in 1967 what would prove to be one of the most enduring theories of modified
gravity. In Sakharov’s approach, the Einstein-Hilbert action, from which the Einstein
field equations can be derived, is simply a first approximation to a much more complicated
action: Fluctuations in space-time itself lead to higher powers corrections to Einstein’s
theory. In 1977 Kellogg Stelle showed formally that these theories are renormalizable in
the presence of matter fields at the one loop level. This discovery was followed by a surge
of interest, that was boosted again later on by the discovery of the potential cosmologi-
cal consequences of these theories, as found by Starobinsky and others. In Section 4] we
review this work.

Guu =
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The idea of constructing a quantum field theory of gravity started to take a front seat
in physics research during the 1970s and 80s, with the rise of super-gravity and super-
string theories. Both of these proposals rely on the introduction of super-symmetry, and
signalled a resurgence in the ideas of Kaluza and Klein involving higher dimensional
spaces. Boosted further by the discovery of D-branes as fundamental objects in string
theories, this avenue of research led to a vastly richer set of structures that one could
consider, and a plethora of proposals were made for how to modify the effective field
equations in four dimensions. In Section [5| we review the literature on this subject.

By the early 1970s, and following the ‘golden age’ of general relativity that took place
in the 1960s, there was a wide array of candidate theories of gravity in existence that
could rival Einstein’s. A formalism was needed to deal with this great abundance of pos-
sibilities, and this was provided in the form of the Parameterised Post-Newtonian (PPN)
formalism by Kenneth Nordtvedt, Kip Thorne and Clifford Will. The PPN formalism
was built on the earlier work of Eddington and Dicke, and allowed for the numerous
theories available at the time to be compared to cutting edge astrophysical observations
such as lunar laser ranging, radio echo, and, in 1974, the Hulse-Taylor binary pulsar.
The PPN formalism provided a clear structure within which one could compare and as-
sess various theories, and has been the benchmark for how theories of gravity should be
evaluated ever since. We will give an outline of the PPN formalism, and the constraints
available within it today, in Section

The limits of General Relativity have again come into focus with the emergence of
the ‘dark universe’ scenario. For almost thirty years there has existed evidence that, if
gravity is governed by Einstein’s field equations, there should be a substantial amount of
‘dark matter’ in galaxies and clusters. More recently, ‘dark energy’ has also been found
to be required in order to explain the apparent accelerating expansion of the Universe.
Indeed, if General Relativity is correct, it now seems that around 96% of the Universe
should be in the form of energy densities that do not interact electromagnetically. Such
an odd composition, favoured at such high confidence, has led some to speculate on the
possibility that General Relativity may not, in fact, be the correct theory of gravity to
describe the Universe on the largest scales. The dark universe may be just another signal
that we need to go beyond Einstein’s theory.

The idea of modifying gravity on cosmological scales has really taken off over the past
decade. This has been triggered, in part, by theoretical developments involving higher
dimensional theories, as well as new developments in constructing renormalizable theories
of gravity. More phenomenologically, Bekenstein’s relativistic formulation of Milgrom’s
Modified Newtonian Dynamics (MoND) has provided a fresh impetus for new study:
What was previously a rule of thumb for how weak gravitational fields might behave in
regions of low acceleration, was suddenly elevated to a theory that could be used to study
cosmology. Insights such as Bertschinger’s realisation that large-scale perturbations in
the Universe can be directly related to the overall expansion rate have also made it
possible to characterise large classes of theories simply in terms of how they make the
Universe evolve. Finally, and just as importantly, there has been tremendous progress
observationally. A key step here has been the measurement of the growth of structure
at redshifts of z ~ 0.8, by Guzzo and his collaborators. With these measurements
one can test, and reject, a large number of proposals for modified gravity. This work
is complemented by many others that carefully consider the impact of modifications
to gravity on the cosmic microwave background, weak lensing and a variety of other
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cosmological probes. As a result, testing gravity has become one of the core tasks of
many current, and future, cosmological missions and surveys.

In this report we aim to provide a comprehensive exposition of the many developments
that have occurred in the field of modified gravity over the past few decades. We will focus
on how these theories differ from General Relativity, and how they can be distinguished
from it, as well as from each other. A vast range of modified theories now exist in the
literature. Some of these have extra scalar, vector or tensor fields in their gravitational
sector; some take Sakharov’s idea in an altogether new direction, modifying gravity in
regions of low, rather than high, curvature; others expand on the ideas first put forward
by Kaluza and Klein, and take them into new realms by invoking new structures. Indeed,
as the reader will see from our table of contents, there are now a great many possible
ways of modifying gravity that can, in principle, be tested against the real Universe. We
will attempt to be as comprehensive in this report as we consider it reasonably possible
to be. That is, we will attempt to cover as many aspects of as many different theories as
we can.

To be able to efficiently assess the different candidate theories of gravity we have opted
to first lay down the foundations of modern gravitational physics and General Relativity
in Section [2, We have aimed to make this a self-contained section that focuses, to some
extent, on why general relativity should be considered ‘special’ among the larger class of
possibilities that we might consider. In this section we also survey the current evidence
for the ‘dark universe’; and explain why it has become the standard paradigm. From here
we move on to discuss and compare alternative theories of gravity and their observational
consequences. While the primary focus of this report is to elucidate particular theories,
we will also briefly delve into the recent attempts that have been made to construct a
formalism, analogous to the PPN formalism, for the cosmological arena. We dub these
approaches ‘Parameterised Post Friedmannian’.

Let us now spell out the conventions and definitions that we will use throughout
this review. We will employ the ‘space-like convention’ for the metric, such that when
it is diagonalised it has the signature (— + ++). We will choose to write space-time
indices using the Greek alphabet, and space indices using the Latin alphabet. Where
convenient, we will also choose to use units such that speed of light is equal to 1. Under
these conventions the line-element for Minkowski space, for example, can then be written

ds? = datds” = —dt* + da® + dy* + dz*. (2)

For the Riemann and Einstein curvature tensors we will adopt the conventions of Misner,
Thorne and Wheeler [902]:

Ruuaﬁ = 8O‘FHVB - aﬁrﬂua + FHU'(XFUV,B - FHU,BF(TV@ (3)

1
G;w = R,uu_igp,VR» (4)

where R, = R*,,, and R = R“,. The energy-momentum tensor will be defined with
respect to the Lagrangian density for the matter fields as

2 8L,
V_g(sguu’
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where the derivative here is a functional one. Throughout this review we will refer to
the energy density of a fluid as p, and its isotropic pressure as P. The equation of state,
w, is then defined by

P = wp. (6)

When writing the Friedmann-Lemaitre-Robertson-Walker (FLRW) line-element we will
use t to denote the ‘physical time’ (proper time of observers comoving with the fluid),
and 7 = [dt/a(t) to denote the ‘conformal time’ coordinate. Unless otherwise stated,
when working with linear perturbations about an FLRW background we will work in the
conformal Newtonian gauge in which

ds?* = a®(7) [-(1 +20)dr? + (1 — 2®)g;;dz’da’] (7)
where ¢;; is the metric of a maximally symmetric 3-space with Gaussian curvature x:

o dr?
dsfsy = qijda’da’ = - L 4 12d% + r? sin? 0dg?. (8)

— K72

When dealing with time derivatives in cosmology we will use the dot and prime operators
to refer to derivatives with respect to physical and conformal time, respectively, such that

d

= % (9)
, _ d
= - (10)

In four dimensional space-time we will denote covariant derivatives with either a semi-
colon or a V. The four dimensional d’Alembertian will then be defined as

O=g"V,V,. (11)

On the conformally static three-dimensional space-like hyper-surfaces the grad operator
will be denoted with an arrow, as V,;, while the Laplacian will be given by

As is usual, we will often make use of the definition of the Hubble parameter defined
with respect to both physical and conformal time as

H

(13)

sl sl

H (14)

The definitions we have made here will be restated at various points in the review, so
that each section remains self-contained to a reasonable degree. The exception to this
will be Section [5] on higher dimensional theories, which will require the introduction of
new notation in order to describe quantities in the bulk.

Let us now move onto the definitions of particular terms. We choose to define the
equivalence principles in the following way:
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e Weak Equivalence Principle (WEP): All uncharged, freely falling test particles fol-
low the same trajectories, once an initial position and velocity have been prescribed.

e Einstein Equivalence Principle (EEP): The WEP is valid, and furthermore in all
freely falling frames one recovers (locally, and up to tidal gravitational forces) the
same laws of special relativistic physics, independent of position or velocity.

e Strong Equivalence Principle (SEP): The WEP is valid for massive gravitating ob-
jects as well as test particles, and in all freely falling frames one recovers (locally,
and up to tidal gravitational forces) the same special relativistic physics, indepen-
dent of position or velocity.

Of these, the EEP in particular is known to have been very influential in the conception
of General Relativity. One may note that some authors refer to what we have called the
EEP as the ‘strong equivalence principle’.

Let us now define what we mean by ‘General Relativity’. This term is often used
by cosmologists to refer simply to Einstein’s equations. Particle physicists, on the other
hand, refer to any dynamical theory of spin-2 fields that incorporates general covariance
as ‘general relativity’, even if it has field equations that are different from Einstein’sﬂ In
this report when we write about ‘General Relativity’ we refer to a theory that simulta-
neously exhibits general covariance, and universal couplings to all matter fields, as well
as satisfying Einstein’s field equations. When we then discuss ‘modified gravity’ this
will refer to any modification of any of these properties. However, it will be clear from
reading through this report that almost all the proposals we report on preserve general
covariance, and the universality of free fall. Let us now clarify further what exactly we
mean by ‘modified’ theories of gravity.

As we will discuss in the next section, the effect of gravity on matter is tightly
constrained to be mediated by interactions of the matter fields with a single rank-2 tensor
field. This does not mean that this field is the only degree of freedom in the theory, but
that whatever other interactions may occur, the effect of gravity on the matter fields can
only be through interactions with the rank-2 tensor (up to additional weak interactions
that are consistent with the available constraints). The term ‘gravitational theory’ can
then be functionally defined by the set of field equations obeyed by the rank-2 tensor,
and any other non-matter fields it interacts with. If these equations are anything other
than Einstein’s equations, then we consider it to be a ‘modified theory of gravity’. We
will not appeal to the action or Lagrangian of the theory itself here; our definition is an
entirely functional one, in terms of the field equations alone.

While we have constructed the definition above to be as simple as possible, there are
of course a number of ambiguities involved. Firstly, exactly what one should consider as
a ‘matter field’ can be somewhat subjective. This is especially true in terms of the exotic
fields that are sometimes introduced into cosmology in order to try and understand
the apparent late-time accelerating expansion of the Universe. Secondly, we have not
defined exactly what we mean by ‘Einstein’s equations’. In four dimensions it is usually
clear what this term refers to, but if we allow for the possibility of extra dimensions

1Note that under this definition the Einstein-Hilbert and Brans-Dicke Lagrangians, for example,
represent different models of the same theory, which is called General Relativity.
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then we may choose for it to refer either to the equations derived from an Einstein-
Hilbert action in the higher dimensional space-time, or to the effective set of equations
in four dimensional space-time. Clearly these two possible definitions are not necessarily
consistent with each other. Even in four dimensions it is not always clear if ‘Einstein’s
equations’ include the existence of a non-zero cosmological constant, or not.

To a large extent, the ambiguities just mentioned are a matter of taste, and have no
baring on the physics of the situation. For example, whether one chooses to refer to the
cosmological constant as a modification of gravity, as an additional matter field, or as
part of Einstein’s equations themselves makes no difference to its effect on the expansion
of the Universe. In this case it is only convention that states that the Einstein equations
with A is not a modified theory of gravity. Although less established than the case
of the cosmological constant, similar conventions have started to develop around other
modifications to the standard theory. For example, quintessence fields that are minimally
coupled to the metric are usually thought of as additional matter fields, whereas scalar
fields that non-minimally couple to the Einstein-Hilbert term in the action are usually
thought of as being ‘gravitational’ fields (this distinction existing despite what numerous
studies call non-minimally coupled quintessence fields). Although not always clear, we
try to follow what we perceive to be the conventions that exist in the literature in this
regard. We therefore include in this review a section on non-minimally coupled scalar-
tensor theories, but not a section on minimally coupled quintessence fields.
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2. General Relativity, and its Foundations

General Relativity is the standard theory of gravity. Here we will briefly recap some of
its essential features, and foundations. We will outline the observational tests of gravity
that have been performed on Earth, in the solar system, and in other astrophysical
systems, and we will then explain how and why it is that General Relativity satisfies
them. We will outline why General Relativity should be considered a special theory in
the more general class of theories that one could consider, and will present some of the
theorems it obeys as well as the apparatus that is most frequently used to parameterise
deviations away from it. This will be followed by a discussion of the cosmological solutions
and predictions of the concordance general relativistic ACDM model of the Universe.

2.1. Requirements for Validity

In order to construct a relativistic theory of gravity it is of primary importance to
establish the properties it must satisfy in order for it to be considered viable. These
include foundational requirements, such as the universality of free fall and the isotropy
of space, as well as compatibility with a variety of different observations involving the
propagation of light and the orbits of massive bodies. Today, radio and laser signals
can be sent back and forth from the Earth to spacecraft, planets and the moon, and
detailed observations of the orbits of a variety of different astrophysical bodies allow
us to look for ever smaller deviations from Newtonian gravity, as well as entirely new
gravitational effects. It is in this section that we will discuss the gravitational experiments
and observations that have so far been performed in these environments. We will discuss
what they can tell us about relativity theory, and the principles that a theory must obey
in order for it to stand a chance of being considered observationally viable.

2.1.1. The foundations of relativistic theories

First of all let us consider the equivalence principles. We will not insist immediately
that any or all of these principles are valid, but will rather reflect on what can be said
about them experimentally. This will allow us to separate out observations that test
equivalence principles, from observations that test the different gravitational theories
that obey these principles — an approach pioneered by Dicke [423].

The least stringent of the equivalence principles is the WEP. The best evidence in
support of the WEP still comes from E6tvos type experiments that use a torsion balance
to determine the relative acceleration of two different materials towards distant astro-
physical bodies. In reality these materials are self-gravitating, but their mass is usually
small enough that they can effectively be considered to be non-gravitating test particles
in the gravitational field of the astrophysical body. Using beryllium and titanium the
tightest constraint on the relative difference in accelerations of the two bodies, a1 and
as, is currently [T110]

_olmzasl g0 gy 10710 (15)
a1 + as|

This is an improvement of around 4 orders of magnitude on the original results of E6tvos
from 1922 [A72]. Tt is expected that this can be improved upon by up to a further 5
orders of magnitude when space based tests of the equivalence principle are performed
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[1282]. These null results are generally considered to be a very tight constraint on the
foundations of any relativistic gravitational theory if it is to be thought of as viable: The
WEP must be satisfied, at least up to the accuracy specified in Eq. .

Let us now briefly consider the gravitational redshifting of light. This is one of the
three “classic tests” of General Relativity, suggested by Einstein himself in 1916 [465].
It is not, however, a particularly stringent test of relativity theory. If we accept energy-
momentum conservation in a closed system then it is only really a test of the WEP,
and is superseded in its accuracy by the E6tvos experiment we have just discussed. The
argument for this is the following [423| [594]: Consider an atom that initially has an
inertial mass M;, and a gravitational mass M,. The atom starts near the ceiling of a
lab of height h, in a static gravitational field of strength g, and with an energy reservoir
on the lab floor beneath it. The atom emits a photon of energy E that then travels
down to the lab floor, such that its energy has been blue-shifted by the gravitational
field to £’ when it is collected in the reservoir. This process changes the inertial and
gravitational masses of the atom to M; and M, respectively. The atom is then lowered
to the floor, a process which lowers its total energy by M,gh. At this point, the atom
re-absorbs a photon from the reservoir with energy E' = (M! — M/)c? and is then
raised to its initial position at the ceiling. This last process raises its energy by M, ;’ gh,
where here M and M, are the inertial and gravitational masses of the atom after re-
absorbing the photon. The work done in lowering and raising the atom in this way is
then w = (M, — M;)gh. Recalling that the energy gained by the photon in travelling
from the lab ceiling to the lab floor is E' — E, the principle of energy conservation then
tells us that (B’ — F) = w = (M — Mg)gh. Now, if the WEP is obeyed then M; = M,
and this equation simply becomes (E' — E) = E’gh. This, however, is just the usual
expression for gravitational redshift. Crucial here is the assumption that local position
invariance is valid, so that both M; and M, are independent of where they are in the lab.
If the laws of physics are position independent, and energy is conserved, gravitational
redshift then simply tests the equivalence of gravitational and inertial masses, which
is what the E6tvos experiment does to higher accuracy. Alternatively, if we take the
WEP to be tightly constrained by the EotvOs experiment, then gravitational redshift
experiments can be used to gain high precision constraints on the position dependence
of the laws of physics [II8]. The gravitational redshift effect by itself, however, does not
appear to be able to distinguish between different theories that obey the WEP and local
position invariance. In Dicke’s approach it should therefore be considered as a test of
the foundations of relativistic gravitational theories, rather than a test of the theories
themselves.

The next most stringent equivalence principle is the EEP. Testing this is a consid-
erably more demanding task than was the case for the WEP, as one now not only has
to show that different test particles follow the same trajectories, but also that a whole
set of special relativistic laws are valid in the rest frames of these particles. Despite
the difficulties involved with this, there is still very compelling evidence that the EEP
should also be considered valid to high accuracy. The most accurate and direct of this
evidence is due to the Hughes-Drever experiments [633] [433], which test for local spatial
anisotropies by carefully observing the shape and spacing of atomic spectral lines. The
basic idea here is to determine if any gravitational fields beyond a single rank-2 tensor
are allowed to couple directly to matter fields. To see why this is of importance, let us
first consider a number of point-like particles coupled to a single rank-2 tensor, g,,,. The

12



Lagrangian density for such a set of particles is given by
L= Z/mh/—gm,u“u”d)\, (16)
I

where m; are the masses of the particles, and u* = dz#/d) is their 4-velocity measured
with respect to some parameter A\. The Euler-Lagrange equations derived from §L =
0 then tell us that the particles in Eq. follow geodesics of the metric g,,, and
Riemannian geometry tells us that at any point we can choose coordinates such that
9uv = N locally. We therefore recover special relativity at every point, and the EEP
is valid. Now, if the matter fields couple to two rank-2 tensors then the argument used
above falls apart. In this case the Lagrangian density of our particles reads

LZZ/[mI\/W-FﬂI\/W} ax, (17)
I

where h,, is the new tensor, and ny is the coupling of each particle to that field. The
particles above can now no longer be thought of as following the geodesics of any one
metric, as the Euler-Lagrange Equations ([17]) are not in the form of geodesic equations.
We therefore have no Riemannian geometry with which we can locally transform to
Minkowski space, and the EEP is violated. The relevance of this discussion for the
Hughes-Drever experiments is that EEP violating couplings, such as those in Eq. ,
cause just the type of spatial anisotropies that these experiments constrain. In this case
the 4-momentum of the test particle in these experiments becomes

_ mguu” nhy,u”
V/ —GapuuP \/—ha/guauﬁ’

and as g, and h,, cannot in general be made to be simultaneously spatially isotropic,
we then have that p, is spatially anisotropic, and should cause the type of shifts and
broadening of spectral lines that Hughes-Drever-type experiments are designed to de-
tect. The current tightest constraints are around 5 orders of magnitude tighter than the
original experiments of Hughes and Drever [765], B01], and yield constraints of the order

Pu (18)

n < 1072"m, (19)

so that couplings to the second metric must be very weak in order to be observationally
viable. This result strongly supports the conclusion that matter fields must be coupled to
a single rank-2 tensor only. It then follows that particles follow geodesics of this metric,
that we can recover special relativity at any point, and hence that the EEP is valid.
It should be noted that these constraints do not apply to gravitational theories with
multiple rank-2 tensor fields that couple to matter in a linear combination, so that they
can be written as in Eq. with g, = ZI cjhffl,)7 where c; are a set of I constants.
Local spatially isotropy, and the EEP, is always recovered in this case.

Beyond direct experimental tests, such as Hughes-Drever-type experiments, there are
also theoretical reasons to think that the EEP is valid to high accuracy. This is a con-
jecture attributed to Schiff, that states ‘any complete and self-consistent gravitational
theory that obeys the WEP must also satisfy the EEP’. It has been shown using conser-
vation of energy that preferred frame and preferred location effects can cause violations
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of the WEP [594]. This goes some way towards demonstrating Schiff’s conjecture, but
there is as yet still no incontrovertible proof of its veracity. We will not consider the issue
further here.

The experiments we have just described provide very tight constraints on the WEP,
the EEP, and local position invariance. It is, of course, possible to test various other
aspects of relativistic gravitational theory that one may consider as ‘foundational’ (for
example, the constancy of a constant of nature [1240]). For our present purposes, how-
ever, we are mostly interested in the EEP. Theories that obey the EEP are often described
as being ‘metric’ theories of gravity, as any theory of gravity based on a differentiable
manifold and a metric tensor that couples to matter, as in Eq. , can be shown to
have test particles that follow geodesics of the resulting metric space. The basics of
Riemannian geometry then tells us that at every point in the manifold there exists a
tangent plane, which in cases with Lorentzian signature is taken to be Minkowski space.
This allows us to recover special relativity at every point, up to the effects of second
derivatives in the metric (i.e. tidal forces), so that the EEP is satisfied. Validity of the
EEP can then be thought of as implying that the underlying gravitational theory should
be a metric one [1273].

2.1.2. Observational tests of metric theories of gravity
In what follows we will consider gravitational experiments and observations that can
potentially be used to distinguish between different metric theories of gravity.

Solar system tests

As well as the gravitational redshifting of light that we have already mentioned, the
other two ‘classic tests’ of General Relativity are the bending of light rays by the Sun,
and the anomalous perihelion precession of Mercury. These can both be considered tests
of gravitational theories beyond the foundational issues discussed in the previous section.
That is, each of these tests is (potentially) able to distinguish between different metric
theories of gravity. As well as these two tests, there are also a variety of other gravitational
observations that can be performed in the solar system in order to investigate relativistic
gravitational phenomena. A viable theory of gravity must be compatible with all of
them. For convenience we will split these into tests involving null trajectories (such as
light bending) and tests involving time-like trajectories (such as the perihelion precession
of planets).

First of all let us consider tests involving null geodesics. As already mentioned,
the most famous of these is the spatial deflection of star light by the Sun. In General
Relativity the deflection angle, 6, of a photon’s trajectory due to a mass, M, with impact
parameter d, is given by

2M
0= 7(1 +cos ) ~ 1.75", (20)

where ¢ is the angle made at the observer between the direction of the incoming photon

and the direction of the mass. The 1.75” is for a null trajectory that grazes the limb of the

Sun. This result is famously twice the size of the effect that one might naively estimate

using the equivalence principle alone [464]. The tightest observational constraint to date

on 6 is due to Shapiro, David, Lebach and Gregory who use around 2500 days worth of

observations taken over a period of 20 years. The data in this study was taken using 87
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VLBI sites and 541 radio sources, yielding more than 1.7 x 10° measurements that use
standard correction and delay rate estimation procedures. The result of this is [1131]

6 = (0.99992 + 0.00023) x 1.75", (21)

which is around 3 orders of magnitude better than the observations of Eddington in 1919.

A further, and currently more constraining, test of metric theories of gravity using
null trajectories involves the Shapiro time-delay effect [I130]. Here the deflection in time
is taken into account when a photon passes through the gravitational field of a massive
object, as well as the deflection in space that is familiar from the lensing effects discussed
above. The effect of this in General Relativity is to cause a time delay, At, for a light-like
signal reflected off a distant test object given by

At = 4Mn [421;2} ~ 20 <12 ~In l(;@)Q (T;)D s, (22)

where r1 and ro (both assumed > d) are the distances of the observer and test object
from an object of mass M, respectively. The second equality here is the approximate
magnitude of this effect when the photons pass close by the Sun, and the observer is on
Earth. Here we have written Ry as the radius of the Sun, and au as the astronomical
unit. The best constraint on gravity using this effect is currently due to Bertotti, Iess
and Tortora using radio links with the Cassini spacecraft between the 6th of June and
the 7th of July 2002 [I47]. These observations result in the constraint

At = (1.00001 £ 0.00001)Atgr, (23)

where Atgg is the expected time-delay due to general relativity. The Shapiro time-delay
effect in fact constrains the same aspect of relativistic gravity as the spatial deflection
of light (this will become clear when we introduce the parameterised post-Newtonian
formalism later on). This aspect is sometimes called the ‘unit curvature’ of space.

Let us now consider tests involving time-like trajectories. The ‘classical’ test of Gen-
eral Relativity that falls into this category is the anomalous perihelion precession of
Mercury (this is called a test, despite the fact that it was discovered long before General
Relativity [777]). In Newtonian physics the perihelion of a test particle orbiting an iso-
lated point-like mass stays in a fixed position, relative to the fixed stars. Adding other
massive objects into the system perturbs this orbit, as does allowing the central mass to
have a non-zero quadrupole moment, so that the perihelion of the test particle’s orbit
slowly starts to precess. In the solar system the precession of the equinoxes of the co-
ordinate system contribute about 5025” per century to Mercury’s perihelion precession,
while the other planets contribute about 531" per century. The Sun also has a non-zero
quadrupole moment, which contributes a further 0.025” per century. Taking all of these
effects into account, it still appears that the orbit of Mercury in the solar system has an
anomalous perihelion precession that cannot be explained by the available visible matter,
and Newtonian gravity alone. Calculating this anomalous shift exactly is a complicated
matter, and depends on the exact values of the quantities described above. In Table []
we display the observed anomalous perihelion precession of Mercury, Aw, as calculated
by various different groups. For a more detailed overview of the issues involved, and a
number of other results, the reader is referred to [1039]. In relativistic theories of gravity
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Source Aw /(" per century)
Anderson et al. [48] 42.94 +0.20
Anderson et al. [49] 43.13 £0.14
Krasinsky et al. [746]: EPM1988 42.984 £ 0.061

DE200 42.977 £0.061
Pitjeva [1040]: EPM1988 42.963 + 0.052
DE200 42.969 £ 0.052

Table 1: The value of the perihelion precession of Mercury obtained from observations by various authors.
The acronyms EPM1988 and DE200 refer to different numerical ephemerides, which are reviewed in
[T04T].

the additional post-Newtonian gravitational potentials mean that the perihelion of a test
particle orbiting an isolated mass is no longer fixed, as these potentials do not drop off
as ~ 1/r?. There is therefore an additional contribution to the perihelion precession,
which is sensitive to the relative magnitude and form of the gravitational potentials, and
hence the underlying relativistic theory. For General Relativity, the predicted anomalous
precession of a two body system is given by

Aw — 6w M

~ 42.98", (24)
where m is the total mass of the two bodies, and p is the semi-latus rectum of the orbit.
The last equality is for the Sun-Mercury system, and is compatible with the observations
shown in Table|l] Each relativistic theory predicts its own value of Aw, and by comparing
to observations such as those in Table[Ilwe can therefore constrain them. This test is an
additional one beyond those based on null geodesics alone as it tests not only the ‘unit
curvature’ of space, but also the non-linear terms in the space-time geometry, as well as
preferred frame effects.

Another very useful test involving time-like geodesics involves looking for the ‘Nordtvedt
effect’ [986]. This effect is the name given to violations of the SEP. In the previous section
we only considered tests of the WEP and EEP, which provide strong evidence that viable
gravitational theories should be ‘metric’ ones. Now, it is entirely possible to satisfy the
WEP and EEP, with a metric theory of gravity, while violating the SEP. Such violations
do not occur in General Relativity, but do in most other theories. Every test of the
Nordtvedt effect is therefore a potential killing test of general relativity, if it delivers a
non-null result. To date, the most successful approach in searching for SEP violations
is to use the Earth-Moon system in the gravitational field of the Sun as a giant E6tvos
experiment. The difference between this and the laboratory experiments described in
the previous section is that while the gravitational fields of the masses in WEP E&tvos
experiments are entirely negligible, this is no longer the case with the Earth and Moon.
By tracking the separation of the Earth and Moon to high precision, using lasers reflected
off reflectors left on the Moon by the Apollo 11 mission in 1969, it is then possible to
gain the constraint [1277]

n=(-1.0+£14)x 10713 (25)

where 7 is defined as in Eq. . This is indeed a null result, consistent with General
Relativity, and is tighter even than the current best laboratory constraint on the WEP. It
16



can therefore be used to constrain possible deviations from General Relativity, and in fact
constrains a similar (but not identical) set of gravitational potentials to the perihelion
precession described previously.

A third solar system test involving time-like geodesics is the observation of spinning
objects in orbit. While currently less constraining than the other tests discussed so
far, these observations allow insight into an entirely relativistic type of gravitational be-
haviour: gravitomagnetism. This is the generation of gravitational fields by the rotation
of massive objects, and was discovered in the very early days of General Relativity by
Lense and Thirring [1204] [785]. The basic idea here is that massive objects should ‘drag’
space around with them as they rotate, a concept that is in good keeping with Mach’s
principle. Although one can convincingly argue that the same aspects of the gravita-
tional field that cause frame-dragging are also being tested by perihelion precession and
the Nordtvedt effect, it is not true that in these cases the gravitational fields in question
are being communicated through the rotation of matter. Now, in the case of General
Relativity it can be shown that the precession of a spin vector S along the trajectory
of a freely-falling gyroscope in orbit around an isolated rotating massive body at rest is
given by

B _gxs, (26)
-
where 3 )

Here we have written the vector g = go;, and have taken v and U to be the velocity of
the gyroscope and the Newtonian potential at the gyroscope, respectively. The first term
in is called ‘geodetic precession’, and is caused by the ‘unit curvature’ of the space.
This effect exists independent of the massive bodies rotation. The second term in
is the Lense-Thirring term, and causes the frame-dragging discussed above. The most
accurate measurement of this effect claimed so far is at the level of 5 — 10% accuracy,
and has been made using the LAser GEOdynamics Satellites (LAGEOS) [302] (there
has, however, been some dispute of this result [641] 642]). The Gravity Probe B mission
is a more tailor made experiment which was put in orbit around the Earth between April
2004 and September 2005. The current accuracy of results from this mission are at the
level of ~ 15% [476], although this could improve further after additional analysis is
performed.

All of the tests discussed so far in this section have been for long-ranged modifications
to Newtonian gravity. As well as these, however, there are a host of alternatives to Gen-
eral Relativity that also predict short-ranged deviations from 1/72? gravity. These range
from extra-dimensional theories [673, [702], to fourth-order theories [307] and bimetric
theories [308], all of which predict ‘Yukawa’ potentials of the form

N,—|z—z'| /2
Uz [P s, (28)
|z — |

where o parameterises the ‘strength’ of the interaction, and A\ parameterises its range.
The genericity of these potentials, often referred to as ‘fifth-forces’, provides strong mo-
tivation for experimental attempts to detect them. Unfortunately, due to the their scale
dependence, one can no longer simply look for the extra force on one particular scale, and
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then extrapolate the result to all scales. Instead, observations must be made on a whole
range of different scales, so that we end up with constraints on « at various different val-
ues of . These observations are taken from a variety of different sources, with the scale of
the phenomenon being observed typically constraining A of similar size. So, for example,
on the larger end of the observationally probed scale we have planetary orbits [1197] and
lunar laser ranging [1277] constraining a < 1078 between 103m < A < 10*2m. On inter-
mediate scales the LAGEOS satellite, and observations of gravitational accelerations at
the top of towers and under the oceans provide constraints of a that range from o < 1078
at A ~ 107m [1053] to o < 1072 at 10~ m < X < 10%m [459, 1312]. At smaller scales
laboratory searches must be performed, and current constraints in this regime range
from o <1072 at A ~ 1072m, to a < 105 at A ~ 1075m [624] 819, 291]. Weaker con-
straints at still smaller scales are available using the Casimir effect. For a fuller discussion
of these searches, and the experiments and observations involved, the reader is referred
to the reviews by Fischbach and Talmadge [507], and Adelberger, Heckel and Nelson [T1].

Gravitational waves, and binary pulsars

A generic prediction of all known relativistic theories of gravity is the existence of
gravitational waves: Propagating gravitational disturbances in the metric itself. How-
ever, while all known relativistic gravitational theories predict gravitational radiation,
they do not all predict the same type of radiation as the quadrupolar, null radiation
that we are familiar with from General Relativity. It is therefore the case that while
the mere existence of gravitational radiation is not itself enough to effectively discrimi-
nate between different gravitational theories, the type of gravitational radiation that is
observed is. The potential differences between different types of gravitational radiation
can take a number of different forms, which we will now discuss.

Firstly, one could attempt to determine the propagation speed of gravitational waves.
In General Relativity it is the case that gravitational waves have a velocity that is strictly
equal to that of the speed of light in vacuum. Generically, however, this is not true: Some
theories predict null gravitational radiation, and others do not. So, for example, if one
were able to detect gravitational waves from nearby supernovae, then comparing the
arrival time of this radiation with the arrival time of the electromagnetic radiation would
provide a potentially killing test of General Relativity. There are, however, a number
of different theories that predict null gravitational radiation. Tests of the velocity of
gravitational waves therefore have the potential to rule out a number of theories, but by
themselves are not sufficient to distinguish any one in particular.

A second, more discriminating test, is of the polarity of gravitational radiation. Gen-
eral Relativity predicts radiation with helicity modes £2 only, and so far is the only
proposed theory of gravity that does so. In general, there are six different polarisation
states — one for each of the six ‘electric’ components of the Riemann tensor, Rg;;. These
correspond to the two modes familiar from General Relativity, as well as two modes
with helicity £1, and two further modes with helicity 0. One of these helicity-0 modes
corresponds to an additional oscillation in the plane orthogonal to the wave vector k*,
while the remaining 3 modes all correspond to oscillations in a plane containing k*. The
extent to which observations of these modes can constrain gravitational theory depends
on whether or not the source of the radiation can be reliably identified. If the source
can be identified, then the vector k* is known, and one should then be able to uniquely
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identify the individual polarisation modes discussed above. We then have 6 different
tests of relativistic gravitational theory — one for each of the modes. In the absence of
any knowledge of k*, however, one cannot necessarily uniquely identify all of the modes
that are present in a gravitational wave, although it may still be possible to constrain
the modes being observed to a limited number of possibilities.

Direct observations of gravitational waves, of the kind discussed above, provide an
excellent opportunity to further constrain gravity. Indeed, some theories can be shown
to be indistinguishable from General Relativity using post-Newtonian gravitational phe-
nomena in the solar system alone, while being easily distinguishable when one also con-
siders gravitational radiation. This is the case with Rosen’s bimetric theory of gravity
[1068, [779] 1275]. To date, however, the direct detection of gravitational radiation has
yet to be performed. At present the highest accuracy null-observations of gravitational
radiation are those of the Laser Interferometer Gravitational-wave Observatory (LIGO).
This experiment consists of two sites in the USA (one in Livingston, Louisiana and one in
Richland, Washington). Each site is an independent interferometer constructed from two
4 km arms, along which laser beams are shone. The experiment has an accuracy capable
of detecting oscillations in space at the level of ~ 1 part in 10?!, but has yet to make a
positive detection. Further experiments are planned for the future, including Advanced
LIGO, which is scheduled to start in 2014, and the Laser Interferometer Space Antenna
(LISA). Both Advanced LIGO and LISA are expected to make positive detections of
gravitational waves.

Another way to search for gravitational waves is to look for their influence on the
systems that emitted them. In this regard binary pulsar systems are of particular interest.
Pulsars are rapidly rotating neutron stars that emit a beam of electromagnetic radiation,
and were first observed in 1967 [604]. When these beams pass over the Earth, as the
star rotates, we observe regular pulses of radiation. The first pulsar observed in a binary
system was PSR B1913+16 in 1974, by Russell Hulse and Joseph Taylor [634]. This
is a particularly ‘clean’ binary system of a pulsar with rotational period ~ 59ms in
orbit around another neutron star. Binary pulsars are of particular significance for
gravitational physics for a number of reasons. Firstly, they can be highly relativistic.
The Hulse-Taylor binary system, for example, exhibits a relativistic periastron advance
that is more than 30 000 times that of the Mercury-Sun system. In this regard they
provide an important compliment to the observations of post-Newtonian gravity that we
observe in the solar system. Secondly, they are a source of gravitational waves. Given
the high degree of accuracy to which the orbits of these systems are known, the change
in angular momentum due to gravitational radiation can be determined and observed.
In the Hulse-Taylor system the observed decrease in orbital period over the past 30 years
is 0.997 £ 0.002 of the rate predicted by General Relativity [1267]. Finally, neutron stars
are composed of a type of compact matter that is of particular interest for the study of
self-gravitational effects. For a review of pulsars in this context the reader is referred to
[i1r).

There are large number of relativistic parameters that can be probed by observations
of binary pulsar systems [359]. To date, however, the most constrained are the 5 ‘post-
Keplerian’ effects, which are the rate of periastron advance, the rate of change of orbital
period, the gravitational redshift, and two Shapiro time-delay effects. These effects are
familiar from the solar system tests discussed above, apart from the change in orbital
period that is negligible in the solar system. One further effect that has been measured
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only relatively recently is the ‘geodetic’ precession of the pulsar spin vector about its
angular momentum vector [744]. This is a purely relativistic effect that is observed via
changes in the observed pulse profile over a period of time that can be attributed to
our line of sight to the pulsar crossing the emitting region at varying positions due to
the precession. The determination of the precession rate using these observations is,
however, complicated somewhat by a degeneracy between the a priori unknown shape of
the emitting region and the geometry of the system as a whole [1268, [3T4].

Not all of the post-Keplerian effects are always apparent in any given binary system,
and not all provide independent tests of gravity. For example, in the Hulse-Taylor binary
only three of these effects can be observed (the inclination angle of the system on the
sky is too large to observe any significant Shapiro delay), and there are two unknown
quantities in the system (the masses of the pulsar, and that of its companion). The Hulse-
Taylor binary therefore provides only 3 — 2 = 1 test of relativistic gravity. The recently
discovered ‘Double Pulsar’ PSR J0737-3039A /B [840)], however, does significantly better
[745]. All five post-Keplerian effects are visible in this system, and because both neutron
stars are observable as pulsars the ratio of their masses can be directly inferred from their
orbits. This leaves only one unknown quantity, and hence gives 5 — 1 = 4 independent
tests of relativistic gravity. So far, all binary pulsar tests of gravity, including those of
the double pulsar, are consistent with General Relativity.

Finally, let us return to constraining gravitational theory through the emission of
gravitational waves. The effect of emitting gravitational radiation from a binary system
is to change its orbital period. In General Relativity we know that only quadrupole
radiation with positive energy should be emitted from a system. For most relativistic
theories, however, dipole gravitational radiation is also expected, and sometimes this can
carry away negative energy. The existence of dipole radiation is sometimes attributed
to violations of the SEP, whereby the centre of the mass responsible for gravitational
radiation is no longer the same as the centre of inertial mass. If the centre of inertial mass
is what stays fixed, then the centre of mass responsible for the gravitational radiation can
move and generate dipole radiation. Dipole radiation is expected to be most dominant in
binary systems with high eccentricity, and where the companion mass is a white dwarf.
No evidence for dipolar radiation yet exists [I54] [776]. Null observations that attest
to this result therefore allow for experimental limits to be set on theories that predict
positive energy dipolar radiation. The lack of any observation of dipolar radiation can
also be used to rule out with high confidence theories that allow negative energy dipolar
radiation, such as Rosen’s theory [1275].

2.1.8. Theoretical considerations

As he developed the Special Theory of Relativity, it is often assumed that Einstein’s
inspiration came from experiments pointing towards the constancy of the speed of light.
It is true that he was certainly aware of these experiments, but he was also inspired by
theory, specifically his faith in the principle of relativity and the validity of Maxwell’s
equations in any inertial frame. So too, in developing models of modified gravity, we
should not only take our lead from observation but also from theory. Indeed, theoretical
considerations are a very powerful tool in testing new models. Typically these involve
the study of classical and quantum fluctuations about classical solutions. Do the clas-
sical fluctuations propagate super-luminally? Can we excite a ghost? Do the quantum
fluctuations become strongly coupled at some unacceptably low energy scale?
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Ghosts

Ghosts are a common feature of many modified gravity models that hope to explain
dark energy. Intuitively it is easy to see why this might be the case. To get cosmic
acceleration we need an additional repulsive force to act between massive objects at
large distances. If this force is to be mediated by a particle of even spin, such as a scalar
(spin 0) or a tensor (spin 2), then the kinetic term describing this must have the “wrong”
Sigrﬂ that is, it must be a ghost.

We should be clear about the distinction between the kind of ghost that arises in
certain modified gravity models and the Faddeev-Popov ghost used in the quantisation
of non-abelian gauge theories. The latter is introduced in the path integral to absorb
unphysical gauge degrees of freedom. It does not describe a physical particle and can
only appear as an internal line in Feynman diagrams. In contrast, the ghosts that haunt
modified gravity describe physical excitations and can appear as externallines in Feynman
diagrams.

When a physical ghost is present one has a choice: Accept the existence of negative
norm states and abandon unitarity, or else accept that the energy eigenvalues of the ghost
are negative [317]. Since the former renders the entire quantum description completely
non-sensical, one usually accepts the latter. However, it now follows that the ghost
will generate instabilities if it couples to other, more conventional, fields. When these
fields are already excited, the ghost can and will continually dump its energy into the
“conventional” sector through classical processes, since its energy is unbounded from
below. Even in vacuum, one will get the spontaneous (quantum) production of ghost-
non-ghost pairs, and in a Lorentz invariant theory, the production rate is divergent [317].

There are a few ways to try to exorcise the ghost. One is to isolate it somehow,
such that it completely decouples from other fields. Another option is to make it heavy,
so much so that its mass exceeds the cut-off for the effective theory describing the rel-
evant fluctuations, and one can happily integrate it out. A third option is to break
Lorentz invariance, perhaps spontaneously, so that one can introduce an explicit Lorentz
non-invariant cut-off to regulate the production rate of ghost-non-ghost pairs (see, for
example, [653]). However, perhaps the safest way to deal with a ghost is to dismiss as
unphysical those solutions of a theory upon which the ghost can fluctuate. This school
of thought is exploited to good effect in the ghost condensate model [590].

Strong coupling

Some modified gravity models are said to suffer from “strong coupling” problems.
Given a classical solution to the field equations, this refers to quantum fluctuations on
that solution becoming strongly coupled at an unacceptably low scale. For example, in
DGP gravity, quantum fluctuations on the Minkowski vacuum becomes strongly coupled
at around A ~ 10713 eV ~ 1/(1000km). In other words, for scattering processes above
A, perturbative quantum field theory on the vacuum is no longer well defined, and one

2In our conventions, the Lagrangian for a canonical scalar is £ = —%(81#)2, whereas a ghost has
£ =+40u).
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must sum up the contribution from all the multi-loop diagrams. One then has complete
loss of predictivity. Furthermore, the classical solution itself is meaningless at distances
below A~! since it would require a scattering process involving energies above the cut-off
to probe its structure.

The strong coupling scale is, of course, dependent on the background classical solution,
and may even depend on position in space-time. Whether the inferred strong coupling
scale is acceptable, or not, again depends on the background. For example, strong
coupling at 1000 km on the Minkowski vacuum of DGP gravity is not really an issue as
Minkowski space does not represent a good approximation to the classical solution in the
vicinity of the Earth. Indeed, for the classical solutions sourced by the Earth to leading
order, quantum fluctuations will become strongly coupled at some scale that depends on
the radial distance from the Earth’s centre. Computed at the Earth’s surface one should
require that this lies below an meV since quantum gravity effects have yet to show up in
any lab based experiments up to this scale.

It has actually been argued that strong coupling on the vacuum can be a virtue
in modified gravity models [447]. This is because it can be linked to a breakdown of
classical perturbation theory, which is necessary for the successful implementation of the
Vainshtein mechanism [1241], 399]. We discuss the Vainshtein mechanism and strong
coupling in some detail in the context of DGP gravity in Section [5.5.4] Here we will
make some generic statements. Consider a model of gravity that deviates from GR at
large distances. To be significant in terms of understanding dark energy, this deviation
must be at least O(1) on cosmological scales, but be suppressed down to < O(10~°) on
Solar System scales. Therefore, the field or fields that are responsible for the modification
must be screened within the Solar System. How can this screening occur? One way is for
the fields to interact so strongly that they are frozen together, so much so that they are
unable to propagate freely. This is the idea behind the Vainshtein mechanism — higher
order derivative interactions help to suppress the extra modes near the source (the Sun).

Alternative ways to screen the extra fields have been suggested in the form of the
chameleon [689] [688], and the symmetron [608] mechanisms. Both methods exploit the
dependence of the effective potential on the environment. For the chameleon, the mass of
the field is environmentally dependent, getting heavy in the Solar System. For the sym-
metron, the strength of the matter coupling is (indirectly) environmentally dependent,
tending to zero near a heavy source.

2.2. Einstein’s Theory

Having considered the requirements that must be satisfied by a viable relativistic
theory of gravity, let us now consider Einstein’s theory of General Relativity in particular.
General Relativity satisfies all of the requirements described in the previous section, either
by construction (for the foundational requirements) or by trial (in the case of tests of
metric theories of gravity).

General Relativity is a gravitational theory that treats space-time as a 4-dimensional
manifold. The connection associated with covariant differentiation, I'* B’ should be
viewed as an additional structure on this manifold, which, in general, can be decomposed
into parts that are symmetric or antisymmetric in its last two indices:

b m "
Tas =T () + T jagy (29)
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In General Relativity we take T'** (0f] = 0, or, in the language of differential geometry,
we assume that torsion vanishes. We are then left with only the symmetric part of the
connection, which describes the curvature of the manifold.

Now, to define distances on the manifold one also requires a metric tensor, g,,,,. Along
the curve « this gives the measure of distance

s = / dA/ G EhaY, (30)
8!

where A is a parameter along the curve, z# = z#()), and over-dots here mean dif-
ferentiation with respect to A. The metric should also be considered as an additional
structure on the manifold, which is in general independent from the connection. The
relationship between the connection and the metric is defined via the non-metricity ten-
sor, Quag = Vugas. In General Relativity it is assumed that the non-metricity tensor
vanishes. We can now use the metric to define the Levi-Civita connection, which has
components given by the Christoffel symbols:

pl_1 .,
FMQB - {Oéﬂ} - §gu (gau,ﬁ t 9pr,a — gaﬁ,u) : (31)

To summarise, as a consequence of the two assumptions Q.5 = 0 and r# (g = 0,
the components of the connection are uniquely given by the Christoffel symbols via ,
and so the connection, and all geometric quantities derived from it, are defined entirely
in terms of the metric. In General Relativity, therefore, the metric tells us everything
there is to know about both distances and parallel transport in the space-time manifold.

The resulting set of structures is known as a Riemannian manifold (or, more accu-
rately, pseudo-Riemannian in the case where the metric is not positive definite, as is
required to recover special relativity in the tangent space to a point in space-time). Rie-
mannian manifolds have a number of useful properties including tangent vectors being
parallel to themselves along geodesics, the geodesic completeness of space-time implying
the metric completeness of space-time, and a particularly simple form for the contracted
Bianchi identities:

1
v, (R“” - 2gWR> =0, (32)

where R,,, and R = g"V R,,,, are the Ricci tensor and scalar curvature, respectively . This
last equation is of great significance for Einstein’s equations.

2.2.1. The field equations

Having briefly discussed the geometric assumptions implicit in General Relativity, let
us now display the field equations of this theory:

1
Ry — §QWR =81GT,, — gu . (33)
Here T},, is the energy-momentum tensor of matter fields in the space-time, and A is the
cosmological constant. These equations are formulated such that energy-momentum is
a conserved quantity (due to the contracted Bianchi identity and metric-compatibility

of the connection), so that special relativity can be recovered in the neighbourhood of
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every point in space-time (up to tidal forces), and so that the usual Newtonian Poisson
equation for weak gravitational fields is recovered in non-inertial frames kept at a fixed
space-like distances from massive objects (up to small corrections).

The Field Equations are a set of 10 generally covariant, quasi-linear second-order
PDEs in 4 variables, for the 10 independent components of the metric tensor. They
constitute 4 constraint equations and 6 evolution equations, with the contracted Bianchi
identities ensuring that the constraint equations are always satisfied. Furthermore, the
conserved nature of T}, and the Riemannian nature of the manifold ensure that the
WEP and EEP are always satisfied: Massless test particles follow geodesics, and in any
freely falling frame one can always choose ‘normal coordinates’ so that local space-time
is well described as Minkowski space.

2.2.2. The action
As with most field theories, the Field Equations can be derived from the variation
of an action. In the case of General Relativity this is the Einstein-Hilbert action:

1

5= 167G

/\/TQ(R —2N)d*z + /zm(gw,w)d‘*x, (34)

where L, is the Lagrangian density of the matter fields, ¢, and the gravitational La-
grangian density has been taken to be L, = /—g(R — 2A)/167G. Let us now assume
the Ricci scalar to be a function of the metric only, so that R = R(g). Variation of Eq.
with respect to the metric tensor then gives the Field Equations , where

w2 0Ly
B \/*g(sg,uu.

The factors of \/—g are included in Eq. to ensure that the Ls transform as scalar
densities under coordinate transformations, i.e. as

- ozt
L = det (6:6”) L, (36)

(35)

under coordinate transformations z# = z#(z"). This property ensures S is invariant
under general coordinate transformation, and that the resulting tensor field equations are
divergence free (i.e. the contracted Bianchi identities and energy-momentum conservation
equations are automatically satisfied).

We have outlined here how Einstein’s equations can be obtained from the variation of
an invariant action with respect to the metric, once it has been assumed that the space-
time manifold is Riemannian. The vanishing of torsion and non-metricity then tell us that
the metric is the only independent structure on the manifold, and the invariant action
principle ensures that we end up with a set of tensor field equations in which energy-
momentum is conserved. Because of this formulation the WEP and EEP are satisfied
identically. Now, when considering alternative theories of gravity one often wants to
modify the field equations while conserving these basic properties. Modified theories of
gravity are therefore often formulated in a similar way; from the metric variation of an
invariant action principle under the assumption of Riemannian geometry, with a universal
coupling of all matter fields to the same metric.
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2.83. Alternative Formulations

The discussion in the previous section involved deriving Einstein’s equations under
the a priori assumption of Riemannian geometry (i.e. assuming to begin with that the
torsion vanishes and that the connection is metric compatible). In this case the metric is
the only remaining geometric structure, and a simple metric variation of the action is the
only option. We can, however, be less restrictive in specifying the type of geometry we
wish to consider. For the case of the Einstein-Hilbert action, Eq. , this usually still
leads to the Einstein Equations . For alternative theories of gravity, however, this is
often not the case: Different variational procedures, and different assumptions about the
geometric structures on the manifold, can lead to different field equations. It is for this
reason that we now outline some alternative formulations of General Relativity. A large
collection of many such formulations can be found in [1032].

2.8.1. The Palatini procedure

The most well known deviation from the metric variation approach is the ‘Palatini
procedure’ [I020]. Here the connection is no longer immediately assumed to be metric
compatible, but is still assumed to be symmetric and thus torsionless. In addition, all
matter fields are still taken to couple universally to the metric onlyﬂ The action to be
varied is then

1

5= Tora

/ V=G [0 TR — 2A] d'e + / LG ), (37)

where FRW indicates that the Ricci tensor here is defined with respect to the connec-
tion and not the metric (at this stage the metric and connection are still independent
variables), and is given by

FR,U,I/ = aarauu - 6MFaoa/ + Fﬁﬁara;ﬂ/ - Fauﬂrﬂau' (38)

The Ricci tensor defined above, as well as the Einstein tensor derived from it, are in gen-
eral asymmetric. However, they become symmetric as soon as we assume the connection
is symmetric. Variation of Eq. with respect to the connection gives the condition
that the connection is in fact the Levi-Civita connection. Variation with respect to the
metric then recovers the Einstein equations.

If the torsionless condition on the connection is dropped then complications arise, as
has been shown by Hehl and Kerlick [600]. The general form of the connection can be
shown to be given by

o o
F#aﬂ = {aﬁ} + Jﬂaﬂ = {OA,B} +K#a[3 +Lu(x6' (39)

The tensor field K* ap 18 the contorsion tensor, that can be defined in terms of the
antisymmetric components of the connection, known as the torsion, as

K#aﬁ — Suaﬂ _ Saﬁu _ Sﬁ I3 (40)

o )

3This assumption has limited validity, however, as it cannot be applied to tensor fields without using
a covariant derivative.
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where S“aﬁ = F”[aﬁ] is the torsion tensor. The tensor field L”aﬁ is defined in terms of
the non-metricity tensor as

1

o5 =5 (@05 = Qus — @sa") (41)

To avoid confusion, we continue to denote the covariant derivative associated with the
Levi-Civita connection as V,, while we use 'V, to denote the covariant derivative
associated with ' ;.

Varying the action with respect to the metric g,,, we find the analogue of the Einstein
equations:

"

Gw) + Mg = 87GT,. (42)
One should note that only the symmetric part of the Einstein tensor appears here, and
that we have used T}, rather than 7, to emphasise the fact that T),, is defined at
constant F#aﬂ in the variation, ie. T,, = —\/%79257; r On the other hand T}, =
—\/%79 25;'; | ;- This is not an important distinction at this stage, as we have assumed

that matter field do not couple to the connection, and hence TIW =T, It will, however,
be important in the following subsection and in Section

Varying with respect to the connection defines the Palatini tensor as P, of = 8”—\/% 5(67 VI,;im,
that can be written as

Pauﬂ = Suaﬂ + 2gu[o¢Sﬁ] + gu[aQ,@] - gu[aQy]éIa (43)

where S, = 5¢,,, and where we have split the non-metricity tensor into trace and
traceless parts as Quag = Qugas + leg, with gO‘BQWB = 0. The Palatini tensor has
only 60 independent components because it is identically traceless: P, #“ = 0. Now, the

second field equation is the vanishing of the Palatini tensor,
aB _
P,*% =0, (44)

but this provides only 60 constraints among the 64 independent components of the con-
nection. In fact it may be shown that the equation P, af = 0 is equivalent to the
connection taking the following form [600]:

Map = {ozuﬂ} - %Qaé”ﬁ N {ozuﬂ} - gsaéuﬁ' (45)

Clearly then, there are 4 degrees of freedom left undetermined by the field equations.
Thus the Palatini approach in its most general form does not lead to a unique set of field
equationsﬂ

The constraint @, = 0 is sufficient to produce a consistent theory. This, however, has
to be imposed as a Lagrange multiplier in the action via a term [ d*z\/=g\*Q,. Once
this is done, one recovers General Relativity uniquely. For theories of gravity other than
General Relativity the difference between the metric variation and the Palatini procedure
is even more significant: The resulting field equations are, in general, different. This will
be spelt out explicitly for some specific theories in the sections that follow.

41t is often said that the Palatini procedure uniquely recovers GR. As we have seen, however, this
is a myth. It does so only after further assumptions, for instance that the torsion vanishes, or that the
connection is metric compatible, or that Qo = 0. To make the Palatini variation well defined one has
to impose such conditions in the action by means of Lagrange multipliers.
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2.3.2. Metric-affine gravity and matter

A further generalisation of the metric variation approach is to keep the metric and
connection completely independent, as discussed above, and further allow matter to
couple not only to the metric, but also the connection [600]. In this case the action takes
the form

167TG/./ " "Ry, — 2A) d4x+/£ (G, TV g ) d (46)

where ' ; and g, are once again independent. Performing the variations we recover

Eq. as before, and

P, =81GA,*", (47)
here A = —_L_9Lm s called the h tum t 600, 601].
where 75 sri; is called the hypermomentum tensor [ ]
In this case T}, # TW, but it is straightforward to find that
Tw =T +V, A — A(upu — A(W)p , (48)

where V, is the covariant derivative associated with the Levi-Civita connection.

Equation can be shown to be self-inconsistent for reasonable forms of matter,
as the Palatini tensor is invariant under projective transformations of the form I'* 5
r ap T Ao 8 while there is no reason to suspect this invariance is exhibited by the
matter fields and hence the hypermomentum. Equivalently, the Palatini tensor obeys
the identity P, = 0, while there is no reason that this should identically hold for the
hypermomentunﬂ One way to impose self-consistency is to demand that both torsion
and non-metricity must vanish (by using Lagrange multipliers in the action), leading
again to General Relativity. This type of self-consistency is, however, very strong, and
weaker constraints have been found in [600]. One such weaker constraint leads to the
Einstein-Cartan-Sciama-Kibble theory [601], that we shall briefly describe in Section
B51

2.8.3. Other approaches

There are a variety of other formalisms that one can use to derive Einstein’s equations.
We will not go into the full details of all of these here, but merely mention some of the
approaches that exist in the literature. For brevity we will only consider vacuum general
relativity here.

In the ‘vierbein’ formalism the Einstein-Hilbert action can be written

_ 4 v apB
S = /d xe ege,éRW : (49)

5Consider for example a simple Einstein-Ather model for which the matter action is Sp; =
[ dtz/=g[aV,AVV, AF + X(A, A + 1)]. The hypermomentum is Auaﬁ = —2A48V,, A* which clearly
does not obey A,,“ = 0. The variation done this way is inconsistent. On the other hand using the
Lagrange constraint fd4a: 7g,8Ma5J”aﬂ in the action imposes J“aﬁ = 0, and hence the vanishing of
the Palatini tensor. This leads to a modified Eq. , as P, b — = 87rG(AMO‘ﬁ - ,BHO‘B), and to a

modified Eq. li which now includes derivatives of BMD‘B. After using Eq. l) however, the resulting
equations are completely equivalent to the metric variation.
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where indices with hats correspond to a basis in the tangent space defined by the set
of contravariant vectors, eﬂ“ , with determinant e = det|e ﬂ” ]. The inverse of e ﬂ” is e/,

f, P _ SK
such that ep“efl =9

“w
and eﬁ”ey” = 0",. The metric tensor is constructed as g,, =

2]

nave,te,”. The spin connection w &# then defines a space-time and Lorentz covariant

“w
derivative, D,,, as D,v8 = Vvl +w pj\vl’,\, where V, is the Levi-Civita Connectiorﬁ The
n

curvature tensor RWO‘ﬁ is defined in terms of the spin connection as

RWW = O w, M — 8,,0.@‘” + wu‘m Wy Y, R W, 7 (50)
Variation now proceeds as in the Palatini formalism by assuming that the spin connection
and vierbein are independent fields, from which one obtains the two field equations

and A
R,,%)es =0, (52)

where G% is the Einstein tensor. Equation can be used to obtain the spin connection
in terms of the partial derivatives of the vierbein, and the resulting relation irpplies that
w, % is torsion-less, i.e. one recovers Cartan’s first structure equation, de +w"; Ae” = 0.
The second equation says that the vacuum Einstein equations are recovered.

Another interesting alternative formulation of General Relativity is given by the Ple-
banski formalism [1042]. It is derived from the action

1
S = /EAB ARap — §\DABCD2AB AXEP. (53)

where upper case indices denote two component spinor indices to be raised and lowered
with €48 and its inverse, and where the exterior product A acts on space-time indices,
which have been suppressed. The curvature 2-form Rap = dwap +w AC Awcp is defined
with respect to a spin connection 1-form w AB . Variation of this action with respect to
U pep and wap then tells us that the 2-form 248 is the exterior product of some set
of 1-forms that we can identify with the tetrad GAAl, and that the connection wap is
torsion-free with respect to 48, Using this together with the variation of the action
with respect to 458 then gives the vacuum Einstein equations, where the metric is given
by g =044 @044

One further alternative formulation of General Relativity is the purely affine ‘Edding-
ton formalism’ [460]. In previous subsections we outlined how one can either treat the
metric as the only independent structure on the manifold, or treat the metric and con-
nection as being two independent structures. Another approach is to take the connection
as the only structure on the manifold. In this case, the simplest way of constructing a
Lagrangian density with the correct weight (and without a metric) is to simply take the
square root of the determinant of the Ricci tensor itself:

S = / \/ —det[R,,, (T)]d*. (54)

6Given a metric, guv, the Levi-Civita connection can always be defined. The question is whether
that is the connection that is used to define parallel transport.
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Varying this action with respect to the connection then gives the field equations

v, (/aetrasmire) <o (5%)

which can be shown to be equivalent to Einstein’s equations in vacuum with a cosmolog-
ical constant, if we take the connection to be the Levi-Civita connection. Due to the lack
of a metric in the action for this theory, however, it is not a trivial matter to introduce
matter fields into the theory [69].

Finally, let us mention that approaches exist that treat gravity as simply a spin-2
field on flat space [114, [115]. It has been conjectured that one could reconstruct the
Einstein-Hilbert action in such an approach by considering consistency conditions order
by order in perturbation theory. This will, of course, be an invalid treatment when
gravity is strong, and in cosmology.

2.4. Theorems

There a number of theorems in General Relativity that are of great importance for
the structure of the theory itself, as well as for the solutions to the field equations. These
theorems underpin a lot of the acquired intuition on how gravity should function in
different environments, and what the resulting phenomenology should be. In alternative
theories of gravity, however, the theorems of General Relativity often fail, allowing new
behaviours that would otherwise be impossible.

Here we briefly recap what we consider to be some of the most important theorems
of General Relativity. In later sections we will show how these theorems are violated in
alternative theories, and discuss the consequences of this.

2.4.1. Lovelock’s theorem

Lovelock’s theorem [831], [832] limits the theories that one can construct from the
metric tensor alone. To enunciate this theorem, let us begin by assuming that the metric
tensor is the only field involved in the gravitational action. If the action can be written
in terms of the metric tensor g, alone, then we can write

S = / d*zL(gu). (56)

If this action contains up to second derivatives of g,,,, then extremising it with respect
to the metric gives the Euler-Lagrange expression

d oL d oL oL
wipy — & |9~ Y _
B4 dzP [aguu,p dx? (aguv,pk >} 3gu,,7 (57)

and the Euler-Lagrange equation is E#” (L) = 0. Lovelock’s theorem can then be stated
as the following:

Theorem 2.1. (Lovelock’s Theorem)
The only possible second-order Euler-Lagrange expression obtainable in a four dimen-
sional space from a scalar density of the form L = L(g..) is

1
B = ay=g [ R = L R| g, 9
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where o and A are constants, and R,, and R are the Ricci tensor and scalar curvature,
respectively.

This powerful theorem means that if we try to create any gravitational theory in a
four-dimensional Riemannian space from an action principle involving the metric tensor
and its derivatives only, then the only field equations that are second order or less are
Einstein’s equations and/or a cosmological constant. This does not, however, imply that
the Einstein-Hilbert action is the only action constructed from g, that results in the
Einstein equations. In fact, in four dimensions or less one finds that the most general
such action is

L= Q/ —gR — ZA\/ —g + 66“VPARQBMVRaBp>\ + V=g <R2 - 4R#1/RUM + R#Vp/\RPAMV> ’

where 8 and vy are also constants. The third and fourth terms in this expression do not,
however, contribute to the Euler-Lagrange equations as

yolla [eaﬁpARvéaﬁRwM] = 0 (59)
B [V=g (B2 — 4R R’ + R \R7 )| = o, (60)

where the action of E#¥ on any function X is defined as in Eq. (57)). The first of these
equations is valid in any number of dimensions, and the second is valid in four dimensions
only.

Lovelock’s theorem means that to construct metric theories of gravity with field equa-
tions that differ from those of General Relativity we must do one (or more) of the fol-
lowing:

e Consider other fields, beyond (or rather than) the metric tensor.
e Accept higher than second derivatives of the metric in the field equations.
e Work in a space with dimensionality different from four.

e Give up on either rank (2,0) tensor field equations, symmetry of the field equations
under exchange of indices, or divergence-free field equations.

e Give up locality.

The first three of these will be the subject of the next three sections of this report. The
fourth option requires giving up on deriving field equations from the metric variation of
an action principle, and will not be considered further here.

2.4.2. Birkhoff’s theorem
Birkhoft’s theorenﬂ is of great significance for the weak-field limit of General Rela-
tivity. The theorem states [160]

7This theorem is commonly attributed to Birkhoff, although it was already published two years earlier
by Jebsen [659]. It is not to be confused with Birkhoff ’s pointwise ergodic theorem.
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Theorem 2.2. (Birkhoff’s Theorem)
All spherically symmetric solutions of Einstein’s equations in vacuum must be static and
asymptotically flat (in the absence of A).

Strictly speaking, there are very few situations in the real Universe in which Birkhoff’s
theorem is of direct applicability: Exact spherical symmetry and true vacuums are rarely,
if ever, observed. Nevertheless, Birkhoff’s theorem is very influential in how we under-
stand the gravitational field around (approximately) isolated masses. It provides strong
support for the relativistic extension of our Newtonian intuition that far from such ob-
jects their gravitational influence should become negligible, or, equivalently, space-time
should be asymptotically ﬂa@ We can therefore proceed with some confidence in treat-
ing the weak-field limit of General Relativity as a perturbation about Minkowski space.
Birkhoff’s theorem also tells us that certain types of gravitational radiation (from a star
that pulsates in a spherically symmetric fashion, for example) are not possible.

As we will show below, Birkhoff’s theorem does not hold in many alternative theories
of gravity. We therefore have less justification, aside from our own intuition, in treating
the weak field limit of these theories as perturbations about Minkowski space. We must
instead be more careful, as the space-time we perform our expansion around can have
asymptotic curvature, leading to either time or space-dependence of the background (or
some combination of the two). What is more, the perturbations themselves may be time-
dependent, and their form can be sensitive to the type of asymptotic curvature that the
background exhibits. Behaviours such as these are not expected in General Relativity
[837].

2.4.3. The no-hair theorems

These theorems are named after the phrase coined by Wheeler that “black holes have
no hair”. The first of these theorems was given by Israel and showed that the only
static uncharged asymptotically flat black hole solution to Einstein’s equations is the
Schwarzschild solution [650]. He later extended this theorem to include charged objects
[651], and Carter extended it to black holes with angular momentum [262]. The theorem
is therefore often stated today as “the generic final state of gravitational collapse is a
Kerr-Newman black hole, fully specified by its mass, angular momentum, and charge ”
[1254].

Complementary to the black hole no-hair theorems is the no-hair ‘theorem’ of de Sitter
space. The claim here is that in the context of General Relativity with a cosmological
constant all expanding universe solutions should evolve towards de Sitter space. This
has been shown explicitly by Wald for all Bianchi type modelsﬂ [1255].

These theorems play an important role in General Relativity and cosmology. Some
progress has been made in extending them to alternative theories of gravity, but there
have also been explicit examples of them being violated in particular theories. This will
be discussed further in subsequent sections.

80f course, in a cosmological setting asymptotic regions are never realised as we will eventually come
across the other masses in the Universe.
9Except type-IX universes with large amounts of spatial curvature.
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2.5. The Parameterised Post-Newtonian Approach

This section is a recap of the Parameterised Post-Newtonian (PPN) formalism that
is widely used by both theoretical and observational gravitational physicists. The idea
here is to create a construction that encompasses a wide array of different gravitational
theories, and that contains parameters that can be constrained by observations in a rea-
sonably straightforward fashion. In this way labour can be saved on both the theoretical
and observational ends of the spectrum: Observers can apply their results to constrain
a wide array of theories without having to trawl through the details of the individual
theories themselves, and theorists can straightforwardly constrain their new theories by
comparing to the already established bounds on the PPN parameters without having to
re-calculate individual gravitational phenomena. To date, this approach has been highly
successful, and in the following sections of this report we will often refer to it. We will
therefore outline here how the PPN formalism proceeds. For a more detailed explanation
of the principles and consequences of this formalism the reader is referred to [1274].

2.5.1. Parameterised post-Newtonian formalism
The PPN formalism is a perturbative treatment of weak-field gravity, and therefore

requires a small parameter to expand in. For this purpose an “order of smallness” is
defined by

Uno?n D e o),
P

where U is the Newtonian potential, v is the 3-velocity of a fluid element, P is the pressure
of the fluid, p is its rest-mass density and II is the ratio of energy density to rest-mass
density. Time derivatives are also taken to have an order of smallness associated with
them, relative to spatial derivatives:

9/
8/aw] ~ O

Here we have chosen to set ¢ = 1. The PPN formalism now proceeds as an expansion in
this order of smallness.

For time-like particles coupled to the metric only the equations of motion show that
the level of approximation required to recover the Newtonian limit is goo to O(2), with
no other knowledge of other metric components beyond the background level being nec-
essary. The post-Newtonian limit for time-like particles, however, requires a knowledge
of

goo to O(4)
goi to 0(3)
9ij to 0(2).

Latin letters here are used to denote spatial indices. To obtain the Newtonian limit of null
particles we only need to know the metric to background order: Light follows straight
lines, to Newtonian accuracy. The post-Newtonian limit of null particles requires a
knowledge of goo and g;; both to O(2).
The way in which the PPN formalism then proceeds is as follows. First one identifies
the different fields in the theory. All dynamical fields should then be perturbed from
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their expected background values, and the perturbations assigned an appropriate order
of smallness each. For theories containing a metric the appropriate expansion is usually

goo = —1+nZ+n8)+0(@) (61)
goi = hi)+0(5) (62)
gij = (Sij + hg) + 0(4), (63)

where superscripts in brackets denote the order of smallness of the term. If, for example,
the theory contains an additional scalar field, then the usual expansion for this quantity
is
¢ = o+ 0@ + oW +0(6), (64)

where ¢q is the constant background value of ¢. Additional vector and tensor gravita-
tional fields can be specified in a corresponding way.

The energy-momentum tensor in the PPN formalism is then taken to be that of a
perfect fluid. To the relevant order, the components of this tensor are given by

Too = p(1 + I+ v* — hog) + O(6) (65)
TOi = —pU; + 0(5) (66>
T;; = pvsvj + P(Sij + 0(6) (67)

Taking these expressions, the field equations for the theory in question, and substituting
in the perturbed expressions for the dynamical fields in the theory, as prescribed above,
the field equations can then be solved for order by order in the smallness parameter.

The first step in such calculations is usually to solve for hé%). With this solution in
hand, one then proceeds to solve for hl(-?) and h(()?) simultaneously, and finally h((;é) can be
solved for. If additional fields exist, beyond the metric, then these quantities must also
0,
hgi’) and hé%) one needs to specify a gauge. After such a specification one still, of course,
has the freedom to make additional gauge transformations of the form x* — x# 4 &*,
where &# is O(2) or smaller. This freedom should be used at the end of the process to
transform the metric that has been obtained into the “standard post-Newtonian gauge”.
This is a gauge in which the spatial part of the metric is diagonal, and terms containing
time derivatives are removed. Once this has been done then one is in possession of the
PPN limit of the theory in question.

We have so far outlined the procedure that one needs to follow in order to gain the
appropriate form of the metric that couples to matter fields in the weak-field limit. Once
done, the result can then be compared to the ‘PPN test metric’ below:

be solved for to increasing order of smallness as the calculation proceeds. In finding

goo = —14+2GU —2BG?*U? —26G* Dy + (27 +2 + a3 + B1 — 26)GP,
+2(1 437 =284 B2 + §)G? Py + 2(1 + B3)GPs — (b1 — 26)GA
+2(3y + 364 — 26)GP,

1 1
Joi = _5(3+4'7+041_a2+ﬁ1_2§)GV1‘_§(1+042_51+2§)GW1‘
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Here 3, v, &, B1, B2, Bs, B4, a1, as and ag are the ‘post-Newtonian parameters’, U is
the Newtonian gravitational potential that solves the Newtonian Poisson equation, and
Dy, D1, Oy, B3, Oy, A, V; and W; are the ‘post-Newtonian gravitational potentials’
(the precise form of these potentials is given in [I274]). The particular combination of
parameters before each of these potentials is chosen here so that they have particular
physical significance, once gravitational phenomena have been computed.

2.5.2. Parameterised post-Newtonian constraints

Comparison of the weak field metric of a particular theory with the PPN test metric
above allows one to read off values for the PPN parameters (3, v, &, 51, B2, B3, B4, a1, Qs
and ag for the theory in question. The test metric has been constructed to include the
type of potentials that often appear when one modifies gravitym The great utility of
the PPN formalism is that observers can take the PPN test metric above and constrain
the parameters without having a particular theory in mind. These constraints can then
be applied directly to a large number of gravitational theories, without having to work
out how complicated gravitational phenomena work in each theory individually.

In General Relativity we have that =y =1and { =0y =8, =03 =04 = a1 =
as = ag = 0. Other theories will predict other values for these parameters, and we will
discuss these on a case by case basis in the sections that follow. Observationally, one can
use the gravitational phenomena discussed in Section [I] to impose the constraints that
follow.

As already discussed, observations that involve only null geodesics are sensitive to
the Newtonian part of the metric, g(%), and the term gg) only. These two terms involve
the PPN parameter v only. We can now use constraints on the bending of light by the
Sun to get a constraint on 7. Using the PPN test metric the predicted bending of light
that one should observe is [1274]

(1+7)
2

m
0=2(1+ 7)7 = Ocr, (68)
where m is the mass of the Sun, r is its radius, and fggr is the general relativistic
prediction. Using the observed value of 6 given in Section [1| then gives [1131]

y—1=(=17+45)x 1074, (69)

which is consistent with the general relativistic value of v = 1. Similarly, we can use the
PPN test metric to find that the Shapiro time delay effect is given by [1274]

1
Al = %At% (70)

where subscript GR again means the value of this quantity as predicted by General
Relativity. Taking the observed value of At given in Section[I] then gives the even tighter
constraint [147]

y—1=(21423)x107°, (71)

10Tt is not, however, an exhaustive collection of all possible potentials, and in some theories it is
occasionally necessary to include additional terms.
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again consistent with v = 1. It can now be clearly seen that the bending of light by the
Sun, and the Shapiro time delay effect do, in fact, constrain the same aspect of space-time
geometry. They can therefore be considered as complimentary to each other.

If we now consider observations of gravitational phenomena that involve time-like
geodesics then we are able to observe, potentially, all of the post-Newtonian potentials in
the PPN test metric. This becomes clear from the expression for perihelion precession,
which now becomes

6rM |1

2
(2—|—2’}/—ﬂ)—|—(15(2011—@2+O£3+252);\2+<]2( . )}7

A
“ 3 2Mp

where M is the total mass of the two bodies involved, p is their reduced mass, and p
is the semi-latus rectum of the orbit. The affect of modifying the geometry can be seen
here to be degenerate with the effect due to the solar quadrupole moment, J>. Once
the value of this quantity is known, however, then one is able to gain constraints on
the above combination of 3, v, a1, as, ag and fs. This can be done for any or all of
the observations of the perihelion precession of Mercury given in Section [1} and if we
take the value of v to be that given by Eq. , as well aﬁ ap ~ g ~az~ fPs~0
and a reasonable value of J; ~ 1077, then this gives constraints on S of the order
B—1~ 0(1073) or O(10~%). However, as already noted, these constraints are somewhat
sensitive to a number of assumptions about the orbits of the other planets, as well as the
solar quadrupole moment.

The Nordtvedt effect is similarly an observation of time-like geodesics. In this case it
is convenient to define the ‘Nordtvedt parameter’

=Py~ 3= FE— it 2an— 2py— 2B, (72)

which is not to be confused with the equivalence principle violation parameter 7 defined
in Equation (T5)). The observations of Williams, Turyshev and Boggs [1277] then give the
constraint 7y = (4.4 +4.5) x 10~%, which, if we again take 7 to be given by observations
of the Shapiro time delay effect with all other PPN parameters being zero, gives us

B—1=(12+1.1)x107% (73)

which is a much cleaner constraint on S than those which can be derived from observations
of the perihelion precession of Mercury.

In ‘conservative’ theories of gravity it is usually only the PPN parameters § and
~ (and sometimes £) that vary from their general relativistic values. These quantities
are often interpreted as the degree of non-linearity in the gravitational theory, and the
amount of spatial curvature per unit mass that is produced, respectively. The other
parameters &, a; and [; are usually interpreted as corresponding to preferred location
effects, preferred frame effect and the violation of conserved quantities. When considering
theories in which such effects are expected to be absent it is therefore usual to assume
that these parameters are all zero, and to search instead for constraints on 5 and ~.

Of course, one can subject the &, o; and (3; parameters to observational scrutiny in a
number of ways. The table below gives a selection of the tightest constraints currently
available:

1 These values will be given some justification shortly.
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Parameter Limit Source
3 1073 Ocean tides [1274]
o7 1073 Lunar laser ranging [928]
as 4 x 1077 | Alignment of Sun’s spin axis with ecliptic [987]
as 4 x 10729 | Pulsar acceleration [1176]

Further constraints and discussion on the 8; parameters can be found in [1274]. For more
details of the observations leading to these constraints on £ and «; the reader is referred
to the source material cited above and [1274].

The constraints on the PPN parameters that we have discussed above are all, to
date, in reasonably good agreement with General Relativity, and it is likely that future
observations of, for example, the ‘double pulsar’ [840], [745] will tighten these constraints
even further in coming years. This excellent concordance of numerous different physical
phenomena means that one must reconcile any alterations to General Relativity with
observations in weak field systems that appear to be narrowing down on a general rel-
ativistic description. As we will describe in the sections that follow, this places tight
constraints on a variety of different modified theories of gravity: It must be the case
that any alternative theories that we consider should reproduce General Relativity in
the appropriate weak field limit, or at least something very close to it.

There are a number of mechanisms that have been considered in the literature that
allow for a general relativistic weak field limit even in theories that are, in general, very
different from General Relativity. These include the Vainshtein mechanism [1241] which
occurs when large derivative interactions are present, the Chameleon mechanism of theo-
ries with non-minimal coupling to scalar fields [689], as well as the attractor mechanism of
Damour and Nordtvedt [356]. These different approaches allow, potentially, for theories
that deviate considerably from General Relativity to exist without disturbing gravita-
tional physics in the solar system to a large extent. They are thought to be successful in
a number of different environments, and have sometimes been applied to situations that
are quite different to the ones in which they were originally conceived.

As well as successful reproductions of general relativistic behaviour, however, there
have also been a number cases found in the literature of theories that produce weak field
gravity that is surprisingly inconsistent with the predictions of General Relativity. Per-
haps the most famous of these is the van Dam-Veltman-Zakharov (vDVZ) discontinuity
that was originally found in the context of Pauli-Fierz gravity [1243, 1296] (a theory with
one dynamical metric, and one non-dynamical a priori specified metric). Here the gravi-
ton acquires a mass through the introduction of terms into the gravitational Lagrangian
that, in the weak field limit, look like mass terms for the perturbations h,, around
Minkowski space, i.e. like mzh””hw. Naively one might then expect in the limit m — 0,
when the graviton becomes massless, that the zero mass theory of General Relativity
should be recovered. This is, however, not the case. Instead one finds from the study of
linear perturbations around Minkowski space that v — 1/2, which can be seen from the
constraints above to be in strong disagreement with a number of different observations,
including light bending and time delay effects. The general relativistic limit in this case
is therefore a singular one, and any finite but non-zero graviton mass, no matter how
small, appears to give results that are incompatible with observations. Similar results
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have also been found in some theories of gravity constructed from more general functions
of the Ricci curvature than the Einstein-Hilbert action [294], and are expected in other
theories as well. In these cases one must either abandon the theory as being incompatible
with observations, or show that the treatment being applied is unsatisfactory because,
for example, one of the mechanisms discussed previously should be applied.

Issues such as those just discussed can make the study of weak field gravity in modified
theories a more complicated subject than it is in General Relativity. One must be careful
to make sure that the treatments being applied are justifiable, that the limits of the theory
take the expected form (rather than being singular), and that non-linear mechanisms and
non-perturbative effects are being fully taken into account. How this should be done for
specific modified theories of gravity will be the subject of subsequent sections. In some
cases it is still an active area of research.

2.6. Cosmology

We now turn to cosmology, which forms a major part of this review. In this sec-
tion we first describe cosmology from the point of view of General Relativity, including
Friedmann-Lemaitre-Robertson-Walker (FLRW) solutions, cosmic distance measures and
cosmological perturbation theory. We then consider the observational evidence that has
led to the rise of the “Dark Sector”, thus arriving at the so-called ACDM ‘concordance
model’. We end this section with a short discussion of the successes of ACDM, its pre-
dictions and potential shortcomings.

2.6.1. The Friedmann-Lemaitre- Robertson- Walker solutions
The Robertson-Walker metric in the synchronous coordinate system is

ds? = —dt? + a*(t)g;;dx'da’, (74)
where g;; is a maximally symmetric 3-metric of Gaussian curvature . In a spherically
symmetric coordinate system this can be written

d 2
ds® = —dt® + a2 {7"2 + r2dQ}
KT

1—

where k is a real constant. If kK = 0, the hyper-surfaces of constant ¢ are flat, if x > 0
they are positively curved, and if x < 0 they are negatively curved. The function a(t) is
called the scale factor, and we assume it to be normalised to unity today.

The Hubble parameter is defined as

H_lda

with Hy = H(a = 1) being the Hubble constant, i.e. the value of the Hubble parameter

at the present time.
The dynamics of the scale factor is given by the Friedmann equation

3H? = 87G Y p; (76)
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where p; are the energy densities of all possible fluids, including photons p., neutrinos
o (possibly with mass m, ), pressureless matter p,,, and spatial curvature p,. We may
also define the relative densities

Q=2 (77)
T
where pr is the total energy density pr = % = >, pi- The Friedmann equation then

becomes the constraint ), ; = 1.
If each fluid is uncoupled then energy-momentum conservation gives

pi +3H (1 + w;)p; = 0, (78)

where w is the equation of state, defined by P = wp. For the known forms of matter

Wy = %, Wy, = 0, we = —%, and w,, is in the range [0, %] We may solve Eq. 1D for a few

cases of interest, and then determine the dynamics of the scale factor. For radiation we

obtain p, = po,a™?, for pressureless matter p,, = poma=?, for curvature p, = — g5 a2,
and for a cosmological constant py = ﬁA.

A general analytic solution in the case where all the above fluids are present is im-
possible. However, analytic solutions can be found in certain special cases. If a single
3(14+w)

fluid is present and w is constant then @3(1t®)/2 = =—5—Hoyt, provided w # —1. For

the case of radiation we get a = v/2Ht, and for pressureless matter a = (@)2/5. The
case of a cosmological constant is special: One obtains a = efo?, the de Sitter solution,
in which space (in this coordinate system) is exponentially expanding.

In many cases of interest it is convenient to use a different time coordinate, the
conformal time, 7, defined by dt = adr. In a radiation dominated universe we then have
a(t) = Hyr, in a matter dominated universe a = 1(Ho7)?, and for the de Sitter universe

a = m, where 7., is the value of the conformal time at ¢ — oo. In a universe

filled with both radiation and matter we get a = v/Qq,HoT + Q‘jl’" (Ho7)?. A summary
of these solutions is shown in Table 21

Matter type a(t) a(r)

radiation a= (2Hot)*/? | a = Hot

dust a=(3Hot)?/3 | a = 1(Hor)?

radiation & dust | complicated a = +/Qo Hor + Q‘j{" (Ho)?
) P

Table 2: A summary of particular solutions to the Friedmann equation.

2.6.2. Cosmological distances

Given a Friedmann universe obeying Einstein’s field equations, it is useful to define
observables that characterise the background evolution. Distances play an important role
if we are to map out its behaviour (see [612] for a more detailed explanation). Hubble’s
law v = Hyd allows us to define a Hubble time, ty = H%) = 9.78 x 10° = yr and the
Hubble distance, Dy = HLO = 3000 h~! Mpc. We can also integrate along a light ray to
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get the comoving distance:

to dt/
Dc = C/ ¢ .
¢ a(t’)
From —r = Q,/D?%, and performing the radial integral (assuming the observer is at
r =0), we have

D dr gg—ﬁsinhl[MDM/DH] Eor SK > 8
M or Q.=

o VI—rr? \/’%sin_l[\/ngM/DH] for €, <0,

where the proper motion distance (also known as the transverse comoving distance) is
Djy. This can be rewritten as

D¢ =

\I/DTL sinh[v/Q, Do /Dyl for Q. >0

Dy =< Dc for Q,=0
\/’%sin[«/|QH|DC/DH] for Q. <O0.

It is then possible to find an expression for the angular diameter distance:

T 142

Da

Hence, if we know the proper size of an object and its redshift we can work out, for
a given universe, the angular diameter distance, D4. If we measure the brightness or
luminosity of an object, we know that the flux of that object at a distance Dy, is given by
F = ﬁ, where Dy, is aptly known as the luminosity distance and is related to other
distances through:

DL = (1 + Z)D]V[ = (1 + Z)QDA.

This relation is a consequence of Etherington’s theorem [474], and holds in any metric
theory of gravity, irrespective of the field equations. It is however violated if the photon
number is not conserved (e.g. due to photon-axion mixing), or if photons are extinguished
due to the presence of dust. It turns out that in astronomy one often works with a
logarithmic scale, i.e. with magnitudes. One can then define the distance modulus:

D
DME5log<1OL >,
pc

which can be measured from the apparent magnitude, m, (related to the flux at the
observer), and the absolute magnitude, M, (what the magnitude would be if the observer
was at 10 pc from the source) through m = M + DM.

Finally, let us consider Hubble’s law. Take two objects that are a distance d apart,
and Taylor expand the scale factor today to find

a(t) = alte) + alto)[t — to] + %d(to)[t PRI
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On small scales the distance to the emitter is roughly related to the time of emission, ¢,
by d ~ ¢(to — t). We can then rewrite the above expression as

d H2 [(d\?
1+2)t=1-H D 0(> 4o

c 2 c
where qo = —da/a?|;—, is the deceleration parameter. On small scales and at small
redshifts we then have Hubble’s law, cz = Hyd.

To constrain the background evolution it is necessary to have good distance mea-
surements. So, for example, with measurement of supernovae light curves at different
redshifts it is, in principle, possible to measure Dy (z). Alternatively one might try to
measure D4(z) by observing known length scales in the universe. This has been done
spectacularly well with the sound horizon of the cosmic microwave background at redshift
z ~ 1100. More tentatively, there is a constraint on a combination of D4(z) and H(z)

using the imprint of acoustic oscillations of baryons on galaxy clustering at moderate to
low redshifts, z ~ 0.1 — 0.3.

2.6.3. Perturbation theory

We now turn to perturbation theory, which is an indispensable tool for making predic-
tions for a variety of cosmological observations. For extensive treatments of cosmological
perturbation theory the reader is referred to [90, [717, 469, [917]. Here we shall only
consider scalar fluctuations, for which the perturbed FLRW metric can be written

ds® = a? {—(1 — 28)dr? — 2(V,;8)drdz’ + [(1 + ;x> aij + Diju} dmidxj} , (79

where D;; = 61'6]‘ — %qi]‘A is a trace-less spatial derivative operator. We note that ﬁl is
the covariant derivative compatible with the 3-metric ¢;;. Perfect fluids with shear have
energy-momentum tensors that can be written as

T = (p+ P)uyuy, + Py + X0, (80)

where p is the energy density, P is the pressure, u,, the 4-velocity of the fluid (normalised
to uu, = —1), and ¥, is the anisotropic stress tensor which obeys u#X,, = xr,=0.
In a homogeneous and isotropic space ¥, = 0, and u,, is aligned with the time direction
such that in the coordinate system used above it has components u, = (a, 6). For first
order scalar perturbations we can parameterise T#, as

% = —po (81)
T% = —(p+P)Vib (82)
Ty = (p+P)V'(0-5) (83)
T, = 6P§';+ (p+ P)D;x, (84)

while the fluid velocity is u, = a(1 —E, 619) Here 6 P is the pressure perturbation, and
Y. the scalar anisotropic stress.
For any variable X, its perturbation 60X is not necessarily an observable quantity,
and may depend on a gauge. In particular, one can always define a new perturbation
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6X' = 6X+L¢X through the Lie derivative acting on the background tensor X through a
vector field £#. The perturbations §X are thus in general gauge—dependen@ For scalar
perturbations we can write §, = a(—¢§, 61-@[1), and then find how our variables transform
under gauge transformations using the Lie derivative. All of them, apart from X, are
gauge-dependent, with transformations given by

EsE-£ B Bt g€ +HY — ]
X = X+ L [6HE + 2A¢) v+ 2y

5 =6 — 3(1+w)He 00+ L

08— 08 4 2w’ — 3w(l + w)H] ¢ DI 3

where H = %/
Given our set of perturbation variables, two linear combinations of them can be
removedlﬂ (set to zero). Popular gauges are

e Newtonian gauge: v = = 0. The remaining metric perturbations give rise to the
Newtonian potentials & = —%X and ¥ = —=.

e Synchronous gauge: = = § = 0 (this does not completely fix the gauge). The
remaining metric perturbations are related to the Ma-Bertschinger [841] variables
as x = h and —k?v = h + 6n.

e Comoving gauge: 6 = v = 0. Strictly speaking there is a multitude of comoving
gauges depending on which velocity 6 is set to zero. Thus we may speak of a
”baryon comoving gauge” if ¢, = 0, a "photon comoving gauge” if 6, = 0, the total
matter comoving gauge if 7 = % =0, etc.

e Uniform density gauge: § = v = 0. Once again there is a multitude of uniform
density gauges depending on which density fluctuation is set to zero, as in the
comoving gauges above.

e Spatially flat gauge: x = v = 0.

It is possible to find combinations of perturbation variables that are gauge invariant,
but note that there are an infinite number of them as any linear combination of gauge-
invariant variables is also gauge-invariant. Two popular gauge-invariant metric variables
are the Bardeen potentials d and ¥:

& =< (x— Av) + H( +25) (85)

6
and

=2 L 28 - JHO 1 28), (6)

DO =

12The Stewart-Walker lemma [TIS8] states that the only gauge-invariant perturbed tensors are those
that have background values that are either zero or a constant multiple of the identity matrix.

130ne has to be careful and not over constrain the gauge by removing two combinations that transform
with the same gauge variable, e.g. § and 6 both transform with £ and therefore cannot be set to zero
simultaneously.
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The Newtonian gauge is special in this case as $ = & and ¥ = ¥. From now on we
will refer to ® and ¥ without a “hat” as the Newtonian gauge potentials. The Einstein
equations in the Newtonian gauge give

2(A+3K)® — 6H(D' +HT) = 8rGa®»  pid; (87)

2+ HY) = 87Ga®> (pi + P))b; (88)

1 1
"+ HU' + 2HD + (2%’ +H? + 3A) U= (3A+ k) = dnGa’ > 0P (89)

(2

and

-V =87Ga> Y (pi + P)%; (90)

Combining Eqgs. and we can find @ in terms of the matter variables as

2(A +3k)® = 3H> Y Qi [6; + 3H(1 + w;)0;] (91)

while W is then obtained using Eq. .
Finally, all scalar modes can be decomposed in terms of a complete set of eigen-modes
of the Laplace-Beltrami operator. For example, a variable A can be decomposed as

Azt t) = /d3k Y (27, k) A(ks, t),

where the eigen-modes, Y (27, ki), obey (A + kQ) Y =0 . In the special case of topolog-
ically trivial and spatially flat hyper-surfaces of constant ¢, we simply have Y = e?s%
The integral transform above is then a Fourier transform. The value of £ depends on the
geometry and topology of the spatial hyper-surfaces: In the case of trivial topology k
takes values k = \/k2 — k, where k. is continuous and obeys k, > 0 for zero or negative
spatial curvature, while k, = N/k for positive spatial curvature, where N > 3 is an

integer.

2.6.4. Gravitational potentials and observations

One of the main sources of information in cosmology is through the observation of
perturbations about a Friedmann background. Such perturbations can be probed through
their effects on the dynamics of particles and light, which we will now describe (see [1028]
for further details):

e Density fluctuations: Fluctuations in the matter density field, §(x), will reflect
various properties of the cosmological model. The simplest approach is to assume
that d(x) is a multivariate Gaussian random field that is entirely described by the
power spectrum, P(k), defined by

(|okl?) = P(k), (92)
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where 0y is the Fourier transform of §(x). The shape of the power spectrum
contains a wealth of information: The amplitude of clustering as a function of scale,
its redshift dependence, how its shape on small scales is distorted by small scale
velocities (known as redshift space distortions), and acoustic features imprinted by
the baryons from pre-recombination (known as baryon acoustic oscillations) can
all be used as distance indicators. The power spectrum can be estimated from
surveys of galaxies or clusters of galaxies, the clustering properties of which can be
directly related to the amplitude of fluctuations in the density field (under certain
assumptions of how galaxies (or clusters) trace the density field (known as bias)).

Peculiar velocities: The motion of galaxies relative to the Hubble flow, v?, is de-
scribed by the non-relativistic geodesic equation given above. In the linear regime,
the peculiar velocity can be related directly to the density field via the gravitational
potential:
X3

v = —iaf H@%,
where f = dlnd/dlna and we have assumed the general relativistic result ® =
V. Peculiar velocities will be observable through their effects on the redshift of
objects, either in redshift galaxy surveys (through their distortion of P(k)), or
when supplemented with independent distance measurements of each object (using
the Tully-Fisher relation or supernova light curves) in peculiar velocity surveys.

Anisotropies in the Cosmic Microwave Background (CMB): The CMB will be sen-
sitive to density fluctuations, peculiar velocities, and the gravitational potentials.
It is usual to characterise anisotropies in the CMB in terms of 6TT(ﬁ), the dimen-
sionless deviations of the black-body temperature of the Universe in a direction

given by the unit vector, n. We can expand

6T (n) R
T - %n: a)é’rnnm (TL) 5

where we have spherical harmonics, Yy, (72), and define the angular power spectrum
Cy = ﬁ > {laem|?). Like P(k), the Cys contain a wealth of information about
the cosmological model. It is now instructive to delve slightly further into the form
of ‘STTﬂ. We can schematically split CMB anisotropies into three cosmological
contributions,

0T(h) _ 6T () 6T (7) 6T (7)
T T {LS—’— T ‘ISW T ‘SEC’

where the first term encompasses all effects from the surface of last scattering, the
second term (the Integrated Sachs Wolfe effect) is due to integrated effects along
the line of sight, and the last term encompasses secondary effects such as weak
lensing of the CMB, the Sunyaev-Zel’dovich effect and other such contributions.
Let us focus on the effect of the gravitational potentials, the consequence of which
we can see through the geodesic equation for light rays given above [I50]. The
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accumulated redshift of a beam of light along the line of sight is given by

Eo S ? T
(1+2) = E—b =14+ Ve, — Yops — / (® + U)(dr/dz) dz + higher order terms.
0

em

where factors such as the integrated visibility function have been ignored for sim-
plicity. The first term is the Sachs-Wolfe effect and, in the case of the CMB, will
give a redshift to the photons as they climb out of potential wells at the surface
of last scattering. The second term is the ISW effect, and depends on the time
dependence of the gravitational potentials along the line of sight, as advertised
above.

Weak lensing: Lensing arise when photon light rays are deflected due to the
grav1tat10nal potentials along the line of sight. The deflection angle is given by
60 = —Vl(fb + \If)dT and allows us to relate the true position, Gtrue, to the de-
flected position, Gdef, via Gtme = Hdef - TLLS 59 where r;, (rpg) is the distance to
the lens (between the lens and the source). In practise we probe the gradient of
the deflection through the inverse magnification matrix:

érue
Mt = D 1+/ TLILS G\ VL (® 4 W)dr.
004t 0 Ts

This two by two matrix is parameterised by the convergence, K, and shear param-
eters v; and 2. In the case of small deflections this gives

(93)

1+K+m Y2 >
M= . 94
( V2 1+ K -7 (94)

This information can be extracted from imaging surveys of distant galaxies. The
galaxy shapes (or ellipticities) will be distorted by the intervening gravitational
potentials. These distortions will induce correlations between the galaxy shapes
that will reflect the underlying cosmology. Lensing will, of course, also affect the
CMB photons as they pass through potential wells.

2.6.5. The evidence for the ACDM model

There is currently a consensus that in an FLRW Universe that is governed by Ein-
stein’s field equations, roughly 95% of the overall energy density must be ‘dark’ in order
to be compatible with observations. The current best fit model claims that about 25%
of this dark material is in the form of a non-relativistic, non-interacting form of matter
called dark matter, and that the remaining 70% is in the form of a non-clustering form
of energy density with a negative equation of state known as dark energy.

The broad case for Cold Dark Matter (CDM) is as follows [1028]:

e The rotation curves of galaxies tend to flatten out at large radii. This flattening

can be explained if the baryonic part of the galaxy resides in a halo of dark matter
with a density profile that falls of as 1/72.
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e Clusters of galaxies appear to have deeper potential wells than would be inferred
from baryonic matter. This is manifest in the motions of galaxies, as well as
the X-ray temperature of gas, and weak lensing measurements of the integrated
gravitational potentials. Dark matter halos surrounding clusters explain all these
observations.

e Diffusion damping during recombination is expected to wipe out all small-scale
structure in baryons, preventing the formation of galaxies at late times. Dark
matter, however, can sustain structure during the damping regime, and will seed
the formation of galaxies.

The case for dark energy has been around since the early 1980s. After the proposal of
the original models of inflation, the idea that the Universe should have Euclidean spatial
geometry became ever more entrenched in the standard lore. Given that baryons made
up a small fraction of the total energy budget, and that dark matter makes up about
25%, there was clearly a shortfall of pressureless matter at late times. Furthermore,
estimates of the ages of globular clusters of around 12-14 billion years were incompatible
with a flat, matter dominated universe [1228].

There was also tentative evidence from large-scale clustering that a flat, cold dark
matter dominated Universe could not explain some of the observations. Most notably,
an analysis of the APM galaxy catalogue in [463] seemed to show that a Universe with
a cosmological constant might explain the amount of galaxy clustering on a wide range
of scales. Now, with the advent of what has been dubbed “precision cosmology” in the
late 1990s, the evidence for dark energy has become even more compelling. In particular,
the following results make a strong case for presence of an energy density with negative
equation of state:

e Measurements of the luminosity distance of type Ia supernovae are consistent with
a universe with a cosmological constant, and inconsistent with a flat, matter domi-
nated universe or an open universe [1034,[1063]. The latest results seem to constrain
the equation of state, w = P/p ~ —1.068705%0 [330, [1190)].

e Measurements of the CMB anisotropies from large to small scales [732], [442], com-
bined with measurements of galaxy clustering from the Sloan Digital Sky Sur-
vey (SDSS) [1058], greatly favour a model with Q4 = 0.725 4+ 0.016 and w =

—1.10 £ 0.14.
e The cross correlation between the ISW effect from the CMB and a variety of surveys
of large-scale structure favour w = 71.011'8:38, at around 4o [534] [611].

e The number density of clusters of galaxies as a function of redshift disfavour a flat,
matter dominated universe. The presence of massive clusters at high redshift point
accelerating expansion out to redshift z ~ 2 [32].

Although each individual observation may be subject to a variety of interpretations, and
different systematic effects, the overall concordance is remarkable. Indeed, the model
that best fits these observations is now known as the concordance model, or ACDM.
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2.6.6. Shortcomings of the ACDM model

Perhaps the most serious problem with ACDM is the cosmological constant problem:
That the observed value of A is around 120 orders of magnitude smaller than the naive
expectation that it should be of the Planck Mass, My,. Super-Symmetric (SUSY) theories
can lower this expectation to that of the SUSY breaking scale, but this still required a
bare Ag to cancel the vacuum energy coming from the SUSY symmetry breaking scale
to about 60 decimal places. One could consider arguing that some unknown physics at
high energies may provide a mechanism for achieving this level of fine-tuning, but this
seems unlikely as the problem already manifests itself at low energies.

Now, suppose that we want to describe all physics up to scales just above the electron
mass. Then the contribution to the vacuum energy A will include a bare term Ay, a term
coming from the electron and a term coming from the neutrino. This is schematically
given by

A=A\ —ﬁ—cemg—i—c,ﬁrL,‘f...7

where ¢, and ¢, are coefficients. If we now lower the energy below the electron mass,
and integrate out the electron, we instead have

A:Ao—i—c,,m,‘f...7

for a new bare term Ag. To get the same observable vacuum energy, A, we must now
have that A; and Ag cancel to 32 decimal places.

It may be thought that there could exist some mechanism that relaxes the effective
cosmological constanﬁ to zero dynamically, but Weinberg [1265] has shown that this is
impossible. Suppose that there is a set of N scalars, ¢, that are responsible for driving
the effective A to zero. These scalars will contribute an effective potential, V(¢4), to
the cosmological constant. If we are to approach a global Minkowski metric at these
energy levels, then V(¢#) must cancel the other contributions to A to high accuracy as
the fields settle to the minimum. However, this is hardly a readjustment mechanism:
If the cosmological constant changes slightly, then the mechanism fails. This proof as-
sumes Poincaré invariance in the scalar sector, which could, however, be considered an
unnecessary assumption (see Horndeski’s theory in Section .

The present value of A, as implied by cosmological observations, has another potential
problem associated with it: It has an energy density of the same order of magnitude as
the average matter density in the Universe today,

pA‘a:l ~ pm‘a:L

These two quantities scale with the size of the Universe in very different ways, and so
their similarity at the present time appears naively to be somewhat of a coincidence.
Hence, this problem is sometimes referred to as the coincidence problem.

Aside from the problems of the cosmological constant, there are some problems that
plague dark matter as well. The first is another coincidence problem: Why is the dark
matter energy density so close to the baryon energy density? This is actually worse
than it might seem. Baryons are produced non-thermally, out of equilibrium. CDM is

4By effective cosmological constant we mean the Ricci curvature of the vacuum.
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usually thought to be produced thermally, as weak interaction cross-sections naturally
give rise to the right dark matter abundance via thermal production. But how can two
components that have very different production mechanisms have very similar energy
densitieﬁ? Solutions to this puzzle have been proposed [91, [679, 1205}, [699] 680, [365]
210, 587, [586], [876, [27] but they typically require additional particles to those that form
the dark matter, and there is as yet no well accepted mechanism.

Other problems with dark matter are observational, and we will discuss them only
briefly. The density profile of CDM, as determined from N-body simulations, is inferred
to be cuspy. For example the Navarro-Frenk-White (NFW) profile [946] gives pcpar %
close to the centre of a halo. Other simulations give similar results: pcpy o< 7~ with
a ~ 0.7 — 1.5. Galaxies, however, are observed to have cores such that p flattens out
at the centre. This is the cusp problem [366] and proposed solutions within the CDM
paradigm include self-interacting dark matter [1174], fuzzy dark matter [628], or various
feedback processes that expel dark matter. Note that simulations do not have enough
resolution to probe the small scales where the problem manifests itself, but rely instead
on extrapolations. However, simulations with increasingly smaller resolutions (although
still above the probed scales) have not indicated any kind of alleviation to the cusp
problem.

Another problem is that of missing satellites [867, 211]. The CDM paradigm predicts
a rich sub-structure within the main galactic halo that should lead to numerous dwarf
galaxies orbiting the main galaxy. Indeed, simulations indicate that about 500 satellite
galaxies should be orbiting the Milky way [909]. On the contrary, however, only about
30 such dwarfs have been observed. A possible resolution within the CDM paradigm is
that most of these galaxies are dark galaxies, i.e. have very little or no stars in them,
and are instead completely dominated by dark matter [1146].

A third problem is the tight correlation between dark matter and baryons in galaxies
that manifests itself in a universal acceleration scale, ag ~ 1.2 x 1071%n s=2 [895, [1094],
the Tully-Fisher relation [879] 878], and the Faber-Jackson relation [I092]. Within the
CDM paradigm, such correlations are not expected to be present, as baryons should not
know how the dark matter behaves. For further apparent discrepancies between ACDM
and small scale observations the reader is referred to [756].

On cluster scales and larger, the ACDM model can boast of success coming from a
host of observations: Strong and weak lensing of clusters, X-ray observations of clusters,
the CMB angular power spectrum, the matter power spectrum, P(k), and supernova
data. Yet there are a few cases of interesting discrepancies. The collision velocity of
the bullet cluster [318] may be so large that the probability of it occurring in a ACDM
scenario is at best ~ 1079 [780]. In [510], however, the opposite conclusion is reached, so
this appears far from settled. Cosmological voids seem to be more empty of galaxies than
expected, as has been championed by Peebles [I030]. The CMB angular power spectrum
has a lack of large-scale power above 60° [1172] (although the statistical significance of
this is debatable, due to cosmic variance). Certain violations of statistical isotropy or
other anomalies on large scales in the CMB have also been reported [591] 337, 1294]. Tt
remains to be seen whether these are really problems with ACDM, if they are due to

15There are also non-thermal candidates for dark matter, e.g. axions, but this does not change the
argument.
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systematic effects, or if they are statistical flukes. These difficulties do, however, provide
some motivation for looking at alternatives to ACDM.
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3. Alternative Theories of Gravity with Extra Fields

In General Relativity the gravitational force is mediated by a single rank-2 tensor
field, or a massless spin-2 particle in the quantum field theory picture. While there
is good reason to couple matter fields to gravity in this way, there is less reason to
think that the field equations of gravity should not contain other fields, and one is in
general free to speculate on the existence of such additional fields in the gravitational
sector. The simplest scenario that one could consider in this context is the addition of
an extra scalar field, but one might also choose to consider extra vectors, tensors, or
even higher rank fields [511] [1247]. Of course, the effect of such additional fields needs
to be suppressed at scales where General Relativity has been well tested, such as in
the lab or solar system. This is usually achieved making couplings very weak, although
novel screening mechanisms such as the chameleon mechanism [689, [688] and Vainshtein
mechanism [I247] have also been explored.

This section represents an overview of four-dimensional gravity theories with extra
fields, focusing on additional scalars, vectors and tensors. We note that some theories
in other sections of this review can also be considered as theories with extra fields (e.g.
f(R) gravity, galileons, and ghost condensates). The reader is referred to later sections
for details of this.

3.1. Scalar-Tensor Theories

The scalar-tensor theories of gravity are some of the most established and well studied
alternative theories of gravity that exist in the literature. They are often used as the
prototypical way in which deviations from General Relativity are modelled, and are of
particular interest as the relatively simple structure of their field equations allow exact
analytic solutions to be found in a number of physically interesting situations. Scalar-
tensor theories arise naturally as the dimensionally reduced effective theories of higher
dimensional theories, such as Kaluza-Klein and string models. They are also often used
as simple ways to self-consistently model possible variations in Newton’s constant, G.

3.1.1. Action, field equations, and conformal transformations

A general form of the scalar-tensor theory can be derived from the Lagrangian density
[142, 088, 1253]

1
L= VG FOR — g(0)Vu0V"6 = 200)] + Ln( ¥, hD)g),  (95)
where f, g, h and A are arbitrary functions of the scalar field ¢ and L,, is the Lagrangian
density of the matter fields W. The function h(¢) can be absorbed into the metric by a
conformal transformation of the form [422]

M D) G — G- (96)

The conformal frame picked out by this choice is one in which there is no direct interaction

between the scalar field and matter fields, and is usually referred to as the Jordan frame.

As discussed in previous sections, test-particles in this conformal frame follow geodesics

of the metric to which they are coupled, and the weak equivalence principle is satisfied

for massless test particles. The effect of this transformation on the remainder of the
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Lagrangian can then be absorbed into redefinitions of the as yet unspecified functions f,
g and A.

By a redefinition of the scalar field ¢ we can now set f(¢) — ¢, without loss of
generality. The Lagrangian density can then be written as

L= %\/fg ¢R — @WW% —2M(9)| + Lin (¥, gp), (97)

where w(¢) is an arbitrary function, often referred to as the ‘coupling parameter’, and
A is a ¢-dependent generalisation of the cosmological constant. This theory reduces
to the well known Brans-Dicke theory [184] in the limit w — constant and A — 0,
and approaches General Relativity with a cosmological constant in the limit w — oo,
w'/w? — 0 and A — constant.

The variation of the action derived from integrating over all space, with respect
to gM”, gives the field equations

lw w
¢G + |O¢ + ig(w))2 + Al g — ViV — 3
Now, as well as the metric tensor g,,, these theories also contain the dynamical scalar

field ¢, and so we must vary the action derived from Eq. @ with respect to this
additional degree of freedom. After eliminating R with the trace of , this yields

V.0V, =87T,.  (98)

(2w + 3)0¢ + ' (Ve)? + 4A — 26\ = 87T. (99)

where primes here denote differentiation with respect to ¢. These are the field equations
of the scalar-tensor theories of gravity.

It is well known that these theories admit the very useful property of being ‘confor-
mally equivalent’ to General Relativity. By this we mean that under a transformation
of the metric that alters scales, but not angles, one can find a new metric that obeys
the Einstein equation, with the scalar contributing as an ordinary matter field. This
does not, however, mean that scalar-tensor theories are the same as General Relativity,
as the metric that couples to matter fields must also transform. The theory that is re-
covered after conformally transforming is one in which the metric obeys a set of fields
equations similar to Einstein’s, but with an unusual matter content that does not follow
geodesics of the new metric (with the exception of radiation fields, or null geodesics,
which are themselves conformally invariant). This property of scalar-tensor theories can
sometimes allow their field equations to be manipulated into more familiar forms, that
allow solutions to be found more readily.

To be explicit, a conformal transformation of the metric g, into g,, can be written

2T (z)

Guv = € Guv (100)

where I'(x) is an arbitrary function of the space-time coordinates z*. The line-element
is then correspondingly transformed as ds? = e2'®)d52, and the square root of the
determinant of the metric as /—¢g = e*'\/—g (in four dimensions). After performing
such a transformation we can use the term ‘conformal frame’ to distinguish the new,
rescaled metric from the original.
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Among the infinite possible conformal frames we can then identify two which have
particular significance: The Jordan frame and the Einstein frame. The Jordan frame is
the one in which the energy-momentum tensor is covariantly conserved and in which test-
particles follow geodesics of the metric. This is the frame picked out by the transformation
, and is the one in which scalar-tensor theories are most usually formulated. The
FEinstein frame is the conformal frame in which the field equations of the theory take the
form of the Einstein equations with the scalar contributing as an ordinary scalar field,
as discussed above.

Under the transformation it can be shown that the Ricci tensor and Ricci scalar
transform as

Ry, = Ry, —2V,V,T + 2V, I'V,T — (2V,I['V°T +0O0T) g (101)
e R =R -6V, 'V'T — 60T, (102)

while the d’Alembertian transforms as e?!' ¢ = L + 2?uF?“¢. Here, over-bars on op-
erators or indices denote that they are defined using the metric g,,. Under these trans-
formations we will now show how the scalar-tensor theories defined by the Lagrangian
@, in the Jordan frame, can all be transformed into the Einstein frame.

First, consider the term in Eq. containing the Ricci scalar, which under the
conformal transformation becomes

) ) ]
L1 = o-V=36¢ (R - 63T L, - 6IL). (103)
™

The non-minimal coupling to the Ricci scalar can now be removed by making the choice
of conformal factor e*!' = ¢~! such that g,, = g, /¢. This defines the conformal trans-
formation between Jordan and Einstein frames in the scalar-tensor theories. Applying
the transformation to the rest of Eq. then gives

1 _ o
L= ﬁ\/—g (R —2(3+2w)V,I'VIT — 2¢*TA) + L,,,(T, €*'g,,.). (104)

Now, by making the definitions \/47/(3 + 2w) = 9I'/0y and 87V (1) = el A, for the
scalar 1 and the function V(v), we can write the transformed Lagrangian (104)) as

1

L=
167

V=GR~ V=g (;vmv“w + V(w) L (W, g).  (105)
In the absence of any matter fields the scalar-tensor theories can now be clearly seen to
be conformally related to Einstein’s theory in the presence of a scalar field in a potential.
This potential disappears when A =0

In the Brans-Dicke theory [I84] the coupling parameter w is constant, and the scalar
fields ¢ and 1 are therefore related by

167

RO=\ G

.

For more general theories with w = w(¢) the definition of 1) must be integrated to obtain
a relation between ¢ and . By extremising the action (105 with respect to g,, and
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we get the Einstein frame field equations

_ _ _ 1 _
G =87 | Ty + V0V 0 — <2vawvaw + V> gw} (106)
and iV
Oy — — = —VAraT (107)

dy
where =2 = 3 4 2w and where we have defined the energy-momentum tensor Tw with
respect to g, so that TH" = eSTTH | Tt can now be explicitly seen that while the Jordan
frame energy-momentum tensor is covariantly conserved, V,, T = 0, its counterpart in
the Einstein frame is not, V,T"" = V4maT'V".

8.1.2. Brans-Dicke theory
The Brans-Dicke theory is given by the Lagrangian density with w =constant,
and A = 0 [I84]. The behaviour of this theory in the vicinity of isolated masses is well
understood, and in the case of static and spherical symmetry can be solved exactly by
the line-element [185]
ds* = —e**dt* + e*8 (dr?® 4 r2dQ?)
where a = a(r) and 8 = S(r) are given by one of the following four solutions:
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Here we have defined \? = (C + 1)2 — C (1 —wC/2) > 0 in solution I, and A? =
C (1 -wC/2) — (C +1)% > 0 in solution II. The constant C' is arbitrary in I and II,
and given by C' = (=1 ++v/—2w — 3)/(w +2) in III and IV. The constants B, g, By and
¢ are arbitrary throughout.

Now, while solution [ is valid for all values of w, solutions I, II] and IV are only
valid for w < —3/2. Solution I is also known to be conformally related to the minimally
coupled massless scalar field solution of Buchdahl [207]. It can be seen that these solutions
are not all independent of each other. By a transformation of the form r — 1/r and
some redefinition of constants, solution /I can be transformed into the w < —3/2 range
of solution I [I52] and solution IIT can be transformed into solution I'V [I53]. It was
also shown in [I52] that the independent solutions I and IV are both conformally related
to the general solution of the static, spherically symmetric case in the Einstein frame, as
found by Wyman [1289].

These solutions are very useful for understanding the gravitational fields around an
isolated body in Brans-Dicke theory, but are not the only spherically symmetric vacuum
solutions of the Brans-Dicke field equations. A non-static spherically symmetric vacuum
exact solution is also known [313]:

ds? = —A(r)* ) g2

Ca(l4 L) 2B=VE) .
+ A(r) TV e [dr? + A(r)r?(d6? + sin? 0dg?)],  (108)

with s
28
o(r,t) = <1 - 20) $2/(V38-1) (109)

r

where we have A(r) = 1 — %, a = j:@, B = V2w + 3, and C' =constant. This
solution reduces to a flat vacuum FLRW metric in the limit C' — 0 (an inhomogeneous
solution requires C' # 0). The metric is spatially homogeneous at large r and has
singularities at ¢t = 0 and r = 2C'; the coordinates r and t therefore cover the ranges
0 <t < ooand 2C < r < co. This solution is known to be conformally related to [635],
and shows explicitly the lack of validity of Birkhoff’s theorem in Brans-Dicke theory.
It also reduces to the Schwarzschild solution when w — oo. Black hole solutions in
Brans-Dicke theory with a power-law potential have been investigated in [850].

Let us now consider the weak field limit of this theory. Following the PPN prescription
outlined in previous sections one can straightforwardly find that the relevant values for
the PPN parameters are:

1+w

= 1 d = -,
BppN an YPPN 2+ w

(110)

with all other parameters equalling zero. The value of Newton’s constant can also be

shown to be given by
442 1
= (22w L (111)
3+2w/ ¢
where ¢¢ is the background (unperturbed) value of the scalar field. It can be seen
that in the general relativistic limit w — oo we then recover the usual values of the
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PPN parameters, and that for finite w the only parameter that deviates from its general
relativistic value is 7.

This value of ~ is valid for both the static and non-static exact solutions shown above.
It is interesting to note, however, that it is not the value of v that one should expect
to measure outside of a black hole that has formed from gravitational collapse in this
theory. Such an object can be shown to have an external gravitational field with v =1
[1107], as predicted by Hawking [595]. This does not, however, mean that gravitational
collapse to a black hole proceeds in the same way in Brans-Dicke theory as it does in
General Relativity. In the Brans-Dicke case apparent horizons are allowed to pass outside
of the event horizon, scalar gravitational waves are emitted during the collapse, and the
surface area of the event horizon can decrease with time. Such behaviour does not occur
in General Relativity, and is allowed here because Brans-Dicke theory can violate the
condition R, k*k” > 0, where k“k, = 0. The problem of understanding black hole
thermodynamics in Brans-Dicke theory has been addressed in [674]. Here it was found
that the expression for the entropy of a black hole with an horizon ¥ of area A is given

by

S = 1/ P9 = %7 (112)

4 /s 4

such that Sppy is always non-decreasing, even if the area decreases. This shows that
the second law of black hole thermodynamics can indeed be extended to Brans-Dicke
theories, with the effective gravitational constant being replaced by 1/¢. For an intuitive
interpretation of this result in the Einstein frame, and for further discussion on this topic,
the reader is referred to [489].

Having discussed the gravitational fields of point-like objects in Brans-Dicke theory,
let us now proceed to use observations of weak field phenomena to constrain the theory.
This can be done most effectively using the constraint on ~ given in Equation ,
derived from observations of the time delay of radio signals from the Cassini spacecraft
as it passed behind the Sun. Together with the expression , shown above, this gives
the 20 constraint on the coupling parameter

w > 40 000. (113)

This is a very restricting constraint on the theory, and shows that deviations of this
kind from General Relativity must be very small indeed (see the following subsection,
however, for a discussion of scalar-tensor theories that can evade this bound while still
exhibiting significantly different behaviour to General Relativity in the early universe).
Let us now proceed to discuss the cosmology of Brans-Dicke theory. Using the usual
FLRW line-element, and assuming a perfect fluid matter content, the field equations
reduce to:
8mp K ¢ w d)Q
H? = — _—_H- +-—— 114
30 @2 ot Ee (114)
b 87 (p— 3P '
¢ _ 8n(p—3P) 3H?. (115)
¢ ¢ (2w+3) ¢
where over-dots denote differentiation with respect to the proper time of a comoving
observer, H = a/a, and p+3H (p+ P) = 0. The general solutions to Eq. (114]) and (115)
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are now fully understood [576], [95]. At early times the vacuum solutions of O’Hanlon and
Tupper [993] are recovered, while at late-times one approaches the power-law solutions
of Nariai [938] (when x = 0):

a(t) = ¢2L+e=W))/E+3w(1-W2)] (116)

(1) = ot 20—3W /801w (117)

Wher@ p = Wp. These solutions can be considered “Machian” in the sense that the
matter fields are driving the expansion of the Universe, rather than ¢.

Let us now consider the general FLRW solutions in terms of a transformed time
coordinate n = n(t). Such solutions can be found any equations of state W [576], but
here let us consider only the radiation dominated solutions with W = 1/3. In this case
the new time coordinate 7 is simply the conformal time 7 given by adr = dt, and the
general solution for w > —3/2 is

3t R

a(t) =a(t+74) V'S (r4712) VI (118)
- - 2 + . 2

A1) =1(r+74) VIE(r472) PVITEY (119)

where 71, a1 and ¢y are integration constants, and where 8mp,q /3@31@% =1. Forw <
—3/2, however, we instead find

-1 _
a(t) = a1 /(T+7-)2 + 72 exp | ——tan™! ThT , (120)
Flwl—1 T

o(1) = ¢ 2 T

v/ 2w| =1 T+

For w > —3/2 (w < —3/2) we see that the scale factor here undergoes an initial period
of rapid (slow) expansion and at late times is attracted towards the solution a(7) o T,
or, equivalently, a(t) o t2. Similarly, ¢ can be seen to be changing rapidly at early
times and slowly at late times. These two different behaviours, at early and late times,
can be attributed to periods of free scalar—field domination and radiation domination,
respectively. If p.g = 0 is chosen then these solutions become vacuum ones that are
driven by the ¢ field alone, and for w < —3/2 the initial singularity can be seen to be
avoided. Corresponding behaviour can also be shown to exist for other equations of state,
W. For a more detailed discussion of this phenomenon we refer the reader to [105].

Unlike in General Relativity, in the Brans-Dicke theory it is also possible to have
spatially flat and positively curved exact vacuum solutions. Spatially flat solutions can

(121)

16Note that in this section we use an upper case W to denote the equation of state of the fluid, rather
than the usual lower case w used in the rest of the review. This is to avoid confusion with the coupling
parameter w.
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be found by assuming ¢ « t* and a « t¥, and by setting a(0) = 0. When x = 0 the
vacuum Brans-Dicke equations are then solved by [993]

a(t) o t30+20-V/BEF) 7Y, (122)
¢ )2(1\/3(3+2w))1

o (123)

o) (

For spatially closed solutions one can follow the method prescribed in [95]. Here one
defines a new quantity ¥ = ¢a?, and uses the conformal time coordinate 7, to write the
field equations as

(Ing),r=v3Ay '(2w+3)""2 and  y? = —dry’+ 4%
where A is a constant. For x > 0 these equations can be integrated to find y =
(A/2+/k) sin(2+/k(T — 79)), which then gives the solutions

o(r) o tanV T (Va(r — ), (124)
o(r) sin1/2(2\/ﬁ(7' —70)) .
tanV T (/i (7 — 1))

(125)

Spatially flat and closed vacuum FLRW solutions such as those shown here do not exist
in General Relativity, and show the potential for interesting new behaviour at early times
in scalar-tensor theories of gravity. Phase plane analyses of perfect fluid FLRW solutions
to the Brans-Dicke field equations have been performed in [731], 1096, [613].

A number of anisotropic cosmological solutions of the Brans-Dicke field equations are
also known. Bianchi type-I solutions have been found in [I075] 133], type-I1 in [822]
580, [825], type-IIT solutions in [826], type-V solutions in [821], [823] [827 [828], [581], type-
VIy and VI solutions in [829, [830] 131], type-V II, solutions in [824] 579)], type-VIII
solutions in [825] [820], type-IX solutions in [825] 820], and Kantowski-Sachs solutions in
[826]. Inhomogeneous cosmological solutions have also been found [313], and braneworld
cosmologies have been considered in [75, [1054]. We will not reproduce any of these
solutions here, but rather refer the reader to the citations above, and references therein.
For a discussion of the cosmic no-hair theorems in Brans-Dicke theory the reader is
referred to [682], where it is shown that these theorems are valid without imposing any
strong constraints on the coupling constant, w, so that initially anisotropic universes can
evolve towards an isotropic final state.

Now let us consider perturbed FLRW space-times, within which cosmological obser-
vations are usually interpreted. For the Brans-Dicke theory these equations have been
studied many times before, starting with [939]. Here we will present these equations in
the synchronous gauge and with k = 0, as found in [290]. In this case the equations take
on a simpler form. For the more general case the reader is referred to [934], or to the

w =constant limit of Eqs. (145)-(149) in Section for the corresponding equations
in the conformal Newtonian gauge. Now, the perturbed metric can be written as

Guv = g;u/ + G,Q(T)hw” (126)

where a(7) is the FLRW scale factor, g,, is the unperturbed FLRW metric with x = 0,
and h,, is the perturbation that satisfies hoo = ho, = 0 in the synchronous gauge. We
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can then proceed as normal, and decompose the remaining non-zero h;; perturbations
into harmonic modes, and decouple the scalar, vector and tensor components. The scalar
part of the perturbations can be written as in Section

1
hij = ghQij + Djjv, (127)
where the synchronous gauge has been adopted, while d¢ is the perturbation to the Brans-

Dicke scalar. The D;; operator, as in Section |2, is defined by D;; = ﬁzﬁj - %qi AL As
usual we define n = —(h + k?v)/6 (see section [2)). The perturbed equations are{ﬁ

— 2k + <7—l+ q;) noo= SM préf + (w —3H> 5;?/

2 s w¢?| dg
K2+ 3H +2¢2] 7 (128)
, 8ra? 1., 1 gb’)

o = PO+ —6¢ — — (H — 5¢(129
7 ¢zf:(:0f+ f)f+¢¢ ¢< 5 $(129)

N 8rma? 5
(H—&-;S)u +n = 7:; (p+P)2f+$ (130)

and ) )
00" + 2HIY + K50 + 5o/ = Qi”j_ ; > (8ps — 35P;). (131)

f

Here the perturbations to the energy density and pressure of the non-interacting fluids
f are written as dpy and 6Py, with the peculiar velocity potentials and anisotropic
stress written as 6y and Xy, respectively. Primes denote differentiation with respect to
conformal time, 7. ~

For the tensor modes we can write the metric perturbations as h;; = hr@Q;;, where
Q;; is a harmonic function, and with no tensor component involved in §¢. The evolution
equation for hr is then given by

- - - 8mra? -
B 4 2H by + k2 hy = % Z(Pf + Pr)Xy, (132)
f

where ¥ ¢ is the tensor contribution to the anisotropic stress of the fluid f. We will not
write the vector perturbation equations here, which are not expected to be significant
for most cosmological applications. For perturbation equations written in terms of gauge
invariant variables the reader is referred to [I1285] for the covariant approach, or [934] for
the Bardeen variable approach (for the Brans-Dicke theory one should take w =constant
in this last reference).

The background cosmological evolution and perturbations can be used to place con-
straints on Brans-Dicke theory from a number of different sources. The CMB is one

17Various typos in the corresponding equations in [290] have been corrected.
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such source, and can be used to place constraints on the coupling parameter, w. This
has been done a number of times in the literature [935] [7, [1284], with the latest results
based on constraints given by the WMAP 5 year data, the ACBAR 2007 data, the CBI
polarisation data, and the BOOMERanG 2003 flight, together with large-scale structure
data from the SDSS data release 4, giving w > 97.8 or w < —120.0 to 20 [1284]. This
is in keeping with the results of [7], but significantly weaker than those claimed by [935]
of w > 1000 to 20 based on the WMAP first year data. Among the detailed processes
that lead to these constraints one can see that the change in the horizon size at matter-
radiation equality is altered in Brans-Dicke theory due to the different expansion rates
[(99]. This length scale is imprinted on the spectrum of perturbations as during the
radiation era perturbations inside the horizon are effectively frozen, while during matter
domination perturbations grow on all length scales. Different expansion rates also affect
the horizon size at recombination, which affects the level of ‘Silk damping’ that occurs on
small scales due to viscosity and heat conduction. What is more, the thickness of the last
scattering surface is also changed, which affects anisotropy on small scales through the
exponential damping which has its cutoff determined by this quantity. The upcoming
data from the Planck satellite is, of course, expected to tighten the constraints given
above still further.

Another cosmological probe that has been extensively applied to Brans-Dicke theory
is that of the primordial nucleosynthesis of light elements [1292, [59, [354] 265, [266], 1126,
312]. In the Brans-Dicke theory the scalar field ¢ is approximately constant during the
epoch of radiation domination. Nucleosynthesis therefore proceeds largely as in a general
relativistic cosmology (up to the effect of ‘kicks’ on the scalar field due to the annihilation
of electron-positron pairs [358]), but with a different value of G during this process, and
hence a different expansion rate. Of course, the time at which weak interactions freeze
out in the early universe is determined by equality between the rate of the relevant
weak interactions and the Hubble rate. When the weak interaction rate is the greater
then the ratio of neutrons to protons it tracks its equilibrium value, while if the Hubble
rate is greater than the weak—interaction rate then the ratio of neutrons to protons is
effectively ‘frozen—in’, and S—decay is the only weak process that still operates with any
efficiency. This is the case until the onset of deuterium formation, at which time the
neutrons become bound and S—decay ceases. Now, the onset of deuterium formation is
primarily determined by the photon to baryon ratio, 1y, which inhibits the formation
of deuterium nuclei until the critical temperature for photodissociation is past. As the
vast majority of neutrons finally end up in *He the primordial abundance of this element
is influenced most significantly by the number of neutrons at the onset of deuterium
formation, which is sensitive to the temperature of weak—interaction freeze—out, and
hence the Hubble rate, and so G, at this time. Conversely, the primordial abundances of
the other light elements are mostly sensitive to the temperature at deuterium formation,
and hence 7,, when nuclear reactions occur and the light elements form. The reader is
referred to [83] for further discussion of these points. The typical bounds that can be
achieved on the coupling parameter from observations of element abundances are then
given by w 2 300 or w < —30, assuming the power-law solutions and . By
using the general solutions —, however, these bounds can be somewhat relaxed
or tightened, depending on the behaviour of ¢ in the early universe [312].

While the cosmological bounds discussed above are weaker than those derived in the
solar system, and in binary pulsars, they probe a very different physical environment and
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scale. They are therefore usually considered complimentary to the constraints imposed
from observations of weak field gravity, and a useful consistency check. After all, one may
wish to consider theories in which the coupling parameter w varies throughout cosmic
history. Theories in which such behaviour can occur explicitly are the subject of Section

B3

3.1.8. General scalar-tensor theories

The Brans-Dicke theory that has so far been considered is a very special scalar-tensor
theory, with only a single constant parameter. The more general class of scalar-tensor
theories contains two free functions, given by w(¢) and A(¢) in Eq. . Let us now
consider these more general theories.

First of all let us consider the case in which A(¢) = 0. Such theories have been
well studied in the literature, and are often used to model the possibility of having
a coupling parameter w in the early universe that is small enough to have interesting
effects, while being large enough in the late universe to be compatible with the stringent
bounds imposed upon such couplings by observations of gravitational phenomena in the
solar system, and other nearby astrophysical systems. This interest is bolstered by the
presence of an attractor mechanism that ensures General Relativity is recovered as a
stable asymptote at late times in FLRW cosmology [356]. We will explain this attractor
in more detail below.

Of course, in generalising the Brans-Dicke theory we want to know what the con-
sequences are for constraints imposed in the weak field limit. The extra complication
caused by allowing w to be a function of ¢ means that exact solutions are hard to find.
Perturbative analyses can still be readily performed, however, leading to the PPN pa-
rameters

dw/d¢ and 1+w
n = —
(4+ 2w)(3 + 2w)? TPPN = 9

BppN =1+ (133)
with all other parameters equalling zero. The value of y here can be seen to be the same as
in the Brans-Dicke theory, while the value of § reduces to the Brans-Dicke (and General
Relativity) value of unity when w =constant. Observations from the Cassini satellite
therefore place upon w the same tight constraint as in Brans-Dicke theory (w 2 40 000
to 20). This constraint, however, now only applies to the local value of w (i.e. with
the present day value of ¢ in the solar system). The variation of w with ¢ can then be
constrained by observations of post-Newtonian phenomena that constrain 3, such as the
lunar laser ranging experiments described in previous sections. To constrain w for other
values of ¢, however, requires making observations in other physical environments, such
as in the early universe, or near black holes.

Let us now consider the cosmological solutions of these theories. It has been shown
by Clarkson, Coley and O’Neill in [303] that the Ehlers-Geren-Sachs theorem can be
extended to cover scalar-tensor theories of gravity. Taking the FLRW line-element, and
assuming a perfect fluid matter content, the field equations in this case reduce to

H2 — %_;_Hg—i_g? (134)
¢ _ 8r(p—3P) ¢ (dw/dg)d?
6 E(zw+3)_3Ha_(2w+3)¢’ (135)



where over-dots again denote differentiation with respect to the proper time of comoving
observers. These equations are similar to those of the Brans-Dicke theory, Eqs. (114)
and , except for the extra term on the RHS of Eq. . Exact solutions with
t = 0 have been found to Eqs. (134) and in [94], 1004, [T08], 042], and vacuum
and radiation dominated solutions for arbitrary spatial curvature have been found in
[05] [R99) TTT]. Some of the methods used in these papers are extended to anisotropic
cosmologies in [898], and the asymptotics of FLRW cosmologies in scalar-tensor theories
have been studied in [I12, 1125]. Exact homogeneous and anisotropic solutions are
found in [327, [156] that act as past and future attractors for the general solution. Exact
homogeneous self-similar solutions are found in [I32], and inhomogeneous self-similar
solutions are found in [I57]. We will not reproduce these solutions here, some of which
can be quite complicated, but will instead return to the attractor mechanism expounded
in [356].

This mechanism is most easily seen in the Einstein conformal frame, given by the
Lagrangian , such that for a spatially flat FLRW geometry the evolution equation
for the scalar field can be written as

8w

‘@iqgwﬂw"+4ﬂl—wﬂ/+VEﬂL—&Ma:O, (136)

where here primes denote differentiation with respect to the natural log of the Einstein
frame scale factor, a, and w is the equation of state P = wp. The reader will recall that
1 = /(3 + 2w)/167 In ¢ is the scalar field in the Einstein frame, and a~2 = 3+2w denotes
the strength of coupling between the scalar and tensor degrees of freedom. Equation
is clearly the equation for a simple harmonic oscillator with a dynamical mass,
a damping force given by —4n(1 — w), and a driving force given by the gradient of a
potential (1 — 3w)T', where the reader will recall I' = v/47 [ adip. This interpretation of
I' as an effective potential is often used to justify an expansion of the form

I = oy — o) + 22 (6 — %)? +O((4 — 0)°), (137

where 1y is an assumed local minimum of I'(¢), and «p and [y are constants. In terms
of this parameterisation the PPN parameters Sppy and yppy then become

2
g0
1-BppNn = T30+ ad)? (138)
202
l1—9ppy = 1+3T (139)
0

The requirement of positive mass in can also be seen to be equivalent to the
requirement of positive energy density, p, in the Einstein frame.

The cosmological dynamics that result from Eq. are that i, and hence ¢,
approach a constant value during the radiation dominated epoch. This is due to the
vanishing of the ‘potential’ in when w = 1/3, and the negativity of the effective
‘damping force’. Once radiation domination ends, however, and matter domination be-
gins, then the scalar field rolls down to the minimum, 1, of the now non-zero potential
I'(¢) (assuming such a minimum exists). Once this minimum is reached, after some
possible oscillations in the case of an under-damped system, then we are left with o = 0,
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which is the general relativistic limit of these theories. This is a very useful general prop-
erty of any scalar-tensor theory which has a local minimum in its parameter I'(¢)), and
means that interesting new behaviour is possible at early times, while still being (poten-
tially) compatible with observations that appear to point towards General Relativity at
late-time.

Using order-of-magnitude approximations, the authors of [356] claim that this attrac-
tor mechanism is powerful enough to drive the value of the PPN parameter 1 —~ down to
values of as low as ~ 10~7. This is a couple of order of magnitudes below the level that
is probed by even the observations of the Cassini spacecraft, but is not inconceivably
small. In particular, it may be that upcoming observations of binary pulsar systems
could achieve such levels. Further predictions of this scenario are a possible oscillation
in the effective value of Newton’s constant near the beginning of the matter dominated
epoch of the Universe’s history, as well as a prediction for the locally measured value of

Bppn given by
Bo

Bppn — 1= %(1 -~%), (140)

where [y is defined in Eq. . The validity and limitations of these results are
extended, and are further studied in [357, [I095].

Let us now consider perturbations around a general FLRW background, in these
generalised theories. We will work in the conformal Newtonian gauge, which has the
usual correspondence with Bardeen’s gauge invariant variables. Tensor perturbations
on cosmological backgrounds have been studied in [I09], while the scalar part of the
perturbed line-element takes the form

ds® = a® [—(1+20)dr® + (1 — 2®)g;;dx'da’ ], (141)

where we have used conformal time, 7, and g;; is now the metric of a static 3-space with
constant curvature. Perturbations to the scalar field and energy momentum tensor are
given by d¢ and

6T = —dp (142)
5T = —(p+P)Vib (143)
5T = 0P+ (p+ P)D\,3, (144)

where p, P and 0 are the total energy density, pressure and peculiar velocity of the matter
fields. The first-order perturbation equations are then given by [934]

2 "\ a 360 | (a'\?
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We also have the perturbed scalar field equation

and

8ma? (6p — 36P)

(2w +3) (148)
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as well as the condition )
@-\1}:87:; (p+P)E+%b. (149)

This last equation shows that, unlike in General Relativity, ® # ¥ when anisotropic
stresses vanishes (unless the perturbations to the scalar field also vanish). Primes here
denote differentiation with respect to the conformal time, 7, and k is the wave-number
of the perturbation.

Using the equations given above with k = 0, an analysis of the first year WMAP data
has been performed and used to constrain the parameters oy and Sy of the attractor
model in [035]. The authors of this study find that the following constraint can be
imposed on these parameters at the 20 level of significance:

ap < 5x 1074770, (150)

One should bear in mind here that as Sy — 0 Brans-Dicke theory is recovered, and
as ag — 0 General Relativity is recovered. As a corollary of this result these authors
also constrain the value of Newton’s constant at recombination to be no more than 5%
different from the value measured in the solar system today, at the 20 confidence level.
The effect of allowing a non-zero spatial curvature should be expected to weaken these
bounds.

Big bang nucleosynthesis has also been explored in the context of general scalar-tensor
theories [1210, [358] BT9] [773]. In [358] it is found that the inferred upper bound on the
baryon density in the Universe is relatively insensitive to the presence of a gravitational
scalar field, and that the parameters of the attractor model must satisfy the constraint

th2 ) —1.5

ap S1070955 ( (151)
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when Sy 2 0.5. For 5y < 0.5 these bounds are weakened by a few orders of magni-
tude. These results are extended and refined in [319], who also allow for a non-zero
self-interaction potential for the scalar field. The apparent tension between observed and
theoretically predicted abundances of Lithium-7 is addressed in the context of scalar-
tensor theories in [773]. Here the authors point out that a period of expansion slower
than in General Relativity before primordial nucleosynthesis, together with a period of
more rapid expansion during nucleosynthesis, can resolve this conflict. They find such be-
haviour in numerous scalar-tensor gravity theories, both with and without self-interaction
potentials.

Inflation in scalar-tensor theories of gravity has been extensively studied, often under
the name ‘extended inflation’; as coined by La and Steinhardt for the case of Brans-Dicke
theory [762]. The motivation behind this is the possibility of producing a successful
inflationary phase transition from a false vacuum state, thus avoiding the fine tuning
problems associated with ‘new inflation’. Unfortunately, it was soon found that bubble
collisions at the end of inflation produce unacceptable fluctuations in the CMB [1264] [761],
[B04]. Suggestions to improve this situation were to include a self-interaction potential
for the scalar field [763], generalise the couplings of the Brans-Dicke scalar to other
fields [617] (see also [614] [1260]), include quantum effects [616], add additional couplings
between the inflaton and the space-time curvature [775], or to consider more general
scalar-tensor theories of gravity [1185] [526]. The latter of these approaches was dubbed
‘hyper-extended inflation’. The inflationary solutions of general scalar-tensor theories
have been studied in detail in [106, 212} 86], and specific models that could be compatible
with observations were proposed in [554]. Density perturbations in inflationary scalar-

tensor scenarios have been investigated extensively in [861] 578, [1127] 937, 908, [798], [410),
12, [345] 411, (760, 1181, [1193), 863, 1262]. Studies of topological defects [333] [T089], black
holes [625], gravitational waves [1229, [145], baryogenesis [99] [I00], baryon asymmetry
[1295], dark matter [874] [875], the formation of voids [802], [803], bubble nucleation rates
and dynamics [1283], [1088], reheating [328], stochastic inflation [523], 525 [624] [TT9Tl, [1192],
slow roll inflation [96, 527, 1212], non-Gaussianity [1047], isotropisation of the Universe
[583L B&4], and quantum cosmology [633] have all also been performed in the context
of inflation in scalar-tensor theories. The initial conditions for inflation in scalar-tensor
theories have been considered in [407, 44T, 406]. For further details the reader is referred
to 1993 review of extended inflation by Steinhardt [T184].

Theories of gravity with non-minimally coupled scalar fields and non-zero self-interaction
potentials have been studied by a number of authors under the name ‘extended quintessence’
[1035] [74], [35, [T06TL TT09]. Such theories can act as dark energy as well as model possible
deviations from General Relativity at early times. These papers include studies of small
angle CMB temperature and polarisation power spectra, the integrated Sachs-Wolfe ef-
fect, the matter power spectrum, supernovae observations and the affects that should be
expected on weak lensing observations. The FLRW solutions of theories with power-law
self-interaction potentials have been studied in further detail in [252], where the attractor
mechanism to general relativity is investigated, as well the presence of periods of accel-
erating expansion at late and early times. Late-time acceleration in models without a
potential for the scalar field is studied in [483].

Another interesting possibility in scalar-tensor theories of gravity is the idea of ‘grav-
itational memory’, proposed by Barrow in [93]. The idea here is that when a black
hole forms one of two things can happen (or some combination of them). Firstly, the
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Schwarzschild radius of a black hole, which is given by rg = 2G(t)m, could vary as the
value of the scalar field controlling the value of G varies in the background universe. In
this case there is no such thing as a static black hole solution to the gravitational field
equations, unless the black hole exists in a static universe. Secondly, the Schwarzschild
radius of a black hole could be frozen in at its value when the black hole formed, so
that r¢ = 2G(ty)m, where t; is the time when the black hole formed. In this case
black holes that formed early on in the Universe’s history would remember, in some
sense, the conditions of the early universe, this being reflected in the value of G(ty). As
Barrow points out, these two possibilities have consequences for the evaporation, and
explosion, of black holes in the late universe. This idea has motivated a number of
studies on the gravitational field of collapsed objects in scalar-tensor theories of gravity
[07, 12171), 1213 [654), 593, 860, 048, 047)]. One particularly interesting approach is that
of matched asymptotic expansions, which suggests that the first option is followed, and
black holes do not have any gravitational memory [TT135] [TT36] [TT34].

Horndeski’s theory

The most general four dimensional scalar-tensor theory with second-order field equa-
tions was worked out by Horndeski in [623]. It has the following Lagrangian

prvo

4
Ly = &7 {mwvawmw3n1,xv“va¢v"vg¢vavv¢

+r3VadVH QR "7 — 4&3,XVQ¢V“¢V”V5¢V”V7¢]
+097 [(F +2W)R, 4" — AF x V'V V"V + 2ngva¢w¢wvg¢]
—3[2(F+2W)7¢+XK,S}VMV#¢+H9(¢, X), (152)

where X =V ,,¢V# ¢, and 6,272 "n = n!él[ff 5;’;...5;:2]. The theory depends on four arbi-
trary functions of ¢ and X, k; = k;(¢, X) as well as F' = F(¢, X), which is constrained
so that Flx = k1,4 — k3 — 2Xk3 x. Note that W = W(¢), which means that it can
be absorbed into a redefinition of F'(¢, X). This paper is not very well known, and as
a result Horndeski’s theory has not been well explored. It has, however, been recently
resurrected in [276], where aspects of the theory on FLRW backgrounds were studied.
The effective Lagrangian describing the cosmology in the minisuperspace approximation

is given by ,
. : K "
Lebi;f(avaa ¢a ¢) = a3 Z (An - Bna72> H 5 (153)
n=0

where H = a/a is the Hubble parameter, and where we have

Ay = —Qr¢+ Ko (154)
By = Q140+ 12k3¢> — 12F (155)
Ay = —12F4¢ +3(Qr — Qr) + 6rsd® (156)
Bi = —Qio+Qi (157)
Ay = —12F —12F 4¢* (158)
Ay = 8k1,4¢°, (159)
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where ~ ~
Q1 = 091 _ —12k4, and Q7= 997 _ 6F 4 — 3¢°ks. (160)

¢ o
It is assumed that matter is minimally coupled to the metric g,,,,, and not to the scalar.
Indeed, it is argued that if the equivalence principle is to hold then this can be as-
sumed without further loss of generality. The cosmological field equations are presented

implicitly as a generalised Friedmann equation:

1 [.oLst .oLst 41
3 |:a da ¢ 8¢ LH =P (161)

a3
and the scalar equation of motion
oLy  d [oLg] _ 0
0 dt | 9é ’
where p is the energy density of the cosmological fluid.

In [276] the authors look for those corners of Horndeski’s theory that admit a self-
tuning mechanism. They demand that the vacuum space-time is Minkowski, irrespective
of the value of the cosmological constant, and that this should remain true even after
a phase transition in which the cosmological constant changes by some amount. This
is not in violation of Weinberg’s theorem since Poincaré invariance is explicitly broken

by the scalar. These considerations reduce Horndeski’s theory to four base Lagrangians
known as the Fab Four:

£john - \/jg‘ﬁohn(@G“'lVM(bvy(b (
Loat = V=9Viaul(9) PPV .6V 06V, V50 (164
(
(

(162)

Lgeorge = VvV 79‘/george(¢)R
L:ringo = vV _g‘/ringo(gﬁ)Ga
where G = RwaﬂR“”aB — 4R, R* + R? is the Gauss-Bonnet combination, and
wo "2 Boosv voosp woosv
P a,@__R a,@+2R [a5 B]_2R [a5 B]—R5 [ad )

is the double dual of the Riemann tensor. These terms give rise to self-tuning cosmologies
for k < 0. The relevant cosmological field equations are given by

Hjohn + Hpaul + ngorge + Hringo = - [pA + pmatter] ) (167)

where we have separated the net cosmological constant contribution, ps, and the matter
contribution, pmatter, and where

. K
Hjohn = 3V30hn(¢)¢2 (3H2 + ?)

: K
Hpaul = _3Vpaul(¢)¢3H <5H2 + 39)
] V/eor e
Hgeorge = —6Vgeorge (@) {(Hz + n ) + Hop 2282 ]
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. K
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The scalar equations of motion are Ejohn + Epaul + Egeorge + Eringo = 0 Where

gjohn = 61 |:a3v_vjohn(¢)(bA2:| - 3(13 ji)hn(¢)¢2A2

dt
d . .
Epout = —92 {a?’vpaul(qﬁ)&HAz} + 3%V (0) PP HA,
d .
ggeorge = _6£ [ag‘/g/eorge((ﬁ)Al] + 6a3‘/:g/éorge(¢)¢A1

+6a3 ‘/g/eorge (¢)A%

, d| 5[k 2
gringo - 724‘/1‘ing0(¢)% |:CL‘3 ((]?Al + 3A3>:| ,

and we define A,, = H™ — (@)n. We see that the self-tuning is achieved at the level
of the scalar equation of motion, since on a Minkowski solution one has H? = - =
A, =0 for n > 1. In vacuum, the cosmological constant controls the value of the scalar
via the generalised Friedmann equation. A detailed study of the phenomenology of the
fab four has yet to be carried out, but the authors of [276] argue that the ‘john’ and
‘paul’ terms are expected to play a crucial role, as their derivative interactions could give
rise to Vainshtein effects that could help pass solar system constraints. The Vainshtein
mechanism is discussed in detail in Section £.5.4l

Note that it has been shown that Horndeski’s general theory is equivalent to [402] in
four dimensions [710]. Aspects of cosmological perturbations are studied in [710] that
may be applied to the Fab Four in the appropriate special case.

3.1.4. The chameleon mechanism

The ‘chameleon mechanism’ was introduced as a concept in gravitational physics by
Khoury and Weltman in [689, [688]. The basic concept here is that if we consider theories
with a non-minimally coupled scalar field, then in the presence of other matter fields
these scalars can acquire an effective mass parameter that is environmentally dependent.
One can then potentially satisfy the tight constraints on non-minimally coupled scalar
degrees of freedom that are imposed in relatively dense environments, such as exist in
the solar system, while still having interesting new behaviour in less dense environments,
such as those that can exist in cosmology.

This mechanism is usually formulated in the Einstein conformal frame, where the
coupling between the scalar curvature and scalar field is minimal, but where the scalar
field couples non-minimally to matter fields. The relevant action is then

1 - 1 =
fov {mR = 50" Ut V(w)} L (U, VG, (168)

where, in the notation used in Eq. , we have taken I' = v/873;4, and where the f;
are a set of constants denoting the coupling of @ to each of the i matter fields ¥;. In
the scalar-tensor theories so far discussed the scalar field should be considered coupled
to each of the matter fields with the same universal coupling, which in the Brans-Dicke
theory is given by 872 = 2(3 + 2w). Assuming such a coupling, the non-relativistic limit
of the scalar field equation can then be written as

dVeg
dyp ’

V3 =
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where Veg(¥) = V() + peV®Y . This new ‘effective potential’ can be seen to be depen-
dent on the ambient energy density, and if ¥ and g are both positive then any runaway
potential with dV/dy < 0 will result in an effective potential with a local minimum whose
position depends on p. What is more, for couplings of the type specified in Eq.
the local effective mass of the scalar field v, given by m, = d?Veg/di)?, can be seen to
generically increase with increasing p. Hence, the name ‘chameleon’.

The behaviour of scalar fields outside of massive objects, when the chameleon mech-
anism is present, can be shown to be crucially dependent on the ratio of Ay to ®..
Here At denotes the difference in the value of the scalar field inside the object, 1., and
asymptotically, ¥, while ®. is the value of the Newtonian potential at the surface of
the object, where » = R.. More precisely, when one satisfies the condition

\/8?(7/}00 - d)r)

1 1
e < (170)

then the resulting configuration of gravitational fields is found to be one in which ¥
occupies the minimal of the effective potential inside the bulk of the massive object,
except for a thin region of depth AR, just below its surface where the value of 1 rises.
Outside of the object 1 increases further, and approaches its asymptotic value ¥, as

1/)21%0—

—Moo(r—Re)
28 <3ARC) M.e | )

vV 8w Rc

where m, is the effective mass of the field at asymptotically large distances from the
object of mass M,.. Now, the ratio of the thickness of the shell just below the object’s
surface to the object’s overall radius, AR./R,, can be shown to be well approximated by
the LHS of Eq. (170). The condition given in is then equivalent to the condition
that a ‘thin shell’ should be present, with AR./R. < 1.

If the ‘thin shell’ condition is not met then one instead has ¥ ~ 1, everywhere, and
the exterior solution is given by

r

28 M,e meo(r—Re)
V8T r '

A comparison of Eq. with Eq. immediately shows that without a thin shell
variations in ¢ are no longer suppressed by the small factor of 3AR./R., and that we
should therefore expect in this case more obvious consequences to the existence of
within the vicinity of massive objects. Khoury and Weltman proceed to argue that in
order to avoid violations of the weak equivalence principle, and unacceptable deviations
from the predictions of General Relativity in the solar system, we should require that
the Earth, and other astrophysical bodies, should satisfy the thin shell condition [688].
This idea of a scalar field with an environmentally dependent mass has sparked
widespread interest since it was proposed. In particular, it allows for the possibility of
measuring fifth forces, or violations of the weak equivalence principle, that are different in
space than they are on Earth, [689, [688), [499] [0T2], 1236}, 190, 013, 1199, 1091, 1225, T98].
It can act as dark energy [191], [197], and has been studied in the context of structure
formation [196], [188], as well as a number of other cosmological scenarios [912] 190, 013
1971, (4841, 2391 362]. The effect of ‘chameleon particles’ on searches for axion-like particles
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and experiments involving magnetic fields have been studied in [192] 14} [637], and their
effect on the propagation of light in astrophysics in [219] [220]. Experimental searches for
chameleons have now been performed by GammeV [298] 1182 [1238| [T183], and ADMX
[1079], which have started to constrain the viable parameter space of these theories.
Other tests of this scenario are also proposed in [I87, [789] [788] [TT08], (199 [186].

3.2. Einstein-Ather Theories

Vector-tensor theories, in the form of Einstein-sether theories, have had a revival over
the past decade, and are now often used as a counterfoil to test General Relativity. They
have the particular property that they single out a preferred reference frame and have
become somewhat of a theoretical workhorse for studying violations of Lorentz symmetry
in gravitation. In the Einstein-sether theory [655] violations of Lorentz invariance arise
within the framework of a diffeomorphism-invariant theory, and their modern incarna-
tions are a refinement of the gravitationally coupled vector field theories first proposed
by Will and Nordtvedt in the 1970s [1276, [089]. The presence of a Lorentz-violating
vector field, henceforth called the @ther, can dramatically affect cosmology: It can lead
to a renormalisation of the Newton constant [257], leave an imprint on perturbations in
the early universe [809, [677], and in more elaborate actions it can even affect the growth
rate of structure in the Universe [I311], 1314 [589].

3.2.1. Modified Newtonian dynamics

Some of the theories that we will discuss in this subsection and the next have been
constructed to give modifications to Newtonian gravity on galactic scales. To be more
specific, they should lead to Milgrom’s Modified Newtonian Dynamics [895], also known
as MOND, in regimes of low acceleration. Given its relevance for Einstein-sether theories,
we will now briefly describe the motivation for MOND, and how it works. We also briefly
mention some of its successes and failures.

MOND was first proposed as a possible explanation of the need for dark matter in
galaxies, based on observations of their rotational velocities. With Newtonian gravity
and the visible baryonic matter in galaxies only one expects that the rotational velocity,
vy, should depend on the distance from the centre of the galaxy, r, as v, o< r—1/2. What
is in fact found in observations of spiral galaxies is that v, is approximately constant
at large radii. The conventional answer to this problem is to posit that galaxies sit
in halos of dark matter, with energy density profiles that vary as p ~ r—2 for large r.
Milgrom’s proposal was that, alternatively, Newton’s inverse square law of gravity could
be modified in the low-acceleration regime of galactic dynamics. Such a modification, it
was ventured, may be able to account for the anomalously high rotational velocities in
spiral galaxies without invoking any new matter fields.

In MOND the spherically symmetric gravitational potential has two regimes: High
acceleration and low acceleration. In regions of high acceleration (where |@| > ag, for
constant ag), it simply satisfies Newton’s second law: @ = —V® where ® is the gravi-
tational potential. On the other hand, in the low acceleration regime (where |d| < ag),
Newton’s second law is modified to (|@/ap)d = —V®. Albeit a simple rule of thumb,
Milgrom’s proposal is remarkably successful at fitting a large range of spiral galaxy ob-
servations. Furthermore, it can be used to explain the Tully-Fisher relation that relates
the velocity of rotation of a spiral galaxy with its intrinsic luminosity. Unfortunately
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MOND is unable to explain the dynamics of clusters of galaxies without recourse to
additional dark matter (possibly in the form of neutrinos), and the behaviour of dwarf
spheroidals in different environments is also problematic. Nevertheless, it is an interesting
proposal that has had a renewed surge of interest in the past decade.

The non-relativistic Poisson equation in MOND can be written as

- Vol -
)

where p is the energy density in baryons, and the function u(z) — 1 as © — oo and
w(x) = x as * — 0. There are a variety of proposals for the precise form of p(z) that
fit observations of galaxies to a greater or lesser degree. As a theory of modified gravity,
however, MOND’s greatest limitation is that it is restricted to non-relativistic regimes.
It therefore cannot be used to make prediction on cosmological scales, nor can it be used
to calculate fundamentally relativistic observables, such as lensing. Many of the theories
that follow in this section have been constructed to address this deficiency: They are
relativistic gravitational theories that have MOND as a non-relativistic limit.

= 47Gp, (173)

8.2.2. Action and field equations
As the name suggests, vector-tensor theories involve the introduction of a space-time
4-vector field, A*. A general action for such theories is given by

_ 4 — 1 iy v nv
S—/d T/ 9[167TGR+£(9 AN 4+ Sp(gh, 1), (174)

where S, is the matter action. Note that the matter fields ¥ in Sj; couple only to the
metric g,,, and not to A”.

Let us now focus on Einstein-scther theories, and hence forth consider A* to have a
time-like direction. The simplest (and most thoroughly studied) version of the Einstein-
eether theory is quadratic in derivatives of A”, and has the form

Lpa(gh”, A”) = ﬁ[KWMVMAO‘VVAﬁ + MAYA, +1)], (175)
where KWQB = 19" gap + €20",6"5 + 035“55”(1 — c4A*AYgqp and A is a Lagrange
multiplier. In what follows we will use the notation ci5.. = ¢y + ¢ +.... We call the
theory derived from Egs. and the linear Einstein-sether theory.

A more general, non-linear Lagrangian for the ather field can be written in the form

M? 1
IGWGF(K) + @)\(A“A# +1), (176)
where K = K”VaﬁVMAO‘V,,AB, and M has the dimension of mass. We shall call this a
generalised Einstein-sether theory.

Such actions arise from Lorentz violating physics in quantum gravity. Indeed, the
linear Einstein-zether theory can be constructed using the rules of effective field theory,
and has been shown to be stable with regard to quantum effects [1279]. Such theories,
however, can suffer from instabilities at the classical level, with the onset of caustics in a

finite time [33I]. This raises the question of whether the vector field in such theories are
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merely an effective (possibly composite) degrees of freedom, or whether they are genuine
fundamental fields.

The gravitational field equations for this theory, obtained by varying the action for
the Generalised Einstein-gether theory with respect to g*” are given by

G = T+ 8aGT T, (177)
T 1 (¢ e «a
T;w = 5 a(FK(J(M Au) -J (MAV) - J(MV)A ))
1
—FiYiu) + 50w M*F + AAL Ay, (178)

where Fx = 42 and J», = (KWQB—I—KV“BQ)VVA@ Brackets around indices denote sym-

A(K*>P
metrisation, and Y),, is defined by the functional derivative Y, = V,A” V/gA"M.

aghv
The equations of motion for the vector field, obtained by varying with respect to A, are
Vu(FrgJ")+ Fry, = 2)MA,, (179)
AK*? )

where we have defined y, = VAPV A7 —27
respect to A fix A¥A, = —1.

. Finally, variations of the action with

3.2.3. FLRW solutions

In a homogeneous and isotropic universe with perfect fluid matter content, the vector
field will only have a non-vanishing ‘¢’ component, so that A* = (1,0,0,0). The equations
of motion then simplify dramatically, so that V,A* = 3H and K = 30‘M—H;, where a =
c1 + 3¢y + c3. Note that the a we have defined here has the same sign as K. The field
equations then reduce to

d F 81G
_ 1/2 2 = =
[1 aK ¥l (Kl/Q)] H 3 P (180)
d
ﬁ(_ﬂ{ + FxaH) = 8rG(p+ P). (181)
If we now take F'(z) = yz", the modified Friedmann equations become
> e
1 = H? = — 182
+e(57) < (182

where € = (1 — 2n)vy(—3a)" /6. We also get the relationship

=1 6(Qm — 1) <M>2(n1)’

1—2n)(—3a)" \ Hy (189)

where Q,, = 87Gpy/ 3H3, and Hy is the Hubble constant today. Let us now consider a
few special cases: If n = 1/2, the Friedmann equations are unchanged (e = 0) and there is
no effect on the background cosmology; with n = 1 we have that ¢ = ya/2 and Newton’s
constant is rescaled by a factor of 1/(1 + ¢€) [257]; if n = 0 we recover a cosmological
constant, A ~ sign(—~)M?. More generally, we will obtain different regimes depending
on the relative size of each term in the modified Friedmann equation. We can summarise
these behaviours in Figure (3.2.3]
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Figure 1: A schematic representation of the late-time evolution of FLRW solutions as a function of n
and ~, for n < 1.

8.2.4. Cosmological perturbations

The four-vector A* can be perturbed as A* = (1 — ¥, %ﬁiV), where V is a small

quantity. Perturbing K to linear order then gives K = Ky + K3, where Ky = 3O‘M—HQ and

Ky = 298 (kY + 3HVU + 3®). The gravitational potentials ¥ and ® come from the

perturbed metric:
ds* = a®(7) [-(1 +20)dr? + (1 — 2®)g;;dz’da’] (184)

were ¢;; is the unperturbed conformal metric of the hyper-surfaces of constant 7.
The evolution equation for the perturbations in the vector field are

0 = [V +EV+2HV +2H*V + ¥ + &' + 2H V] (185)
"
Fea[kK2V + 6H2V — 3LV 4 30/ + 3HY]
a

"

ol 2V +2H2V = =V + @ + MY
F
o [ H = Kj(—er (V! + ) + 321V + esHY ).
K

The perturbation in the vector field is sourced by the two gravitational potentials ® and
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W. The first-order perturbations to the vector field’s stress-energy tensor are

a?06T% = Fre[-HEV — K2V — k20] (186)
+Ea[HE*V + 3H®' + 3H*V] — 3Fk xaH?* K,
= Fro[-HE*V — k*V' — k*U) + Fra(2n — 1)[HE?V 4 3H' + 3H?T],

1
a’6T% = ik;Fre [V” +2HV' + %V + U+ H\I/] (187)

1
+ikiFra {27—[21/ - aav} +iki Fg g Kler(HV + V! + ) — aHV],
a’6T% = Freak*2HV + V6% + Fi(c1 + c3)2HV + V']k'k; (188)

"
+Fxa {Q’Hqﬂ + O 4 2%\11 — H2U + H\I/’} 8+ Frr (e + c3) KoV E'k;

"

—FKK[(J&K1% + (Cl + co + C3)K1H2 + O/HKi
—aK(®' — 20K(HY + aln(Fg ) K1 H — o K(k*V]S,

where the second expression for a26T9, assumes the monomial form for F(K). In the
absence of anisotropic stresses in the matter fields, we may obtain an algebraic relation
between the metric potentials ® and ¥ by computing the transverse, traceless part of
the perturbed Einstein equations. This gives
2 3 9 s 1 i
= (01 + 63)k2 [FK(QHV + V/) + FKKK(’)V]

We then find the following expression for the perturbed field equations:

1
Ko = —EFKcle[V' + U+ (3+283)HV] (190)

—47Ga® Y (pada + 3(Pa + Pa)Hba) -

Before we look at the cosmological consequences of these theories, and constraints that
can be imposed on them, it is instructive to study the effect of the vector field during
matter domination. This should allow us some insight into how the growth of structure
proceeds in the generalised Einstein-sether case. First let us consider the simplest case
in which the dominant contribution to the energy density is baryonic, so that we can
treat it as a pressureless perfect fluid. Let us also introduce the new variable V' = E.
For illustrative ease we will initially consider only the case where V is described by

P

a growing monomial, such that V = 1j ?Tg) , During the matter dominated era we
then have a?6T% ~ —Ip&(k)k?>T°TP=6" and K?(¥ — @) ~ —Ig&(k)k?>m>TP=6" where
g =—(c1(24+p)n+2a(1 —2n)n), ls = —(c1 + c3)n(6n —p — 10), and

(k) ~ 2V (k) (1)k <3aﬂm (Z)) , (191)
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where kpyp = 1/Tioday. Hence, the vector field affects the evolution equations for the
matter and metric perturbations only through its contribution to the energy density
and anisotropic stress. On large scales, k7 < 1, and assuming adiabatic initial con-
ditions for the fields 6, ®, 0, this leads to § = Ci(k) + &%%THP*G”, where C] is
a constant of integration and we have omitted the decaying mode. Therefore, even
before horizon crossing, the anisotropic stress term due to the vector field can influ-
ence time evolution of the baryon density contrast. On small scales, k7 > 1, we find

Lip+l _ .
§(k,7) = Co(k)T>+ (5+p7(§n;2(10i)1)76n)§(k) (k1)%2r5+P=6n where Cy (k) is another constant
of integration. Hence, for sub-horizon modes, the influence of the vector field on the evo-
lution of ¢ is a combination of its affect on the energy density and anisotropic stress
contributions, though both, in this limit, result in the same contributions to the scale

dependence and time evolution of the density contrast.

3.2.5. Observations and constraints

Let us now consider the constraints that can be imposed on these theories. First
of all we will consider the linear Einstein-sether theory, and then we will consider the
generalised Einstein-sether models.

In the case of the linear Einstein-sether theory, a number of non-cosmological con-
straints on the ¢; have been derived: Most notably, a Parameterised Post-Newtonian
(PPN) analysis of the theory leads to a reduction in the dimensionality of parameter
space. This is occurs due to the requirement that ¢ and ¢4 must be expressed in terms
of the other two parameters in the theory as ca = (—2c¢? —cic3+¢3) /3¢ and ¢4 = —c2/cy.
Additionally, the squared speeds of the gravitational and sether waves with respect to
the preferred frame must be greater than unity, so as to prevent the generation of vac-
uum Cerenkov radiation by cosmic rays. A final constraint arises from considering the
effects of the sether on the damping rate of binary pulsars. The rate of energy loss in
such systems by gravitational radiation agrees with the prediction of General Relativity
to one part in 10%. In the case of the Einstein-zether theory it has been shown that to
agree with General Relativity in these systems we must require that ¢, = ¢; + ¢3 and
c_ = ¢1 — c3 are related by an algebraic constraint. A more exotic, but viable, subset
of the parameter space can be considered if we set ¢; = ¢3 = 0. The PPN and pulsar
constraints are then no longer applicable, and a cosmological analysis is potentially the
only way of constraining the values of the coupling constants.

Using a combination of CMB and large-scale structure data [1315] it is possible to
impose constraints on the coefficients of the theory, c¢;, as well as the overall energy
density in the sther field. The main effect on the evolution of perturbations is through
the change in the background evolution, and not necessarily through the presence of
perturbations in the vector field. Indeed, artificially switching off the perturbations in
the sether field has essentially no effect on the power spectrum of large-scale structure,
and a small effect (of approximately 10%) on the angular power spectrum of the CMB.
In Figure [2| we plot the join constraints on c¢; and c_ that can be imposed from these
observables.

If we consider the generalised Einstein-zether theory, we find that the effect on the
CMB is much more pronounced. Let us first consider a Universe with no dark matter,
and in which the perturbations in the sether field simultaneously mimic a perturbed pres-
sureless fluid in the formation of large scale structure, whilst behaving entirely differently
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Figure 2: Likelihood plot in the parameter space of —c4 and —c_ from observations of the CMB and
large-scale structure. The black lines are the 1 and 20 contours, for which we have marginalised over the
values of the other parameters. The hatched region is excluded by Cerenkov constraints. The dashed
line indicates the constraints available from binary pulsars.

in the cosmological background [I314]. The first requirement for successful perturbation
evolution is that structure can form at all. One necessary condition for this is that the
sound speed of the structure seed is not too large, since this would wash out structure.
It is therefore required that the sound horizon in the models we are considering should
be less than the smallest scales where linear structure can form: Cgkmax™ < 1, where
Emax ~ 0.2h/Mpc. For matter power observations at 7 ~ 3 x 104, which is the present
epoch, this yields Cg < 1074,

There are two underlying physical processes that can constrain these models. The
first is a change in the rate of growth of the amplitude of perturbations. This can cause
discrepancies between the amplitudes we expect in the matter power spectrum and the
CMB, since the evolution between the two is different. It can also lead to an integrated
Sachs-Wolfe effect during the matter era, as ® becomes time dependent. The second
process is due to the increased magnitude ® — ¥. This also leads directly to a non-
negligible integrated Sachs-Wolfe effect in the matter dominated era. The details of each
of these processes depends on the functional form of F', the time-dependence of the &
growing mode, and the choice of the parameters ¢;. It is extremely challenging to find
combinations of the parameters that allows for a realistic growth of structure, while
simultaneously ensuring the integrated Sachs-Wolfe effect is acceptably small.

A consequence of these two effects is that it is impossible to find models where the
ather field replaces the dark matter that fit the available cosmological data. This is not
due to the matter power spectra, which can be reasonably fitted to the SDSS data, but
from the CMB. In the low-¢ regime a large ISW effect is clearly present, destroying any
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chance of fitting the CMB data at large scales. The positions of the peaks are also poorly
fit by the model. Finally, to fit the matter power spectrum to the data requires rescaled
by a factor 0.02, which corresponds to a galaxy bias of 0.14. Such a scaling is considered
to be improbably small, on physical grounds. All these effects cause severe problems
when attempting to simultaneously fit the CMB and large-scale structure.

Finally, let us consider the possibility of late-time accelerating expansion. A detailed
comparison with the data seems to allow a range of values for the index n, and the three
coupling terms of the theory, which can produce this behaviour. In the limit n,, — 0,
however, the sether field behaves exactly as a cosmological constant term.

3.8. Bimetric Theories

In this section we will consider theories that involve two rank-2 tensors. These are
often referred to as “bimetric”, or “tensor-tensor”, theories of gravity. The first formu-
lation of a bimetric theory appears to be due to Rosen [1067, [1068], and involves the
addition of an extra non-dynamical rank-2 tensor into the theory. Rosen’s theory, how-
ever, is now known to lead to the existence of states that are unbounded from below in
their energy. As a result Rosen’s theory predicts the spin up of pulsars, as gravitational
waves with negative energy are emitted. This severely violates the constraints on these
systems that have been imposed by observations of millisecond pulsars [779].

Following in Rosen’s footsteps, there were a number of proposals over the years of
how one could formulate a viable bimetric theory of gravity. Here we highlight what we
consider to be some of the most interesting cases. These include Drummond’s bimetric
(or “bi-vierbein”) theory, which is claimed to mimic the dark matter in spiral galaxies
[434], as well as arguments by Magueijo that bimetric theories could exhibit a variable
speed of light, thus providing a way to model time-varying fundamental constants. More
recently, Baniados and collaborators have shown that a general form of bigravity, which
includes specific forms previously proposed in[647, [355] might allow one to account for
some aspects of the dark sector [85 [70]. Finally, Milgrom has recently proposed a
bimetric theory that reduces to MOND in the appropriate limits. In what we follows,
we will briefly outline each of these theories.

The basic idea behind bimetric, or tensor-tensor, theories is the introduction of a
second ‘metric’ tensor into the theory@ a dynamical metric, g,,, and a second metric,
Jap- The first of these is usually universally coupled to the matter fields, and is used to
construct the energy-momentum tensor of the non-gravitational fields. It is this field is
used to define the geodesic equations of test particles. The equations that govern g,
however, are not the Einstein field equations: They invariably involve g,z as well.

If the gop is not dynamical, then it is usually taken to be highly symmetric (i.e.
exhibiting the maximal 10 Killing vectors X, such that £xg.s = 0). An obvious choice
for gap is the Minkowski metric, 7,,, so that all components of the Riemann tensor
constructed from g, vanish. Rosen’s bimetric theory is a particular example of such
a construction, as are some attempts to construct a massive theory of gravity. If g.s
is to be dynamical, then a kinetic term of the Einstein-Hilbert form is required in the

18 A second rank-2 tensor would probably be a more accurate description of what is actually being
added here, as the term ‘metric’ implies a particular geometric function. Nevertheless, the term ‘metric’
for this additional field is commonly used, and so we follow this convention here.
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gravitational action. Coupling terms are then also required between g.g and g,., with
the matter fields usually coupling to either one, or a combination of both, metrics.

3.3.1. Rosen’s theory, and non-dynamical metrics
As advertised, Rosen’s bimetric theory is constructed with an extra flat metric, o =
Nag, such tha@

R¥, 5 (Jap) = 0. (192)

We can now define a covariant derivative in terms of §ng, which we will call @H, such
that the field equations for the dynamical metric can be written

V=9
V=g

The energy-momentum tensor satisfies the conventional conservation equation V#T),, =
0.

—_

1 «
(Tyw — igl“’g BTaB) (193)
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Rosen’s theory has been the subject of a number studies over the years. It has been
found to be extremely successful when subjected to a PPN analysis, and compared to
Solar System observations [(79]. In fact, almost all the PPN parameters in Rosen’s
theory are indistinguishable from those of General Relativity. The only exception is
Qg = Ug/c2 — 1, where v, is the speed of gravitational waves in Rosen’s theorem, and c is
the speed of light. One should note here, however, that v, is not uniquely determined by
the theory, but rather by the cosmological solutions to the theory. One can then adjust
the initial conditions of the Universe in order to tune as. If this is done then the theory is
observationally indistinguishable from General Relativity in the weak field, low velocity
regime of post-Newtonian gravitational physics.

Rosen’s theory fails, however, when its predictions for the emission of gravitational
waves are compared to observations of binary pulsars. Will and Eardley found that unless
the binary system under consideration obeys very specific properties, in terms of masses
and mass differences, then Rosen’s theory leads to the emission of a large amount of dipole
gravitational radiation [I275]. This in turn results in a sizeable increase in the orbital
period of the system, which is not observed. Binary pulsar observations are therefore
incompatible with this theory. Rosen later proposed replacing flat space metric by an
a priori specified, but time-varying, cosmological background [I069]. Unfortunately this
does not circumvent the pulsar problem.

Other bimetric theories that also have been proposed with an additional a prior:
specified, non-dynamical metric field. These include Rastall’s theory [1055] [1056] and
Lightman and Lee’s theory [808], for which the PPN limits of both theories are known. It
has been conjectured by Will, however, that all such theories that incorporate prior spec-
ified geometry could suffer the same deficiency as Rosen’s, when it comes to calculating
the emission of gravitational radiation from binary systems [1274].

19Note that this equation can be derived from an action principle by including a space-time dependent
rank-2 tensor as a Lagrange multiplier. We will not go into the details of how to do this here.
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3.3.2. Drummond’s theory

Let us now turn to a more recent formulation of the bimetric theory. In [434] it
was proposed to work in the vierbein formulation with go.g = nABeﬁeg and gog =
N3 Bééé? . In this case both sets of vierbein are dynamical. While éé is used to construct
the Einstein-Hilbert action, e? is used to construct the action from which the energy-
momentum tensor is derived. The missing pieces of the theory are then a transformation
tensor, M ‘,37 and a scalar, ¢, which relate éﬁ‘ and ef by

el = e?MA eB. (194)

Finally, we then need to define a “linking action”. This is given by Drummond as

e o g

where the current j, is defined as

in? =PV MA M, (196)
and where G; and G, are new gravitational constants, m is a mass parameter, and -y is
a free parameter which corresponds to the cosmological constant. Note that the action
for M is similar to that of the non-linear sigma model found in meson physics.

Drummond has shown that his bimetric theory has a well defined Newtonian limit
and so, in principle, can satisfy the time delay measurements from radio signals. He also
claims that the higher order correction is exactly what is needed to satisfy Solar System
constraints from the precession of the orbit of Mercury, and that in the weak field limit
the dynamical metric gng >~ 703 + hag gives rise to a potential of the form

GM Gi _

hoo = , <1 + G (& > . (197)
Hence, for mr < 1 the effective Newton’s constant is Gy = G+ G, while for large scales
GpN =~ G. Such a correction can alleviate the problem of flat galactic rotation curves that
arises in standard Newtonian gravity with no dark matter, but does not completely
resolve it. Albeit an intriguing proposal for a theory of modified gravity, there has been
little progress in studying the various astrophysical and cosmological consequences of
Drummond’s theory.

3.3.83. Massive gravity
The theory of a single massive spin-2 field can also be considered as a bimetric theory,

with a non-dynamical background metric §,s and a dynamical fluctuation given by gog =
7



Jap + hap. Taking the background to be Minkowski space, for simplicity, we can then
generate a mass for the spin-2 field hos by adding the Pauli-Fierz (PF) term to the
Einstein-Hilbert action [504], resulting in

SPF 1671 G d4l’\/7R + 7\/*7 [guugocﬁ - gua Mﬂ] h,uuhaﬁa (198)
where m is a constant mass parameter. It is well known that, in four dimensions, a
massive spin-2 field ought to have five propagating degrees of freedom: Two of helicity
2, two of helicity 1, and one of helicity 0. However, a generic mass term with arbitrary
coefficients will result in higher derivative terms for the helicity-0 mode, giving rise to
an additional ghost-like degree of freedom. The form of the PF mass term is specifi-
cally chosen so that this is not the case to linear order. Massive gravity exhibits some
interesting phenomenology, not least the so-called vDVZ discontinuity, and its possible
resolution via the Vainshtein mechanism. These will be discussed in more detail in the
context of DGP gravity in Section [5.5]

Unfortunately, the PF Lagrangian by itself cannot describe a consistent theory be-
cause the ghost-like mode reappears at non-linear order [I75]. This mode is often referred
to as the Boulware-Deser ghost, and it was believed that one could not find generalisa-
tions of the theory that succeeded in eliminating it to all orders [342]. There has, however,
been some recent progress on this issue by de Rham and Gabadadze and collaborators
[617) 380} 383, [382], B85] who have proposed the following action [382] B85]:

Sapr = 16— G d*z/=gR +m?*\/=gU(g,h), (199)

where U(g, h) = S0 _, am5f‘ ...5‘;::']1({,‘11 -+ K#m and where the a,, are constants, and
1 « 1 e B

Kb =+ S5+ ghehg, — ok = §g” hov — gg“ hagg ’Yh,ﬂ, +.... (200)

It is now clear that the leading order part of the potential gives the PF mass term upon
choosing as = 2. To study the behaviour of the theory beyond linear order it is convenient
to restore general coordinate invariance by means of the Stuckelberg trick. To this end
one can perform the following field redefinition [382] 64],

Py 9™ 0¢”

P My T8 Gk o (201)
Py 0,0, 7P 00,1050,
M, + A3 AS ’ (202)

where in going from Eq. to Eq. we have set ¢¢ = x® — naﬁaﬁﬂ/Ag, in
order to focus on the dynamics of the helicity zero mode. Note that Az = (M,m?)'/3
and M, = 1/v/8rG. For the original PF action, Eq. , the Boulware-Deser ghost
reveals itself by expanding the action in terms of iAz,W. At zeroth order one finds higher
derivative terms for 7 that contribute to the equations of motion, indicating the presence
of the ghostly extra mode. In contrast, the generalised PF action is chosen so that the
resulting higher derivative terms contribute a total derivative at zeroth order in BMV.
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This is a crucial first step in avoiding the extra mode. One can go further and study
the theory in the so-called decoupling limit, m — 0, Mp; — oo, and A3 =constant. After
some suitable field redefinitions one finds that the theory contains the quintic galileon
Lagrangian [382]. Note that it does not reproduce the galileon theory discussed in Section
exactly, since generically there is mixing with a graviton of the form v X 31,, where
X, 1s cubic in 7. This mixing cannot be eliminated by a local field redefinition and may
have important phenomenological consequences. In particular, when this coupling comes
in with a particular sign it can prevent the recovery of GR inside the Vainshtein radius
around a heavy source [738, [739, 297]. In any event, one can confidently say that the
Boulware-Deser ghost does not appear in the decoupling limit. Of course, it is possible
that this limit corresponds to taking its mass to infinity, and that it will reemerge in the
full theory. Whether or not this is the case has yet to be established.

Self-accelerating and self-tuning cosmologies were studied de Rham and Gabadadze’s
theory in [384], whilst spherically symmetric solutions have also been considered recently
738, [739, 297].

3.8.4. Bigravity

A class of theories that were first proposed in the 1970s by Isham, Salam, Stradthee
[647], and revisited a few years ago by Kogan [355] and collaborators, have recently been
resurrected by Banados and collaborators [84], [85] [70] (see for [I150] a short overview).
Further studies of bi-gravity include weak-field solutions and gravitational waves [140],
exact spherically symmetric solutions [I41] and the energy of black holes [329]. The
starting point [84] is an extension of Eddington’s affine theory (see section ' so that the
dynamical fields are a metric g, (with curvature scalar R) and a connection Cf;, with
Ricci tensor K, [C]. The action is

4 —_ _ )
— G 4o /~g(R - 2A) + z2\/ det[g — (2K ) (203)

where A is a cosmological constant, « is a dimensionless parameter and £ is a length scale.
It may be shown [85] by introducing a 2nd metric g, corresponding to the connection
C7, that the above theory is a special case of bigravity with action given by

:wer/ {FR 20) +/=g(R - 2A) - \/jéé%(é’l)“ﬁga,s . (204)

where A = 7 1s a cosmological constant term. In these theories, both metrics are used
to build Einstein-Hilbert actions even though only one of them couples to the matter
content.

Such bigravity theories lead to interesting behaviour on cosmological scales [85], [70].
The homogeneous and isotropic FLRW metrics can be written as g5 = diag(—1, a?, a?, a?)
and gog = diag(—X?,Y?,Y?2 Y?), where X and Y are functions of ¢ alone. The corre-
sponding Friedmann equations are then of the form

GG
H> = =225+ ), (205)

Slg, Cl =

where p = Y3/(87G¢?>Xa?). This fluid satisfies a conventional conservation equation of
the form _
dp N
pri =31+ w)p, (206)
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where w, satisfies a somewhat intricate evolution equation, given by

i
M9

dt

1+ 30+ \/4(w)3/20a - 2(1+§w)”‘ , (207)

where p. = p + p, pe = (87G¢?)~1 and Q= p/pc. The extra metric here can lead to a
range of interesting behaviours and, in particular, can drive the expansion to a de Sitter
phase, or mimic the effects of dark matter. Anisotropic universes in these models were
studied in [1066].

The cosmological evolution of perturbations in these theories has been worked out
in some detail, and it turns out that the perturbations in the auxiliary field can be
rewritten in the form of a generalised dark matter fluid [626] with density, momentum,
pressure and shear that obey evolution equations. As a result, it is possible to work out
cosmological observables such as CMB anisotropies and large-scale structure. In [70] it
was found that distinctive signatures emerge during periods of accelerated expansion. If
the p field dominates, and is responsible for cosmic acceleration, there is a clear instability
in the gravitational potentials; they not only grow but diverge leading very rapidly to an
overwhelming integrated Sachs-Wolfe effect on large scales. It is difficult to reconcile the
angular power spectrum of fluctuations and the power spectrum of the galaxy distribution
predicted by a bimetric theory that unifies the dark sector with current data. If we restrict
ourselves to a regime in which p simply behaves as dark matter, however, then the best-fit
bimetric model is entirely indistinguishable from the standard CDM scenario.

Bigravity theory can also be extended to consider more complicated actions, such as

1
S T

/d%\/jﬁ [r0(3™) gap + K1((571)* gap)® + K2(37)*(G7")as] (208)

and, although a full analysis of its PPN parameters has been undertaken [308], its cosmol-
ogy remains to be explored. Black holes, and their thermodynamics, have been studied
in bimetric gravity in [71].

3.3.5. Bimetric MOND
A bimetric theory of MOND, somewhat akin to bigravity, has recently been proposed
by Milgrom [896]. The action for bimetric MOND, or BIMOND, is of the form

S = o | A [BVEIRT ViR~ 2a0) e M]
_gM (gum QZ)) - SM (g/u/v QZ}) (209)

where M is the interaction term that connects the two metrics, and ¢ and 1/; are the
matter fields that couple to g,, and g, respectively. The factor M is a non-linear
function of the tensor T, given by

Y = C%sC°  —C%,, 0%, (210)
where

c, =1 —T1° (211)



and I'* , and re v are the Christoffel symbols constructed from g,,,, and g,.,, respectively.
Note that the even though the I's are not tensors, C, constructed in this way, is a tensor.
The constants o and 8 can be kept unrelated, leading to different gravitational couplings
in the two sectors. If we set a = (3, however, but leave [ arbitrary, then we get the field
equations

BGuy + Sy = —87GTy,, (212)
and R ~ R

BGuy + Sy = —87GT),,, (213)
which look like the conventional Einstein equations, except for the contributions from
S, and S, which contain the interaction terms between the two metrics. These tensors
are quadratic in C'%,,,, and are non-linear functions of g, g and g"” gy, .

This theory has been constructed to reproduce MOND phenomenology on small
scales, in the weak field and low acceleration regime. Its cosmological implications have
been studied in [315], [897], where it was shown that in the high acceleration regime BI-
MOND reproduces conventional FLRW behaviour. In low acceleration regime, however,
we have that the scale factor a(7) (where 7 is conformal time) can take the form the
form a ~ 7P, where [315]

1—-3w
1+ 2w + 8nw — 3w — 8nw — 6ww)

p=1 (214)
and where w and @ are the equations of state for the matter coupled to g,, and §,., and
n is one of the parameters in M. This leads to an interesting range of behaviours. For
example, it is possible to have a dust filled universe that is static, if the matter coupled
to the second metric is radiation. It is shown in [897] that to calculate fluctuations about
an FLRW background in either metric requires a knowledge of the matter coupled to
both metrics. It is also shown that the growth of fluctuations does not proceed in a
purely Newtonian way, but has a MOND contribution as well.

3.4. Tensor-Vector-Scalar Theories

In General Relativity, the space-time metric g, is the sole dynamical agent of gravity.
We have seen above that scalar-tensor theories extend this by adding a scalar field that
mediates a spin-0 gravitational interaction, while in Einstein-aether theories one makes
use of a vector field. TeVeS has both of these types of fields as extra degrees of freedom: A
scalar field, ¢, and a (dual) vector field, 4,,, both of which participate in the gravitational
sector. Like GR, it obeys the Einstein equivalence principle, but unlike GR it violates
the strong equivalence principle.

TeVeS is a product of past antecedent theories, namely the Aquadratic Lagrangian
theory of gravity (AQUAL) and its relativistic version [125], the phase-coupling gravita-
tion [126], the disformal relativistic scalar field theory [I30], and the Sanders’ stratified
vector field theory [I093]. Since its inception [128] TeVeS has been intensively researched,
including studies of cosmology [128, (592, [1153| 419, 427 1147, 177, 1305, 1148, [(02],
spherically symmetric solutions [128| 535, 660, 1082] [774] [1154], gravitational collapse
and stability [I124] [331], solar system tests [128| 535, [124] 1198 [T08T], gravitational
lensing [128, [205] 288 (1307, 1306, 287, 498, 1291, (1128, 296, [B70], issues of superlumi-
nality [205], and the travel time of gravitational waves [664] 663, [414]. A thorough and
up-to-date review of TeVeS can be found in [I152]. Here we will concentrate mostly on
cosmological features of the theory.
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3.4.1. Actions and field equations

The original and most common way to specify TeVeS is to write the action in a mixed
frame. That is, we write the action in the “Bekenstein frame” for the gravitational fields,
and in the ‘physical frame’, for the matter fields. In this way we ensure that the Einstein
equivalence principle is obeyed. The three gravitational fields are the metric, g, (with
connection @a), that we refer to as the Bekenstein metric, the Sanders vector field, 4,,,
and the scalar field, ¢. To ensure that the Einstein equivalence principle is obeyed, we
write the action for all matter fields using a single ‘physical metric’, g,,, (with connection
V), that we call the ‘universally coupled metric’ @ The universally coupled metric is
algebraically defined via a disformal relation [I27] as

Gy = € 22§, — 25inh(20) A, A, . (215)

The vector field is further enforced to be unit-time-like with respect to the Bekenstein
metric, i.e.

G ALA, = 1. (216)

The unit-time-like constraint is a phenomenological requirement for the theory to give
an acceptable amount of light bending. Using the unit-time-like constraint, Eq. (216]),
it can be shown that the disformal transformation for the inverse metric is

g" = e*?G" 4 2sinh(26) AF A, (217)

where A" = gH¥ A,. The existence of a scalar and a vector field may seem odd at first,
but they are both the product of a series of extensions from older theories, based on
theoretical and phenomenological constraints.

Actions

TeVeS is based on an action, S, which is split as
S=8;+S54+S5y+ Sm, (218)

where Sz, Sa, S¢ and S,, are the actions for §,,, the vector field, A, the scalar field,
¢, and matter fields, respectively.

As already discussed, the action for g,,,,, A,, and ¢ is written using only the Bekenstein
metric, g, and not g,,, and is such that S is of Einstein-Hilbert form

1 . _
R — 21
S 167rG/dx\/ J R, (219)

where g and R are the determinant and scalar curvature of Juv, respectively, while G
is the bare gravitational constant. The relation between G and the measured value of
Newton’s constant, G, will be elaborated on below, in Section [3.4.2

20Some work on TeVeS, including the original articles by Sanders [I093] and Bekenstein [128], refer
to the Bekenstein frame metric as the “geometric metric”, and denote it as g,,, while the universally
coupled metric is referred to as the “physical metric”, and is denoted by gu.. Since it is more common
to denote the metric which universally couples to matter as g, , in this review we interchange the tilde.
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The action for the vector field, A, is given by

1
Sa=-55 /d%« V=g [KF"F,, —2\(A,A" +1)], (220)
e

where F,, =V, A, -V, A, leads to a Maxwellian kinetic term, A is a Lagrange multiplier
that ensures the unit-timelike constraint on A,, and K is a dimensionless constant.
Indices on F),, are moved using the Bekenstein metric, i.e. F¥, = g'“F,,. This form
of a vector field action has been considered by Dirac as a way of incorporating electrons
into the electromagnetic potential [424) [425] [426]. More recently it has been considered
as a natural generalisation of GR, in the Einstein-asther theories discussed in Section [3.2
[656], [655].
The action for the scalar field, ¢, is given by

1 [ e L
So= 1o | 4aV3 08" 9,0%,0+ Vi) (221)
167G
where p is a non-dynamical dimensionless scalar field, g*” is a new metric defined by
gt = ghv — A*AY, (222)

and V' (u) is an arbitrary function which typically depends on a scale, £5. Not all choices
of V(u) give the correct Newtonian or MONDian limits in a quasi-static situation. The
allowed choices are presented in Section [3.4.2] The metric g*¥ is used in the scalar field
action, rather than g*¥, to avoid the superluminal propagation of perturbations. Note
that it is possible to write the TeVeS action using ", with the consequence of having
more general vector field kinetic terms (see the appendix of [I152]).

It is also easier in some cases to work with an alternative form for the scalar field
action that does not have the non-dynamical field, p, but rather has the action written
directly in terms of a non-canonical kinetic term for ¢ given by a free function f(X),
with X defined by

X =15""V .0V, . (223)

The field p is then given in terms of f(X) by pu = %, while f(X) can be related to V
by f=pX +(3V.

The matter fields in the action are coupled only to the ‘universally coupled metric’,
9uv, and thus their action is of the form

Sunlgs X V] = / d'z /=g Lig V), (224)

for some generic collection of matter fields, y*. The matter stress-energy tensor is then
defined with respect to §.5,, in the usual way.

It should be stressed that the action for the scalar field has been constructed such
that the theory has a MONDian non-relativistic limit, under the right conditions, for
specific choices of functions V(u) (or equivalently F'(X)). The action for the vector field
has no particular significance other than the fact that it is simple. More general actions
can be considered without destroying the MOND limit, but that in addition provide new
features or improved phenomenology.
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The field equations

The field equations of TeVeS are found using a variational principle. This gives two
constraint equations, namely the unit-timelike constraint, given in Eq. (216]), and the

p-constraint:

av
T v® = ——F, 22
R VRAVN i (225)

that is used to find p as a function of V,¢. The field equations for §,, are given by
Gu = 87G [T +2(1 — e *?) AT, Ay
u [%Wm 249V a6 A(#?VW} + % (V' = V) Gy
+K [FC;LFW - iF“ﬁFaﬂgw] — M, A, (226)

where é;w is the Einstein tensor constructed from g,,,. The field equations for the vector
field, A,,, are

KV F®, = —XA, — A"V, ¢V .6 + 81G(1 — e *) AT, (227)

and the field equation for the scalar field, ¢, is

Vi 13"V, = 87GeTH [g 4 2¢7H0 AR AY] T,y (228)
The Lagrange multiplier can be solved for by contracting Eq. (227) with A*.

3.4.2. Newtonian and MOND limits

We now describe the quasi-static limit, as relevant for establishing the existence of the
Newtonian and MONDian limits. The details of the derivation we consider here can be
found in [128], while an alternative shorter derivation in the spirit of the PPN formalism
is given in [1152].

It can be shown that the PPN parameter v is unity in TeVeS, hence the universally
coupled metric can be written as

ds* = —(1 +2®)dt* + (1 — 2<I>)5ijdxida:j, (229)

where @ is related to the acceleration of particles, @, by @ = —V®. The scalar field is
perturbed as ¢ = ¢, + ¢, where ¢, is the cosmological value of ¢. The Bekenstein metric
takes a similar form to g,.:

d3? = —e72%(1 + 20)dt* + **(1 — 20)5,dx'da? . (230)

The vector field does not play a role at this order of perturbations, and is simply given
by

A, =e % (-1 -9,0,0,0). (231)
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The field equations to O(v?) are then

~ 81G
Ap = T 232
2_K" (232)

and

—

v[u%} — 8rGp, (233)

while the potential ® is given via the disformal transformation ® = (i)—&-(p. Eqgs. (232)) and
can be solved for any quasi-static situation, regardless of the boundary conditions
or the symmetry of the system in question, provided a function u(|§gp|) is supplied.

To find the Newtonian and MONDian limits we can consider, for simplicity, spher-
ically symmetric situations. In this case we can combine Egs. and into a
single equation for @, called the AQUAL equation:

V- [Mmﬁq)} =4nGnp, (234)

where
Gn 1z

The ratio G /G is not free, but is found by taking the limit p,, — 1, i.e. the Newtonian
limit. Consistency requires that y — po which is then a constanﬂ contained in the
function f (or V). This gives the relation

(235)

Gn 2 2
Bt e 236
¢ " 2-K) 250
The MOND limit is now clearly recovered as pt,, — W%Nl, and we get
L 20Vl 26 1y (237)

Gy ao Gy lpag

where X is given in Eq. 1) Since p = %, we may integrate the above equation to
find the function f(X), which in the MOND limit should be given by

2 1

3¢ 1 1
Bao (m + ﬁ)

f— e?e X2, (238)

where the integration constant has been absorbed into the cosmological constant associ-
ated with the metric g,,. Since both X and f are dimensionless we may define a new
constant By, such that ag is a derived quantity given by

ap = e®e (239)

21The constant g is related to the constant k introduced by Bekenstein as pug = 3.

%
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and the function f has the MONDian limit f — 8o X3/2. Since in the Newtonian limit
we have f — poX, there are at least three constants that can appear in f(X), namely
o, Bo and £p.

In terms of the function % the MONDian limiting case implies that % — —@ u?
as p — 0, while it diverging as ¢ — po in the Newtonian limit. This second limit is
imposed if % — (po —p)~™, for some constant m. Bekenstein chooses this to be m = 1,
although other choices are equally valid, even functions that have essential singularities.

It is clear from Eq. that ag depends on the cosmological boundary condition,
¢, which can differ for each system, depending on when it was formed. It could thus be
considered as a slowly varying function of time. This possibility has been investigated
by Bekenstein and Sagi [129], and by Limbach et al. [810].

The two limiting cases for f(X) are somewhat strange. In particular we require that
f(X) = X for X > 1 to recover the Newtonian limit, and that f(X) — X3/2 for
X <« 1 (i.e. a higher power) to recover the MONDian limit. This signifies that in this
kind of formulation of relativistic MOND (i.e. in terms of a scalar field) the function
f(X) should be non-analytic. It further signifies that f(X) can be expanded in positive
powers of v X for small X, and in positive powers of % for large X, but that these
two expansions cannot be connected. In other words, it is impossible to perturbatively
connect the Newtonian regime with the MONDian regime via a perturbation series in
[Vel.

The Bekenstein free function in [12§] is given in the notation used in this review by

v _ 3 1 (p—2p0)°

2 240
dp 32mlyug (o — 1) (240)
which means that 8y = %\/%%’ and thus
1
ao V3 e®e. (241)

= 22 ols <;+ ) )
Ho

2—K

This is in agreement with [129] (the authors of [I77] erroneously inverted a fraction in
their definition of ay).

3.4.3. Homogeneous and isotropic cosmology

Homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) solu-
tions to the field equations of TeVeS have been extensively studied [128] (592) 1153
A19| [427, 1147, 177, [1305], [1148] [502]. In this case the universally coupled metric can be
written in the conventional synchronous form as

ds? = —dt? + a*(t)q;;dx'da’, (242)

where a(t) is the ‘physical scale factor’. Here we assume for simplicity that the hyper-
surfaces of constant t are spatially flat (see [I147] for the curved case). The Bekenstein
metric then has a similar form, and can be written as
d3® = —dt* + b*(1)q;jdz'da? (243)
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for a second scale factor b(t). The disformal transformation relates the two scale factors
by a = be~?, while the two time coordinates ¢t and ¢ are related by dt = e®dt. The
physical Hubble parameter is defined as usual as by H = %, while the Bekenstein frame
Hubble parameter is H = %ed’H + %. Cosmological evolution is governed by the
analogue of the Friedmann equation:

3H? = 87Ge™? (pg + p) (244)

where p is the energy density of physical matter, which obeys the energy conservation
equation with respect to the universally coupled metric, and where the scalar field energy
density, pg, is given by

e2? av
= h— . 24
po=1omg (W5 +V) (215)
Similarly, one can define a scalar field pressure by
e?® dv
Po=——F|p—-V 24
* 7 167G <,u dp ) (246)

The scalar field evolves according to the two differential equations:

1
d—dj =——T, (247)
dt 2u
and T
i 3HT = 8nGe 2?(p + 3P), (248)
where p is found by inverting ¢’ - %‘2—‘;.

It is important to note that the vector field must point to the time direction, so that
it can be written as A, = (v/goo, 6) In this case it does not contain any independent
dynamical information, and it does not explicitly contribute to the energy density. Its
only effect is on the disformal transformation which relates the Bekenstein-frame Fried-
mann equation, Eq. , with the physical Friedmann equation. This is also true in
cases where the vector field action is generalised, and where the only effect is a constant
rescaling of the left-hand-side of the Bekenstein-frame Friedmann equation, as discussed
in [I148].

FLRW solutions with the Bekenstein function

In the original TeVeS paper [128] Bekenstein studied the cosmological evolution of
an FLRW universe by assuming that the free function is given by Eq. . He showed
that the scalar field contribution to the Friedmann equation is very small, and that ¢
evolves very little from the early universe until today. He noted that with this choice of
function, a cosmological constant term has to be added in order to have an accelerating
expansion today, as appears to be required by cosmological observations.

Many other studies on cosmology in TeVeS have also used the Bekenstein function,
see for example [592] T153], 427, TT48]. In particular, Hao and Akhoury noted that the
integration constant obtained by integrating Eq. can be used to get a period

87



of accelerating expansion, and that TeVeS therefore has the potential to act as dark
energy [592]. However, such an integration constant cannot be distinguished from a bare
cosmological constant term in the Bekenstein frame, and so it is somewhat dubious as to
whether this can really be interpreted as dark energy arising from TeVeS. Nevertheless, it
would not be a surprising result if some other TeVeS functions could, in fact account for
dark energy, as the scalar field action in TeVeS close resemblances that of k-essence [65],
66]. Zhao has investigated this issue further [I305](see below).

Exact analytical and numerical solutions with the Bekenstein free function, Eq. ,
have been found by Skordis et al.in [T153], and by Dodelson and Liguori in [427]. It turns
out that not only, is the scalar field is subdominant, as Bekenstein noted, but its energy
density also tracks the matter fluid energy density. The ratio of the energy density in
the scalar field to that of ordinary matter then remains approximately constant, so that
the scalar field tracks the matter dynamics. One then gets that

(14 3w)?
= 60w (249

where w is the equation of state of the matter ﬁeld@ Since pg is required to be very
large, the energy density in the scalar field is always small, with values typically less than
Q4 ~ 1073 in a realistic situation. Tracker solutions are also present for this choice of
function in versions of TeVeS with more general vector field actions [1148].

In realistic situations, tracking in the radiation era is almost never realised, as has
been noted by Dodelson and Liguori [427]. Rather, during the radiation era, the scalar
field energy density is subdominant but slowly growing, such that ¢ o a*/°. However,
upon entering the matter era ¢ settles into the tracker solution. This transient solution
in the radiation era has been generalised by Skordis to arbitrary initial conditions for
¢, more general free functions (see below), and a general vector field action [IT148]. Tt
should be stressed that the solution in the radiation era is important for setting up initial
conditions for the perturbations about FLRW solutions that are relevant for studying
the CMB radiation and Large-Scale Structure (LSS).

From Eq. we see that ag for a quasi-static system depends on the cosmological
value of the scalar field at the time the system broke off from the expansion, and collapsed
to form a bound structure. It is then possible that different systems could exhibit different
values of ag depending on when they formed. The impact of evolving ag on observations
has been investigated in [129] [810].

Finally, note that the sign of ¢ changes between the matter and cosmological constant
eras. In doing so, the energy density of the scalar field goes momentarily through zero,
since it is purely kinetic and vanishes for zero ¢ [1153].

FLRW solutions by generalising the Bekenstein function

Bourliot et al. [I77] studied more general free functions, that have the Bekenstein
function as a special case. In particular they introduced two new parameters, a constant,

22Note that this excludes the case of a stiff fluid with w = 1.
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La, and a power index, n, such that the free function is generalised to

du 32ml% 13 o — B

This functior@ reduces to the Bekenstein function when n = 2 and p, = 2. It retains
the property of having a Newtonian limit as p — po and a MOND limit as g — 0. The
cosmological evolution depends on the power index, n. More general functions can also
be constructed by considering the sum of the above prototypical function with arbitrary

coefficients, i.e. by taking ‘fi—‘; =>,.Cn d‘(/i:) [177].

Clearly %(}iaﬂo) = 0, and at this point ng — 0. Now suppose that the integration
constant is chosen such that V(ueuo) = 0 as well. Then, just like the case of the
Bekenstein function, one finds tracker solutions: The function p is driven to p = pgpo,
at which point ¢ = 0. There are no oscillations around that point, but it is approached
slowly so that it is exactly reached only in the infinite future. The scalar field relative
density is now given by
o (1+ 3w)?

3pa(l — w)zﬂo7
independent of the value of n. It should also be pointed out that the evolution of the
physical Hubble parameter, H, can be different than the case of GR even in the tracking
phase [I77]. For example in the case w = 0 we have H « a~ ", where nj, = %

Furthermore, just like the Bekenstein case, the radiation era tracker is untenable
for realistic cosmological evolutions, for which pp must be large so that €, is small
(< 1072). In this case we once again get a transient solution where the scalar field
evolves as ¢ o< a*/(3+7) [1148]. In the case that the integration constant is chosen
such that V(uqpo) # 0 one has an effective cosmological constant present. Thus, once
again, we get tracker solutions until the energy density of the Universe drops to values
comparable with this cosmological constant, at which time tracking comes to an end,
and the Universe enters a de Sitter phase.

The cases —2 < n < 0 turn out to be pathological as they lead to singularities in the
cosmological evolution [I77]. The case n = —3 is well behaved when the matter fluid is a
cosmological constant, but is also pathological when w = —1 [I77]. The cases for which
n < —4 are well behaved in the sense that no singularities occur in the cosmological
evolution. Contrary to the n > 1 cases, the cosmological evolution drives the function
1 to infinity. Moreover, these cases do not display the tracker solutions of n > 1, but
rather the evolution of py is such that it evolves more rapidly than the matter density,
p, and so quickly becomes subdominant. The general relativistic Friedmann equation is
thus recovered, such that 3H2 = 87Gp. This also results in H = H, which means that
the scalar field is slowly rolling.

The evolution of the scalar field variables I', ¢ and u then depends on the equation
of state of the matter fields. If the background fluid is a cosmological constant, then we
get de Sitter solutions for both metrics, and it can be shown that I' = 2H (e 3t — 1).

é (251)

23Note that [I77] uses a different normalisation for V, and their results can be recovered by rescaling

the £p used in this report by ¢ — €54/ %ugf?’,
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For the case of a stiff fluid, with w = 1, we get that I has power-law solutions that are

inverse powers of t, so that I' = % + % A similar situation arises when —1 < w < 1, for
which we get I' = 2(1%3”)]—[ , and the Hubble parameter evolves as H = 3(%%)% Notice
that the limit w — 1, for the —1 < w < 1 case, does not smoothly approach the w = 1
case.

Mixing different powers of n > 1 leads once again to tracker solutions. One may
have to add an integration constant in order to keep V (uqpo) = 0, although for certain
combinations of powers n and coefficients ¢; this is not necessary. Mixing n = 0 with some
other n > 1 cannot remove the pathological situation associated with the n = 0 case.
Mixing n = 0 with both positive and negative powers could however lead to acceptable
cosmological evolution since the effect of the negative power is to drive y away from the
I = lgpo point. In general, if we mix an arbitrary number of positive and negative
powers we get tracker solutions provided we can expand the new function in positive
definite powers of (u — ! po), where u/, is some number different from the old p,.

The observational consequences for the CMB and LSS have not been investigated for
this class of function, unlike the case of the Bekenstein function.

Inflationary/accelerating expansion for general functions

Diaz-Rivera, Samushia and Ratra [419] have studied cases where TeVeS leads to
inflationary, or self-accelerating, solutions. They first consider the vacuum case, in which
they find that de Sitter solutions exist with b ~ ef/o?, where the Bekenstein frame Hubble

av.

2
4V " and where G =0 (Le. the

6
scalar field is constant, ¢ = ¢;). Such a solution will always exist in vacuum provided

that the free function satisfies %(,uv) =0 and V(i) # 0, for some constant p,,. In that
case, the general solution is not de Sitter since both ¢ and p will be time-varying, but
will tend to de Sitter as y — ,,. Indeed, the n > 1 case of Bourliot et al. [I77] with an
integration constant is precisely this kind of situation.

In the non-vacuum case, for a fluid with equation of state P = wp, they make
the ansatz b3(1+w) = (143w)¢  This brings the Friedmann equation into the form
3H? = 87Gpy + %(u% + V), where pg is the matter density today. Once again, they
assume that the free-function-dependent general solution drives u to a constant u,, but
¢ is evolving. Thus, we must have that ¢ = ¢t + ¢, such that gb = ¢ is a constant. In
order for ¢; to be non-zero we must have %(uv) # 0. However, there is a drawback to
this approach. As they point out, consistency with the scalar field equation requires that
w < —1. Furthermore, although this solution is a de Sitter solution in the Bekenstein-
frame, it corresponds to a power-law solution for the universally coupled metric. In order
for this power-law solution to lead to acceleration, they find that —5/3 < w < —1. This
range of w corresponds to a phantom fluid.

constant H, is given by the free function as Hy =

Accelerated expansion in TeVeS

The simplest case of accelerated expansion in TeVeS is provided by a cosmological
constant term. This is equivalent to adding an integration constant to V(u) [692] [177],
and it corresponds to the accelerated expansion considered by Diaz-Rivera, Samushia
and Ratra [419] in both the vacuum and non-vacuum cases (see above). These solutions
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therefore suffer from the usual fine-tuning and coincidence problems, and so it is of
interest to look for accelerating solutions without such a constant, simply by employing
the scalar field (these need not be de Sitter solutions).

Zhao used a function % o (2 to obtain solutions which provide acceleration, and
compared his solution with the SN1a data [I305], finding good agreement. However, it
is not clear whether other observables, such as the CMB angular power spectrum, or
observations of LSS are compatible with this function. Furthermore, this function is not
realistic, as it does not have a Newtonian limit (it is always MONDian). Although no
further studies of accelerated expansion in TeVeS have been performed, it is plausible
to think that certain choices of function could lead to acceleration. This is because the
scalar field action has the same form as a k-essence/k-inflation action [65] [66], which
has been considered as a candidate theory for acceleration. More precisely, the system
of cosmological equations corresponds to k-essence coupled to matter. It is not known
in general whether this type of model has similar features as the uncoupled k-essence
models, although Zhao’s study indicates that this a possibility.

Realistic FLRW cosmology

In TeVeS, cold dark matter is absent. Therefore in order to get acceptable values
for the physical Hubble constant today (i.e. around Hy ~ 70 km s~* Mpcfl) , we have
to supplement the absence of CDM with something else. The reason for this is simply
that if all the energy density in the Universe today was in the form of baryons, then the
Hubble constant would be lower than what is observed by a factor of ~5. Possibilities
of what this supplementary material could be include the scalar field itself, massive
neutrinos [I153, [502], and a cosmological constant. At the same time, one has to get
the right angular diameter distance to recombination [502]. These two requirements can
place severe constraints on the allowed form of the free functions.

3.4.4. Cosmological perturbation theory

Cosmological perturbation theory in TeVeS has been formulated to linear order in
[1147], and in variants of TeVeS with more general vector field actions in [I148]. The
scalar modes of the linearly perturbed universally coupled metric are given in the con-
formal Newtonian gauge, as usual, by

ds® = —a®(1 +20)dr? + a*(1 — 2®)q;jdz'da?, (252)

where 7 is conformal time, defined by dt = adr. Here, we will assume, for simplicity,
that the spatial curvature is zero. The reader is referred to [1147, IT148] for the curved
cases, as well as for an enunciation of vector and tensor perturbations. The scalar field
is perturbed as ¢ = ¢ + ¢, where ¢ is the FLRW background scalar field, and ¢ is the
perturbation. The vector field is perturbed as A, = ae?(1 + ¥ — ¢, ﬁia), such that
the unit-timelike constraint is satisfied. This removes the time component of A, as an
independent dynamical degree of freedom. Thus, there are two additional dynamical
degrees of freedom, when comparing to cosmological perturbation theory in GR: The
scalar field perturbation, ¢, and the vector field scalar mode, «.

The perturbed field equations for the scalar modes can be found in the conformal
Newtonian gauge in [I153], and in more form (including in the synchronous gauge)
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n [I147]. Perturbation equations for more general TeVeS actions are given in [IT48].
Here we only present the Newtonian gauge equations of the original TeVeS formulatlon.
We define the following variables: ® = ® —p, U = U — ¢, { = —(1 —e *®)o and H =
The scalar field obeys the two first order equations

_ 0 - _ 6 _ - o
Y= =Ry + e (o4 dla) — Sad! |60 + 2k
+87Gae ™ | dpy +30P; + (g +3Py) (¥ - 2¢) (253)
f f
and . .
o = —ﬁae_d”y + ¢'0. (254)
The vector field equations are given by
K(E’—l—?:lE): ad (o — ¢'a) +87Ga*(1 — e Z pr+ Pp)0r — ) (255)
f
and R -
o =E+V+ (¢ —H)a (256)

and finally the Einstein equations are given by the Hamiltonian constraint
—2 (k* — 3k) d — 22K [3@ + K2+ 37—2@} + ae*?g'y
~KK*E =87Ga®» _ py [ — 2¢] (257)
f
the momentum constraint equation
O 4+ kC+HY — id o = ArGale ¢ Z(ﬁf + Py)0y (258)
f

and the two propagation equations

60" + 2k> (5' - e%\i/) + 26799 (k2 — 3k) & + 2H [6&% 30 4 2k

43 [3@’ + kﬂ + 3%%—%’7 +6 {27%’ +H? 4+ 4&5’7%} ¥

= 24rGa®e 4 (5P — 2Py) (259)
and

R [5’ 42 (72 + &’) q — 87Ga® Y (ps + Py)%; (260)
f

Let us now turn to the problem of specifying initial conditions for the scalar modes,
which in general should depend on the chosen form of the free function. The exact
adiabatic growing mode in TeVeS, and generalised variants, have been found by Skordis
in [IT48], but only for the case of the generalised Bekenstein function. If the free function
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is such so that the scalar field contribution to the background expansion during the
radiation era is very small, however, then the adiabatic modes for other free functions
should be only marginally different from the ones found in [I148]. In particular, the only
effect should be a difference in the initial conditions of ¢, which is not expected to make
any difference to observations.

The only study that has been performed of the observational signatures of TeVeS in
the CMB radiation and in LSS is due to Skordis, Mota, Ferreira and Bochm [I153]. Here
the initial conditions were chosen such that both ¢ and «, as well as their derivatives,
are initially zero. While this is not a purely adiabatic initial condition, it turns out that
it is close enough to ensure that no observable difference can be seen from isocurvature
contamination. Detailed studies of isocurvature modes in TeVeS have not yet been
conducted. In the light of the problems that TeVeS has with observations of the CMB
radiation [I153], however, it may be important to investigate what effects isocurvature
modes are likely to have. Preliminary studies by Mota, Ferreira and Skordis have shown
that setting the vector field perturbations to be large initially can have a significant
impact [910].

In addition to the four regular isocurvature modes that exist in GR, there could in
principle exist four further isocurvature modes in TeVeS: Two associated with the scalar
field, and two associated with the vector field. Preliminary studies by Skordis have shown
that none of the scalar field isocurvature modes are regular in either the synchronous
or conformal Newtonian gauges. Conversely, under certain conditions of the vector field
parameters one of the vector field isocurvature modes can be regular, while the other one
is never regular. Thus, it may be possible to have one regular isocurvature mode in the
TeVeS sector. The observational consequences of this mode are still unknown, as is its
generation method from early universe inflation. Studies of the observable spectra based
on vector or tensor modes are also yet to be conducted although the necessary equations
can be found in [I1T47| 114§].

3.4.5. Cosmological observations and constraints
Let us now consider the observational signatures of the perturbation theory discussed
above, and how they can be used to constrain TeVeS.

Large-scale structure observations

A traditional criticism of MOND-type theories was their lack of a dark matter com-
ponent, and therefore their presumed inability to form large-scale structure compatible
with current observational data. This criticism was based on intuition formed from a
general relativistic universe filled with baryons only. In that case it is well known that,
since baryons are coupled to photons before recombination, they do not have enough
time to grow into structures on their own. Furthermore, their oscillatory behaviour at
recombination is preserved, and is visible as large oscillation in the observed galaxy power
spectrum Pyy(k). Finally, on scales smaller than the diffusion damping scale they are
exponentially suppressed due to Silk damping. Cold dark matter solves all of these prob-
lems because it does not couple to photons, and therefore can start creating potential
wells early on in the Universe’s history, into which the baryons can fall. This is enough
to generate the right amount of structure, erase most of the oscillations, and overcome
the Silk damping.

93



TeVeS contains two additional fields, not present in GR, that change the structure of
the equations significantly. The first study of large-scale structure observations in TeVeS
was conducted by Skordis, Mota, Ferreira and Boechm in [I153]. Here the perturbed
TeVeS equations were solved numerically for the case of the Bekenstein function, and
the effects on the matter power spectrum, P(k), were determined. It was found that
TeVeS can indeed form large-scale structure compatible with observations, depending
on the choice of TeVeS parameters in the free function. In fact, the form of the matter
power spectrum, P(k), in TeVeS looks quite similar to the corresponding spectrum in
ACDM. Thus, one has to turn to other observables to distinguish the TeVeS from General
Relativity.

Dodelson and Liguori [427] provided an analytical explanation of the growth of struc-
ture that was found numerically in [I153]. They concluded the growth in TeVeS cannot
be due to the scalar field, as the scalar field perturbations are Bessel functions that decay-
ing in an oscillatory fashion. Instead, they reasoned, the growth of large-scale structure
in TeVeS is due to the vector field perturbation.

Let us see how the vector field leads to growth. Using the tracker solutions in the
matter era, from Bourliot et al. [I77], we can find the behaviour of the background
functions a, b and ¢. Using these in the perturbed field equations, after setting the
scalar field perturbations to zero, it can be shown that in the matter era the vector field
perturbation « obeys the equation

b
.

bo
o+ =ad + 0= S(0, ' 0) (261)

in the conformal Newtonian gauge, where

4(:“0/1«1 — 1)
by = —HORa= ) 262
! Holla + 3 ( )
by = — 2 |22 5+i +6 (263)
2 = (,U/[)/J/a + 3)2 HoHq K Hola )

and where S is a source term which does not explicitly depend on «a. If we simultaneously
take the limits py — oo and K — 0, for which Q, — 0, meaning that the TeVeS
contribution is absent, then we get by — 4 and by — 2. In this case the two homogeneous
solutions to Eq. are 7-2 and 77!, which are decaying.

Dodelson and Liguori show that the source term S(¥, ¥, 0) is not sufficient to create
a growing mode in the general solution to Eq. , and that in the general relativistic
limit TeVeS does not, therefore, provide enough growth for structure formation. Now let
us consider the general case. Assuming that the homogeneous solutions to can be
written as 7", it can be shown that for the generalised Bekenstein function of Bourliot

et al. [I77] we can get
3 1 32
n——4 —4/1+ . 264
2 2 Ko piq (264)

Thus, we can have n > 0, provided that for fixed pou, we also havﬁ

K <0.01. (265)

24Smaller values of Hola can also raise this threshold.
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Figure 3: LEFT: The evolution in redshift of baryon density fluctuations in TeVeS (solid line), and in
ACDM (dashed line) for a wavenumber k = 10"3Mpc~!. In both cases, the baryon density fluctuates
before recombination, and grows afterwards. In the case of ACDM, the baryon density eventually follows
the CDM density fluctuation (dotted line), which starts growing before recombination. In the case of
TeVeS, the baryons grow due to the potential wells formed by the growing mode in the vector field, a
(dot-dashed line). RIGHT: The difference of the two gravitational potentials, ® — ¥, for a wavenumber
k =10"3Mpc~! as a function of redshift for both TeVeS (solid line), and ACDM (dotted line).

If this condition is met then there can exist a growing mode in «, which in turn feeds
back into the perturbed Einstein equation and sources a non-decaying mode in ® that
can drive structure formation. This is displayed graphically in the left panel of Figure [3]
It is a striking result that even if the contribution of the TeVeS fields to the background
FLRW equations is negligible (~ 1072 or less), one can still get a growing mode that
drives structure formation.

CMB observations

A general relativistic universe dominated by baryons cannot fit the most up to date
observations of anisotropies in the CMB [084]. This is true even if a cosmological constant
and/or three massive neutrinos are incorporated into the matter budget, so that the first
peak of the CMB angular power spectrum is at the right positiorﬂ This, however, is not
proof that only a theory with CDM can fit CMB observations (as claimed in [I155] [TT73]).
A prime example to the contrary is the Eddington-Born-Infeld theory [70]. However, the
linear Boltzmann equation, and the resulting CMB angular power spectrum, have been
calculated in TeVeS, using initial conditions that are close to adiabatic [II53]. The re-
sulting fits to the data were poor, at least for the Bekenstein free function, showing that
CMB observations are, nevertheless, problematic for TeVeS. It may be that the new
isocurvature modes discussed above can provide a richer phenomenology but it remains
to be seen whether this can save this theory.

25In this case the third peak is unacceptably lower than the second.
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The difference in the gravitational potentials: & — ¥

The result of Dodelson and Liguori [427] have a further direct consequence: The
perturbation equations in TeVeS that relate the difference of the two gravitational po-
tentials, ® — W, to the shear of matter, have additional contributions coming from the
perturbed vector field, a. This is not due to the existence of the vector field per se, but
comes from the disformal transformation in which the vector field plays an important
part. Indeed, in a single metric theory where the vector field action is Maxwellian, as in
TeVeS, there is no contribution from the vector field to ® — W. Now, as the vector field
is required to grow in order to drive structure formation, it will also inevitably lead to
growth in ® — W. This is precisely what we see numerically in the right panel of Figure [3]
If ® — ¥ can be measured observationally, then it will provide an excellent test of TeVeS.
This possibility is discussed in more detail in section [6]

3.5. Other Theories
3.5.1. The Einstein-Cartan-Sciama-Kibble Theory

In this subsection we will briefly describe the Einstein-Cartan-Sciama-Kibble (ECSK)
theory [259] 260}, 261, 1104, [1105] 691]. The ECSK theory is in many cases equivalent to
General Relativity and departs from GR only when at least one matter field has intrinsic
spin. The ECSK theory has been reviewed by Hehl et al. [601], and more recently by
Trautman [1215].

The ECSK theory as a theory with torsion

The ECSK theory is basically General Relativity with the addition of torsion. The
connection is assumed to be metric compatible, but has non-zero torsion, and is thus
given by

= {a“ﬁ} + K", (266)

where K" 5 is the contorsion tensor given in terms of the torsion S 5 by Eq. 1b The
Riemann tensor is antisymmetric in both the first and the last two indices, and hence
the Ricci tensor is its only unique non-vanishing contraction. It is, however, asymmetric,
and is given by Eq. .

The addition of torsion to the connection has a direct consequence on the geometry
of curves. In this case, autoparallels (straightest lines) are not necessarily extremals
(shortest or longest lines) as they are in GR. The former are given by
dz® dzP

A2+
n _
752 +T aﬂggfo, (267)

while the latter are found by minimising the proper length fy v/ —9gudzrtdx?, and are
given by
Pat | f ) de® do?
ds? aB) ds ds
Spin-less test particles and gauge-fields (e.g. photons) do not feel the torsion and follow

the extremals. However, spinning test particles do feel the torsion and obey analogues
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of the Mathisson-Papapetrou equations [868, [1024]. The notions of autoparallel and ex-
tremal curves coincide if and only if the torsion is totally antisymmetric. The reader is
referred to [599, 1214 [§] for further discussion.

The action and field equations

The action for the ECSK theory is the same as the one for the metric-affine gravity
described in Eq. , with the additional assumption that the connection is metric
compatible. To make sure that no inconsistency arises one has to impose @ a8 = 0 with
a Lagrange multiplier. Variation with respect to I'V 5 then proceeds in the usual way.

We can follow a different approach, however, and assume from the start that Q oz =
0, and that the connection is given by Eq. . We can then vary the action, Eq. ,
without the Lagrange constraint, but instead take as independent variables the metric
and the contorsion. Variation with respect to the inverse metric at constant contorsion
then gives

r o _

Gy + Ve [Py = Py | = 876G T, (269)
where the matter stress-energy tensor is given by 7, = — 2\/1_79 ggﬁg’z - Variation with
respect to the contorsion gives

P, =8rGr,*", (270)
where 7-“045 = —\/%79 6%;26 is the spin angular momentum tensor of matter. Due to
the anti-symmetry of the contorsion in the first and third indices we also have that
TapB = —TBua- Note, however, that the metricity assumption also means that the Palatini

tensor simplifies to
Popg = Spap + 29u1a58] (271)

which is also antisymmetric in the first and third indices. Hence no inconsistency arises
from Eq. (270), as it does in the general metric-affine case. Now, Eq. only
determines the symmetric part of the Einstein tensor, but we also need the anti-symmetric
part. Using Eqgs. (271) and gives the anti-symmetric part of the Einstein tensor as

G[,uu] = R[;w] =V.P,5 (272)

w v

where V,, = r V. +28,. Equations l) D and l) form a consistent set of field

equations for the ECSK theory.
We can proceed one further step, however, and consider the torsion rather than the
contorsion as the 2nd independent variable. This leads to the definition of the spin-energy

potential, p, %% = —\/%79 5‘;ﬁm . Due to the antisymmetry of the torsion in the last two
apB
indices, the spin-energy potential also obeys fi a8 = —puvgq. It is straightforward to

show that the spin-energy potential and the spin angular momentum tensors are related
to each other by

Tap = ~Haplu (273)
and

Hpaf = TuaB — TBua + Tappu- (274)
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Carrying out the variation this way defines a new stress-energy tensor, 0, at constant

S¥ 5 by 0 = fﬁggﬁﬁ & This is related to T}, by

[e3

Opy = THV -2 [Sﬁa(u’rﬂ)aﬁ + Sag(y’rﬂ)aﬁ - Tﬁ (#Sy)a[g - Ta(#BSV)Ba} . (275)
The field equations obtained from varying the action with respect to the metric are

"Gy +Va [P, +P,,°]

B a B af aB| _
+2 [P ' Susap + P S0 — Spa(P. — Sap P, } = 87Go,,. (276)
After some algebra, and using Eq. (272) to form the full asymmetric Einstein tensor, we
find that the Einstein equations simplify to

'G,., =81G%,,, (277)

where .
Ep,u = 0';41/ + Va/l#au (278)

is a new stress-energy tensor. This new stress-energy tensor has a very important inter-
pretation [60I]: It is none other than the canonical stress-energy tensor. Thus, in the
ECSK theory the usual symmetrisation procedure of the canonical stress-energy tensor
to obtain the stress-energy tensor that enters the Einstein equations is not necessary.

Equations and form a consistent set of field equations that determine the
geometry of the space-time from the matter stress-energy and spin distribution. They
are supplemented by the conservation laws

*

v o A po
V.3, =25,8%5 — 7, R 5, (279)

and

vOéTuay = E[;u/]- (280)
Let us now discuss a further property of the ECSK theory. By inspecting of the field
equations and we notice that there are no derivatives of the torsion appearing
anywhere. Thus, the torsion in the ECSK theory is non-dynamical. Its presence is
directly given in terms of the spin-angular momentum of matter by Eq. . This
means that it completely vanishes in vacuum, or in cases where matter does not couple
to contorsion (e.g. scalar and gauge fields). Since 5S¢, 1s algebraically determined one
can eliminate it from all of the field equations. The final form of the field equations after
eliminating torsion is then found to be

G = 8rGT,, + (87TG)2{2TBQ(#TQV)ﬁ = 27Ty — TausT% P
1
—1—5 [27”‘“67&#5 + TO‘”BTaﬂg — 2TaTa] gm,}, (281)

where G, is the Einstein tensor of g,,,,, obtained in the usual way from the Levi-Civita

: _ B
connection, and 7, = T S
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Consequences of the ECSK theory

We introduced the ECSK theory as a minimal modification of GR through the in-
troduction of torsion and the application of the Palatini procedure. As was shown by
Kibble [691], and then later by Hehl et al. [601], the ECSK theory emerges as the mini-
mal description of space-time when one constructs a local gauge theory of the Poincaré
group. There are, however, a number of unsatisfactory features of this interpretation.
Quantisation of the theory fares no better than in GR. It is still non-renormalizable (the
spin contact interactions are reminiscent of 4-fermion interaction terms in quantum field
theory), and the torsion has vanishing canonical momentum, which makes it hard to
construct a quantum description. The reader is referred to [601] for more details.

One may then ask when is the ECSK theory different from GR? By inspection, Eq.
tells us that the spin-potential modifications enter with an additional power of the
Planck mass. Thus, we only expect the ECSK theory to deviate from GR at very high
spin-densities of matter. For electrons the critical mass density such that spin effects are
important is ~ 103¥kg m~3 while for neutrons it is ~ 10%°kg m~3 [602]. Conditions for
such high densities can exist in the early universe.

Cosmology with spin and torsion has been studied in the hope that the cosmo-
logical singularity may be avoided. However, it appears that only under very unre-
alistic circumstances can one avoid the cosmological singularity in the ECSK theory
(see [601] [686, 1195 [757]).

3.5.2. Scalar-Tensor-Vector Theory

As a matter of completeness, we will briefly present the Scalar-Tensor-Vector theory
of gravity (STVG) proposed in [905]. STVG is a theory that contains a vector field, ¢,
three scalar fields, G, w and p, and a metric, go3. A key characteristic of this theory is
that the modified acceleration law for weak gravitational fields has a repulsive Yukawa
force, as well as the normal Newtonian force. The action for STVG takes the form

S = Sarav + 8¢ + Ss + Su, (282)

where

SGrav = 16 d%F[ (R+2A)] (283)

So = [ daygLGE B+ VO (284)

ss= = [aev=a| g (509.69.6 - 1))

[diev=g é (1 99 ¥ — m)ﬂ

[ d=v=g LG (1 i — V(g >)] (285)

and where B, = 0,¢, — Ov .



This action has been studied in [905] where the full field equations, the weak field limit,
and cosmological solutions are presented. As would be expected from the complexity of
the action, it is difficult to completely solve this system in the detail required to make
accurate predictions. Hence, the author of [905] has posited a certain number of scaling
relations that translate into spatial dependences for G, w and u. It is argued in [905]
that the classical action for this theory could be considered as an effective field theory for
a renormalisation-group-flow-quantum-gravity scenario. The reader is referred to [905]
for further details.

100



4. Higher Derivative and Non-Local Theories of Gravity

Recall from Section [2:4.1] that General Relativity represents the most general the-
ory describing a single metric that in four dimensions has field equations with at most
second-order derivatives [831], [832]. One way to extend GR is therefore to permit the
field equations to be higher than second order. Indeed, such a generalisation might be
considered desirable as it will cause the graviton propagator to fall off more quickly in the
UV, thereby improving the renormalisability properties. Modifying gravity in this way,
however, also has a number of drawbacks. In particular, it can introduce instabilities
into the theory, such as ghost-like degrees of freedom (see Sections|2.1.3} [4.1.5] and [4.2.5]
and [1281] for an overview).

In this section we consider those gravity theories that are higher than second-order in
derivatives. Such theories can have interesting phenomenology, and in many cases can be
shown (or, at least, argued to be) less susceptible to instabilities than one may have ini-
tially suspected. For example, if the higher derivatives act only on what would otherwise
be non-dynamical modes, then they may simply render them dynamical, rather than au-
tomatically generating a ghost. This is what happens in f(R) gravity, where the higher
order derivatives act on the conformal mode that does not propagate in GR. In Hotava-
Lifschitz gravity, as another example, one allows for higher-order spatial derivatives, as
opposed to higher time derivatives, in order to guard against ghost-like instabilities. In
both of these examples the theory can deviate considerably from GR, while still main-
taining some basic stability properties.

This section also includes galileon and ghost condensate theories. Strictly speaking
these are not higher-derivative theories since their field equations are at most second
order in derivatives. In fact, the galileon theory in particular is constructed with this
in mind. Nevertheless we include them in this section as both theories contain non-
trivial derivative interaction terms. We will not discuss theories with infinite derivatives,
as occur in string field theory, or p-adic string theory (see [904] for discussion of such
theories).

4.1. f(R) Theories

Fourth-order theories of gravity have a long history, dating back to as early as 1918
[1269], only a few years after the first papers on General Relativity by Einstein. These
theories generalise the Einstein-Hilbert action by adding additional scalar curvature in-
variants to the action, or by making the action a more general function of the Ricci scalar
then the simple linear one that leads to Einstein’s equations. Here we consider the latter
of these options, a choice that leads by Lovelock’s theorem to fourth-order field equa-
tions for anything except the addition of a constant term to the gravitational Lagrangian.
Such theories, generically referred to as f(R) theories of gravity, have been intensively
studied, and have a number of reviews dedicated to them [969] [TT18] [1167, [374] [O978)].
This interest was stimulated in the 1960s, 70s and 80s by the revelations that the quan-
tisation of matter fields in an unquantised space-time can lead to such theories [1239],
that f(R) theories of gravity can have improved renormalisation properties [I186], and
that they can lead to a period of accelerating expansion early in the Universe’s history
[I179]. More recently they have been of considerable interest as a possible explanation
for the observed late-time accelerating expansion of the Universe.

101



4.1.1. Action, field equations and transformations
The f(R) generalisations of Einstein’s equations are derived from a Lagrangian den-
sity of the form

L=+-gf(R), (286)

where the factor of \/—g is included, as usual, in order to have the proper weight. This
is clearly about as simple a generalisation of the Einstein-Hilbert density as one could
possibly conceive of. The field equations derived from such an action are automatically
generally covariant and Lorentz invariant for exactly the same reasons that Einstein’s
equations are. Unlike the Einstein-Hilbert term, however, the field equations that one
obtains from the least action principle associated with Eq. depend on the varia-
tional principle that one adopts. Different possibilities are the ‘metric variation’ where
the connection is assumed to be the Levi-Civita one, the ‘Palatini approach’ in which
Eq. is varied with respect to the metric and connection independently, and the
‘metric-affine’ approach in which the same process occurs but the matter action is now
taken to be a functional of the connection as well as the metric. In this section we will
mostly be concerned with the metric variational approach, although we will also outline
how the other procedures work below.

Metric variational approach

Let us now derive the field equations in the metric variational approach. Integrating
Eq. (286]) over a 4-volume, including a matter term and varying with respect to g,
yields

1
55 = [ d0/=g[3 19" 50, + frdR+ S8, (287)

where fr means the functional derivative of f with respect to R, x is a constant, and T},,,
is the energy-momentum tensor defined by a variation of the matter action with respect
to g, in the usual way. Assuming the connection is the Levi-Civita one we can then
write

frROR = —[fRB™ + [r.ps (""" = 6"79"")10g 1, (288)

where ~ is used here to mean equal up to surface terms [568]. Looking for a stationary
point of the action, by setting the first variation to zero, then gives

X, (289)

1
fRR,uu - §fg;w - fR;;w + g/waR = D)

These are the f(R) field equations with which we will be primarily concerned in this
section. It can be seen that for the special case f = R the LHS of Eq. (289) reduces to
the Einstein tensor, and the field equations are second-order in derivatives of the metric.
For all other cases, except an additional constant, the equations in are fourth-order
in derivatives.

Conformal transformation in the metric variational approach

As with scalar-tensor theories, the f(R) theories of gravity derived from the metric
variational approach can be conformally transformed into a frame in which the field
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equations become those of General Relativity, with a minimally coupled scalar field. This
is sometimes referred to as ‘Bicknell’s theorem’ in the case of f(R) theories, particularly
when the minimally coupled scalar field is in a quadratic potential [I55]. In the general
case we consider conformal transformations of the form [I0T], [853]

Juv = ngum (290)

o= Tt o)

which allows the field equations from the metric variational principle, Egs. (289), to be
transformed into

together with the definition

_ =X 1_ _ _ X 5
Ruu - gguuR = 5 (¢,u¢,u - ig/wgp ¢,p¢,a - guuv> + §T;w~ (292)

Here T}, is a non-conserved energy-momentum tensor, and we have defined
(Rfr — f)
X%

Theories derived from an action of the form (286)) can therefore always be conformally
transformed into General Relativity with a massless scalar field (as long as fr # 0), and
a non-metric coupling to the matter fields.

V=V(¢) = (293)

Legendre transformation in the metric variational approach

As well as conformal transformations, one can also perform Legendre transformations
on f(R) theories in the metric variational approach. Such transformations allow the field
equations of f(R) to take the form of a scalar-tensor theory (albeit it a slightly strange
one). These transformed theories maintain the universal metric coupling of the matter
fields, unlike the case of conformal transformations.

The first step here is to notice that the Eq. can be written in the equivalent
form

L=v=glf(x)+ f00R-x)l, (294)

where x is a new field, and the prime denotes differentiation. Variation with respect to
X then gives

F"O)(R=x) =0, (295)
so that x = R for all f”(x) # 0. Substitution of this result back into Eq. then
immediately recovers Eq. , showing that the two Lagrangian densities are indeed
equivalent. What is more, the special case f”(x) = 0 can be seen to correspond to the
Einstein-Hilbert action.

Now, if we make the definition

o= f'(x), (296)
and assume that ¢(x) is an invertible function, then we can define a potential
1
Al9) = 5 [x(9)o — f(x(#))]- (297)
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In terms of this new scalar field we can then write the density (294) as

L=+-g[¢R—2A(¢)], (298)

which is clearly just a scalar-tensor theory, as specified in Eq. (97)), with vanishing cou-
pling constant, w = 0. As we have not transformed the metric, the coupling of this field
to any matter fields that are present remains unchanged.

The Palatini procedure

Starting again from the density we can also proceed in a entirely different way
to the metric variational approach just described. Instead of assuming the connection
from which the Ricci scalar is constructed is the Levi-Civita one, we could instead treat
the metric and connection as independent fields. For the case of General Relativity a
variation with respect to the connection then simply results in the connection being
shown to be the Levi-Civita one, so that the difference between the metric variational
approach and the Palatini approach is a semantic one. For the case of f(R) theories,
however, the Palatini approach leads to an entirely different set of field equations.

Starting with an integral of Eq. over some 4-volume, and extremising with

respect to g,, now gives

1 X
fRR;w - ig,uuf = ngua (299)

where T}, is once again the usual energy-momentum tensor. In this expression R,
is now defined independently from the metric, and R should be taken to be given by
g" R, The next step is the variation of Eq. (286) with respect to I'#,,,, which results

m
(V=99""fr),, =0, (300)

where the covariant derivative here should be understood to be taken with respect to
T#* ., which is not the Levi-Civita connection unless fr =constant (as is the case in
GR). It is remarkable that the field equations do not involve any derivatives of
the metric, and only first derivatives of the connection. These are a different set of field
equations to Eq. , and should be considered a different set of theories to the f(R)
in which R is a priori taken to be constructed from the Levi-Civita connection.

It can be noted from Eq. that even if the connection is not compatible with the
metric g,,, we can still define a new metric, g, = frgu,, with which it is compatible.
Rewriting the full field equations under this conformal transformation we see that we
recover General Relativity with a minimally coupled scalar field in a potential, but no
kinetic term:

L= =5 [R-2V(9)], (301)
where ¢ = fr and V(¢) = (R(¢)d — f(4))/2¢°. Here R(¢) and f(¢) are given by

inverting the definition of ¢, and R should be understood to be constructed from the
metric connection compatible with g,,,. Transforming back to the original conformal
frame this theory then can be shown to be equivalent to a scalar-tensor theory with
w=-3/2and A = (Rfr — f)/2 [999].
While being an interesting variant on the metric variational incarnation of the f(R)
theories, there are a number of very severe problems in proceeding with the Palatini
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procedure in this way. Not least of these is the apparent ill-posed nature of the Cauchy
problem in the presence of most matter fields, which is discussed in [766]. Without a
well-posed initial value problem f(R) gravity in the Palatini formalism lacks predictive
power, and hence is not a good candidate for a viable theory of gravity. Furthermore, the
Palatini approach to f(R) gravity also appears to introduce problematic strong couplings
between gravity and matter fields at low energies [509, [640], and singularities in systems
that are usually well described by weak fields [87, [88] [89]. For these reasons we will focus
on f(R) theories in the metric variational approach in the sections that follow.

For further details of the Palatini approach to f(R) gravity, and the results that
follow from it, the reader is referred to [1167]. For studies of weak field gravity in the
Palatini formalism the reader is referred to [92] 429} [881], 999, [30l, 1000, 1163, 00T, 1078,
9241, 1665, [31], [1077], and for cosmology to [1251] 509, 883] 28, RS2 §84] [29] 1162, 1164,
724, 34, (727, 258, [793], 1232, 725, [781], [7T82], 497]. An interesting class of theories that
interpolate between the Palatini approach to f(R) theories and the metric variational
approach to f(R) theories is investigated in [39] [726].

The metric-affine approach

One further approach to the f(R) theories of gravity is the ‘metric-affine’ formula-
tion. Here one again considers the metric and connection to be independent, as in the
Palatini procedure, but now allows the matter action to be a function of both metric and
connection (rather than metric alone, as is the case in Palatini and metric variational
formalisms). The relevant action for the theory then becomes [IT68]

S = [ AQ0ZGI () + Sun(g0 T, D), (302)

where R = g""R,,,,, and R, is taken to be a function of the connection only, as in the
Palatini procedure. One can therefore think of the action as a generalisation of
the Palatini action, which is recovered when the dependence of the matter action, Sy,
on I'*,_ vanishes.

As is the case in General Relativity, the invariance of the Ricci scalar under the
projective transformation I'*,, — I'*, + A, 0%, can lead to inconsistency of the field
equations, as matter fields do not generically exhibit an invariance of this type. This

invariance can be cured by adding to the action an additional Lagrange multiplier term
of the form S = fdQ\/—gB“A”[M], and results in the field equations

1
fRR;w - §g;wf = %Tuua (303)

together with IT'*, = =0, and

(uv]

1
ﬁ [(\/jnggua);a 61//) - (\/jngguu);p} + QfRQHUFV[UP]
- g {pr - gﬁa"[”é“]p] : (304)

where A *P = —(2/y/=g)0S,,/6T*,,,. Tt can then be shown that AP = 0 corresponds

to a vanishing of the torsion, and AH(VP ) # 0 introduces non-zero non-metricity [I168].
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The metric-affine approach has not been studied as intensively as the other approaches to
f(R) gravity that we have already discussed, and will not feature heavily in the sections
that follow.

4.1.2. Weak-field limit

The weak field limit of f(R) theories of gravity has been extensively studied in the
literature. Here we will first consider perturbations about Minkowski space, and then
perturbations around de Sitter space, time dependent backgrounds, and inhomogeneous
backgrounds.

Perturbations about Minkowski space

The first attempt at finding the Newtonian limit of an f(R) theory appears to have
been performed by Pechlaner and Sexl for the case of f = R+ aR? [1029]. The first step
here is to write down the perturbed line-element as

ds? = —(1 4 20)dt® + (1 — 2¢)(da® + dy® + dz?), (305)

neglecting time derivatives and second order terms in ¢ and ¢ one then finds that the
Ricci scalar, R = —2Avy + 4A¢, obeys

6a0R — R = —gp, (306)

and that the potential ) obeys

(14 6aA)Ap = %(1 + 8aA)p, (307)

where A is the Laplacian on Euclidean 3-space. The derivatives of p in this last equation
occur due to replacing terms containing ¢ with those obtained from taking derivatives
of Eq. (306), and do not occur in the actual field equations themselves.

Inserting a delta function source, p = md, and integrating Eq. , using the
solution to Eq. to find ¢, one then gets the solutions [1029)

—moT

161 = —Q (1+e 3 ) (308)
—mor

167¢ = _Q (1—6 ; ) (309)

where boundary conditions at infinity have been imposed to eliminate exponentially
increasing modes, and where we have defined the mass
1

6’

ma (310)

Mass terms similar to this continue to exist for more general theories, and more general

situations, as we will outline shortly. One can see straight away that for large masses, with

mo > r~ !, the Yukawa potentials in Eqs. (308]) and (309) are exponentially suppressed,

and we recover 1) = ¢ o« —m/r. In the limit of small masses, however, when my < 1,
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we instead find that ¢ = 2¢ oc —m/r. For the case of f = R+ aR? gravity we therefore
already expect the PPN parameter v to be 1 when the mass of the scalar degree of
freedom is large, and 1/2 when it is small.

One is, of course, also interested in other functions of f(R), and can consider the case
of analytic f(R) theories that can be expanded as

R)=) R, (311)
i=1

where the ¢; are constants. To full post-Newtonian order the weak field solution in the
presence of a perfect fluid is then given in full generality as [307]

1602 7
— 142 e 2 2 -
oo + (U—‘r o R) U + R 302 UR 18rer V(UR)
362 2 4402 4082 —'
+ 47rc1V(R )+ 90% V(pU) 32 V(pR) — 33 V(Vp-VU)
4063 = = 2 4 9 1
TRy ZV(pIl) + = Py
+ 3 V(Vp-VR) + Clv(P )+ clv(PU )+ Clv( )+ Grer (UR)
1 C2 C3 2 4 802
47 (61 202> X () 3C%X( U)+ 3C%X( R)
8c3 - = 2
1+ 52 () YU) - B2X(Vp . VR) — ZX(P) + - X(pll) (312)
3c3 c 1 3c1
7V1 W, X(pv) Y; Z;
j=— i SR 313
g0 2, 2c1 | 61 6c1 6y/Beica (813)
2
gij = (1 + U~ C2R)> 0ij (314)
1

where U is the usual Newtonian potential, and the other potentials are defined as

V, = f p(x )m (x\);di/ W, = f p(x")(v(x ‘)~(x—,‘)§ N(z—z'); a3
[x—x| c1 ’
— e _ v (x—x")(z—z'); os Ix—x'|
:fQ‘Tdsxl YQZI% Geg &3
4 ’ el x—x!
V(Q) = fpfiqux'?’ =/ %’d‘(gr%e By | | 32
X =Jpe Ve gy R= g [ ) Vi gy,

where R is the Ricci scalar, P is pressure, p is the rest-mass energy density, and II is
the specific energy density (as defined in [I1274]). The terms in Egs. — that are
functionals of derivatives of p, U and R can be recast into a form where such derivatives
do not appear by further manipulations [307].

From the above it can be seen that the results of General Relativity are recovered,
to the appropriate order, when ¢ — c¢3 — 0. For non-vanishing values of the these
constants a large number of extra Yukawa potentials are present, and for large enough
values of ¢y we can again see that v — 1/2, as the scalar degree of freedom becomes
massless.
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The study of gravitational waves about a Minkowski space background in f(R) theo-
ries has been undertaken by Berry and Gair in [146]. Here the authors consider analytic
functions of the type prescribed by Eq. , and find that an extra mode of oscil-
lation is possible. The gravitational waves emitted by extreme-mass-ratio inspirals are
then calculated, and the authors conclude that current laboratory bounds (that result in
lea/c1] < 1079m?) mean that the extra oscillatory mode they find cannot be excited by
astrophysical sources.

Perturbations about de Sitter backgrounds

As well as the usual expansions about Minkowski space, in order to determine the
post-Newtonian behaviour of a theory, one is also interested in perturbations about other
backgrounds. Here we will consider de Sitter space as a background. This is not meant to
be an elucidation of cosmological perturbation theory, but rather a consideration of weak
field expansions as applicable to systems such as the solar system and binary pulsars.
Minkowski space is not always a stable solution of f(R) theories of gravity that attempt
to produce self-accelerating cosmologies at late-times, and in these cases time-dependent
backgrounds, and de Sitter space in particular, become of increasing interest for weak
field studies.

Much work has been performed on establishing the weak field limit of f(R) theories
about a de Sitter background, as relevant for theories that try and account for late-
time accelerating expansion without dark energy, see e.g. [1050, 421], 1171l 943, Q98|
1129, 1300, 930]. The majority of these studies conclude that, in the absence of extra
mechanisms to mask such behaviour, one should expect to find v = 1/2. This was shown
in an early paper on the subject in [292], and is the familiar limit of theories in which
a scalar degree of freedom has low mass. Here we will briefly sketch out the method by
which such a result is found for more general f(R), following the approach of [294].

The first step here is to identify a de Sitter solution with constant Ricci curvature
R = Ry = 12H¢. The line-element is then perturbed as

ds* = —(1 +2¢ — HZr?)dt* + (1 — 2¢ + Har?)dr? + r2d9?, (315)

where we have chosen to present the de Sitter background using a static coordinate patch.
We then proceed by perturbing the Ricci scalar as

R=Ry+ Ry, (316)

where Ry < Ry. The perturbative expansion then linearises all field equations with
respect to ¢, ¥, Ry and HZr?, and their derivatives, while neglecting all time derivatives.
The case of spherical symmetry is considered for simplicity.

To lowest order the trace of the field equations is now

fr — frRrRR _Xxp
ARy — ( 3 frn ) Ry = 6 fnn’ (317)

where fr and frgr should be understood to be the value of these quantities at R = Ry

(implicit here is an assumption that these quantities are all of the same order of magnitude

as Ry, and that Ry in the weak-field systems under consideration takes the same value as
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in the cosmological background solution). From cosmological considerations the second
term on the left-hand side of Eq. is then neglected, as the factor in brackets
corresponds to the mass squared of the scalar degree of freedom, which must be small
compared to 7~ ! in order to have late-time accelerating expansion. The resulting form

of Ry is therefore found to be
xm

= 247TfRR7“ ’

where m is the mass of the object at the centre of symmetry. Applying the same approx-
imations to the (¢,t) component of the field equations results in

Ry (318)

xp Ri | fRrRoo
Ap=XP T JrRGep 319
v 2fr 2 fr ! (319)

which on substitution of the expression for R; gives to lowest order

xm

~ — . 320
v 127 frr (320)
The remaining field equations then give ¢, to the same order of approximation, as
xm Y
~ — ~ =, 321
¢ 24mfrr 2 (321)

This calculation has not been performed in the PPN gauge, which uses an isotropic
spatial coordinate system, but nevertheless one can verify that when interpreted within
the standard PPN framework it does indeed give [I001]

=-. 322
T=3 (322)
In this section we have discussed de Sitter space as a background to perturb around.
However, establishing whether de Sitter space is, in fact, a stable asymptotic solution of
f(R) theories, and establishing the genericity of initial conditions that lead to de Sitter
space at late times, has not yet been discussed. We will consider this subject in following
sections.

Perturbations about other backgrounds

Having considered the maximally symmetric Minkowski space and de Sitter space
backgrounds, we can now also consider less symmetric spaces to perturb around. This
enterprise is hindered by our ability to find less symmetric solutions to the field equations
. We can, however, make progress with some simple cases.

If we consider f(R) theories in which f = R'*9 then one can find exact non-static,
homogeneous and isotropic vacuum solutions [241]. Such solutions can be shown to be,
under certain conditions, stable asymptotic attractors for the general class of spatially
flat, vacuum FLRW solutions [248]. They will be discussed further in the cosmology sec-
tion that follows. For this same class of f(R) theories exact static, spherically symmetric
vacuum solutions are also known [310], which can also be seen to be generic asymp-
totes of the general solution, with the specified symmetries applied [310]. We are now in
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possession of two exact solutions, for the same theories, which have less than maximal
symmetry, and which can be used as backgrounds to perturb around.

Spherically symmetric, time independent perturbations around the homogeneous,
time-dependent background found in [241] are given to linear order by [304]

ds? = —(1+ 20)d* + a*(1)(1 — 26)(dr* + r°d2),

5(1428)

where a(t) =t 7@= . The perturbations ¢(r) and (r) are then found to be

Lo 2e(1 =60 +40% +46°%) ,
r (5 — 146 — 1252)
(1 — 25)01

¢ = ——— e,
.

P =

The corresponding perturbative analysis about the static, spherically symmetric back-
ground found in [310] gives

s = v
— 2 — — 2
a2 Zg z((ls)g 20— 207) (1+W(r))dr® + r?dQ?,

where V(r) and W(r) are given in full generality by V(r) = esVi(r) + caVa(r) + ¢5Va(r)
and W(r) = —e3Vi(r) + caWa(r) + csWi(r), where

_ (1-25+482)

Vi=—r" o (323)

and where Vs, V3, Wy and W3 are oscillatory modes [310]. It can immediately be seen
that the form of the linearised perturbations around these two backgrounds are quite
different to each other, even though the field equations they obey are identical. One can
verify that an observer in the homogeneous, time-dependent background should measure

B=1 and  y=1-26,

which gives § = —1.1 & 1.2 x 107® when the constraint derived from the Cassini space
probe on + is applied [147]. On the other hand an observer in the static background
should measure an anomalous extra gravitational force that goes like [310]

)

Fe~——.
r

When subjected to constraints from observations of the perihelion precession of Mercury,
the presence of this extra force gives § = 2.744.5x 10719 [310]. The different forms of the
gravitational potentials and forces in these examples show that the choice of symmetries
of the background space-time can have important consequences for its weak field limit,
and the constraints on the underlying theory that are derived from it.

Chameleon mechanism
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As with a variety of other modified theories of gravity, the ‘Chameleon Mechanism’
has been applied to f(R) theories. This mechanism was outlined in Section where
a summary of some of the accumulated literature on it was outlined. Here we will simply
reiterate the basic point that this mechanism potentially allows a means by which theories
with a light effective scalar degree of freedom can evade solar system and binary pulsar
tests of the PPN parameter v by allowing the scalar to acquire a higher mass in the
locale of high mass concentrations, such as the Sun and Earth.

The chameleon mechanism has been applied to specific f(R) theories, and its be-
haviour in this application considered further, in e.g. [267, 945] 1180} [495] 193] 1199,
244), [629]. As with other applications of the Chameleon mechanism, if a ‘thin shell’ is
present then the mass of the scalar degree of freedom in these theories is thought to be
able to be supressed enough to satisfy solar system tests of gravity.

4.1.8. Ezact solutions, and general behaviour

Having discussed the weak field solutions which are of interest for inferring constraints
on f(R) theories from observations of gravitational phenomena in the solar system and
binary pulsar systems, let us now consider the behaviour of solutions to the full non-
linear field equations. Here we will be concerned with exact solutions, which can be
obtained in some simple cases, as well as what can be inferred about the general be-
haviour of non-linear solutions by other methods, and what theorems can tell us about
the behaviours that are possible. The relatively simple structure of f(R) theories make
such considerations a feasible proposition. The geodesic deviation equation in general
f(R) theories has been studied in [569].

Isolated masses, and black holes

Progress was made into understanding the static spherically symmetric vacuum so-
lutions of f(R) theories of gravity by Mignemi and Wiltshire in [891]. These authors
consider theories with higher powers of the Ricci scalar added to the Einstein-Hilbert
Lagrangian, and use a dynamical systems analysis to determine the behaviour of the gen-
eral solutions with the specified symmetries. They find the asymptotes of these solutions,
for a variety of different cases, and show that the only static spherically symmetric solu-
tions of the theories they consider that have regular horizons are the Schwarzschild solu-
tions. They further find that by dropping the requirement of regularity the Schwarzschild
solution is also the only solution to these theories that is asymptotically flat.

The black hole ‘no-hair’ theorems have been considered in the context of f(R) =
R + aR? theories by Whitt [1270]. Collapse to a black hole, however, has not been as
extensively studied in f(R) theories of gravity as it has in Brans-Dicke theory, where
direct numerical calculations have been performed [I107]. Nevertheless, the same logic
that tells us that the vacuum black hole solutions of general relativity are the only vacuum
black hole solution of Brans-Dicke theory that can result from gravitational collapse, also
suggest that this should be true for f(R) gravity. In particular, most of the results of
Hawking on this subject only rely on inequalities of the form

Ry, 1M >0, (324)

where [# is a null vector, and not on the details of the field equations themselves [595].
This null energy condition is true of the conformally transformed scalar fields equations
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in Brans-Dicke theory, and is also true in f(R) gravity. It therefore seems reasonable
to expect that the vacuum black hole solutions of f(R) gravity should also be the same
as the vacuum black hole solutions of General Relativity. The subject of black hole
radiation in the context of f(R) gravity has been studied in [200] B22] 16} 543], B78] and
[489] where it was shown that black holes in f(R) gravity have a entropy given by

_ Ird

=7

(325)
The subject of the de Sitter no-hair theorems and isotropisation in f(R) gravity has been
considered by Barrow and Ottewill [I10] and Goheer, Leach and Dunsby [540], where
it was shown that flat FLRW isotropic points can exist in the phase plane of Bianchi
solutions, and that de Sitter space can be a stable asymptote of f(R) theories of gravity.
One should, however, be aware that such behaviour depends on the theory in question,
and the initial conditions. For example, for theories with negative powers of R in a
series expansion of their Lagrangian one may generically expect such terms to become
important asymptotically. In this case accelerating power-law expansion is an attractor
solution [306]. This will be discussed further in the cosmology section below.

As well as the black hole solutions of General Relativity, it is known that other
vacuum solutions to f(R) theories of gravity that can describe isolated masses also exist.
Due to the complicated nature of the field equations in these theories, however, only
a few exact solutions that describe these situations have been found. For the case of
f(R) = R solutions are known that correspond to an isolated mass in a homogeneous
and time dependent background, and an isolated mass in a static, spherically symmetric
background. The former of these solutions is given by the line-element [304]

ds® = — Ay (r)dt? + a2 (t) By (r) (dr? + r2d0?), (326)

(1+25)
where a(t) = #2°1=5 | and where A1 (r) and By (r) are given by

1-& P o\ 4
Al(T) = < r ) , and Bl(r) = (1 + 7}) A(r)q+26—1,

1+ <

1
T

where ¢2 = 1 — 26 + 46%. The latter solution is given by [310]

2__4A 2 2 102
A7 =~ ndi= e (327)
where

) = 2 B

r (1-9%)

(1- 5)2 Cy
B = 1 2 )

2(r) (1— 26+ 462)(1 — 26(1 +0)) +r<1—<215f+;;62>

The constants C; and C5 appear in these solutions as mass parameters, and it can be
seen that both Eq. (326) and Eq. (327)) reduce to the Schwarzschild solution when
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0 — 0. The problem of static, spherically symmetric solutions in general f(R) has been
considered in [992], where a covariant formalism was developed for studying the problem,
and the non-uniqueness of the Schwarzschild solution was demonstrated. The § = 1/4
case of Eq. was rediscovered in [243]. Black holes coupled to Yang-Mills fields have
been studied in [872], where an exact solution was found for the case f = V/R.

These solutions are interesting for a number of reasons. Firstly, they show that the
generalisation of the solutions of General Relativity to other theories of gravity is not
always unique; i.e. there can be multiple solutions in modified theories of gravity that
reduce to the same solution in the limit of general relativity. It may therefore be the
case that one needs to understand the symmetries of the background space-time to a
greater extent than is necessary in General Relativity, in order to fully understand which
solution should be used to model a given situation. Secondly, Eq. shows explicitly
that Birkhoff’s theorem is not valid in general, when one considers generalisations of Ein-
stein’s theory. Spherically symmetric vacuum solutions of modified theories of gravity can
therefore be time-dependent, which can lead to new phenomenology. Birkhoff’s theorem,
in the context of f(R) gravity, has been considered in [490]. Thirdly, Eq. displays
non-trivial asymptotic behaviour as r — co. Such behaviour is unexpected in general
relativity, and again opens the window to new phenomenology. The results of Mignemi
and Wiltshire [891] even suggest that such behaviour is generic. A fourth point is that
the solution given in Eq. has been shown in [488] to exhibit a naked singularity.
This has clear implications for the applicability of the cosmic censorship hypothesis to
modified theories of gravity. The Misner-Sharp energy in spherically symmetric space-
times is considered in [225].

Cosmological solutions

A variety of cosmological solutions in f(R) theories of gravity are known, and have
had their stability analysed. Here we will briefly review and provide references to studies
of these solutions.

The conditions for existence and stability of de Sitter solutions in f(R) gravity appears
to have been first studied in [I10]. One can show that for any theory for which there is
a value of R which satisfies

Jr(Ras)Ras = 2f(Ras) (328)

there exists a de Sitter solution with Rgs = 4A. The stability of de Sitter solutions in
f(R) gravity was studied in [I10, [1049] 486]. These solutions are of obvious importance
for cosmology at both early and late times. One can note that with f(R) oc R? Eq. (328)
is satisfied with any value of R. Theories with R? terms in their Lagrangian’s have been
studied extensively, due to the naturalness of adding an R? term to the Einstein-Hilbert
action, and due to their improved renormalisation properties [1186]. They were also
introduced and studied by Starobinsky for cosmological purposes, and in particular their
ability to give rise to an early non-singular period of accelerating expansion in a natural
way [1179].

Less symmetric cosmological solutions than de Sitter space can also be found for some
f(R) theories. In particular, theories of the type f(R) = R'*9 are again of interest here,
as they admit simple exact solutions. As mentioned in the preceding section, a power-law
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exact solution for a spatially flat vacuum FLRW solution is known to be given by [241]

a(t) = 977, (329)
and a spatially flat solution in the presence of a perfect barotropic fluid with equation of
state P = wp is also known [248]

2(1+6)

a(t) = t30Fw) . (330)

The stability of these solutions, and their properties as asymptotes of the general solution,
have been investigated in [248] and [3I0]. In fact, it has been shown that these are the
only power-law perfect fluid FLRW solutions that exist for any f(R) gravity theory
[539]. Explicit non-power-law general solutions with FLRW symmetries were found in
[305], both with spatial curvature, and in the presence of a perfect fluid. These solutions
show explicitly that in the early universe both non-singular and inflationary behaviour
are possible. The energy conditions in FLRW solutions have been considered in [1033],
and braneworld cosmology in these theories have been considered in [68].

Beyond exact solutions, FLRW cosmological solutions have also been studied in f(R)
theories of gravity using dynamical systems analysis. This has been done for the case of a
number of particular f(R) theories in [248] [310, [790, 5l 538] and also in the general case in
[3901 306l 40, 253]. The dynamical systems approach has even been applied to perturbed
FLRW solutions in [247]. We will discuss perturbed FLRW further in the Cosmology
section that follows. These studies find a variety of interesting cosmological behaviours
at both early and late-times. In particular non-singular and accelerating behaviour in
the early universe is again identified, as well as late-time accelerating expansion, and the
non-sequential domination of higher powers in the Ricci curvature, for analytic f(R), as
the initial singularity is approached. The conditions required for a non-singular ‘bounce’
are given in [249], and oscillating solutions were considered in [208]. There have also
been some concerns expressed as to whether a matter dominated epoch is generically
expected to exist after radiation domination [242] 972] [40, (43, 479]. The inverse problem
of finding particular forms of f(R) that result in pre-specified cosmological evolutions
has been considered in [240, 929 242, 376, 973, 496, 251, O80]. Such inversions do
not always specify f(R) uniquely [029], and it has been shown that to reproduce exact
ACDM evolution with dust only one is forced towards the Einstein-Hilbert action with
a cosmological constant [443].

Exact Bianchi cosmological solutions were discovered for f(R) = R" theories in [98],
and been studied further in [778, 540], where shear dynamics and isotropisation are
discussed. The special case of n = 2 was studied in [209]. Bianchi type I and V
solutions have been considered in [I132] and [1133], and Bianchi V114 solutions in [367].
Kantowski-Sachs solutions have been studied in [786]. Other know exact solutions are
the Einstein static universe [309] [790] 549, 1122], and the Godel universe [309) [1057].
These studies explore the stability of the Einstein static universe, and the existence of
closed time-like curves in the Godel solution.

4.1.4. Cosmology
Much of the recent motivation for studying f(R) gravity has come from the need to
explain the apparent late-time accelerating expansion of the Universe. Previous motiva-
tion for studying f(R) gravity has also come from cosmological considerations, including
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the presence of an initial singularity, and early universe inflationary expansion. We will
therefore now present an overview of what we consider to be some of the most relevant
aspects of f(R) gravity for physical cosmology. In terms of the viability of FLRW ge-
ometry in f(R) gravity, the Ehlers-Geren-Sachs theorem of General Relativity has been
extended to cover these theories by Rippl, van Elst, Tavakol, and Taylor in [1065], and
more recently by Faraoni in [487].

Field Equations

To describe the cosmology, up to scalar perturbations, we first define line-element
ds® = —(1 4 2W)dt* + a*(t)(1 — 2®) g, da"da? (331)

and the energy-momentum tensor,

% = —p—dp (332)
T = —(p+P)Vib (333)

where 6 is the peculiar velocity, d P is the pressure perturbation, and X is the anisotropic
stress. At zeroth order the Friedmann equations are

1 1 .
H? = |8mp— 5(f — RF) = 3HF| - a% (335)

3F
S
2F

(87p+8cP+ F — HF) + c% (336)

where the Ricci scalar is given by R = 6(2H2 + H + r/a?), and energy-momentum
conservation gives, as usual,

p+3H(p+ P) =0, (337)

where F' = fg, over-dots denote derivatives with respect to ¢, and x is spatial curvature.
Now let us consider the first-order scalar perturbation equations, which are given in
[637]. Here it is convenient to define a new quantity

X =3HU + 30. (338)

The perturbation equations are then [637]

: F 3F . 3 ok

1 . . 2 _
= 55 [871'5p +2476P + 30F + 3HOF + (k a26“ — 6H2> 6F} (339)
and
.. . 2
SF +3HGSF + (kz - R) §F
a 3

8m . . .. . F

= S (0p—30P) + F(x+¥)+ (2F n 3HF> - R (340)
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with fluid evolution equations

Sp+3H(0p+dP)=(p+ P) (X?)qusz)) (341)

and (@*(p+ P)kO) K | 2
w1 P —a [\IJ+M <5P—3(k —3f<a)(p+P)E>] (342)

Here the perturbation to the Ricci scalar, 0 R, is given by
SR = —2 {)’(+4HX— (zz—?ﬂ) \1/+2(k2a23”)q>}, (343)

and we have the constraint equations

3F 3 ~
X+ 35V = 55 [Smalp+ P)0+6F — HOF| (344)

and

F (k> —3k) . 3HF
— v
<H+2F>x+ 2 D+ 5F

1 . : k2
——— |87dp — 3HSF H+3H? - = ) §F|. 4
57 {87rp 3 +<3 +3 a2> } (345)
Furthermore, we again have that ¥ # ®, in general. Instead it is the case that

787ra2(p+P)Z o
F F

U0 = (346)
The equivalent equations to those given above can also be derived in the covariant ap-
proach to cosmological perturbation theory [250]. In the rest of this section we will
consider the consequences of these equations for various cosmological phenomena.

Inflation

The existence of inflation has provided considerable motivation for the study of f(R)
theories of gravity. The pioneering work on this subject was that of Starobinsky in 1980,
who found that theories with R? corrections to their gravitational Lagrangian can have an
early period of de Sitter expansion [I179]. The spectrum of scalar and tensor fluctuation
generated during this type of inflation have been studied in [916] 1178, [719] [636] where
they were found to compatible with observations of the CMB. Quantum initial conditions
(“tunnelling from nothing”), as well as the process of reheating, were also considered in
[1249].

Inflation in f(R) gravity is particularly transparent in the Einstein conformal frame.
Here, for the Starobinsky model with [I179)

R2

f(R)=R+ ek (347)
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the conformally transformed theory in vacuum is one in which the minimally coupled
scalar field exists in a potential

V(g) = 3?5 (1 - e—\/§¢) . (348)

This potential is displayed in Figure [4] where it can be seen that slow-roll inflation is
likely to occur in the region ¢ 2 my;, and reheating is feasible during oscillations around
the minimum at ¢ = 0. This is, of course, exactly the type of behaviour that one wants
for a viable inflaton field.

1.5
38
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<

= 0.5

0

0 0.5 1 1.5 2
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Figure 4: The potential given in Eq. (348)), normalised by its asymptotic value as ¢ — oco.

In fact, for the theory specified in Eq. one can show that inflation is the
transient attractor of the general solution [852], and that in the region ¢ > my,; slow-roll
inflation occurs with ) )

H M

="~ e (349)
and proceeds for N ~ (2¢)~! e-foldings. We will not proceed with showing the details
of reheating in this model, but only note that around ¢ ~ 0 the potential given in Eq.
is well approximated by V ~ %M 2¢2. For details of how reheating occurs in this
potential the reader is referred to [1249] [892]. Pre-heating in f(R) inflationary models
has been considered in [1222]. Quantum cosmology, instantons, and their implications
for inflation have been studied in [1246], [1027].

Dark Energy

As well as accelerating expansion in the early universe, f(R) theories of gravity are
also capable of producing late-time accelerating expansion. There have been a large num-
ber of papers on this subject. There have also been attempts to construct quintessence-
like f(R) models which produce both early and late acceleration [974] [976] (977, 075, [82].

An easy way to see the potential for late-time accelerating expansion is to consider the
Friedmann equations and in vacuo. One can then identify effective density
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and pressure parameters by analogy to the Friedmann equations of general relativity.
These are

RF — f —6HF

8Tpet = Y — (350)

2F +4HF + f — RF
Pyg = . 1
87 T 2F (35 )

The equation of state of this effective fluid is then given by
2F +4HF + f — RF

_ 2R ARE T - RE (352)

RF — f —6HF

and one can then determine what is required to achieve w < —1/3, and hence accelerating
expansion.
One example of this is the now much considered theory of Carroll, Duvuri, Trodden

and Turner [255]
u2(n+1)
f(R)=R-— ; (353)
R'Il
where p is a constant. For power-law evolution the effective equation of state, (352]), is
then given at late-times by [255]

2(n+2)
32n+1)(n+1)’

w=—-1+ (354)
so that if n = 1, and the extra term in the gravitational Lagrangian is inversely propor-
tional to R, then one achieves an equation of state with w = —2/3, and hence accelerating
expansion. In fact, this just corresponds to the power-law solution given in Eq. ,
for a theory with f(R) o R™".

The theory specified in Eq. is now known to have a number of deficiencies that
make it non-viable [999, [43| [479, 428, [485] 258, [A73| 1102, 122, 1157]. Some of these
have to do with the weak-field limit, which we have already discussed, others come from
cosmology, and yet more are due to stability issues, which we will address in Section
Many of these problems can be traced back to the value of the effective mass in
the scalar degree of freedom of this theory, which is thought to be either too small for
validity of gravitational physics in the solar system, or imaginary, leading to some of the
instabilities just alluded to. Models which have been constructed to try and over-come
these problems, while still leading to accelerating expansion at late-times, are those of
Starobinsky [1180]:

R\
f(R) =R —pR. 1<1+R2> ] (355)
Hu and Sawicki [629]:
JR)=R—— e (356)
B 1+ (R/R,)—2"
and Battye and Appleby [56]:
f(R) = R+ R.log [e_“ r(1- e—ﬂ)e—R/Rc] (357)
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where u, n and R, are all positive constants. Attempts to construct viable models that
include an early stage of inflationary expansion, as well as late-time accelerating expan-
sion, have been made in [321,[468]. All of these theories rely on the chameleon mechanism
to satisfy solar system constraints on gravity.

Observational Probes

As with many modifications to gravity, cosmological observables can be used to con-
strain f(R) theories of gravity. Here we will briefly survey the literature on this subject.

Primordial nucleosynthesis has been studied in f(R) gravity in [310, 204} [764] [475].
Due to the conformal equivalence between these theories and general relativity, the be-
haviour of cosmological solutions during the radiation dominated epoch are considerably
simplified: They evolve in a similar way to the radiation dominated solutions of GR, but
with a different value of the effective gravitational constant. This situation is familiar
from studies of primordial nucleosynthesis in the scalar-tensor theories of gravity out-
lined in Section In the present case the relevant effective gravitational ‘constant’ is
inversely proportional to fr. The value of fr evolves throughout the matter dominated
and accelerating epochs, but is constant during radiation domination. Observations of
the abundances of light elements then provide constraints on the allowed values of fr
during the radiation dominated epoch, and hence constrain the rate of evolution of this
quantity that is allowed during the rest of the Universe’s history.

Other probes of the background expansion of an FLRW universe are the peak posi-
tions of the CMB spectrum of temperature fluctuations, and baryon acoustic oscillations.
Observations of these quantities allow the form of a(t) to be constrained, but due to the
freedom in the choice of f(R) are not able to falsify the most general form of these the-
ories directly [240, 929] [242] 376], @73 [496] 251], [080]. To go further using cosmological
observations we must therefore consider the solutions to the perturbation equations given
above.

The first thing that one may wish to consider is the growth of density perturbations,
d = dp/p. In a spatially flat universe, manipulation of Egs. — allows one to
write [1299, 1219, [1226]

47ép (4 + 3(a/k)?>M?)

ORI = g (U (af W)EME)

=0, (358)

where the mass parameter M is given, just as in the weak field limit discussed in Section

_ fr— RfRR.

3fRR

From the third term on the LHS of Eq. it can be seen that the evolution of
0 depends on the magnitude of M, and, in particular, is different in the two regimes
M? > k?/a® and M? < k?/a?. When the former is true, the density perturbations
evolve as they do in General Relativity, with an effective Newton’s constant given by
G =1/ fgr. For a matter dominated universe this means

M? (359)

§ o t3. (360)
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In the latter regime, in which M? < k?/a?, this is no longer true. Here, the third term
in Eq. (358) is modified from its form in GR by a multiplicative factor of 4/3, and the
evolution of § during the matter dominated era is consequently modified to

§ o t(V33-1)/6, (361)

The transition between these two limits is theory dependent. For studies on this subject
the reader is referred to [1180, [629] 122] 377, 1219, 1226 1043, 1220, 519, 1221, 914} [940].
Interesting results are that the change in evolution between the two regimes discussed
above is scale dependent. That is, modes with different wave-numbers can evolve in
different ways depending on whether they are larger or smaller than a?M2. This length
scale is therefore imprinted on the density perturbations. Furthermore, oscillating modes
can also become present when M? > k2 /a?, which can lead to undesirable singularities
[515]. The inclusion of an R? in the gravitational Lagrangian was found to remove these
singularities in [57]. Omne can also see that frr > 0 is need for the stability of scalar
modes.

The modified growth of structure just discussed has consequences for large-scale struc-
ture, and the cosmic microwave background, which we will now discuss. The matter
power spectrum in f(R) theories of gravity has been considered in [495] 258, 1102, 122]
[724, [T157, [790, [46l, [45], 814l [T026], and cluster abundances have been used to constrain
these theories in [I115] [818] [500]. The formation of non-linear structure has also been
considered in [630, 1006] [T007, T114, 1303]. Cosmic microwave observations are consid-
ered in [790] 1158, 1157, [818] where it is shown that power on large-scales is sensitive
to the modified growth of structure through the integrated Sachs-Wolfe (ISW) effect.
This can lead to damped power for small deviations from GR, or amplified power if the
deviations are large enough. Correlating ISW effects in the CMB with observations of
galaxy number density also leads to tight constraints [I158] B18], due to the sign of the
CMB temperature fluctuation changing if the modification to gravity is large enough.

4.1.5. Stability issues

There are a variety of stability issues that are of concern for f(R) theories of gravity.
These include ghost degrees of freedom, as evidenced in the Ostrogradski instability, as
well as the instabilities found by Frolov, and Dolgov and Kawasaki. Some of these issues
have been mentioned already. In this section we will discuss them further.

Ghosts, and the Ostrogradski instability

In Section we discussed the problems associated with ghosts — pathological
fields that admit physical states of negative energy, or negative norm when quantised. It
is known that ghosts can occur in general higher derivative theories of gravity, see e.g.
[1187, 236, [606], 607, 293], 944, [392] 113, [090]. They are not, however, as problematic in
f(R) theories as they are for general fourth-order theories, as we will now outline. Let
us first consider the existence of negative energy states in the context of Ostrogradski’s
theorem [1003].

The Ostrogradski instability states that Lagrangians that contain second derivatives,
and are non-linear in those second derivatives, are generically unstable. At first sight
such a result appears to be problematic for f(R) theories of gravity, which are only linear
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in second-order derivatives of the metric in the case of General Relativity with a possible
cosmological constant. One can show, however, that these instabilities do not occur for
f(R) theories [1281]. This works in the following way: Let us consider a Lagrangian

where dots denote derivatives of g with respect to some parameter \. Now define a set
of four canonical variables by Q1 = g, @2 = g, and

Plz—,———,, and PQEi (363)

If it is now possible to write § = f(Q1, Q2, P2) then the Hamiltonian of the system can
be written as

H=PQi+Pf—L(Q1,Q2, f). (364)

This Hamiltonian, however, is only linear in the momentum P;, and cannot therefore
be stable. This is Ostrogradski’s instability. Now, f(R) gravity avoids this instability
because one cannot write down the equivalent of § = f(Q1, Q2, P2) for each component
of the metric. Instead, only a single scalar degree of freedom contains the higher-order
derivatives, and by an appropriate field redefinition one can remove this extra field so
that the redefined metric appears in the Lagrangian only linearly in its second-order
derivatives. This is just the conformal transformation discussed in Section The
Ostrogradski instability does not, therefore, apply to f(R) theories of gravity [1281].
Let us now consider ghost-like instabilities from the point of view of linear fluctua-
tions. In generic fourth-order theories massive spin-2 degrees of freedom appear along
with a scalar degree of freedom, and the familiar massless spin-2 degree of freedom from
General Relativity. It is the massive spin-2 fields in this situations that present the
generic problem with ghosts. Such fields are absent from f(R) theories, however, which
contain only the massless spin-2 fields of GR, and a single scalar field. Again, this is clear
from the existence of the conformal transformations outlined in Section The f(R)
theories of gravity therefore do not always suffer from the same problems with ghosts
as more general higher-order theories, which will be discussed in more detail in Section

4.2.0l

Frolov instability

A potential problem with f(R) theories that modify the infra-red limit of General
Relativity has been identified by Frolov in [515]. This instability is caused by the fact
that for the scalar degree of freedom in f(R) theories curvature singularities can occur
at finite field value and energy level, a phenomenon previously investigated in [4] 203].

To illustrate this problem consider the f(R) proposed by Starobinsky, Eq. .
The potential for the effective scalar field in this theory is shown in Fig. During
cosmological expansion, the scalar fields associated with FLRW cosmologies roll down
the slope from ¢ = 0 to the local minimum at ¢ ~ —0.1. The short section of curve
between this minimum and the singularity at ¢ = 0 is the only part of the potential
the scalar field need experience in the entire history of a perfect FLRW solution. Frolov
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Figure 5: The potential for the scalar field in Starobinsky’s theory, Eq. (355), with R. =1, n =1 and
w=2.

argues, however, that relatively small perturbation in curvature, caused by collapse of
dust, are enough to push ¢ back up the potential to the singularity. The existence of
such instability is, of course, undesirable for a physically plausible theory, although it
may be mitigated by the addition of higher power of R to the gravitational Lagrangian
[203] 811, [57].

Dolgov-Kawasaki instability

Finally, let us consider another instability that was initially found by Dolgov and
Kawasaki for the theory given by Eq. with n = 1 [428]. This was later extended
to more general functions of f(R) that modify gravity in the infra-red limit [485] and
formalised better in [1124].

The basic point here is that the trace of the field equations, , acts as the prop-
agation equation for scalar degree of freedom. For Eq. with n = 1 this equation

1S
3t 3t
rR-°E ¢ (” ) — 8mp, (365)

where we have taken the matter content to be that of dust. Now, de Sitter space is a
solution of this equation, with

1
Ras = 5(8mp+ /(87p)? + 12u*) = 8, (366)

for cosmologically relevant p. If we now consider perturbations around this solution with
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R = Rgs + 0R then we get to lowest order that

6t 3t
B O6R + (1 + ’;) SR =0. (367)
R R

ds ds

Comparing this with the propagation equation of a massive scalar field gives

m2 = _Ras Ri?is ~ _(SWP)?’
2 6 6t

~ —10°GeV, (368)

where in the last equality the density has been taken to be that of water, p ~ 103kg/m?,
and p has been taken to be ~ 10733eV, as required to account for the observed late-
time accelerating expansion of the Universe. This large negative mass corresponds to
a catastrophic instability that should make itself apparent on time scales of ~ 10726
seconds.

For more general theories it can be shown that the effective mass squared in the
relevant scalar field equation takes the same sign as frgr [485)]. It is therefore the negative
value of this quantity in the theory of Eq. that is responsible for its exhibition
of this instability. Further, one can show that the addition of higher powers of R to
the gravitational Lagrangian again helps defend it from instability [968, [42T], O70]. The
Dolgov-Kawasaki instability has been shown not to occur in the Palatini approach [I165].
The existence of this type of instability was rediscovered in [706], for relativistic stars.
The problem in this context has been further studied in [417, [72] 1237, 1206, (707, [O01],
where it was shown that the instability can be avoided by changing the equation of state
of the star, adding a divergence to the scalar field potential, or including chameleon
effects. Neutron stars in f(R) gravity have been studied in [332] [1099], and instabilities
in systems with time-dependent mass have been studied in [60].

4.2. General combinations of Ricci and Riemann curvature.

In the previous section we considered theories that generalise the Einstein-Hilbert
action by replacing the Ricci scalar, R, with some non-linear function, f(R). Here we
go further, and allow the action to be a function of not only R, but of any of the three
linear and quadratic contractions of the Riemann curvature tenso@ R, R,,R*" and
R0 R*P7. A systematic approach to studying theories of this type, based on minimal
sets of curvature invariants, is proposed and studied in [646), [906].

4.2.1. Action and field equations
The most general weight-zero scalar density that one can construct from g, R, R, R*”
and R, ,-R"P7 alone is given by

L=x""V=9f(R,RuR", Ryps R*""7) (369)

where f is an arbitrary function of its arguments, and x is a constant which can be
determined from the Newtonian limit. The action is obtained, as usual, by integrating

26There is also a fourth possibility, namely e#"P? Rer v R7 por [418]. This contraction, however, is of
limited physical interest as it does not affect the field equations, due to its parity.
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this density, together with that of the matter fields, over all space-time. The addition of
supplementary terms to the density , in order to cancel total divergences, and which
can be transformed to integrals on the boundary, can be problematic (see e.g. [849]) and
so, for simplicity, they are usually assumed to vanish.

As with f(R) theories one can proceed by using the metric variation approach (in
which the connection is a priori taken to be given by the Christoffel symbols), using
the Palatini formalism (in which the metric and connection are taken to be independent
fields in the gravitational action), or the metric-affine formalism (in which the metric
and connection are taken to be independent fields throughout the entire action). Here
we will spell out the metric variational approach explicitly, as this is the most commonly
considered form of the theory found in the literature. For studies involving the Palatini
procedure, as applied to the these theories, the reader is referred to [(92, 477, [794) 173,
795, [1002], 1070].

Varying the action, derived from integrating Eq. over all space, with respect to
the metric, then gives

1
51 = X_l/dQ\ﬁ—gbfg“”(Sgw+fX(5X+fy6Y+fZ§Z]

_ 1, v v
= X ! /dQV -9 |:§ng §guu - fX(‘R'u §guu - g” 6R,ul/) (370)
—2fy (RP¥“RY) 16, — R*OR )
—2fz (Rpae(yRM)Egpég/w - RMVPU(SRHVWT)] ,
where we have defined X = R, Y = R,, R*"” and Z = R, ,cR"*?. Using 0R™ ;0 =

%g“" (09eosvp + 0Geviop — 09oviep — 0epsvo — O0Gevipo + 0gpuieo) We can then write the grav-
itational part of the action as

o = —x 1 / dQ/=gP" 89, (371)
where
1
P o= o fg" ot xR+ 2fy ROVRY )+ 2f7 ROPURY) o
+fx100 (9" 977 = g"°9"7) + O(fy R") + ¢"" (fy R"?) . po
—2(fy RV V) = A(f7ROUVP). . (372)

The notation fy here denotes the functional derivative of f with respect to N. Looking
for a stationary point of this action, by setting the first variation to zero, then gives the

field equations

X
X T~ g (373)

where matter fields and a cosmological constant have been included. Here, A is the cos-
mological constant (defined independent of f(X,Y, Z)) and T#" is the energy-momentum
tensor of the matter fields. These field equations are generically of fourth-order, with the
exception of cases in which the function f is linear in second derivatives of the metric
[418], as occurs in GR.

P, =
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Unlike the case of f(R) theories of gravity, the theories described by the density given
in Eq. (370) are not, in general, conformally related to General Relativity with a scalar
field.

4.2.2. Weak-field limit
Let us consider the weak field limit of theories with additional terms in their action
that are quadratic in curvature invariants:

L=Y"9 (R4 aR2+ BRuR"™ + YR, R*°) (374)

i

where a, 8 and v are constants. In this case one can use the well known result that the
Gauss-Bonnet combination of curvature invariants is a total divergence, i.e.

4R, R" — R? — Ryvpe R*P7 = total divergence, (375)

which in the action integrates to a boundary term that is usually ignored. By redefining
a and  we can therefore write Eq. (374]) in the equivalent form

L= Lx_g (R + aR? + BR,,R"), (376)

without any loss of generality in the solutions to the resulting field equations.
If we now substitute Eq. (376) into Eq. (373)), to get the field equations, we find that
for the perturbed metric

ds? = —(1 + 20)dt® + (1 — 20)(da® + dy? + dz?), (377)

the lowest order equations in the weak-field and slow-motion limit are

230+ B)AR-R = —%p (378)
(da+B)AR— R—2A(6 +BAY) = —xp, (379)

where the Ricci scalar is given as usual by R = —2Ay + 4A¢. For a delta function
source, p = md, Egs. (378) and (379) can then be seen to have the solutions

Xm e~ Qe mar
16 = =1 — 380
i r ( T3 3 ) (380)

Xm e—?’)’h'f' Qe—YI’LzT'
16 = = (1- — 381
¢ r ( 3 3 ) (381)

where

m? = _t and mi = —1. (382)

2(3a+ B) B

These are the solutions found by Stelle in 1978 [II87]. These solutions can be seen to
reduce to Egs. and in the limit 8 — 0_. More generally, however, these
theories can be seen to exhibit massive modes with two different mass parameters. In
order to have non-oscillatory behaviour in the present case we must therefore require
that both 3a+ 8 > 0 and 8 < 0 be simultaneously satisfied.
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If the solutions given in Eqs. (380]) and are the correct ones for describing the
space-time geometry around approximately isolated masses, such as the Sun, then one
can immediately see that if m; and mg are both large compared to 1/r then one recovers
the general relativistic prediction of v = 1, just as with f(R) theories. For small masses,
however, the situation is somewhat different from the f(R) case. If both m; and my are
small compared to 1/7 then one has that the leading order term in Eqs. and
is a constant (which can be absorbed into coordinate redefinitions), followed by a term
proportional to 7. This is a considerable deviation from the behaviour v — 1/2 that
occurs when myr is small and mgr is large, which is the limit of f(R) gravity with a
low mass parameter. It can also be seen that for m; < 2mq gravity is always attractive,
while for mq > 2ms it is attractive over large distances, while being repellent over small
distances.

4.2.8. Ezact solutions, and general behaviour
Let us now discuss what is known about the solutions to these general fourth-order
theories of gravity in the context of both isolated masses, and cosmological solutions.

Isolated Masses

Motivation for a number of studies in this area has come from Einstein’s particle pro-
gramme, in which one looks for asymptotically flat and singularity free vacuum solutions
which could be used to model particles [466]. While it is known that no such solutions
exist in General Relativity (Lichnerowicz’s theorem [797]), it has been conjectured that
they could exist in fourth-order theories [1252].

By studying the solutions of quadratic theories of the type given in Eq. with
B8 = —3a« it has been shown that the solutions to the linearised vacuum field equations
can be both asymptotically flat as r — oo, and smooth as r — 0 [503]. These theories
are equivalent to the sum of an Einstein-Hilbert term and a Weyl term. Such results
would initially appear to be encouraging for Einstein’s programme, but it was later
shown that there are, in fact, no solutions with the specified properties that exist within
a neighbourhood of Minkowski space [I116]. This means that if any non-trivial static
spherically symmetric vacuum solutions to these theories exist, that are simultaneously
asymptotically flat and geodesically complete, then they must correspond to very large
energy densities (exceeding the energy density of neutron stars by at least 40 orders of
magnitude [I116]).

The theorems of Lichnerowicz [(97] and Israel [650] have more recently been consid-
ered in the context of fourth-order theories of the form given in Eq. by Nelson
[950]. Here it is found that for static space-times with spatial curvature satisfying

m2— GRrR > 0 (383)

R R mi+ R*,R" R, > 0, (384)
the vacuum field equations imply that all asymptotically constant solutions (or asymp-
totically flat, if the inequalities are saturated) obey R, = 0. The expression for m; is

given in Eq. (382). Over-bars here denote quantities projected into space-like hyper-
surfaces. The spherically symmetric solution to R,, = 0 is, of course, the Schwarzschild
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solution, which is geodesically complete only for the case of Minkowski space. Lichnerow-
icz’s theorem can therefore be extended to all theories that obey the inequalities (383])
and (384)). It is then shown in [950] that if the spatial curvature satisfies

GR < my (385)
R, R R?,
= A, = —ma, (386)
R' R,

where my is given by Eq. (382), and the space-time is asymptotically constant (or
asymptotically flat, if the inequalities are saturated), then the only solutions with m? > 0
that exist in the region exterior to a closed spherical null surface also obey R, = 0. The
only asymptotically constant vacuum solutions with a horizon, that satisfy the bounds
and , are therefore the Schwarzschild solutions. This extends the Israel’s no-
hair theorem for black holes to quadratic fourth-order theories of gravity. It is argued in
[950] that the inequalities (383)-(386) should be satisfied everywhere where the spatial
curvature is smaller than the scale of the corrections to the Einstein-Hilbert action. If
these corrections are motivated by quantum considerations, then we should therefore
expect all of the inequalities - to be satisfied for astrophysically interesting
systems. The stability of Schwarzschild black holes in the quadratic theories has
been studied in [1271] [1186].

The initial value problem for quadratic theories, of the type given in Eq. , has
also been studied in [967], where it was found to be well-posed.

Cosmological Solutions

There are a number of exact cosmological solutions known to exist for fourth-order
theories containing R,, R*" and R, ,-R""??. This simplest of these is, of course, de
Sitter space, which exists for theories with general f(X,Y, Z) in Eq. , and a cos-
mological constant, if [309]

1 4
§f—A:AfX+2A2fy+§A2fZ, (387)

where fxn denotes differentiation of f with respect to N. The stability of de Sitter space
in quadratic theories, of the type given in Eq. (376]), has been studied in [I02], and in the
more general case in [325]. Other known exact homogeneous and isotropic cosmological
solutions are the Einstein static universe and the Godel universe, the existence of which
has been discussed in [309] for arbitrary f(X,Y,Z) (together with the conditions for
the existence of closed time-like curves in the case of latter). The existence of power-
law FLRW solutions, both in vacuum and in the presence of a perfect fluid, has been
discussed by Middleton in [887]. Power-law scaling FLRW solutions for theories with
L=R+ oz\/R2 — 4R, R*™ + R, po R**P? have been investigated in [1233]. The extent
to which the FLRW solutions of General Relativity can be reproduced in these theories
is discussed in [848] [949].

As well as isotropic cosmological solutions, a number of studies have also been per-
formed of anisotropic cosmological solutions in these theories. The simplest of these
are probably the Bianchi I Kasner-like exact solutions found in [3T1], which were used
to show that the infinite sequence of anisotropic oscillations that occurs on approach
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to the initial singularity in General Relativity does not occur in higher-order gravity
theories, except in unphysical situations. This type of solution was further studied in
[887]. Exact Bianchi type II and VI solutions were found by Barrow and Hervik in
[102], for quadratic theories of the type , and were used to show the lack of valid-
ity of the cosmic no-hair theorems in these theories: Anisotropic inflation with positive
A is possible, without de Sitter space as the late-time asymptote. These authors also
considered the general behaviour of Bianchi type I and II solutions in quadratic theo-
ries, where the possibility of a stable isotropic singularity was discovered [I03]. Bianchi
type I, IV, VI, and VII} universes have been studied in [104], where it was shown
that periods of anisotropic expansion can occur after a near isotropic expansion, and
before re-isotropisation at late-times. Bianchi type V114 solutions have been studied for
quadratic theories in [367], and Bianchi type I X universes have been studied by Cotsakis
et al. in [340], where the Kasner solution of General Relativity was shown not to be a
stable early asymptote of the quadratic theories given in Eq. .

Stability of past isotropic attractors has been the subject of study by Barrow and
Middleton [I07, [888]. In the first of these papers the authors demonstrated the stability
of past isotropic solutions to the quadratic theories under scalar, vector and tensor
inhomogeneous perturbations [107]. This supports the hypothesis that small pertur-
bations to the past isotropic attractor form part of the general cosmological solution to
quadratic theories of fourth-order gravity. This study is extended to theories with power-
law curvature terms, (R, R*")", in their Lagrangian in [888], where conditions are given
for the stability of early isotropic states. This study also shows the instability of the
exact solution found in [3T1], as the initial singularity is approached. The asymptotic
behaviour of theories with quadratic corrections to the Einstein-Hilbert were studied,
in the context of string cosmology, in [1090] 236, 1218]. Exponential and power-law
FLRW solutions in higher-dimensional string inspired models are found in [855] 856, [17].
The evolution of FLRW solutions in generalised theories has also been studied using a
dynamical systems analysis in [326].

4.2.4. Physical cosmology and dark energy

Having discussed various cosmological solutions in these general fourth-order theo-
ries, let us now consider their relevance for observational cosmology and dark energy.
We will proceed with this by first discussing studies of more general theories, followed
by theories constructed from the Gauss-Bonnet curvature invariant. The Gauss-Bonnet
invariant has special properties, which we will discuss in the Section [4.2.5

General Theories

In order to construct cosmological models that can produce late-time accelerating
expansion the authors of [254] considered theories of the type
u4n+2

L=R ,
+ (aR? + bR, R* + cR,y, po RHVPO )™

(388)

where p, n, a, b and c are constants. It is found that for these theories there exist
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power-law attractors for the general spatially flat FLRW solutions, which are given by

8n2+10n+2—3a+ VT

t A(n+1)
) , (380)

a(t) = ag (

to
where
12a 4 4b + 4c
= — 390
“ 120 + 3b + 2c (390)
I' = 9n%a? — (80n® + 116n* + 40n + 4)«
+64n* 4+ 160n> + 132n? + 40n + 4. (391)

The smaller of the exponents in Eq. can be seen to — 0 as n — oo, while the
larger tends to 4n. For large n it is therefore the case that accelerating expansion can
occur at late times. This is a generalisation of the type of model considered in [255], for
f(R) gravity. In [880] it is shown that while the theory given in Eq. is capable
of explaining the supernova results, to do so and still have an acceptable age for the
Universe it requires the matter content of the Universe to have an equation of state
0.07 <w < 0.21, to 20. The FLRW solutions of theories with powers of R, R,, R*" and
Ry pe R*P7 added to the Einstein-Hilbert action were also studied in [455], where the
possibility of late-time accelerating expansion was considered.

Primordial nucleosynthesis in theories with powers of R, R*" added to the Einstein-
Hilbert action have been considered in [957], where constraints from observed element
abundances are imposed. As with scalar-tensor theories, the constraints imposed from big
bang nucleosynthesis are largely due to the different expansion rate during the radiation
dominated period due to a different value of the effective Newton’s constant.

The addition of a conformally invariant term to the Einstein-Hilbert action has been
considered in [953, 054] [95T] [952]. In this case the gravitational Lagrangian takes the
form given in Eq. with 3a 4+ § = 0, and the resulting field equations are some-
times known as the ‘Bach-Einstein equations’. The solutions to these equations have
been studied in the context of inflation [953], the evolution of background cosmological
models [954], the observational constraints available from pulsars [051], and weak fields
and gravitational waves [052]. Theories of this type are motivated, in part, from non-
commutative geometry [268]. For a review on short scale modifications of gravity in the
context of non-commutative geometry, see [961].

Theories with L = f(R, R* — 4R, R" + R, 0 RM*7)
Theories that are functions of the Ricci scalar, R, and the Gauss-Bonnet combination,
G = R? — 4R, R" + R, R"", (392)

have been particularly well studied, as they are motivated by string theory [886, 530, 529,
081], and have improved stability properties (as will be discussed in Section [4.2.5)). The
linear case of f = R+ is known to be equivalent to the Einstein-Hilbert Lagrangian in 4
dimensions, up to surface terms, but more general functions, of the type f(R, é), produce
field equations that differ from those of General Relativity. The mathematical properties
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of the Gauss-Bonnet tensor, that occurs from varying the action of these theories, as well
as the more general Lovelock tensor, have been studied in [493] 4911 [492] 494].

The general behaviour of spatially flat FLRW solution in theories with L = R+ f (G’)
has been studied by Zhou, Copeland and Saffin in [I309] using a phase plane analysis.
In this case the Friedmann equations become

3H? = Gfs—f—24H*fs + gp (393)

2H

SH3f — 16HH fo, — SH 5 + g(p +P), (394)

where R = 6(H + 2H?) and G = 24H%(H + H?). The existence of both stable de Sitter
space, and phantom-like accelerating solutions to the above equations can be demon-
strated, as well as trajectories in the phase space that mimic the evolution of the standard
ACDM universe through radiation and matter dominated periods [I309]. The stability of
de Sitter space, as well as radiation and matter dominated epochs has also been studied
by de Felice and Tsujikawa in [371], where the conditions fss > 0 and fae — 04 as

|é| — oo were found to be required for models to be viable. These authors suggest the

following functional forms for f(G) as examples that satisfy these conditions, and could
produce acceptable expansion histories for the Universe:

G e A /- G2 "
)\\/767* tan (@) - 5\/67*111 (1 + Gz) - a)\\/g* (395)
(@) )\\/% tan~! (?) - a)\\/g*, (396)

G

f(G)

where a, A and G, are constants. It is further claimed that these forms of f(G) are com-
patible with solar system observations [372], producing corrections to the Schwarzschild
metric that are of the form ~ H?r2(r/r,)P, where 7 is the Schwarzschild radius of the
Sun, H is the Hubble rate and p is a model dependent quantity. Much larger correction
to General Relativistic predictions are claimed in [364] for theories with polynomial addi-
tions of the Gauss-Bonnet term, G”, to the Einstein-Hilbert action. The cosmologies of
these theories, and theories with inverse powers of aé+ﬂ R added to the Einstein-Hilbert
action (where a and § are constants), have been considered in [391], 979], while the FLRW
solutions of other R+ f(G) theories have been considered in [971}[323]. The ‘inverse prob-
lem’, of finding FLRW solutions that behave like ACDM has been considered for R+ f(G)
theories in [324]. The phase space of FLRW solutions to L = f(R, &) theories, and the
transition from deceleration to acceleration, has also been studied in [25] 26| [24]. Super-
nova, BAO and CMB observations have been used to constrain L = R + f(G) theories
in [907).

Linear perturbations around spatially flat FLRW universes have been studied in L =
f(R, @) theories by de Felice, Gérard and Suyama in [368], and in L = R+ f(G) theories
in particular by Li, Barrow and Mota [(91]. The former of these studies uses the velocity
potentials and variational principle approach of Schutz [IT19], while the latter uses the
covariant formulation of Ellis and Bruni [469]. In the case of general f(R,G) it is found
that scalar perturbations in these theories have, in general, six degrees of freedom, two
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of which propagate on small scales with group velocity [368]

2o 256 H?(frrfae — f2e) K
973 (8fpeH?+16Hfop + frR)(fr+4Hfg) 0

There can be seen to be a k-dependence in Eq. , which does not occur in General
Relativity. Such a relation had previously been found for the vacuum case in [393],
where it was argued that the space-time is unstable if vg < 0, or has super-luminal
modes in short wavelength modes if US > 0. These features are problematic, but can be
avoided in theories that satisfy frrfaa — f; a=0 Such theories have scale independent

propagation speeds only, and include the cases of L = f(R), f(G), G+f(R) and R+ f(G).
The latter case, being the subject of study in [(91], has also been shown to suffer from
matter instabilities. This is due to the evolution equation for perturbations to fx, which
we write as €, and which obeys [791]

) 40\ 46\ k2 2 902\ 27(3—4fGH)
E+|0+— e+ |1+ | 520+ +— | ——7—
0 a? 02

62 9 4804 fee
where 6§ = 3H is the expansion scalar, and the reader is referred to [791] for the form of
the source term S. For stability it is required that the third term in the square brackets
be positive, and remain dominant over the first, which is expected to be negative during
matter domination. This requires fas > 0, and for faasH 6 to remain suitably small, in

(397)

e=S, (398)

order to avoid instabilities [791] [370]. These are strong constraints on the forms of f (@).
It was further shown in [368] that vector modes in the general case of f(R,G) decay, and
that the propagation of tensor modes in these theories is model dependent.

4.2.5. Other topics
Let us now consider some remaining topics in fourth-order gravity, that have yet to
be discussed.

Theories with L = f(R, ¢, B* — 4Ry, R* + Ry po 1777

There has been some study of fourth-order theories that include a scalar field, as
well as the Ricci scalar and the Gauss-Bonnet scalar, in the gravitational action. This
is motivated by the dilaton that arises in string theory compactifications [886], and has
been studied in terms of ‘pre-big bang’ cosmology in [530, 529, 264]. In this scenario
there is an early period of very rapid expansion due to the kinetic term of the scalar
field. Black holes in these theories, and their extensions, have been studied in [890,
889, 678, 22, 1209, (700, 229, 231, 573] 574, 094, 995, 857, 285, 228, 996, R58]. Further
string motivated study of FLRW cosmology in the context of these theories has also been
performed in [53] 1217, 1223] 324 [575].

Late-time acceleration has also been studied in theories where a scalar field has been
included, along with R and G, in the gravitational action [982, 060}, 059 [36] [728], [729]
1223, 1097, 324, 37, 983, [80]. These papers have considered the evolution of FLRW
space-times, as well as inflation, structure formation, and the constraints that can be
imposed upon them from supernovae, CMB, BAO, solar system observations, and pri-
mordial nucleosynthesis. These observations place strong constraints on the theories.
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Greater-than-fourth-order Theories

Another option that has been considered in the literature is that the action itself
could contain derivatives of curvature invariants, so that [206]

L= f(R,0OR,O°R,...,0"R), (399)

where (J is the D’Alembertian. Extremising the action associated with this Lagrangian,
by varying the metric, gives the field equations [I117]

1
yR;u/ - §fguu - y;uu + g,uVDy + qu = %Tm/a (400)
where
- 1 71— e i—
XNV = Zl |:29#V(Z'L(D 1R)’ );‘7  Zis(p (D 1R);1/) ’
= i .
Y ; 9(0R)’

i 9f
Zo= )0 o0V R)’

j=i

The field equations can be seen to generically contain derivatives of the metric of
order 2n + 4, so that the familiar fourth-order theories discussed above are recovered
when n = 0. Theories with infinite n have also been considered in the literature, and
have been claimed to be ghost-free [164] [163].

Greater-than-fourth-order theories can be shown to be equivalent, under a conformal
transformation, to General Relativity with two scalar fields [550], and their Newtonian
limit has been considered in [657], where it was found that the familiar form of Newto-
nian potentials and Yukawa potentials can be present. Their consequences for inflation
have been studied in [143] 51, 144, 42| 871l 077, 163], and the attractor nature of de
Sitter space established. Bouncing cosmologies in these theories have been considered
in [I64, 162 [163], and the form of the CMB has been investigated in [162]. Primordial
nucleosynthesis has been considered in [957], and the consequences of this type of theory
for dark energy have been considered in [977]. For a more detailed overview of theories
with greater than four derivatives of the metric in their field equations the reader is
referred to [ITI§].

Conformal Gravity

One more possibility is to completely abandon the Einstein-Hilbert action, even as
a limiting case of the fundamental action. Such a proposal has been advocated by
Mannheim [866] in the case of conformal Gravity. Here the Einstein-Hilbert action is
replaced by

Sc = —ag / d* /= gC\ s CMF, (401)
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where C,., is the Weyl tensor, given by

1 e
C)\,uuﬁ = R)\,uun + ER a[g)\ug,un - g)\ng,uu]
1
_i[gAuR,un - g)\nR,uV - g,uuR)\/{ + g;mRAu],

and a¢ is a dimensionless gravitational self-coupling constant. It has been shown that
such an action can be obtained from the path integral of fermionic degrees of freedom
for the conformal and gauge invariant action of a fermionic field.

The case has been made that such a theory has a number of desirable properties
eluding other higher derivative theories of gravity. Even though the equations are fourth
order, signalling the presence of negative energy states, it has been shown that such states
are completely decoupled from what the authors dub the physical sector [865]. Conformal
gravity can then be held up as a viable theory of quantum gravity. Furthermore, the
peculiar ultraviolet properties of conformal gravity have been argued to lead to a solution
to the cosmological constant problem.

At a classical level, conformal gravity has been shown to have intriguing properties.
For a start, the non-relativistic limit of the field equations leads to a fourth order differen-
tial equation for the gravitational potential, ®, in which the usual Newtonian potentials
that drop off as 1/r are but one possibility. The general weak gravity potential is of the
form

O(r) = fé + Br.

Such a form, it has been argued, can be tuned to fit a range of galaxy rotation curves. As
in some other theories of modified gravity, this is achieved by fixing universal parameters.
This may be contrasted with the usual dark matter prescription in which, for each galaxy,
one can choose the properties of the dark matter halo.

The situation becomes more complicated once one adds couplings to matter fields
[864]. Conformal symmetry is spontaneously broken through a new scalar degree of
freedom, S, such that the general (conformal) matter action is

1 1 - _
M= —h/d4:z:\/7—g[§S“Su — ESQR“M + NS 4 iy VY b — gSP],

where v is a fermionic field. One can extend this to more general actions containing
scalar and fermionic fields. The vacuum expectation value of the scalar field is what
then sets the Gravitational constant and the coupling to matter. It can also be used to
renormalise the cosmological constant.

Although some of the quantum properties of conformal gravity have been worked out,
a fully consistent and complete analysis of their cosmology is still lacking. In particular,
and in its current incarnation, in which no dark matter is invoked, it is unclear how the
correct angular diameter distance for the CMB can be obtained.

Theories with L = f(T)

An interesting variant on generalisations of the Einstein-Hilbert action are the L =
f(T) theories, where T is a contraction of the torsion tensor (defined below). These
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theories generalise the ‘teleparallel” approach to General Relativity, which corresponds
to a Lagrangian L = T, from which Einstein’s equations can be derived [1235]. Here T'

is defined by
1

1
T= ZTMVPT#VP + iTWPTp”" -T,,"T",, (402)
where T, , is the torsion tensor, defined in terms of the vierbein from g,, = naghahﬁ

n'lvo
as

T*,, = hh (O,hs — 0,hs) . (403)

This definition is equivalent to setting 7%, , equal to the antisymmetric part of the
Weitzenbock connection. Now, varying the action

_ [ Vg
S = / YL [(T)d0 (404)

with respect to the vierbein fields gives the field equations

fr (R = y0R) + 00 (7 = £7) (405)

1
+ (2 (Tywp + Tpop + Tupp) — 9upT%00 + guvTUpa> frrVT =81GO,,,

where we have called the energy-momentum tensor ©,,, to distinguish it from the torsion
tensor. It can be seen that in the case f(T) = T the field equations reduce to
Einstein’s equations, so that the theory L = T is equivalent to the Einstein-Hilbert
action, as stated above. For f # T, however, the teleparallel approach outlined here
gives different field equations to the fourth-order theories we have so far considered.

It was within the framework of these generalised equations that Bengochea and Fer-
raro suggested that the late-time accelerating expansion of the Universe could be ac-
counted for without dark energy [I35]. These authors considered the particular case

f=T-

Ty (406)
where o and n are constants, and constrained the resulting FLRW cosmology they found
with supernovae, BAOs and the CMB. They found the best fitting model has n = —0.10,
Q,, = 0.27, and has the required radiation, matter and accelerating epochs. A large
number of papers have followed [135] in a short space of time, exploring the transition
from deceleration to acceleration, observational constraints, conformal transformations,
and structure formation [815] 1287, ©932], 1288, 1227 289, 134}, 1286 [78, 033, 68T, 1293,
1308], [79].

It has been shown, however, that these theories do not respect local Lorentz invari-
ance, and have a number of extra degrees of freedom that are not present in General
Relativity as a result [796]. This can seen by noticing that one can write the Ricci scalar
in terms of T" . as

R=-T-2V# (T”W) . (407)

Now, while R is of course a Lorentz scalar, one can show that V* (T”l“,) is not. It there-
fore follows that T is not a Lorentz scalar either, and so the f(T') theories do not exhibit
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local Lorentz symmetry. The exceptional case is f = T, in which case the non-Lorentz
invariant part of the action can be seen from Eq. (407)) to be a total divergence, which
does not affect the field equations.

Stability Issues

There are serious concerns with the stability of general theories of the type L =
f(R, Ry R*™ Ry pe RIP7). Not least of these is the presence of ‘ghosts’, or perturbative
modes with negative norm, as well as tachyonic instabilities in massive modes [T187, 2306,
600, 607, 293, 944 (392, 113 [990].

Let us now outline how ghost terms arise in these theories, following the discussion
of [606] [607, 293]. This starts by considering the quadratic theory

1 1
L=+v—g|R+—R>— —_(C? 408
gt 6m3 2m3 ’ (408)

where mg and ms are constants, and C? = ClvpsCHP? = Ry pe RHP? — 2R, RMY + R?
is the square of the Weyl tensor. Any quadratic theory can be written in this form, up
to boundary terms, because of the Gauss-Bonnet identity. We now want to identify the
scalar and spin-two degrees of freedom in Eq. , for which it is convenient to introduce
auxiliary fields that play these roles, and to transform so that they have canonical form.

We will do this now, following [606]. By introducing an auxiliary scalar field, ¢, and
performing a conformal transformation §,,, = e®g,,, Eq. (408) can be rewritten as [600]

L=

- 3 /2 \2 3m? o2 C?

By extremising this equation with respect to ¢, and substituting the resulting value of ¢
back into the Lagrangian density, one recovers Eq. . It can be seen from Eq.
that ¢ now has the kinetic term of a canonical scalar field. By introducing a second
auxiliary field, m,,, and transforming the metric so that g = gh*A"/ \/m, where

Ay =1+ %(ﬁ)ép" — ¢,”, we can then rewrite Eq. (409) as [606]

L= VT R= (A P v T (1 ey (410)
2 # o4
122 o o m% v 2
_gM [Cpuac vp Cp;wc O'p] + —= (fbuqu - ¢ )
4y/14]
_ 3_ _ 3 2 2
VTR SV eV — 0+ T (90" — ) (411)

(V896 = 60,9467 + 209,96 2vu¢upvp¢”“)] 7

where in the second equality we have expanded out to quadratic order in ¢ and ¢,”
around zero, so that we are considering theories that are close to GR. The field ¢, = 7"

“w
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has been introduced here to make clear with respect to which metric the indices are being
raised or lowered: those of m,” are raised and lowered with g,,,, while those of ¢, are
raised and lowered with g,,. The quantities C*,, are defined as

1, i \po = _ _ _
C#up = ) (g 1)M (vugpa + V,ive — Vagup) . (412)

The Lagrangian given in Eq. (411) now has scalar, ¢, and spin-2 modes, ¢,”, both in
canonical form. It can be seen from Eq. that for real ¢,” the spin-2 field does
indeed have the wrong sign before its kinetic term, and is therefore generically a ghost,
while for real ¢ the scalar mode is not [1270]. What is more, if mZ < 0 or m% < 0 then
the scalar or spin-2 modes exhibit tachyonic instabilities, respectively.

Having outlined the proof for the generic existence of spin-2 ghosts in quadratic
fourth-order theories of gravity, , let us now extend this to more general theories of
the form

where X = R, Y = R,,R*" and Z = R, ,-R*"??. This demonstration proceeds by
showing that the particle content of theories of the type are the same as the
quadratic theories (408]) (at least, when considering fluctuations around de Sitter space),
and then using the result derived above, that these theories generically contain spin-2
ghosts. The first step here is to introduce auxiliary fields ¢1, ¢ and ¢3 so that the
Lagrangian density becomes [607], 293]

L==glf + (X =¢1)+ fa(Y — ¢2) + f3(Z — ¢3)], (414)

where f; = 0f/0¢;, and i = {1,2,3}. Aslong as f; is non-degenerate, extremising with
respect to the these three new fields then gives ¢1 = X, ¢o = Y and ¢35 = Z, so that
Eq. is recovered. Using the Gauss-Bonnet combination, and discarding boundary
terms, this equation can then be written as [293)

L= V[ oh—oah—sf) HARY S(hH R (415)
+%(f2 + 4f?>)C’w/,oac"umm7
—%(fz +2f3) (C;Ll/pJCMVPU — 2R, R"™ + §R2) }’

where C,,,,0 is the Weyl tensor, and the last quantity in brackets is the Gauss-Bonnet
combination. At this point the theory has been shown to be equal to a scalar-scalar-
scalar-tensor theory, with the three scalars non-minimally coupled to quadratic curvature
invariants. Finally, we can choose to expand the density above up to second order in
fluctuations around a de Sitter background with constant Ricci curvature, Ry, so that
[944]
1 1
—R*— —C?|, (416)

L=+v—-g|-A+aR+ 5
2mg 2ms
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where boundary terms have been ignored, and we have defined

1 1

A= (= Xix+ X(Ghxx - 1y — 5f2)
+X3 Gy + 30x2) + X (g hvy + g faz+ gl 2o
o = fx - Xfxx — X2(fxy + 5 fxz)
X ey + g frz+ sl
my® = ((Bfxx +2fy +2f2) + X(Bfxy +2fx2)
FX2C vy + 3522+ freallo
my® = —(fy +4fz)o,

where (...)o denotes the value of the quantity inside the brackets on the de Sitter back-
ground. It should be clear that Eq. is identical to Eq. (408), up to the values
of @ and A. The particle content of general theories of the typ, on a de Sitter
background, therefore also has a scalar mode with mass mg, and a ghost-like spin-2 mode
with mass ms.

As mentioned in Section it has been suggested that theories that are only
functions of the Ricci scalar, R, and the Gauss-Bonnet combination, G = R? —4R,,, R* +
R, e RMP7, can evade the ghost problem outlined above [944]. The reason given for this
is that the mass term m;Q — 0 as fy — 4fz, a condition that is satisfied for theories of
the type L = f(X,Z —4Y'), or, equivalently, L = f(R,G). When m;Z vanishes it can
be seen from Eq. that the term responsible for the ghost spin-2 fluctuations will
also disappear. Further requirements for the non-existence of ghosts in f(R,G) theories
are discussed in [392], with particular reference to the model of [254]. Such theories
may still be subjected to constraints on their parameters by the possible existence of
tachyonic instabilities, if m3 < 0. For theories with L = f(R,G) it can be seen that
mgy Z = %RQ fca, so that the condition m2 > 0 is equivalent to the stability condition
fae > 0 found in [371), B70] and [791] in the context of cosmology.

4.3. Horava-Lifschitz Gravity

Horava-Lifschitz (HL) gravity was proposed as a toy model of quantum gravity [618],
619, [620]. The model is non-relativistic and relies on anisotropic scaling between space
and time in the UV to help render the theory asymptotically safe. Furthermore, it
was claimed that General Relativity could be recovered in the infra-red by including
additional relevant operators. HL gravity in its various guises has been reviewed in a
number of articles [1016] 1166, 1266 026, 170].

To understand the idea behind HL gravity we must first understand why perturbative
General Relativity is not UV complete. The non-renormalisability arises because the
coupling constant has negative mass dimension, [G] = —2, and the graviton propagator
scales as 1/p?. Consider the following scalar field theory,

S:/d4x {—

(0p)* + Agp6] . (417)
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Again, the propagator scales like 1/p?, and the coupling constant has mass dimension
[A] = —2, so schematically at least, one might expect this theory to be non-renormalisable
too. To render the theory asymptotically safe, we need to improve the UV behaviour of
the propagator. One might do this by adding relativistic higher derivative terms to the
action, but this is known to introduce an additional ghost-like degree of freedom. The
reason for the existence of this ghost can be traced back to higher order time deriva-
tives as opposed to space derivatives. This observation suggests an alternative approach.
Let us abandon Lorentz invariance and introduce higher order spatial derivatives with-
out introducing any higher order time derivatives. The former should improve the UV
behaviour of the propagator, whereas the latter guarantees the absence of ghosts. We
therefore modify the kinetic term

1 1. 1

— —(09)? = —p? — —p(=A)*p, (418)
2 2 2

where A is the spatial Laplacian. We now have a non-relativistic dispersion relation

w? o k??, which means that time and space scale differently,

x = lz, and t — I*t, (419)

For large enough z, it follows that the coupling constant has a non-negative scaling
dimension, [\] = 4z — 6 so we expect the theory to be power counting renormalisable,
and ghost-free. On the flip side, we have broken Lorentz invariance, which is well tested
at low energies. However, we can cope with this by adding a relevant operator of the
form L, = %c%pAap. This leaves the good UV physics unaffected, but allows Lorentz
invariance to be restored as an emergent symmetry in the IR, with an emergent speed of
light c.

In HL gravity, one applies similar logic to the relevant perturbative degrees of freedom,
schematically replacing ¢ with the graviton, h;;. Since we will require time and space
to scale differently in this model, we must first choose a preferred time, ¢, which in the
language of General Relativity means making an ADM split [902]

ds® = —=N2cdt? + g;;(dz’ + N'dt)(da? + N7dt), (420)

where g;;(z,t) is the spatial metric and N(z, ) is the shift vector. For the lapse function
we consider two separate scenarios: (i) the projectable case where the lapse N = N(t) is
homogeneous and (ii) the non-projectable case where the lapse N = N(z,t) can depend
on space. Having chosen a preferred time, we no longer have the full diffeomorphism
group, Diff(M), but a subset known as foliation preserving diffeomorphisms, Diff(M, F),
generated by

ot = f(t), and Sat = & (a,t). (421)
Diff(M, F) is defined by the following set of infinitesimal transformations
SN = O(Nf)+¢E0;N (422)
SN' = O(N'f+&) + LeN? (423)
0¢ij = [Oeqij + Leqij- (424)

Note that this hard breaking of diffeomorphism invariance is at the root of many of
the problems facing HL gravity as it allows additional degrees of freedom to propagate
138



[230, 278]. To see the extra degree of freedom emerge it is convenient to perform a
Stuckelberg trick [1076], and artificially restore full diffeomorphism invariance at the
expense of introducing a new field — the Stuckelberg field. This field becomes strongly
coupled as the parameters of the low energy theory run towards their diff-invariant values
[278] (see also [167, [735], [1025]).

We can think of the lapse and shift as playing the role of gauge fields in Diff(M, F).
It follows that the projectable case is the more natural since then the gauge fields have
the same space-time dependence as the corresponding generators. Having said that one
might expect it to be easier to match the non-projectable case to General Relativity in
the infra-red.

In any event, the action from these theories is built from objects that are covariant
with respect to Diff(M, F). These are the spatial metric, ¢;;, and the extrinsic curvature,

K, = ﬁ [qij — 26@]\%}, where ﬁz is the spatial covariant derivative. In the non-

projectable case one should also consider terms built from a; = \2 log N [167]. To build
the gravitational analogue of the action (417)), we replace the kinetic term such that

1 1 .
—¢? = — N (K;; K7 — \K?), (425)
2 kG

where k¢ is the gravitational coupling with scaling dimension [kg] = z — 3, and A is

a dimensionless parameter that also runs with scale. Clearly, for the z = 3 theory
the gravitational coupling constant is dimensionless, which may lead one to suspect the
theory to be power counting renormalisable. For z = 3 the leading order term in the UV
part of the action becomes

1

— §<p(—A)3<p — —ka/qN Vs, (426)

where the dimension six contribution to the potential is
Vo = BViRijVFRY + ... (427)

Here 3 is a dimensionless parameter, R;; is the spatial Ricci tensor and “...” denotes
any of the other possible dimension 6 operators that one might wish to include, e.g.
R3, RAR, (a'a;)? etc.

Now let us consider the type of relevant operators one might add. If we demand our
action to be invariant under spatial parity x* — —x' and time reversal t — —¢, then we
only need consider even dimensional operators,

1
Erel = *@\/&N(‘/Q -+ HGV4). (428)
At dimension four these are [692]

Vy= A1R2 + AQRinij + +BlRaiai + BgRijaiaj + BgRaii
+ C4 (aiai)Q + Cg(aiai)ajj + Og(a,ii)Q + C’4aijaij, (429)
whereas at dimension two,

Vo = —a(a'a;) — ¢*R. (430)
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Here we have introduced the notation a®t-in = Vit ... Vinlog N. Of course, terms of
this form are only relevant in the non-projectable case.
The full z = 3 gravitational theory is now given by

1 y ,
S = /dtd% —VaN [Ki;KY — AK® + PR+ a(a’a;)” — kgVa — kg V] +Sm, (431)
G

where S,,, [N, N;, g;;; V] is the matter part of the action, and Vj is the relevant dimension
6 operator. Note that in the absence of full diffeomorphism invariance we do not require
matter to satisfy energy-momentum conservation [278]. Indeed, in general we expect
to see violation of energy conservation since Diff(M) breaking operators in the gravity
Lagrangian will induce Diff(M) breaking quantum corrections to the matter Lagrangian
[692].

Let us compare this to the Einstein-Hilbert action, written in terms of the ADM

variables as . - )
C 3 KUK” — K

N|————— . 432

1670/dtdx\/§ [ S +R (432)

The claim is that A = 1 and a = 0 are the infra-red fixed points of the renormalisation
group flow. Of course, the parameter « plays no role in the projectable theory, since
any terms containing a; = v, log N will vanish for N = N(¢). For both the projectable
and non-projectable theories, the free parameters run to their infra-red fixed points at
low energies, so that the HL action tends towards the Einstein-Hilbert action
with an emergent speed of light, ¢, and an emergent Newton’s constant, G = kgc?/167.

Before delving further into the different manifestations of HL gravity, let us pause
to make a few general comments. The first of these is with regard to the large number
of terms appearing in the potential. We have not bothered to present the contributions
from dimension six operators since they are two numerou@ To reduce the number of
terms, Hofava originally borrowed the notion of detailed balance from condensed matter
theory [619], but this has since been shown to lead to phenomenological problems [278|
1169] M170]. Of course, the large number of terms appearing in the potential is really
only an aesthetic concern.

A second, more serious, concern, involves the fine tuning of light cones for each field.
Since Lorentz invariance is not exact there is no symmetry guaranteeing that all fields see
the same emergent light cone. We would like there to be some mechanism suppressing
Lorentz violating operators at low energies but preliminary investigations suggest that
fine tuning is required [I045]. It is possible that supersymmetry may be able help with
this to some extent [565].

Another issue that has yet to be fully explored concerns possible equivalence principle
violations in HL gravity [692]. To see how these might arise it is convenient to go to the
Stuckelberg picture. The Stuckelberg trick was developed in the context of massive gauge
theories [I076], but it has proven very useful in elucidating some of the key physics of
HL gravity as well (see, for example, [278| 167, [692]). Recall that the anisotropic scaling
of space and time requires a hard breaking of Diff(M) down to Diff(M,F). We can

Sar =

27Note that the full set of inequivalent terms up to dimension six has been presented for the projectable
case in [1169, 1170].
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artificially restore full diffeomorphism invariance by redefining the ADM slicing in terms
of the Stuckelberg field ¢(x,t). That is, the slicing goes from

t = constant — ¢(x,t) = constant. (433)

The unit normal to the spatial surfaces is covariant under Diff(M) and given by the space-
time gradient n, = V,¢/y/—(V¢)2. We can now express HL gravity as a relativistic
theory involving the space-time metric, g,., and the Stuckelberg field [167, [692, [532].
We do this by defining the space-time analogue of the spatial metric and the extrinsic
curvature in terms of the projection tensor ¢, = gu,+nun, and its Lie derivative %Enqw
[532]. Violations of the EP can occur because the Stuckelberg field can mediate a force
between matter fields carrying Stuckelberg “charge”. As shown in [692], Stuckelberg
“charge” is a measure of violation of energy-momentum conservation, schematically given
by

VTN T2

Tz | # O (434)

r ]

This is allowed by foliation preserving diffeomorphisms which simply require [692]
1 68y, _ n, VvV, TH

V=9 ¢ —(Vo)?

Even if the Stuckelberg charges, I'y,I'9,... are always small, violation of the EP can

still be large since the relevant Eotvos parameter n ~ 11:1:_11:2 really only cares about the
charge ratios.

GV, ITH =0, and (435)

4.8.1. The projectable theory
We now focus on the projectable version of HL gravity, for which the lapse function
is homogeneous, N = N(t). The action is then given by

1 iy
S = / dtd’s —\/qN [K;; K7 — AK* = V] + Sp,, (436)
ka

where the potential V = —c?R+ higher derivative operators. Since the condition of
projectability is imposed at the level of the theory itself, it follows that the Hamiltonian
constraint is non-local:

5Sm
ON -’

/ dr\/q [Ki K9 = \K? + V] = (437)

In comparison with GR where the Hamiltonian constraint is local, this admits a much
larger class of solutions. Indeed, it has been suggested that the resulting integration
constant can account for dark matter [924], although this may lead to the formation of

caustics and the break down of the theory [167].

Dark matter as an integration constant
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To see how this might emerge, we rewrite the action (436]) in the following form

ct 3 KKV — K?
SZlGWG/dtd x\/qgN {02 +R] + Sm
02 3 2 .
+ (1= T6nC /dtd 2\/qNK* + UV corrections. (438)

Focusing on the low energy theory, the resulting field equations are [924]

/ Paoy=g (ngl,) - 8:5%,,) Wit = O(1 =) (439)

81G
(GE;‘) - C4Tw> = O(1-)) (440)
¢ -8, — on-x, (441)

where g, is the full space-time metric, G,(f,,) is the corresponding Einstein tensor, and
nt = %(1, —N*%) is the unit normal to hyper-surfaces of constant t. The stress energy
tensor, T},,, is not necessarily conserved, as previously stated. Note that the non-local
Hamiltonian constraint, , and the local momentum constraint, , are preserved

by the dynamical equations (441)).
Now, these equations can be rewritten as follows [924]:

G = %G(TW + TR +0(1 -, (442)
where Tﬁ,L = pflp,n, and fd3x\/§pHL = 0. Note that this latter condition does not
require p¥ to vanish at all points in space, and one might wish to identify Tﬁ,L with a
pressureless fluid moving with 4-velocity n*. Taking p¥ > 0 in our Hubble patch, we
may associate this integration constant with dark matter [924].

This scenario has been criticised in [167], where it is argued that the cosmological
fluid T ﬁ,L will inevitably lead to the formation of caustics and the break down of the the-
ory. To see why this might be the case it is convenient to go to the Stuckelberg picture,
where we identify the unit normal with the space-time gradient n, = V,¢//—(V¢)?.
Now Tlf{,L behaves like a pressureless fluid, and in General Relativity it is well known
that this will lead to the formation of caustics, due to the attractive nature of grav-
ity. This is not a problem for real dust, as virialisation can occur. However, in the
scenario of [924], the fluid is characterised by the gradient V¢ which is problematic as
the Stuckelberg field is not differentiable at the caustic. These conclusions have been
disputed in [923] where it is argued that as the putative caustic begins to form we enter
a UV regime and the parameter A\ runs away from its IR fixed point at A\=1. At A # 1
it is claimed that an extra repulsive force could ultimately prevent caustics from forming.

Perturbation theory — ghosts, tachyons, and strong coupling
Let us now consider linearised perturbations about a Minkowski background. In what

follows we will work in units where the emergent speed of light is given by ¢ = 1. Given
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the residual diffeomorphism, in Egs. (422)) to (424]), we can choose a gauge defined by
N =1, N; = &B + ng, and qij = (1 + 2()51'1' —+ hij, (443)

where n; is a divergence-free vector, and h;; is a transverse-tracefree tensor. To study
the propagating degrees of freedom we neglect the matter contribution, and integrate out
the constraints. As it is non-local, the Hamiltonian constraint does not affect the local
propagating degrees of freedom. Meanwhile, the momentum constraint yields

1 .
B = 7C§7A<, and n; = 0, (444)
where Lo
9 _
= . 44
=337 (445)

This will shortly be identified with the scalar speed of sound at low energies. Plugging
this into the action and expanding to quadratic order one finds [T170] [926]

= na /dtd3 [ CQ +¢0s C) ( i+ hijothij):l + Sint, (446)
where Sjn; denotes the interactions and
A? A3 A2 A3
O —C (A+k2 +k4), Ot:A-i-/,ck? +VkT7 (447)
uv uv uv uv

where 1 and v are dimensionless parameters of order one. Here we assume that all
Lorentz symmetry breaking terms in Vy and Vi depend on roughly the same scale, kyy <
1/v/8w@G. The dispersion relation for the scalar is given by

k4 kS
w? = 2 (k2 o+ k4) . (448)
uv uv
Now we see a problem: At low energies, k < kyy, we require ¢2 > 0 to avoid a tachy-
onic instability, where we identify ¢, with the speed of propagation of the scalar waves.
However, as we see from the action , c2 > 0 yields a ghost, which is far more trou-
bling. We therefore take ¢2 < 0, but with |cs| being small so as to render the tachyonic
instability mild. But how small does |cs| need to be? The timescale of this instability
is ts ~ 1/]cs|k > 1/|eslkuv, and as this would need to exceed the age of the universe,
we infer |cs| < Ho/kyv, where Hy is the current Hubble scale [167]. Furthermore, since
modifications to Newton’s law have been tested down to the meV scale, we may im-
pose kyy > meV. This gives |cs| < 1073%, or equivalently |1 — A\| < 107%°, on scales
Hy < k< kyy.
What about the interaction terms? At low energies, k < kyyv, and working up to
cubic order we find that [735] [1166]

St = — / dtd’ {c(aic)Qiatcaicazatc

387G
3 0;0 2 1
+§ [C4C ( j8t<> - (CQ + c4> (0:0)?
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To estimate the strength of these interactions we canonically normalise the quadratic
term (446)) in the infra-red by redefining

t= t ) and ¢ = /87Gles|C, (450)

|cs|

so that

¢ (3 95 o c) ~ (22 +1) B0

+§

}+.... (451)

For small |¢s|, we see that the largest cubic interactions become strongly coupled at a scale
Ase ~ /|cs|?/87G. Imposing the constraint, |c;| < 1073% and taking 1/v/87G ~ 10'®
GeV, we find A,. < 107 18eV. This lies well below scale of the UV corrections given
by kyy > meV so we can certainly trust the effective low energy description we have
used to derive this scale. The implications for the theory are profound. The scale
Ag. represents the scale at which perturbative quantum field theory breaks down in
Minkowski space. For scattering processes above A,. < 107!%eV we must sum up the
contribution from all multi-loop diagrams. Since the claims of renormalisability are based
on the validity of the perturbative description at all energies, we see that much of the
motivation for studying this theory is lost. We also note that any notion of Minkowski
space is meaningless below distances 1/A. 2 108km since one would require a scattering
process at energies above Ag. to probe its structure. In analogy with DGP gravity
(see section one might hope to raise the scale of strong coupling by considering
fluctuations on curved backgrounds, for example, on the background gravitational field
generated by the Sun [926]. However, this seems optimistic since Minkowski space is
an excellent approximatiorﬁ to the background geometry at distances of order 1/A4. 2>
10%km, so the derived scale, As. ~ \/|cs|?/87G should still be reliable.

4.3.2. The non-projectable theory

We now consider the non-projectable theory for which the lapse function can depend
on space, N = N(x,t), just as in General Relativity. This means the Hamiltonian con-
straint is now local and that terms depending on a; = v; log N could play an interesting
role in the dynamics [169, [I68]. Just as in the projectable case, the absence of full dif-
feomorphism invariance allows an extra scalar mode to propagate [278]. The action is
given by

2

4 K, KY — K2 ,
J ¢ G/dtde\/aNaial

C
— dtd® N | ————
_167TG/ z+/q { 2 +R]+o¢

2

167G

S

+(1-X /dtd?’;r\/(jNK2 + Sy + UV corrections.  (452)

28 At distances r > 108km from the Sun, the Newtonian potential V (r) < 1078.
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Again we consider small vacuum perturbations on a Minkowski background, working in
units where ¢ = 1. Given the reduced set of diffeomorphisms, Eqs. to , we
cannot gauge away the fluctuations in the lapse function that depend on space. Instead,
we choose a gauge

N=1+x, N;=0;B+n;, and gy = (1+20)d;; + hij, (453)
where, as before, n; is a divergence free vector, and h;; is a transverse-tracefree tensor.
Now integrating out the momentum constraint, one finds

1 .
BZ_%C) n; =0,

where c? is given by equation (445), but, as we will see, we do not identify it with the
speed of sound. The Hamiltonian constraint yields [169) [L025]

2
x=-——C
«

Expanding to quadratic order gives [169, [1025]
/ dtd3z g + O, g) EN( ( R (’)th) 4 St (454)
~ 81G 8 I ’

where Sin; denotes the interactions and

~ -2 A? A3 A? A3
(’)S:ci a A+ + ., and O = A+ j——+v-—
o k%, k%,

455)
T T (

kiry kv
where i and U are dimensionless parameters of order one. Again we assume that all
Lorentz symmetry breaking terms in V3 and Vg depend on roughly the same scale, kyy <

1/v/8nG. We now write down the dispersion relation for the scalar

-9 4 6
w? = ¢ (a k? + ]z - Iz ) : (456)
o kov Koy

It follows that the speed of propagation of the scalar waves in the non-projectable theory

are given by )
2= (0‘_ ) (457)

(0%

The ghost and the tachyon problems can now be avoided by simultaneously taking [169]
1025]
c <0, and 0<a<2. (458)

Recall that this was not possible in the projectable case, where we had to accept the
tachyonic instability and use the fact that this should be slow relative to a Hubble time
to place strong bounds on |1 — A|. Since in the non-projectable case we no longer have
such concerns regarding tachyonic instabilities, the strongest bounds on |1 — A| and |«
come from preferred frame effects in the Solar System, requiring [1272]

11—\l ]| £1077. (459)
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For A and « satisfying this bound, the speed of propagation of the scalar is
o A—1

&~ ,
5 o

which should not be too slow. If the scalar graviton fluctuations propagated significantly
slower than other fields to which they couple, then those fields would decay into scalar
gravitons via the Cerenkov process. This would be particularly worrying for light since
it would result in photon decay and the absence of cosmic rays. To avoid this problem
we take ¢2 ~ 1, and so |1 — A| ~ |a|. Solar system constraints on these theories are
considered further in [643] 644 645], based on the solutions presented in [684], and black
holes are studied in [226], 227, 232).

What about the interactions? Again, focusing on the low energy theory we find
that the quantum fluctuations on Minkowski space become strongly coupled at the scale
Ase ~ /N —1]/87G ~ /]a]/87G [1025,[692]. Note that this result can be derived using
a direct method similar to the one presented for the projectable case in the previous
section [1025], or usihe Stuckelberg method in the decoupling limit [692]. Now given

(4

the bounds in Eq. (459)), it follows that the strong coupling scale is A,. < 101 GeV.
If kyy > Ase we can trust our low energy description, and the derivation of this scale.
As explained in the projectable case, strong coupling casts serious doubts on the claims
of renormalisability as these rely on the validity of perturbative quantum field theory.
However, if kyy < Age, we cannot trust our derivation of the strong coupling scale, since
the low energy description would not be valid there [168]. In this scenario, new physics
that softens the interactions kicks in at k ~ kyy. This situation is reminiscent of the
case in string theory where we introduce the string scale just below the Planck scale,
where strong coupling would otherwise occur.

Whilst this seems promising there are some issues facing the non-projectable the-
ory. One of these relates to the formal structure of the theory, and in particular the
constraint algebra, which is dynamically inconsistent. This manifests itself through the
lapse function vanishing asymptotically for generic solutions to the constraint equations
[603]. The asymptotically flat solutions we have just discussed represent a non-generic
subset of measure zero in the space of all solutions.

In the quantum version of the theory, its has been claimed that one must take A < 1/3
in order to have a stable vacuum [I144]. This is incompatible with phenomenological
requirements for the following reason: We expect there to be 3 fixed points in the renor-
malisation group flow for A. These are A\ = 1 (diff invariance), A = 1/3 (conformal
invariance) and A = oo [619]. Now, at low energies we require |A — 1| < 1077 and
2= % < 0. This suggests that A flows from infinity in the UV to A = 1 in the IR.

4.8.3. Aspects of Hotava-Lifschitz cosmology
HL gravity was first applied to cosmology in [698], 235]. As we have seen, in the UV,
the relevant degrees of freedom have an anisotropic dispersion relation w? ~ k5/ k?]V.
This is often at the root of much of the interesting cosmology that has subsequently
arisen, including (i) a scale invariant spectrum of cosmological perturbations, without
early time acceleration [925] [284], (ii) cosmological bounces [179, 234 [522] [854] [351],
(iii) dark matter as an integration constant [924], (iv) chirality of primordial gravity
waves [1196] and (v) enhancement of baryon asymmetry, abundance of gravity waves,
dark matter, and so on [927]. These latter effects occur because the modified dispersion
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relation results in radiation scaling like 1/a% as opposed to 1/a* in the UV regime. We
refer the reader to the following review articles on this subject [926], [1098)].

For an FLRW universe, the background cosmology in both the projectable and non-
projectable theories is qualitatively very similar. Choosing units where the emergent
speed of light is ¢ = 1, the Friedmann equation takes the following form:

3x—1 81G C(t)
H?= "= — 4
5 3 ( + = ) +V(a), (460)
where )
K K K
=— |1 —_ —_— 461
via) a? o <k:,2]Va2) o <k(2fva2) ’ (461)

and where m and n are dimensionless parameters of order one. Here k = 0,+1 is the
spatial curvature. We assume that the matter component with energy density, p, and
pressure, P, satisfies the usual energy-conservation law, p + 3H(p + P) = 0, although
this is not necessarily required in HL gravity, as we have already discussed.

The contribution from C(t)/a® depends on the theory in question. For the projectable
theory it corresponds to the “dark matter integration constant” [924], with C(t) —
constant at low energies. For the non-projectable theory there is no such contribution
and C(t) = 0.

We immediately notice that the effective Newton’s constant seen by cosmology differs
from the one derived by comparing the low energy effective action to the Einstein-Hilbert

action:
cosmo G . 162

Although as A — 1, at low energies, we see that Geosmo — G-
To see how HL cosmology can admit a bounce, consider the limiting behaviour of the

right hand side of Eq. (460)). Neglecting C(¢)/a® and assuming p scales like 1/a3 or 1/a*

we see that this goes like ~ nkaé (m/a2)3, which is negative if nk < 0. By continuity,
this suggests that there exists a, for which the right-hand side of Eq. is zero at
a = ay. This corresponds to the position of the bounce, since at this point H = 0.

Observational constraints on |A—1| coming from the background cosmology have been
studied in [445], [446] using BAO+CMB+SNla, but they are not particularly strong.
At 1o confidence level they find that |A — 1| < 0.02, which is far weaker than the
bounds presented in previous sections. Recall that in the projectable theory, stability
considerations require |A — 1| < 10759 whereas in the non-projectable theory preferred
frame effects require |A — 1| < 1077.

Cosmological perturbations in HL gravity have also been considered (see, for example,
[925] 284, [5211, 1257, [712], 1258, (713}, 1256}, (632, [652] ). Indeed, for the projectable theory, it
has been claimed that scalar fluctuations on cosmological backgrounds are stable. This is
in contrast to the corresponding fluctuations on Minkowski space [632] which are known
to suffer from either a ghost or tachyonic instability, as we saw in section Whilst
this may be relevant to long wavelength modes, it is of no consequence on sub-horizon
scales where we can trust the perturbative analysis about Minkowski space, to a good
approximation. Also, gravity waves produced during inflation have been found to be
chiral in HL gravity, thereby representing a robust prediction of the theory [1196].
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4.3.4. The © CDM model

HL gravity represents the UV completion of an interesting cosmological model, dubbed
OCDM [I71]. In this model, it is assumed that the old cosmological constant problem
is solved in some way, such that the net contribution to the cosmological constant is
vanishing. The model then seeks to explain the tiny, but non-zero, amount of cosmic
acceleration that is currently observed, without any fine tuning. Indeed, it is shown
that the model allows for a technically natural small contribution to cosmic acceleration,
without any corrections from other scales in the theory.

A key assumption corresponds to the fact that Lorentz invariance is broken in the
gravitational sector. Thus the theory contains a unit time-like vector field which may be
generic (as in Einstein-Aether theory) or expressed in terms of the gradient of a scalar
field defining a global time (sometimes called the khmnm@. The proposed acceleration
mechanism appears generically when we assume the existence of another field, ©, which
is taken to be invariant under shift transformations. The model is a valid effective field
theory up to a high cut-off just a few orders of magnitude below the Planck scale, with
a UV completion offered by HL gravity in the khronon case.

In the absence of any matter sources (including the cosmological constant) the model
possesses two solutions corresponding to Minkowski and de Sitter space-times. The
former solution is unstable and the presence of an arbitrarily small amount of matter
destroys it. The cosmological evolution of a matter-filled universe is driven to the de
Sitter attractor, with effective equation of state w = —1. The value of the effective
cosmological constant on the de Sitter branch is determined by the lowest dimension
coupling between the Goldstone field and the khronon. Remarkably, it is technically
natural to assume this coupling to be small as it is protected from radiative corrections
by a discrete symmetry. Thus, in the absence of a contribution from the cosmological
constant, the current value of cosmic acceleration would not present any fine-tuning
problem.

Interestingly, the evolution of cosmological perturbations is different in the © CDM
and ACDM models. In particular, the growth of linear perturbations is enhanced in
OCDM as compared to the standard ACDM case. The enhancement is most promi-
nent at very large scales of order a few gigaparsecs, but extends also to shorter scales.
Another difference is the appearance of an effective anisotropic stress, resulting in a non-
trivial gravitational slip at very large scales. In principle, these effects may allow one to
discriminate between ©CDM and ACDM in the near future.

4.8.5. HMT-da Silva theory

We have discussed in Sections and how the original versions of HL gravity
are plagued with problems at the level of both theory and phenomenology. The root
of this is the breaking of diffeomorphism invariance and the additional scalar degree of
freedom that propagates as a result. With this in mind, Hofava and Melby-Thompson
(HMT) proposed a modified version of the projectable theory possessing an additional
U(1) symmetry [621]. It is claimed that this extra symmetry removes the troublesome
scalar degree of freedom, so that one is left with a spin-2 graviton as the only propagating

29The khronon field is naturally identified with the Stuckelberg mode in HL gravity at low energies.
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mode. The HMT action is given by

1 ; 3}
Swur = — /dtd% Va{N [KK"7 = K* = Vg, Rij, ViRiy)
VO (2K + ViV,u)| — AR - 29)} . (463)

where 09 = RY — %quj + Qq¥, and Q is a dimensionful coupling constant that can
run with scale. This constant controls the scalar curvature of spatial slices, and can be
thought of as a second cosmological constant. As with the original projectable theory,
we assume N = N(t), with a potential V = —c?R + ... containing the usual terms up to
dimension six in order to guarantee the z = 3 scaling in the UV. In addition, however,
HMT theory contains two new fields given by A = A(z,t) and v = v(x,t). These are
important in extending the symmetry group to U(1) x Diff(M, F).
The action is invariant under Diff(M, F), with

SN = 8,(Nf) 464
SN = Oy(N'f +¢&) + LN 465
0gij = fO0iqij + Leqij

SA = OAf)+E0;A
v = f@tqufiajl/.

A~ o~~~
=~
S D
N O
= D

468

Note that v transforms as a scalar, whereas A transforms like a spatial scalar and a
temporal vector. Indeed, A transforms exactly as the lapse function would in a non-
projectable theory. This is not a coincidence. One can think of A as being the next to
leading order term in the non-relativistic expansion of the lapse. Of course, one ought
to ask why we have not included the parameter X in front of the K2 term in the action,
as in previous versions of HL gravity. According to [621], the parameter X is fixed to be
equal to one by requiring the action to be invariant under a local U(1) symmetry:

A = ¢—-N'Vp) (469)
v o= 1 (470)
ON' = NV (471)

It is this symmetry that removes the scalar graviton. Furthermore, fixing A = 1 ensures
no conflict with observational tests of Lorentz violation at low energies. The HMT model
has been applied to cosmology in [1259].

Recently, da Silva has argued that in contrast to the claims of [62I], one can ac-
commodate A # 1 and still retain the U(1) x Diff(M, F) invariance [353]. Indeed, he
proposed the following action:

1 . R
SdaSilva = — /dtd% V4 {N {Kin” — AK? = V(gij, Rij, ViRij)
G
HOY (2K, + ViV,v) + (1 — N)[(Av)? + QKAV]} — AR - 29)} . (472)
which is invariant under the same symmetries as (463). Now we must subject A to the

same constraints as before, in particular those coming from preferred frame effects. There
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are claims that the extra symmetry will eliminate the scalar graviton even when A # 1
[353], although more detailed study is required to be sure. Preliminary investigations on
this subject have been carried out in [631]. In any event, strong coupling problems have
recently been shown to infect the matter sector of this theory [811], unless one introduces
a low scale of Lorentz violation, in a way that is reminiscent of [169] [168].

4.4. Galileons

Galileon theory [963] was originally developed by Nicolis et al. to facilitate a model
independent analysis of a large class of modified gravity models. In each case, General
Relativity on perturbed Minkowski space is modified by an additional single scalar field,
the galileon, with derivative self-interactions. Although the galileon and the graviton
both couple to matter, any direct coupling between them is neglected to leading order.
The resulting vacuum Lagrangian is invariant under the following shift in the galileon
field

T — 7+ bzt +c. (473)

This symmetry corresponds to a generalisation of Galilean invariance, hence the name.
The inspiration for the model comes from DGP gravity [454]. In Section we will see
how the boundary effective theory on the DGP brane is well described by the following
action,

S = / d'z [Lar + L2V (474)
where
1 1- - 1- 1-
— = ) Zpuv 2 _ = - %
Lcr 16nC {4h {8 (h,“, 2h77,w> +.. ] } + 2hWT , (475)
1 1 1
DGP _ : 2 _ .2 292 1
L = :C {2 [3n0°m — r2(07)%0 71']} + 271'T. (476)

The Lagrangian has two components: a linearised GR piece, LR, and a modifica-
tion due to the brane bending mode, LPSP. Tt is valid in the so-called decoupling limit
in which all interactions go to zero except the scalar self-interactions. Focusing on the
n-Lagrangian, LPSF | Nicolis et al. observed that the vacuum field equations are built
exclusively out of second derivatives, 0,0, 7. In particular, this means that there are
no terms higher than second order, ensuring a well defined Cauchy problem and avoid-
ing any of the potential problems arising from ghosts in higher derivative theories. In
addition there are no first or zero derivative terms which means that the = Lagrangian
possesses the Galilean symmetry. This is inherited from Poincaré invariance in the bulk
[1017].

One might expect that almost any co-dimension one braneworld model with large
distance deviations from GR will be described, in part, and in some appropriate limit,
by a generalised m Lagrangian possessing the Galilean symmetry. This essentially follows
from the fact that the extrinsic curvature of the brane is K, ~ 0,0, 7, on scales where
we can neglect background curvature.

We should also note that even if there is no direct coupling to matter and therefore
no modification of gravity, galileons are of interest in their own right as a source of
energy-momentum. In particular, one can potentially obtain violations of the null energy

150



condition without introducing any instability [064, [343]. Generically, however, a single
galileon will result in superluminality, although the situation may be improved by going
to multi-galileon theory (see section [4.4.5)).

4.4.1. Galileon modification of gravity

To see how to generalise the decoupling limit of DGP to a larger class of modified
gravity theories, let us consider the amplitude, A, for the exchange of one graviton
between two conserved sources, T),, and T;/w- In General Relativity, this amplitude is
given by

1

AGR —_ |:TH,,T/NV - 2TT/:| 5 (477)
p

where T' = T}!. We are interested in the case where gravity is modified by an additional
scalar, so that locally we have

5A:A—&m:—£%mf (478)

Such a theory can be described by the following action

1 1-
S:/ﬁ%uth—mﬂ@—%w$w+§mWWW+wT+mmmmmm, (479)

where g, = M. + ﬁuy. The fluctuation ﬁu,, is identified with the GR graviton, and
as such, for a given source and boundary conditions, it coincides with the linearised
solutions of GR. This statement is true to all orders in the “decoupling” limit

TH

My, 0, TH — o0, = const, and

— = const, (480)
Mﬁz My

where M,; = 1/1/87G. Note that matter is minimally coupled to the metric g,, =
Nuv + hyw, where the physical graviton is hy, = by, + 270,

Galileon Action and Equations of Motion

Now suppose we consider the decoupling limit with the additional assumption
that the strength of some of the scalar self-interactions can be held fixed. This amounts
to neglecting the back-reaction of the scalar onto the geometry so that we can consider
it as a field on Minkowski space. We retain some of the scalar self-interactions for the
following reason: we are interested in an O(1) modification of GR on cosmological scales,
but we would like this to be screened down to < O(107°) on solar system scales. As we
will see, the derivative self-interactions can help shut down the scalar at short distances
through Vainshtein screeninﬂ In the decoupling limit, the action is given by

S@Wﬂ:/&ﬁw+u, (481)

30See section for a detailed discussion of the Vainshtein mechanism in DGP gravity.
151



where L, = Lgqi(m, 0, 00m) + T represents the generalisation of the m-Lagrangian in
DGP gravity.

The vacuum part of the generalised m-Lagrangian, L4 (7w, 0w, 00m) gives second order
field equations, and is assumed to be Galilean invariant in the sense that L4 — Lga+
total derivative, when m — m +b,x* + c. What is the most general Lagrangian with this
property? The answer is remarkably simple, and in four dimensions is given by [963], 400]

5
Lga(m,0m,00m) =Y _ ¢; Li(m, Om, 00m), (482)

=1

where the ¢; are constants, anﬂ

L= n (483)
L, = _%(%)2 (484)
Ly = —%a%(awf (485)
Lo = 5 [@n)7 - (00m)?) (9 (456)
Ly = _% [(827)® — 3(07)(90m)? + 2(00m)%] (Om)2. (487)

By construction, the variation of each component is built exclusively out of second deriva-
tives,

5i /d4x£i(ﬂ',8ﬂ',887r) = &;(00r),
7

where
Ei(00nm) = (i — 1)!(5[*1‘,11 ...65:11] (0, 07 m) ... (O, _, 0" *m).

Specifically,
& =1 (488)
& = On (489)
E = (9*m)? — (00m)? (490)
& = (0%n)% —30%1(00m)? 4 2(007)3 (491)
E = (9*n)* —6(9%1)*(00T)? + 89*1(00)3 + 3[(807)%)? — 6(0d)*. (492)

It follows that the field equations for the galileon model are therefore given by the fol-
lowing:

1 ~ 1-
— 532 <hl“’ — 2}?,7]#1,) +... = 87TGj_ju.y; (493)

5
> cii(m,om,00m) = -T. (494)

i=1

31We define (097)" = (0o, 0%27)(0ay0¥37) ... (0a, 0¥ 7). Note that we have presented the simpler
expressions as suggested by [400].
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Equation (493|) corresponds to the linearised Einstein equations , and so their solution,
hyw, corresponds to the standard GR solution for a given source and boundary condi-
tions. The modification of GR. is encoded entirely in the solution of the scalar equation

of motion, (494).
Galileon cosmology as a weak field

The galileon theory has been constructed in terms of a tensor and a scalar propa-
gating on a Minkowski background. Whilst it is straightforward to understand the weak
gravitational field in the solar system using this description, it is not clear how one should
describe cosmology. Fortunately, at distances below the curvature scale any metric is well
approximated by a local perturbation about Minkowski space. In what follows, local will
mean local in both space and time, which for cosmological solutions will correspond to
sub-Hubble distances and sub-Hubble times.

Let us consider a spatially flat FLRW space-time. If we take our position to be given
by #=¢=0and t =7 = 0, then for |#| < H~! and |t| < H we have [963]

ds* = —d7* + a(1)%dif? ~ |1 — %H2|:E’|2 + %(QH + HA)?| (—dt* + di?), (495)

where the Hubble scale H and its time derivative H are evaluated now. We recognise
this as a perturbation on Minkowski space in Newtonian gauge,

ds® = —(1+20)dt?* + (1 — 20)di? (496)

where the Newtonian potentials are E
1 1, .
U= —ZH2|£E|2 +(2H + H*)t*, and &= -T. (497)

For a given cosmological fluid, the corresponding GR solutions have Hubble parameter
Hgpgr. Since hy, agrees with the linearised GR solution, we have hy = —2V¥gg, and
hij = Q‘I’GR(Sij7 where

1 N 1, .
Ver = _ZH%R|$|2 + 1(2HGR +HER)E. (498)

Now in our modified theory the physical Hubble parameter (associated with h,,,) differs
from the corresponding GR value, H # Hggr. Since hy,, = ]N“Ll“, + 27Ny, we have a
non-trivial scalar

=V —-Ugr. (499)

Note that a Galilean transformation @ — 7+ b,,2* 4-c merely corresponds to a coordinate
transformation z# — z# — cxt + %(:E,,:c”b” — 2b,x¥xM) in the physical metric.

321t may look like that since ® — ¥ = 2& # 0 that this construction introduces anisotropic stress.
This is not the case, however, as strictly speaking the condition for the absence of anisotropic stress is
Dt (® — ¥) =0. It is easy to show that Dzj|:f\2 = 0, hence, no anisotropic stress is present.
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Self-accelerating solutions

Of particular interest are self-accelerating solutions. A self-accelerating vacuum is
one that accelerates even in the absence of any sources for the fields B;w and 7. These
are familiar to us from DGP gravity (see Section, where the self-accelerating solution
is haunted by ghosts. Is the same true in a general galileon scenario? Or can we identify
a scenario that admits a consistent self-accelerating solution?

There is some ambiguity as to what is actually meant by ‘self-acceleration’ if the
tadpole term [ d*zcym is present in the galileon Lagrangian. The point is that at the
level of the graviton equations of motion, the source corresponds to the vacuum energy, .
However, at the level of the scalar equations of motion the tadpole term, [ d*z ¢y, has
the effect of renormalising the vacuum energy seen by the 7 field, A = A\ 4+ ¢;. Indeed,
in a braneworld context, one might associate the tadpole with the vacuum energy in
the bulk. To avoid considering a simple cosmological constant, we set the bare vacuum
energy A = 0, and require the m-tadpole term to vanish, ¢; = 0. This guarantees that
Minkowski space is a solution for the physical metric since the field equations are solved
by fLW = 0, and 7 = 0. Note that this Minkowski solution need not be stable, as
in the ghost condensate scenario. On the contrary, our interest is in stable de Sitter
solutions. Given the constraints A = 0, and ¢; = 0, any de Sitter solution is necessarily
self-accelerating.

We now consider maximally symmetric vacua in the absence of vacuum energy, A = 0,
and the tadpole, ¢; = 0. The corresponding GR solution is always Minkowski space,
with lNLW = 0. Non-trivial solutions for the scalar # = 7(x), however, could give rise
to self-acceleration. A self-accelerating vacuum with de Sitter curvature H? would have
T = —inxM:E“. Plugging this into the field equations , with ¢y = 0, and T = 0,
gives [963]

3
— 209 H? + 3c3H* — 3¢, HS + 5c5Hg =0. (500)

Clearly non-trivial solutions exist for suitable choices of the parameters c;, so self-
accelerating solutions also exist.

Are these vacua consistent? To investigate this we need to consider fluctuations izm,,
and 7 = ™ — 7 about the self-accelerating vacuum. Because of the Galilean symmetry,
the galileon structure is preserved in the effective theory describing fluctuations,

S [fyusbn] = [ d'aLan+ Lon,

where L5, = Z?:l d; L;(6m, 067, 0067) + d7T. The coeflicients can be obtained from the
coefficients in the underlying theory via a linear map d; = ), M;jc;, where the matrix
M;; depends on the background curvature, H? [963].

There are two immediate things to consider: (i) does the spectrum of fluctuations
contain a ghost, and (ii) does the scalar get screened on solar system scales? For a
general galileon theory, to avoid the ghost we must choose parameters such that ds > 0.
In DGP gravity, where the ghost is known to be present on the self-accelerating branch,
one would find dPSF < 0 (see Section for further details).

In order to screen the scalar at solar system scales one must appeal to the Vainshtein
mechanism. Again, we discuss the Vainshtein mechanism in detail in the context of DGP
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gravity in Section [5.5.4] The mechanism works in exactly the same way in a general
galileon theory. For simplicity we assume spherical symmetry for fluctuations on the
self-accelerating background and consider the profile outside of a heavy non-relativistic
source, Ty, = diag(p(r),0,0,0). Now, it is well known that the GR solution is given by
the standard Newtonian potential

o ()] ~ S (501)

r

where the mass of the source M = [ p(r)dV. The galileon solution d7(r) is given by

963, 223]
/ / 2 / 3
do (T oy () 4oa, () = M (502)
T r r 4mr3

Note that & is identically zero when evaluated on a spherically symmetric field. At large
distances one can neglect the higher order terms in Eq. (502) and derive the linearised
solution

B M
Andoyr’

Now |hu ()| ~ 671 ()| so we have an O(1) modification of GR. At shorter distances,
the non-linear terms in Equation (502)) become important and start to dominate. This
happens at the so-called ‘Vainshtein radius’, given by [223]

o (M Vs g 2\ Ve
ry ~ max —_— .
v 42 "\

Depending on which of the non-linear terms dominates, the profile of the galileon field
changes to

omlin(r) = (503)

1/2
. M /7 if the term with d3 dominates
67Tnonlzn (’I“) ~
(M) r if the term with ds dominates

For a suitable choice of parameters one can have |h,,,, ()| 3> |d7™""(r')] on solar system
scales, and might claim that the modification of gravity does indeed get screened. How-
ever, it is important to note that the Vainshtein mechanism itself has yet to be properly
understood in a well defined and fully covariant theory. We discuss some aspects of this
at the end of Section £.5.4

Nonetheless, our galileon analysis indicates that self-accelerating solutions that are
ghost-free and exhibit some form of Vainshtein screening on solar system scales could
exist. However, there are also other concerns. Firstly, we should consider the question
of back-reaction. Our galileon description holds provided we can neglect the effect of the
scalar field back onto the geometry. This turns out not to be problematic provided we
take |d;| < Mle/HzF4 [963].

More serious concerns appear when we study fluctuations about the spherically sym-
metric solutions we have just described. These can cause problems at both the classical
and the quantum levels. At the quantum level, one must identify the scale at which
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the quantum fluctuations become strongly coupled, and the radius at which one can no
longer trust the classical background. As the background solution changes with scale, so
does the strong coupling scale. This means that there exists a critical radius at which
the quantum effects start to dominate and one can no longer trust the classical solution.
Aspects of strong coupling in DGP gravity are discussed in Section Here we note
that for a general galileon model the critical radius at which the theory enters a quantum
fog can sometimes be unacceptably largﬁ At the classical level, we find that fluctu-
ations at short distances can sometimes propagate extremely slowly, so much so that a
huge amount of Cerenkov radiation would be emitted as the earth moves through the
solar galileon field. Indeed, to simultaneously avoid problems with Cerenkov emission
and a low scale of strong coupling in a ghost-free theory with self-accelerating solutions,
one must introduce a tadpole. As we have already explained, this could be considered
undesirable as a tadpole will renormalise the vacuum energy seen by the galileon.

Yet another problem concerns radial fluctuations at large distances. These can prop-
agate at superluminal speeds, indicating problems for causalityiﬂ This is known to be
a problem in DGP gravity [9, [609] and can only be avoided in the general case by elimi-
nating all of the interaction terms. This is unacceptable since the interaction terms are
crucial to the successful implementation of the Vainshtein mechanism.

In summary then, while it is possible to obtain self-acceleration in a general galileon
model that avoids some of the problems facing DGP gravity, one cannot find a com-
pletely consistent scenario. However, the situation can be improved by the introduction
of a second galileon [I018], as we will discuss in Section [4.4.5|

Conformal galileon
The conformal galileon is constructed in much the same way as the pure galileon

we have just described, except now we demand that the relevant vacuum Lagrangian,
E;‘;?formal(ﬂ, O, d0T), is invariant under the conformal group:

dilations : 7(z*) — mw(bz") + logb (504)
translations : w(z#) — w(z* + a*) (505)
boosts : w(z") = w(A*,x") (506)

special conformal m(zh) — m(a" + cHz? — 2(c- x)a") — 2c-x (507)

transformations

33Larger than the Schwarzschild radius of the Sun
34Note, however, that it has been suggested that causal paradoxes associated with superluminality do
not always manifest themselves in theories with non-linear scalar interactions [73].
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It turns out that L;?;;formal =Y, e L5onformal ywhere [963) 389]

£<1:onformal _ 6477 (508)
1

Econformal — _56271' (87.(.)2 (509)

Egonformal — _5 [627T + = (87() ] (677)2 (510)

1
Lionformal _ 6_27754 — %6_27"(67{')2 {4(871’) : (aaﬂ') : (871-)

—4(0m)*0°m + 3[(07)*)*} (511)

ponformal  _ —dnp L go—dm (2 {L4+ [(Om)2]?
+§(6w)2[(6w)2a2w (97 - (90m) - (9] } (512)

Aspects of the conformal galileon model are studied in [343], [064]. Violations of the null
energy condition here can drive inflationary expansion without introducing instabilities.
There are, however, some issues with superluminality.

A supersymmetric version of the conformal galileon has been obtained in [687] as a
consistent completion of the supersymmetric ghost condensate.

4.4.2. Covariant galileon

The galileon action describes fields propagating on a Minkowski background,
and does not represent a fully covariant theory. Although galileon theory was originally
motivated by co-dimension one braneworld models, it is interesting to consider the four
dimensional covariant completion of the theory in its own right. This has been worked
out in [400, [396], and is given by

guy, /d4$\/ |:]_6 G ;Z};] + Smatter [g;uu wz] (513)

Naturally we recognise the first term in brackets as the standard Einstein-Hilbert action,
ﬁ [ d*z\/=gR. The last term corresponds to the matter action. Note that the matter
fields are minimally coupled to the metric §., = f(7)gu,, where the conformal factor
depends on 7. An obvious example would be §,,, = e gy although this is by no means
a unique choice. Neglecting the tadpole, the covariant completion of Ly = Y, ¢;L; is

350ur sign conventions agree with [963], rather than [389).
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given by L% =" ¢; L5, Wherﬂ

gal —
L5V = —%(V?T)Q (514)
L5 = —%Dn(vﬂ)z (515)
Lo = —% {(DW)Q—(vvw)Q—iR(vw)ﬂ (Vr)? (516)
Lo = —% (Or)? = 3(0m) (V)2 + 2(VVr)?
—6G ., (VF7) (V' V om) Vo) [ (V)2 (517)

Note that for the 4th and 5th order terms one must introduce some non-minimal gravi-
tational coupling to 7. This is necessary since the naive covariant completion of £, and
L5, with minimal couplings, results in equations of motion containing higher derivatives.
The non-minimal coupling helps to eliminate those higher derivatives. Now although
the field equations in our covariant theory remain at most second order in derivatives,
Galilean invariance is broken. We will not present the field equations here since they are
long and complicated, especially for the higher-order terms. The interested reader can
find them in [400], but should be mindful of the fact that the formulae for £5°” and L&
presented here differ from those in [400] by an overall factor of 4 and 5, respectively.

In a very recent paper, covariant galileon terms are seen to arise in Kaluza-Klein com-
pactifications of Lovelock actions [1242]. This might have been expected since the under-
lying theory has at most second-order fields, and this is inherited by the dimensionally
reduced theory. We discuss aspects of Lovelock gravity, and in particular, Gauss-Bonnet
gravity, in Section [5.7}

4.4.8. DBI galileon

The galileon Lagrangian L4 can also be obtained from the non-relativistic limit
of a probe brane in five dimensional Minkowski space [389]. The probe brane action
corresponds to a generalisation of the DBI action, as we will now explain. We take our
bulk coordinates to be (z*,y), and place the probe brane at y = mw(z). The induced
metric on the brane is then given by g, = 1, + 0,70, 7, from which we deduce that
the DBI action is

Sppr = —A/d4x\/jg = /d% — M1+ (0m)2. (518)

For a slowly moving brane (d7)? < 1, the leading order dynamical piece goes like
—%(877)2. To generalise this, we first consider objects that transform covariant on the
brane, and then build a Lagrangian from them that gives rises to field equations that are
at most second-order. The relevant covariant objects are the extrinsic curvature, K,

36We define (VV7)"? = (Va, V¥271)(Vay, V7). .. (Vaa, V¥7), Or = g"*V,V, 7, and (Vm)? =
gtV V.
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the induced curvature, R,,.3, and the covariant derivatives of these quantities. The
generalised DBI action required to guarantee second-order field equations is

gen DBI — Zcz iy (519)

wherd|
Sy = —/d‘*x\/fg (520)
S - / /11 (0m)2 (521)
S; = / d*z/—gK (522)
— —/d4z7 [0%m — 4*(Or) - (90) - (Om)] (523)
and
S, = - / d*z\/—gR (524)
— —/d4acfy [(827r)2 — (00T)?
+242 ((9m) - (90m)? - (9m) — H*x(Om) - (907) - () | (525)
— / d*z/=g(J — 2G" K ,,) (526)
o / d'ay?[(@Pm)? + 2(00m)° — 3(9°r) (90’

+672((0%)(97) - (00m)? - (Om) — () - (99)? - (91))
—3+2((9%n)? — (90) )(aw)-(aaw)-(aw)}, (527)

with the Lorentz factor v = 1/4/1+ (9m)2. The expressions for S3 and Ss can be
identified with the boundary terms in General Relativity and in Gauss-Bonnet gravity,
respectively. Of course, the former is the Gibbons-Hawking term, and the latter is the
Myers boundary term [931], discussed in more detail in Section Now, for a slowly
moving probe in Minkowski space, it can be shown that S; ~ [ d*xL;, which means that,
neglecting the tadpole, Sgen-DBI & f d4x£gal [389]. One can then recover the conformal
galileon by considering a probe brane in AdS, and the covariant galileon by considering
a general bulk geometry [389].

This procedure has recently been extended to probe branes that are curved, giving
rise to a more general class of effective theories on curved space [545] 544] (see, also
[221]). These represent the analogues of galileons and DBI theories living on dS; and
AdSy, retaining the same number of symmetries as their flat space counterparts. There is
a rich structure and in some cases the symmetries can even admit non-trivial potentials
beyond the usual tadpoles.

3TWe write (0#17)(0; O*27) ... (Op,, 07 H17) (O, sy ) = (O) - (00T)™ - (D).
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4.4.4. Galileon cosmology

Galileon cosmology encompasses much more than the original model and its covariant
completion. The cosmological behaviour of a number of models that are inspired by the
galileon have also been investigated (see, for example, [T145] [7T11] [704] [375] (714 [404]).
These include the braiding model [714, 404] [1046], which is described by the following

action

S = /d4x\/jg [m;GR + K(¢, X) + G(¢, X)Oo| , (528)
where X = —(V¢)?. Note that for K = 2X and G = X we recover the covariant
galileon action up to cubic order. This model still gives rise to second-order field equations
and admits some rich phenomenology. It is claimed that the scalar equation of state can
cross the phantom divide without introducing any instabilities, and results in a blue
tilt for the spectrum tensor perturbations. Constraints on the model coming from large
scale structure and non-Gaussianity have been obtained in [693] [903], respectively. Non-
Gaussianity in DBI galileon inflation has been studied in [I059]. An even more general
class of scalar tensor theories yielding second order field equations has recently been
presented in [402], and is now known to be equivalent to Horndeski’s general theory [623]
in four dimensions [710].

It has been argued that some of these generalised models are perhaps too general
[222]. The point is that there is no symmetry protecting the theory from large radiative
corrections. This can spoil the functional form of the Lagrangian so much so that we
require more input parameters than we can measure, and we lose all predictivity. In
contrast, the pure galileon, conformal galileon and DBI galileon theories are safe against
radiative corrections since they possess additional symmetries that control the form of the
derivative interactions. For this reason, in the remainder of this section we will restrict
attention to those models for which the Galilean invariance is only weakly broken, so
that any radiative corrections that break the galileon symmetry are suppressed.

Let us begin with early universe cosmology and the covariant galileon. This can give
rise to inflation even in the absence of a potential [222]. The theory is radiatively safe
because the terms that break Galilean symmetry are suppressed by powers of A/My,
where A is the naive cut—oﬂF’_.gl As with DBI inflation, fluctuations about the quasi de
Sitter background will result in large non-Gaussianities at low sound speeds [903] [222].
It has been argued that what sets this model apart is the fact that the non-Gaussianity is
not constrained to obey fyr ~ 1/c2, making it distinguishable from DBI inflation [222],
although this claim has been disputed in [341]. Indeed, it is interesting to note that the
authors of [341] adopt the effective field theory approach to inflation, imposing Galilean
symmetry on the small perturbations around the inflationary background. This permits
additional interactions compared with [222], but maintains stability against radiative
corrections. They find that one can have large (observable) four point functions even
when the three point function is small.

We now turn to the cosmology of the late universe. The late time cosmology of the
covariant galileon has been studied for up to cubic [299, O11], quartic [520} 23], and
quintic scalar interactions [373] 956 [369]. In the latter model, we focus on the role of the
galileon as a dark energy field — it deviates slightly from the original galileon scenario

38This corresponds to the scale of the galileon self-interactions.
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[963] because the galileon coupling to matter disappears as M,; — co. In any event, the
model is described by the following action

S = /d‘*wfg {1

167TGR + Eqb + ﬁm (g,um ¢):| ) (529)

where

2A3 2A6
(V) [(O¢)° = 3(00)(VV$)? +2(VV)® — 6G . (V"9)(V'Vag) V] . (530)

Lo = V0P + £ (V6P Do+ £ (Vo) [20067 - 29V9) - LR(VY|

Cs

2A9
As there is no potential, late time acceleration must be driven by the kinetic terms.
There is a late time de Sitter solution characterised by H = Hgg =constant and qﬁ =
¢qs =constant. The existence of this fixes a relationship between cs, c3,c4 and c5 such
that there are only two free parameters, given by

+

a = cyxig, and B = csaig,

where 249 = V871G (éds /Hds)- In [373] conditions are derived that guarantee the

absence of ghosts and imaginary sounds speeds in both the tensor and the scalar sector.
The viable region of parameter space, («, 8), where these conditions are met is presented.
As regards the cosmological evolution, we see that there exists a tracker solution that
approaches the late time de Sitter attractor. In Figure [6] we plot the evolution of the
galileon equation of state for the tracker solution, and for generic initial conditions.
Note that the tracker has a phantom equation of state. Indeed, even for generic initial
conditions, the galileon field is drawn into a phantom phase by the tracker. It turns
out that the tracker solution is disfavoured by a combined data analysis (SNe, BAO,
CMB). The generic case fares rather better, especially if we have non-zero curvature, Qy,
although it is still disfavoured with respect to ACDM [950].

Matter density perturbations have been studied in detail within the context of this
model in [369], where it is shown that the growth rate of matter perturbations is larger
than in ACDM. In the generic case, for suitable choices of o and 3, we typically find that
the growth index today is vy < 0.4, with large variations at earlier times. This makes the
model easily distinguishable from ACDM. Another distinguishing feature is the effective
gravitational potential changing with time, even during matter domination.

4.4.5. Multi-galileons

The extension of the galileon scenario to include multiple scalar fields [I017, T0T8
1019l B96] and even arbitrary p-forms [397] has recently been developed (see [481] [480]
for earlier work). A general multi-galileon theory, in four dimensions, with N real scalar
degrees of freedom is given by the Lagrangian [I0T9] 1310]

[va...vm]

5
_ 01l S M2 b 'm
Lnogal = E ot " iy 0072 Wiy ... 0y, 0™, (531)
m=1

where {a'1-im} are free parameters of the theory and §/" #™ = ml§tt .§#™ . As
[V1.o.Vm] 1 V]

usual, summation over repeated Lorentz (Greek) and galileon indices (Latin) should be
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Figure 6: Taken from Figure 1 in [369]. The equation of state of the galileon field, wp g, versus redshift,
z, for &« = 1.37 and 8 = 0.44. The evolution is given for generic initial conditions (A) and for the tracker

(B).

understood to be implicit. Note further that we define the m = 1 term of expression
(531) to be a’im;,. The Lagrangian (531]) is constructed so that it is invariant under

7TZ—>7TZ+(b2)HxM+CZ, Zzl,,N (532)

One might expect this to appear in the decoupling limit of some co-dimension N braneworld
scenarios, with 7y, ..., 7wy corresponding to the position of the brane in the N transverse
directions [I0I7]. Indeed, one can generalise the formalism discussed in Section
to probe a brane of co-dimension N and recover the multi-galileon theory in the non-
relativistic limit [610].

How many free parameters are there in this theory? We can always choose a®im to
be symmetric so the total number free parameters is given by

i(N+$_1>

m=1

Even for N = 3, this corresponds to 55 free parameters. To reduce the number of pa-
rameters one can consider imposing internal symmetries on the galileon fields [1019],
although this will break the galileon symmetry . The phenomenology of spherically
symmetric solutions with an internal SO(N) has been studied and found to suffer from
problems with instabilities and superluminality, at least for standard non-derivative mat-
ter coupling [50]. One can also prove a generalised form a Goldstone’s theorem when
internal symmetries are present [I310].

N+m—1)!
> (99

m=1
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Of course, the large number of free parameters is less of an issue in the simple case
of N = 2, dubbed bigalileon theory. The phenomenology of this theory was developed
in detail in [I0I8]. Let us summarise the main results. In direct analogy with the
single galileon case, the bigalileon theory is formulated on sub-horizon scales as fields
propagating on Minkowski space. This time we have our GR graviton, h,,, and two
scalar galileons, m and £. Only one of the scalars, m, say, couples directly to the trace
of the energy-momentum tensor. The other scalar, &, couples indirectly through its
mixing with 7, so it still has an important role to play. The governing action is given by

[1017, [1018]

S [y mr8] = / deLon + Lne, (534)
where Lgr is given by Eq. (475)), and
Lee= Y (CmnT + Bmnd)Emn(00m,00¢) + 7T, (535)
o<m+n<4

with

Emm = (m+n)I02 3l 001 60" (0,, 0 ) ...
(8, 0" T) (8,,070E) ... (D,,0°7E) . (536)

The physical metric is given by g,,, = 1. + hyy, where h,, = iLW/ + 2m1,,. Given a
source 1}, hy, gives the usual perturbative GR solution, and so 27n,,, gives the modified

gravity correction. The field equations for the scalars are

T+ > mnEmn=0, and > bynEmnn =0, (537)

o<m+n<4 o<m+n<4

Wher@ Umn = (m + 1)(am,n + ﬂm+1,n71) and bm,n = (n + 1)(6m,n + amfl,n+1)~

In contrast to the single galileon case, self-accelerating solutions can be consistent in
some bigalileon theories. Indeed, one can choose parameters such that we simultaneously
satisfy each of the following: (i) there is no tadpole, (ii) there is a self-accelerating vac-
uum, (iii) fluctuations about the self-accelerating vacuum do not contain a ghost, (iv)
spherically symmetric excitations about the self-accelerating vacuum undergo Vainshtein
screening in the solar system, (v) fluctuations about the spherically symmetric solutions
are never superluminal, (vi) fluctuations about the spherically symmetric solutions never
lead to trouble with excessive emission of Cerenkov radiation, (vii) there is not an unac-
ceptably low momentum scale for strong coupling on the spherically symmetric solution,
and (viii) there are no problems with back-reaction on the spherically symmetric solution
(or the vacuum). This supports the case for considering bigalileon theories as a viable
alternative to dark energy.

One can also develop models of self-tuning in bigalileon theory, where the vacuum en-
ergy does not affect the four dimensional curvature. These models get around Weinberg’s
no-go theorem by breaking Poincaré invariance. Unfortunately, in order for them to re-
main compatible with solar system tests one must limit the amount of vacuum energy
to be < meV.

39We define a—1,n = fBm,—1 = 0.
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4.5. Other Theories

Let us now consider some further theories that have yet to be discussed. These
are ghost condensate theories, non-metric theories, and the dark energy from curvature
corrections approach of Piazza.

4.5.1. Ghost condensates
Ghost condensate theories involve introducing into the gravitational sector an extra
scalar field, ¢, with shift symmetry

¢ — ¢ + constant. (538)

The only terms in the action that can obey this symmetry are derivative ones, and so
the building block for this theory is taken to be

X = 8,60 (539)

In [590] it was shown that if the leading order term in the action has the wrong sign,
so that ¢ is a ghost field, it is still possible to construct a theory that is stable to small
fluctuations by including terms that push X to a fixed value, so that

(X)=C. (540)

Theories of this type have a number of interesting properties. For a start, the non-zero
vacuum expectation value of the ghost field signals a spontaneous breaking of Lorentz
invariance. What is more, fluctuations in the ghost field about the vacuum expectation
value appear linearly in the energy-momentum tensor, meaning that anti-gravity is pos-
sible. A further interesting point is that in the weak field limit large ghost condensate
clumps move more slowly than small clumps, with potentially interesting phenomenolog-
ical consequences.

It has been argued in [590] that ghost condensate fields act like the gravitational
counterpart to the Higgs field of the standard model of particle physics. This is because
gravitational fields propagating through the condensate acquire a massive mode, much
like particles acquire mass while propagating through the Higgs field. Ghost condensates
also introduce oscillatory correction to the gravitational potential, with a Jeans instability
that grows with time. For mass parameters of the order 10~3eV, these corrections occur
on spatial and temporal scales greater than Ho_l. If the massive modes are of order
10MeV, however, then corrections can occur on length scales as small as 1000km, but,
again, only on time scales greater than H L

The action for ghost condensate theories can be written

S = / d*z/—g (
where M is a mass scale (confined to be ImeV < M < 10MeV), and P(X) is a function

that must have a non-zero minimum at X = C in order to be a ghost. For stability we
then require

R
+

e M4P(X)> , (541)

P'(C)
P'(C) +2CP"(C)
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Extremisation of the action (541)), with respect to the metric, yields field equations of
the form

Gy,l/ = 87TGT¢>,,MV7 (544)
where
Ty = M* (P(X) g + 2P'(X)0,00,9) , (545)

and for simplicity we have not included a term in the action for normal matter fields.

To see why this theory is considered a modified theory of gravity we look at the
perturbed field equations. Writing the metric as g, = My, + hyw, and the ghost field as
¢ = V/Ct + =, the Lagrangian density of the theory becomes

L == [Fo(X) + F{(X)K* + Fy(X)KY Ky + -], (546)

where we have chosen a unitary gauge, and where 7 has been set to zero. The F), here
are functions of X that are derived from P(X), and K is the extrinsic curvature of the
3 dimensional hyper-surfaces of constant ¢. Diffeomorphism invariance in Eq. can
be seen to have been explicitly broken.

Let us now consider cosmology. For a homogeneous and isotropic Universe, the equa-
tion of motion for ¢ is

d )
< (a%P’(X)) ~0. (547)
dt

If we assume that X — 0 and P'(C) — 0, as t — oo, then Eq. (547) tells us that
¢ — +£v/Ct. The Friedmann equation for this theory is

m2

H? = =N (2XP'(X) - P(X)), (548)
where the new mass parameter is m = vV87tGM? = M?/Mp;. The Raychaudhuri equa-
tion is

a m?

g:—?(XP’(X)+P(X)). (549)
Now, it can be shown that the effect of the ghost field on the expansion of the Universe
is such it can mimic radiation domination, matter domination and vacuum domination.
Indeed, the simple choice of P(X) = (X — ()2 leads to a(t) < (Cmt)*/? at early times,
and a(t) o< (Cmt)?/3 at late times. Adding a constant, such that P(X) = $(X — C)? +
A/m?, leads to a period of vacuum domination.

A general class of solutions, with matter sources included, has been studied in [755].
Some of these solutions combine dark matter and dark energy-like behaviour, at the
background level. The behaviour of scalar perturbations in the ghost condensate theory
was worked out in detail in [922]. Modified Newtonian potentials were discovered with

d = Sar+ Pod (550)

U = Ygr+ Ymod (551)
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where ®or and YR take their standard form from General Relativity, while ®,,,,q and
U,.04 are corrections due to the ghost condensate that occur in the limit where the
wavelength of the fluctuation is larger than the symmetry breaking scale. If we consider
the case of de Sitter space, where ®,,,q = V.04, then the evolution equations are

aM? k?

a k* aM? k?
WI%IE(DGR’ (552)

6tZ‘I)mocl + 3H08t(1)mod + (]\42(14 - W]Q)lﬁ + 2Hg> (bmod =

where « is a combination of dimensionless coefficients of O(1) from the action. These
equations shows that the Newtonian part of the potential seeds the modified part.

4.5.2. Non-metric gravity
We will now describe the non-metric gravity theory that deforms GR while keeping
only two dynamical degrees of freedom [I36] 137, 138 [747, [748]. In this theory the
fundamental gravitational object is no longer the metric but a triple of 2-forms B’ =
B!, dz* A dx”, where lower-case Latin indices denote internal SU(2) indices and take
values from 1 to 3. The space-time metric is an emergent variable and is given in terms
of Bfw as
V=99 x E° B}, Bl Blseiji (553)

where %79 is the completely antisymmetric tensor density having components +1 in
any coordinate system. The proportionality symbol is used above, rather than equality,
because the metric is defined only up to conformal rescalings. The reason for this is that
Bfw is self-dual, i.e. %EWPUB;U = iBfw is a conformally invariant relation.

The class of theories we will now describe contains only two propagating degrees of
freedom [139, 513], just like GR. Spherically symmetric solutions, as well as black holes,
have been studied [751] [752] [648], and extensions of these ideas to bimetric theories have
also been considered [II75]. Let us now describe the kinematical setup of the theory
before proceeding to discuss its dynamics.

Kinematics

Consider the set of 1-forms {e°, e’ }, the tetrad, where the capital Latin indices denote
internal SO(3) indices (note that this is a different space than SU(2) considered above)
such that

ds? = Gupdatdz” = —e%0 + 6, 5ele”’. (554)

From the tetrad we can also define the self-dual 2-forms !

24y and similarly the anti

self-dual 2-forms ;{_)), by

1
£ =i ne' 7 §EIJKQJ Aek. (555)
I

Any other self-dual 2-form can then be decomposed in terms of §(+)

. In particular, we
may write

i _ pi oyl
é _BI;(_,_)‘ (556)
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From Ql we can then define the connection one-forms A° a
dB' + 7" AJ A BF = 0. (557)

The above equation can be solved to get

1

; ; i o pk
A= 5 g BBV Blg, (558)
where det B = —3;¢7*Bi," B} Bk 1. Now, since B' is conformally invariant, we know

that A’ is too. We can now proceed and define the curvature two-forms i’ of A® as

) 1 )
E' = dA"+ S AN Ak (559)

Dynamics

The action for this theory takes on the form of the well known BF-theory:

i , , 1 . ,

B, A] = 0;;B* NF'[A] — -V (B'ANB’ s
B4 = o [ 8B A B - V(B AR 45 (560)
where V(M) is a holomorphic function of a complex symmetric 3 x 3 matrix, M, that
is required to be homogeneous of degree one (i.e. V(AM) = AV(M)) so that when it
is applied to a four-form such as B" A B’ the result is also a four-form. We introduce

the internal metric h"7 = BiIBj J6[ 7 and further decompose it into trace and traceless
parts as h¥ = %h (5“ + Hij), where h = 5ijhij and 5¢jHij = 0. We can then write V as
V(h') = L1hU(H"), and expand U as

U(H) = Ao — 8%trH2 + O, (561)
where the constant Ag plays the role of the cosmological constant, while the constant £ is
a new scale that describes deviations from GR. The minus sign in the 2nd term above is
required to avoid instabilities. In particular, as £ — 0 the theory reduces to the Plebanski
formulation of GR with a cosmological constant (see Section [2.3.3).

As discussed above, the metric here is defined only up to conformal transformations.
In order to couple the theory to matter fields we have to fix this ambiguity, which can
be achieved by the introduction of a new function R(h%¥) that is also homogeneous of
degree one. The conformal freedom is then fixed by requiringiﬂ R(h) = 1. In a similar
fashion to V', we can then decompose R as R = %hUm(H), and expand U, as

Up=1- gtrH2 +O(H?), (562)

40Strictly speaking this defines a three-form which is then dualised to a one-form.
41This method of fixing the conformal ambiguity can be shown to arise naturally by considering the
motion of a test body [749].
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where g is a dimensionless constant that can be of any sign. This new parameter measures
the departure from the Urbantke metric, given by an equality in Eq. . Rather than
the two new parameters, g and /, it is sometimes convenient to use the two dimensionless
parameters [ and -y, defined by

1 1 4
= —_ = d = e—_—m = -,
F=g9-3, an 7= A, 3 (563)
Cosmological consideration then tell us that 0 < g < 1, and hence —% < B < % and

~v > 0 [753]. General Relativity is recovered in the limit v — co.
Variation of Eq. (560) with respect to A gives Eq. (557)), while variation with respect
to B gives

A .| oU 1, ouU, 1 y ;
BRI — Bt ZASH m = ij J oy J
0ijB' 1 I = B'; DH + 3A6 2rGT <8Hij + 3Am6 )] B Jé(ﬂ SWGT[JE(i),
(564)
where A and A,, are the Legendre transforms of U and U, respectively, i.e.
ou .. oU. y
A=U-— 8Hin 7 and Am = Um — WTZH ], (565)

and where T77 = T“UE,IL L\ 2772 where T*, is the traceless part of the energy-momentum
tensor, T),,, [750].

Cosmology

The cosmology of this theory has been analysed by Krasnov and Shtanov at the level
of perturbed FLRW solutions [(53]. Let us first consider the FLRW solutions of this
theory. For homogeneous and isotropic spaces we have B = §*/. Hence, we can drop
the distinction between ¢ and I and let Ei = Ei. We also have H7 =0, so U = Ay and

U,, = 1, resulting in R = %h and V = %hA(: The fixing condition R = 1 then gives
h =3 and V = Ay. Under these conditions the field equations can be written

. 1 . . ~ i
F'= ZAZ - 2nG(P - g)g —27G(p+ P)E". (566)

For the homogeneous and isotropic space-time we also have e = adr and €' = adzx’.
After some algebra this gives A’ = iHda? and F' = iH'dr A da? — LR dxd A da*.
The field equations can then be written

3H? = 81Ga*(p + pa), (567)
where Py = —pp with Ag = 87Gpy, and
—2H' — H? = 81Ga*(P + Py), (568)

where p and P do not include the cosmological constant. Thus, for metric backgrounds
the FLRW solutions of this theory are the same as those of General Relativity. The
situation changes, however, when we consider linear fluctuations. In this case one gets
departures from ACDM that depend on g and #.
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We now consider the perturbed space-time metric in the conformal Newtonian gauge.
The perturbation for B*; is then given (after some convenient gauge-fixing) in terms of
a new scalar mode y as

i i Lo
By =8+ 5. 5D'x. (569)
The perturbed field equations are then given by [753]
1
—k2® = 4nGa?p [§ + 3H(1 + w)b] + @kﬁ [K*x — 3HX'] , (570)
1
O +HY = 4nGa’*(p + P)0 — 3—2k2x’, (571)
a
k2 k2
O+ 2HY + HY + (2H +H?) W+ (D = V) = drGa®6P + o, (572)
a
9 1 , k2
® — U =8rGa (p+P)E+§ X +§X , (573)

and one can show that the Bianchi identities are satisfied independently of the x terms.
In this sense the x field is non-dynamical. The remaining equations determine x in terms
of ® and ¥ as

X' = 2HX — [A+4H + Aoy + 87GB(p — 3P)] x + a*(® + V) = 0, (574)

where p and P does not include the cosmological constant. This equation can be solved
to get x in terms of ® 4+ ¥, hence the x terms in the field equations can be thought of as
non-local modifications of the Einstein equations.

Krasnov and Shtanov also find the vector and tensor mode equations [753]. Further-
more, they study the evolution of perturbations during inflation, a well as radiation,
matter and A dominated epochs, and estimate the effects of the modifications on the
matter power spectrum.

4.5.3. Dark energy from curvature corrections

A proposal for IR modifications of gravity has been put forward by Piazza [1036, 1037].
The starting point for this is the usual semi-classical gravity, where matter fields are
quantised on a curved background manifold. The operators of the matter field theory are
then modified in the IR in a way we will now describe. Schematically, in a cosmological
setup, operators corresponding to Fourier modes of physical momentum k are corrected
by terms of order H?/k? where H is the Hubble parameter. These modifications lead
to the apparent existence of Dark Energy, but without introducing a new scale in the
problem.

To illustrate this idea consider the vacuum expectation value of the local energy
density of a massless ﬁelﬂ

, fquad®  fiog(t)
Tt Dpare = [ % [+ =4 o

= local terms + non-local terms,

k+ +... (575)

425ee e.g.[1298] [516] for the explicit expression of a massive scalar on flat FLRW background.
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where spatial homogeneity has been assumed for simplicity. The local terms can be re-
moved by local gravitational counter-terms, while the non-local pieces represent the gen-
uine particle/energy content of the chosen “vacuum” state. The first term contributes to
the cosmological constant, and in flat space-time can be removed by the usual procedure
of normal-ordering (the f’s vanish in flat space-time). In curved space-time, however, the
presence of the time-dependent f’s makes the normal-ordering procedure meaningless.
The conjecture of [1036] T037] is that there exists a theory that resembles semi-classical
GR on small scales, but that has an IR-completion that prohibits the time dependent
pieces in . If that is the case then one can still deal with the cosmological constant
term by the usual procedure of normal-ordering, as in flat space-time.

To try to construct such a theory [1036] [I037] propose what they call the Ultra
Strong Equivalence Principle: For each matter field or sector sufficiently decoupled from
all other matter fields, there exists a state (the “vacuum”) for which the expectation
value of the (bare) energy-momentum tensor is the same as in flat space, regardless of
the configuration of the gravitational field.

What this principle aims to achieve is to remove the time-dependent terms in Eq.
(575)) by appropriate modifications of semi-classical gravity that manifest themselves
when the Fourier modes have wavelengths comparable to the inverse extrinsic curvature
(i.e. the inverse Hubble radius H~'). At the present, a complete theory that imple-
ments this idea is lacking, but a toy-model with massive scalar fields has been considered
in [I036, 1037]. Letting @ be the comoving momentum that labels operators in Fourier
space (related to physical momentum as 7i/a), the modification to O(H?2a?/n?) is given
by the modified commutation relation

H2 2
[A%1)7 AS,)T} = 6@ (7 — i) (1 _ TZ +.. ) , (576)
n

where Ag) is the annihilation operator. This prescription is equivalent to using the

standard commutation relation [A%O),Agf)q = 6@ (77 — @') for the standard operator

A%O), but with a modified comoving momentum given by k= (1 — Igi%z) that locally

defines the infinitesimal translations. In a local neighbourhood (smaller than a Hubble
patch) the above prescription can be shown to cancel the quadratically divergent piece
fquad(t) in Eq. l} Note that the momentum k is not conserved, but 7 is.

To extend the above to the global picture one can use the translation operator
e=MPY where PO = [dPn 7 AS)TAS) = pW) = [ d®n k A%O)TA%O) is the momentum
operator constructed with the modified Fourier modes, and A is the comoving proper
distance to a point far away from the origin. In GR the comoving distance A = d(t)/a(t)
is a constant given by the ratio of the physical distance, d(t), to the scale factor, a(t).
However, in the present theory one finds instead that

i Lysd o :
A=-X"—(a®H") + higher orders. (577)
4 dt
Comoving distances obeying Eq. are, in fact, already strongly disfavoured by ob-
servations [958]. One may, however, try to explore further whether the dynamical Hubble
scale H (t) itself could provide the scale required by cosmic acceleration by considering
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the more general expansion
AN = ANH A4 Ay(MH)? + ...
d d
+BIA2%(CLH) +BQ/\3%(a2H2) +..., (578)

where A; and B; are a set of constants. The authors find that certain regions of the
resulting parameter space can fit the data as well as ACDM.
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5. Higher Dimensional Theories of Gravity

The first systematic studies of higher dimensional geometry date back to the likes
of Riemann, Cayley and Grassmann in the mid nineteenth century. It lies at the heart
of General Relativity, where space and time form part of a curved 3 + 1 dimensional
manifold, as described in Section [2| Of course, Riemannian geometry is not restricted to
3-+1 dimensions, so we have the tools to study gravitational theories in higher dimensions.
Indeed, this is more than just a theoretical curiosity. Superstring theory, arguably our
best candidate for a quantum theory of gravity, can only be formulated consistently in
10 dimensions.

The problem now is a phenomenological one: Gravity does not behave like a 10
dimensional force in our experiments and observations. Perhaps the simplest observation
along these lines is the stability of earth’s orbit. In D dimensions of space-time, the
Newtonian potential due to a point source will typically go like 1/rP~3. For D # 4, it
follows that we cannot have stable planetary orbits, and so it is clear that gravity should
not appear 10 dimensional on solar system scales. We use the word appear, because there
exist gravitational models where the extra dimensions are hidden from experiment, but
which open up at shorter and/or larger distances.

In this section we will review various models of higher dimensional gravity that have
been proposed. We will only discuss the case of extra spatial dimensions, although extra
temporal dimensions have been studied (see eg [1141]). One might worry that extra
temporal dimensions lead to problems with causality, as they permit closed time-like
curves in the form of circles in the plane of the two temporal directions.

5.1. Kaluza-Klein Theories of Gravity

Kaluza-Klein (KK) theory grew out of an attempt to unify gravity and electrody-
namics [985] 673, [701], [702]. The basic idea was to consider General Relativity on a 4+ 1
dimensional manifold where one of the spatial dimensions was taken to be small and
compact. One can perform a harmonic expansion of all fields along the extra dimension,
and compute an effective 3 + 1 dimensional theory by integrating out the heavy modes.
This idea has been embraced by string theorists who compactify 10 dimensional string
theories and 11 dimensional supergravity /M-theory on compact manifolds of 6 or 7 di-
mensions respectively, often switching on fluxes and wrapping branes on the compact
space (see [652] for a review). Each different compactification gives a different effective
4-dimensional theory, so much so that we now talk about an entire landscape of effective
theories [1194].

Assuming that the extra dimensions have been stabilised, the late-time dynamics of
KK theories is most easily understood at the level of the 4D effective theory. As we will
show, this will generically correspond to a 4D gravity theory with extra fields, examples
of which are studied in detail in Section[3] At early times, when the 3 dimensional space
is comparable in size to the extra dimensions, the effective description clearly breaks
down. This forms the basis of KK cosmology where one can ask the deeply profound
question of why and how the 3 extended dimensions of space were able to grow large,
while the extra dimensions remained microscopically small. It seems fair to say that a
fully satisfactory answer to this question has yet to emerge.
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We will now discuss some aspects of KK theory, starting with an overview of dimen-
sional reduction and effective theory before moving on to a discussion of KK cosmology
at early times. For a more detailed review of KK theory see [76] [T005].

5.1.1. Kaluza-Klein compactifications

To understand the generic features of KK compactifications, it is sufficient to describe
the dimensional reduction of General Relativity on a circle, S*. We first define General
Relativity in D = d + 1 dimensions, via the generalised Einstein-Hilbert action

/ dP X /=R, (579)

Shl = 167TGD

where Gp is Newton’s constant in D dimensions, yap is the D dimensional metric
with corresponding Ricci tensor, R 45, and Ricci scalar, R = VABR ap. Note that we
are neglecting the matter Lagrangian for brevity. We are assuming that one of the
spatial dimensions is compactified on a circle of radius L/2x. To this end we can define
coordinates X4 = (z#, z), where the coordinate z lies along the compact direction, such
that 0 < z < L.

We can expand the metric as a Fourier series of the form

vap(x,2) Z’y(n) e/ L (580)

We find that this gives an infinite number of extra fields in d dimensions. Modes with
n # 0 correspond to massive fields with mass |n|/L, whereas the zero mode corresponds
to a massless field. As we take L to be smaller and smaller we see that the mass of
the first massive field becomes very large. This means that if we compactify on a small
enough circle we can truncate to massless modes in the 4-dimensional theory. Massive
modes will only get excited by scattering processes whose energy lies at or above the
compactification scale 1/L. This also applies to matter fields arising in particle physics.
Indeed, particle physics imposes by far the strongest constraints on the size of the extra
dimension. Standard Model processes have been well tested with great precision down
to distances of the order ~(TeV)™!, with no evidence of extra dimensions yet emerging
[941]. Assuming that the extra dimensions are universal, that is the Standard Model
fields can extend all the way into them, we infer that L < 107 m. The natural scale of
the compact dimensions is usually taken be Planckian, L ~ .

Let us now focus on the zero modes, 71(4 B( x). We could define 7,(3,), 'y;(f;) and wgg) to
be the d-dimensional fields g, (x), A,(z) and ¢(z). In effective field theory language,
these will correspond to the metric, gauge field, and dilaton, respectively. In order that
our results are more transparent we will actually define the components of the metric in
the following way:

’Y,S?/) =e2%g,, +e*PPA,A,, fyg;) =24, 7O = ¢28¢, (581)

where @ = 1/4/2(d —1)(d — 2), and 8 = —(d — 2)a. Since we have truncated to the
massless fields, we can integrate out the z part of the action given in Eq. (580)). We find

that the d-dimensional effective action is then given by

/ dtaz\/—g (R— (V)% — —e2(d- 1>a¢F2) (582)
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where F? = F,, F* and F,, =V, ,A,—V,A, is the electromagnetic field strength. The
curvature associated with the d dimensional metric, g,,., is described by the Ricci tensor,
R,,,, and Ricci scalar, R = g"”R,,,,. What we now have is an Einstein-Maxwell-Dilaton
system in d dimensions. Of course, Kaluza and Klein were particularly interested in the
case of d = 4. They were frustrated by the presence of the dilaton, ¢, in the resulting
4-dimensional effective theory. The point is that one cannot simply set the dilaton to
zero and retain a non-trivial Maxwell field, since this would be in conflict with the field

equations arising from Eq. (580)),

1 1 — —1)o [e3 1
G = 5 Va0V = (V00 + 2020 (BB - 1%, )| (539
\vZ% (6—2(d71)a¢F‘uU> =0, (584)
1
06 =—5(d - Doe™2d-Dad p2. (585)

where G, = R, — %Rglw is the Einstein tensor in d dimensions. In the usual jargon,
switching off the dilaton does not represent a consistent truncation of the higher dimen-
sional theory [440]. We should also note that the physical size of the compact dimension
is not necessarily given by L, but by Lef®®)_ If L is to represent an accurate measure
of the compactification scale, we are therefore implicitly assuming that ¢ is stabilised
close to zero. For this to happen we need to generate a potential for ¢ that admits a
stable solution— this is known as the problem of moduli stabilisation. In more general
compactifications, moduli potentials can be generated by Casimir effects of fields in the
compact space [54] 55| 238], 335], B36], but the moduli remain unstable [336]. In fact, the
problem of moduli stabilisation has only recently been solved by switching on fluxes to
stabilise the volume of the compact space [662], 661].

There are, of course, many different compactifications that have been studied in the
literature, a detailed analysis of which is clearly beyond the scope of this review (see
[652]). However, aside from details such as the inclusion of fluxes and branes on the
compact space, the general scheme of each compactification is the same as the one we
have just described. Typically, a compactification of, say, 11 dimensional super-gravity
down to four dimensions will give rise to a gravity theory with a plethora of extra fields.
These extra fields include scalars, pseudo-scalars, vectors, pseudo-vectors, and arbitrary
p-forms. Modifications of gravity due to extra fields are studied in detail in Section [3]

5.1.2. Kaluza-Klein cosmology

As we have just discussed, for a phenomenologically viable theory with compact (and
stabilised) extra dimensions, the characteristic size, L, of the compact manifold should
not exceed the scale probed by modern collider experiments, which is currently around
1071 m [941]. Tt is amusing to compare this to the characteristic size of the 3 large spatial
dimensions, which is at least a Hubble length ¢/Hy ~ 10%*m, or in other words at least
45 orders of magnitude greater. Of course, it was not always like that. In the very early
universe, at times ¢t < L/e¢, one might expect that all spatial dimensions were of the same
scale, each playing an equally important role in the dynamical evolution. This begs the
question: Why did the Universe evolve into a state where just 3 spatial dimensions grew to
macroscopic scales? Put another way, how does one achieve a dynamical compactification
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mechanism in the early Universe such that 3 spatial dimensions expand exponentially
to an extremely large size, in contrast to the remaining spatial dimensions? Were those
extra dimensions somehow prevented from growing beyond a certain size, or did they
grow initially and later contract towards their current state?

These questions have led many authors (see, e.g. [514} [33] [730, [1084], 1083, [T085, 11, 3}
2,[997,555]) to consider the dynamics of anisotropic cosmologies in D = d+1 dimensions,
where d = n + n. Indeed, consider the Bianchi-type metric

ds? = YpdX“dX" = —dt* + a*(t)qi; (v)dx'da? + @ (t)Gmn (T)dE™dF", (586)

where the coordinates z* run over the n spatial dimensions and the coordinates #™
run over the 7 spatial dimensions. The n-dimensional metric, g;;(x), is taken to have
constant curvature k, whereas the fi-dimensional metric, G, (Z), is taken to have constant
curvature k. The growth of these two spaces is controlled by the relevant scale factors
a(t) and a(t). Naturally, we will be interested in the case of n = 3, but for the moment
let us keep things general.

We now apply Einstein’s equations in D = d 4 1 dimensions,

1
Gab = Rap — iR%b =8nGpThyp, (587)

where the energy-momentum tensor is given by an anisotropic fluid,
. ,—/h
Ty =diag | —p, P,..., P, P, ...,

As usual, p(t) is the energy density, whereas p(t) is the pressure along the n dimensions
and P(t) is the pressure along the 7 dimensions. Einstein’s Equations (587)) then yield
the following [514]

2= 1) (B + &) + 3 —1) (B2 + %) + naHH = 87Gpp, (588)
S (n—1) (H? + &) +AHH = 5 [p+ (2 — )P - P, (589)
%+(ﬁ—1)(ﬁ2+a%)+nHﬁ:%{pfnPJr(n—l)p}, (590)

where H = a/a and H=a /a are the Hubble parameters of the two expanding/contracting
spaces. Of course, we also have energy conservation, which gives

p+nH(p+P)+aH(p+ P)=0. (591)

Note that we do not necessarily have to assume that the cosmological dynamics is gov-
erned by D-dimensional General Relativity. We can also consider modifications of GR
where additional fields are present. For example, in string gas cosmology [183] [1216], we
consider the action

1
167TGD

S = /d%ﬁe—% (R—4(Ve)®> —¢) + Smlr, Uyl (592)
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where S;,, is the matter part of the action, containing the string gas, and the constant
¢ vanishes in the critical Casﬂ but not otherwise. The resulting field equations can be
written in the form Gy, = 8nGpTyp, where

1 C m
Tap {_7%1: + 8VadVid — 67a1(V$)? = 2(VaVy — %bD)‘b} +e2T", (593)

- 87TGD 2
(m) _ 2 6Sm . L
and T, = — = sy The scalar equation of motion just follows from energy conser-

vation, VT, = 0.

Let us return to Equations — with a view toward dynamical compactifi-
cation. Many of the earlier works [33], [730}, [1084], [T083], 1085, [, B] focus on isotropic
perfect fluids, for which P = P = wp. For simplicity and definiteness, let us follow the
analysis of Abbott, Barr and Ellis [I]. We consider an epoch in which we have radiation
domination, w = 1/(n + n), so that the evolution equations read

3= 1) (B2 + &) + 30— 1) (A2 + %) + naH I = 87Gpp, (594)
&4 (n—1)(H*+ &) +aHH = %2 p, (595)
iy (ih—1) (ﬁ2+a%) +nHH = 8%, (596)

Now, if the 7 dimensions are taken to be an n-sphere (& > 0), it is clear from Equation
that they will reach a mazimum size when H = 0, and will subsequently start to
recollapse. In contrast, we can take the n dimensions to be flat or hyperbolic (k < 0), so
that these dimensions will never turn around. In fact, one can show that as we start to
approach the singularity of the collapsing sub-space (a(t) — 0), the n dimensions enter
a phase of accelerated expansion. To see this note that H starts to become large and
negative, and so it is clear from Equation that we will enter a phase with d > 0.
The typical evolution of the two scale factors is shown in Figure [7]] Note that we can
even allow for a sufficiently small x > 0 and still retain this qualitative behaviour. The
upper bound on « follows from demanding that the turnaround in a(t) occurs after the
turnaround in a(t). The bound is not strong enough to be interesting: It merely implies
that today’s Universe is larger than the horizon [I].

Of course, it is clear that the classical equations will start to break down in the
neighbourhood of the singular point. The physical radius of the n-sphere is a/ V&, so
we certainly would not expect to trust our field equations when a(t) < vALp, where
Lp x G}j/(DQ) is the fundamental Planck length in D dimensions. In [I], it is assumed
that quantum gravity effects will ultimately stabilise the size of the internal space, ending
the inflationary phase at some time t., where a(t.) = V&L, for some compactification
scale L 2 Lp . Albeit without much justification, let us accept this assumption for the
moment, and consider the physically interesting case of n = 3. One might hope that
the inflationary phase is sufficiently long to offer a solution to the flatness, entropy and
horizon problems of the standard cosmology. Consider the entropy problem in particular.
Entropy is indeed released from the extra dimensions into the usual 3 dimensions of

43 For the bosonic string the critical dimension is D = 26, whereas for the superstring the critical
dimension is D = 10.
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Figure 7: Adapted from Figure 1 in [I]. The typical evolution of the scale factors in the two different
sub-spaces. The scale factor a(t) along the n dimensions grows large, entering an inflationary phase as
the remaining 7 dimensions begin to recollapse. The scale factor a(t) along the 7 dimension is assumed
to be stabilised by quantum gravity effects at some time t..

space [33, 1], but only as much as log S ~ |O(1)|log(Lp/L) [730]. Since we demand that
L 2 Lp, this is clearly way short of the total required to solve the entropy problem,
log S ~ 88. In short, KK inflation does not last long enough to provide an alternative to
scalar field driven inflation.

To get the required expansion of 3-dimensional space, we must therefore include
some additional scalar fields. Adapting [615] slightly, we can mimic a period of slow-roll
inflation by plugging a cosmological constant, A, into the Field Equations —.
Setting P = P = —p, where p = A/87Gp, we find

B = 1) (B2 + &) + 30— 1) ([ + &) +ni = A, (597)
4 (n—1)(H*+ &) +nHH = 2, (598)
S (i-1) (A2 + &) +nHH = 25 (599)

Again, by taking the n dimensions to be flat (x = 0), and the 7 dimensions to be positively

curved (kK > 0), we find a solution for which the flat directions grow exponentially, and the
Bl i 2A

spherical dimensions remain fixed with H = H, at @ = a,, where Hf =" T aen

The radius of the extra dimensions lies at the mazimum of its potential, so this solution
is unstable. Indeed, fluctuations reveal that the spherical dimensions collapse to zero size
over a time scale At ~ (14++/1+ 8/n)/4H.,, after which we cannot count on exponential
growth in the flat directions.
We now consider the phenomenologically interesting case of n = 3. To get the required
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number of ~ 65 e-folds of inflation along the 3 flat directions we need H,At ~ 65. For
n =3, H At ~ 0.729, so once again inflation is cut short far too early. We could imagine
getting around this problem if we could alter the potential for the radius a, such that it
develops a minimum as well as a maximum, by switching on fluxes [662] [661]. Generically,
it is still very difficult to get enough exponential growth along the familiar 3 dimensions
without causing the extra dimensions to grow alongside them [615]. For further details on
the latest attempts to embed inflation in higher dimensional theories, we refer the reader
to [807, 1048, 812}, (666, 218, 873, [166]. Bounds on the variation of fundamental constants
for dynamical compactifications have been studied in [571] 572], while PPN parameters
for KK models in the solar system were computed in [46I]. Note that Kaluza-Klein
cosmologies have also recently been applied to the dark energy problem [I19] [120].

We end our discussion of Kaluza-Klein cosmology by asking the question: Why are
there 3 large spatial dimensions? We have already alluded to an anthropic explanation
demanding the existence of stable planetary orbit@ To this we could add the existence
of stable atoms and chemistry, both key to the development of intelligent life, and both
requiring no more than 3 (large) spatial dimensions.

Modern attempts at a dynamical understanding of the dimensionality of space include
String Gas Cosmology [183] [1216] (for reviews see, e.g., [180, 116, [181]). Here the spatial
dimensions are taken to be compact and precisely 3 dimensions are allowed to grow
large due to the annihilation of strings wrapping around those dimensions. The point is
that strings winding around compact dimensions oppose their expansion since the energy
of the string winding modes increases with radius. To allow the compact dimensions to
grow large the winding modes must therefore collide and annihilate with the anti-winding
modes. Generically, we would only expect collisions of 1 + 1 dimensional strings in at
most 3+ 1 dimensions. Thus, the dimensionality of the string controls the dimensionality
of space by allowing at most 3 spatial dimensions to grow to macroscopic scales. Note
that this result is not spoilt by the inclusion of branes wrapping compact directions, as
these happen to fall out of equilibrium before the strings [21].

Whilst this idea has some appeal at first glance, it has not stood up to intense
scrutiny. More detailed quantitative analyses suggest that the desired outcome is not
at all generic, and requires highly fine tuned initial conditions [456, 457, [458]. Whilst
one can engineer an anisotropic set-up allowing 3 dimensions to grow large as desired,
typically the internal dimensions also grow to large sizes, just at a slower rate [456], [457].
In fact, it turns out that either all dimensions grow large since the string gas eventually
annihilates completely, or all dimensions stay small since the string gas gets frozen out
[458]. There are also problems at the level of cosmology. For example, when properly
calculated, the scalar perturbations have a blue power spectrum with n = 5, which is
strongly ruled out by observations [670]. It has been argued that a near scale invariant
spectrum can be obtained if the dilaton gets frozen during the strong coupled Hagedorn
phase in the very early Universe [182]. However, such claims still rely on a semi-classical
treatment of cosmological perturbations that cannot be trusted during the Hagedorn
phase, as the strings are strongly interacting.

In the context of 10 dimensional string theory, other attempts to explain the dimen-

440n the subject of planetary orbits, it is amusing to note that Kepler himself reasoned that the 3-fold
nature of the Holy Trinity was responsible for the perceived dimensionality of space. Ptolemy is reputed
to have offered some alternative ideas in his work On Dimensionality, but they have since been lost.
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sionality of our Universe consider that for integer values of n, the inequality 2n < 10 =
n < 4 [444] [683]. This is interesting because it means that the world volume of 3 + 1
dimensional branes (known as 3-branes) are less likely to intersect than those of larger
branes. In particular, Karch and Randall [683] have shown that an FLRW universe
initially filled with equal numbers of branes and anti-branes will ultimately come to be
dominated by 3-branes and 7-branes. This analysis accounts for the fact that larger
branes dilute more slowly, as well as the likelihood of intersections and annihilations
(hence the importance of 7-branes). In a braneworld scenario, this could explain why we
might be more likely to find ourselves living on a 3-brane, as opposed to a larger brane.
The consequences of living on a 3-brane are discussed in detail in the Section [5.2)
Finally, we note that for toroidal compactifications, 3 large spatial dimensions can be
linked to the stability of the small extra dimensions, at least in the presence of solitonic
strings/branes that correspond to point masses in the large dimensions [462].

5.2. The Braneworld Paradigm

The braneworld paradigm [I5, 1074, [62, [52] [63] represents a radical alternative to
the standard Kaluza-Klein scenario, discussed in the previous section. In the KK sce-
nario, the extra dimensions must be small and compact, the size of the internal space
constrained by collider experiments to be below the inverse TeV scale. In the braneworld
scenario the extra dimensions can be much larger, perhaps even infinite in extent. This
is made possible by relaxing the assumption of universal extra dimensions.

In the braneworld picture the Standard Model fields are not universal, rather they
are confined to lie on a 3 + 1 dimensional hyper-surface, known as the brane, embedded
in some higher dimensional space-time, known as the bulk. Tests of Standard Model
processes can only constrain how far the brane may extend into the bulk, or, in other
words, the brane thickness. They do not constrain the size of the bulk itself. Such
constraints can only come from gravitational experiments, as gravity is the only force
that extends into the bulk space-time. As is well known, on small scales gravity is
much weaker than the other three fundamental forces, making it difficult to test at short
distances. In fact, the gravitational interaction has only been probed down to ~ 0.1 mm,
with torsion-balance tests of the inverse square law [10]. It is too simplistic, however, to
suggest that this translates into an upper bound on the radius of the bulk. Gravity is
intimately related to geometry, and, as we shall see, one can warp the bulk geometry such
that an infinitely large extra dimension is still allowed by experiment. For an excellent
introduction to large extra dimensions see [1072].

Before delving into a detailed discussion of the various models, we note in passing
that the braneworld paradigm is well motivated by string theory [622] [838], [52]. As well
as fundamental strings, string theory contains fundamental objects known as D-branes
[1044]. These are extended objects upon which open strings can end. The braneworld
set-up therefore has a natural interpretation in terms of a stack of D-branes embedded in
a higher dimensional target space (see Figure . Open strings, with their ends attached
to the D-branes, can be identified with the Standard Model fields bound to the brane.
Only closed strings can propagate through the bulk, and these are identified with the
gravitational interactions.
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p=3+d, -dimensional brane

3-dimensional brane open string

closed string

Minkowski 3+1 dimensions

Figure 8: Taken from [5I]. Here the brane has 3 macroscopic dimensions, and d; compact dimensions.
The open strings end on the D branes, whereas the closed strings propagate through the bulk.

5.2.1. The ADD model

The braneworld paradigm really began to gather momentum with the seminal work
of Arkani-Hamed, Dimopoulos and Dvali [62], in which the large extra dimension is
exploited in order to explain the vast hierarchy between the electro-weak scale, Mgy ~
TeV, and the Planck scale, M, ~ 10'® TeV. In this scenario the hierarchy does not go
away completely, rather it is reformulated as a hierarchy between the scale of the extra
dimensions, u ~ 1/L, and the electro-weak scale. The set-up is as follows: Standard
Model fermions and gauge bosons are localised on a 3 + 1 dimensional domain wall, in
an (effective) D = 4 + n dimensional space-time. We should clarify that D counts the
number of macroscopic dimensions in this scenario. Any microscopic dimensions, with
characteristic size given by the fundamental Planck length, behave as in the standard
KK scenario described previously.

Now, the width of the wall cannot exceed the inverse TeV scale, as explained above.
The bulk space transverse to the wall is compact but much larger than the width of
the wall (L > TeV~!), so much so that we can treat the wall as an infinitely thin 3-
brane. In the simplest construction, the bulk action is then described by the generalised

Einstein-Hilbert action
MD72
Shulk = DT dP? X /=R, (600)

where Mp is the fundamental Planck scale in D dimensions, v4p is the D dimen-

sional metric with corresponding Ricci tensor, R ap, and Ricci scalar, R = 'yABRAB.

The Planck mass is related to the fundamental Newton’s constant in D dimensions by
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87Gp = MIQ)_D . At large distances, gravitational interactions along the brane are medi-
ated by the graviton zero mode, which has a homogeneous profile over the extra dimen-
sions. Truncating to the zero mode, we can compute the four-dimensional effective action
describing long distance gravity along the brane by integrating out the macroscopic extra
dimensions. This result in

MD—2 .
Set = % / d*zv/—gR, (601)

where g, is the four-dimensional metric on the brane, with Ricci tensor R,,,,, and Ricci
scalar R = g"” R,,,,, and where the volume of the extra dimensions is given by V;, oc L™.
The effective four-dimensional Planck scale, as seen by an observer on the brane, is then
given by
2 2
M2 ~ M3 L™ (602)

By taking the macroscopic extra dimensions to be sufficiently large, we can eliminate
the standard hierarchy in D dimensions, Mp ~ Mgw ~ 1 TeV, and replace it with a
new hierarchy involving the scale of the extra dimensions, u ~ 1/L < Mgy . This is not
in violation of short distance gravity tests, at least in D > 6 dimensions. Indeed, in six
dimensions one can eliminate the hierarchy even for millimetre size extra dimensions.

In actual fact, the strongest constraints on the ADD model do not come from short
distance gravity tests, but from astrophysics and cosmology [63]. The problem arises
because the Kaluza-Klein modes can be extremely light, mgr > 1/L > 10~* eV, and
extremely numerous, N g ~ Mgl /M3 < 10%2. This means that even though each mode
is only very weakly coupled, with strength 1/M,;, scattering processes along the brane,
at energies ' 2 m, can produce a copious number of KK gravitons.

The strongest astrophysical constraint comes from the possible emission of KK modes
during the collapse of SN1987a. Requiring this to not be the dominant cooling processes
imposes a lower bound on the fundamental Planck scale. For example, with n = 2 we
have Mp > 50 TeV, whereas for n = 3 we have Mp > 3 TeV [350)].

In cosmology, one has to worry about over-production of KK modes at high temper-
atures, since this may destroy the standard Big Bang picture. In order to be consistent
with Big Bang Nucleosynthesis, and the current composition of the Universe, one must
identify a maximum temperature for the early Universe for a given fundamental scale.
Taking the fundamental scale to be Mp ~ 1 TeV imposes a temperature bound 7' < 10
MeV for n = 2, rising to T' < 10 GeV for n = 6 [588]. A higher fundamental scale will
raise the maximum temperature, but then one loses much of the appeal of the original
model. While a low maximum temperature is not in contradiction with cosmological
data, it does present a challenge to models of baryogenesis and inflation. The tem-
perature bounds can be weakened considerably if one does not require the bulk to be
flat. For example, when the bulk manifold is a compact hyperbolic space, the maximum
temperature can be pushed beyond the GeV scale even for n = 2 [671].

5.8. Randall-Sundrum Gravity

As we have already suggested, in a generic braneworld set-up there is no obvious
reason why one should demand that the bulk space should be flat, as in the ADD model.
In perhaps the most celebrated braneworld model, developed soon after ADD by Randall
and Sundrum [1051), 1052], the bulk is an anti-de Sitter space. There are two versions
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of the Randall-Sundrum model, generally referred to as Randall-Sundrum I (RS1) [1051]
and Randall-Sundrum IT (RS2) [1052]. Somewhat confusingly, the RS1 model contains
two branes, whereas the RS2 model only contains a single brane.

The RS1 model [I051] was also proposed as a resolution to the hierarchy problem. It
improves on the ADD model as the compact extra dimension need not be so large as to
introduce a new hierarchy. This is achieved by exploiting the exponential warp factor to
generate a large bulk volume from a small compactification radius. In contrast, the RS2
model [1052] contains a single brane and a non-compact extra dimension — it is infinite
in extent. This time the bulk warp factor ensures that gravity is localised close to the
brane, so that a brane observer only sees the gravitational effects of the extra dimension
above scales set by the bulk curvature.

Although the phrase Randall-Sundrum gravity really refers to these two original mod-
els, here we extend the definition to include any model with similar features. In this
section we are particularly interested in five-dimensional models containing 3-branes,
with some non-trivial geometry , or “warping”, present in the bulk. We begin with an
overview of some of the models. For further details see, for example, [1008] [845].

5.8.1. The RS1 model

In RS1, we have two 3-branes separated by a region of five-dimensional anti-de Sitter
space [1051]. The branes are located at z = 0, and z = 2., and we impose Zy symme-
try across each brane. Neglecting Gibbons-Hawking boundary terms [536], the action
describing this model is given by

M3 Zec
S = 75/d4x/ dz/—7 (R — 2A)
—a+/ d*zr/—g(H) — a_/ d*zy/—g(=) , (603)
2=0 2=z

where 7y, is the bulk metric, and gﬁ) and gf;) are the metrics on the branes at z = 0
and z = z., respectively. M5 is the five-dimensional Planck scale and is related to the
five-dimensional Newton’s constant via the standard relation G5 = 1/87M3. We also
include a negative bulk cosmological constant, A = —6/I2. If we fine-tune the brane
tensions against A, such that

_6ME 3
o l _47rG5l’

04y = —0_

then we admit a background solution in which the branes exhibit four-dimensional
Poincaré invariance:
ds* = e_2lz|/l77m,dm“da:” +dz?, (604)

for —z. < z < z.. The Z5 symmetry about z = 0 is explicit, whereas the other boundary
condition should be understood to be implicit. The line-element given in Eq.
contains an exponential warp factor that is displayed graphically in Figure[9} In between
the branes we recognise the geometry to be anti-de Sitter space, written in Poincaré
coordinates. Notice the peak in the warp factor at the positive tension brane, and the
trough at the negative tension brane. Although only a toy model, the RS1 set-up is well
motivated by a number of string theory/super-gravity constructions [622] [838], [439].
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Figure 9: The behaviour of the warp factor in the RS1 model.

By integrating out the 4D zero-mode we are able to derive the 4D effective Planck
scale on a given brane [I051] [100§]:

M2 = M3 (1 - T2l (605)

where + labels the sign of the corresponding brane tension. In terms of the effective

Newton’s constants we have
Gs +1
6s =G (7o) (606)

Now suppose we live on the negative tension brane. If we take the fundamental Planck
scale M5 ~ TeV, the bulk curvature scale to be just below 1/l ~ 0.01M;5, and the
distance between the branes to be such that z./l ~ 35, we recover the desired effective
Planck scale, M_ ~ m,; ~ 10'6 TeV. Thus, the hierarchy problem has been eliminated
altogether, and not just shifted around, as in the ADD model. In contrast, the hierarchy
is not eliminated if we live on the positive tension brane since then the effective Planck
mass is given by M, ~ e~ */!M_ [1051, [T00S].

As it stands, the RS1 model is incomplete. The problem is that on either brane the
low energy 4D effective theory is not GR, but Brans-Dicke gravity. The extra scalar
comes from fluctuations in the brane separation, and is sometimes referred to as the
radion [541), [528] 275]. The value of the Brans-Dicke parameter depends on the brane,
and is given by [528]

3
wip =5 (2 —1). (607)

Observations require this parameter to be large (wpp > 40000, see Section [3.1.2]). Note
that for the positive tension brane wgD) can be made arbitrarily large with increasing

brane separation. The same cannot be said for wg[% on the negative tension brane. If
we want to live on the negative tension brane we must generate a mass for the radion to
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brane

Figure 10: The behaviour of the warp factor in the RS2 model.

suppress its fluctuations. The Goldberger-Wise mechanism does exactly that, and thus
stabilises the distance between the branes [542].

5.83.2. The RS2 model

The RS2 model is obtained from RS1 by taking the negative tension brane off to
infinity [1052]. The geometry is then described by the metric in Eq. with z, — oo.
The corresponding warp factor is shown in Figure the single peak at z = 0 indicating
that we have a single brane with positive tension. In this limit M, — M3I, so we cannot
eliminate the hierarchy problem as in the RS1 model. Rather, the situation is more akin
to the five-dimensional ADD model, with the curvature scale, 1/1, playing the role of the
compactification scale, p ~ 1/L.

What makes the RS2 model interesting is the way in which 4D GR is recovered on the
brane. As we have just seen, in RS1 the observer on the positive tension brane sees a low
energy gravity theory corresponding to Brans-Dicke gravity, with a BD parameter wg’D) =
% (e2zc/ L 1). In the RS2 limit of infinite brane separation the BD scalar decouples
and one is left with 4D GR. As we will see in detail in Section [5.3.5 even though the
bulk is infinite in extent, gravity is localised on the brane at energies below the bulk
curvature scale, 1/l. As a method to screen the extra dimensions from the low energy
observer, this represents a radical alternative to the standard method of Kaluza-Klein
compactifications.

The key to gravity localisation is that the bulk volume is finite even though it has
infinite extent. This ensures that there is a normalisable graviton zero mode, which, in
the absence of any other massless modes, guarantees 4D GR at low enough energies.
The finite bulk volume arises because the warp factor falls off exponentially as we move
away from the brane. Intuitively, gravity localisation occurs because the warping makes
it difficult for the graviton to propagate too far away from the brane, so much so that
the region of the bulk with z 2 [ has no influence on low energy brane interactions.

Since 1/1 sets the scale at which the brane observer starts to become sensitive to the
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bulk, table top experiments of the inverse square law impose the limit 1/1 > 10~ eV. This
translates into a lower bound on the fundamental Planck scale, M5 > 10° TeV, which
is well above the electro-weak scale. Since TeV scale gravity is not phenomenologically
viable in this case, we abandon any discussion of the hierarchy problem for the single
brane scenario.

Up until now our discussion has centred around weak gravity on the brane. What
about strong gravity in the presence of localised sources? Whilst there have been some
interesting numerical studies (see, e.g., [1278] [758]) exact strong gravity solutions are
rare in RS2. One exception are the solutions for a domain wall localised on the brane
[561L B60]. In contrast, an exact solution describing a braneworld black hole remains
elusivd™] The difficulty arises because the brane is an accelerated surface, so any black
hole residing on the brane must follow an accelerated trajectory. Such an accelerated
black hole requires knowledge of the AdS C-metric, but this solution is unknown in five
dimensions. For a nice review of the search for braneworld black hole solutions see [558],
and more recently [1200].

RS2 and AdS/CFT

Emparan, Fabbri and Kaloper (EFK) have suggested that a static braneworld black
hole does not exist [470]. To understand their argument we must first recall the AdS/CFT
correspondence in which type IIB string theory on AdSs x S is conjectured to be dual to
N =4 SU(N) super-Yang-Mills, in the large N limit [862]. This suggests an alternative
description of RS2 gravity [570]: ‘Gravity on an RS2 brane is dual to a strongly coupled
conformal field theory (CFT) cut off in the UV, minimally coupled to 4D gravity’. There
is plenty of evidence for this holographic description of RS2 (see, for example, [570)
1100l (438 1009, 556l 1014 (596l T138] [695], and for a review [1008]). Another way of
describing the correspondence is to say [70]: ‘A classical source on the brane is dual
to a quantum corrected source in four dimensions, with the quantum corrections coming
from the strongly coupled CFT'. The quantum corrections are large because of the large
number of degrees of freedom in the large-INV limit. When applied to the problem of
finding a black hole on the brane, this suggests that the solution should not be static
since it should include the back-reaction of the Hawking radiation [470] (see also [1201]).
Fitzpatrick, Randall and Wiseman have disputed this interpretation, pointing out that
the CFT is strongly coupled and may therefore carry fewer degrees of freedom [508].
At this point it is fair to say that as yet there has been no consensus, and the subject
remains an active area of debate (see also [564], 562} [966], H05), H0G] ).

Note that if we accept the EFK conjecture, we can improve the bound on the bulk
curvature by an order of magnitude, 1/I = 1073 eV. This is based on the existence of
long-lived black hole X-ray binaries [471]. For smaller values of 1/l these binaries would
have already decayed.

5.3.8. Other RS-like models
One of the characteristic features of the Randall-Sundrum models is the structure of
the bulk geometry, described by a non-factorisable, or warped, metric. One can embrace

45There have been many attempts to find such a solution, most of which remain unpublished.
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this structure and consider a whole slew of interesting generalisations. Here we consider
a class of models described by warped geometries of the form

ds* = a*(2) g (v)dzt dz” + d2°. (608)

Many of the most interesting RS-like models exhibit quasi-localisation and give rise to
large-distance modifications of gravity. Perhaps the most celebrated of these is the DGP
model [454], which will be discussed in detail in Section Other interesting examples
include the GRS model [563], the asymmetric brane model [I012] 1T013] and the CGP
model [274]. We begin with the simplest generalisation, however, proposed by Karch and
Randall [682] (see also [667]).

The Karch-Randall model
Here we take the RS2 model and de-tune the brane tension, o, # 6M3/l, so that one
no longer has Poincaré invariance along the brane. For an excess tension, o, > 6M3/I,

the metric g,, is de Sitter, whereas for a tension deficit, o4 < 6M3/1, Guv 1s anti-de
Sitter. The effective cosmological constant on the brane is given by

A4=a3l(ézg)2—-;]. (609)

The behaviour of the warp factor also changes. We find that

a(z) = Acosh(c —|z|/1), ¢ =cosh™(1/A), for anti-de Sitter, (610)
a(z) = Asinh(c — |z|/1), ¢ =sinh ™ (1/A), for de Sitter, (611)

where A = [/|A4/3|. The decay of the warp factor away from the brane is greatest
for the dS brane, cutting off the space-time at z = lc. This means that gravity is
more strongly localised than in the standard RS2 scenario. In contrast, for the AdS
brane the warp factor turns around at some finite value of z. This means the bulk
volume is infinite, and gravity is not localised at all on the AdS brane as there is no
normalisable zero mode. Actually, when |A4| is small (compared with Ms), the AdS
brane exhibits quasi-localisation. This is because there is a normalisable mode that is
ultra-light, with mass m2;,,., yione ~ A7/Ms < |Ag] [I120]. At intermediate energies,
k> E > Mutra—light, the light mode behaves as if it were effectively massless and one
recovers 4D gravity. Note that there is no issue with the vDVZ discontinuity in AdS
when miltm_light/||A4| < 0.1[721]. We say that gravity is only quasi-localised because
the extra-dimension opens up in the far infra-red, at energies F < muyitra—iight-

Now consider what happens when we introduce a second AdS brane, along the lines
of an AdS generalisation of the RS1 model [720]. The first thing to note is that both
branes can have positive tension since the warp factor turns around. The second thing
to note is that the bulk volume is rendered finite, and so we have a zero mode as well
as the ultra-light mode. At energies above the mass of both modes gravity is mediated
by the exchange of two spin-2 fields, one massless and one massive. This corresponds
to a braneworld realisation of the bigravity scenarios discussed in Section (see also
[723, (722, [1011]).
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The GRS model

The GRS model [563] was developed by Gregory, Rubakov and Sibiryakov. The set-
up contains three Minkowski branes, one with positive tension and two with negative
tension. The positive tension brane is Zs symmetric and is flanked on either side by a
section of anti-de Sitter space as far as a negative tension brane. Beyond the negative
tension brane lies an infinite region of Minkowski space. The warp factor goes like [563]

—lz1/1 |z| <
e z Ze
= 612
a(2) {ezc/l |2] > z.. (612)

As the bulk volume is infinite, gravity is not localised, although the decaying warp fac-
tor around the positive tension brane gives some degree of quasi-localisation. Again,
although there is no zero mode, there is an ultra-light mode, and the extra dimension
opens up at very large distances. Unfortunately, the GRS model is known to be unstable
due to the presence of a ghost in the spectrum of linearised fluctuations [1038].

The asymmetric brane model

The asymmetric brane model [T012, T013] (see also [I18Y]) is a single brane mode,l
like RS2, only without Zy symmetry imposed across the brane. Indeed, the fundamental
parameters in the bulk are allowed to differ on either side of the brane, including the
bulk cosmological constant and the bulk Planck scales. Allowing the bulk Planck scales
to differ might seem strange, but not if we imagine a string compactification down to
five dimensions in which the dilaton is stabilised at different values on either side of a
domain wall (the brane). If the bulk cosmological constant and Planck scales are given

by
—6/12 M
A~ 6/1; z>0’ M= 1 z>0 (613)
—6/15 z<0 My z < 0.

The asymmetric model then admits Minkowski branes for a suitably tuned brane tension,
o = 3(e1M3 /1y + e2M3 /l3), where ¢; = +1 and €2 = +1. The corresponding solutions
have a warp factor of the form [1013]

e—c1z/h z>0
"= {6622”2 2<0. (614)
The parameters €¢; and ez control whether the warp factor grows (¢ = —1) or decays
(e = —1) away from the brane in a given direction. The model includes RS2 as a special
case.
It is, however, more interesting to consider the case where one of the warp factors
grows away from the brane while the other decays (e.g. €2 = —e; = 1). The bulk volume

is then infinite so that there is no zero mode, but by choosing the scales appropriately

one can engineer a degree of quasi-localisation. The point is that on the growing side the

graviton localises at the AdS boundary, where its sees an effective 4D Planck scale M{1;.

By taking this scale to be very large, the effect of localisation close to the AdS boundary
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is almost decoupled from the gravitational dynamics near the brane. We should note that
the asymmetric model also admits self-accelerating solutions, just as in the DGP model.
In fact, the model shares a number of features with the DGP model. This is no coinci-
dence, since the DGP model can be obtained as a limiting case of the asymmetric model
[736]. It is known that the self-accelerating solutions of DGP contain ghost-like insta-
bilities [273] 1015 559, [546], so the same is expected to be true for the asymmetric model.

The CGP model

The CGP model [274], developed by Charmousis, Gregory and Padilla, also exhibits
quasi-localisation. It combines the main features of both the asymmetric model and
the DGP model in that there is an induced gravity term, and asymmetry across the
brane. Interestingly, the model contains a new type of cosmological solution that tends
to Minkowski space at very late times, but undergoes an intermediate period of cosmic
acceleration in the presence of ordinary matter. In fact, it corresponds to a braneworld
realisation of the Cardassian cosmology, with H? ~ %(p +cy/p) [512]. Although a
ghost is present when we introduce a small positive vacuum energy, this decouples in the
Minkowski limit [740].

5.8.4. Action and equations of motion

In each of the models described in our overview, we have a five dimensional bulk
space split into a series of domains separated from each another by 3-branes. Here we
consider the action and field equations for generic models of this type. The 3-branes may
be thought of as the boundaries of the various domains so that the action is given by

M3
S = d°z/—y (2573 + ﬁbulk) + Z / d*z/=g [-A (MZK) + Lorane] ,
brane

bulk branes

(615)
where 7,4 is the bulk metric with corresponding Ricci scalar, R, M5 is the bulk Planck
scale, and Ly is the Lagrangian density describing the bulk field content. In principle
both M5 and Ly can vary from domain to domain. For each brane g, is the induced
metric and Ly ane is the Lagrangian density describing the field content on that particular
brane. K = ¢g"”K,,, is the trace of extrinsic curvature, K. This should be evaluated
on either side of the brane as it can differ from side to side. Labelling the two sides of a
given brane, using L and R, we define K, |1 r = %EML’RQW, i.e. extrinsic curvature is
given by the Lie derivative of the induced metric, with respect to the unit normal n®|;, g.
The unit normal on both sides points from L to R. Note that what appears in the action
is the jumﬂ

A (MIK) = MPK|p - MK

This corresponds to the Gibbons-Hawking boundary term [536] for the bulk domains
on each side of the brane. The A here is not to be confused with the 3-dimensional
Laplacian.

Now there are two (completely equivalent) ways to treat the brane contributions at
the level of the field equations. One approach is to treat them as delta-function sources in

46Henceforth we define the jump of any quantity @Q across a brane as AQ = Q|gr — Q|-
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the Einstein equations. However, our preferred approach is to explicitly separate the field
equations in the bulk from the boundary conditions at the brane. The bulk equations of
motion are then given by the bulk Einstein equations

1
T, (616)

1
a:Ra_ffR/a:
Gab b~ 5 R%ab YR

where Thulk = 7%% Joune @°2/=7Lpuk is the bulk energy-momentum tensor. The

boundary conditions at 3; are given by the Israel junction conditions [649]
A MKy — Kgu)| = =T, (617)
where Tl(ﬁ,) = _\/%*g(;g% fbrane d*z\/=—gLurane is the brane energy-momentum tensor.

Note that in each of these examples, the bulk geometry is only sourced by a cosmological
constant, THME = — M3 Ay,

5.8.5. Linear perturbations in RS1 and RS2

We now consider the theory of linear perturbations. For brevity, we will restrict at-
tention to RS1 and RS2, although the methods we use are fairly standard, and should
apply to all RS-like models (for further details, see [528, 275, 1038, T011]).

Weak gravity on a RS1 brane

It is enough to consider RS1, as RS2 can be readily obtained by taking the negative
tension brane to infinity. Recall that the background metric, 7., is given by Equation
, with the positive tension brane (the “+” brane) fixed at z = 0 and the negative
tension brane (the “—” brane) fixed at z = z.. We see that the induced metric on the
“+” brane is given by gfi) = N, and on the “—” brane by gf;) = e‘2zc/lr]w. Note
that we have Zo symmetry across the branes, so we can restrict attention to 0 < z < z.

We now consider small perturbations about the background, so that the metric is
given by vYap = Jab + 0Vab. It is convenient to choose Gaussian Normal (GN) gauge,
defined by

13

Yy = 0722 = 0. (618)

Actually, this is only a partial gauge fixing. Since we have no additional bulk matter,
we can also take the metric to be transverse and trace-free in the bulk. In other words,
Y = Xuv (2, 2), where

dux;, = x4 = 0. (619)

This is known as Randall-Sundrum (RS) gauge [1052]. In RS gauge, the linearised bulk
equations of motion, dG., = ?—25%5, yield

9% 4
2z/1 52
e /3 +@7ﬁ X,uu:Oa (620)
where 0% = 9,,0".

Unfortunately, we can no longer assume that the branes are fixed at z = 0 and z = z..
The presence of matter on the branes will cause them to bend [528] so that they will now
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be positioned at z = fi(z) and z = z. + f_(x), for some functions fi that depend only
on the coordinates z*. This makes it difficult to apply the Israel junction conditions
at the branes. To get round this we can apply a gauge transformation that fixes the
position of the “+” brane, and another that fixes the position of the “—” brane [275],
without spoiling the Gaussian Normal condition . This gives rise to two coordinate
patches that are related by a gauge transformation in the region of overlap. We will call
them the “+” patch and the “—” patch accordingly.

We first consider the “+” brane. To fix its position we make the following coordinate
transformation

l
z— z— fy(x), X, = X, + 5(1 —e =M, fr. (621)

The “+” brane is now fixed at z = 0, although the other brane is now at z = z.+ f_ — f;.
It follows that the metric perturbation in the “+” patch is given by

P = X (2) = X ,2) ~ 10— 0D~ T (622)
Similarly, to fix the position of the “—” brane we let
z—z— f_(x), x, = T, + é (1 - eiQ(Z*ZC)ﬂ) Ouf-. (623)
Now we have the “—” brane at z = z., but with the “+” brane at z = f; — f_. The
metric perturbation in the “—” patch is given by
0V = XL;)(x, z) = xXw(z,2) =1 (1 - e_Q(Z_ZC)/l) 00y f- — %f,ﬁ,“,. (624)
Now the induced metric on the “4” brane is given by gﬁ) = gﬁ) + 5gf$), where
3955 = XD (,0) = xyu,0) = - 1L, (625)
whereas on the “—” brane it is given by g,(L) = gf;) + 59;(;), where
98 = X1 (@7 = X, 20) — 7512, (626)

We are now ready to make use of the linearised Israel junction conditions given by Eq.

(617)) at each brane to find

+
A [M526(K,uu - Kg;w)]( ) = O—:I:(;gl(tﬂu:) - 7:51:/‘:)’ (627)
where o4 = £6M32 /1 is the tension on the “+’ brane, and ’7753[ ) is the energy-momentum
tensor for matter excitations. Now, owing to the Zs symmetry, the extrinsic curvature
simply changes by a sign when evaluated on either side of a given brane. It follows that
the linearised boundary conditions at each brane are given by

0 2
.z — _qgH)
(32 + l) Xuw|_ S (628)
0 2
.z — _q(=)
(62 + l) XILV JR Sp.v 9 (629)

190



where

1 1
Spw(@) = £33 | T = 3T | — 20,0, f, (630)

M3
and where 7F) = g&”)’ﬁff ) is the trace of the appropriate energy-momentum tensor.
Indeed, taking the trace of these equations, and using the fact that x,, is traceless, we
clearly see that matter on a brane causes it to be bend, such that

92 fa T(i)
= 631
a’ + 6M3° (631)
where a- gives the warp factor at the “+” brane (i.e. ay = 1 and a_ = e~ */!). Equations

(620), (628) and (629) give the governing differential equations, and a complete set of
boundary conditions for the graviton mode x,,. We now take Fourier transforms along

the brane directions, Q(z,...) = Q(p,..".) L [d*z e~ Q(z,...), to find that

—@n?
1 4 ippxh &
XHU(ZL',Z) = (27‘_)2 d pert Xul/(pv Z)a (632)
where o2
41 .
[p262z/l Toe T l2:| Xpuv =0, (633)
and
o 2 ~ o 2 -
Z 25 — _ &) T I — _&(=) 4
(5 +3) ]y =800 (4 3) 0] =800 3
This system is easily solved to give
X (p,2) = C P (p,2)SL)) — ¢ (p, 2)5,), (635)
where
1
(+) - - ze/l z/l 2o/l 2/l
C'(p,2) et A(p) {Il (ple )Kg (ple ) + K (ple )IQ (ple )} , (636)
and
1
(=) - - —zc/1 z/l z/l
COp2) =~ e 1) K (i) + Ky (o) o (ptes/!) | (637)

Note that I,,, and K,, are modified Bessel’s functions of integer order n [6], and
det A(p) = I (pl) K, (plezC/l) ~ Ky (ph) I <pleZc/l) . (638)

From Eq. (631]) we also have

1 a2 LT
=+ ———= [d'peP —. 6
fx(2) @m)? 013 / pe 62 (639)
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To compute the metric perturbation on each of the branes we simply use Egs. (622 and
(624), given our knowledge of x . (z,z) and fi(x). At the positive tension brane we then
have

11 : N s -
(+) — L gty eirer [ o) (+) _ 4 F(+) 5(+)
X' = G2 13 /d p et {C (p,0) [TW 5 | g,w}

_Zc/l 1~ N
TP det A [T( - gT( )g/(w)} } + pure gauge terms, (640)

whereas at the negative tension brane we have

1 1 . L ~ o ~
() _ 4 it [ (=) (- _ (=) ()
X (@) M2 /d pe {C (P, 2c) [7;” 3 T 9,0, ]

—zc/1 ~ 1.
€ +) 5(+
T Ip2det A(p) {ﬁu gT )gf“, } } + pure gauge terms. (641)

The parameters ay are crucial as they control the tensor structure of the propagator on
the “4+” branes. They are given by

Y S (el (642)
3T p,0) T30 T PO )

Using the properties of modified Bessel functions [6], we can show that at low energies,
p < ke~ *</! we have [528]

1 : 2 [- why+1\ 4
() ~ gy emne [ 2 [ _ (@ep 1) 2 (+>}
0~ g [0 (s [0~ (255

2
M2 p?

+ [7;(1,) — 77'( )g ( )} } + pure gauge terms, (643)

and

—2z./1 ) 9 B wan +1
(-) o & ddo eipuc” () _ (¥BD T ) F(~
e <2w>2/ e {sz2 [TW <2wBD+3)T QW]

2 -
+M2p2 {7;(;) T(+)glg‘,t)} } + pure gauge terms, (644)
+

where M. and wi,, are the 4D effective Planck scale and Brans-Dicke parameter on the
“+” brane, respectively. They are given by Equations and . We can now see
explicitly how BD gravity emerges as the low energy effective theory in RS1, on both
branes, as claimed i