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We computationally study the transient motion of an initially spherical capsule flowing
through a right-angled tube bifurcation, composed of tubes having the same diameter.
The capsule motion and deformation is simulated using a three-dimensional immersed-
boundary lattice Boltzmann method. The capsule is modeled as a liquid droplet enclosed
by a hyperelastic membrane following the Skalak’s law (Skalak et al. 1973). The fluids
inside and outside the capsule are assumed to have identical viscosity and density. We
mainly focus on path selection of the capsule at the bifurcation as a function of the
parameters of the problem: the flow split ratio, the background flow Reynolds number
Re, the capsule-to-tube size ratio a/R and the capillary number Ca, which compares the
viscous fluid force acting on the capsule to the membrane elastic force. For fixed physical
properties of the capsule and of the tube flow, the ratio Ca/Re is constant. Two size
ratios are considered: a/R = 0.2 and 0.4. At low Re, the capsule favors the branch which
receives most flow. Inertia significantly affects the background flow in the branched tube.
As a consequence, at equal flow split, a capsule tends to flow straight into the main
branch as Re is increased. Under significant inertial effects, the capsule can flow into
the downstream main tube even when it receives much less flow than the side branch.
Increasing Ca promotes cross-stream migration of the capsule towards the side branch.
The results are summarized in a phase diagram, showing the critical flow split ratio for
which the capsule flows into the side branch as a function of size ratio, Re and Ca/Re.
We also provide a simplified model of the path selection of a slightly deformed capsule
and explore its limits of validity. We finally discuss the experimental feasibility of the
flow system and its applicability to capsule sorting.

Key words: Microcapsules, branched tube, lattice-Boltzmann, immersed boundary,
inertia, fluid-structure interactions

1. Introduction

A capsule is a liquid droplet enclosed by a thin membrane which can resist shear
deformation. Capsules are widely found in nature in the forms of red blood cells (RBCs),
eggs, etc. Artificial capsules have a vast range of applications in food, cosmetic, biomedical
and pharmaceutical industries (Bhujbal et al. 2014). In many situations, capsules are
suspended in a fluid and flow through a complicated network of tubes or channels:
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this is the case for RBCs in the human circulation or for artificial capsules flowing
through microfluidic devices. Central to these flows is the dynamic motion of capsules at
bifurcations, in particular the question of path selection. A good understanding of this
problem is needed to elucidate some intriguing phenomena in human circulation. It will
also benefit the design and optimization of microfluidic devices using branched channels,
for instance to sort capsules or biological cells depending on their properties.

Extensive in-vivo and in-vitro experiments have been conducted on blood flows in
branched capillaries or microchannels (see for instance (Pries et al. 1996) or (Popel &
Johnson 2005)). It has been well established that the daughter branch with a higher flow
rate receives a larger number of RBCs than the other branch; furthermore, one daughter
branch can receive no RBC, when its flow rate is very low: it is classically referred to
as the Zweifach-Fung effect (Svanes & Zweifach 1968; Fung 1973). Similar phenomena
have also been observed in experiments, where the RBCs are modelled as flexible disks
and the white blood cells as solid spheres (Chien et al. 1985), and in dilute suspensions
of solid spheres (Roberts & Olbricht 2006; Doyeux et al. 2011). Fenton et al. (1985)
considered blood flow in a microfabricated branched tube with a diameter of 100 µm
for both branches and investigated the effect of cell deformability on the partitioning
of RBCs at the bifurcation. Their results, mainly the fractional RBC flux through a
side branch as a function of the fractional volumetric flow rate, do not show significant
differences between normal and hardened red cells. Two mechanisms have been found to
play important roles in the cell enrichment in the high flow rate branch. The first one
is the plasma skimming effect due to the particle-free layer near the wall of the vessel
(Rong & Carr 1990; Yan et al. 1991; Enden & Popel 1994; Carr & Kotha 1995). The
second mechanism is the particle screening effect, in which the trajectories of particles
deviate from fluid streamlines of the background flow as a result of the hydrodynamic
interaction between particles and the vessel geometry at the bifurcation (Wu et al. 1992;
Doyeux et al. 2011). In the dilute limit, the problem has not been thoroughly studied
experimentally, possibly due to the difficulty of manipulating individual cells.

Analyzing the motion of one capsule flowing through a branched tube theoretically or
numerically is also very challenging due to the strong nonlinear interaction between the
elastic capsule, the viscous fluid, and the branched geometry of the tube. The problem
has mostly been studied in recent years using two-dimensional numerical models. Secomb
et al. (2007) pioneered the simulation of flows with capsules through a bifurcation with a
finite element model. Using a two-dimensional formulation, they predicted the trajectories
of RBCs in branched microvessels of the rat mesentery, which are in qualitative agreement
with experimental observations. Later on, the same group found that the cell enrichment
in the higher-flow-rate branch is increased by the cell deformability (Barber et al. 2008).
Recently they studied the effect of cell interaction and found that it leads to a more
uniform cell partitioning compared with dilute suspensions, in which cell interaction is
negligible (Barber et al. 2011). Woolfenden & Blyth (2011) developed a two-dimensional
boundary integral method and studied the motion and deformation of a capsule in a
channel with a side branch. The capsule was released along the centreline of the parent
channel. Their results showed that, at equal flow rate between the two downstream
channels, the capsule tends to flow into the side branch in particular when the capsule
is highly deformable.

To the best of our knowledge, there is so far no systematic and in-depth three-
dimensional numerical study of a deformable capsule in a branched tube. To what
extent the results obtained from previous two-dimensional simulations can be applied to
three-dimensional flows remains unclear. Almost all the previous studies have considered
two-dimensional situations under low-Reynolds-number conditions. The negligible inertia
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Figure 1. (a) Geometry of the branched tube. (b) Geometry of the computational domain.

condition is a good assumption in many biological systems; however, capsules are not
necessarily small in size, and the flow speed can be fast in some applications, such as in the
case of inertial flow focusing of spherical and anisotropic particles (Di Carlo et al. 2007;
Masaeli et al. 2012). The effect of inertia on path selection of a capsule at a bifurcation
remains unknown. In other systems, for example non-spherical particles in shear flows, it
has been shown that inertial effect could fundamentally change the dynamics of particles
even at low Reynolds number (Rosén et al. 2014; Dabade et al. 2016). Furthermore,
when a capsule approaches the bifurcation, it can sustain high shear stresses, which may
damage the capsule membrane. It is therefore meaningful to investigate the membrane
tension of the capsule at the bifurcation. In the present study, we address these open
questions by means of computational simulations based on an immersed boundary lattice
Boltzmann method.

The paper is organized as follows: the problem, governing equations and main
parameters are detailed in Section 2; the numerical method and validations are then
presented in Section 3. We first present simulation results of flows in a branched tube
without a capsule in Section 4. The results for flows with a capsule are presented in
Section 5, where we focus on the effects of flow split ratio, flow strength, and capsule
properties (i.e. membrane shear elasticity, capsule size) on the capsule path selection.
In Section 6, we discuss the main results and compare them to the predictions of a
simplified model of the capsule path selection. We also assess the experimental feasibility
of the device and discuss its potential for capsules sorting.
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2. Problem statement

2.1. Problem description

We consider the flow of an initially spherical capsule in a cylindrical tube with a right-
angled cylindrical side branch, which has the same diameter 2R (Figure 1a). The length
of the parent tube is 12R, and the length of the two daughter tubes is 10R. A three-
dimensional Cartesian coordinate system is defined with the x-axis along the straight
tube axis, the z-axis along the side branch axis, and x = y = z = 0 at the bifurcation
centre. The capsule is initially spherical with diameter 2a. It is enclosed by a hyperelastic
membrane with finite surface shear elasticity and bending stiffness. The fluids inside
and outside the capsule have identical viscosity µ and density ρ. Numerical simulations
of capsules in a straight tube (Helmy & Barthès-Biesel 1982; Pozrikidis 2005a,b) have
shown that the capsule migrates to the centreline of the tube and eventually reaches a
steady shape. In the present study, the capsule centre is thus initially positioned on the
centreline of the parent tube within the cross-section Sc, located at a distance 2R from
the tube entrance S0 (Figure 1a).

The fluid motion in the branched tube is governed by the Navier-Stokes equations,
which are solved by means of a lattice Boltzmann method (LBM) as detailed in section
3.1. At the tube wall a no-slip boundary condition is imposed. At the upstream inlet
S0 and the two downstream outlets S1 and S2, the velocity profiles are set to be the
parabolic Poiseuille profiles corresponding to flow rates Q0, Q1 and Q2, respectively,
with Q0 = Q1 +Q2. The present setup is relevant to microfluidic applications where the
flow rate is controlled by multiple syringe pumps.

The thickness of the capsule wall is assumed to be infinitely small. A very thin
hyperelastic membrane can be modeled as a zero-thickness elastic surface, with different
possible constitutive laws (Barthès-Biesel 2016). Among those, the Skalak’s (SK) law
(Skalak et al. 1973), which was originally proposed to describe the membrane of a RBC,
assumes a strain energy function of the form

WSK =
1

4
Gs

(
I21 + 2I1 − 2I2

)
+

1

4
CGsI

2
2 , (2.1)

where W is the strain energy density per unit undeformed surface area, Gs is the surface
shear elasticity modulus, I1 and I2 are the first and second strain invariants of the surface
deformation with I1 = λ1

2 + λ2
2 − 2 and I2 = (λ1λ2)

2 − 1 = (dA/dA0)
2 − 1. Here dA0

and dA are the initial and final infinitesimal areas of a membrane element. The terms λ1

and λ2 are the principal extension ratios in the plane of the membrane (square root of
the eigenvalues of the Cauchy-Green surface deformation tensor). Postulated in such a
way, the SK law captures the special feature of biological membranes, which can deform
easily under shear while keeping an almost constant surface area. The factor C on the
right-hand side of (2.1) must be large to ensure negligible area dilation. The principal
membrane tensions τ1 and τ2 in the membrane plane are given by

τ1 =
Gsλ1

λ2
(λ2

1 − 1 + Cλ2
2I2), τ2 =

Gsλ2

λ1
(λ2

2 − 1 + Cλ2
1I2). (2.2)

Another constitutive law is the two-dimensional neo-Hookean (NH) law (Green &
Adkins 1960), which assumes that the membrane is an infinitely thin sheet of a three-
dimensional isotropic volume-incompressible material. The membrane area dilation is
compensated by membrane thinning, since the principal extension ratio in the direction
perpendicular to the membrane is equal to λ3 = 1/λ1λ2. The strain energy function of
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the NH law is given by
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so that the principal elastic tensions read
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The SK law leads to the same small deformation behavior as the NH law when C = 1
(Barthès-Biesel et al. 2002). For biological membranes, the factor C is usually much
larger than unity, because of their quasi area-incompressibility. In the case of artificial
capsules, the SK law has been found to fit experimental data when values of order 1 are
used for the factor C (Carin et al. 2003; Risso & Carin 2004; Rachik et al. 2006). In the
present study, the simulations are conducted for capsules enclosed by an SK membrane
with C = 1, unless otherwise stated.

The bending resistance of the membrane is modelled using Helfrich’s formulation
(Zhong-Can & Helfrich 1989; Cordasco & Bagchi 2013)

Eb =
kc
2

∫
A

(2H − c0)
2dA. (2.5)

In this equation Eb is the bending energy of the capsule membrane, A the surface
area, kc the bending rigidity, H the mean curvature, and c0 the spontaneous curvature
corresponding to the natural state of the unstressed membrane. For the present spherical
capsules c0 = 0 has been used.

The interaction between the fluid and capsule membrane is solved by an immersed
boundary method (IBM), which is described in section 3.1.

2.2. Main parameters

The problem depends on a number of dimensionless parameters, which pertain to the
flow configuration and to the capsule properties.

• The branch flow ratio q is the flow rate in the side branch normalized by the flow
rate in the parent tube:

q =
Q2

Q1 +Q2
, (2.6)

where Q1 and Q2 are the flow rates in the downstream main tube and in the side branch,
respectively, as indicated in Figure 1a.

• The flow Reynolds number Re is evaluated in the parent tube:

Re =
2ρV R

µ
, (2.7)

where V is the mean velocity of the Poiseuille flow imposed at the inlet of the parent
tube.

• The size ratio a/R compares the size of the capsule to that of the tube.
• The capillary number or dimensionless shear rate Ca measures the ratio between

the viscous and elastic forces in the parent tube:

Ca =
µV

Gs
. (2.8)
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• The dimensionless bending stiffness B measures the relative importance of the
membrane bending to shear elastic effects:

B =
kc

GsR2
. (2.9)

Unless otherwise specified, a small value of B has been used (B = 0.0008) mainly to
prevent the formation of membrane wrinkles (Dupont et al. 2015).

Equations (2.7) and (2.8) clearly show that the capillary number and the Reynolds
number both increase with V and are related by

Ca/Re = µ2/2ρGsR. (2.10)

Their ratio depends only on the physical properties of the tube flow and of the capsule.

3. Numerical method and validation

3.1. Numerical method

The present simulations are based on a lattice-Boltzmann method (LBM) to compute
the flow coupled with the immersed-boundary method (IBM) of Peskin (1977) for the
fluid-capsule interaction. A finite element method is used to obtain the membrane forces.
This hybrid method has been validated extensively against results of boundary element
simulations and of a small deformation theory for three-dimensional capsules in shear
flow (Sui et al. 2008a,b). The method is only briefly presented here, but more details can
be found in the cited references.

The LBM is a kinetic-based approach for simulating fluid flows. Instead of solving the
conservation equation of macroscopic properties such as mass or momentum, it consists
in modeling the fluid as fictive particles that propagate and collide on a discrete lattice
mesh. Solving for the streaming and collision steps leads to solving the following equation
(Guo et al. 2002a):

fi(x+ ei∆t, t+∆t)− fi(x, t) = −1

τ
[fi(x, t)− feq

i (x, t)] +∆tFi, (3.1)

where fi(x, t) is the distribution function for particles with velocity ei at position x
and time t, ∆t is the lattice time interval, feq

i (x, t) is the equilibrium distribution
function, τ is the non-dimensional relaxation time related to the fluid viscosity and Fi

is the forcing term. The macroscopic quantities (e.g. velocity, pressure) can be obtained
from the particle distribution function. Equation (3.1) is solved on a uniform Cartesian
grid in a domain 24R × 2R × 12R (Figure 1b). Using Chapman-Enskog expansion, the
lattice-Boltzmann equation can recover the incompressible Navier-Stokes equations, and
therefore the LBM can be considered as an alternative approach for solving the Navier-
Stokes equations.

To handle the curved solid wall of the branched tube, we have used the second-order
bounce-back scheme developed by Bouzidi et al. (2001), which is an accurate and simple
treatment. The bounce-back scheme mimics the particle-boundary interaction for no-
slip boundary condition by reversing the momentum of the particle colliding with an
impenetrable and rigid wall. In the approach of Bouzidi et al. (2001), the tube wall
can be off the grid points of the regular computational domain (shown in Figure 1b for
the present case), which is covered by regular Cartesian mesh. Due to the presence of
the wall, the particle distribution functions at the fluid nodes nearest to the wall are
unknown in some directions after the streaming step in the LBM: they are reconstructed



Motion of a spherical capsule in branched tube flow 7

by a second-order interpolation. The approach has been widely used in treating no-slip
walls with complicated geometries. More details can be found in the paper by Bouzidi
et al. (2001) and are not repeated here. At the inlet and outlets of the tube, velocity
boundary conditions assuming fully developed Poiseuille flows with the appropriate flow
rates have been implemented using a second-order non-equilibrium extrapolation method
(Guo et al. 2002b).

In the IBM, a force density is distributed on the Cartesian mesh in the vicinity of the
moving boundary in order to account for the presence of the solid boundary. Two different
coordinate systems are used: the fluid region is represented by Eulerian coordinates and
the membrane of the moving capsule immersed in the fluid by Lagrangian ones. Across the
capsule membrane the fluid velocity is continuous and the no-slip boundary condition is
satisfied by letting the flexible membrane move at the same velocity as the fluid around
it. This motion causes the capsule to deform. There is a jump in fluid stress across
the capsule membrane, which is balanced by the membrane stress, calculated from the
constitutive laws of the elastic membrane (Equations 2.1, 2.3 or 2.5). The membrane
force at a Lagrangian mesh point is distributed on the Eulerian fluid grid points near it
by a three-dimensional Dirac delta function. It is commonly accepted that the procedure
is efficient if the mesh size ratio between the Lagrangian and Eulerian grids is less than
unity. More details can be found in Sui et al. (2008a).

In the present study, the three-dimensional capsule membrane is discretized into
flat triangular elements, following the approach of Ramanujan & Pozrikidis (1998).
To discretize the unstressed spherical capsule wall, each triangular face of a regular
octahedron is subdivided into 4n triangular elements. These elements are then projected
radially onto the sphere. Note that for a given number of elements, the membrane
mesh size depends on the capsule radius. In order to obtain the membrane force due to
deformation, a finite element model developed by Charrier et al. (1989) and Shrivastava
& Tang (1993) has been employed.

3.2. Validation

We first validate the model for tube flows by considering a large spherical capsule
(a/R = 0.9) flowing in a long straight tube (length 20R). A grid size of ∆x = ∆y =
∆z = 0.04R has been used for the fluid domain. The 3D capsule membrane is discretized
into 32,768 flat triangular elements connecting 16,386 nodes, leading to a maximum
element edge length ∆Lc ∼ 0.034R and a ratio ∆Lc/∆x < 0.86. We obtain the capsule
profiles at equilibrium and compare them with those obtained by Hu et al. (2012) who
used a boundary element method. Very good agreement was achieved in all the cases
that were tested. As an illustration, Figure 2 shows the superposition of the deformed
profiles obtained with both methods for a capsule with a NH membrane and a size
ratio of a/R = 0.9 under different capillary numbers. We also conducted simulations
with a coarser membrane mesh (8,192 flat triangular elements connecting 4,098 nodes)
and found that for Ca = 0.1 the deformed profiles were superimposed within graphical
precision.

We now turn to the flow of a capsule in the bifurcation and investigate first the influence
of the mesh size of the uniform Cartesian grid that is used in the flow domain (Figure 1b).
We consider a small capsule (a/R = 0.4) with a membrane mesh of 8,192 flat triangular
elements connecting 4,098 nodes, leading to ∆Lc ∼ 0.031R. Figure 3 shows an example
of the influence of the flow grid resolution on the trajectories the capsule in the branched
tube for Re = 0.25, Ca = 0.5 and q = 0.5. We find that the trajectories are almost
superimposed for all three tested flow grids (∆x = 0.05R, 0.04R and 0.031R). Further
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Figure 2. Steady profiles of an initially spherical capsule with a NH membrane in a uniform
tube flow (a/R = 0.9, Re = 0.125, B = 0) for Ca = 0.02, 0.05, 0.1. Black solid lines correspond to
the present model with a membrane mesh of 32,768 flat triangular elements connecting 16,386
nodes. The results are compared to the ones obtained by Hu et al. (2012) using a boundary
element method (square symbols).

Figure 3. Trajectories of a capsule (a/R = 0.4) flowing in the branched tube at
Re = 0.25, Ca = 0.5, q = 0.5. Different grid resolutions are used: ∆x = 0.05R (dashdot line),
∆x = 0.04R (solid line), ∆x = 0.031R (dash line).

refining the membrane mesh to 32,768 flat triangular elements connecting 16,386 nodes
(∆Lc/∆x < 0.38 for ∆x = 0.04R) does not lead to any visible change in the capsule
trajectory. The fluid mesh was chosen, so that the fluid film between the capsule wall
and the tube was resolved by at least three grid spaces. Figure 3 illustrates one instance,
where the capsule gets very close to the tube wall, as it enters the side branch. We have
found that the grid size of ∆x = 0.04R guarantees, even in this case, that the fluid
film contains more than three grid spaces. All the results presented hereafter have thus
been obtained for a capsule mesh made of 8,192 flat triangular elements connecting 4,098
nodes and for a fluid grid ∆x = 0.04R.

The effect of the length of the tubes has also been studied. After being released, the
capsule deforms into a steady shape, once its centre of mass has travelled a distance of
about 5R from its initial position in Sc. The 12R length of the parent tube is, therefore,
long enough for the capsule to reach an equilibrium profile before the bifurcation. We
have also examined the effect of the lengths of both downstream tubes by extending them
to 14R, and found almost identical trajectories of the capsule at the bifurcation. Thus the
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downstream tubes are long enough to exclude the effect of the downstream boundaries
on the capsule motion at the bifurcation. However, it should be noted that the capsule
does not reach a steady shape in any downstream branch after passing the bifurcation.
Although distance of about 5R after the bifurcation is sufficient for the background flow
in each branch (i.e. without a capsule) to relax into the fully developed Poiseuille flow
at Re 6 40, much longer distances are required for the capsule to regain its steady-
state shape downstream of the bifurcation. It indeed relies on the capsule migration back
towards the tube centreline, which is a very long process (Helmy & Barthès-Biesel 1982;
Pozrikidis 2005b; Doddi & Bagchi 2008). As pointed out by Woolfenden & Blyth (2011)
and Ye et al. (2015), a much longer downstream tube (typically tens of the diameter of
the tube) is needed for the capsule to relax into a steady state, which is beyond the scope
of the present study.

3.3. Limitations of the numerical model

The present simulation has employed the IBM, in which the membrane force is
distributed over a band of surrounding Eulerian fluid grids (about 2∆x on each side
of the membrane, according to the Dirac delta function used (Sui et al. 2008a)). The
second-order approach used to implement the no-slip wall boundary condition in the
LBM needs the values of the probability density function at fluid grid points within 2∆x
from the wall. As a result, when the capsule membrane gets close to the wall (i.e. when
the thickness of the fluid film between the membrane and the wall is comparable to 2∆x),
the present method will not be able to resolve the film flow in the gap. This is likely to
happen when a capsule is relatively large (a/R > 0.6) and is close to the bifurcation.
However, the film is often thin over a very small area of the capsule membrane only,
and therefore the thinness limitation may have a negligible effect on the overall path
selection of the whole capsule. This question is left for future investigation and in the
present study we only consider small capsules (a/R 6 0.4), for which this problem does
not occur. It should be noted that in our validation tests presented in Figure 2, the
liquid film between the capsule and the tube wall has always been resolved by more than
three fluid grids.

4. Flow in the branched tube without a capsule

We consider the flow in the branched tube in absence of any capsule and study the
influence of the flow split ratio and Reynolds number. The results will help us analyze
some features of capsule dynamics. Furthermore, the results for the background flows
will be compared with previous experimental (Rong & Carr 1990; Carr & Kotha 1995)
and numerical (Enden & Popel 1992) studies to further validate the present numerical
model.

Within each cross-section of the parent tube perpendicular to the tube centreline, one
can define a separation line that divides the fluid elements that flow into the side branch
from those flowing down the straight tube. We determine the fluid separation line in the
cross section Sc and study how it evolves as a function of the flow split ratio and Reynolds
number. When a fully developed Poiseuille flow is imposed at the entrance S0, the flow
remains fully developed in cross-section Sc. In order to generate a fluid separation line,
40,000 massless and diffusiveless tracer particles are initially distributed evenly in Sc and
released. Their trajectories are calculated using an integration method that is detailed in
Sui et al. (2012). At the position where a particle is released, a passive scalar ϕ is defined,
which takes the value of one when the particle enters the side branch and zero otherwise.
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Figure 4. Fluid separation lines calculated in cross-section Sc at different Reynolds numbers
and branch flow ratios. The cross-section is 2R from the entrance, where the flow remains
the Poiseuille profile imposed at the inlet. In the cross-section, the fluid elements above the
separation line enter the side branch and those below remain in the main tube. (a) Separation
lines for flows at low Reynolds numbers. The lines correspond to the present simulation results,
the △ symbols to the experimental results of Rong & Carr (1990), the × symbols to the
simulation results of Enden & Popel (1992). (b) Separation lines for flows at Re = 27.5. The
full lines correspond to the present results, the △ symbols to the experiments of Carr & Kotha
(1995).

a.
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Figure 5. Fluid separation lines in branched tube flows. The cross section is the same to that
in Figure 4. (a) Separation lines for flows at Re = 0.25 with different branch flow ratios; (b)
separation lines for flows at different Reynolds numbers with a fixed branch flow ratio q = 0.5.

The separation line is approximated by the isocontour ϕ = 0.5. Less than 0.1% of the
particles are found to get trapped near the apex of the bifurcation, the effect of which
can thus be neglected considering the large number of particles released.

The separation lines are shown in Figure 4a for low-Reynolds number (Re < 1) flows
for different branch flow ratios q. They are compared with the experimental results of
Rong & Carr (1990) and with the numerical simulations of Enden & Popel (1992), who
considered Stokes flow and used a finite element method. Satisfactory agreements are
found in all the cases considered. We can conclude that the flow separation line only
depends on the branch flow ratio when Re < 1. We also compare the flow separation
lines calculated at a higher Reynolds number (Re = 27.5) with the experiments of Carr
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q=0.3
q=0.4
q=0.5
q=0.6
q=0.7

Figure 6. Effect of branch flow ratio q on the capsule trajectories (R = 0.4, Re = 0.25,
Ca = 0.5). The triangle denotes the position where the bifurcation starts to affect the capsule
motion. The squares label the centre of mass positions where the capsule maximum principal
tension are the largest (see Figure 9).

& Kotha (1995) under different flow splits in Figure 4b. Reasonably good agreement is
again achieved. Note that Re in Carr & Kotha (1995) was defined using the maximum
flow velocity.

We can also build the lines for flows at a fixed Reynolds number but different branch
flow ratios. The results are presented in Figure 5a for Re = 0.25. At equal flow split
(q = 0.5), the separation line is almost flat and equally divides the cross-sectional area.
However, when the branch flow ratio increases (resp. decreases) from 0.5, the separation
line moves and bends downwards (resp. upwards).

Figure 5b presents the separation lines for a fixed flow split ratio q = 0.5 but different
flow Reynolds numbers. When the Reynolds number is increased, the fluid separation
line bends towards the side branch. We will later discuss the effect of the geometry of
the separation line on the path that the capsule selects.

5. Flow of a capsule in a branched tube

We first present in section 5.1 the 3D flow results for a capsule at small Reynolds
number flow, for which inertial effects are negligible. The objective is to set up a reference
for the study of the effect of inertia. The effect of Re is then considered in section 5.2,
by increasing the flow strength. We show how the tendency of the capsule to flow into
the side branch changes with the flow strength, capsule size and membrane elasticity
and provide a phase diagram of the capsule path selection in section 5.3.

5.1. Effect of flow split ratio (Re < 1)

We start from a capsule with a size ratio a/R = 0.4 and Ca = 0.5 at different branch
flow ratios. The Reynolds number based on the parent tube is 0.25. Figure 6 presents
the trajectories of the capsule centre of mass for different branch flow ratios. We recover
the fact that the capsule favors the branch with the higher flow rate (Barber et al. 2008;
Woolfenden & Blyth 2011): as the capsule approaches the bifurcation, it slows down,
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a. b.

Figure 7. Effect of flow split ratio on the path selection of a capsule (a/R = 0.4,
Re = 0.25, Ca = 0.5). The profiles are plotted in the xz-plane. The black dots are
attached to two material points of the capsule membrane. The profiles are shown at
V t/R = 4.16, 4.8, 5.44, 6.08, 6.72, 8, 9.28, 10.56, 11.84. (a) q = 0.6, (b) q = 0.4.
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Figure 8. Capsule in the branched tube at different branch flow ratios (a/R = 0.4, Re = 0.25,
Ca = 0.5). Time evolution of (a) the velocity magnitude Vc/V , and of (b) the maximum principal
tension. The squares indicate the dimensionless times when τmax reaches its peak value. The
corresponding positions of the capsule centre of mass are shown in Figure 6. The triangle denotes
the position where the bifurcation starts to affect the capsule motion.

is first attracted by the side branch and flows into it if q is large enough (q > 0.5 in
this case). Otherwise, it migrates back towards the centreline of the straight tube after
passing the bifurcation region. In both cases, the capsule does not reach its equilibrium
shape when approaching the exit as discussed in section 3.2.

We now investigate the motion and deformation of the capsule near the bifurcation
region at different flow splits. Before entering the bifurcation region, the capsule has a
parachute shape in the parent tube (Figure 7a,b). The capsule shape starts to deviate
from the steady profile when it is about one diameter from the junction (position marked
by a triangle in Figure 6). The successive profiles of the capsule in the bifurcation vicinity
are shown in Figure 7 for two different flow split ratios (q = 0.4 and 0.6). Two membrane
material points initially located at the upper and lower sides of the capsule are marked
with black dots to facilitate the visualization of the membrane motion. In both cases
the capsule first moves upwards towards the side branch, loses its symmetric shape and
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Figure 9. Capsule profiles in the xz-plane when the maximum principal tension reaches its
peak (a/R = 0.4, Re = 0.25, Ca = 0.5). The black dots show where the principal tension is
maximum.

becomes elongated along the branch flow direction. The capsule enters the side branch
for q = 0.6 (Figure 7a), while it remains in the straight tube for q = 0.4 (Figure 7b). In
both cases, once the capsule has entered either one of the tubes, it is off-centred from the
channel axis. It therefore undergoes a clockwise (resp. counterclockwise) tank-treading
motion during its migration towards the centreline of the side branch (resp. straight
tube), as can be seen from the trajectory of the tracker dots attached to the capsule
membrane.

In the parent tube before the bifurcation region, the capsule flows at a steady speed,
which is higher than the average speed of the flow (a signature of the F̊ahraeus effect
(F̊ahraeus 1929)). The steady speed of the capsule with a/R = 0.4 decreases slightly
with the capillary number (not shown), which is consistent with the results of Lefebvre
et al. (2008) obtained for a capsule in a straight cylindrical channel at confinement ratios
a/R > 0.8. When the capsule approaches the bifurcation, it encounters a relatively high
pressure: it is thus flattened (as evidenced by the profiles at V t/R = 5.44 and 6.08).
Its speed Vc correspondingly decreases to a minimum and then increases back towards a
steady value determined by the flow rate in the corresponding downstream tube (Figure
8a).

The maximum principal elastic tension in the membrane τmax = max [τ1, τ2], where
τ1 and τ2 are calculated from equation (2.2), is a relevant quantity to evaluate the
likelihood of membrane rupture. Figure 8b shows that τmax increases significantly
when the capsule approaches the bifurcation. Note that the velocity decrease is almost
equal for conditions q = 0.6 and 0.4, and for q = 0.7 and 0.3. However, for equal flow
split (q = 0.5), there is a strong decrease in velocity and a large increase in capsule
deformation and elastic tension in the membrane. The deformed profiles of the capsules
corresponding to the peak of τmax are shown in Figure 9: the initially spherical capsule
is significantly deformed. A black dot shows where the peak is reached: the maximum
tension occurs where the viscous shear stress exerted by the suspending fluid changes sign.
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a. b.

Figure 10. Effect of flow strength on the capsule trajectory in the symmetric xz-plane
(a/R = 0.4, q = 0.52). (a) Re = 1, Ca = 0.005; (b) Re = 40, Ca = 0.2. The thick solid
line represents the trajectory of the capsule centre. The dark line with arrows (shown in red
online) represents the centre streamline of the undisturbed background flow, while the grey line
with arrows (shown in green online) represents the separating streamlines that divides the fluid
elements entering the side branch to ones entering the downstream main tube.

5.2. Effect of flow strength and size ratio

We now turn to the effect of flow strength on the path selection of a capsule for flow
regimes where inertia is not negligible. The fluid properties (ρ and µ), the capsule size
(a/R = 0.4) and the membrane properties (Gs) are fixed. Thus increasing the mean
flow speed simultaneously increases the flow Reynolds number and the capillary number.
The combined effect of these two parameters is unknown. We first consider the case
Ca = 0.005Re, for which Ca evolves from a very small value up to 0.2 for the highest
flow strength corresponding to Re = 40.

The trajectories of the capsule centre of mass and some instantaneous profiles are shown
in Figure 10 for two different Reynolds numbers and q = 0.52. It is useful to compare
the relative positions in the symmetric xz-plane of the capsule centre trajectory, the
unperturbed centre streamline (emanating from the centre of Sc in absence of a capsule)
and the unperturbed separating streamline (dividing the fluid elements that enter the
side branch from those that enter the straight tube). At low mean flow speed (Re = 1),
the capsule essentially keeps its spherical shape because Ca = 0.005 is very small. Its
trajectory follows unperturbed centre streamline until it is close to the bifurcation, but
deviates from it due to wall exclusion effects inside the side branch. At high flow speed
(Re = 40), the capillary number is fairly large (Ca = 0.2) and the capsule is significantly
deformed. Its trajectory first deviates a little from the background streamline moving
slightly towards the side branch, but eventually remains in the main tube (like the centre
streamline). Therefore increasing the flow speed and thus inertial effect, tends to keep the
capsule flowing straight in the main tube. The relative position between the separating
streamline and the centre streamline seems to play an important role. Indeed, for Re = 1,
the separation streamline is initially slightly below the centreline of the parent tube:
the centre streamline (and the capsule) thus goes into the side branch. Conversely, for
Re = 40, the separating streamline is initially above the centreline of the parent tube:
the centre streamline (and the capsule) thus goes into the straight tube.

For given values of Re, Ca and q, the capsule trajectory depends on the size ratio a/R.
If a capsule has a negligible size and is non-diffusive (i.e., negligible Brownian motion), we
expect that it will follow the centre streamline. However, the path selection of a finite size
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a. b.

Figure 11. Effect of capsule size on its trajectory for Re = 20, q = 0.56, Ca = 0.1: (a) a/R=
0.4, (b) a/R = 0.2. The streamline legend is the same as in Figure 10.

capsule remains an open question. As shown in Figure 11, for q = 0.56, a small capsule
(a/R = 0.2) flows into the straight tube, whereas a large one (a/R = 0.4) flows into
the side branch. This phenomenon may be partly attributed to the capsule deformation,
which can be quantified by means of the stored elastic energy E(t), given by

E(t) =

∫
A0

WSK(λ1, λ2, t)dA0, (5.1)

where WSK is given by equation (2.1) and A0 is the initial surface area of the capsule.
When the capsule is in the bifurcation region, the maximum of the stored elastic energy,
normalized by a2Gs, drops from 0.91 to 0.2 when the size of the capsule decreases from
0.4R to 0.2R. This means that the smaller capsule is less deformed than the larger one.
This is due to the fact that the shear rate varies across the tube and that the effective
capillary number to which the capsule is subjected is then Ca × a/R, rather than just
Ca. As the smaller capsule is less deformed, its centre does not deviate much from the
the centre streamline: the capsule follows it into the straight tube in this case (q = 0.56).
The larger capsule, however, deviates from the centre streamline and is attracted into
the side branch. We find that the background flow also plays an important role in path
selection of capsules with different sizes, as it will be discussed in Section 6.1.

5.3. Path selection phase diagram

A simple way to characterize path selection of a capsule is to define the critical branch
flow ratio qc, above which the capsule enters the side branch: the capsule thus flows in
the straight tube if q < qc, and in the side branch otherwise. For given values of Re
and Ca, we progressively increase q from 0.1 by large steps ∆q = 0.05 until we find the
transition, where the capsule flows into the side branch rather than the straight tube. We
then refine the step to ∆q = 0.02 around the transition region. The value of qc is taken
as the average of the two successive branch flow ratios q wherein the capsule enters the
side branch for the largest or remains in the main tube for the smallest. Therefore qc is
determined within ±0.01. Near the transition, we have conducted tests using finer grid
resolutions (∆x = ∆y = ∆z = 0.031R) and found that the trajectories of the capsule
remain unchanged.

The critical branch flow ratio is shown in Figure 12 as a function of the flow Reynolds
number for capsules with different sizes and membrane shear elasticity. In the extreme
case of an infinitely small capsule (i.e. a/R = 0), the capsule follows the unperturbed
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Figure 12. Phase diagram: critical branch flow ratio as a function of the tube Reynolds number
for capsules with different sizes and membrane shear elasticity. For q > qc, the capsule flows
into the side branch.

streamline. For low inertia (Re = 0.25), qc = 0.48 ∼ 0.49, which means that the capsule
tends to favor the side branch when the flow split is even. This is what we observe for
Ca/Re = 0.005 or 0.02, where the capsule is only slightly deformed and behaves as a
solid sphere (Ca = 0.0013 or 0.005). Interestingly, this still occurs in the case Ca/Re = 2
(Ca = 0.5 - pink diamond in Figure 12), even though the capsule is quite deformed
under these conditions as can be surmised from Figure 7. This is consistent with the
two-dimensional simulation by Woolfenden & Blyth (2011) in Stokes flow. For Re > 1,
qc increases significantly when Re increases and the capsule size ratio decreases. Up to
Re 6 4, the main effect on qc is only due to size ratio and thus to confinement of the
capsule by the tube. The influence of capsule deformability becomes significant at larger
flow rates corresponding to Re > 10.

6. Discussion and conclusion

We have studied the three-dimensional flow of an initially spherical capsule through
a straight tube with a right-angled side branch, using an immersed boundary lattice
Boltzmann method. This flow configuration is interesting as it leads to non-symmetric
flow conditions between the two branches, contrary to the classical T-junction that is
equivalent in terms of geometry and has received great attention. The study allows to
elucidate the effects of flow split ratio, flow strength and capsule size ratio (a/R 6 0.4)
on the capsule path selection at the bifurcation. It also provides us with information on
the capsule deformation and corresponding stress level in the membrane.

The path selection results are well summarized by means of the critical branch flow
ratio qc, which is the lower bound of the flow split ratio q, for which the capsule enters
the side branch. For low Reynolds numbers, the critical branch flow ratio is very slightly
below 0.5, which means that the capsule favors the side branch at equal flow split, but
otherwise takes a path which is essentially determined by the value of q. This result is
qualitatively consistent with the earlier numerical study of Woolfenden & Blyth (2011).
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Figure 13. (a) Illustration for the definition of the momentum ratio. The dash line is a fluid
separation line (for q = 0.5, Re = 20), which divides the cross-sectional area of the capsule
(shaded circle) into two regions (Sb and Sm) covered by fluid elements that finally enter the side
branch and downstream main tube, respectively. Momentum ratios of capsules with a/R = 0.2
and 0.4 as a function of (b) q at Re = 0.25, (c) Re at q = 0.5.

However the authors used a two-dimensional model and a simple generalized Hooke’s law
for the membrane, which renders impossible any quantitative comparison.

We also consider flows with significant inertial effects, which had not been studied
before. Such flows are encountered in fast flowing microfluidic devices (Di Carlo et al.
2007) or when millimetric capsules flow in fairly large capillary tubes. We find that the
critical branch flow ratio is then larger than 0.5 and increases significantly with the
Reynolds number, when Re > 10. However, qc tends to decrease when the capsule size
and/or deformation increase. This indicates that at equal flow split, the capsule tends to
flow straight in the main tube when inertial effects are significant. This is a consequence
of the effects of inertia on the background flow in the branched tube, which alters the
shape of the fluid separation line in the upstream cross-section Sc, as discussed in details
in the following Section 6.1.

6.1. Background flow momentum split: a simple model of path selection

All the above results have been obtained with the full fluid-structure-interaction model,
which is quite intricate and necessitates long computations. It is of interest to consider a
much simpler model, based on the interaction of the background flow with the undeformed
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capsule, and investigate the validity limits of this model by comparing the predictions to
the ones provided by the full model.

In this simple model, we assume that the presence of the capsule does not change
the background flow significantly, and evaluate the interaction between the undeformed
capsule and the unperturbed flow in section Sc. The model is based on the ascertainment
that the cross-sectional area of the capsule (the shadowed area in Figure 13a) in the plane
Sc is divided by the fluid separation line (section 4) into two distinct regions, Sb and Sm,
having fluid elements that, respectively, enter the side branch and the downstream main
tube eventually (Figure 13a). We then define the ratio M between the momentum of the
fluid elements in Sb and the total momentum of fluid elements in the cross-sectional area
of the capsule Sb + Sm:

M =

∫
Sb

ρu(y, z)dSb∫
Sb

ρu(y, z)dSb +
∫
Sm

ρu(y, z)dSm
, (6.1)

where u(y, z) is the fluid velocity along the x-direction in Sc. We then assume that for
M > 0.5, the capsule enters the side branch. The evolution of M with flow split q at low
Re is shown in Figure 13b, while the effect of Re on M at equal flow split q = 0.5 is
shown in Figure 13c.

At equal flow split q = 0.5 and for low Reynolds number (Re = 0.25), M is slightly
larger than 0.5 for both capsules (see insert of Figure 13b), suggesting that the slight
momentum unbalance of the background flow helps send the capsule into the side branch.
This is consistent with the predictions of the phase diagram, wherein qc is below 0.5 for
both capsules. Similarly, for q > 0.5 (resp. q < 0.5), the momentum is M > 0.5 (resp.
M < 0.5) and the capsule flows into the side (resp. main) branch. This corresponds
to the full model results shown in Figure 6. For q = 0.5, an increase of Re leads to a
decrease of M : this means that the background flow tends to push the capsule into the
main branch (Figure 13c), as predicted by the phase diagram. A qualitatively similar
effect is also found with the full model, as shown in Figure 10. Note that the evolution
of M with either q or Re is qualitatively the same for the two size ratios. In Figure 13c,
it is seen that when Re > 1, the momentum ratio for a larger capsule is higher than that
of a smaller capsule. This is one of the phenomena that predominantly accounts for the
fact that, at the same flow split, a larger capsule enters the side branch, while a smaller
one chooses the downstream main tube, as seen in Figure 11.

In order to quantify precisely the predictive power of the background flow momentum
ratio on the path selection of a capsule, we define a critical branch flow ratio qcm, that
corresponds to M = 0.5. The value of qcm is then computed as the average of the two
successive branch flow ratios between which the value of M crosses 0.5. It is determined
within ±0.01. The values of qcm for capsules with a/R = 0.2 and 0.4, Ca/Re = 0.005 or
0.02 are shown in Figure 14 and are compared with the values of qc obtained from the
full fluid-structure-interaction simulations with the capsule. For small capsules (a/R 6
0.2) or low inertia (Re 6 4), the values of qc and qcm are almost equal within the
determination error. This indicates that the simple model, based on the momentum ratio
of the undeformed capsule, is then sufficient to determine the path selection of the capsule.
While this is to be expected for small capsules, it is interesting that this is also true for
relatively large ones with a/R = 0.4. However, in this case, the values of qc and qcm begin
to diverge significantly for Re > 10. One reason for the divergence is that the deviation of
the capsule trajectory from the background flow (migration across streamlines) is mainly
a result of the capsule deformability. In Figure 14, the more deformable capsule (inverted
triangles with solid line) deviates more than the stiffer capsule (circles with solid line)
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Figure 14. Phase diagram: critical branch flow ratio as a function of the tube Reynolds number
for capsules with a/R = 0.2 and 0.4, Ca/Re = 0.005. Solid lines: full fluid-structure simulations
with a capsule (see Figure 12); dash lines: qcm from the background flow only.
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Figure 15. Effect of membrane shear elasticity on the capsule trajectory for Re = 20, q = 0.53,
a/R = 0.4: (a) Ca = 0.4 , (b) Ca = 0.1. The streamline legend is the same as in Figure 10.

from the background flow results (circles with dash line). This can be seen from Figure
15, where the capsule membrane shear elasticity leads to different flow trajectories under
the same background flow condition. This means that the simple model can no longer
be used to accurately compute the capsule path when the capsule deformation is more
significant. For example, the case shown in Figure 11a, corresponds to q = 0.56 and
Re = 20. According to the value qcm = 0.57, the capsule should flow straight in the main
tube, whereas it goes into the branch: this means that the simple model fails and cannot
predict properly the path selection of deformed capsules. The present results therefore
suggest that, when the capsule deformation is not significant (Ca 6 0.05), the momentum
ratio obtained from the background flow can be used to predict the path selection of a
capsule with a reasonable accuracy. However, for large capsules undergoing significant
deformation, the full fluid-structure model is compulsory to predict the capsule path.
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6.2. Limits on the parameter values

The question which arises at this point is the range of parameters that can be achieved
with typical artificial capsules. The smallest value of Gs, which has been found for stable
artificial capsules with a thin albumin polymerized membrane ranges between 0.05 and
0.1 N/m for a ∼ 50 µm (Lefebvre et al. 2008; Chu et al. 2011; de Loubens et al. 2014;
Gubspun et al. 2016). The membrane rigidity increases with the radius and becomes
of the order Gs = 0.5 ∼ 1 N/m for capsules (a ∼ 100 − 200 µm) with a polymerized
albumin or nylon membrane (Koleva & Rehage 2012; de Loubens et al. 2014; Gubspun
et al. 2016). Millimetric capsules (a ∼ 1−2 mm) with a membrane made of alginate have
an elastic modulus Gs ∼ 1− 3 N/m (Carin et al. 2003; Zhang & Salsac 2012). Note that
the above values of Gs correspond to minimum values, and that it is usually possible
to decrease the capsule deformability (increase Gs) by increasing either the degree of
polymerization, thickness of the membrane or size of the capsule. For example, to our
knowledge, there are no stable millimetric capsules withGs less than∼ 1 N/m. In order to
get a significant deformation of the capsule, Ca must be large enough (typically Ca > 0.1
for some deformation to occur). The capsule otherwise behaves like a solid sphere.

An important experimental constraint is that the pressure drop in the system must
be manageable. A rough estimate (ignoring the complex bifurcation geometry) of the
pressure drop gradient ∆P/L in the branched tube is given by Poiseuille law

∆P

L
=

8µV

R2
=

8CaGs

R2
. (6.2)

The typical length scale L of a microfluidic device is L ∼ 2 cm. It is reasonable to limit
the pressure drop to a maximum value ∆Pmax (typically ∆Pmax ∼ 2×105 Pa.). It follows
that the lower limit on the tube radius is given by

Rmin =

√
8CaGsL

∆Pmax
. (6.3)

For given values of Ca and Gs, the constraint (6.3) allows us to determine a minimum
value of the tube radius R (and thus of the capsule radius a, since a = 0.2R or 0.4R
in the present simulations) and check whether it is consistent with the range of size
corresponding to the value of Gs (see above paragraph). The next step consists in taking
a tube of radius R > Rmin, a given ratio Ca/Re and compute the corresponding fluid
viscosity µ and mean flow velocity V for different values of Re. It follows that within
the constraint of ∆Pmax ∼ 2 × 105 Pa, it is very difficult to achieve high values of Re
within a microtube (i.e. R ∼ 100 µm). For example, with Ca/Re = 0.005, if we take
R = 100 µm, L = 2 cm and a/R = 0.4, a reasonable value of Gs is around 0.1 N/m. The
pressure constraint ∆Pmax = 2 × 105 Pa leads to a maximum value Ca = 0.125, which
corresponds to Re = 25 for this Ca/Re ratio. From equation 2.10, one notices that such
experimental conditions can be achieved for a fluid with a density ρ = 1000 kg m−3 and
a viscosity µ = 0.01 Pa s. At Re = 25, the average fluid velocity in the tube will be 1.25
m/s. The high velocity introduces a significant challenge for capsule imaging when it is
flowing in the tube. However, it also means that the device can have a high throughput.
Note that the case Re = 40 is difficult to obtain experimentally. We have, nevertheless,
used it in this paper for illustration purposes, as it shows clearly the combined effects of
significant flow inertia and large capsule deformation.

6.3. Capsule sorting

The present results suggest that the trajectory of a capsule in a branched tube can
be controlled by adjusting a range of parameters, among which are the capsule size,
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tube flow rate and branch flow ratio. One potential application of the results is to guide
the development of microfluidic devices with a bifurcation, to separate capsules from a
suspension or to sort capsules according to size and/or membrane elasticity. The present
T-branch geometry with non-symmetric flow condition can be used to sort capsules
according to size (the small ones in the side branch) by flowing the suspension at a
high enough rate where inertia becomes important (see Figure 11). Sorting equal size
capsules according to membrane elasticity can also be achieved at high flow rates, but is
trickier to achieve, since the difference in qc values is small (see the difference between
the curves corresponding to Ca = 0.02Re and Ca = 0.005Re in Figure 12). Another
aspect to keep in mind is that it may be difficult to operate such devices under steady
flow rates with a precise flow split. Furthermore, special attention should be paid to the
stress level in the membrane, when the capsule is close to the bifurcation, in order to
avoid damage. It is worth pointing out that the present results are obtained for tube
flows generated by flow-rate control systems. Pressure-control systems such as present
in the microcirculation may work in a different way. Finally, a limitation of the present
work is that we have only considered a single capsule, corresponding to the infinite-dilute
limit. In future studies we shall investigate capsule suspensions to establish the effect of
capsule interaction.
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