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Face exploration dynamics differentiate men and women
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The human face is central to our everyday social interactions. Recent studies have shown that while gazing at faces,

each one of us has a particular eye-scanning pattern, highly stable across time. Although variables such as culture or

personality have been shown to modulate gaze behaviour, we still don’t know what shapes these idiosyncrasies. Moreover

most previous observations rely on static analyses of small-sized eye-position datasets averaged across time. Here, we

probe the temporal dynamics of gaze to explore what information can be extracted about the observers and what is being

observed. Controlling for any stimuli effect, we demonstrate that amongst many individual characteristics, the gender of both

the participant (gazer) and the person being observed (actor) are the factors that most influence gaze patterns during face

exploration. We record and exploit the largest set of eye tracking data (405 participants, 58 nationalities) from participants

watching videos of another person. Using novel data-mining techniques, we show that female gazers follow a much more

exploratory scanning strategy than males. Moreover, female gazers watching female actresses look more at the eye on the

left side. These results have strong implications in every field using gaze-based models, from computer-vision to clinical
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psychology.
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Introduction

Our eyes constantly move around to place our high-resolution fovea on the most relevant visual information. Arguably, one of the

most important objects of regard is another person’s face. Until recently, a majority of face perception studies have been pointing to a

”universal” face exploration pattern: humans systematically follow a triangular scanpath (sequence of fixations) over the eyes and the

mouth of the presented face (Yarbus, 1965; Vatikiotis-Bateson, Eigsti, Yano, & Munhall, 1998). However, more recent studies found

that face-scanning strategies depend upon many factors, including task (Borji & Itti, 2014; Borji, Lennartz, & Pomplun, 2015), social

context (Foulsham, Cheng, Tracy, Henrich, & Kingstone, 2010; Gobel, Kim, & Richardson, 2015), emotion (Eisenbarth & Alpers, 2011;

Schurgin et al., 2014), personality (Perlman et al., 2009; Peterson & Eckstein, 2013) and even culture (Blais, Jack, Scheepers, Fiset, &

Caldara, 2008; Wheeler et al., 2011). For instance, when watching videos of faces, observers believing that the targets would later be

looking at them looked proportionally less at the eyes of the targets with higher ranked social status (Gobel et al., 2015). Other studies

showed that when participants discriminate between emotional and neutral facial expressions, distinct fixation patterns emerge for each

emotion. In particular, there is a focus on the lips for joyful faces and a focus on the eyes for sad faces (Schurgin et al., 2014). In parallel,

it has very recently been shown that humans have idiosyncratic scanpaths while exploring faces (Kanan, Bseiso, Ray, Hsiao, & Cottrell,

2015) and that these scanning patterns are highly stable across time, representing a specific behavioural signature (Mehoudar, Arizpe,

Baker, & Yovel, 2014). In the latter study, the authors asked the subjects to perform a face recognition task during three test sessions

performed on three different days: Day 1, Day 3, and 18 months later. Their results show that individuals have very diverse scanning

patterns. These patterns were not random but highly stable, even when examined 18 months later.

In this study, we aim to identify which factors drives this idiosyncratic behaviour. To quantify their relative contributions, we must

overcome two major difficulties. First, in order to take into account as many factors as possible, we need an unprecedentedly large eye-

tracking dataset. We have to move beyond the usual small-sized eye-tracking datasets with restricted participant profiles, the famous

WEIRD (Western, Educated, Industrialized, Rich, and Democratic) population (Henrich, Heine, & Norenzayan, 2010). To do so,

we increased our participant pool by recording and exploiting the largest and most diverse eye-tracking dataset that we are aware of

(405 participants between 18 and 69 years old, 58 different nationalities) (Winkler & Subramanian, 2013). Second, we need to equip

ourselves with eye-tracking data mining techniques that can identify and quantify eye-gaze patterns in the dataset. The vast majority

of previous studies quantified observers’ scanpaths through spatial distributions of eye positions averaged over time, deleting the -

manifestly critical - temporal component of visual perception (Le Meur & Baccino, 2013). In contradistinction, we propose a new data-

driven approach able to encapsulate the highly dynamic and individualistic dimension of a participant’s gaze behaviour. We identified

systemic differences that allow a classifier solely trained with eye tracking data to identify the gender of both the gazer and actor with
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very high accuracy.

Methods & Results

Experiment

Participants

We recorded the gaze of 459 visitors of the Science Museum of London, United Kingdom. We removed from the analysis the data

of participants below 18 (n=8) as well as 46 other participants whose eye data exhibited some irregularities (loss of signal, obviously

shifted positions). The analyses are performed on a final group of 405 participants (203 males, 202 females). Mean age of participants

was M = 30.8, SD=11.5 (males: M = 32.3, SD = 12.3; females: M = 29.3, SD = 10.5). The experiment was approved by the UCL

Research ethics committee and by the London Science Museum ethics board, and the methods were carried out in accordance with the

approved guidelines. Signed informed consent was obtained from all participants.

Stimuli

Stimuli consisted in video clips of 8 different actors (4 females, 4 males, see Fig. 1). Each clip depicted the actor initially gazing towards

the bottom of the screen for 500 ms, then gazing up at the participant for a variable amount of time (between 100 and 10,300 ms, in

300 ms increments across 35 clips) and finally gazing back at the bottom of the screen for 500 ms. Width x Height = 428× 720 pixels

(16.7 × 28.1 degrees of visual angle). Faces occupied most of the image, on average 280 × 420 pixels (10.9 × 16.4 degrees of visual

angle). Average size of the eyes: 75 × 30 pixels (2.9 × 1.2 degrees of visual angle); nose: 80 × 90 pixels (3.1 × 3.5 degrees of visual

angles); mouth: 115 × 35 pixels (4.5 × 1.4 degrees of visual angle). Frame rate = 30 Hz. Videos were shots with the same distance

between the actors and the camera, in the same closed room with no window, in diffuse lighting conditions. Actors sat against a green

background, and the point between their eyes (nasion) was aligned with the centre of the screen. Hence, the position of facial features

slightly varied between actors due to individual morphological differences, but were largely overlapping between actors.

Apparatus

The experimental setup consisted of four computers: two for administering the personality questionnaire, and two dedicated to the

eye-tracking experiment and actor face-rating questionnaire (see Procedure). Each setup consisted of a stimulus presentation PC (DELL

precision T3500 & DELL precision T3610) hooked up to a 19” LCD monitor (both 1280× 1024 pixels (49.9× 39.9 degrees of visual

angles) @ 60Hz) and an EyeLink 1000 kit (www.sr-research.com). Eye-tracking data was collected at 250 Hz. Participants sat at 57

cm from the monitor, their head stabilized with a chin rest, forehead rest, and headband. A protective opaque white screen encased the

monitor and part of the participant’s head in order to shield the participant from environmental distractions.

Procedure
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The study took place at the Live Science Pod in the Who Am I? exhibition of the London Science Museum. The room had no window

and the ambient luminance was very stable across the experiment. It consisted in 3 phases, for a total duration of approximately 15 min-

utes. Phase 1) A 10 items personality questionnaire based on the Big Five personality inventory (Rammstedt & John, 2007), collected

on a dedicated set of computers. Each personality trait (extraversion, conscientiousness, neuroticism, openness and agreeableness) was

assessed through 2 items. Item order was randomized across participants. Phase 2) The eye-tracking experiment. Experimental design

features such as the task at hand or the initial gaze position have been shown to drastically impact on face exploration (Armann &

Bülthoff, 2009; Arizpe, Kravitz, Yovel, & Baker, 2012). Here, they were standardized for every trial and participant. Participants were

asked to freely look at 40 videos of one randomly selected actor. Prior to every trial, participants had to look at a black central fixation

cross, presented on an average grey background. The fixation cross disappeared before the onset of the stimulus. On each trial one of

35 possible clips for that same actor was presented. Since there were 40 trials, some clips were presented twice. At the end of each

trial participants were instructed to indicate via a mouse button press whether the amount of time the actor was engaged in direct gaze

felt uncomfortably short or uncomfortably long with respect to what would feel appropriate in a real interaction. Each experiment was

preceded by a calibration procedure, during which participants focused their gaze on one of nine separate targets in a 3 x 3 grid that

occupied the entire display. A drift correction was carried out between each video, and a new calibration procedure was performed if

the drift error was above 0.5 degree. Phase 3) An actor face rating questionnaire (Todorov, Said, Engell, & Oosterhof, 2008), where

participants rated on a 1-7 scale the attractiveness, threat, dominance and trustworthiness of the actor they saw during the eye-tracking

experiment.

Eye data processing We parsed the (x,y) eye position signal into fixations and saccades with a custom algorithm (Nyström &

Holmqvist, 2010). This algorithm relies on an adaptive velocity threshold, making the event detection less sensitive to variations in

noise level. Hence, detection thresholds varied between trials. Absolute thresholds are used to discard obvious outliers. We used the

ones provided in (Nyström & Holmqvist, 2010), Table 2: max saccade velocity = 1000 degree/s; max saccade acceleration = 100,000

degree/s2; min saccade duration = 10 ms, min fixation duration = 40 ms. Both position and pupil dilation data were further processed

through a custom filtering algorithm that substituted signal losses with position / pupil data interpolated from data recorded prior and

following the loss of signal. For every period of lost data (no size restriction) we performed a linear interpolation of the eye position

(x and y coordinates) and variation in pupil size, using 100 ms of signal before and after loss. We did not set a limit on displacement

between preceding and succeeding samples. We discarded all points that felt outside the screen. Pupil diameter was expressed on a

trial-by-trial basis as a percentage change in diameter with respect to a baseline measure obtained in a 200 ms window preceding the

start of each trial. Environment luminance was constant throughout the whole experiment duration. We post-processed the pupil signal

to minimize artifacts caused by eye position. We removed the Pupil Foreshortening Effect artifact (Spring & Stiles, 1948; Jay, 1962)

from the pupil data by implementing a correction technique, based on a geometric model that expresses the foreshortening of the pupil

area as a function of the cosine of the angle between the eye-to-camera axis and the eye-to-stimulus axis (Hayes & Petrov, 2015). To

estimate the variability of eye positions of a given observer, we used a dispersion metric (Coutrot, Guyader, Ionescu, & Caplier, 2012).
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Figure 1: Scanpaths as Markov models. (a) Illustration of 7 out of the 405 individual scanpaths modelled as Markov models with 3 states. Each
coloured area corresponds to a state, or region of interest. Transition matrices show the probabilities of staying and shifting. (b) Markov model averaged
over the whole population with the VHEM algorithm. (c) Temporal evolution of the posterior probabilities of being in the states corresponding to
fixating the left eye, right eye, and to the rest of the face. Error bars represent s.e.m. See also Supplementary Fig. S3.

If n eye positions were recorded from an observer (p = (xi, yi)i∈[1..n]), the eye position coordinates), the intra-observer dispersion D is

defined as follows:

D(p) =
1

n(n− 1)

n∑
i=1

n∑
j=1
j 6=i

√
(xi − xj)2 + (yi − yj)2 (1)

The dispersion is the mean Euclidian distance between the eye positions of the same observers for a given clip. Small dispersion values

reflect clustered eye positions.

Scanpath modelling

Hidden Markov Models (HMM)

To grasp the highly dynamic and individualistic components of gaze behaviour, we model participant’s scanpaths using Hidden Markov

Models (HMM) (Chuk, Chan, & Hsiao, 2014). This method acknowledges that visual exploration is a process that unfolds in a partic-
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observer observer

Figure 2: Heatmaps of eye positions of 4 representative individuals, with light colour indicating areas of intense focus. Left: male observers. Right:
female observers. Top: male actors. Bottom: female actresses. One can see that females tend to explore faces more than males do, who stay more
within the eye region. Females watching females have the strongest left-eye bias. See also Supplementary Fig. S4.

ular sequence over time, and cannot be summarised by mere average fixation counts or durations within predefined regions of interest.

We first represent the average scanpath of each participant as a Markov model. A Markov model is a memory-less stochastic model

used for representing probability distributions over sequences of observations, or states (St)t∈[1..T ]. It is composed of (1) priors (the

probability distribution over the initial state) and (2) a state transition matrix, defining P (St|St−1), which encapsulates the probability

of travel between states. States can denote processes (e.g. scanning / reading / decision) (Simola, Salojärvi, & Kojo, 2008), isolated

targets (e.g. letter, line) (Haji-Abolhassani & Clark, 2013), but here, in the specific context of face exploration modelling, each state

represents gaze falling on a region of interest (ROI) of the face. The distribution of eye positions (emission density) within each ROI

is modelled as a 2D Gaussian distribution N(m,σ), with m the centre and σ the covariance matrix (the generalization of variance to

2D) of the Gaussian. Modelling HMM states with Gaussians instead of more isolated targets allows to relax the point of interest, taking

into account phenomenons such as the dissociation between the centre of gaze and the covert focus of attention, the imprecision of

the human oculomotor system and of the eye-tracker. For more details on eye movement Bayesian modelling, we refer the reader to

Boccignone’s thorough introduction (Boccignone, 2015). All the HMM parameters (priors, between-state transition probabilities, mean

and covariance of the Gaussians) are directly learnt from the eye data. They are obtained with the Baum-Welch algorithm, a special

case of the Expectation-Maximization algorithm (Rabiner, 1989; Bishop, 2006). We set the prior means of the Gaussian emissions to

be the actors’ nasion, and the prior covariance matrix to be isotropic, with standard deviation of 200 pixels (roughly the same size as

the facial features). We trained one model per participant using their eye positions subsampled at 30 Hz (1 value was drawn from the
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Figure 3: Gender differences in gaze behaviour. (a) Female observers make shorter fixations and (b) larger saccades. (c) Females are more scattered
than male observers. (d) Increase in pupil diameter was expressed as a percentage change in diameter with respect to a baseline measure obtained in
a 200 ms window preceding the start of each trial. Males watching females show a higher increase in pupil diameter than other pairings. (e) Females
watching females (FF) have a stronger left-eye bias. (f) Males and females are both less likely to gaze at the eyes of a same-sex actor than of a
different-sex actor. Error bars represent s.e.m.

raw signal every cyle). We chose this frequency for two reasons. 1) It conveniently matched the frame rate. 2) Training HMM with

time-sampled eye positions instead of successive fixations allows capturing fixation duration information in the transition probabilities;

30 Hz is a good trade-off between complexity and scanpath information. To avoid local maximum problem, we repeated the training

3 times and retained the best performing model, in term of log-likelihood. We set the number of states to 3 (imposing the number of

state is mandatory in order to cluster the Markov models) (Chuk et al., 2014). We also tried with 2 and 4 states, see Supplementary

Fig. S1 and S2. With only 2 states, the models lacks of spatial resolution, and with K = 4 one state is often redundant, so K = 3 is a

good compromise. To cluster Markov models, we used the variational hierarchical EM algorithm (VHEM) for hidden Markov Models

(Coviello, Chan, & Lanckriet, 2014). This algorithm clusters a given collection of Markov models into K groups of Markov models that

Isabelle
Cross-Out
us to capture

Isabelle
Sticky Note
Unmarked set by Isabelle

Isabelle
Inserted Text
a

Isabelle
Cross-Out

Isabelle
Inserted Text
based on the log-likelihood

Isabelle
Cross-Out
performed the analysis with 2 and 4 states

Isabelle
Cross-Out

Isabelle
Cross-Out

Isabelle
Cross-Out

Isabelle
Inserted Text
. For this reason, K=3 was deemed the best compromise.



Journal of Vision (20??) ?, 1–? Coutrot, Binetti, Harrison, Mareschal, & Johnston 8

are similar, according to their probability distributions, and characterizes each group by a ’cluster centre’, i.e., a novel Markov Model

that is representative for the group. For more details, the interested reader is referred to the original publication.

One advantage of this method is that it is totally data-driven; we have no prior hypothesis concerning the states parameters. To estimate

the global eye movement pattern across all participants, we average the individual Markov models with the variational hierarchical EM

algorithm (VHEM) for a Hidden Markov Model (Coviello et al., 2014). This algorithm clusters Markov models into N groups of similar

models, and characterizes each group by a ’cluster centre’, i.e. a model representative of that group. Here, we simply set N = 1. In Fig.

1a we show a representative set of 7 out of the 405 Markov Models with 3 states we trained with participants’ eye positions sampled at

30 Hz. One can see the great variety of exploration strategies, with ROIs either distributed across the two eyes, the nose and the mouth,

or shared between the two eyes, or even just focused on one eye. Yet, when Markov models are averaged over participants, the resulting

centre model (Fig. 1b) displays a very clear spatial distribution: two narrow Gaussians on each eye and a broader one for the rest of the

face. According to the priors, the probabilities at time zero, one is more likely to begin exploring the face from the left eye (66 %), than

from the background (32 %) or from the right eye (only 2 %). Moreover, the transition matrix states that when one is looking at the left

eye, one is more likely to stay in this state (94 %, with a 30 Hz sampling rate) than when in the right eye region (91 %) or in the rest

of the face (back, 89 %). These values are backed-up by the temporal evolution of the posterior probability of each state (Fig. 1c). We

clearly see a very strong left-eye bias during the first 250 milliseconds. This bias persists throughout but decreases over time.

Clusters of gaze behaviour

To test whether this general exploration strategy accounts for the whole population or if there are clusters of observers with different gaze

behaviours, we again use the VHEM algorithm. We set N = 2 (other values have been tested, but did not lead to significant differences

between groups) and obtain two distinct patterns (see Supplementary Fig. S3). To identify the variables leading to these different gaze

strategies, we use Multivariate Analysis of Variance (MANOVA). MANOVA seeks to determine whether multiple levels of independent

variables, on their own or in combination, have an effect on the affiliation of participants to one group or the other. We tested 3 groups of

independent variables: personality traits, face ratings, and basic characteristics (nationality, age, gender of the observer (GO), gender of

the corresponding actor (GA) and identity of the actor). Only the basic characteristics group led to a significant separation between the

two clusters (F1,404 = 7.5, p = 0.01), with observer and actor gender having the highest coefficient absolute value (see Supplementary

Table S1). Face ratings and personality traits failed to account for the separation between the two clusters (resp. F1,404 = 1.4, p = 0.58

and F1,404 = 2.0, p = 0.55). We also ran a MANOVA with the three groups of independent variables combined and obtained similar

results. We performed the same analysis for HMMs with 2 and 4 states and obtained similar results, see Supplementary Table S1 for

basic characteristics MANOVA coefficients. Hence, GA and GO are the most efficient variables to use to separate exploration strategies

into two subgroups. In the following, we closely characterise these gender-induced gaze differences.

Gender differences

To characterise gender differences in face exploration, we split our dataset into 4 groups: male observers watching male actors (MM,
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n = 119), male observers watching female actors (MF, n = 84), female observers watching male actors (FM, n = 106) and female ob-

servers watching female actors (FF, n = 96). Fig. 2 displays the eye position heatmaps of 4 individuals, each of them being characteristic

of one of these groups. We first compared the simplest eye movement parameters between these groups: saccade amplitudes, fixation

durations and intra-participant dispersion (i.e. eye position variance of a participant within a trial). In the following, the statistical signif-

icance of the effects of actor and observer gender has been evaluated via one-way ANOVAs. Pair-wise comparisons have been explored

via Tukey’s post-hoc comparisons. We find that for male observers, fixation durations are longer (Fig. 3a, F3,401 = 10.1, p < 0.001),

saccade amplitudes shorter (Fig. 3b, F3,401 = 8.5, p < 0.001), and dispersion smaller (Fig. 3c, F3,401 = 12.9, p < 0.001) than for

female observers. Actor gender does not influence these results. Note that these results are mutually consistent: shorter saccades and

longer fixations logically lead to lower dispersion. Gender also impacts on the increase of pupil diameter: this value is greater in MF

than in any other group (Fig. 3d, F3,401 = 2.8, p = 0.03), consistent with the Belladonna effect (Tombs & Silverman, 2004; Rieger et

al., 2015). We used the VHEM algorithm to obtain the centre Markov model of these 4 groups (N = 1 within each group). In all 4

groups, the spatial distribution of states is similar to the one depicted in Fig. 1b. We computed the posterior probabilities of each state,

as we did for the whole population (Supplementary Fig. S4). We find that during the first second of exploration, the left-eye bias is

stronger in FF than in MM (Fig. 3e, F3,401 = 3.1, p = 0.02), with no difference between the other comparisons. We also show that one

is less likely to gaze at the eyes of a same-sex actor than of a different-sex actor (Fig. 3f, F3,401 = 2.9, p = 0.03).

Gaze-based classification

These patterns appear systematic and rich enough to differentiate both actor and observer gender. To test this we gathered all the

gender differences in gaze behaviour mentioned so far to train a classifier to be able to predict the gender of a given observer and/or

the gender of the observed face (Fig. 4). We started from a set of 15 variables (Di)i∈[1..N ], with N the total number of participants.

Vector Di gathers for participant i the following information. Markov model parameters (spatial (x,y) coordinates of the states ranked

by decreasing posterior probability value, posterior probability of the left eye, right eye and rest of the face averaged over the first second

of exploration), mean intra-participant dispersion, mean saccade amplitude, mean fixation duration, mean pupil diameter, peak pupil

diameter and latency to peak. We then reduced the dimensionality of this set of variables (Di)i∈[1..N ] by applying a MANOVA. We

applied two different MANOVAs: one to optimize the separation between 2 classes (M observers vs. F observers), the other to optimize

the separation between 4 classes (MM vs. MF vs. FM vs. FF). The eigenvector coefficients corresponding to each variable are available

in Supplementary Table S2 and Supplementary Table S3. To infer the gender of an observer j, we used Quadratic Discriminant Analysis

(QDA). We followed a Leave-One-Out approach: at each iteration, one participant was taken out out for test, and the classifier trained

with all the others. For each participant j, we trained a QDA-classifier with (EVi)
i6=j
i∈[1..N ], EV representing the first two eigenvectors

from the first MANOVA. To infer the gender of both observer j and of the corresponding actor, we followed the same approach with the

first two eigenvectors of the second MANOVA. Both classifiers perform highly above chance level (two-sided binomial test, p < 0.001).

Such a classifier is able to correctly guess the gender of the observer 73.4% of the time (2 classes, chance level = 50%). It correctly

guesses the gender of both the observer and of the corresponding face 51.2% of the time (4 classes, chance level = 25%). We obtained
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Figure 4: Gaze-Based Gender Classification. Solely relying on eye data, a classifier based on dimensionality reduction and Quadratic Discriminant
Analysis achieves 51.2% of correct classification with 4 classes (MM, MF, FM FF, chance level = 25%), and 74.3% with 2 classes (M or F observers,
chance level = 50%). Both classifiers perform highly above chance (one-sided binomial test, p < 0.001). The initial dataset consists of: spatial
coordinates of the states ranked by posterior probability value, associated posterior probability averaged over the first second of exploration, intra-
participant dispersion, mean saccade amplitude, mean fixation duration, mean dispersion, mean pupil diameter, peak pupil diameter and latency to
peak. See also Supplementary Table S2 and Supplementary Table S3.

similar results with Linear Discriminant Analysis (LDA): 54.3% correct classification with 4 classes, 73.4 % correct classification with

2 classes.

Discussion

Understanding the precise nature of face perception is challenging as the face comprises a high-dimensional, dynamic information

space (Jack & Schyns, 2015). In this study, we use novel data-mining methods that encapsulate the highly dynamic and individualistic

spatio-temporal nature of gaze. Although a few previous studies have used Markov-based analysis with eye-tracking data to identify fix-

ations and saccades (Salvucci & Goldberg, 2000), to infer observers’ tasks (Simola et al., 2008; Haji-Abolhassani & Clark, 2014), or to

build visual saliency models (Zhong, Zhao, Zou, Wang, & Wang, 2014), only a small number of recent studies have applied these tech-

niques to face exploration (Chuk et al., 2014; Kanan et al., 2015). This approach is particularly powerful as faces feature very clear and

stable regions of interest (eyes, mouth, nose), allowing meaningful comparisons of Markov model states across stimuli and observers.

Here, for the first time, we propose to jointly use Bayesian (Markov model clustering) and Frequentist (MANOVA) inferences to assess

the influence of a large set of variables on face exploration strategies. We tested variables related to observers’ psychological profile

(personality traits), how they perceived actors’ face (face ratings), as well as basic demographic such as age, nationality or gender. We



Journal of Vision (20??) ?, 1–? Coutrot, Binetti, Harrison, Mareschal, & Johnston 11

found both the gender of the observer and of the actor to be the most efficient variables to separate the different recorded exploration

strategies into two homogeneous subgroups. This outcome cannot be explained by differences between stimuli since observers’ gender

is balanced between stimuli, as shown in Supplementary Fig. S5. This is backed-up by the very low MANOVA coefficient associated

with the identity of the actor (7.9e-3), see Supplementary Table S1. Our model-based results are supplemented with more classical eye

movement parameters such as fixation duration, saccade amplitude, intra-observer dispersion, and pupilometry. In the following, we

discuss the different strategies followed by different gender groups as well as their implication is perception bias.

Males are less exploratory than females

We present three complementary metrics indicating that female observers explore the face they are presented with more, regardless of

the gender of the actor: females make shorter fixations, larger saccades, and their eye positions are more scattered over the actor face.

Previous studies have reported the same pattern, even with very different stimuli or experimental designs (Vassallo, Cooper, & Douglas,

2009; Shen & Itti, 2012; Mercer Moss, Baddeley, & Canagarajah, 2012). For instance, in (Shen & Itti, 2012), eye movements were

recorded while participants watched and listened to different speakers in various outdoor settings. The authors showed that women

saccade more often away from the face of the speaker, especially to his/her body. This difference in gaze behaviour has been linked to

the greater accuracy of women in the decoding of nonverbal cues (Hall, 1984; McClure, 2000; Hall & Matsumoto, 2004; Schmid, Mast,

Bombari, & Mast, 2011). Actively looking for nonverbal cues distributed in many different parts of the face (Vatikiotis-Bateson & Ku-

ratate, 2012) and body of the speakers, especially their hands (Krauss, Chen, & Chawla, 1996), would increase female gaze dispersion.

However, this hypothesis is undermined by Reading the Mind in the Eyes Test developed in (Baron-Cohen, Wheelwright, Hill, Raste,

& Plumb, 2001), where participants are asked to associate photographs of pairs of eyes with an adjective (e.g., playful, comforting,

irritating, bored). Indeed, females are better than males at this task, even though only the eye region is available (Kirkland, Peterson,

Baker, Miller, & Pulos, 2013). Furthermore, males have been shown to be less exploratory than females even when exploring visual

scenes without any face such as landscapes or art stimuli (Mercer Moss et al., 2012).

Females looking at females have stronger left-side bias

We provide some insights into the time course of the global preference for the eye on the left side. We report a very strong left-eye bias

during the first 250 milliseconds of exploration, persisting throughout but decreasing over time.The left-eye bias is a well documented,

face specific characteristic. This bias is very strong when exploring upright faces, weakens with inverted faces, and disappears with

non-face stimuli, whether they are symmetric (vases, fractals) or not (landscapes) (Mertens, Siegmund, & Gruesser, 1993; Leonards

& Scott-Samuel, 2005). It is often associated with chimeric faces: faces composed of two left halves are often judged to be more

similar to the original face than faces composed of two right halves. Other studies have reported than when the left and the right-hand

side of a face are different, observers tend to base their responses on the information contained in the left side. This includes face

recognition (Brady, Campbell, & Flaherty, 2005), gender identification (Butler et al., 2005), facial attractiveness, expression and age

(Burt & Perrett, 1997). The factors determining this lateralization remain unclear. Some obvious potential determining factors have
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been excluded, such as observers’ eye or hand dominance (Leonards & Scott-Samuel, 2005). Other factors has been shown to interact

with the left-side bias, such as scanning habits (left bias is weakened for native readers of right to left) (Megreya & Havard, 2011),

and start position (bias toward facial features furthest from the start position) (Arizpe et al., 2012; Arizpe, Walsh, & Baker, 2015). The

most common explanation found in the literature involves the right hemisphere domination for face processing (Kanwisher, McDermott,

& Chun, 1997; Yovel, Tambini, & Brandman, 2008). Although valid when fixation location is fixed at the centre of the face, it may

seem counterintuitive when participants are free to move their eyes (Everdell, Marsh, Yurick, Munhall, & Paré, 2007; Hsiao & Cottrell,

2008; Guo, Meints, Hall, Hall, & Mills, 2009). Indeed, looking at the left side of the stimulus places the majority of the actor’s face

information in the observer’s right visual field i.e. their left hemisphere. An interpretation proposed in (Butler et al., 2005) is that start-

ing from a central position - either because of an initial central fixation cross or because of the well-known centre bias (Tseng, Carmi,

Cameron, Munoz, & Itti, 2009) - the left-hand side of the face activates right hemisphere face functions, making the latter initially more

salient than its right counterpart. This interpretation is also supported by the fact that during a face identification task, the eye on the

left side of the image becomes diagnostic before the one on the right (Vinette, Gosselin, & Schyns, 2004; Rousselet, Ince, Rijsbergen,

& Schyns, 2014). This explains why the left-side bias is so strong during the very first moments of face exploration, but why does it

persists over time? Different authors have reported a preferred landing position between the right eye (left visual hemifield) and the left

of the nose during face recognition (Hsiao & Cottrell, 2008; Peterson & Eckstein, 2013). This places a region of dense information -

the left eye and brow - within the foveal region, slightly displaced to the left visual hemifield, hence again activating right hemisphere

face processing functions. An alternative hypothesis is that the left side bias could be linked to the prevalence of right eye dominance

in humans. When engaged in mutual gaze, the dominant eye provides the best cue to gaze direction through small vergence cues. Since

the majority of the population is right-eye dominant (Coren, 1993), humans might prefer looking at the right eye (i.e. at the left side of

the face) as it provides a clearer signal of mutual gaze. Here, we found the left-side bias stronger in females looking at other females.

This strengthening, coupled with the fact that the perception of facial information is biased towards the left side of face images comple-

ments an earlier study reporting that females are better at recognizing other female faces, whereas there are no gender differences with

regard to male faces (Rehnman & Herlitz, 2006). On the other hand, it is inconsistent with another study reporting that when looking

at faces expressing a variety of emotions, men show an asymmetric functioning of visual cortex, whereas women have a more bilateral

functioning (Proverbio, Brignone, Matarazzo, Del Zotto, & Zani, 2006). Further investigation is needed to disentangle the interaction

between the gender of the observer and of the face observed in the activation of the right hemisphere face processing functions.

Limitations of this study

The authors would like to make clear that this study does not demonstrate that gender is the variable that most influences gaze patterns

during face exploration in general. Many aspects of the experimental design might have influenced the results presented in this paper.

The actors we used were all Caucasian between 20 and 40 years old with a neutral expression and did not speak, all factors that could

have influenced observers’ strategies (Wheeler et al., 2011; Schurgin et al., 2014; Coutrot & Guyader, 2014). Even the initial gaze

position has been shown to have a significant impact on the following scanpaths (Arizpe et al., 2012, 2015). In particular, the task
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given to the participants - rating the level of comfort they felt with the actor’s duration of direct gaze - has certainly biased participants’

attention toward actors’ eyes. One of the first eye-tracking experiment in history suggested that gaze patterns are strongly modulated

by different task demands (Yarbus, 1965). This result has since been replicated and extended: more recent studies showed that the

task at hand can even be inferred using gaze-based classifiers (Borji & Itti, 2014; Haji-Abolhassani & Clark, 2014; Kanan et al., 2015;

Boisvert & Bruce, 2016). Here, gender appears to be the variable inducing the strongest differences between participants. But one could

legitimately hypothesize that if the task had been to determine the emotion displayed by the actors’ face, the culture of the observer

could have play a more important role, as it has been shown that the way we perceive facial expression is not universal (Jack, Blais,

Scheepers, Schyns, & Caldara, 2009). Considering the above, we believe that the key message of this paper is that given a set of stimuli

and an experimental design, with all their inherent idiosyncrasies, our method allows capturing systematic differences between groups

of observers in a data-driven fashion.

Conclusion

Using the biggest and most diverse eye-tracking database recorded, we show that the way people look at faces contains systematic

variations that are diagnostic of the gender of the observers and of the face they observe. These results have strong implications in every

field using gaze-based models. For instance, quantifying the nature of face processing and joint attention is critical to the understanding

and the diagnosis of disorders such as Schizophrenia, Autism or Attention Deficit Hyperactivity Disorder (Freeth, Foulsham, & King-

stone, 2013; Wang et al., 2015). Tailoring these gaze-based models to a masculine or feminine population could lead to significant

enhancements, particularly when a substantial sex ratio difference exists (e.g. Autism). Going even further, one can speculate that

different stimuli could elicit different systematic patterns diagnostic of other observers’ characteristics, such as their state of health or

level of cognitive development (Tseng et al., 2013; Wass & Smith, 2014). Given the ubiquitous nature of eye movements, being able to

deduce such fundamental characteristics about a person, without the need for self report, would have tremendous impact across a broad

range of fields.
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Appendix

...

Clustering

...

Clustering

4 Regions of Interest

2 Regions of Interest

Figure S 1: Left: illustration of 5 out of the 405 individual scanpaths modelled as Markov models with 2 states. Each coloured area corresponds to a
state, or region of interest. Right: Markov model averaged over the whole population with the VHEM algorithm....

Clustering

...

Clustering

4 Regions of Interest

2 Regions of Interest

Figure S 2: Left: illustration of 5 out of the 405 individual scanpaths modelled as Markov models with 4 states. Each coloured area corresponds to a
state, or region of interest. Right: Markov model averaged over the whole population with the VHEM algorithm.
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ttrraannssiittiioonn LL--eeyyee
((tt++11))

RR--eeyyee
((tt++11))

BBaacckk
((tt++11))

LL--eeyyee ((tt)) 0.93 0.06 0.01
RR--eeyyee ((tt)) 0.07 0.92 0.01
BBaacckk ((tt)) 0.02 0.05 0.93

pprriioorrss LL--eeyyee RR--eeyyee BBaacckk
0.78 0.04 0.18

Cluster 2

(b)

Cluster 1

(a)

ttrraannssiittiioonn LL--eeyyee
((tt++11))

RR--eeyyee
((tt++11))

BBaacckk
((tt++11))

LL--eeyyee ((tt)) 0.95 0.04 0.01
RR--eeyyee ((tt)) 0.04 0.95 0.01
BBaacckk ((tt)) 0.11 0.03 0.86

pprriioorrss LL--eeyyee RR--eeyyee BBaacckk
0.39 0.31 0.30

Figure S 3: Two clusters of gaze behaviour. Centres of the two clusters of Markov models with 3 states obtained via the VHEM algorithm. Cluster
1 features narrow Gaussians centred on the eye region. Its priors are balanced between the 3 states. The transition probabilities are stronger for the
eyes than for the rest of the face. Cluster 2 features broader states, with priors favouring the left eye over the right eye. The transition probabilities are
balanced between the three states.

MANOVA COEFF

(a) - HMMs with 2 Regions of Interest

Independant
Variables

Observer Gender Observer Age
Observer

Nationality
Actor Number Actor Gender

First
Eigen Vector

8.1e-1 8.1e-2 4.6e-2 - 8.1e-2 1.4e-1

(b) - HMMs with 3 Regions of Interest

Independant
Variables

Observer Gender Observer Age
Observer

Nationality
Actor Number Actor Gender

First
Eigen Vector

4.5e-1 5.6e-2 - 2.1e-1 7.9e-3 2.8e-1

(c) - HMMs with 4 Regions of Interest

Independant
Variables

Observer Gender Observer Age
Observer

Nationality
Actor Number Actor Gender

First
Eigen Vector

- 6.1e-1 1.0e-2 2.6e-2 1.5e-1 1.8

state coord. ranked by posterior probabilities posterior probabilities classic parameters pupillometry

x1 y1 x2 y2 x3 y3 plefteye prighteye pback
sacc
amp

fix dur disp p.mean p.peak p.lat

First Eigen vector

7.8e-3 -3.5e-3 5.4e-3 -3.0e-3 1.4e-2 -3.9e-3 2.8 2.0 2.7 -1.5e-4 -6.9e-3 1.4e-2 1.5e-4 1.7e-3 -9.2e-3

Second Eigen vector

2.7e-3 9.9e-3 -6.7e-4 1.0e-2 -2.3e-3 1.0e-2 13.8 13.8 13.0 2.7e-2 -1.8e-3 -2.9e-2 -2.8e-3 -3.4e-3 1.7e-3

state coord. ranked by posterior probabilities posterior probabilities classic parameters pupillometry

x1 y1 x2 y2 x3 y3 plefteye prighteye pback
sacc
amp

fix dur disp p.mean p.peak p.lat

First Eigen vector

8.5e-3 5.8e-4 4.7e-3 1.5e-3 9.9e-3 2.6e-3 8.9 8.2 8.2 1.3e-2 -6.7e-3 -2.3e-4 1.0e-3 -2.4e-4 -7.0e-3

Second Eigen vector

-5.8e-4 -2.7e-3 -1.1e-2 -1.0e-2 -2.2e-7 -4.7e-2 -5.7e-1 -4.2e-1 -9.8e-1 3.0e-3 -1.8e-3 -1.1e-2 -7.3e-4 -1.4e-3 -5.6e-4

1

Table S 1: Coefficients of the first eigenvector of the MANOVA separating the two clusters of HMMs computed via the VHEM algorithm. We
performed this analysis for HMMs with (a) 2 states, (b) 3 states, and (c) 4 states. Categorical variable: cluster 1 or 2. Independent variables: basic
characteristics group. This group is the only one that led to a significant separation between the two clusters of Markov models. In the three analyses,
the highest coefficient absolute values are the ones of Observer Gender and Actor Gender.
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MANOVA COEFF

Independant
Variables

Observer Gender Observer Age
Observer

Nationality
Actor Number Actor Gender

First
Eigen Vector

4.5e-1 5.6e-2 - 2.1e-1 7.9e-3 2.8e-1

state coord. ranked by posterior probabilities posterior probabilities classic parameters pupillometry

x1 y1 x2 y2 x3 y3 plefteye prighteye pback
sacc
amp

fix dur disp p.mean p.peak p.lat

First Eigen vector

7.8e-3 -3.5e-3 5.4e-3 -3.0e-3 1.4e-2 -3.9e-3 2.8 2.0 2.7 -1.5e-4 -6.9e-3 1.4e-2 1.5e-4 1.7e-3 -9.2e-3

Second Eigen vector

2.7e-3 9.9e-3 -6.7e-4 1.0e-2 -2.3e-3 1.0e-2 13.8 13.8 13.0 2.7e-2 -1.8e-3 -2.9e-2 -2.8e-3 -3.4e-3 1.7e-3

state coord. ranked by posterior probabilities posterior probabilities classic parameters pupillometry

x1 y1 x2 y2 x3 y3 plefteye prighteye pback
sacc
amp

fix dur disp p.mean p.peak p.lat

First Eigen vector

8.5e-3 5.8e-4 4.7e-3 1.5e-3 9.9e-3 2.6e-3 8.9 8.2 8.2 1.3e-2 -6.7e-3 -2.3e-4 1.0e-3 -2.4e-4 -7.0e-3

Second Eigen vector

-5.8e-4 -2.7e-3 -1.1e-2 -1.0e-2 -2.2e-7 -4.7e-2 -5.7e-1 -4.2e-1 -9.8e-1 3.0e-3 -1.8e-3 -1.1e-2 -7.3e-4 -1.4e-3 -5.6e-4

1

Table S 2: Coefficients of the first and second eigenvectors of the MANOVA separating the eye data into 4 classes: MM, MF, FM and FF. Categorical
variables: gender of the observer and of the actor. Independent variables: state coordinates ranked by decreasing mean posterior probabilities, mean
posterior probabilities of the left eye, right eye and background, mean saccade amplitude, fixation duration and intra-observer dispersion, mean pupil
diameter, maximum pupil diameter and latency to maximum pupil diameter. The ratio of the between-group variance to the within-group variance for
the first Eigen vector is 0.39; 0.23 for the second.

MANOVA COEFF

Independant
Variables

Observer Gender Observer Age
Observer

Nationality
Actor Number Actor Gender

First
Eigen Vector

4.5e-1 5.6e-2 - 2.1e-1 7.9e-3 2.8e-1

state coord. ranked by posterior probabilities posterior probabilities classic parameters pupillometry

x1 y1 x2 y2 x3 y3 plefteye prighteye pback
sacc
amp

fix dur disp p.mean p.peak p.lat

First Eigen vector

7.8e-3 -3.5e-3 5.4e-3 -3.0e-3 1.4e-2 -3.9e-3 2.8 2.0 2.7 -1.5e-4 -6.9e-3 1.4e-2 1.5e-4 1.7e-3 -9.2e-3

Second Eigen vector

2.7e-3 9.9e-3 -6.7e-4 1.0e-2 -2.3e-3 1.0e-2 13.8 13.8 13.0 2.7e-2 -1.8e-3 -2.9e-2 -2.8e-3 -3.4e-3 1.7e-3

state coord. ranked by posterior probabilities posterior probabilities classic parameters pupillometry

x1 y1 x2 y2 x3 y3 plefteye prighteye pback
sacc
amp

fix dur disp p.mean p.peak p.lat

First Eigen vector

8.5e-3 5.8e-4 4.7e-3 1.5e-3 9.9e-3 2.6e-3 8.9 8.2 8.2 1.3e-2 -6.7e-3 -2.3e-4 1.0e-3 -2.4e-4 -7.0e-3

Second Eigen vector

-5.8e-4 -2.7e-3 -1.1e-2 -1.0e-2 -2.2e-7 -4.7e-2 -5.7e-1 -4.2e-1 -9.8e-1 3.0e-3 -1.8e-3 -1.1e-2 -7.3e-4 -1.4e-3 -5.6e-4

1

Table S 3: Coefficients of the first and second eigenvectors of the MANOVA separating the eye data into 2 classes: Male and Female observer.
Categorical variables: gender of the observer. Independent variables: state coordinates ranked by decreasing mean posterior probabilities, mean
posterior probabilities of the left eye, right eye and background, mean saccade amplitude, fixation duration and intra-observer dispersion, mean pupil
diameter, maximum pupil diameter and latency to maximum pupil diameter. The ratio of the between-group variance to the within-group variance for
the first Eigen vector is 0.32; 3e-16 for the second.
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Figure S 4: Clusters of Markov model by observer and actor gender. Left: Markov models belonging to the MM, MF, FM or FF group clustered
via VHEM algorithm. Right: Corresponding posterior probabilities, for the three possible states (left eye, right eye and rest of the face). Error bars
represent s.e.m.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Actor Number

P
ro

p
o
rt
io
n
(%

)

Male Participants Female Participants

1

Figure S 5: For each actor, proportion of male and female participants. Actor 2, 3, 6 and 7 are male, the other are female. The analyses are performed
on 405 participants (203 males, 202 females).
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