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Self-Localization of Ad-Hoc Arrays Using Time
Difference of Arrivals

Lin Wang, Tsz-Kin Hon, Joshua D. Reiss, and Andrea Cavallaro

Abstract—We investigate the problem of sensor and source joint
localization using time-difference of arrivals (TDOAs) of an ad-hoc
array. Amajor challenge is that the TDOAs contain unknown time
offsets between asynchronous sensors. To address this problem, we
propose a low-rank approximation method that does not need any
prior knowledge of sensor and source locations or timing infor-
mation. At first, we construct a pseudo time of arrival (TOA) ma-
trix by introducing two sets of unknown timing parameters (source
onset times and device capture times) into the current TDOA ma-
trix. Thenwe propose aGauss-Newton low-rank approximation al-
gorithm to jointly identify the two sets of unknown timing param-
eters, exploiting the low-rank property embedded in the pseudo
TOA matrix. We derive the boundaries of the timing parameters
to reduce the initialization space and employ a multi-initialization
scheme. Finally, we use the estimated timing parameters to correct
the pseudo TOA matrix, which is further applied to sensor and
source localization. Experimental results show that the proposed
approach outperforms state-of-the-art algorithms.

Index Terms—Ad-hoc array, low rank approximation, self-local-
ization, time-difference of arrival.

I. INTRODUCTION

A D-HOC sensor networks composed of randomly dis-
tributed and independent recording devices, such as

smartphones, wireless microphones, and laptops, have been
attracting increased interest due to their flexibility in sensor
placement [1], [2]. However, the geometrical configuration
of an ad-hoc array is generally unknown and may change
with time. Device localization is a very important task in this
context. Although not necessary in blind source separation
[3] and adaptive beamforming [4], a precise knowledge of
the device locations is still required in many applications
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Fig. 1. Illustration of TOA ( and ) and TDOA ( ) for source and
two sensors 1 and . The source has unknown onset time . The sensors have
unknown capture start times and , and unknown time offset .

such as fixed beamforming, source localization and tracking
[5]. A straightforward approach for device localization is
to measure the distance among all the device pairs and to
apply closed-form estimators to recover their spatial locations
[6]–[9]. The inter-device distance can be directly measured
using tapes or laser pointers, which is time consuming [10].
The inter-device distance can also be computed based on the
acoustical transfer delays between two devices, by actively
communicating calibration sounds between independent de-
vices [11], [12]. Active communication requires a specially
designed network interface or software, which is not available
in many recording devices. Passive device localization instead
exploits external acoustic events emitted from discrete spatial
positions. Two types of information, time of arrival (TOA)
and time difference of arrival (TDOA), can be estimated from
microphone recordings and be used to jointly localize sensors
and sources [13], [14]. If the source signal is known beforehand
(predefined sound), its TOA for each individual microphone
is obtained through cross-correlation with the given signal. If
the source signal is unknown (ambient sound), the TDOA for a
pair of microphones is estimated through cross-correlation of
the two microphone signals.
A challenge that arises for an ad-hoc array is that its devices

are usually not synchronized. As a result, practical TOA mea-
surements are biased because they may include an unknown
source onset time and an unknown device capture time (Fig. 1).
Similarly, practical TDOA measurements may include an un-
known time offset between a pair of recordings. These time un-
certainties make the sensor localization problem harder [14],
[17].
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To address the unknown timing information, one can estimate
all the unknown parameters, including sensor and source loca-
tions and time offsets, simultaneously [5]. The former approach
usually leads to the minimization of a non-convex cost func-
tion. To overcome local minima problems, some approaches in-
troduce additional constraints, such as co-located sensor-source
pairs [14] or far-field sound sources [15]. However, these con-
straints are not always satisfied in practical applications. Alter-
natively, one can estimate the unknown timing information, and
then estimate the sensor and source locations [19]. This simpli-
fies the problem by decomposing it into two independent stages.
The low-rank structure embedded in the TOA measurements
can be exploited to estimate the unknown onset times and cap-
ture times [16]–[18]. These approaches typically involve a gra-
dient-based optimization procedure, which is sensitive to local
minima. Moreover, existing algorithms usually simplify the op-
timization by assuming either the onset times or the capture
times to be known. To the best of our knowledge, a general but
effective solution is still missing.
In this paper we present a method that jointly estimates the

sensor and source locations from the biased TDOA measure-
ments. We employ the two-stage estimation framework, i.e.,
timing information estimation followed by sensor and source
localization. When estimating the timing information, the ex-
isting low-rank approximation techniques are not applicable to
TDOA because the latter does not contain the desired low-rank
structure as TOA does. To address this challenge, we construct a
pseudo TOA matrix by introducing two sets of unknown timing
parameters (source onset times and device capture times) into
the current TDOA matrix. To estimate these two parameters
from the pseudo TOA, we propose a Gauss-Newton low-rank
approximation algorithm.
The main novelty of the proposed algorithm is summarized

as follows. The proposed complete solution is in contrast to
the state-of-the-art timing information estimation algorithms
[16]–[18], which assume that only one set of parameters (either
onset times or capture times) are unknown. The proposed
algorithm has several features which are helpful to tackle local
minima problems. First, it is shown that the onset times and
capture times in the pseudo TOA matrix can be represented as
functions of the sensor and source locations, and particularly,
these functions are independent of the TOA data. This feature
makes it possible to derive the boundary of the parameter
space, and to reduce the initialization space with a reasonable
assumption of the maximum sensor-source distance. Second,
the algorithm can converge quickly to either local or global
minima, and typically shows evident distinction between the
two minima. This feature makes it both computationally and
technically feasible to employ a multi-initialization scheme to
increase the probability of reaching a global minimum.
The paper is organized as follows. Section II overviews

related work of self-localization. Section III formulates the
problem and introduces existing solutions. The proposed
method, including pseudo TDOA matrix construction, timing
information estimation, and geometrical information estima-
tion, is described in Sections IV–VI, respectively. Performance
evaluation is conducted in Section VII and conclusions are
drawn in Section VIII.

II. RELATED WORK

Passive device self-localization approaches can be divided
into two classes, namely pairwise distance estimation and joint
sensor and source localization (Table I).
Pairwise distance estimation approaches recover the distance

between each pair of devices and then the relative locations of
all the devices. One can assume a diffuse noise field and esti-
mate the microphone pairwise distance by fitting the measured
noise coherence to the theoretical model of the field [20], [21].
Although this solution alleviates the need for activating several
sources, it is only feasible for small arrays, and requires the mi-
crophones to be synchronized in order to calculate the coher-
ence correctly. Moreover, the diffuse noise assumption is not
always satisfied. Another approach is to determine the inter-de-
vice distance by estimating the minimum and maximum TDOA
values [22]–[25]. By assuming that the minimum and maximum
TDOAs come from sources located at the end-fire directions,
the inter-device distance can be calculated without knowing the
time offset. However, the assumption of end-fire sources is not
always satisfied.
Joint localization approaches estimate the locations of sen-

sors and sources simultaneously using acoustic events emitted
from various spatial locations. Information that can be used for
the joint localization task includes TOA, TDOA, and received
signal energy. The TOA measurement may be biased by the
unknown source onset time and device capture time, while the
TDOAmeasurement may be biased by the unknown time offset.
To minimize the influence of unknown timing information, two
schemes can be employed: one-stage estimation [5], [14] and
two-stage estimation [16], [17].
The one-stage scheme estimates the unknown position and

timing information simultaneously via a maximum likelihood
estimation, using either TOA or TDOA information [5], [14],
[26]. The method presented in [26] jointly estimates the loca-
tions and onset times, utilizing the TOAs of calibration sig-
nals. The presented method in [14] jointly estimates the loca-
tions and capture times from the TOAs or TDOAs of calibra-
tion signals. A closed-form solution is also derived by assuming
pairs of co-located sensors and sources, e.g., in laptops or tablets
[14]. The method presented in [5] jointly estimates the locations
and capture times from the TDOAs measured from ambient
sounds. An auxiliary function-based iterative algorithm, which
shows a better convergence property, is proposed for the opti-
mization procedure. If the timing information is already known,
the one-stage estimation can be performed by exploiting the
affine geometry of the sensors and sources [13], [15]. A singular
value decomposition (SVD) based low-rank matrix factoriza-
tion approach is employed to reduce the number of unknown
parameters, which are further estimated through a much sim-
pler non-linear optimization procedure. The method in [15] es-
timates the locations of the sensors and sources from the TOAs
of the sources, which are assumed to be at the far field and hence
have the same onset time. This method is further extended to
a general case which does not rely on the far-field assumption
[13], [30]. A closed-form solution can be derived by assuming
a pair of co-located sensor and source [13]. Besides TDOA and
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TABLE I
SUMMARY OF DEVICE SELF-LOCALIZATION ALGORITHMS. (DT: DEVICE CAPTURE TIME; ST: SOURCE START TIME; DL: DEVICE LOCATION; SL: SOURCE

LOCATION; PD: PAIRWISE DISTANCE).

TOA, the energy of the microphone signals can also be ex-
ploited for sensor and source localization, using a maximum
likelihood optimization procedure [27]–[29]. The energy-based
method does not need exact timing information, but usually as-
sumes pairs of co-located sensors and sources, e.g., in laptops
[27], [28]. In summary, most one-stage estimation algorithms
assume that at least one set of timing information is known (ei-
ther onset time or capture time) or impose additional geomet-
rical constraints to simplify the optimization problem. Only [5]
presents a general formulation.
A two-stage scheme that first estimates the timing informa-

tion is more suitable for TOA measurements. After TOA cor-
rection, the scheme jointly estimates the sensor and source lo-
cations utilizing similar techniques to those employed in the
one-stage scheme, e.g., [5], [13], [14]. An effective way of esti-
mating timing information is to exploit the low-rank structure
of the sensor and source locations, which all lie in the 3-di-
mensional space [30]. Specifically, a matrix consisting of the
biased TOA measurements can be formulated which is sup-
posed to be rank-3 if the bias is correctly compensated. With
these constraints, the timing information can be estimated so
that the mentioned matrix becomes rank-3 after compensation.
Three algorithms have been proposed recently to solve this low-
rank approximation problem, including alternating minimiza-
tion [17], [19], nuclear truncation minimization [18], [31], [32],
and structured total least squares [16]. The structured total least
squares algorithm converges more than 100 times faster than the
other two algorithms [16]. The two-stage estimation scheme is
promising for the localization problem since by decomposing
the problem into two stages, the optimization becomes easier.
In summary, the above-mentioned three low-rank approxima-

tion algorithms are suitable for TOA only, and assume that at
least one timing information to be known (either onset time or
capture time). For now, no progress has been reported on ap-
plying these algorithms to biased TDOA measurements. The
proposed algorithm will fill this gap.

III. PROBLEM FORMULATION

We denote vectors and matrices in bold lowercase letters and
bold uppercase letters, respectively. The operator denotes
the -th element of a vector while denotes the -th ele-
ment of a matrix. The operator denotes vectorization of a
matrix by concatenating its column vectors, while the operator

denotes vectorization of a matrix by concatenating its row
vectors.

A. Signal Model
Consider independent acoustic sensors (microphones) and
sound sources (speakers) at unknown locations

and , respectively. The emis-
sion onset times of the sources are unknown and represented as

, where the superscript denotes trans-
pose. The unknown capture start times of the sensors are

. The TOA from the -th source to the -th sensor
is defined as

(1)

where is the speed of sound and is the Euclidean norm.
The TOAs for the combination of all the sensors and sources
are represented as a matrix where and

. The TDOA from the -th source to the first and
the -th sensor is defined as

(2)

where is the time offset between the first and
the -th sensor, and is the distance between
the -th sensor and the -th source (Fig. 1). The TDOAs for
the combination of all the sensors and sources is represented
as where and . Based
on (2), the first row of consists of all zero elements, i.e.,

. The time offsets of all the sensors with respect to the
first sensor is , where .



IE
EE

 P
ro

of

W
eb

 V
er

sio
n

4 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 0, NO. 00, 2015

We assume the sound sources are unknown (uncontrolled am-
bient sounds) and thus only TDOA information is available,
which is biased by the unknown time offset. The goal of this
paper is to estimate the sensor and source locations and
from the biased TDOAmeasurements . Since the TDOA con-
tains only the distance information, the estimation of the loca-
tions is not invariant against rotation, translation and reflection.
Without loss of generality, we assume that the first sensor lies
at the spatial origin while the first source is con-
fined to lie on the first positive axis, i.e., with

. We also assume that the onset time of the first source,
, is 0.

B. Existing Solutions
1) One-Stage Estimation: The sensor and source locations

and the time offsets can be simultaneously estimated via max-
imum likelihood estimation. This is expressed as

(3)

A gradient-based solution has been presented in [5]. However,
with many unknown parameters, the minimization of (3) leads
to a non-convex problem, which is sensitive to parameter ini-
tialization and can easily get stuck in local minima.
2) Two-Stage Estimation: The low-rank structure embedded

in the TOA measurements can be exploited to estimate the
timing and location information separately [17].
From (1) it can be derived that

(4)
for and . Using the assumption

and sequentially subtracting the corresponding equation
for and the equation for from the general form (4),
it follows

(5)

for and . Equation (5) can be ex-
pressed in a matrix form as

(6)

The elements of , , , and
can be expressed as

(7)

for and .
Based on the above definitions, the matrices and are re-

lated to the sensor and source locations and their matrix ranks
are both equal to 3. Thus, the rank of the left side of (6), ,
is equal to 3 and the same is true for the right side, . This
low-rank information can be utilized to estimate both the timing
and geometrical information.
The matrix is constructed from the TOA parameters ,

while the matrix is constructed from the unknown parameters
and . Timing information estimation is essentially a low-rank

matrix completion problem [36], i.e., the matrix can be seen
as a modification of so that is of rank 3 [17].
Low-rank approximation algorithms, such as alternative mini-
mization [17], nuclear truncation minimization [18] and struc-
tured total least square (STLS) [16], have been proposed to solve
this problem. After estimating the timing information and cor-
recting the matrix, , the rank-3 of is further
used to estimate and .
However, this solution is not directly applicable to our

problem, where only TDOA is available and both onset times
and capture times are unknown. The TDOA does not contain
the desired low-rank structure as in (6). Existing low-rank ap-
proximation algorithms [16]–[18] assume either the onset times
or the capture times to be known. To address these challenges,
we propose a sensor and source localization method, which is
described in Sections IV–VI.

IV. PSEUDO TOA MATRIX CONSTRUCTION
To employ the low-rank approximation method, a TOA ma-

trix is needed which contains a low-rank structure as in (6).
Since we only have the TDOA matrix available, one pos-
sible solution is to convert to a matrix containing the desired
low-rank structure. To this end, we define a pseudo TOA matrix
in the same form as in (1), i.e.,

(8)

where and are two unknown parameters termed as pseudo
onset time and pseudo capture time, respectively. If we can find
appropriate and that enable , the TDOA matrix
would be interpreted as a TOA matrix.
To make , it requires , or, more specif-

ically,

...
. . .

...
...

. . .
...

(9)

Using (2) and (8) on , it follows that

(10)

for and . It can be easily verified
that the two sets of pseudo parameters ( ) and
( ) can be uniquely determined by solving a group
of (10) if the sensor locations , the source locations and the
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time offsets are known. This demonstrates theoretically that
there do exist appropriate and that enable . In
practice, these two parameters are unknown and will have to be
estimated from .
Thus, by introducing two pseudo parameters, the TDOA ma-

trix can be interpreted as the pseudo TOA matrix . Ob-
viously, and its pseudo parameters and are different
from the original TOA, onset time and capture time, which are
defined in (1). However, with similar structure as the original
TOA matrix, can be exploited for low-rank approximation.
The next task will be to estimate and

and to recover and .
Considering that the concepts of original TOA, onset time and

capture time will not be used hereafter, we remove the accent
of , and , and also call them TOA, onset time and capture
time, without introducing ambiguities.

V. TIMING INFORMATION ESTIMATION

In this section, we propose a Gauss-Newton low-rank approx-
imation algorithm to estimate the unknown parameters and
from the pseudo TOA matrix .
As shown in Section III-B2, the timing information esti-

mation can be seen as a low-rank matrix completion problem
(6). We solve this problem under a structured total least-square
framework [16]. The matrices , , and are each partitioned
into two blocks, such that the first submatrix contains the
first three columns while the second submatrix contains the
remaining columns. This is expressed as

(11)
(12)
(13)

where , , and are the partitioned submatrices. The ob-
jective is to find an appropriate (consisting of and ) and an
additional matrix so that

(14)

If (14) holds, the matrix will lie in the range of the matrix
. It follows that

(15)

Similarly to [16], the STLS cost function is defined as

(16)

where denotes the F-norm. The first term on the right
side of (16) is introduced to prevent algorithm divergence; the
second term corresponds to the condition (14) and is empha-
sized with a large penalty . In [16] a simplified solution is
given, which however assumes that the onset time is known.
This solution is not feasible for our case, where both and are
unknown. We present a complete and general solution below.
Let us define the unknown parameters , , and as a

column vector , where

. The cost function (16)
can be further written as

(17)

where and
, with the two column

vectors

(18)

Based on (17), the minimization of is a nonlinear least
square problem, which can be solved with the well-known
Gauss-Newton algorithm [35]. Suppose the Jacobian matrix

(19)

can be obtained. The unknown can be estimated in an iterative
way as

(20)

where , and denote the parameters obtained in
the -th iteration. The computation of the Jacobian matrix is
presented in Appendix A.
To tackle the local minima problem, we reduce the initial-

ization space by computing the boundary of the parameters
(Section V-A). We also use multiple initializations to increase
the probability of reaching the global minimum (Section V-B).

A. Parameter Boundary

We derive the boundary of the unknown parameters by using
the definitions of and in (8)–(10), and the assumptions

and .
Using , it follows that

(21)

Using for , it follows that

(22)

(23)

Averaging on the -th ( ) row of , it follows

(24)

(25)
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Using (22), it follows that

(26)

Using (26) in (25), it follows that

(27)

Suppose the maximum distance between a sensor and a
source is known to be . Using in (21), (23) and (27),
the boundary of the parameters can be obtained as

(28)
This is an interesting result since, based on (28), the

values of the onset times and capture times are only related
to the locations of sensors and sources (more specifically

) and a constant term . With (28), the ini-
tialization space can be significantly reduced compared to
(unconstrained) random initialization. For example, assuming

, , and , the parameter
space can be initialized as ,

, and .

B. Multiple Initializations
To overcome the local minima problem we use multiple

initializations, a scheme that is suitable for the low-rank ap-
proximation algorithm. First, the Gauss-Newton algorithm can
converge at an approximately quadratic rate, which takes only
a few iterations to reach global or local minima [35]. This
makes it computationally feasible to try multiple initializations.
Second, we experimentally observe that the difference between
the global and local minima is very evident, making it easy to
detect whether a global minimum has been reached.
Fig. 2 gives an example of the convergence behaviour

of the Gauss-Newton low-rank approximation algorithm,
using 10 sources and 10 sensors randomly distributed with

. The start times and capture times are chosen ran-
domly and uniformly from the range . The algorithm
uses 1000 random initializations uniformly chosen from the
range defined by (28). The results are shown in terms of cost
function , where is defined in (18), and estimation
error ( for the true value and the estimated value
). Fig. 2(a) depicts the final cost function obtained by each
initialization. Three types of results can be achieved: global
convergence, local convergence, and divergence. Their differ-
ence can be clearly observed: the cost function values below

Fig. 2. Convergence results in terms of (a) cost function and (b) estimation
error by the Gauss-Newton low-rank approximation algorithm with 1000 ini-
tializations ( ). Typical iteration curves of (c) cost function and
(d) estimation error for global converge, local convergence, and divergence.

in case of global convergence, around in case of
local convergence, and over in case of divergence. This
makes it easy to detect the convergence status of the algorithm.
Accordingly, Fig. 2(b) depicts the final estimation error by each
initialization. The three types of convergence result in different
estimation errors: these errors are around in case of
global convergence, around 0.1 s in case of local convergence
and over in case of divergence. Fig. 2(c) and (d) depict
typical cost function and estimation error curves during the
Gauss-Newton iteration. With quadric convergence rate, the
algorithm can converge either locally or globally within 100
iterations.
The description of the timing information estimation algo-

rithm is given in Algorithm 1. The input equals the TDOA .
We try multiple initializations until the algorithm reaches global
convergence. For each initialization, and are randomly
chosen within the range (28).
The value of the cost function threshold ( in Algorithm 1)

is chosen based on the convergence results obtained with clean
TDOA measurements. This threshold can be easily determined
since the final cost functions for local and global convergence
show evident differences (e.g., we choose a threshold of
according to Fig. 2(c)). For noisy inputs, the final cost function
for global convergence increases with TDOA errors, making the
difference between local and global convergence less evident.
Thus, the optimal threshold may vary with the amount of noise.
However, we will use the same threshold for all scenarios. There
are two reasons for that. First, since the final cost function for
global convergence increases with TDOA errors, the algorithm
will reach global convergence once the cost function is below
the threshold, which is determined for clean TDOA measure-
ments. Second, if in case of noisy inputs the final cost function
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for global convergence is higher than the threshold, the algo-
rithm will run until reaching the maximum number of initializa-
tions and choose the solution with the minimum cost function.
This multi-initialization scheme can reduce the influence of a
too-low threshold.

Algorithm 1 Gauss-Newton low-rank approximation for
timing information estimation

Input:

Output:

Parameters: : threshold for divergence

: threshold for global convergence

: stopping threshold for Gauss-Newton iterations

: maximum number of initializations

: maximum number of iterations

: penalty constant in (16)

: maximum sensor-source distance in (28)

; ; ;

while do

Initialize , ; (28)

Compute , , ; (7)(11)

; ; ;

while do

Compute , , ; (7)

Compute ; (17)

Compute ; (19)

Update ; (20)

if OR OR

then ;

end if

;

end while

if then

; ;

end if

if OR ; then ; end if

;

end while

VI. GEOMETRICAL INFORMATION ESTIMATION

Building on the work in [13], [17], in this section we present
a Gauss-Newton joint localization algorithm to estimate the
sensor and source locations, using the timing information
obtained in Section V.
Given the estimated and , (6) becomes .

Since is of rank 3, it can be decomposed via singular value
decomposition (SVD) as

(29)

where keeps only the three largest singular values while
and consist of the corresponding left-singular and right-sin-
gular vectors, respectively.With (29), and can be calculated
as

(30)

where is an arbitrary 3 3 matrix which is invertible. Using
the assumptions , , the sensor
and source locations can be calculated as

(31)

For localization, we only need to estimate 10 parameters regard-
less of the number of sensors and sources. The 10 unknown pa-
rameters are represented as where

.
To estimate , we rewrite the relationship (4) as

(32)

with . We
further have

(33)

Using (31) in (33), it follows that

(34)

Using (6) in (34), it follows that

(35)

where

(36)

for and . It can be easily verified
that has the same value for any while has the same
value for any . Thus they can be represented as and .
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The equations in (35) can be used to estimate .
The cost function is defined as

(37)

where , with

(38)

for and .
The minimization of is a nonlinear least square problem

which can be solvedwith the Gauss-Newton algorithm. Suppose
the Jacobian matrix

(39)

can be obtained. can be estimated iteratively as

(40)

where , and denote the parameters obtained in
the -th iteration. The detailed derivation of the Jacobian ma-
trix is given in Appendix B.
Compared with [13], [17], which only consider , the pro-

posed algorithm considers both and , i.e., more observa-
tions are used. This may lead to better convergence behaviour.
Similarly to Algorithm 1, we use a multi-initialization scheme.
The description of the Gauss-Newton joint localization algo-
rithm is given in Algorithm 2. The elements in are initial-
ized as normally distributed random numbers.
The convergence behaviour of the Gauss-Newton joint local-

ization algorithm is closely related to the accuracy of timing in-
formation estimation. If the low-rank approximation algorithm
only converges locally, (29) does not exactly hold and the joint
localization algorithm converges locally or even diverges. If the
low-rank approximation algorithm converges globally with ac-
curate timing information estimation, the joint localization al-
gorithm can globally converge easily with a multi-initialization
scheme. Fig. 3 gives an example of sensor and source localiza-
tion using the same data as Fig. 2. In Fig. 3(a), the low-rank ap-
proximation algorithm converges locally and so does the joint
localization algorithm. In Fig. 3(b), the low-rank approxima-
tion algorithm converges globally and the joint localization al-
gorithm can recover the sensor and source locations accurately.

Algorithm 2 Gauss-Newton joint localization algorithm for
geometrical information localization

Input: , ,

Output: , ,

Parameters: : threshold for divergence

: threshold for global convergence

Fig. 3. Sensor and source localization by the proposed two-stage method (
). The Gauss-Newton low-rank approximation algorithm and the

Gauss-Newton joint localization algorithm both converge (a) locally and (b)
globally.

: stopping threshold for Gauss-Newton iterations

: maximum number of initializations

: maximum number of iterations

Compute ; (13)

Compute , , via SVD; (29)

; ; ;

while do

Initialize ; ; ;

while do

Compute , ; (30)

Compute , ; (38)(39)

Update ; (40)

if OR OR

then ;

end if

;

end while

if then

; ;

end if

if OR ; then ; end if
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;

end while

Compute , ; (31)

VII. EXPERIMENTAL RESULTS

A. Experiment Setup

The proposed algorithm consists of two stages: the Gauss-
Newton low-rank approximation algorithm for timing informa-
tion estimation and the Gauss-Newton joint localization algo-
rithm for geometrical information estimation. The first sub-al-
gorithm is sensitive to local minima. Five experiments are thus
carried out: the first experiment examines the convergence prop-
erty of the timing information estimation algorithm; the second
experiment compares the performance of the proposed algo-
rithm with existing algorithms; the third investigates the robust-
ness of the proposed algorithm to noisy TDOA measurements;
the fourth evaluates the performance with realistic TDOA data
estimated from simulated ambient sounds; the last one presents
an example with real-recorded data.
Monte Carlo simulations are used to generate testing data.We

test all the possible combinations of different numbers of sen-
sors ( ) and sources ( ), where is chosen from [5:15, 20]
and is chosen from [5:15, 20, 25]. For each , we im-
plement different realizations. In each realization, the locations
of the sensors and sources are uniformly distributed inside an
enclosure of 10 m 10 m 3 m with , whereas
the onset times and capture times are chosen randomly and uni-
formly from the range .
A fair comparison of the proposed algorithm with existing

algorithms is problematic since most existing approaches
assume some prior knowledge of the timing or location infor-
mation. The closest approach to ours is the one proposed by
Ono [5] which does not consider any prior knowledge. Three
algorithms are therefore considered: the one-stage algorithm
( ) [5], the proposed two-stage algorithm ( ),
and the algorithm refined by the algorithm
( ). As discussed in Section VI, the

algorithm may not recover the locations if the timing
information is not estimated accurately. However, the estimated
locations are usually closer to the true values than random
initializations. Using them as an initial guess for the
algorithm, which estimates all the parameters simultaneously,
may lead to a better estimation. The parameters used in the

algorithm are listed in Table II. These parameters
will be used throughout the experiment unless otherwise stated.
In the algorithm, the maximum iteration number is set to
2 .

B. Convergence Analysis

To investigate the convergence behaviour of the timing infor-
mation estimation (Gauss-Newton low-rank approximation) al-
gorithm, we test all the possible combinations of and . For
each configuration, we implement 1000 realizations. To
reach global convergence, we try at most 10000 initializations

TABLE II
PARAMETERS USED IN THE PROPOSED ALGORITHM.

Fig. 4. Failure rate for the timing information estimation when varying the
number of sensors ( ) and sources ( ). (a) . (b) .

Fig. 5. Required minimum number of sensors ( ) and sources ( ) by the
timing information estimation algorithm to achieve a failure rate of 1%, 2%,
and 4%.

in each realization. As described in Algorithm 1, a global con-
vergence is detected when . If for one realization the
algorithm can reach global convergence within 10000 initializa-
tions, we regard this realization as success and record the corre-
sponding number of initializations as . Otherwise, we regard
it as failure. The failure rate is defined as

(41)

where denotes the number of failed realizations for
a specific configuration.
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Fig. 6. Number of initializations ( ) tried by the timing information estimation algorithm before reaching global convergence.

Each curve in Fig. 4 depicts the failure rate for a fixed
and variable . Overall, the algorithm shows a high failure rate
for small and , whereas the failure rate drops significantly
when and increase. For the non-convex cost function (16)
an over-constrained case with more observations than unknown
parameters might reduce the number of local minima and lead to
better convergence. The algorithm fails when , regard-
less of the value of . When , the algorithm reaches
global convergence even if the failure rate is still high. When

, it becomes easier to reach global convergence. A fairly
low failure rate (e.g., ) can be achieved if is large
enough. Moreover, the minimum that is required to reach
a same failure rate decreases when increasing (cf. Fig. 5).
When , the failure-rate curves become similar to each
other. A low failure rate can be easily reached. In addition to
this, when and are both large, the failure rate is slightly
higher than 0, e.g., for , .
Fig. 5 gives the minimum that is required for reaching a

defined failure rate ( , 2%, 4%) for different . It
is observed that the lower the failure rate, the larger and
are required. For the same failure rate the required minimum
decreases with . This can be observed when .
Fig. 6 provides box-plots of the number of initializations ( )

tried by the algorithm before reaching global convergence in
1000 realizations. The bottom and top of the box denote the 0.1
and 0.9 quantile, respectively. The line in the middle of the box
denotes the median value. The bars represent the extreme values
excluding the outliers, which are not shown in the figure.
In global, decreases when and increase. This can be

clearly observed from the variation of the median value of in
each panel, where is fixed and is varying. It can be further
observed in each panel that, for a fixed , the median value of

equals 10000 when is small (the algorithm diverges) and
then decreases significantly with increasing . The decrease
slows when is large enough.
The span of the box (including 10% – 90% of the data) indi-

cates that the performance of the algorithm may vary with dif-
ferent realizations of an configuration. The height of the
box is also related to and , and typically decreases when

and increase. For instance, the box for spans
an interval [2000, 10000] while the box for spans
an interval [1, 10]. This indicates that it is easier for the algo-
rithm to converge globally when and are large enough.
Fig. 6 can provide a reference for determining the maximum

number of initializations ( ), a parameter used in Algorithm
1. For instance, we choose in the remaining ex-
periment since in most configurations the algorithm can
converge globally within 1000 initializations.

C. Performance Comparison

The testing data is generated using an equal number of sen-
sors and sources ( ) varying from 6 to 15. For each

, we implement 200 realizations. Three algorithms are
considered: , , . Given
the ground truth , and the estimates , , the estimation
error is calculated as

(42)

We assume that localization accuracy of 0.001 m is enough in
practical applications, and thus we lower bound as

. In order to account for the intrinsic transla-
tional and rotational freedom of the solution, the estimated and
true sensor and source positions are optimally aligned by means
of Procrustes Analysis [34], which finds the optimal translation
and rotation of the solution that minimizes the sum of the dis-
tances between each pair of estimated and true positions.
The results are presented in Fig. 7, using the same box-plot-

ting scheme as in Fig. 6. For readability, the estimation error is
upper bounded at 3 m in Fig. 7. The overall performance can be
ranked as .
The median value of the estimation errors of does not

vary significantly with and . However, the span of the box
increases with increasing and . When and are large
(e.g., ), the bottom of the boxmay possibly reach the lowest
estimation bound, i.e., 0.001 m.
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Fig. 7. Localization errors ( ) for different configurations of and : A: ; B: ; C: .

performs slightly worse than for
, where both algorithms achieve large errors. The performance
of improves evidently with increasing and .
When , the median estimation error can reach the
lowest estimation bound. The span of the box is still wide when

, but decreases with increasing and . When
, the span of the box is close to 0.

performs best among all the
algorithms. For , it outperforms the other two al-
gorithms although all three algorithms achieve large estimation
errors. For , achieves
a very low estimation error in all cases. For ,

performs similarly to .
In summary, significantly outperforms .

outperforms especially
when and are small.

D. Robustness Analysis

The testing data is generated using equal number of sen-
sors and sources ( ) chosen from [8, 10, 12, 15]. For
each configuration, we implement 200 realizations.
In each realization, the TDOA measurements are corrupted
by Gaussian noise with zero mean and a standard deviation

. Apart from
the considered algorithms, the Cramér-Rao bound (CRB) is
calculated as a reference, using the method presented in [13].
The CRB provides a theoretical lower bound on the variance of
any estimator, irrespective of the particular estimation method
used. We average the estimation errors across 200 realizations:

(43)

where denotes the estimation error of the -th realization,
is the number of realizations, and the log operation is

introduced to reduce the influence of the highly dynamic range
of the estimation error. Fig. 8 shows for different TDOA
measurement errors (for readability is upper bounded to
3 m). Overall, the performance of the algorithms can still be
ranked as .

Fig. 8. Average localization errors ( ) by the considered algorithms in case
of TDOA measurement errors. CRB represents the theoretical lower bound of
the estimation.

CRB is influenced by and only slightly. It mainly depends
on the standard deviation of the measurement error. The
of CRB decreases when decreases. When , all the
algorithms fail. When , the performance
of all the algorithms improves when decreases. generally
performs worst among all the algorithms. performs
slightly worse than when but outperforms

in other cases. performs best.
Its performance curve is far from the CRB curve when

, close to the CRB curve when , and almost
overlapped with the CRB curve when . There-
fore, outperforms signif-
icantly in case of TDOA errors.
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E. Realistic Simulation

We evaluate the performance of the proposed algorithm with
realistic TDOA data estimated from simulated ambient sounds.
Similarly to previous experiments, we consider a room of size
10 m 10 m 3 m, where sensors and sources are randomly
distributed with . The number of sensors and
sources are both 15. The impulse responses from the sources to
the sensors are simulated by the image-source method [38] with
the reverberation time, , controlled by varying the absorp-
tion coefficients. The sound speed is 342 m/s and the sampling
rate 48 kHz. The sound sources consist of nonoverlapping ut-
tered speech signals, each occupying a time slot of 5 s with the
length of speech 3 s. The onset time of each sound source is ran-
domly chosen within the first two seconds of its time slot. The
microphone signals are generated by convolving clean speech
signals with room impulse responses. The capture time of each
microphone is chosen randomly and uniformly from the interval

. We simulate 5 different reverberant scenarios with re-
verberation times 0.1 s, 0.3 s, 0.5 s, 0.7 s and 1 s, respectively.
For each reverberation time we implement 10 realizations.
The acoustic scenario we consider is a simple case which as-

sumes no overlaps between sound sources and the segmentation
of each sound source in the microphone signals can be easily
identified. It should be noted that, in practical applications,
to find the data association between each sound source and
the microphone signals is a nontrivial task, especially when
multiple sources are simultaneously active. Although multiple
target tracking methods [40], [41] have shown potential to
address the data association problem, it still remains an open
problem in real-world scenarios.
In this experiment the TDOA of each source with respect

to a pair of microphones is estimated from the corresponding
segmentations in the microphone signals. A coarse-to-fine
scheme [5] is employed to estimate the TDOA, where the
two microphone signals are coarsely aligned at first and then
processed with the generalized cross-correlation with phase
transform (GCC-PHAT) algorithm [39], which is well-known
for its robustness to room reverberation. In the GCC-PHAT
algorithm, we use a frame length of 8192 with half overlap. As
shown in the robustness analysis in Section VII-D,
works well when the TDOA estimation error is below .
In order to achieve such an estimation accuracy, we search in
the TDOA space with a small step size of .
We use , and to es-

timate the sensor and source locations. For reference, we use
the localization results obtained by the Crocco algorithm [13]
as . The Crocco algorithm works on TOA and as-
sumes that both source onset times and device capture times are
known. We use the general solution in the Crocco algorithm,
which is essentially the same as the geometrical information es-
timation part of the algorithm. To apply the Crocco
algorithm, we derive the TOA from the TDOA (which is esti-
mated from the microphone signals) and the distance between
the first microphone and all sources (cf. (1) and (2)), and assume
the time offsets between devices to be known. In this way, the
estimation errors contained in the estimated TOAs and TDOAs
are comparable.

Fig. 9. Performance evaluation for the considered algorithms using TDOAs
estimated from ambient sounds in different reverberant scenarios. The numbers
of sensors and sources are both 15. (a) TDOA estimation. (b) Sensor and source
localization. (c) Time offset (TO) estimation.

We calculate the TDOA estimation errors for all the sensor
and source combinations that are contained in the TDOA ma-
trix. The TDOA estimation error is defined as the absolute dif-
ference between the estimated value and the ground truth, which
is obtained from the prior knowledge of the sensor and source
locations and the device capture times. For each reverberation
time, we collect all the TDOA estimation errors in 10 realiza-
tions and present them in Fig. 9(a), using the same box-plotting
scheme as in Fig. 6. It is clearly observed in Fig. 9(a) that the
median value of the TDOA estimation errors increases with re-
verberation time (RT). More outliers (i.e., larger errors) are ob-
served when . For instance, the median value of the
errors at is around , whereas the upper bound
of the error can reach .
The average localization errors ( in (43)) ob-

tained by the algorithms in different reverberant scenarios
are depicted in Fig. 9(b). Overall, the performance de-
grades with reverberation time, and can be ranked as

.
The Crocco ( ) algorithm, which assumes timing
information to be known, also shows localization errors due
to large TDOA estimation errors in high reverberation. As
shown in Fig. 9(b), can estimate the locations
very accurately when . However, its rises
to 0.05 m at , and becomes larger than 0.5 m
when . can significantly
improve the localization performance in high reverberation,
with being around 0.1 m and 0.2 m for and
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, respectively. can achieve
similar performance as .
With the estimated sensor and source locations, the time off-

sets between the first microphone and other microphones, as
by-products, can be easily calculated using (2). We define the
offset time estimation error as the absolute difference between
the estimated value and the ground truth, and calculate the av-
erage offset time estimation error for 10 realizations, using an
equation similar to (43). The results are shown in Fig. 9(c).
Since the time offsets are calculated from the sensor and source
locations, the performance of time offset estimation depends
significantly on sensor and source localization. As shown in
Fig. 9(c), the time offset estimation error curves of all the al-
gorithms show similar variation trends to the localization error
curves in Fig. 9(b). can achieve time
offset estimation errors below one sample (around 20 at sam-
pling rate 48 kHz) when . The estimation error
rises to around 5 samples (0.1 ms) and 25 samples (0.5 ms) at

and , respectively.

F. Real Recording
We present an example of using the considered algorithms

with real-recorded data in a listening room of size 6 m 5 m
3 m and with a reverberation time of around 200 ms. We

use 15 microphones of various types such as Sennheiser E600,
DPA 4006-TL and Beyerdynamic MCE530, placed as shown in
Fig. 10(a). The microphones are connected to an RME Fireface
800 through two Focusrite ISA828 microphone preamplifiers (8
channels each). The sampling rate is 44.1 kHz. The same testing
speech used in Section VII-E is played by a Genelec 8010 loud-
speaker at 18 different locations (acting as 18 sound sources).
To simulate unknown device capture times, a delay randomly
chosen from the interval is applied to the recording
from each microphone. These recordings are used in the local-
ization procedure. We only have the ground truth of the micro-
phone locations, which are manually measured. We investigate
microphone localization performance with this ground truth.
Although the microphones are placed with a relatively regular
topology, in practice the considered algorithms can be used for
arbitrary microphone placement.
Compared with the simulated (image-source) scenarios,

the performance of TDOA estimation with real recordings
may be degraded by extra reflections from microphone stands
and also by the fact that the loudspeaker is not a point
source. For localization we applied the , and

algorithms. The average localiza-
tion errors obtained by the three algorithms are about 0.39
m, 0.03 m and 0.03 m, respectively. The true and estimated
microphone locations ( ) are shown in Fig. 10(b).
It is clearly observed that the topology of the microphone
network can be recovered. The consistence between the true
and estimated microphone locations confirms the potential of
the proposed algorithms in real-world applications.

VIII. CONCLUSIONS
We proposed a general solution for sensor and source lo-

calization in an ad-hoc array using TDOAs which are biased
by unknown time offsets. To overcome the local minima

Fig. 10. Microphone localization with real-recorded data. (a) Recording envi-
ronment. (b) Localization result by the algorithm. The average lo-
calization error of all the microphones is about 0.03 m.

problem when estimating the unknown timing information,
we derived the boundary of the timing parameters and utilized
a multi-initialization scheme. These strategies can minimize
the influence of local minima efficiently. Simulation results
demonstrate that the algorithm outperforms existing
algorithms in most cases. The performance of the
algorithm can be further improved by a refinement strategy.
Error analysis demonstrates that the
algorithm can get close to the Cramér-Rao bound with at least
10 sensors and sources. Experiments using TDOAs estimated
from simulated and real-recorded speech data confirm the
potential of the algorithm in real-world applications.
Specifically, the algorithm can
achieve high-quality estimation for speech data simulated at
reverberation time 0.3 s and the estimation error rises to 0.05
m, 0.1 m and 0.2 m for reverberation times 0.5 s, 0.7 s and
1 s, respectively. For real-recorded data in an environment
with reverberation time of 0.2 s, the
algorithm can achieve an estimation error of 0.03 m.
The algorithm however requires a minimum

number of sensors and sources (e.g., ) to guarantee
its performance. Although the performance improves signif-
icantly as and increase, the local minima problem is
still not completely solved, e.g., it can still be observed with
a low probability even if and are large. An interesting
direction for future research would be to incorporate prior
knowledge of the ad-hoc array into the algorithm,
so that the dependence on the number of sensors and sources
can be relieved and the local minima problem can be fully
overcome. Moreover, although the ( )
algorithm shows promising results in reverberant scenarios,
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the robustness to TDOA estimation outliers could be improved
by exploiting the redundancy of the TDOA information when
using a large number of sensors and sources.

APPENDIX A
JACOBIAN MATRIX IN (19)

For and , the Jacobian matrix ,

which is of size , can be calcu-
lated as

The block matrices can be computed as described below.

...
. . .

...

Based on the definition of in (7), the element-wise differential
is expressed as

(A1)

for and . Here .

...
. . .

...

where

(A2)

for , , and .

...
. . .

...

where

(A3)

for , , , and
.

Let .

...
. . .

...

Since , it follows

(A4)

and

(A5)

for , , and .

...
. . .

...

where

(A6)

for and .

...
. . .

...

Since ,

(A7)

for , , , and
.

APPENDIX B
JACOBIAN MATRIX IN (39)

For and , the Jacobianmatrix ,

which is of size , can be calculated as

The block matrices can be computed as described below.
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Based on the definitions in (30) and (38), it follows

(B1)

for .

...
. . .

...

where

(B2)

for , , 2, 3, and , 2, 3.

where

(B3)

for .
Based on the definitions in (38), it follows

(B4)
for .

...
. . .

...

where

(B5)

for , , 2, 3, and , 2, 3. Using the
inversion theory, we have

(B6)

where is a matrix with the same size of , with the -th
element being 1 and other elements being 0.

where, for ,

(B7)
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Self-Localization of Ad-Hoc Arrays Using Time
Difference of Arrivals

Lin Wang, Tsz-Kin Hon, Joshua D. Reiss, and Andrea Cavallaro

Abstract—We investigate the problem of sensor and source joint
localization using time-difference of arrivals (TDOAs) of an ad-hoc
array. Amajor challenge is that the TDOAs contain unknown time
offsets between asynchronous sensors. To address this problem, we
propose a low-rank approximation method that does not need any
prior knowledge of sensor and source locations or timing infor-
mation. At first, we construct a pseudo time of arrival (TOA) ma-
trix by introducing two sets of unknown timing parameters (source
onset times and device capture times) into the current TDOA ma-
trix. Thenwe propose aGauss-Newton low-rank approximation al-
gorithm to jointly identify the two sets of unknown timing param-
eters, exploiting the low-rank property embedded in the pseudo
TOA matrix. We derive the boundaries of the timing parameters
to reduce the initialization space and employ a multi-initialization
scheme. Finally, we use the estimated timing parameters to correct
the pseudo TOA matrix, which is further applied to sensor and
source localization. Experimental results show that the proposed
approach outperforms state-of-the-art algorithms.

Index Terms—Ad-hoc array, low rank approximation, self-local-
ization, time-difference of arrival.

I. INTRODUCTION

A D-HOC sensor networks composed of randomly dis-
tributed and independent recording devices, such as

smartphones, wireless microphones, and laptops, have been
attracting increased interest due to their flexibility in sensor
placement [1], [2]. However, the geometrical configuration
of an ad-hoc array is generally unknown and may change
with time. Device localization is a very important task in this
context. Although not necessary in blind source separation
[3] and adaptive beamforming [4], a precise knowledge of
the device locations is still required in many applications
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Fig. 1. Illustration of TOA ( and ) and TDOA ( ) for source and
two sensors 1 and . The source has unknown onset time . The sensors have
unknown capture start times and , and unknown time offset .

such as fixed beamforming, source localization and tracking
[5]. A straightforward approach for device localization is
to measure the distance among all the device pairs and to
apply closed-form estimators to recover their spatial locations
[6]–[9]. The inter-device distance can be directly measured
using tapes or laser pointers, which is time consuming [10].
The inter-device distance can also be computed based on the
acoustical transfer delays between two devices, by actively
communicating calibration sounds between independent de-
vices [11], [12]. Active communication requires a specially
designed network interface or software, which is not available
in many recording devices. Passive device localization instead
exploits external acoustic events emitted from discrete spatial
positions. Two types of information, time of arrival (TOA)
and time difference of arrival (TDOA), can be estimated from
microphone recordings and be used to jointly localize sensors
and sources [13], [14]. If the source signal is known beforehand
(predefined sound), its TOA for each individual microphone
is obtained through cross-correlation with the given signal. If
the source signal is unknown (ambient sound), the TDOA for a
pair of microphones is estimated through cross-correlation of
the two microphone signals.
A challenge that arises for an ad-hoc array is that its devices

are usually not synchronized. As a result, practical TOA mea-
surements are biased because they may include an unknown
source onset time and an unknown device capture time (Fig. 1).
Similarly, practical TDOA measurements may include an un-
known time offset between a pair of recordings. These time un-
certainties make the sensor localization problem harder [14],
[17].

1053-587X © 2015 British Crown Copyright
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To address the unknown timing information, one can estimate
all the unknown parameters, including sensor and source loca-
tions and time offsets, simultaneously [5]. The former approach
usually leads to the minimization of a non-convex cost func-
tion. To overcome local minima problems, some approaches in-
troduce additional constraints, such as co-located sensor-source
pairs [14] or far-field sound sources [15]. However, these con-
straints are not always satisfied in practical applications. Alter-
natively, one can estimate the unknown timing information, and
then estimate the sensor and source locations [19]. This simpli-
fies the problem by decomposing it into two independent stages.
The low-rank structure embedded in the TOA measurements
can be exploited to estimate the unknown onset times and cap-
ture times [16]–[18]. These approaches typically involve a gra-
dient-based optimization procedure, which is sensitive to local
minima. Moreover, existing algorithms usually simplify the op-
timization by assuming either the onset times or the capture
times to be known. To the best of our knowledge, a general but
effective solution is still missing.
In this paper we present a method that jointly estimates the

sensor and source locations from the biased TDOA measure-
ments. We employ the two-stage estimation framework, i.e.,
timing information estimation followed by sensor and source
localization. When estimating the timing information, the ex-
isting low-rank approximation techniques are not applicable to
TDOA because the latter does not contain the desired low-rank
structure as TOA does. To address this challenge, we construct a
pseudo TOA matrix by introducing two sets of unknown timing
parameters (source onset times and device capture times) into
the current TDOA matrix. To estimate these two parameters
from the pseudo TOA, we propose a Gauss-Newton low-rank
approximation algorithm.
The main novelty of the proposed algorithm is summarized

as follows. The proposed complete solution is in contrast to
the state-of-the-art timing information estimation algorithms
[16]–[18], which assume that only one set of parameters (either
onset times or capture times) are unknown. The proposed
algorithm has several features which are helpful to tackle local
minima problems. First, it is shown that the onset times and
capture times in the pseudo TOA matrix can be represented as
functions of the sensor and source locations, and particularly,
these functions are independent of the TOA data. This feature
makes it possible to derive the boundary of the parameter
space, and to reduce the initialization space with a reasonable
assumption of the maximum sensor-source distance. Second,
the algorithm can converge quickly to either local or global
minima, and typically shows evident distinction between the
two minima. This feature makes it both computationally and
technically feasible to employ a multi-initialization scheme to
increase the probability of reaching a global minimum.
The paper is organized as follows. Section II overviews

related work of self-localization. Section III formulates the
problem and introduces existing solutions. The proposed
method, including pseudo TDOA matrix construction, timing
information estimation, and geometrical information estima-
tion, is described in Sections IV–VI, respectively. Performance
evaluation is conducted in Section VII and conclusions are
drawn in Section VIII.

II. RELATED WORK

Passive device self-localization approaches can be divided
into two classes, namely pairwise distance estimation and joint
sensor and source localization (Table I).
Pairwise distance estimation approaches recover the distance

between each pair of devices and then the relative locations of
all the devices. One can assume a diffuse noise field and esti-
mate the microphone pairwise distance by fitting the measured
noise coherence to the theoretical model of the field [20], [21].
Although this solution alleviates the need for activating several
sources, it is only feasible for small arrays, and requires the mi-
crophones to be synchronized in order to calculate the coher-
ence correctly. Moreover, the diffuse noise assumption is not
always satisfied. Another approach is to determine the inter-de-
vice distance by estimating the minimum and maximum TDOA
values [22]–[25]. By assuming that the minimum and maximum
TDOAs come from sources located at the end-fire directions,
the inter-device distance can be calculated without knowing the
time offset. However, the assumption of end-fire sources is not
always satisfied.
Joint localization approaches estimate the locations of sen-

sors and sources simultaneously using acoustic events emitted
from various spatial locations. Information that can be used for
the joint localization task includes TOA, TDOA, and received
signal energy. The TOA measurement may be biased by the
unknown source onset time and device capture time, while the
TDOAmeasurement may be biased by the unknown time offset.
To minimize the influence of unknown timing information, two
schemes can be employed: one-stage estimation [5], [14] and
two-stage estimation [16], [17].
The one-stage scheme estimates the unknown position and

timing information simultaneously via a maximum likelihood
estimation, using either TOA or TDOA information [5], [14],
[26]. The method presented in [26] jointly estimates the loca-
tions and onset times, utilizing the TOAs of calibration sig-
nals. The presented method in [14] jointly estimates the loca-
tions and capture times from the TOAs or TDOAs of calibra-
tion signals. A closed-form solution is also derived by assuming
pairs of co-located sensors and sources, e.g., in laptops or tablets
[14]. The method presented in [5] jointly estimates the locations
and capture times from the TDOAs measured from ambient
sounds. An auxiliary function-based iterative algorithm, which
shows a better convergence property, is proposed for the opti-
mization procedure. If the timing information is already known,
the one-stage estimation can be performed by exploiting the
affine geometry of the sensors and sources [13], [15]. A singular
value decomposition (SVD) based low-rank matrix factoriza-
tion approach is employed to reduce the number of unknown
parameters, which are further estimated through a much sim-
pler non-linear optimization procedure. The method in [15] es-
timates the locations of the sensors and sources from the TOAs
of the sources, which are assumed to be at the far field and hence
have the same onset time. This method is further extended to
a general case which does not rely on the far-field assumption
[13], [30]. A closed-form solution can be derived by assuming
a pair of co-located sensor and source [13]. Besides TDOA and
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TABLE I
SUMMARY OF DEVICE SELF-LOCALIZATION ALGORITHMS. (DT: DEVICE CAPTURE TIME; ST: SOURCE START TIME; DL: DEVICE LOCATION; SL: SOURCE

LOCATION; PD: PAIRWISE DISTANCE).

TOA, the energy of the microphone signals can also be ex-
ploited for sensor and source localization, using a maximum
likelihood optimization procedure [27]–[29]. The energy-based
method does not need exact timing information, but usually as-
sumes pairs of co-located sensors and sources, e.g., in laptops
[27], [28]. In summary, most one-stage estimation algorithms
assume that at least one set of timing information is known (ei-
ther onset time or capture time) or impose additional geomet-
rical constraints to simplify the optimization problem. Only [5]
presents a general formulation.
A two-stage scheme that first estimates the timing informa-

tion is more suitable for TOA measurements. After TOA cor-
rection, the scheme jointly estimates the sensor and source lo-
cations utilizing similar techniques to those employed in the
one-stage scheme, e.g., [5], [13], [14]. An effective way of esti-
mating timing information is to exploit the low-rank structure
of the sensor and source locations, which all lie in the 3-di-
mensional space [30]. Specifically, a matrix consisting of the
biased TOA measurements can be formulated which is sup-
posed to be rank-3 if the bias is correctly compensated. With
these constraints, the timing information can be estimated so
that the mentioned matrix becomes rank-3 after compensation.
Three algorithms have been proposed recently to solve this low-
rank approximation problem, including alternating minimiza-
tion [17], [19], nuclear truncation minimization [18], [31], [32],
and structured total least squares [16]. The structured total least
squares algorithm converges more than 100 times faster than the
other two algorithms [16]. The two-stage estimation scheme is
promising for the localization problem since by decomposing
the problem into two stages, the optimization becomes easier.
In summary, the above-mentioned three low-rank approxima-

tion algorithms are suitable for TOA only, and assume that at
least one timing information to be known (either onset time or
capture time). For now, no progress has been reported on ap-
plying these algorithms to biased TDOA measurements. The
proposed algorithm will fill this gap.

III. PROBLEM FORMULATION

We denote vectors and matrices in bold lowercase letters and
bold uppercase letters, respectively. The operator denotes
the -th element of a vector while denotes the -th ele-
ment of a matrix. The operator denotes vectorization of a
matrix by concatenating its column vectors, while the operator

denotes vectorization of a matrix by concatenating its row
vectors.

A. Signal Model
Consider independent acoustic sensors (microphones) and
sound sources (speakers) at unknown locations

and , respectively. The emis-
sion onset times of the sources are unknown and represented as

, where the superscript denotes trans-
pose. The unknown capture start times of the sensors are

. The TOA from the -th source to the -th sensor
is defined as

(1)

where is the speed of sound and is the Euclidean norm.
The TOAs for the combination of all the sensors and sources
are represented as a matrix where and

. The TDOA from the -th source to the first and
the -th sensor is defined as

(2)

where is the time offset between the first and
the -th sensor, and is the distance between
the -th sensor and the -th source (Fig. 1). The TDOAs for
the combination of all the sensors and sources is represented
as where and . Based
on (2), the first row of consists of all zero elements, i.e.,

. The time offsets of all the sensors with respect to the
first sensor is , where .
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We assume the sound sources are unknown (uncontrolled am-
bient sounds) and thus only TDOA information is available,
which is biased by the unknown time offset. The goal of this
paper is to estimate the sensor and source locations and
from the biased TDOAmeasurements . Since the TDOA con-
tains only the distance information, the estimation of the loca-
tions is not invariant against rotation, translation and reflection.
Without loss of generality, we assume that the first sensor lies
at the spatial origin while the first source is con-
fined to lie on the first positive axis, i.e., with

. We also assume that the onset time of the first source,
, is 0.

B. Existing Solutions
1) One-Stage Estimation: The sensor and source locations

and the time offsets can be simultaneously estimated via max-
imum likelihood estimation. This is expressed as

(3)

A gradient-based solution has been presented in [5]. However,
with many unknown parameters, the minimization of (3) leads
to a non-convex problem, which is sensitive to parameter ini-
tialization and can easily get stuck in local minima.
2) Two-Stage Estimation: The low-rank structure embedded

in the TOA measurements can be exploited to estimate the
timing and location information separately [17].
From (1) it can be derived that

(4)
for and . Using the assumption

and sequentially subtracting the corresponding equation
for and the equation for from the general form (4),
it follows

(5)

for and . Equation (5) can be ex-
pressed in a matrix form as

(6)

The elements of , , , and
can be expressed as

(7)

for and .
Based on the above definitions, the matrices and are re-

lated to the sensor and source locations and their matrix ranks
are both equal to 3. Thus, the rank of the left side of (6), ,
is equal to 3 and the same is true for the right side, . This
low-rank information can be utilized to estimate both the timing
and geometrical information.
The matrix is constructed from the TOA parameters ,

while the matrix is constructed from the unknown parameters
and . Timing information estimation is essentially a low-rank

matrix completion problem [36], i.e., the matrix can be seen
as a modification of so that is of rank 3 [17].
Low-rank approximation algorithms, such as alternative mini-
mization [17], nuclear truncation minimization [18] and struc-
tured total least square (STLS) [16], have been proposed to solve
this problem. After estimating the timing information and cor-
recting the matrix, , the rank-3 of is further
used to estimate and .
However, this solution is not directly applicable to our

problem, where only TDOA is available and both onset times
and capture times are unknown. The TDOA does not contain
the desired low-rank structure as in (6). Existing low-rank ap-
proximation algorithms [16]–[18] assume either the onset times
or the capture times to be known. To address these challenges,
we propose a sensor and source localization method, which is
described in Sections IV–VI.

IV. PSEUDO TOA MATRIX CONSTRUCTION
To employ the low-rank approximation method, a TOA ma-

trix is needed which contains a low-rank structure as in (6).
Since we only have the TDOA matrix available, one pos-
sible solution is to convert to a matrix containing the desired
low-rank structure. To this end, we define a pseudo TOA matrix
in the same form as in (1), i.e.,

(8)

where and are two unknown parameters termed as pseudo
onset time and pseudo capture time, respectively. If we can find
appropriate and that enable , the TDOA matrix
would be interpreted as a TOA matrix.
To make , it requires , or, more specif-

ically,

...
. . .

...
...

. . .
...

(9)

Using (2) and (8) on , it follows that

(10)

for and . It can be easily verified
that the two sets of pseudo parameters ( ) and
( ) can be uniquely determined by solving a group
of (10) if the sensor locations , the source locations and the
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time offsets are known. This demonstrates theoretically that
there do exist appropriate and that enable . In
practice, these two parameters are unknown and will have to be
estimated from .
Thus, by introducing two pseudo parameters, the TDOA ma-

trix can be interpreted as the pseudo TOA matrix . Ob-
viously, and its pseudo parameters and are different
from the original TOA, onset time and capture time, which are
defined in (1). However, with similar structure as the original
TOA matrix, can be exploited for low-rank approximation.
The next task will be to estimate and

and to recover and .
Considering that the concepts of original TOA, onset time and

capture time will not be used hereafter, we remove the accent
of , and , and also call them TOA, onset time and capture
time, without introducing ambiguities.

V. TIMING INFORMATION ESTIMATION

In this section, we propose a Gauss-Newton low-rank approx-
imation algorithm to estimate the unknown parameters and
from the pseudo TOA matrix .
As shown in Section III-B2, the timing information esti-

mation can be seen as a low-rank matrix completion problem
(6). We solve this problem under a structured total least-square
framework [16]. The matrices , , and are each partitioned
into two blocks, such that the first submatrix contains the
first three columns while the second submatrix contains the
remaining columns. This is expressed as

(11)
(12)
(13)

where , , and are the partitioned submatrices. The ob-
jective is to find an appropriate (consisting of and ) and an
additional matrix so that

(14)

If (14) holds, the matrix will lie in the range of the matrix
. It follows that

(15)

Similarly to [16], the STLS cost function is defined as

(16)

where denotes the F-norm. The first term on the right
side of (16) is introduced to prevent algorithm divergence; the
second term corresponds to the condition (14) and is empha-
sized with a large penalty . In [16] a simplified solution is
given, which however assumes that the onset time is known.
This solution is not feasible for our case, where both and are
unknown. We present a complete and general solution below.
Let us define the unknown parameters , , and as a

column vector , where

. The cost function (16)
can be further written as

(17)

where and
, with the two column

vectors

(18)

Based on (17), the minimization of is a nonlinear least
square problem, which can be solved with the well-known
Gauss-Newton algorithm [35]. Suppose the Jacobian matrix

(19)

can be obtained. The unknown can be estimated in an iterative
way as

(20)

where , and denote the parameters obtained in
the -th iteration. The computation of the Jacobian matrix is
presented in Appendix A.
To tackle the local minima problem, we reduce the initial-

ization space by computing the boundary of the parameters
(Section V-A). We also use multiple initializations to increase
the probability of reaching the global minimum (Section V-B).

A. Parameter Boundary

We derive the boundary of the unknown parameters by using
the definitions of and in (8)–(10), and the assumptions

and .
Using , it follows that

(21)

Using for , it follows that

(22)

(23)

Averaging on the -th ( ) row of , it follows

(24)

(25)
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Using (22), it follows that

(26)

Using (26) in (25), it follows that

(27)

Suppose the maximum distance between a sensor and a
source is known to be . Using in (21), (23) and (27),
the boundary of the parameters can be obtained as

(28)
This is an interesting result since, based on (28), the

values of the onset times and capture times are only related
to the locations of sensors and sources (more specifically

) and a constant term . With (28), the ini-
tialization space can be significantly reduced compared to
(unconstrained) random initialization. For example, assuming

, , and , the parameter
space can be initialized as ,

, and .

B. Multiple Initializations
To overcome the local minima problem we use multiple

initializations, a scheme that is suitable for the low-rank ap-
proximation algorithm. First, the Gauss-Newton algorithm can
converge at an approximately quadratic rate, which takes only
a few iterations to reach global or local minima [35]. This
makes it computationally feasible to try multiple initializations.
Second, we experimentally observe that the difference between
the global and local minima is very evident, making it easy to
detect whether a global minimum has been reached.
Fig. 2 gives an example of the convergence behaviour

of the Gauss-Newton low-rank approximation algorithm,
using 10 sources and 10 sensors randomly distributed with

. The start times and capture times are chosen ran-
domly and uniformly from the range . The algorithm
uses 1000 random initializations uniformly chosen from the
range defined by (28). The results are shown in terms of cost
function , where is defined in (18), and estimation
error ( for the true value and the estimated value
). Fig. 2(a) depicts the final cost function obtained by each
initialization. Three types of results can be achieved: global
convergence, local convergence, and divergence. Their differ-
ence can be clearly observed: the cost function values below

Fig. 2. Convergence results in terms of (a) cost function and (b) estimation
error by the Gauss-Newton low-rank approximation algorithm with 1000 ini-
tializations ( ). Typical iteration curves of (c) cost function and
(d) estimation error for global converge, local convergence, and divergence.

in case of global convergence, around in case of
local convergence, and over in case of divergence. This
makes it easy to detect the convergence status of the algorithm.
Accordingly, Fig. 2(b) depicts the final estimation error by each
initialization. The three types of convergence result in different
estimation errors: these errors are around in case of
global convergence, around 0.1 s in case of local convergence
and over in case of divergence. Fig. 2(c) and (d) depict
typical cost function and estimation error curves during the
Gauss-Newton iteration. With quadric convergence rate, the
algorithm can converge either locally or globally within 100
iterations.
The description of the timing information estimation algo-

rithm is given in Algorithm 1. The input equals the TDOA .
We try multiple initializations until the algorithm reaches global
convergence. For each initialization, and are randomly
chosen within the range (28).
The value of the cost function threshold ( in Algorithm 1)

is chosen based on the convergence results obtained with clean
TDOA measurements. This threshold can be easily determined
since the final cost functions for local and global convergence
show evident differences (e.g., we choose a threshold of
according to Fig. 2(c)). For noisy inputs, the final cost function
for global convergence increases with TDOA errors, making the
difference between local and global convergence less evident.
Thus, the optimal threshold may vary with the amount of noise.
However, we will use the same threshold for all scenarios. There
are two reasons for that. First, since the final cost function for
global convergence increases with TDOA errors, the algorithm
will reach global convergence once the cost function is below
the threshold, which is determined for clean TDOA measure-
ments. Second, if in case of noisy inputs the final cost function
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for global convergence is higher than the threshold, the algo-
rithm will run until reaching the maximum number of initializa-
tions and choose the solution with the minimum cost function.
This multi-initialization scheme can reduce the influence of a
too-low threshold.

Algorithm 1 Gauss-Newton low-rank approximation for
timing information estimation

Input:

Output:

Parameters: : threshold for divergence

: threshold for global convergence

: stopping threshold for Gauss-Newton iterations

: maximum number of initializations

: maximum number of iterations

: penalty constant in (16)

: maximum sensor-source distance in (28)

; ; ;

while do

Initialize , ; (28)

Compute , , ; (7)(11)

; ; ;

while do

Compute , , ; (7)

Compute ; (17)

Compute ; (19)

Update ; (20)

if OR OR

then ;

end if

;

end while

if then

; ;

end if

if OR ; then ; end if

;

end while

VI. GEOMETRICAL INFORMATION ESTIMATION

Building on the work in [13], [17], in this section we present
a Gauss-Newton joint localization algorithm to estimate the
sensor and source locations, using the timing information
obtained in Section V.
Given the estimated and , (6) becomes .

Since is of rank 3, it can be decomposed via singular value
decomposition (SVD) as

(29)

where keeps only the three largest singular values while
and consist of the corresponding left-singular and right-sin-
gular vectors, respectively.With (29), and can be calculated
as

(30)

where is an arbitrary 3 3 matrix which is invertible. Using
the assumptions , , the sensor
and source locations can be calculated as

(31)

For localization, we only need to estimate 10 parameters regard-
less of the number of sensors and sources. The 10 unknown pa-
rameters are represented as where

.
To estimate , we rewrite the relationship (4) as

(32)

with . We
further have

(33)

Using (31) in (33), it follows that

(34)

Using (6) in (34), it follows that

(35)

where

(36)

for and . It can be easily verified
that has the same value for any while has the same
value for any . Thus they can be represented as and .
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The equations in (35) can be used to estimate .
The cost function is defined as

(37)

where , with

(38)

for and .
The minimization of is a nonlinear least square problem

which can be solvedwith the Gauss-Newton algorithm. Suppose
the Jacobian matrix

(39)

can be obtained. can be estimated iteratively as

(40)

where , and denote the parameters obtained in
the -th iteration. The detailed derivation of the Jacobian ma-
trix is given in Appendix B.
Compared with [13], [17], which only consider , the pro-

posed algorithm considers both and , i.e., more observa-
tions are used. This may lead to better convergence behaviour.
Similarly to Algorithm 1, we use a multi-initialization scheme.
The description of the Gauss-Newton joint localization algo-
rithm is given in Algorithm 2. The elements in are initial-
ized as normally distributed random numbers.
The convergence behaviour of the Gauss-Newton joint local-

ization algorithm is closely related to the accuracy of timing in-
formation estimation. If the low-rank approximation algorithm
only converges locally, (29) does not exactly hold and the joint
localization algorithm converges locally or even diverges. If the
low-rank approximation algorithm converges globally with ac-
curate timing information estimation, the joint localization al-
gorithm can globally converge easily with a multi-initialization
scheme. Fig. 3 gives an example of sensor and source localiza-
tion using the same data as Fig. 2. In Fig. 3(a), the low-rank ap-
proximation algorithm converges locally and so does the joint
localization algorithm. In Fig. 3(b), the low-rank approxima-
tion algorithm converges globally and the joint localization al-
gorithm can recover the sensor and source locations accurately.

Algorithm 2 Gauss-Newton joint localization algorithm for
geometrical information localization

Input: , ,

Output: , ,

Parameters: : threshold for divergence

: threshold for global convergence

Fig. 3. Sensor and source localization by the proposed two-stage method (
). The Gauss-Newton low-rank approximation algorithm and the

Gauss-Newton joint localization algorithm both converge (a) locally and (b)
globally.

: stopping threshold for Gauss-Newton iterations

: maximum number of initializations

: maximum number of iterations

Compute ; (13)

Compute , , via SVD; (29)

; ; ;

while do

Initialize ; ; ;

while do

Compute , ; (30)

Compute , ; (38)(39)

Update ; (40)

if OR OR

then ;

end if

;

end while

if then

; ;

end if

if OR ; then ; end if
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;

end while

Compute , ; (31)

VII. EXPERIMENTAL RESULTS

A. Experiment Setup

The proposed algorithm consists of two stages: the Gauss-
Newton low-rank approximation algorithm for timing informa-
tion estimation and the Gauss-Newton joint localization algo-
rithm for geometrical information estimation. The first sub-al-
gorithm is sensitive to local minima. Five experiments are thus
carried out: the first experiment examines the convergence prop-
erty of the timing information estimation algorithm; the second
experiment compares the performance of the proposed algo-
rithm with existing algorithms; the third investigates the robust-
ness of the proposed algorithm to noisy TDOA measurements;
the fourth evaluates the performance with realistic TDOA data
estimated from simulated ambient sounds; the last one presents
an example with real-recorded data.
Monte Carlo simulations are used to generate testing data.We

test all the possible combinations of different numbers of sen-
sors ( ) and sources ( ), where is chosen from [5:15, 20]
and is chosen from [5:15, 20, 25]. For each , we im-
plement different realizations. In each realization, the locations
of the sensors and sources are uniformly distributed inside an
enclosure of 10 m 10 m 3 m with , whereas
the onset times and capture times are chosen randomly and uni-
formly from the range .
A fair comparison of the proposed algorithm with existing

algorithms is problematic since most existing approaches
assume some prior knowledge of the timing or location infor-
mation. The closest approach to ours is the one proposed by
Ono [5] which does not consider any prior knowledge. Three
algorithms are therefore considered: the one-stage algorithm
( ) [5], the proposed two-stage algorithm ( ),
and the algorithm refined by the algorithm
( ). As discussed in Section VI, the

algorithm may not recover the locations if the timing
information is not estimated accurately. However, the estimated
locations are usually closer to the true values than random
initializations. Using them as an initial guess for the
algorithm, which estimates all the parameters simultaneously,
may lead to a better estimation. The parameters used in the

algorithm are listed in Table II. These parameters
will be used throughout the experiment unless otherwise stated.
In the algorithm, the maximum iteration number is set to
2 .

B. Convergence Analysis

To investigate the convergence behaviour of the timing infor-
mation estimation (Gauss-Newton low-rank approximation) al-
gorithm, we test all the possible combinations of and . For
each configuration, we implement 1000 realizations. To
reach global convergence, we try at most 10000 initializations

TABLE II
PARAMETERS USED IN THE PROPOSED ALGORITHM.

Fig. 4. Failure rate for the timing information estimation when varying the
number of sensors ( ) and sources ( ). (a) . (b) .

Fig. 5. Required minimum number of sensors ( ) and sources ( ) by the
timing information estimation algorithm to achieve a failure rate of 1%, 2%,
and 4%.

in each realization. As described in Algorithm 1, a global con-
vergence is detected when . If for one realization the
algorithm can reach global convergence within 10000 initializa-
tions, we regard this realization as success and record the corre-
sponding number of initializations as . Otherwise, we regard
it as failure. The failure rate is defined as

(41)

where denotes the number of failed realizations for
a specific configuration.
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Fig. 6. Number of initializations ( ) tried by the timing information estimation algorithm before reaching global convergence.

Each curve in Fig. 4 depicts the failure rate for a fixed
and variable . Overall, the algorithm shows a high failure rate
for small and , whereas the failure rate drops significantly
when and increase. For the non-convex cost function (16)
an over-constrained case with more observations than unknown
parameters might reduce the number of local minima and lead to
better convergence. The algorithm fails when , regard-
less of the value of . When , the algorithm reaches
global convergence even if the failure rate is still high. When

, it becomes easier to reach global convergence. A fairly
low failure rate (e.g., ) can be achieved if is large
enough. Moreover, the minimum that is required to reach
a same failure rate decreases when increasing (cf. Fig. 5).
When , the failure-rate curves become similar to each
other. A low failure rate can be easily reached. In addition to
this, when and are both large, the failure rate is slightly
higher than 0, e.g., for , .
Fig. 5 gives the minimum that is required for reaching a

defined failure rate ( , 2%, 4%) for different . It
is observed that the lower the failure rate, the larger and
are required. For the same failure rate the required minimum
decreases with . This can be observed when .
Fig. 6 provides box-plots of the number of initializations ( )

tried by the algorithm before reaching global convergence in
1000 realizations. The bottom and top of the box denote the 0.1
and 0.9 quantile, respectively. The line in the middle of the box
denotes the median value. The bars represent the extreme values
excluding the outliers, which are not shown in the figure.
In global, decreases when and increase. This can be

clearly observed from the variation of the median value of in
each panel, where is fixed and is varying. It can be further
observed in each panel that, for a fixed , the median value of

equals 10000 when is small (the algorithm diverges) and
then decreases significantly with increasing . The decrease
slows when is large enough.
The span of the box (including 10% – 90% of the data) indi-

cates that the performance of the algorithm may vary with dif-
ferent realizations of an configuration. The height of the
box is also related to and , and typically decreases when

and increase. For instance, the box for spans
an interval [2000, 10000] while the box for spans
an interval [1, 10]. This indicates that it is easier for the algo-
rithm to converge globally when and are large enough.
Fig. 6 can provide a reference for determining the maximum

number of initializations ( ), a parameter used in Algorithm
1. For instance, we choose in the remaining ex-
periment since in most configurations the algorithm can
converge globally within 1000 initializations.

C. Performance Comparison

The testing data is generated using an equal number of sen-
sors and sources ( ) varying from 6 to 15. For each

, we implement 200 realizations. Three algorithms are
considered: , , . Given
the ground truth , and the estimates , , the estimation
error is calculated as

(42)

We assume that localization accuracy of 0.001 m is enough in
practical applications, and thus we lower bound as

. In order to account for the intrinsic transla-
tional and rotational freedom of the solution, the estimated and
true sensor and source positions are optimally aligned by means
of Procrustes Analysis [34], which finds the optimal translation
and rotation of the solution that minimizes the sum of the dis-
tances between each pair of estimated and true positions.
The results are presented in Fig. 7, using the same box-plot-

ting scheme as in Fig. 6. For readability, the estimation error is
upper bounded at 3 m in Fig. 7. The overall performance can be
ranked as .
The median value of the estimation errors of does not

vary significantly with and . However, the span of the box
increases with increasing and . When and are large
(e.g., ), the bottom of the boxmay possibly reach the lowest
estimation bound, i.e., 0.001 m.
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Fig. 7. Localization errors ( ) for different configurations of and : A: ; B: ; C: .

performs slightly worse than for
, where both algorithms achieve large errors. The performance
of improves evidently with increasing and .
When , the median estimation error can reach the
lowest estimation bound. The span of the box is still wide when

, but decreases with increasing and . When
, the span of the box is close to 0.

performs best among all the
algorithms. For , it outperforms the other two al-
gorithms although all three algorithms achieve large estimation
errors. For , achieves
a very low estimation error in all cases. For ,

performs similarly to .
In summary, significantly outperforms .

outperforms especially
when and are small.

D. Robustness Analysis

The testing data is generated using equal number of sen-
sors and sources ( ) chosen from [8, 10, 12, 15]. For
each configuration, we implement 200 realizations.
In each realization, the TDOA measurements are corrupted
by Gaussian noise with zero mean and a standard deviation

. Apart from
the considered algorithms, the Cramér-Rao bound (CRB) is
calculated as a reference, using the method presented in [13].
The CRB provides a theoretical lower bound on the variance of
any estimator, irrespective of the particular estimation method
used. We average the estimation errors across 200 realizations:

(43)

where denotes the estimation error of the -th realization,
is the number of realizations, and the log operation is

introduced to reduce the influence of the highly dynamic range
of the estimation error. Fig. 8 shows for different TDOA
measurement errors (for readability is upper bounded to
3 m). Overall, the performance of the algorithms can still be
ranked as .

Fig. 8. Average localization errors ( ) by the considered algorithms in case
of TDOA measurement errors. CRB represents the theoretical lower bound of
the estimation.

CRB is influenced by and only slightly. It mainly depends
on the standard deviation of the measurement error. The
of CRB decreases when decreases. When , all the
algorithms fail. When , the performance
of all the algorithms improves when decreases. generally
performs worst among all the algorithms. performs
slightly worse than when but outperforms

in other cases. performs best.
Its performance curve is far from the CRB curve when

, close to the CRB curve when , and almost
overlapped with the CRB curve when . There-
fore, outperforms signif-
icantly in case of TDOA errors.
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E. Realistic Simulation

We evaluate the performance of the proposed algorithm with
realistic TDOA data estimated from simulated ambient sounds.
Similarly to previous experiments, we consider a room of size
10 m 10 m 3 m, where sensors and sources are randomly
distributed with . The number of sensors and
sources are both 15. The impulse responses from the sources to
the sensors are simulated by the image-source method [38] with
the reverberation time, , controlled by varying the absorp-
tion coefficients. The sound speed is 342 m/s and the sampling
rate 48 kHz. The sound sources consist of nonoverlapping ut-
tered speech signals, each occupying a time slot of 5 s with the
length of speech 3 s. The onset time of each sound source is ran-
domly chosen within the first two seconds of its time slot. The
microphone signals are generated by convolving clean speech
signals with room impulse responses. The capture time of each
microphone is chosen randomly and uniformly from the interval

. We simulate 5 different reverberant scenarios with re-
verberation times 0.1 s, 0.3 s, 0.5 s, 0.7 s and 1 s, respectively.
For each reverberation time we implement 10 realizations.
The acoustic scenario we consider is a simple case which as-

sumes no overlaps between sound sources and the segmentation
of each sound source in the microphone signals can be easily
identified. It should be noted that, in practical applications,
to find the data association between each sound source and
the microphone signals is a nontrivial task, especially when
multiple sources are simultaneously active. Although multiple
target tracking methods [40], [41] have shown potential to
address the data association problem, it still remains an open
problem in real-world scenarios.
In this experiment the TDOA of each source with respect

to a pair of microphones is estimated from the corresponding
segmentations in the microphone signals. A coarse-to-fine
scheme [5] is employed to estimate the TDOA, where the
two microphone signals are coarsely aligned at first and then
processed with the generalized cross-correlation with phase
transform (GCC-PHAT) algorithm [39], which is well-known
for its robustness to room reverberation. In the GCC-PHAT
algorithm, we use a frame length of 8192 with half overlap. As
shown in the robustness analysis in Section VII-D,
works well when the TDOA estimation error is below .
In order to achieve such an estimation accuracy, we search in
the TDOA space with a small step size of .
We use , and to es-

timate the sensor and source locations. For reference, we use
the localization results obtained by the Crocco algorithm [13]
as . The Crocco algorithm works on TOA and as-
sumes that both source onset times and device capture times are
known. We use the general solution in the Crocco algorithm,
which is essentially the same as the geometrical information es-
timation part of the algorithm. To apply the Crocco
algorithm, we derive the TOA from the TDOA (which is esti-
mated from the microphone signals) and the distance between
the first microphone and all sources (cf. (1) and (2)), and assume
the time offsets between devices to be known. In this way, the
estimation errors contained in the estimated TOAs and TDOAs
are comparable.

Fig. 9. Performance evaluation for the considered algorithms using TDOAs
estimated from ambient sounds in different reverberant scenarios. The numbers
of sensors and sources are both 15. (a) TDOA estimation. (b) Sensor and source
localization. (c) Time offset (TO) estimation.

We calculate the TDOA estimation errors for all the sensor
and source combinations that are contained in the TDOA ma-
trix. The TDOA estimation error is defined as the absolute dif-
ference between the estimated value and the ground truth, which
is obtained from the prior knowledge of the sensor and source
locations and the device capture times. For each reverberation
time, we collect all the TDOA estimation errors in 10 realiza-
tions and present them in Fig. 9(a), using the same box-plotting
scheme as in Fig. 6. It is clearly observed in Fig. 9(a) that the
median value of the TDOA estimation errors increases with re-
verberation time (RT). More outliers (i.e., larger errors) are ob-
served when . For instance, the median value of the
errors at is around , whereas the upper bound
of the error can reach .
The average localization errors ( in (43)) ob-

tained by the algorithms in different reverberant scenarios
are depicted in Fig. 9(b). Overall, the performance de-
grades with reverberation time, and can be ranked as

.
The Crocco ( ) algorithm, which assumes timing
information to be known, also shows localization errors due
to large TDOA estimation errors in high reverberation. As
shown in Fig. 9(b), can estimate the locations
very accurately when . However, its rises
to 0.05 m at , and becomes larger than 0.5 m
when . can significantly
improve the localization performance in high reverberation,
with being around 0.1 m and 0.2 m for and
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, respectively. can achieve
similar performance as .
With the estimated sensor and source locations, the time off-

sets between the first microphone and other microphones, as
by-products, can be easily calculated using (2). We define the
offset time estimation error as the absolute difference between
the estimated value and the ground truth, and calculate the av-
erage offset time estimation error for 10 realizations, using an
equation similar to (43). The results are shown in Fig. 9(c).
Since the time offsets are calculated from the sensor and source
locations, the performance of time offset estimation depends
significantly on sensor and source localization. As shown in
Fig. 9(c), the time offset estimation error curves of all the al-
gorithms show similar variation trends to the localization error
curves in Fig. 9(b). can achieve time
offset estimation errors below one sample (around 20 at sam-
pling rate 48 kHz) when . The estimation error
rises to around 5 samples (0.1 ms) and 25 samples (0.5 ms) at

and , respectively.

F. Real Recording
We present an example of using the considered algorithms

with real-recorded data in a listening room of size 6 m 5 m
3 m and with a reverberation time of around 200 ms. We

use 15 microphones of various types such as Sennheiser E600,
DPA 4006-TL and Beyerdynamic MCE530, placed as shown in
Fig. 10(a). The microphones are connected to an RME Fireface
800 through two Focusrite ISA828 microphone preamplifiers (8
channels each). The sampling rate is 44.1 kHz. The same testing
speech used in Section VII-E is played by a Genelec 8010 loud-
speaker at 18 different locations (acting as 18 sound sources).
To simulate unknown device capture times, a delay randomly
chosen from the interval is applied to the recording
from each microphone. These recordings are used in the local-
ization procedure. We only have the ground truth of the micro-
phone locations, which are manually measured. We investigate
microphone localization performance with this ground truth.
Although the microphones are placed with a relatively regular
topology, in practice the considered algorithms can be used for
arbitrary microphone placement.
Compared with the simulated (image-source) scenarios,

the performance of TDOA estimation with real recordings
may be degraded by extra reflections from microphone stands
and also by the fact that the loudspeaker is not a point
source. For localization we applied the , and

algorithms. The average localiza-
tion errors obtained by the three algorithms are about 0.39
m, 0.03 m and 0.03 m, respectively. The true and estimated
microphone locations ( ) are shown in Fig. 10(b).
It is clearly observed that the topology of the microphone
network can be recovered. The consistence between the true
and estimated microphone locations confirms the potential of
the proposed algorithms in real-world applications.

VIII. CONCLUSIONS
We proposed a general solution for sensor and source lo-

calization in an ad-hoc array using TDOAs which are biased
by unknown time offsets. To overcome the local minima

Fig. 10. Microphone localization with real-recorded data. (a) Recording envi-
ronment. (b) Localization result by the algorithm. The average lo-
calization error of all the microphones is about 0.03 m.

problem when estimating the unknown timing information,
we derived the boundary of the timing parameters and utilized
a multi-initialization scheme. These strategies can minimize
the influence of local minima efficiently. Simulation results
demonstrate that the algorithm outperforms existing
algorithms in most cases. The performance of the
algorithm can be further improved by a refinement strategy.
Error analysis demonstrates that the
algorithm can get close to the Cramér-Rao bound with at least
10 sensors and sources. Experiments using TDOAs estimated
from simulated and real-recorded speech data confirm the
potential of the algorithm in real-world applications.
Specifically, the algorithm can
achieve high-quality estimation for speech data simulated at
reverberation time 0.3 s and the estimation error rises to 0.05
m, 0.1 m and 0.2 m for reverberation times 0.5 s, 0.7 s and
1 s, respectively. For real-recorded data in an environment
with reverberation time of 0.2 s, the
algorithm can achieve an estimation error of 0.03 m.
The algorithm however requires a minimum

number of sensors and sources (e.g., ) to guarantee
its performance. Although the performance improves signif-
icantly as and increase, the local minima problem is
still not completely solved, e.g., it can still be observed with
a low probability even if and are large. An interesting
direction for future research would be to incorporate prior
knowledge of the ad-hoc array into the algorithm,
so that the dependence on the number of sensors and sources
can be relieved and the local minima problem can be fully
overcome. Moreover, although the ( )
algorithm shows promising results in reverberant scenarios,
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the robustness to TDOA estimation outliers could be improved
by exploiting the redundancy of the TDOA information when
using a large number of sensors and sources.

APPENDIX A
JACOBIAN MATRIX IN (19)

For and , the Jacobian matrix ,

which is of size , can be calcu-
lated as

The block matrices can be computed as described below.

...
. . .

...

Based on the definition of in (7), the element-wise differential
is expressed as

(A1)

for and . Here .

...
. . .

...

where

(A2)

for , , and .

...
. . .

...

where

(A3)

for , , , and
.

Let .

...
. . .

...

Since , it follows

(A4)

and

(A5)

for , , and .

...
. . .

...

where

(A6)

for and .

...
. . .

...

Since ,

(A7)

for , , , and
.

APPENDIX B
JACOBIAN MATRIX IN (39)

For and , the Jacobianmatrix ,

which is of size , can be calculated as

The block matrices can be computed as described below.
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Based on the definitions in (30) and (38), it follows

(B1)

for .

...
. . .

...

where

(B2)

for , , 2, 3, and , 2, 3.

where

(B3)

for .
Based on the definitions in (38), it follows

(B4)
for .

...
. . .

...

where

(B5)

for , , 2, 3, and , 2, 3. Using the
inversion theory, we have

(B6)

where is a matrix with the same size of , with the -th
element being 1 and other elements being 0.

where, for ,

(B7)
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