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1 Introduction

1.1 Black-hole microstate structure

The prototypical example of a string theory black hole whose entropy can be accounted

for microscopically is the D1-D5-P black hole. If one considers the various ways in which a

combination of N1 D1 and N5 D5 branes can carry NP units of momentum (in the regime

of parameters where the back-reaction of these branes is not important and the physical

picture of the momentum-carrying excitations is clear), one finds that the corresponding

entropy is given by 2π
√
N1N5NP , which exactly matches the Bekenstein-Hawking entropy

of the black hole that these branes form in the regime of parameters where their back-

reaction is important. Since the original work of [1, 2], such entropy-matching calculations
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have been extended to many other families of supersymmetric, or merely extremal black

holes, and even near-extremal black holes. The matching of the entropies has proven

remarkably successful.

In 1996, the perturbative counting of black-hole microstates at vanishing string cou-

pling in [2] represented the first real progress on the microstate problem in many years.

However, this work opened up a whole new set of questions. In particular, it remained to

understand how one particular black-hole microstate manifests itself in the finite-coupling

regime in which the classical black-hole solution exists and has a large horizon area. For a

long time it had been thought that all the microstates at weak coupling develop a horizon

and are indistinguishable from the classical black-hole solution (except perhaps in a Planck-

size region around the singularity) [3, 4]. This intuition was challenged by the construction

of several families of fully back-reacted solutions that have the same charges and mass as

the black hole, but differ from the classical black-hole solution at the scale of the horizon

and, in particular, are smooth and horizonless [5, 6]. Such solutions are called “microstate

geometries,” because, via the AdS/CFT correspondence, one can map them onto states

of the dual CFT. However, despite having many properties indicating that they belong

to the typical sector of the black-hole microstates, these solutions have an entropy that is

parametrically lower than the black-hole entropy [7], which is presumably related to the

fact that these solutions have a lot of symmetry.

If one is to try to reproduce the black hole entropy from supergravity one should

therefore find solutions with less symmetry, and the first step in this direction was the

construction of three-charge solutions that contain an wiggly supertube [8]. These solutions

are parametrized by an arbitrary continuous function and hence can have an infinite number

of continuous parameters [9]. The entropy of these solutions grows with the charges as

N5/4 [9], which is more than all other known supergravity solutions, but is still less than the

black hole entropy growth, N3/2. In [10] we have furthermore argued that if one relaxes one

more symmetry one can construct smooth horizonless superstratum solutions that depend

on arbitrary continuous functions of two variables, and it is the purpose of this paper to

argue that the perturbative semi-classical quantization of superstrata yields a black-hole-

like entropy growth, and that in the fully back-reacted regime all the three-charge black-hole

entropy might be reproduced by space-time fluctuation modes of the superstrata.

In parallel with our efforts, there have also been several relatively-recent developments

that support this general approach. First amongst these is Mathur’s tightening [11–13]

of Hawking’s result to show that information can only be recovered if there are O(1) cor-

rections to the semi-classical physics outside black holes. That is, in order to solve the

information problem, we need to make some O(1) changes at the horizon scale. This dis-

cussion can be taken to a new level by asking whether these changes result in a firewall for

an incoming observer, as argued by [14–23, 23, 24] or rather whether the quantum super-

position of these states can result in a smooth infall experience for macroscopic infalling

observers [16, 25–27]. However, finding a mechanism that can support such O(1) changes in

the structure at the horizon scale is notoriously difficult — essentially because the horizon

is null, any massive object must fall in, while any massless wave packet will dilute to noth-

ing after several horizon-crossing times. The only time-independent way to support such
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a structure within supergravity is to place magnetic fluxes on topologically non-trivial cy-

cles [28, 29], and this is precisely the mechanism that underpins all the known BPS [5, 6, 30]

and near-extremal [18, 31] microstate geometries. Furthermore, as we have argued in [32],

this mechanism extrapolates well beyond the regime of validity of supergravity, and can

manifest itself either via brane polarization [33] or via non-Abelian effects.

As explained in [32], there are two separate issues that one must address in order to

understand the microstate structure of black holes and the effect that this structure has

at the horizon scale. The first is how one can make changes at the horizon scale and we

now know [28] that the geometric transition discovered in five dimensions [5, 6] provides

the only way to replace the horizon with horizonless time-independent structure thereby

making the O(1) corrections. Such geometric transitions will therefore be an essential part

of any string-based resolution of black-holes. The microstate structure itself, whatever its

ultimate form, can then be supported by the “canvas” provided the geometric transition

to large microstate geometries.

The second issue is to determine the extent to which this microstate structure can be

captured by semi-classical geometries. This paper will advance the latter goal by arguing

that there is indeed a class of microstate geometries, called superstrata, that can achieve

the second goal at least with sufficient fidelity to obtain the correct charge-dependence of

the BPS black-hole entropy.

1.2 Superstrata

The superstratum is a smooth, horizonless soliton (a microstate geometry) that is 1
8 -BPS

(preserving 4 supersymmetries), depends on several arbitrary functions of two variables

and has the same charges as the D1-D5-P black hole. The existence of this object was

conjectured in [10] (building on earlier work in [34]) by arguing that a certain combination

of branes, Kaluza-Klein monopoles (KKM’s) and momentum preserves the same super-

symmetries as the D1-D5-P black hole irrespective of its orientation, and hence one can

glue these branes into a supersymmetric configuration that depends on functions of two

variables. Furthermore, since the superstratum locally resembles a D1-D5 supertube with

a KKM dipole charge, the fully back-reacted superstratum solution should be smooth and

hence be a microstate geometry. Even though there is not yet an explicit construction

of a generic fully back-reacted superstratum, one can find further evidence for their exis-

tence by analyzing string emission from the D1-D5-P system [35–37], or by constructing

supergravity solutions that depend of two different functions of two different variables [38],

which could be thought of as limits of the more general superstratum solution.

There are several ways by which one might realize the construction of a superstratum.

The first way is via a double supertube transition [10, 34, 39]: one combines the D1 branes

with some momentum to give a D1-P supertube (D1’s with traveling waves on them) and,

at the same time, one combines some D5 branes with some momentum to obtain a D5-P

supertube (D5’s with traveling waves on them). One must do this in such a manner that

the D1-profile lies entirely within the D5-profile. Next one “executes” a second supertube

transition by locally puffing out the D1-D5 system using a Kaluza-Klein monopole and

the result is a D1-D5-P bound state. Since supertube transitions give the configuration
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an arbitrary profile and the second transition can, in principle, be done independently

and locally on each D1-D5 segment, it seems plausible [10] that two supertube transitions

could give rise to a smooth superstratum solution that can be parametrized by functions

of two variables.

The second way to think of a superstratum is to begin with a D1-D5 supertube with

KKM dipole charge (parametrized by several arbitrary functions of one variable) and start

adding momentum to it. Again, for each original configuration, given by the Lunin-Mathur

geometry [40–42] one expects to be able to add a general wave profile along the common

D1-D5 direction, and hence to obtain a configuration that depends on functions of two vari-

ables. Thus, every mode of the original D1-D5 supertube will act as a momentum carrier,

and therefore the number of carriers over which one can distribute a given momentum is

the number of modes of the D1-D5 supertube. This suggests that such excitations should

describe a moduli space of D1-D5 supertubes, and each such modulus should be able to

carry momentum.

A third perspective on superstrata comes from the fact that they describe bubbled mi-

crostate geometries. Indeed, the single, circular, unexcited superstratum is identical to a

D1-D5 supertube geometry and this geometry, in the near-tube limit, is, up to orbifolding,

the maximally-symmetric geometry global AdS3×S3 [40]. More generally, multiple super-

strata are expected to describe geometries with topological 3-cycles held up by cohomo-

logical fluxes. Changing the shapes of the superstrata corresponds to changing the shapes

of these cycles and letting these shape changes depend upon the compact circle in AdS3.

On a single superstratum, the modes transform under the isometries SL(2,R)L×SL(2,R)R
×SU(2)L × SU(2)R. If the structure is to carry momentum then supersymmetry requires

that this momentum be either purely left-moving or purely right-moving and so BPS fluc-

tuations can only excite half the modes. As we will discuss in section 4, within the D1-D5

CFT, the left-moving excitations in the space-time directions are correlated with fermionic

excitations that only carry SU(2)L quantum numbers.1 It is this that places restrictions

on the BPS modes and thus upon the perturbative shape fluctuations. This perturbative

approach to superstrata has been developed in [35, 36] and very simple, restricted classes

of fully back-reacted solutions were described in [38].

1.3 Representing black hole microstates with superstrata

The problem with the quantization of the superstratum is that we do not know its action

and so we cannot start from first principles and quantize. On the other hand we do know

the perturbative description of the D1-D5-P microstates that give the black-hole entropy

and we know the field theory dual of the AdS3×S3 solution corresponding to the unexcited

superstratum. From these observations we can “reverse engineer” precisely which states

of the superstratum will be visible within supergravity. Our ultimate goal is to argue that

the modes of the D1-D5-P system will, in supergravity, give rise to geometric modes whose

1This observation also has interesting implications for future work: near-BPS and non-BPS solutions

have long been obtained by exciting both left-moving and right-moving momentum [43–46] and so we expect

generic shape fluctuations to be a natural way to access such non-BPS solutions.
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semi-classical quantization will reproduce the exact black-hole entropy:

S = 2π
√
N1N5NP . (1.1)

We will, however, start far more conservatively with what we believe can be substan-

tiated with a high level of confidence, namely, that the semi-classical quantization of the

space-time shape modes of a single superstratum can lead to an entropy count of, at least,

S = 2π

√
1

6
N1N5NP . (1.2)

This differs from (1.1) by a factor of 1√
6

because, as we will discuss, the perturbative

space-time shape modes of a single superstratum must involve only one sixth of the com-

plete set of perturbative BPS modes. More precisely, these BPS space-time shape modes

describe a sector of the CFT with central charge c = N1N5 corresponding to half of the

bosonized fermions in the D1-D5 CFT. The remaining part of the CFT, with central charge

c = 5N1N5, arises from the other half of the bosonized fermions and the original bosonic

excitations of the D1-D5 CFT. These states correspond to corrections to the internal met-

ric and fields on the T 4 upon which the D5 branes are compactified. We will examine

the extent to which this “other five-sixths” of the BPS states will be visible within super-

gravity and argue that in the fully back-reacted regime the modes that contain internal

torus fluctuations will have an energy gap that is parametrically larger than that of the

typical black hole microstates. We suggest that these internal torus modes will be “pushed

on the Coulomb branch” and will become visible as transverse supergravity modes of the

superstratum solution.

The important point here is that, whatever the ultimate status of the internal T 4

excitations, the arguments based upon group theory and perturbation theory allow us to

assert with considerable confidence that the shape modes of a single superstratum can, at

least, recover the correct entropy growth S ∼
√
N1N5NP as a function of N1N5NP .

It is also possible to estimate the entropy of superstrata by starting from the original

argument [10] that they can be constructed as momentum-carrying fluctuations of the D1-

D5 supertube. This construction appears to allow all the shape modes of the supertube

to be promoted to momentum carriers.2 We will argue in section 5 that the dimension of

the moduli space of these shape modes is 4N1N5, which would imply that the entropy of

a superstratum will come from distributing NP units of momentum over 4N1N5 bosonic

carriers and their fermionic superpartners, and this would reproduce exactly the black-hole

entropy (1.1). This construction appears to be at odds with the perturbative analysis that

gives the entropy (1.2). It is possible that the 4N1N5 shape modes are not independent and

unobstructed moduli. It is also quite possible, as we will also discuss in section 5, that the

extra shape modes that go beyond the perturbative analysis of section 4 will only emerge

in the fully back-reacted superstratum solution. We therefore hope that an complete and

explicit superstratum solution will clarify whether the space-time modes of the superstrata

will reproduce all the black-hole entropy or only 1√
6

of it.

2This also agrees with the physics of certain explicit solutions that can be thought of as singular limits

of the superstratum solution [47, 48].
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In formulating the entropy-counting arguments above we have taken it as given that

adding momentum charge to a BPS system of branes will always lead to transverse shape

modes once the supergravity back-reaction is included. We will also assume the converse:

semi-classical quantization of such supergravity shape modes will recover a full description

of the Hilbert space of the original perturbative momentum modes. This is certainly true

of the F1-P system, since this is simply the quantization of the fundamental string [49] and

it is also true of momentum modes on many systems of branes. We do not believe that

there is much danger in assuming that this is a universal result.3

There are two frequently-expressed concerns about any program, as the one advanced

here, that involves obtaining the black-hole entropy by counting supergravity solutions.

The first is that classical supergravity modes only correspond to coherent quantum states

and that the states that contribute to the entropy cannot be geometric. The second is that

it is possible that the fluctuations that contribute primarily to the entropy may have very

small scales, and hence the corresponding solutions will have structure below the Planck

scale and will not be therefore correctly described by supergravity.

The first concern might equally be raised as an objection to considering the vibrational

motion of a diatomic molecule to be that of a spring. Obviously this is a dramatic classical

simplification of a complex quantum system and the real motions of a diatomic molecule

are intrinsically quantum phenomena. However, approximating the chemical bond by a

classical harmonic oscillator and semi-classically quantizing this oscillator gives an excel-

lent description of the quantum states and the vibrational spectrum because the “spring”

isolates the essential physical degrees of freedom that govern the system. It is in this spirit

that we believe that microstate geometries and their semi-classical quantization will de-

scribe sufficiently many microstates of black holes and give a valuable description of their

thermodynamics: while the quantum mechanical states of a black hole are manifestly not

geometric, and only very few of them have classical descriptions, the important insight

coming from microstate geometries is that this allows us to identify the degrees of freedom

at strong coupling that need to be quantized in order to capture the essential underlying

physics of the black-hole microstates.

The second concern is more serious in that the entropy might be coming primarily

from a sector in which the supergravity approximation is failing. There are two reasonable

ways around this issue. First, we know that exactly the same issue arises in other instances

of adding momentum modes to branes, as with the fundamental string, and yet there is

no problem with the semi-classical quantization of states. The reason why there is no dif-

ficulty is precisely because such states are based upon well-understood systems of objects

that make sense in string theory. Thus the easiest answer to the second concern is that we

may ultimately have to broaden the scope of the semi-classical quantization and go beyond

3Strictly speaking, this must hold for the momentum added to the unique ground state of the system

and does not apply to the momentum carried by the ground state itself. We are always concerned with

the former. For example, a straight supertube [8] carries a fixed amount of angular (longitudinal) momen-

tum coming from the crossing of electric and magnetic worldvolume fluxes. However, any change in the

momentum on top of that leads to transverse fluctuation of the supertube shape and of the back-reacted

supergravity solution [50–52].
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smooth microstate geometries, whose scales, by definition, lie comfortably above the Planck

length, and include microstate solutions. The latter are defined [32] to be horizonless, phys-

ical limits of smooth geometries that have the same mass, charge and angular momentum

as a given black hole, but can have singularities that either correspond to fundamental

(12 -BPS) D-brane sources or can be patch-wise dualized into a smooth solution.

It is also possible that smooth microstate geometries will resolve these issues without

needing to introduce stringy singularities. Indeed, one important realization in the study

of microstate geometries was that if one wants to construct a solution that has the same

charges as a five-dimensional three-charge black hole with a macroscopically-large horizon

area, one must use scaling solutions [53–55]. In these solutions the size of the bubbles

appears to shrink to zero size from the perspective of the metric of the auxiliary four-

dimensional base-space that is used to construct the solutions, but, in fact, the bubbles

remain finite once the supergravity back-reaction is taken into account. In the scaling limit,

these bubbles descend down a very long AdS throat that resembles, more and more, that

of the corresponding black hole. Hence, it is possible that adding a third charge to what

appear to be very stringy two-charge microstates will expand the physical length scales

and result in smooth fluctuating solutions at the bottom of a very long throat.

1.4 The present approach

Returning to our main goal, we wish to describe the detailed structure of the semi-classical

superstratum in terms of the D1-D5 CFT. We therefore begin in section 2 by reviewing

the D1-D5 CFT and in section 3 we describe the two-charge (14 -BPS) states of the D1-D5

system and how they correspond to supertube profiles. In section 4 we add momentum to

the system and relate the three-charge (18 -BPS) states to profiles of the superstratum. We

initially adopt a rather conservative approach by focussing on the details of the microstate

structure that we are confident can be reproduced by quantizing the supergravity modes.

In particular, we focus on the space-time shape modes of the superstratum and how they

can be matched to perturbative modes of a particular sector of the D1-D5 CFT. This

allows us to reproduce the correct charge growth of the black-hole entropy, albeit with a

smaller overall coefficient. In section 5 we adopt a less conservative view of the possible

modes that a superstratum can have, which is closer to the original arguments for the

existence of superstrata [10] and to the physics of certain singular limits of superstratum

solutions [47, 48]. This allows us to use a counting argument similar to that of Maldacena,

Strominger and Witten [56] to reproduce exactly the entropy of the three-charge black

hole, and to obtain the correct overall coefficient as well. We then discuss several ways

in which the liberal and conservative approaches to superstrata can be reconciled, and in

particular we suggest in section 6 that bound states of multiple superstrata may be a key

ingredient in relating all the states of the CFT to bulk supergravity solutions. Section 7

contains our concluding remarks.

2 The D1-D5 CFT and the “visible” sector

The easiest way to quantize the two-charge system is in the F1-P frame where the states are

simply those of the perturbative string. However, for the superstratum, we are going to need

– 7 –
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the detailed description in the D1-D5 duality frame where there are N5 D5 branes wrapped

on T 4 × S1 and N1 D1 branes wrapped on the common S1. Let R be the radius of the S1

and v the corresponding coordinate. For fixed v, the moduli space of the configurations is

the same as that of N1 D0 branes inside N5 D4 branes and so it may be identified with

the moduli space of N1 instanton sector of SU(N5) Yang-Mills. The dimension of this

moduli space is 4N1N5. These moduli can be made into functions of v and thus, in the

perturbative regime, one has a CFT with 4N1N5 bosons on this S1. However, the D1-D5

system has 8 supersymmetries, which extend the CFT to an N = (4, 4) SCFT. There are

thus 8N1N5 free fermions that split into 4N1N5 left-movers and 4N1N5 right-movers.4

To be more precise, the underlying field theory is the N = (4, 4) superconformal sigma

model whose target space is the orbifold, (T 4)N/SN , where N ≡ N1N5 and SN is the

permutation group on N elements.5 There are thus 4N free bosons and 4N free fermions.

Following [36, 59] the bosons will be labeled, XȦA
(r) (z, z̄), where r = 1, . . . , N , is the copy

index of the T 4 and A, Ȧ = 1, 2 are spinorial indices for the SO(4)I = SU(2)1×SU(2)2 of the

tangent space of T 4. The left-moving and right-moving fermions, ψαȦ(r) (z) and ψ̃α̇Ȧ(r) (z̄) with

α, α̇ = ±, transform as doublets of fixed helicity on the T 4 and as doublets of different

helicities under the R-symmetry, SO(4)R = SU(2)L × SU(2)R. Note that the fermions

transforming in the (2,1) and (1,2) of the R-symmetry are left-moving and right-moving,

respectively. The T 4 is, of course, the compactification manifold of the D5’s and, as usual

in theories on D-branes, the R-symmetry is generated by rotations in the (non-compact)

spatial directions transverse to all the branes, that is, in the space-time directions.

In the fully back-reacted D1-D5 geometry, the near-brane limit is global AdS3×S3×T 4

and the symmetry outside the T 4 is SL(2,R)L × SU(2)L × SL(2,R)R × SU(2)R. These

symmetries correspond to the left-moving and right-moving (finite) conformal invariance

and R-symmetry via the holographic duality.

By construction, the excitations of the bosons, XȦA
(r) , only involve motions in the

compactified (T 4) directions, whereas the fermionic excitations carry polarizations (R-

charge) that are visible within the six-dimensional space-time. To understand what portion

of the fermion Hilbert space is visible from the space-time, it is convenient to bosonize the

fermions by defining the currents

Jαβ(r) (z) ≡ 1

2
ψαȦ(r) (z) εȦḂ ψ

βḂ
(r) (z) , J̃ α̇β̇(r) (z̄) ≡ 1

2
ψ̃α̇Ȧ(r) (z̄) εȦḂ ψ̃

β̇Ḃ
(r) (z̄) , (2.1)

KȦḂ
(r) (z) ≡ 1

2
ψαȦ(r) (z) εαβ ψ

βḂ
(r) (z) , K̃ȦḂ

(r) (z̄) ≡ 1

2
ψ̃α̇Ȧ(r) (z̄) εα̇β̇ ψ̃

α̇Ȧ
(r) (z̄) . (2.2)

For each value of r, the currents Jαβ(r) and J̃ α̇β̇(r) generate a level 1, SU(2) × SU(2) current

algebra. Each such algebra may be viewed as being generated by a single boson.

If one sums over r, the currents

Jαβ(z) ≡
N∑
r=1

Jαβ(r) (z) , J̃ α̇β̇(z̄) ≡
N∑
r=1

J̃ α̇β̇(r) (z̄) , (2.3)

4For more details on the D1-D5 CFT, see, for example, [36, 57–59].
5This is the description of the CFT at the free orbifold point.
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generate the level N , SU(2)R×SU(2)L current algebra of the R-symmetry. Because of the

pseudo-reality of the fermions [36, 59], the standard angular momentum operators, J± and

J3, are given in terms of the Jαβ by:

J3
L = J12 = J21 , J+

L = J11 , J−L = J22 ;

J3
R = J̃12 = J̃21 , J+

R = J̃11 , J−R = J̃22 .
(2.4)

For each value of r, the currents KȦḂ
(r) and K̃ȦḂ

(r) also generate level 1, SU(2)1 current

algebras but now purely on the T 4.6 The important point is that the Jαβ(r) (z) andKȦḂ
(r) (z) are

completely “orthogonal” sets of operators that commute with one another7 and similarly for

J̃ α̇β̇(r) and K̃ȦḂ
(r) . Thus the N SU(2) current algebras generated by the Jαβ(r) and J̃ α̇β̇(r) involve

excitations that are purely visible from the space-time with no component of this chiral

algebra creating an excitation on the torus. Conversely, the KȦḂ
(r) and K̃ȦḂ

(r) represent the

chiral algebras that are visible only from the T 4 and invisible from the space-time. Thus the

perturbative excitations that are visible from the six-dimensional space-time form Hilbert

spaces, Hst, that can be characterized by the representations of, and excitations created

by, the conformal field theory:

(SU(2)L × SU(2)R)N/SN , (2.5)

where the J(r) and J̃(r) generate these level 1 current algebras. This theory has central

charge c = N = N1N5. Similarly, the CFT that lies purely on the internal directions has

c = 5N = 5N1N5 and is generated by the bosons, XAȦ, and the currents K(r) and K̃(r).

We will denote the internal Hilbert spaces by Hint and think of the states of the D1-D5

theory as being decomposed into a sums of the products of the form

H = Hst ⊗Hint . (2.6)

The back-reaction of the fermionic and bosonic modes of the D1-D5 CFT will result

in shape and charge-density modes of the corresponding supergravity solution. Conversely,

we will argue, in the next section, that the semi-classical quantization of the corresponding

families of BPS microstate geometries will lead to the states of the D1-D5 CFT. Indeed

this is precisely what holographic field theory on AdS3×S3 suggests. Moreover, because of

the split into c = N = N1N5 and c = 5N = 5N1N5 sectors detailed above, we expect that

the supergravity modes in the space-time directions alone will be enough to see a c = N1N5

sector of the CFT while the remaining c = 5N1N5 sector will be visible from semi-classical

quantization of internal modes of the D1-D5 system.

We now substantiate this view by revisiting the geometry and semi-classical structure

of the two-charge system and argue how this will be modified via the addition of the third

charge via momentum modes.

6For the full internal SU(2) symmetry current, we must include the contribution from the bosonic field

Xαα̇. Note that the internal rotational symmetry is, of course, broken by the compactification.
7One can see this most easily by viewing the indices on the fermions, ψαȦ(r) , as transforming as a (2,2)

of SU(2)L × SU(2)1 and then the J ’s and K’s generate these two SU(2)’s.
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Figure 1. The “effective string” picture of the RR ground states of the D1-D5 CFT. There are

n1 strings of length 1, n2 strings of length 2, and so on, and the total length of the system if N .

3 The two-charge states

The two-charge states of the D1-D5 system are the Ramond-Ramond (RR) ground states of

the CFT and preserve half the CFT supercharges, or eight supersymmetries (note that these

states are called 1
4 -BPS states, relative to the 32 supercharges of type IIB superstring before

putting D-branes). These states have angular momenta in the range −N
2 ≤ J3

L, J
3
R ≤

N
2 .

One can spectrally flow these states to the NS sector to obtain chiral primary fields and the

RR ground states can viewed as being created by chiral primaries acting on the maximally-

spinning RR ground state, |ψ0〉, with J3
L = J3

R = −N
2 [60, 61]. Spectral flow takes the

RR-state |ψ0〉 to the vacuum |1〉NS of the NS sector.

The chiral primaries of the D1-D5 CFT can be obtained from the twist fields of the

SN orbifold, and these fields are labeled by the conjugacy classes of SN . The conjugacy

classes of SN are in one-to-one correspondence with the partitions of N , which are given

by collections of non-negative integers {nk}k≥1 satisfying

N =
∑
k≥1

k nk. (3.1)

It is useful to imagine these as describing a collection of “effective strings.” Namely, one

associates the conjugacy class {nk}k≥1 with n1 effective strings of length 1, n2 effective

strings of length 2, and so on. The total length of all the effective strings is N . See

figure 1. The effective string of length k represents a twist field that intertwines k copies of

the c = 6 CFT and may be viewed as taking k circles of length 2πR and twisting them into

combinations of fewer but longer circles. The maximally-spinning state |ψ0〉 is unexcited

by chiral primaries and so involves no intertwining of CFTs. It thus corresponds to the

partition with n1 = N and all other nk = 0.

The holographic dual of the maximally-spinning state is a single, maximally-spinning,

perfectly circular supertube in an R2 plane. In the near-supertube limit this geometry

is exactly global AdS3 × S3. The chiral primaries carry R-symmetry, by definition, and

also have T 4 indices. In the effective string picture, we may view the effective strings as

carrying R-symmetry and T 4 indices coming from fermion zero modes. We will focus here

on the R-charge since it is visible from six-dimensional space-time and we will suppress for

now the T 4 structure.8 The partition (3.1) is now refined according to

N =
∑
k≥1

∑
α,α̇=±

k nαα̇k , (3.2)

8For a more detailed description of the geometries dual to effective strings that carrying T 4 indices,

see [62].
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where nαα̇k = 0, 1, 2, . . . is the number of effective strings with length k and SU(2)L×SU(2)R
spin (α, α̇). The maximally-spinning state |ψ0〉 with J3

L = J3
R = −N

2 corresponds to the

partition with n−−1 = N and all other nαα̇k = 0.

Introducing twist fields generates excitations in the shape and density modes and the

bulk geometry dual to a generic two-charge state of the form (3.2) is the Lunin-Mathur

geometry [40] which is D1-D5 supertube with KKM dipole charge and an arbitrary pro-

file, or shape. (For a more detailed dictionary see [63].) The Lunin-Mathur geometry

is completely regular [41] and parametrized by arbitrary functions of one variable, f i(w)

(i = 1, 2, 3, 4), describing the profile of the D1-D5 supertube in the R4 transverse to the

D1-D5 world-volume. The SO(4) vector index i of the f i(w) in R4 is simply a pair of

spinor indices, (α, α̇), of the SU(2)L × SU(2)R R-symmetry. Hence we will denote these

shape modes by fαα̇(w). These functions are periodic, fαα̇(w + L) = fαα̇(w), and can be

expanded in Fourier series as

fαα̇(w) = µ
∑
k∈Z
k 6=0

aαα̇k√
|k|
e2πikw/L, aαα̇−k = (aαα̇k )∗, (3.3)

where L, µ are constants.9 The zero mode k = 0 has been removed by shifting the origin

of the R4. The AdS/CFT dictionary for the two-charge states [40]10 is that the number of

effective strings, specified by nαα̇k , is identified with the magnitude of the Fourier coefficients

of the profile functions, aαα̇k , by

nαα̇k ↔ |aαα̇k |2. (3.4)

In the bulk viewpoint, the constraint (3.2) is nothing other than the requirement that the

supertube carries N1 units of D1-brane charge.

In this way one can substantiate the idea that semi-classical quantization of the D1-D5

profiles yields a description of the states of the D1-D5 system [40, 65]. For the two-charge

system, the profiles for the typical states have curvatures of order the Planck scale and so

one must appeal to the idea of microstate solutions [32] discussed in the Introduction, to

argue that while the supergravity approximation is not strictly valid, supergravity is cap-

turing the essential semi-classical degrees of freedom that underlie the microstate structure.

On the other hand, adding the third charge to the system means that there can be deep

scaling solutions [53–55] in which the underlying structures remain macroscopic but lie

at the bottom of long AdS throats. This means that the supergravity approximation can

remain valid over a large range of excitations and that the semi-classical description of

smooth low-curvature geometries may be enough to account for the entropy.

This dictionary (3.4) is in complete accord with the idea that the effective strings

carry SU(2)L×SU(2)R charges and they must represent visible microstates in the dual six-

dimensional spacetime. As we argued above, the effective strings arise from twist fields that

9Although we do not need their explicit expression, for completeness, they are given by L = 2πgsα
′N5/R,

µ = α′2gs/(R
√
V4), where (2π)4V4 is the volume of T 4 [64].

10For a precise dictionary and its subtleties, see [63].
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intertwine k copies of CFT, with k = 1, . . . , N . The fact that these fields carry R-charges,

i.e., space-time angular momenta, means that they have polarizations directed into the

space-time and so describe fluctuations in space-time. Indeed, acting with these twist fields

changes the length and spins of effective strings and, by the AdS/CFT dictionary (3.4),

corresponds to changing the shape of the back-reacted D1-D5 supertube. We may look

on these twist fields as providing a Landau-Ginzburg description of the shape modes of

the D1-D5 system. It should be stressed that these shape modes correspond to supertube

profiles in the R4 transverse to the D1-D5 world-volume. There will be similar shape modes

in the T 4 directions but in this paper we focus on the space-time shape modes.

The correspondence between the quantization of shape modes and the states of the two-

charge system is, of course, obvious in the F1-P duality frame where one is simply describing

shape modes of a fundamental string. Indeed, one can go from the F1-P modes to the

description of the D1-D5 modes by a suitable set of duality transformations. However, we

need to work in the D1-D5 frame and see that the states in this frame are also represented

by shape modes because we are now going to add a third charge to the system and it

is easiest to understand what this entails if the new third charge is a momentum charge

and not some other brane charge. By showing that the D1-D5 states involve shapes as a

function of one variable we are now going to see that the D1-D5-P states are obtained by

giving these D1-D5 shape modes an extra dependence on another direction.

4 Adding momentum: the three-charge states

4.1 Adding the momentum

As we have seen, the two-charge (14 -BPS) states of the D1-D5 system can be mapped onto

the RR ground states of the CFT on the common S1 of the D1 and D5 branes. The

three-charge (18 -BPS) states are obtained simply if we keep the Ramond ground states in

the right-moving sector, thereby preserving half of the right-moving supersymmetries, but

allow any excited state, |χ〉, in the left-moving sector, thereby breaking all the left-moving

supersymmetries. (The choice of the left/right sector to break/preserve supersymmetry is

purely conventional and we could have done it in the other way around.) The eigenvalue

of the left-moving Virasoro generator, L0, on a state, |χ〉, yields the momentum, P =

L0 − c/24, of the corresponding 1
8 -BPS state. It was this construction that originally led

to the perturbative counting of BPS microstates [2] and the microscopic description of the

entropy (1.1). As we saw above, the 1
4 -BPS shape modes along the profile in the spatial R4

are the shapes of the D1-D5 configuration described by fαα̇(w) (or equivalently by aαα̇k )

and these may be thought of as choices of Ramond ground states or as the states generated

by acting with chiral primaries upon the maximally-spinning ground state |ψ0〉.
Just as for fundamental strings, adding momentum to any system of branes is expected

to involve excitations transverse to the branes (see footnote 3). In the fully back-reacted

supergravity solution, these momentum states are reflected in a non-trivial profile that

sources the solution. Conversely, the quantization of that profile yields a semi-classical

description of the momentum states of the system. If we assume that these are also true in

the current situation, adding momentum to the D1-D5 system means that the back-reacted
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supergravity solution will now not only have a profile in the spatial R4, parametrized by w,

but that such a profile will now also depend upon v, the coordinate along the S1 common

to the D1 and the D5 branes11 Thus one obtains shape modes that depend upon functions

of two variables and these functions will provide a semi-classical description of all the states

of the D1-D5 system.

In particular, if we focus on the perturbative states visible within the space-time and

described by Hst then these shape modes are captured by the space-time shape modes of

a generic, single superstratum. We therefore expect that the two-charge profile functions,

fαα̇(w), which describe the supertube along an arbitrary curve in R4, will be promoted

to three-charge profile functions, fαα̇(w, v), which describe the superstratum along an

arbitrary surface. Correspondingly, the one-index Fourier coefficients aαα̇k will be promoted

to two-index ones, aαα̇km.

Put differently, we can take a Landau-Ginzburg perspective in which the D1-D5 modes

are created by chiral primaries and these, considered as Landau-Ginzburg fields, become

momentum carriers simply through their descendant states within the left-moving Hilbert

space. Thus we see how a generic perturbative BPS excitation can give rise to a double

Fourier series (with coefficients aαα̇km) of space-time dependent excitations of the original

D1-D5 system, or unexcited superstratum.

4.2 Details of the perturbative momentum states

The connection between perturbative CFT states and the supergravity shape modes can

be made very explicit. In the near-superstratum limit the geometry is simply AdS3 ×
S3, which is the dual of the maximally-rotating RR ground state. The shape modes

of the superstratum are simply Fourier modes of supergravity fields on the S3 and thus

correspond to representations of the SU(2)L×SU(2)R. While the two-charge D1-D5 shape

modes carry quantum numbers of both SU(2)L and SU(2)R, the momentum-carrying BPS

operators that excite those states carry only the quantum numbers of SU(2)L and hence

adding momentum does not involve changing the D1-D5 shape modes that transform under

SU(2)R. In particular, consider the maximally-spinning D1-D5 solution whose near-brane

geometry is AdS3×S3. The generic D1-D5 ground states can be thought of as fluctuation

modes on the S3. In the NS sector, they are the chiral primary states and have quantum

numbers under SU(2)L × SU(2)R given by (`,m; ˜̀, m̃) = (`, `; ˜̀, ˜̀). Note that these D1-D5

“supertube” shape modes on the S3 are very special, in that the quantum numbers are

constrained to satisfy ` = m, ˜̀ = m̃ and, furthermore, |` − ˜̀| is equal to the spin of the

fields that exist in the theory. For a fixed spin field the Fourier modes are determined by

one quantum number and hence correspond to one-dimensional shape modes on the S3.

In contrast, the BPS momentum carrying modes, which are of the form (any, chiral) in

the NS sector, allow more general excitations under SU(2)L, while the SU(2)R quantum

numbers remain unchanged. So, the generic 1
8 -BPS mode will have SU(2)L × SU(2)R

11In general, the geometries dual to CFT states that are exact eigenstates of the momentum operator

P ≡ L0 − L̃0 are v-independent, while coherent states, which are not a precise eigenstate of P , are v-

dependent [36]. We are concerned with the latter because we are interested in the traveling waves on the

supertube along v and their classical description is given by coherent states.
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quantum numbers (`,m; ˜̀, ˜̀). Since we now have m independent of `, these will generate

intrinsically two-dimensional shape modes on the S3.

A particular subset of the BPS states involve arbitrary excitations created by operators

in the SU(2) current algebras, Jαβ(r) , defined in (2.1). As noted above, these currents and

the associated left-moving CFT in (2.5) reflect purely space-time modes and will be visible

in the perturbative space-time shape modes of the superstratum.

To make this more precise, one can easily describe the complete set of two-charge

supertube shape and density modes within supergravity and express the result in terms

of exact supergravity solutions in six dimensions. One can also realize the action of the

superconformal algebra on the geometry and, in particular, implement the action of the

currents (2.3) in terms of rotations on the supergravity solutions. In this way one can,

at the linearized level, generate the linearized supergravity solutions with shape modes

in the (`,m; ˜̀, ˜̀) representations by starting with the D1-D5 shape modes (`, `; ˜̀, ˜̀) that

correspond to chiral primaries in CFT. Realizing this procedure has been one of the major

goals of [35–37]. The fact that BPS equations of the six-dimensional supergravity are

essentially linear means that knowing the linearized solutions is almost enough to construct

the fully back-reacted solutions [47]. This observation was exploited to significant effect

in [37, 38]. To construct the fully back-reacted BPS fluctuations of the superstratum and

show that there is indeed an intrinsically two-dimensional BPS shape modes in space-time

one simply needs to take the special fluctuating modes considered in [38] and use the

current algebra action, as in [37, 66], to find the generic supergravity modes and then try

to compute the fully back-reacted solution using [47].

The foregoing procedure of rotating supertube fluctuation modes by the generators

of the asymptotic symmetry algebra corresponds to acting by the total Jαβ =
∑N

r=1 J
αβ
(r)

and not by the individual Jαβ(r) . Moreover, one really only needs the zero modes of Jαβ

to obtain the fluctuations with quantum numbers of the form (`,m; ˜̀, ˜̀). Put differently,

this is equivalent to a rather trivial statement that acting on a chiral primary by the

generators of the finite Lie algebras SL(2,R)L × SU(2)L only gives the descendant of a

chiral primary but certainly does not yield generic 1
8 -BPS states that are descendants of the

non-chiral primaries. It therefore seems, at first sight, that the procedure we have outlined

only generates an extremely small subset of the general momentum-carrying states, which

require all the modes of all the individual currents Jαβ(r) .

However, this is not exactly what we are doing: we are not simply rotating a complete,

known classical BPS state. Instead we are using rotations to generate all the individual

fluctuating modes of some of the fields but discarding all of the rest of the rotated solution.

We then take arbitrary linear combinations of those modes as seeds to generate new classical

solutions using the linear BPS system replete with its sources that depend non-linearly on

the fluctuating modes. In this way we construct the most general, fully back-reacted fluctu-

ating supergravity solution. In the quantum theory, classical solutions can be regarded as

coherent quantum states and so taking such classical linear combinations amounts to tak-

ing tensor products of the corresponding quantum states. The products of descendants of

chiral primaries generically yield the descendant of non-chiral primaries [67, 68]. Therefore,
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if we complete the fully back-reacted supergravity solution based on linear combinations

of modes, they will represent the descendants of the non-chiral primaries.

Thus the process of feeding a general superposition of classical fluctuations into the

complete BPS system will certainly generate the most general exact classical BPS states

and we claim that this will also give a semi-classical description of the most general BPS

quantum state. Indeed, precisely this sort of result was established in [68] where it was

shown that the space of supergravity fluctuations in a finite neighborhood of the AdS3×S3

background precisely reproduced the elliptic genus of the CFT (ref. [68] is when the internal

manifold is K3; for T 4, see [69]).

It is important to note that the result of [68, 69] was only established using a perturba-

tive supergravity “gas” around a solution that lay outside the black-hole regime and so one

may quite reasonably doubt the applicability of this result within microstate geometries

that look like black holes. However, to make a microstate geometry that looks like a black

hole one does not simply use small perturbations of AdS3 × S3: one must incorporate the

back-reaction of the momentum to obtain deep, scaling microstate geometries in which the

topological cycles descend a long AdS2 throat. We will discuss this further in the next

section, but here we want to note that AdS3×S3 represents a good local model of individ-

ual topological bubbles and it is expected that their fluctuations will give the microstate

structure only when these bubbles are located at the bottom of a deep, scaling throat. All

we therefore need from [68, 69] is the result that the that semi-classical quantization of

supergravity modes on AdS3 × S3 captures the quantum CFT states locally. It is then

expected that these states generate the correct microstate structure of a black hole when

they are located deep within a scaling solution and greatly red-shifted as a result.

Before concluding this section we want to return to the other classical modes that live

on the internal T 4 and whose semi-classical quantization should give rise to Hint in (2.6).

Indeed, one of the points emphasized in [35, 36] is that all the perturbative excitations

of D1-D5 system will be visible within the ten-dimensional supergravity description of the

superstratum. The left-moving c = N theory (2.5) whose states lie in Hst will indeed

be visible within the space-time of the effective six-dimensional theory but the remaining

modes, lying inHint and described in terms of the other c = 5N part of the full CFT, will be

also visible as perturbative fluctuations of geometry and fluxes in the full ten-dimensional

solution. Thus, even though the space-time shape modes of the superstratum will only

lead to an entropy (1.2), one might hope that the internal supergravity modes should lead

to the full accounting for the entropy (1.1).

However, as we will now describe, there is a subtlety in the supergravity back-reaction

that suggests that only the space-time shape modes will have sufficient resolution to capture

a large enough section of the Hilbert space of the D1-D5-P system.

4.3 The supergravity back-reaction and holography

One of the important features of the CFT dual of black-hole microstates is the fact that the

CFT can have an energy gap as low as Egap ∼ c−1 ∼ 1
N1N5

. This can be viewed as coming

from the scaling dimensions of the longest twist operators or from the longest-wavelength

momentum excitations of the longest effective strings. For a long time it was a puzzle as to
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how such fractionation, and the energy gap in particular, could emerge from fluctuations

of smooth microstate geometries. Such a match is crucial if the semi-classical quantization

of supergravity is to reproduce the perturbative states of the CFT with sufficient fidelity

to obtain the entropy.

To understand the holographic description of the correct Egap, one should first recall

that the only way to construct microstate geometries whose charges correspond to a five-

dimensional black hole with a finite horizon area is to use deep, scaling BPS geometries

have a very long AdS throat that is smoothly capped off by bubbles, or homology cycles.

The energy gap of these solutions then emerges holographically [53] by taking the longest-

wavelength fluctuation of the microstate geometry and red-shifting it according to the

depth of the throat. The depth of the throat is typically a free classical parameter in the

microstate geometry however semi-classical quantization of such geometries sets the throat

depth and thus fixes the energy gap [7, 55, 70]. It was thus one of the triumphs of the

microstate geometry program that this correctly reproduced the energy gap of the dual

CFT. The simplest microstate geometries, in which the holographic energy gap was first

computed, can then be viewed as containing unexcited superstrata and so the semi-classical

quantization of the superstratum will reproduce the correct energy levels.

Thus, in the holographic dual, modes of with energy Egap ∼ 1
N1N5

come from space-

time fluctuations whose wavelengths are of order the diameter of throat of the BPS black

hole.12 If there is only a handful of bubbles or superstrata, then this wavelength is set

by the longest wavelength fluctuation of homology cycles that spread across the throat. If

there are a lot of bubbles or superstrata then this wavelength should be thought of as the

longest wavelength collective mode of all the bubbles and superstrata.

This result relies upon the crucial structure of the warp factors in the metric. In the

IIB formulation, the ten-dimensional metric takes the form:

ds210 = −2
1√
Z1Z2

(dv + β)
(
du+ k − 1

2 Z3 (dv + β)
)

+
√
Z1Z2 ds

2
4 +

√
Z1

Z2
ds2T 4

= − 1

Z3

√
Z1Z2

(dt+ k)2 +
Z3√
Z1Z2

(dz +A(3))2 +
√
Z1Z2 ds

2
4 +

√
Z1

Z2
ds2T 4 .

(4.1)

For BPS solutions, the base metric, ds24, is hyper-Kähler and ambi-polar; the deep, scaling

solutions come from taking limits in which a cluster of two-cycles in this base appear to

scale to zero size. In the physical metric (4.1) the warp factor (Z1Z2)
1
2 modifies this so that

the cluster of cycles limits to a finite size determined by Q1Q2 in the spatial directions of

the base. In the full ten-dimensional metric, the two-cycles are lifted to three-cycles via the

v fiber and their volume also involves Q3. The important point is that the “area” of the

throat scales with Q3/2 and so, as a result of the warp factor, the longest wavelength mode

that fits across the throat scales as Q−1/2. The red-shift of the deep throat then gives an

additional factor of Q−3/2 to obtain Egap ∼ Q−2 [53]. On the other hand the warp factors

12This should, of course be defined as the area of the throat to some suitable power. Alternatively, for

a microstate geometry where the throat is capped off, this scale can also be defined by the diameter of all

the microstate structure.
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in the T 4 directions are O(Q0) = O(1) and so the T 4 does not expand to the typical size

of the throat. This suggests that fluctuations around the T 4 will develop the wrong energy

gap, ET4 gap ∼ Q−3/2.
Thus it seems that the supergravity fluctuations of the superstratum in the space-

time directions do give rise to the correct spectrum of microstates but the supergravity

fluctuations on the T 4 will lead to a rather coarse sampling of the microstate structure. It

is possible that our supergravity analysis of the T 4 fluctuations is too simplistic and we

will return to these issues in section 5 where we will conjecture how the T 4 modes may

ultimately be accounted for in the supergravity back-reaction.

4.4 Recapitulation

To finish this rather conservative analysis based upon perturbation theory, we want to

reiterate two important conclusions from our discussion. First, and most important, is that

whatever the ultimate outcome is on the holography of the T 4 modes, we have provided

a good match between the supergravity shape modes and the perturbative microstate

structure at least for the states in Hst, with central charge c = N1N5. Thus quantizing

the superstratum should, at least, reproduce (1.2) and thus obtain the correct growth in

entropy with N1N5NP . This is already huge progress. In particular, since these microstate

geometries describe a macroscopic fraction of the black-hole entropy, this means that all

the typical states that contribute to the black-hole entropy will have a finite transverse

size. Hence the entire system will not be surrounded by a horizon and thus we will have

established the fuzzball proposal for BPS black holes in string theory.

The other thing we want to stress is that we have studied the perturbative properties

of a single, round superstratum and our work and conclusions so far are based upon this

rather conservative but fairly detailed correspondence. In section 5 and section 6 we will

argue that superstrata that have more complicated shapes, and possibly split into bound

states of multiple superstrata will in fact be able to capture the full black-hole entropy.

5 Towards the full black-hole entropy

Our conservative counting of superstrata entropy in section 4 was based on the description

of the maximally-spinning supertube in the dual D1-D5 CFT and on the fact that in this

CFT the left-moving (supersymmetric) fermions are charged under SU(2)L but do not

carry SU(2)R angular momentum, and hence only a fraction of the shape modes of the

supertube will be able to carry momentum. In this section, we will be slightly bolder and

discuss how the “missing” shape modes might re-emerge and account for the full entropy

of the D1-D5-P black hole.

5.1 The shape modes of the superstratum

From the perspective of the original argument for the existence of the superstratum [10]

and from the perspective of supergravity solutions that describe certain superstratum com-

ponents, the restriction on the possible shape modes encountered in section 4.2 appears

rather puzzling.
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Indeed, if one constructs the superstratum by gluing together 16-supercharge plaque-

ttes that preserve the D1-D5-P Killing spinors irrespective or their orientation [10], there

appears to be no restriction on the possible shapes of the resulting object, and hence

the general superstratum solution might be expected to be determined by four arbitrary

continuous functions of two variables.

This picture is further supported by the explicit construction of supersymmetric solu-

tions that have all the charges and dipole charges of superstrata except one (the KKM

dipole moment), and depend also on four arbitrary continuous functions of two vari-

ables [48]. These solutions are dubbed supersheets. Recall that, as mentioned in section 1.2,

the first way to get a superstratum is to use a supertube transition to “puff out” D1 branes

and momentum into a D1-P supertube and D5 branes and momentum into a D5-P su-

pertube (first stage), and then to use a second supertube transition to puff out again the

resulting (boosted and rotated) D1-D5 system into a KKM dipole charge (second stage).

Because supersheets do not have a KKM dipole moment, they must be describing the first

stage of this bubbling process and, consequently, represent singular supergravity solutions.

The solution is expected to become a smooth superstratum once the KKM dipole moment

is added and it was shown in [10] that adding the KKM dipole is compatible with super-

symmetry. If the circle wrapped by the KKM dipole charge is small, this will only affect

the solution in the immediate vicinity of the supersheets and hence one might reasonably

expect that the KKM will not upset the shape and the supersymmetry.

Based on the foregoing arguments, we are going to assume in the rest of section 5 that

a suitably generic superstratum can be given four independent shape functions. However,

before proceeding on this assumption, we wish to raise several issues that might lead to

restrictions on the BPS shape modes and limit such modes to those described in section 4.

First, it was noted in [10] that adding a KKM monopole requires the orientation of

the KKM to be properly aligned with the underlying compactification circles, a fact that

also was manifest in [38] and leads, potentially, to restrictions on the orientations of the

solutions. Nevertheless, it is unclear whether this condition leads to significant restrictions

on the moduli space.

Another issue is that the shape modes outlined in [10] were based upon brane config-

urations that were not fully back-reacted and the description of shape modes was based

upon the local geometry of the solution. In the fully back-reacted superstratum some

of the directions necessarily pinch off to make the smooth underlying topological cycles.

Moreover, the directions that get pinched off are typically those upon which the shape

modes depend. For a smooth solution the shape modes must therefore be required to die

off as they approach these “pinch-off” points. This may well lead to restrictions on the

allowed BPS modes that can be smoothly excited on a superstratum and some of these

restrictions were encountered and analyzed in [38]. It remains to be seen what the full

range of allowable smooth shape modes can be for a single cycle but it may be only the

modes considered in section 4.

Finally, there is an interesting intermediate ground between the two extremes of four

shape modes and the modes of section 4. It is possible that some of the shape modes

have been suppressed by focusing on a single topological cycle and, in particular, on the
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scale-invariant AdS3×S3 near-superstratum limit. The “missing” degrees of freedom could

then emerge either as one restores the asymptotic flatness or adds more structure so as

to introduce a scale. In the same vein, it may be that when one tries to make a KKM

resolution of a BPS supersheet of arbitrary shape, it is possible that one may not be able to

do it with a single topological bubble but that it will require several such bubbles and that

the combination of the modes on such a multi-bubble solution can lead to more functions

of two variables. We will pursue this idea further in section 6.

5.2 The MSW counting of black-hole entropy

As we have argued, it is possible that once the full non-perturbative superstratum is con-

structed, the original picture of the BPS superstratum [10] could prove correct in terms of

predicting the number of shape modes. We will therefore examine what this would mean

for the superstratum and in particular we will argue that that such fluctuation modes

reproduce all the entropy of the three-charge black hole.

To see how this comes about, it is useful to recall the “second” way to get a superstra-

tum by starting with a D1-D5 supertube with KKM dipole charge and subsequently adding

momentum to it. Then the counting is very similar to the Maldacena-Strominger-Witten

(MSW) counting of the entropy of four-dimensional black holes [56]: one argues that the

number of momentum carriers on a superstratum is equal to the dimension of the moduli

space of deformations of the D1-D5 supertubes and then derives the entropy by counting

the ways of distributing the momentum amongst these moduli. At first glance the number

of supertube moduli is infinite, since an arbitrary shape can be decomposed into an infinite

Fourier series with arbitrary components. However, the quantization of the shapes of the

supertubes reduces the range of the Fourier modes and hence renders the dimension finite.

As we explained in section 2, this can be seen from the dictionary to the dual D1-D5 CFT,

which restricts the length of the maximal effective string on the boundary (which corre-

sponds to the Fourier mode of the round supertube) to N1N5, and since there are four

functions determining the embedding of the supertube in spacetime this corresponds to a

moduli space dimension 4N1N5.
13

There is another way to figure out that the dimension of the moduli space of spacetime

deformations of two-charge supertubes is 4N1N5. As we explained in section 3, these

supertubes can be dualized to fundamental strings carrying momentum, and the entropy

of this system comes from the various ways of splitting a given amount of momentum, NP ,

among different fractionated momentum carriers that carry momentum quantized in units

of 1/N1 [1, 71]. This entropy is given by the number of possible ways of writing

N1NP =
∑
k≥1

knk , (5.1)

much as in equation (3.1). Upon taking into account the fact that the fundamental string

has eight species of bosonic momentum carriers (corresponding to its 8 transverse direc-

tions) and their fermionic partners, the number of partitions reproduces the entropy of the

13More precisely, because of the constraint (3.2) imposed on the 4N1N5 Fourier modes, the moduli space

dimension is 4N1N5 − 1, but this difference is negligible for the entropy counting.
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two charge system. The dimension of the moduli space of these configurations is given by

the number of modes carrying momentum that can be excited, and for one species alone

this number is given by the maximal value of k, which is the product of its two charges:

N1NP . Hence, the dimension of the moduli space of oscillations that will become D1-D5

supertube oscillations in the transverse four-dimensional space is again 4N1N5.

One can also argue that the dimension of the supertube moduli space is of order N1N5

by considering the maximally-spinning (round) supertube and counting its entropy à la

Marolf and Palmer [50–52]. This supertube has angular momentum J = N1N5, and if

one tries to change its shape the angular momentum becomes smaller. One can use the

Born-Infeld action describing this supertube to quantize the possible deformations of the

maximally-spinning supertube and find that this entropy comes from integer partitions

of N1N5 − J . This counting therefore implies that the dimension of the moduli space

of a supertube with angular momentum J is equal to N1N5 − J (again for each bosonic

mode). Strictly speaking, this counting is only valid in the vicinity of the maximally-

spinning supertube configuration (when N1N5−J � N1N5), but if one extrapolates it to a

supertube with zero angular momentum one finds again the dimension of the moduli space

of transverse oscillations to be 4N1N5.

In the foregoing discussion, we only counted the dimension of the moduli space of the

supertube fluctuations in the transverse non-compact R4 directions (label them 1234) and

not the internal T 4 directions (label them 6789). This restriction can be justified by a

supersymmetry analysis similar to the one in [10]. As mentioned above, the “first” way to

get a superstratum is to first puff out D1 branes and momentum, P, into a D1-P supertube

inside R4 and, simultaneously, puff out D5 branes and P into a D5-P supertube inside

R4. If the resulting D1-profile lies entirely within the D5-profile, it is locally the same as

the D1-D5 system which can be puffed out again into a KKM dipole charge. However,

at the first stage, instead of puffing out the D1 branes and P into a curve inside R4
1234,

we could have puffed them out into a curve inside T 4
6789. For example, D1(5) and P(5)

can be puffed out into D1(6) and P(6) dipoles, where the numbers in the parentheses

denote the directions along which the object is extending. Correspondingly, D5(56789)

and P(5) can be puffed out into D3(789) and F1(6) dipoles (dissolved as fluxes inside

the D5 worldvolume). However, it is an straightforward algebraic exercise [10] to show

that these puffed-out charges cannot undergo a second supertube transition. Therefore,

interestingly, the second supertube transition is kinematically (supersymmetrically) allowed

only if the first transition is in the transverse R4 directions. This holds true even if the

internal manifold is not T 4 but K3, because there is no difference between T 4 and K3 in

the local geometry.

Hence, the dimension of the moduli space of bosonic fluctuations of D1-D5 supertubes

in the transverse space is 4N1N5. Much as for the MSW black-hole entropy calculation,

this dimension gives the number of bosonic modes that carry momentum, and one expects

by supersymmetry that there should be an equal number of fermionic momentum carri-

ers. As we explained above, there is a tension between the perturbative analysis of these

modes (described in section 4) which indicates that only N1N5 of these modes can carry

momentum supersymmetrically, and the original argument for the existence of superstrata
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and the solutions of [47, 48], which suggests that all the four bosonic modes, and hence all

their four fermionic partners as well, can carry momentum supersymmetrically.

If there really are four bosonic modes and four fermionic counterparts then they will

give a semi-classical description of momentum-carrying states with c = 6N1N5, and the

entropy of the superstrata is given by the possible ways of carrying NP units of momentum:

Ssuperstrata = 2π

√
c

6
NP = 2π

√
N1N5NP , (5.2)

which reproduces exactly the Bekenstein-Hawking entropy of the three-charge black hole.

Since this entropy comes entirely from spacetime modes and their fermionic partners, this

entropy count also reproduces the entropy of the D1-D5-P black hole if one replaces the

T 4 by K3.

We have thus argued that the shape modes of the superstratum have the capacity

to describe a full set of semi-classical microstates of a black hole and while this would

represent a very happy state of affairs, there are some words of caution to be made. First,

as we explained at the end of section 5.1, adding a KKM monopole and pinching off circles

to make topological cycles could potentially restrict the shape modes [10]. Second, we

have argued that one should think of the 4N1N5 spatial shape modes of the superstratum

as independent “moduli” just as those of the MSW string and hence can independently

be assigned momentum states. It remains unclear whether these moduli are sufficiently

independent and unobstructed. Indeed, these excitations have to satisfy the constraint (3.2)

and this restricts the size and degeneracies of the putative moduli space. This constraint

will be modified once one adds momentum and previously indistinguishable CFT states

become distinguishable. Thus the independence of, and restrictions upon, the supertube

moduli remain unclear but as we have seen, it is conceivable that the complete set of shape

modes can capture the complete BPS black-hole entropy.

5.3 In search of the lost 5/6th’s

The analysis of section 4 starts from a single round supertube, corresponding to a state

of the D1-D5 CFT in which the long effective string of length N1N5 is split into N1N5

effective strings each of length one, and considers adding supersymmetric (left-moving)

momentum perturbatively on this object. The left-moving momentum modes are only

charged under SU(2)L but not under SU(2)R, which implies that only the modes that give

one sixth of the central charge of all the modes that one might have hoped to promote

to momentum carriers are in fact supersymmetric. Moreover, in the original discussion of

the superstratum [10] it was pointed out that, while it seemed plausible that the shape

modes could be excited independently in the two directions of the superstratum surface,

this independence was not established rigorously. So the most conservative conclusion of

the perturbative analysis of section 4 is that the space-time modes of superstrata are still

given by functions of two variables, as argued in [10], but that these modes only give 1√
6

of the entropy of the black hole.

It is important to examine the tension between the results of section 4 and the argu-

ments of the previous subsection. Indeed, the results of section 4 indicate that 5/6 of the

modes that give rise to the black-hole entropy should appear as semi-classical fluctuations
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on the internal T 4 and only 1/6 of these modes are visible in space-time. This suggests that

we should simply be looking at the full supergravity solution in ten dimensions and the

shape modes on the T 4 in particular. On the other hand the arguments we presented above

suggest that all the modes that carry the black hole entropy can be visible as superstratum

space-time modes. We thus appear to be in danger of over-counting.

One possible solution to this tension could be that the restrictions on the supersymmet-

ric momentum carriers coming from the perturbative analysis are valid only in the vicinity

of the maximally-spinning supertube configuration in the free orbifold limit, and that far

away from that point in the CFT moduli space these restrictions will be lifted.14 Indeed,

the supersheets of [48] and other singular solutions that have black hole charges and carry

momentum with both SU(2)L and SU(2)R angular momentum [47] can be thought of as

limits of superstrata solutions in which one has turned off the KKM dipole charge. This

can be done by making the radius of the second supertube transition very small, which can

be achieved by taking the number of KKM’s to be very large.15 From the perspective of the

dual CFT, the number of KKM’s is the length of the effective strings, and increasing this

number brings one very far away from the state we considered in section 4, where there are

N length-one effective strings carrying J3
R = O(N) as a whole, towards the sector where

there are a few long effective strings of length O(N) carrying J3
R = O(1). Incidentally,

this is also the sector where the black-hole entropy lives, so if the superstratum counting

that gives the entropy (5.2) is correct, this entropy comes exactly from where it should

come. Starting with this sector with J3
R = O(1), one has a large degree of freedom to

increase/decrease J3
R by creating short effective strings and making them carry the desired

J3
R. However, we must note that we do have the unitarity bound −N

2 ≤ J
3
R ≤

N
2 , which is

still in a apparent conflict with the fact that, on the original supersheet, we could consider

arbitrary SU(2)R fluctuations.

Another possible way to reconcile the two analyses above could be to consider multiple

superstrata and allow different superstrata (or even different parts of one superstratum) to

have different orientations so that the correlation with angular momentum might change

between superstrata. It is possible for the momentum modes on one of these superstrata

to be charged under SU(2)L and for the modes on the other to be charged under SU(2)R.

Thus, from a suitable distance, a generic collection of superstrata could appear to replicate

generic space-time shape modes. Moreover, it is possible to bring two superstrata close to

each other and to join them into a figure-eight configuration that looks like a deformation

of a superstratum with dipole charge two. One can similarly argue that a superstratum

with a very large dipole charge, of the type that is expected to describe the CFT states

that give the black-hole entropy, can be deformed into configurations that contain multiple

superstrata, which can in turn carry momentum modes with all angular momenta.

While these observations suggest that superstrata may have a much larger set of space-

time configurations than the single, round superstratum considered in section 4, it does

14Recall that the perturbation taking the CFT away from the free orbifold point is a twist operator

insertion which mixes effective strings with different lengths.
15This can appear paradoxical, but increasing the number of KKM’s decreases the radius of the KKM’s

and therefore reduces their influence on the geometry.
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not resolve the over-counting danger associated with having both the T 4 modes and the

full set of space-time shapes corresponding to states. However, one can argue that, in the

regime of parameters where the black hole exists, the modes that look like internal shape

modes in the perturbative analysis of section 4 will be suppressed and, in addition, it is

possible that they give rise to fluctuations in the transverse space.

Indeed, our analysis of section 4.3 indicates that in the fully back-reacted supergravity

regime where the classical black-hole solution exists, the modes that correspond to fluctu-

ations in the internal directions will have the wrong mass gap and will not be therefore

capable of describing the modes that give the black hole entropy. This will then suppress

such semi-classical states in the total entropy. A “pessimist” would then take the view that

only the perturbative space-time shapes have the correct energy gap and thus contribute

to the entropy, leading to the result (1.2).

However, based upon our experience with five-dimensional microstate geometries, we

know that details of “internal sectors” of the dual field theory corresponding to degrees of

freedom on the compactification directions can become visible within the space-time ge-

ometry. The Coulomb-Higgs map [72, 73] is a classic example in which Higgs-branch fields

create composite operators that give rise to strong effects within the space-time geometry

that are more typically associated with the Coulomb branch of the field theory. Sometimes

this leakage of information onto the Coulomb branch can be complete in that it yields com-

plete information about the Higgs branch states and sometimes it can be very incomplete

in that it only captures a small fraction the data about the “internal states” of the system.

Thus one can take the optimistic view that the analysis of section 4.3 suppresses the shape

modes from exploring the T 4, thereby protecting us from over counting, but these modes

then leak into the “floppier” space-time directions for which the energy gap is much lower.

It is also possible that the “missing 5/6th’s” will not be visible semi-classically within

supergravity and that we can only obtain the entropy (1.2). As we have already stressed,

this still represents major progress. On the other hand, we prefer to take the optimistic view

that the missing 5/6th’s should still be visible within supergravity. One might therefore

hope that the internal shape modes of the single superstratum migrate to Coulomb branch

and become visible as space-time shape modes. It is interesting to ask whether these

modes will manifest themselves as superstratum modes, or as some other mode complicated

collective modes. The first possibility would reconcile the superstratum analysis in this

section with that of section 4. The second possibility would indicate there exists a space-

time object more complicated than the single, isolated superstratum and such an object

will account for 5/6 of the modes that give the entropy of a black hole, while the single,

isolated superstratum accounts for the other 1/6. This more complicated object might be

some multi-superstrata state or even something new. Either way, finding and understanding

this more complicated object would clearly be a key priority.

We now make some first steps in suggesting the role of multi-superstrata states.

6 Multi-superstrata

Independent of the bulk considerations of the previous section, we will argue that the struc-

ture of the three-charge states in CFT suggests that bound states of multiple superstrata
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Figure 2. The excited state |l1, l2, . . .〉k of a single effective string of length k. On the string, we

have l1 quanta carrying 1
k units of momentum, l2 quanta carrying 2

k units of momentum, and so

on. The standard projection in the orbifold procedure imposes the condition
∑

kmlm/k ∈ Z.

are the most natural candidate for the holographic duals of the CFT states. To explain

this, we begin by unpacking more of the details of the states described in sections 3 and 4.

6.1 Structure of three-charge states in CFT

In the D1-D5 CFT, a two-charge BPS state, i.e. the RR ground state is made of multiple

effective strings of various length. Ignoring the SU(2)L × SU(2)R charge, it is specified by

the numbers {nk}k≥1 satisfying (3.1) and is of the following form:∏
k≥1

(|0〉k)nk = (|0〉1)n1(|0〉2)n2(|0〉3)n3 · · · , (6.1)

where |0〉k is the ground state of the c = 6k CFT living on the effective string of length k.

See figure 1. The bulk dual of this is a D1-D5 supertube whose profile function f(w) has

Fourier coefficients ak given by

|a1|2 = n1, |a2|2 = n2, |a3|2 = n3, . . . . (6.2)

Note that we are ignoring the SU(2)L × SU(2)R charge for simplicity of presentation and

therefore the spin indices α, α̇ on f(w), ak are also omitted.

The three-charge states are obtained by exciting momentum-carrying modes on the

effective strings. In particular, on an effective string of length k lives the SU(2)L current

J3
L(z),16 whose modes we denote by Jm

k
, m ∈ Z. Note that the mode numbers are in units

of 1
k because the length of the string is k. We can use these modes to obtain momentum-

carrying states on a single effective string as follows:

(J− 1
k
)l1(J− 2

k
)l2 · · · |0〉k ≡ |l1, l2, . . .〉k, (6.3)

with the SN -orbifold constraint that the total momentum on the effective string is an inte-

ger, namely,
∑

m≥1mlm/k ∈ Z. See figure 2 for a pictorial description of this state. Since

16Here, J3
L(z) is defined to be J3

L(z) = J3
L(r)(z) with 2π(r− 1) ≤ arg(z) < 2πr and is multi-valued, where

r = 1, . . . , k is the copy index. In particular, J3
L(z) is not the sum of the individual currents,

∑k
r=1 J

3
L(r)(z).
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the modes J−m
k

carry non-vanishing SU(2)L charge, they are visible in six-dimensional

space-time. If we excite the J3
L modes on all the effective strings in the two-charge

state (6.1), we obtain the general three-charge state that can be created by J3
L excita-

tions.17 In doing so, we must remember that effective strings of identical length k are in-

distinguishable if they are in the ground state but, once we excite J3
L modes, they become

distinguishable (unless they have identical excitation numbers {l1, l2, · · · }). Thus, for each

k, the nk states will be broken into distinguishable and indistinguishable effective strings.

To be concrete, let us focus on effective strings with one particular value of length k,

say, k = 3, for a moment. If we have, e.g., seven of strings of length 3, we have the following

two-charge state:

(|0〉3)7. (6.4)

The seven strings are indistinguishable because they are all in the same ground state. So,

this two-charge state is completely specified by a single number n3 = 7. Now, three-charge

states are obtained by exciting momentum modes on these strings, as in (6.3). For example,

take two of them and excite the first (m = 1) momentum mode three times on each; namely,

we have two strings, all in the state (J− 1
3
)3|0〉3 = |3, 0, 0, . . .〉3. For four of the remaining

five strings, excite the m = 1 mode once and the m = 2 mode four times; namely, all four

strings are in the state (J− 1
3
)(J− 2

3
)4|0〉3 = |1, 4, 0, . . .〉3. Finally, let the last string be in

the state (J− 1
3
)6(J− 3

3
)1|0〉3 = |6, 0, 1, . . .〉3. Note that the total momentum in each string

is an integer. The three-charge state thus obtained is

(|3, 0, 0, . . .〉3)2 (|1, 4, 0, . . .〉3)4 (|6, 0, 1, . . .〉3)1 . (6.5)

The n3 = 7 indistinguishable strings in (6.4) have split into three distinguishable groups.

If n
(i)
3 denotes the number of strings in the ith group, we have the splitting

n3 = 7 = 2 + 4 + 1 =

3∑
i=1

n
(i)
3 . (6.6)

The n
(i)
3 strings in the ith group are all in the same excited state and indistinguishable.

Let n
(i)
3m, m ≥ 1 denote the momentum excitation numbers for the state of the ith group.

In the present example,

1st group: (n
(1)
3 ≡ n

(1)
30 ; n

(1)
31 , n

(1)
32 , n

(1)
33 , . . . ) = (2; 3, 0, 0, . . . ),

2nd group: (n
(2)
3 ≡ n

(2)
30 ; n

(2)
31 , n

(2)
32 , n

(2)
33 , . . . ) = (4; 1, 4, 0, . . . ),

3rd group: (n
(3)
3 ≡ n

(3)
30 ; n

(3)
31 , n

(3)
32 , n

(3)
33 , . . . ) = (1; 6, 0, 1, . . . ),

(6.7)

where we defined n
(i)
30 ≡ n

(i)
3 . More generally, it is clear that the general three-charge state

of length-3 strings is completely specified by the numbers {n(i)3m}m≥0,i≥1. Distinguishability

between different groups with i 6= i′ means that {n(i)3m}m≥1 6= {n
(i′)
3m}m≥1.

17Of course, there are other momentum-carrying states that cannot be obtained by the action of J3 but,

for simplicity, we focus on the states that can be simply labeled as in (6.3).
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The general three-charge state built on the general two-charge state (6.1) is obtained

by multiplying excited strings with different values of k together. Namely, for each k, we

index the distinguishable families of momentum excitations by (i) and let n
(i)
k0 denote the

number of indistinguishable strings in each family (they are indistinguishable because they

have identical excitation numbers). Therefore, the two-charge constraint (3.1) is refined to:∑
i≥1

n
(i)
k0 = nk ,

∑
k≥1

∑
i≥1

n
(i)
k0 = N . (6.8)

Let n
(i)
km (m ≥ 1) denote the momentum excitations, as in (6.7), of the ith set of effective

strings of length k:

|n(i)k1 , n
(i)
k2 , · · ·〉k . (6.9)

Distinguishability from the other strings of length k means that the momentum excitations

must be different: {n(i)km}m≥1 6= {n
(i′)
km}m≥1 if i 6= i′.

The three-charge states thus obtained are:∏
k≥1

∏
i≥1

(
|n(i)k1 , n

(i)
k2 , . . .〉k

)n(i)
k0

=
(
|n(1)11 , n

(1)
12 , . . .〉1

)n(1)
10
(
|n(2)11 , n

(2)
12 , . . .〉1

)n(2)
10 · · ·

×
(
|n(1)21 , n

(1)
22 , . . .〉2

)n(1)
20
(
|n(2)21 , n

(2)
22 , . . .〉2

)n(2)
20 · · · (6.10)

where the powers represent the fact that there are n
(i)
k0 indistinguishable effective strings

in the same state. The three-charge states (6.10) are thus specified by the non-negative

integers, {n(i)km}. The index k ≥ 1 is associated with the Fourier mode in the w-direction

(the loop in R4 of the original D1-D5 system) and the index m ≥ 0 is associated with the

momentum Fourier modes in the v-direction. Note that we have identified n
(i)
k0 introduced

above (6.8) with the m = 0 mode number. Thus we have sufficient data to describe the

shape modes as a function of two variables, as expected of a superstratum. However, there

remains an additional index (i) — this means that the general three-charge states in the

D1-D5 CFT naturally parametrize multiple functions of two variables. What is the physical

interpretation of this fact?

6.2 Multi-superstrata interpretation

The index (i) labels distinguishable effective strings of the same length: sets of effective

strings that only became distinguishable by virtue of the momentum excitations on them.

It is therefore tempting to interpret (i) as labeling the multiple superstrata into which

the original D1-D5 supertube has split. The momentum excitations promote the original

profile function, f(w), into a function of two variables, f(v, w), but we conjecture that the

two-charge profile function actually gets promoted into multiple functions of two variables

labeled by (i):

f(w) → f (1)(w, v), f (2)(w, v), f (3)(w, v), . . . , (6.11)

where f (i)(w, v) describes the world-volume of the ith superstratum. The Fourier coeffi-

cients a
(i)
km of these functions are then given by

|a(i)km|
2 = n

(i)
km. (6.12)
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Figure 3. Momentum carrying excitations on multiple effective strings and their possible multi-

superstratum interpretation. For each string length k, strings on which identical momentum modes

are excited are grouped together. For fixed k, the n
(1)
k0 strings in group 1 are all in the same

state |n(1)k1 , n
(1)
k2 , . . .〉k and are indistinguishable, the n

(2)
k0 strings in group 2 are all in the same state

|n(2)k1 , n
(2)
k2 , . . .〉k and are indistinguishable, and so on. The shape of the 1st superstratum is specified

by the number of strings in group 1 for all possible values of k, namely by {n(1)km}. The shape of the

2nd superstratum is specified by {n(2)km}, and so on. See the text for more detail.

See figure 3 for a pictorial description of the state (6.10) and the multi-superstrata

interpretation.

We hasten to note the important fact that the foregoing description of three-charge

states, such as (6.10), is valid only at the free orbifold point in the moduli space of the

D1-D5 CFT, whereas the actual supergravity sits at a very different point in the moduli

space. Deforming the CFT away from the orbifold point corresponds to turning on twist

operator perturbations (see [59] for a recent detailed account). Twist operators mix differ-

ent twist sectors and therefore the picture of each individual state gets modified. However,

it is the number of states that is important for our proposal, and it is not changed by such

deformations. Namely, the deformation does not change the crucial fact that more data
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than can fit on a single superstratum is needed to account for general three-charge states.

Therefore, this does not invalidate our proposal that general three-charge states are rep-

resented by multiple superstrata, although the precise dictionary between the superstrata

shape functions f (i)(w, v) and the CFT states may not be as simple as described above.

For example, it is quite conceivable a state that looks like a multi-strata state in CFT

corresponds to a single-stratum state in supergravity, and vice versa.18 This is analogous

to the fact that, in AdS5/CFT4, once interactions are turned on, the single/multi-trace

operator basis of the CFT Hilbert space is different from (and a unitary transformation

of) the single/multi-particle basis in of the supergravity Hilbert space.

Our multi-superstrata proposal raises several important issues. First, all the states we

are discussing in (6.10) are states within the same CFT and not states in distinct CFT’s.

Arguing that some of these states correspond to different superstrata suggests that we are

factoring the CFT into different CFT’s. At a more basic level, if one accepts that the

distinguishable families factor into different superstrata then why do we not accept that

the same must happen in the two-charge D1-D5 system: why aren’t effective strings of

different lengths simply different supertubes?

The resolution of all these issues comes from remembering that multiple supertubes

have no E × B interactions, and therefore can be separated at arbitrary distances. If we

consider a solution that contains only two-charge supertubes placed at the bottom of a long

AdS throat, these supertubes are not trapped at the bottom of the throat and can move

freely out of the throat. They represent therefore unbound states dual to factorized CFT’s.

On the other hand, two generic superstrata will always have non-trivial E×B interactions,

and hence a solution that has multiple superstrata at the bottom of a long AdS throat will

represent a bound state of the CFT. Solutions with different numbers of superstrata will

have different topology, and hence will belong to different sectors of this CFT.

Another important consideration is the fact that the bubbling transition to create mi-

crostate geometries with non-trivial cycles requires the three-charge system. The bubble

equations [74–76], which relate the sizes of cycles to the fluxes through those cycles, degen-

erate for two charges or if a flux through a cycle vanishes and so the corresponding bubble

collapses. Thus the possibility of separate superstrata forming a bound state in a CFT can

only occur if one excites the momentum modes in the D1-D5 system and only if one excites

momenta in distinct ways so that the fluxes on bubbles do not vanish. Conversely, if two

superstrata have exactly the same shape and charge distribution then they will coalesce

within a given AdS throat or, if they are not in an AdS throat, there will be no force

between them and they can be moved arbitrarily far away from each other, which is not

describable within one dual CFT [77].

It is worth noting that the “moulting phase” of the D1-D5 system [78] that appears in

the three-charge situation with large angular momentum has structures rather similar to

18This point is particularly clear for the three-charge states built on the two-charge state with n1 =

N,nk≥2 = 0 (short string sector) which we denote by |ψ0〉. The foregoing CFT picture (the k = 1 version

of (6.5)) says that we can build multiple-strata states on this state. On the other hand, in supergravity, the

state |ψ0〉 corresponds to a single, circular, unexcited superstratum, which is nothing but pure AdS3 × S3.

Momentum-carrying excitations on it are small deformations of the S3, which do not seem to lead to

multi-superstrata.
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the ones proposed here. In [78], the following problem was studied: for given momentum

charge and angular momentum JL = O(N), what is the ensemble of states that has the

largest entropy? In the CFT (at the orbifold point), the most entropic states were found to

be made of two sectors of effective strings, reminiscent of (6.11). The first sector is made

of a long string with length O(N), which carries all the momentum charge as well as the

entropy, while the second sector consists of many (O(N)) short strings of length one, which

carry JL, JR = O(N) but no entropy. On the other hand, in supergravity, the most entropic

configuration was found to be a two-center solution in an asymptotically AdS space. One

center is a BMPV black hole carrying all the momentum charge and entropy, while the

other center is a supertube carrying JL, JR = O(N) but no entropy.19 (Because the BMPV

black hole can be thought of as “shedding” or “moulting” a supertube, it was dubbed the

“moulting phase”). The fact that the multi-sector states of the CFT correspond to a multi-

center solution in supergravity can be thought of as evidence in support of our conjecture

(even though these configurations are not microstates but phases with finite entropy).

Apart from the natural way in which the correspondence of distinguishable twisted

sectors and bound states of multiple superstrata appears to work, one can obtain further

evidence for the conjecture by re-examining the arguments of [7, 53, 55, 70] that obtain

the CFT gap from the supergravity solution. We first note that the longest effective string

corresponds to

nN = 1 , nk = 0 , 1 ≤ k < N , (6.13)

and so can only involve a single superstratum, no matter how we add momentum. This

sector of the theory is also the sector with Egap ∼ 1
N1N5

and was obtained holographically

by considering an excitation of a bubbled geometry that has a wavelength equal to the

size of the AdS throat. Such a wavelength would be the natural fundamental oscillation

of a superstratum whose scale is that of the entire throat. In multiple, bound superstrata

the bubbles of geometry will be smaller than the throat and the scale of an individual

bubble will be roughly set by the scale of the throat divided by the some appropriate

power of the number of bubbles. Thus the fundamental modes of such individual bubbles

will have a shorter wavelength and a higher energy gap. Indeed, the energy gap of such

a configuration should be Egap ∼ p
N1N5

, where p is the approximate number of bubbles

that span the “diameter” of the throat. This, at least qualitatively, fits very nicely with

the corresponding decreased lengths of the effective strings in the CFT. Obviously more

work is needed to fully substantiate our conjecture but we think it is promising enough to

warrant our description here.

7 Conclusions

In this paper we have argued that the BPS microstates of the D1-D5-P system will manifest

themselves in the regime in which the classical black hole exists as smooth horizonless

19Although the configurations in CFT and supergravity seem quite similar to each other, the entropy of

the CFT states and that of the bulk two-center solution do not quite agree (the CFT entropy is always larger

than the supergravity entropy), which is presumably caused by the partial lifting of states at strong coupling.
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“superstratum” solutions. Despite the absence of an explicit solution describing the generic

superstratum, we have been able to account for their entropy using the intuition that adding

momentum modes to any system of branes will, upon back-reaction, emerge as shape modes

in supergravity, and, conversely, that the semi-classical quantization of such shape modes

will reconstruct the original Hilbert space of momentum states.

We first considered the construction of a superstratum in terms of fluctuations around

a maximally-spinning supertube and have argued, from the dual D1-D5 CFT, that the

number of supersymmetric momentum carriers of the superstratum is given by the product,

N1N5, of its D1 and D5 charges. This conservative estimate, which we believe can be

substantiated with a high level of confidence, gives the entropy:

S = 2π

√
1

6
N1N5NP (7.1)

and this is expected to come entirely from smooth supergravity solutions.

Then we went on to make a somewhat bolder proposal for counting the entropy of

superstrata using an approach similar to that of Maldacena, Strominger and Witten [56].

Specifically, we argued that the space of transverse fluctuations of two-charge supertubes

must have dimension 4N1N5. One can then view this as the moduli space of the super-

stratum and, much as in the original construction of superstrata [10], all these moduli

could carry momentum. Assuming these moduli are independent and unobstructed, there

are thus 4N1N5 bosonic modes which, when combined with their fermionic superpartners,

would give an entropy:

S = 2π
√
N1N5NP . (7.2)

This exactly matches the black-hole entropy. We have also discussed the possible ways to

reconcile this estimate to the more conservative estimate above, and have argued that, in

the regime of parameters where the black hole exists, all the modes in the internal directions

should somehow manifest themselves as fluctuations in the transverse space. We have also

argued that one cannot match all the states of the CFT by counting perturbatively around

a single superstratum solution, and that multiple superstrata bound states are a natural

candidate for matching these states.

Modulo the explicit construction of superstratum solutions that depend on arbitrary

functions, we have presented what we believe to be strong evidence that the so-called

fuzzball proposal is the correct description of extremal supersymmetric black holes within

string theory. Indeed, if one can obtain a macroscopic fraction of the black-hole entropy

from horizonless supergravity solutions, this implies that all the typical states that con-

tribute to the black-hole entropy will have a finite transverse size, and hence the entire

system will not be surrounded by horizon. This in turn would imply that the correct way

to think about the textbook black-hole solution is as a thermodynamic approximation of a

huge number of horizonless configurations, much as a continuous fluid is a thermodynamic

approximation of a huge number of molecule configurations.

The conservative and bolder views of superstrata lead to significant differences in the

structure of typical black-hole microstates. If all the black-hole microstates are visible

as transverse superstrata modes, then it is possible that upon full back-reaction these
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modes will all give rise to low-curvature solutions that have a long black-hole-like throat

and end in a smooth cap. This would imply that the modes captured by six-dimensional

supergravity are enough to account for the black-hole entropy, which would establish the

fuzzball proposal in its strong form.

If, however, only 1/
√

6 of the black-hole entropy comes from transverse modes, then

the typical black-hole microstates will still be horizonless, but will not be describable as

smooth solutions of six-dimensional supergravity: the typical microstates will necessarily

involve stringy or Kaluza-Klein modes. This would establish the “weak version” of the

fuzzball proposal, which is enough for solving the information paradox, but it may not

offer us a framework, at least within supergravity, for doing rigorous computations that

could help establish, for example, whether an incoming observer feels a firewall or falls

through the fuzzball states unharmed.

Clearly, there are two essential steps that should be done next. The first is the explicit

construction of the superstratum solutions that depend on functions of two variables. This

would represent major progress toward establishing the fuzzball proposal for extremal

black holes. The dramatic simplification of the BPS system of equations underlying these

solutions [47] means that it might be possible to construct the BPS supergravity excitations

at full non-linear order. The discussion at the beginning of section 4 showed that arbitrary

space-time shape modes break all the supersymmetry and that only the representations

(`,m; ˜̀, ˜̀) of SU(2)L×SU(2)R can be excited in the 1
8 -BPS superstratum. This observation

also underlies the analysis in [37, 38] and it will provide invaluable insight into how to

address the construction of a fully back-reacted superstratum that depends upon a general

function of two variables.

The second, and most difficult, step is to extend this work to non-extremal black holes.

A very useful insight comes of our analysis here where we noted that certain momentum

carriers that are charged under SU(2)R may break supersymmetry.20 Hence, adding these

fluctuations to a typical BPS superstratum state may allow us to move away from extremal-

ity and to argue that the supergravity structure of the black-hole microstates that we have

analyzed in this paper is robust when supersymmetry is broken. This, in turn, would imply

that near-extremal, and quite possibly generic, black holes are thermodynamic approxima-

tions of horizonless solutions and that the pure states of a black hole would be represented

by horizonless configurations. This would solve the black-hole information paradox and

allow us to address, far more rigorously, the puzzles that the information-theory analysis

of black hole has revealed [14–24, 79].
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