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We study the partition function of the N = 6 supersymmetric U (N1)k × U (N2)−k Chern–
Simons-matter (CSM) theory, also known as the ABJ theory. For this purpose, we first compute
the partition function of the U (N1)× U (N2) lens space matrix model exactly. The result can be
expressed as a product of the q-deformed Barnes G-function and a generalization of the multi-
ple q-hypergeometric function. The ABJ partition function is then obtained from the lens space
partition function by analytically continuing N2 to −N2. The answer is given by min(N1, N2)-
dimensional integrals and generalizes the “mirror description” of the partition function of the
ABJM theory, i.e. the N = 6 supersymmetric U (N )k × U (N )−k CSM theory. Our expression
correctly reproduces perturbative expansions and vanishes for |N1 − N2| > k in line with the
conjectured supersymmetry breaking, and the Seiberg duality is explicitly checked for a class of
nontrivial examples.
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1. Introduction

There has recently been remarkable progress in applications of the localization technique [1] to
supersymmetric gauge theories, notably in dimensions D ≥ 3: In D = 4, the Seiberg–Witten pre-
potential of N = 2 supersymmetric quantum chromodynamics (QCD) [2] was directly evaluated,
and the partition functions and BPS Wilson loops of the N = 2 (and 2∗) and N = 4 supersymmet-
ric Yang–Mills theories (SYM) were reduced to eigenvalue integrals of the matrix model type [3],
providing, in particular, proof of the earlier results on a Wilson loop in the N = 4 SYM [4,5]. In
D = 3, similar results were obtained for the partition functions and BPS Wilson loops of N = 2
supersymmetric Chern–Simons-matter (CSM) theories [6,7], including the N = 6 superconformal
theories constructed by Aharony, Bergman, Jafferis, and Maldacena (ABJM) [8,9]. More recently,
the localization technique was further applied to the partition functions of 5-dimensional SYM with
or without matter [10–12].

The localization method, resulting in eigenvalue integrals of the matrix model type, allows us to
obtain various exact results at strong coupling of supersymmetric gauge theories. In particular, these
results provide useful data for the tests of the AdS/CFT correspondence [13] in the case of super-
conformal gauge theories. For instance, the precise agreement of the N 3/2 scaling between the free
energy of the ABJ(M) theory [14–16] and its AdS4 dual [8,9] is an important landmark that shows the
power of the localization method in the context of AdS/CFT. Rather remarkably, exact agreements
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were also found in Ref. [17] between the N 5/2 scaling of 5d superconformal theories and that of
their AdS6 duals [18,19]. Furthermore, the tantalizing N 3 scaling of maximally supersymmetric 5d
SYM was found in Refs. [12,20] in line with the conjecture on (2, 0) 6d superconformal theory com-
pactified on S1 [21,22], despite thus far a lack of precise agreement with its AdS7 dual. It should,
however, be noted that the utility of the localization method, unlike the integrability [23], is limited to
a class of supersymmetric observables, such as the partition function and BPS Wilson loops. On the
other hand, the localization method has an advantage over the integrability in that it can provide exact
results at strong coupling beyond the large N limit, where the integrability has not been as powerful.

In this paper we focus on the partition function of the ABJ theory, i.e., the N = 6 supersymmet-
ric U (N1)k × U (N2)−k CSM theory, which generalizes the equal rank N1 = N2 case of the ABJM
theory [9]. Over the past few years, there has been considerable progress in the study of the partition
function and Wilson loops of the ABJM theory, whereas the ABJ case has not been as much under-
stood. The ABJ generalization, for instance, has an important new feature, the Seiberg duality, which,
however, is not fully understood. Besides being a generalization, it has recently been conjectured that
the ABJ theory at large N2 and k with N2/k and N1 fixed finite is dual to the N = 6 parity-violating
Vasiliev higher spin theory on AdS4 with U (N1) gauge symmetry [24]. Thus, a better understanding
of the ABJ theory may provide valuable insights into the relation between higher spin particles and
strings. It is therefore worth studying the partition function of the ABJ theory in great detail.

As mentioned above, the partition function of the ABJM theory has been well studied. In the
large N limit, the planar free energy has been computed, revealing the aforementioned N 3/2 scaling
[14–16]. In fact, the result in Refs. [14,15] is exact in ’t Hooft coupling λ = N/k and , in particular,
confirms a gravity prediction of the AdS radius shift in Ref. [25]. The planar result is not limited to
the ABJM case; Drukker–Mariño–Putrov’s results include the partition function and Wilson loops
of the ABJ theory, and the ABJ version of the radius shift [26] is also confirmed. In the meantime,
beyond the large N limit, the 1/N corrections of the ABJM partition function were summed up to all
orders by solving the holomorphic anomaly equations of Refs. [14,27,28] at large λ in the type IIA
regime k � 1, and the result turned out to be simply an Airy function [29].1 Subsequently, Mariño
and Putrov developed a more elegant approach, the Fermi gas approach, without making any use
of matrix model techniques or holomorphic anomaly equations, to compute directly the partition
functions of N = 3 and N = 2 CSM theories including the ABJM theory [31,32]. They found,
in particular, a universal Airy function behavior for the N = 3 theories at large N in the small k
M-theory regime. These non-planar results were reaffirmed by numerical studies in the case of the
ABJM theory [33,34]. Furthermore, the Fermi gas approach was applied to the Wilson loops, again
exhibiting the Airy function behavior [35]. Meanwhile, a number of exact computations of the ABJM
partition function were carried out for various values of N and k [36–39]. It should also be noted
that the nonperturbative effects O(e−N ) of the M- and D-brane type can be systematically studied
both in the matrix model [28] and the Fermi gas approaches [31].

In the unequal rank N1 �= N2 case of the ABJ theory, the Fermi gas approach thus far has not been
applicable, and the study of finite N1 and N2 corrections to the ABJ partition function has not been
as much developed as in the ABJM case. In this paper, we wish to lay the ground for the study of

1 There remains an unresolved mismatch in the 1/N 2 correction to the AdS radius shift between the field
theory [28,29] and the gravity dual [25]. On the other hand, quite recently, a one-loop quantum gravity test of
the ABJM conjecture was done successfully [30].
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the ABJ partition function at finite N1 and N2. To this end, we first compute the partition function of
the L(2,1) lens space matrix model [41,47] exactly. By making use of the relation between the lens
space and the ABJ matrix models [42], we map the lens space partition function to that of the ABJ
matrix model by analytically continuing N2 to −N2. With our particular prescription of the analytic
continuation, the final answer for the ABJ partition function is given by min(N1, N2)-dimensional
integrals and generalizes the “mirror description” of the partition function of the ABJM theory [43].
Our result may thus serve as the starting point for the ABJ generalization of the Fermi gas approach.
Meanwhile, we test our prescription against perturbative expansions as well as the Seiberg duality
conjecture of Ref. [9] and find that our final answer perfectly meets the expectations.

The rest of the paper is organized as follows: In Sect. 2 we outline our strategy for the calculations
of the ABJ partition function and summarize the main result at each pivotal step of the computa-
tions. Most of the computational details are relegated to rather extensive appendices. In Sect. 3 we
present a few simple examples of our results in order to elucidate otherwise rather complicated gen-
eral results. In Sect. 4 we state the result of perturbative and nonperturbative checks that we carried
out and illustrate how they were actually done with a few simple examples. Section 5 is devoted to
the conclusions and discussions.

2. Outline of the calculations and main results

We are going to compute the partition function of the U (N1)k × U (N2)−k ABJ theory in matrix
model form [6,7] obtained by the localization technique [3]:

ZABJ(N1, N2)k = NABJ

∫ N1∏
i=1

dμi

2π

N2∏
a=1

dνa

2π

�sh(μ)
2�sh(ν)

2

�ch(μ, ν)
2 e

− 1
2gs

(∑N1
i=1 μ

2
i −
∑N2

a=1 ν
2
a

)
, (2.1)

where the �sh factors are the one-loop determinants of the vector multiplets

�sh(μ) =
∏

1≤i< j≤N1

(
2 sinh

(
μi − μ j

2

))
, �sh(ν) =

∏
1≤a<b≤N2

(
2 sinh

(
νa − νb

2

))
, (2.2)

and the �ch factor is the one-loop determinant of the matter multiplets in the bi-fundamental
representation

�ch(μ, ν) =
N1∏

i=1

N2∏
a=1

(
2 cosh

(
μi − νa

2

))
. (2.3)

The string coupling gs is related to the Chern–Simons level k ∈ Z�=0 by

gs = 2π i

k
, (2.4)

and the factor NABJ in front is the normalization factor [15]

NABJ := i−
κ
2 (N

2
1 −N 2

2 )

N1!N2!
, κ := sign k. (2.5)

Note that, because of the relation

ZABJ(N2, N1)k = ZABJ(N1, N2)−k, (2.6)

we can assume N1 ≤ N2 without loss of generality.
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2.1. Outline of the calculations

Before going into the details of the calculations, we shall first lay out our technical strategy: We adopt
the idea employed in the large N analysis of the ABJ(M) matrix model in Refs. [14,15]. Namely,
instead of performing the integrals in (2.1) directly,

(1) we first compute the partition of the L(2,1) lens space matrix model [41,47]

Z lens(N1, N2)k = Nlens

∫ N1∏
i=1

dμi

2π

N2∏
a=1

dνa

2π
�sh(μ)

2�sh(ν)
2�ch(μ, ν)

2

× e
− 1

2gs

(∑N1
i=1 μ

2
i +
∑N2

a=1 ν
2
a

)
(2.7)

with the normalization factor

Nlens = i−
κ
2 (N

2
1 +N 2

2 )

N1!N2!
, (2.8)

(2) then analytically continue N2 to −N2 to obtain the partition function of ABJ theory [42]

ZABJ(N1, N2)k = lim
ε→0

C(N2, ε)Z lens(N1,−N2 + ε)k, (2.9)

where the proportionality constant is given in terms of the Barnes G-function G2(z),

C(N2, ε) = (2π)−N2
G2(N2 + 1)

G2(−N2 + 1 + ε)
. (2.10)

A key observation is that the partition function (2.7) of the lens space matrix model is a sum of

Gaussian integrals and can thus be calculated exactly in a very elementary manner. The analytic
continuation N2 → −N2, on the other hand, is ambiguous and not as straightforward as one might
expect. We find the appropriate prescription for the analytic continuation in two steps:

(2.i) In the first step we propose a natural prescription that correctly reproduces, after a gener-
alized ζ -function regularization, the known perturbative expansions in the string coupling
gs . The resulting expression, however, is a formal series that is non-convergent and singular
when k is an even integer.

(2.ii) To circumvent these issues, in the second step, we introduce an integral representation that
renders a formal series perfectly well defined.

In other words, the integral representation (A) implements a generalized ζ -function regularization
automatically and (B) provides an analytic continuation in the complex parameter gs for the formal
series.

As we will see later, the final answer in the integral representation passes perturbative as well as
some nonperturbative tests and generalizes the “mirror description” [43] of the partition function of
the ABJM theory to the ABJ theory.

2.2. The main results

We present, without much detail of derivations, the main result at each step of the outlined
calculations. Most of the technical details are given in the appendices.
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2.2.1. The lens space matrix model. As emphasized above, the lens space partition function (2.7)
is a sum of Gaussian integrals and can be calculated exactly:

Z lens(N1, N2)k = i−
κ
2 (N

2
1 +N 2

2 )
( gs

2π

) N
2

q− 1
3 N (N 2−1)

×
∑

(N1,N2)

∏
C j<Ck

(qC j − qCk )
∏

Da<Db

(q Da − q Db)
∏

C j ,Da

(qC j + q Da ), (2.11)

where

q := e−gs = e− 2π i
k , N = N1 + N2. (2.12)

The symbol (N1,N2) denotes the partition of the numbers (1, 2, . . . , N ) into two groups
N1 = (C1,C2, . . . ,CN1) and N2 = (D1, D2, . . . , DN2) where the Ci and Da are ordered as C1 <

· · · < CN1 and D1 < · · · < DN2 . The computation proceeds in two steps: (1) Gaussian integrals and
(2) sums over permutations. The detailed derivation can be found in Appendix B.

As noted, the result (2.11) can be written as a product of the q-deformed Barnes G-function and a
generalization of the multiple q-hypergeometric function:

Z lens(N1, N2)k = i−
κ
2 (N

2
1 +N 2

2 )
( gs

2π

) N
2

q− 1
6 N (N 2−1)(1 − q)

1
2 N (N−1)G2(N + 1; q) S(N1, N2),

(2.13)
where

S(N1, N2) =
∑

(N1,N2)

∏
C j<Da

qC j + q Da

qC j − q Da

∏
Da<C j

q Da + qC j

q Da − qC j
. (2.14)

The q-deformed Barnes G-function G2(z; q) is defined in Appendix A and, as will be elabo-
rated later, S(N1, N2) is a generalization of the multiple q-hypergeometric function. Recalling that
q = e−gs , it is rather fascinating to observe that the string coupling gs is not only the loop-expansion
parameter in quantum mechanics but also a quantum deformation parameter of special functions.

In Sect. 3 we will give simple examples of the lens space partition function in order to elucidate
the q-hypergeometric structure.

2.2.2. The ABJ theory. The next step in our strategy is the analytic continuation N2 → −N2,
which maps the partition function of the lens space matrix model to that of the ABJ theory. For
this purpose, we find it convenient to work with the second expression of the lens space partition
function (2.13). Our claim is that the analytic continuation yields the following expression for the
ABJ partition function in a formal series:

ZABJ(N1, N2)k = i−
κ
2 (N

2
1 +N 2

2 )(−1)
1
2 N1(N1−1) 2−N1

( gs

2π

) N1+N2
2

(1 − q)
M(M−1)

2 G2(M + 1; q)

× 1

N1!

∑
s1,...,sN1≥0

(−1)s1+···+sN1

N1∏
j=1

(qs j +1)M

(−qs j +1)M

N1∏
j<k

(1 − qsk−s j )2

(1 + qsk−s j )2
, (2.15)

where we have defined M = N2 − N1 (for N2 > N1) and (a)n is a shorthand notation for the
q-Pochhammer symbol (a; q)n defined in Appendix A. We used an ε-prescription in continuing
N2 to −N2, as explained in detail in Appendix C.2.

However, as noted above, there are in principle multiple ways to continue N2 to −N2. It thus
requires a particular prescription to fix this ambiguity. Our prescription is to continue N2 to −N2
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with S(N1, N2) written in the form

S(N1, N2) = γ (N1, N2)
(N1, N2) (2.16)

where

γ (N1, N2) = (−1)
1
2 N1(N1−1)

N1−1∏
j=1

(−q)2j
(q)2j

N1∏
j=1

(−q j )N2(−q j )−N1−N2

(q j )N2(q
j )−N1−N2

, (2.17)


(N1, N2) = 1

N1!

∑
s1,··· ,sN1≥0

(−1)s1+···+sN1

N1∏
j=1

(qs j +1)−N1−N2

(−qs j +1)−N1−N2

∏
1≤ j<k≤N1

(qsk−s j )21

(−qsk−s j )21
. (2.18)

As will be explained in more detail in Appendix C, there are a number of ways to express S(N1, N2)

that could yield different results after the analytic continuation: The range of the sum in (2.14) runs
from 1 to N = N1 + N2. In order to make sense of the analytic continuation in N2(> N1), the finite
sum (2.14) is extended to the infinite sum (2.18). In fact, the summand for si > N − 1 in (2.16)
vanishes after an appropriate regularization. Now the point is that these vanishing terms could yield
non-vanishing contributions after the analytic continuation. Clearly, the way to extend the finite sums
to infinite ones is not unique, and this is where the ambiguity lies.

Our guideline for the correct prescription is to successfully reproduce the perturbative expansions
in gs . Indeed, it can be checked that the formal series (2.15) has the correct perturbative expansions,
as we will discuss further in Sect. 4.1.

2.2.3. The integral representation. As alluded to in the outline, the result (2.15) is not the final
answer. It is a formal series that is non-convergent and singular when k is an even integer. It can
be rendered perfectly well defined by introducing an integral representation: Specifically, our final
answer for the analytic continuation is

ZABJ(N1, N2)k = i−
κ
2 (N

2
1 +N 2

2 )(−1)
1
2 N1(N1−1) 2−N1

( gs

2π

) N1+N2
2

(1 − q)
M(M−1)

2 G2(M + 1; q)

× 1

N1!

N1∏
j=1

[ −1

2π i

∫
I

πds j

sin(πs j )

] N1∏
j=1

(qs j +1)M

(−qs j +1)M

∏
1≤ j<k≤N1

(1 − qsk−s j )2

(1 + qsk−s j )2
(2.19)

where M = N2 − N1 (for N2 > N1) and the integration range I = [−i∞ − η,+i∞ − η] with
η > 0. We note that there is a subtlety in the choice of η: For example, when the string coupling
gs takes the actual value of interest, 2π i

k with an integer k, as we will elaborate in Sect. 4.2, the
parameter η should be varied so that the partition function remains analytic in k, as one decreases
the value of k from the small coupling regime |gs | = |2π i/k| 
 1.

Although we lack a first-principles derivation of the integral representation, we can give heuris-
tic arguments as follows: First, this integral representation “agrees” with the formal series (2.15)
order by order in the perturbative gs-expansions. The integrals could be evaluated by considering
the closed contours C j composed of the vertical line I and the infinitely large semicircle C∞

j on the
right half of the complex s j -plane, if the contribution from C∞

j were to vanish; see Fig. 1. In the
gs-expansions, the poles would only come from the factors 1/ sin(πs j ) and are at s j = n j ∈ Z≥0.
Thus the residue integrals would correctly reproduce (2.15). In actuality, however, the contribution
from C∞

j does not vanish, and thus this argument is heuristic at best; we will see precisely how the
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Fig. 1. The “integration contour” C j = I + C∞
j for the perturbative ABJ partition function: the only

perturbative (P) poles are indicated by red “+”. See text for details.

Fig. 2. The nonperturbative (NP) poles are added and indicated by blue “×”. The left panel corresponds to
the complex gs case. The right panel is the actual case of interest, gs = 2π i/k. (Shown is the case k = 3 and
M = 3.)

gs-expansions work in an example in Sect. 4.1. We note that, to the same degree of imprecision, the
integral representation (2.19) can be thought of as the Sommerfeld–Watson transform of (2.15).2

Second, as implied in the first point, the integral representation (2.19) provides a “nonperturbative
completion” for the formal series (2.15). In fact, nonperturbatively, there appear additional poles
from the factors 1/(−qs j +1)M and 1/(1 + qsk−s j )2 in the contour integrals. They are located at
s j = − (2n+1)π i

gs
− m and s j = − (2n+1)π i

gs
+ sk with n ∈ Z and m = 1, · · · ,M , as shown in Fig. 2.

Their residues are of order e1/gs . Hence these can be regarded as nonperturbative (NP) poles, whereas
the previous ones are perturbative (P) poles. Again, these statements are rather heuristic, and we will
see precisely how P and NP poles contribute to the contour integral in Sect. 4.2.

A few remarks are in order:

(1) As promised, there is no issue of convergence in the expression (2.19). It is also well defined in
the entire complex q-plane. The integrand becomes singular for q = e−2π i/k with even integer
k as in the formal series (2.15). However, this merely represents pole singularities and yields
finite residue contributions.

2 We thank Yoichi Kazama and Tamiaki Yoneya for pointing this out to us.
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(2) It should be noted that our main result (2.19) lacks a first-principles derivation. It thus requires a
posteriori justification. On this score, as stressed and discussed further in Sect. 4.1, the integral
representation (2.19) correctly reproduces the perturbative expansions; moreover, it automati-
cally implements a generalized ζ -function regularization needed in the perturbative expansions
of the infinite sum (2.15). Meanwhile, a successful test of the Seiberg duality, conjectured in
Ref. [9], provides evidence for our proposed nonperturbative completion. We will explicitly
show a few nontrivial examples of the Seiberg duality at work in Sect. 4.2.

(3) In the ABJM limit (M = 0), the integral representation (2.19) coincides with the “mirror
description” of the ABJM partition function found in Ref. [43]. This provides further support
for our prescription and implies that we have found a generalization of the “mirror descrip-
tion” in the case of the ABJ theory. Our finding may thus serve as the starting point for the
generalization of the Fermi gas approach developed in Ref. [31] to the ABJ theory.

(4) One of the ABJ conjectures is that the N = 6 U (N1)k × U (N1 + M)−k theory with
M > k may not exist as a unitary theory [9]. It is further expected that the supersymmetries are
spontaneously broken in this case [44] (see also Ref. [45]). A manifestation of this conjecture
is that the partition function (2.19) vanishes when M > k because

(1 − q)
M(M−1)

2 G2(M + 1; q) =
M−1∏
j=1

(q) j = 0 for q = e− 2π i
k . (2.20)

Note that the q-deformed Barnes G-function G2(M + 1; q) is precisely a factor that appears in
the partition function of the U (M)k Chern–Simons theory. We thus expect that this property is
not peculiar to the N = 6 CSM theories but holds for CSM theories with less supersymmetry,
as long as they contain the U (M)k CS theory as a subsector.3

3. Examples

In this section we present a few simple examples of the lens space and ABJ partition functions in
order to get the feel of the expressions found in the previous section. In particular, these examples
clarify the appearance of q-hypergeometric functions in the lens space partition function and how
they are mapped to in the ABJ partition function. We also provide the simplest example of the exact
ABJ partition function.

3.1. The CS matrix model

The first example is the simplest case, the N1 = 0 or N2 = 0 case, which corresponds to the
Chern–Simons matrix model. From (2.13) one immediately finds for the U (M)k CS theory that

ZCS(M)k = Z lens(M, 0)k = i−
κM(M−1)

2 |k|− M
2 q− M(M2−1)

6 (1 − q)
1
2 M(M−1)G2(M + 1; q). (3.1)

Note that this takes the more familiar form [46–48] (without the level shift) if one uses the formula

i−
κM(M−1)

2 (1 − q)
1
2 M(M−1)G2(M + 1; q) = q

M(M2−1)
12

M−1∏
j=1

(
2 sin

π j

|k|
)M− j

. (3.2)

It should now be clear that the q-deformed Barnes G-function is a contribution from the
U (|N1 − N2|)k pure CS subsector in the U (N1)k × U (N2)−k theory.

3 We thank Vasilis Niarchos for discussions on this point.
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3.2. The lens space matrix model

The next simplest example is the N1 = 1 case studied in detail in Appendix C.2.1. From (2.13)
together with (C.28) and (C.29), the U (1)k × U (N2)−k lens space partition function yields

Z lens(1, N2)k = i−
κ
2 (N

2
2 +1)

( gs

2π

) N2+1
2

q− N2(N2+1)(N2+2)
6 (1 − q)

N2(N2+1)
2 G2(N2 + 2; q)

× (−q)N2

(q)N2
2φ1

(
q−N2,−q

−q−N2
; q,−1

)
, (3.3)

where the special function 2φ1 = (1, N2) is a q-hypergeometric function [49] whose definition
is given in Appendix A. Intriguingly, the whole function S(1, N2) in the second line is essentially
an orthogonal q-polynomial, the continuous q-ultraspherical (or Rogers) polynomial [50], and very
closely related to Schur Q-polynomials [51].

The next example is the N1 = 2 case discussed in detail in Appendix C.2.2. In parallel with the
previous case, from (2.13) together with (C.41) and (C.42), one finds the U (2)k × U (N2)−k lens
space partition function

Z lens(2, N2)k = i−
κ
2 (N

2
2 +4)

( gs

2π

) N2+2
2

q− (N2+1)(N2+2)(N2+3)
6 (1 − q)

(N2+1)(N2+2)
2 G2(N2 + 3; q)

× (−q)N2(−q2)N2

(q)N2(q
2)N2


2:2;4
2:1;3

(
q−N2,−q2 : q−N2−1,−q; q2, q2,−q,−q
−q−N2, q2 : −q−N2−1; −q2,−q2, q

; q; 1,−1

)
,

(3.4)

where the special function 2:2;4
2:1;3 = (2, N2) is a double q-hypergeometric function defined in

Sect. 10.2 of Ref. [49].
As promised, these examples elucidate that the function S(N1, N2) defined in (2.14) is a general-

ization of the multiple q-hypergeometric function.

3.3. The ABJ theory

We now present the ABJ counterpart of the previous two examples. Although we have placed great
emphasis on the q-hypergeometric structure of the lens space partition function, we have not found
a way to take full advantage of this fact in understanding the ABJ partition function thus far.

In the meantime, as mentioned in the previous section and discussed in great detail in
Appendix C.2, we find the expression (C.56) more convenient for performing the analytic contin-
uation N2 → −N2 than the q-hypergeometric representation (C.52). The end result is presented
in (2.19). In the case of the U (1)k × U (N2)−k ABJ partition function, one finds

ZABJ(1, N2)k = 1

2
q

1
12 N2(N2−1)(N2−2)|k|− N2+1

2

N2−2∏
j=1

(
2 sin

π j

|k|
)N2−1− j

×
[

−1

2π i

∫
I

π ds

sin(πs)

N2−1∏
l=1

tan

(
(s + l)π

|k|
)]

. (3.5)
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Similarly, the U (2)k × U (N2)−k ABJ partition function yields

ZABJ(2, N2)k = −1

8
q

1
12 (N2−1)(N2−2)(N2−3)|k|− N2+2

2

N2−3∏
j=1

(
2 sin

π j

|k|
)N2−2− j

×
2∏

j=1

[
−1

2π i

∫
I

π ds j

sin(πs j )

N2−2∏
l=1

tan

(
(s j + l)π

|k|
)]

tan2
(
(s2 − s1)π

|k|
)
. (3.6)

Note that the U (N1)k × U (N2)−k ABJ theory with finite N1 and large N2 and k is conjectured to
be dual to N = 6 parity-violating Vasiliev higher spin theory on AdS4 with U (N1) gauge symmetry
[24,52]. It would thus be very interesting to study the large N2 and k limit of the N1 = 1 and 2
partition functions (H. Awata et al., manuscript in preparation). This may shed some light on the
understanding of the N = 6 parity-violating Vasiliev theory on AdS4.4

Finally, we provide the simplest example of the exact ABJ partition function, i.e., the U (1)k ×
U (2)−k case. The integral in (3.5) can be carried out by applying a similar trick to the one used in
Ref. [36]. This yields

ZABJ(1, 2)k = 1

2
|k|− 3

2 ×

⎧⎪⎪⎨⎪⎪⎩
1
2

[∑|k|−1
n=1 (−1)n−1 tan

(
πn

|k|
)

+ |k|(−1)
|k|−1

2

]
(k = odd) ,

∑|k|−1
n=1 (−1)n−1

(
1

2
− n

k

)
tan

(
πn

|k|
)

(k = even) .
(3.7)

It may be worth noting that the formal series (2.15) for the U (1)k × U (2)−k theory, albeit non-
convergent, can be expressed in a closed form after regularization:

ZABJ(1, 2)k = 1

2
i−κ |k|− 3

2

[
1

2
− 2

log q

(
log

(
1 + q2

1 + q

)
+ ψq(1)− 2ψq2(1)+ ψq4(1)

)]
, (3.8)

where ψq(z) is a q-digamma function defined in Appendix A, and we used the regularization∑∞
s=0(−1)s = 1

2 . This expression is, however, not well defined for q as a root of unity and hence an
integer k. On the other hand, this exemplifies the fact that the integral representation (2.19) provides
an analytic continuation of the formal series (2.15) in the complex q-plane.

4. Checks

As mentioned in Sect. 2, our main result (2.19) lacks a first-principles derivation. It thus requires
a posteriori justification. In this section we show that our prescription passes perturbative as well
as nonperturbative tests. We have, however, been unable to prove it in generality. Although our
checks are on a case-by-case basis, we have examined several nontrivial cases that provide convincing
evidence for our claim.5

4 Since higher spin theories are inherently dual to vector models [53–55], the ABJ theory apparently contains
more degrees of freedom than higher spin fields [56]. These extra degrees of freedom are the large N2 dual of
the U (N2) Chern–Simons theory and thus topological closed strings [57]. It is then plausible to expect that the
higher spin partition function is given by the ratio ZABJ/ZCS. We thank Hiroyuki Fuji and Xi Yin for related
discussions.

5 We also recall that, in the ABJM case N1 = N2, the expression (2.19) reproduces the “mirror description”
of the ABJM partition function [43]. Furthermore, for simple cases such as (N1, N2) = (1, 2), (1, 3), it is
possible to explicitly carry out the ABJ matrix integral (2.1) and check that it agrees with the expression (2.19)
for all k.
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4.1. Perturbative expansions

The perturbative expansion of the lens space free energy is presented in Ref. [41]. In Appendix D,
we extend their result to the order O(g8

s ). We would like to see if the perturbative expansions of
both (2.15) and (2.19) correctly reproduce this result with the replacement N2 by −N2. We have
checked the cases N1 = 1 and N2 up to 8, N1 = 2 and N2 up to 5, N1 = 3 and N2 up to 5, and N1 = 4
and N2 up to 4, to the order O(g8

s ), and found perfect agreements with the result in Appendix D.
These checks are straightforward, and we will not spell out all the details. Instead, we describe only
the essential points in the calculations and illustrate with a simple but nontrivial example how the
checks were done in detail.

4.1.1. The formal series. In the case of the formal series (2.15), as remarked in the previ-
ous section, the perturbative expansion is correctly reproduced after the generalized ζ -function
regularization:

∞∑
s=0

(−1)ssn =

⎧⎪⎨⎪⎩
Li−n(−1) = (2n+1 − 1)ζ(−n) = −2n+1−1

n+1 Bn+1 (for n ≥ 1) ,

1 + Li0(−1) = 1

2
= −B1 (for n = 0),

(4.1)

where Lis(z) is the polylogarithm and Bn are the Bernoulli numbers. We show the detail of the
(N1, N2) = (2, 3) example to illustrate how the generalized ζ -function regularization yields the cor-
rect perturbative expansion to the order O(g4

s ). In this case there are two infinite sums involved.
Now, recall that the summand is a function of q = exp (−gs). Expanding it as a power series in gs

and using the regularization (4.1), one finds

the 2nd line of (2.15) = g4
s

32

(
Li2−3,−1−2Li2−2,−2+Li2−1,−3

)
− g6

s

384

(
3Li2−5,−1−10Li2−4,−2+14Li2−3,−3 − 10Li2−2,−4 + 3Li2−1,−5

)
+ g8

s

23040

(
33Li2−7,−1 − 154Li2−6,−2 + 336Li2−5,−3 − 430Li2−4,−4

+ 336Li2−3,−5 − 154Li2−2,−6 + 33Li2−1,−7

)
+ O(g10

s )

= − 1

512
g4

s − 19

12288
g6

s − 137

81920
g8

s + O(g10
s ) , (4.2)

where we abbreviated the product Li−n1(−1)Li−n2(−1) to Li2−n1,−n2
. This yields

FABJ(2, 3) = log ZABJ(2, 3) = log

[
2−12(2πgs)

13
2

2−1(2π)9

]
+ 19

24
g2

s + 3127

5760
g4

s + O(g6
s ), (4.3)

in agreement with the result in Appendix D with the replacement N2 by −N2. Note also that the tree
contribution, the first logarithmic term, is in precise agreement with (C.13).
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The integral representation The integral representation (2.19) does not require any regularization.
Instead, the generalized ζ -function regularization (4.1) is automatically implemented by the integral

− 1

2π i

∫
I

πds

sin(πs)
sn = −2n+1 − 1

n + 1
Bn+1 , (4.4)

where n ≥ 0. It follows immediately from this fact that

the 2nd line of (2.19) = the 2nd line of (2.15) (4.5)

at all orders in the gs-expansions. Hence the integral representation correctly reproduces the
perturbative expansions.

4.2. The Seiberg duality

As emphasized before, the integral representation (2.19) provides a “nonperturbative completion”
for the formal series (2.15). A way to test this claim is to see if the Seiberg duality conjectured in
Ref. [9] holds.6 This duality is an equivalence between the two ABJ theories; schematically,

U (N1)k × U (N1 + M)−k = U (N1 + |k| − M)k × U (N1)−k . (4.6)

We are going to show, in the simple but nontrivial case of N1 = 1, that the partition functions of
the dual pairs agree up to a phase. In fact, a proof of the Giveon–Kutasov duality including the
N = 6 case was proposed in Ref. [60], which assumed one conjecture to be proven. In particular,
their conjecture gives a formula for the phase differences of the dual pairs. We will explicitly confirm
their claim in our examples below.

4.2.1. Seiberg duality for N1 = 1. For N1 = 1, the duality relation (4.6) reads

U (1)k × U (N2)−k = U (1)−k × U (2 + |k| − N2)k . (4.7)

In this case, we can actually prove that the integral representation (2.19) indeed gives identical results
for the dual pair, up to a phase. Let us rewrite the (1, N2) partition function given in (3.5) in the
following form:

ZABJ(1, N2)k = (2|k|)−1 Z0
CS(N2 − 1)k I (1, N2)k eiθ(1,N2)k . (4.8)

Here, Z0
CS(M)k is the Chern–Simons (CS) partition function

Z0
CS(M)k = |k|− M

2

M−1∏
j=1

(
2 sin

π j

|k|
)M− j

, (4.9)

which is essentially the same as (3.1) up to a phase due to a difference in the framing [15]. Moreover,

I (1, N2)k : = − 1

2π i

∫
I

π ds

sin(πs)

N2−1∏
l=1

tan

(
(s + l)π

|k|
)
, (4.10)

θ(1, N2)k := − π

6k
N2(N2 − 1)(N2 − 2). (4.11)

6 This duality is a special case of the Giveon–Kutasov duality of N = 2 CS theories [58] that is further
generalized to theories with fundamental and adjoint matter by Niarchos [59].
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We can show that Z0
CS(N2 − 1)k and I (1, N2)k are separately invariant under the Seiberg duality

while the phase factor eiθ(1,N2)k gives a phase that precisely agrees with the one given in Ref. [60].
First, the invariance of Z0

CS(N2 − 1)k is nothing but the level-rank duality of the CS partition
function, which means the identity Z0

CS(M)k = Z0
CS(|k| − M)k .7 It is straightforward to see that this

implies that Z0
CS(N2 − 1)k is invariant under the Seiberg duality (4.7). Second, the phase difference

between the dual theories (4.7) is

θ(1, N2)k − θ(1, 2 + |k| − N2)−k = π

[
κ

(
−1

6
k2 − 1

2
N 2

2 + N2 − 1

3

)
+ 1

2
k(N2 − 1)

]
. (4.12)

One can show that this phase difference is exactly the same as the one given in Ref. [60].
Now let us move on to the most nontrivial part, i.e., the invariance of the integral (4.10) under the

Seiberg duality. One can show that, despite appearances, the integrand is actually the same function
for the dual theories (4.7) up to a shift in s. Therefore, the contour integral gives the same answer
for the duals, if the contour is chosen appropriately. As explained in Sect. 2.2, the integrand has
perturbative (P) poles coming from π

sin(πs) and nonperturbative (NP) poles coming from the product
factor

∏
l tan. Although the integrand remains the same under the Seiberg duality, the interpretation

of its poles gets interchanged; i.e., a P pole in the original theory is interpreted as an NP pole in
the dual theory, and vice versa. We will see this explicitly in examples below, relegating the general
proof to Appendix E.

The integrand of (4.10) is an antiperiodic (periodic) function with s ∼= s + |k| for odd (even) k,
and the P and NP poles occur on the real s axis in bunches with this periodicity. The prescription for
the contour is to take it to go to the left of one of such bunches. In Appendix E, we show that this
means that

η =

⎧⎪⎨⎪⎩
0+ if

|k|
2

− N2 + 1 ≥ 0,

−|k|
2

+ N2 − 1 + 0+ if
|k|
2

− N2 + 1 ≤ 0.
(4.13)

This is required for the Seiberg duality to work, but it is also necessary for the ABJ partition function
to be analytic in k, which is clearly the case for the original expression (2.1). In the weak coupling
regime |gs | = |2π i/k| 
 1, the NP poles are far away from the origin (distance ∼ 1/|gs | ∼ |k|) and
we can safely take η = 0+. However, as we decrease |k| continuously, the NP poles come closer to
the origin and, eventually, at some even |k|, one of the NP poles that was in the s > 0 region reaches
s = 0. As we further decrease |k| continuously, this NP pole enters the s < 0 region. In order for the
partition function to be analytic in k, one needs to increase the value of η so that this NP pole does
not move across the contour I but stays to the right of it.

4.2.2. Odd k case. The integral (4.10) for odd k is equal to the following contour integral:

I (1, N2)k = − 1

4π i

∫
C

πds

sin(πs)

N2−1∏
l=1

tan

(
(s + l)π

|k|
)
, (4.14)

7 A proof of the level-rank duality can be found e.g. in Appendix B of Ref. [60].
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(a) (b)

(c) (d)

Fig. 3. The integration contour C = I ∩ Ii∞ ∩ Ik ∩ I−i∞ (clockwise) and poles, for various values of k, N2.
(a) and (b) are Seiberg duals of each other and so are (c) and (d). The contour Ik is parallel to I and shifted by
k, and the contours Ii∞ and I−i∞ are at infinity. “+” (red) denotes the P pole and “×” (blue) the NP pole. Some
poles and zeros are shown slightly above or below the real s axis, but this is for the convenience of presentation
and all poles and zeros are on the real s axis. The choices of the parameter η for the contour I are η = 0+ for
(a) and (c), η = 1

2 + 0+ for (b), and η = 1 + 0+ for (d).

where the integral contour C is given by C = I ∩ Ii∞ ∩ Ik ∩ I−i∞ (clockwise), where the contour Ik

is parallel to I and shifted by |k|, and the contours Ii∞ and I−i∞ are at infinity; see Fig. 3. Note that the
antiperiodicity of the integrand allows us to write the line integral (4.10) as a closed contour integral,
but the contour is different from the tentative contour shown for the sake of sketchy illustration in
Figs. 1 and 2. By summing up pole residues inside C , one finds

I (1, N2)k

= 1

2

⎡⎢⎢⎣|k|−N2∑
n=0

(−1)n
N2−1∏
j=1

tan
π(n + j)

|k| − |k|(−1)
|k|−1

2

N2−1∑
n=1

(−1)n
N2−1∏
j=1
(�=n)

tan
π( k

2 − n + j)

|k|

⎤⎥⎥⎦ .
(4.15)

The first term comes from the P poles and the second from the NP poles. Although we prove the
Seiberg duality in Appendix E, it is quite nontrivial that (4.15) gives the same value for the dual
pair (4.7).

Let us look at this in more detail in the following case:

U (1)5 × U (3)−5 = U (4)5 × U (1)−5 . (4.16)
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Using the above formulas, we obtain the partition functions of this dual pair, which can be
massaged into

ZABJ(1, 3)5 = 1

50
sin

π

5

[
tan

2π

5

(
2 tan

π

5
+ tan

2π

5

)
︸ ︷︷ ︸

P

−10 cot
π

5︸ ︷︷ ︸
NP

]
e− π

5 , (4.17)

ZABJ(1, 4)−5 = 1

50
sin

π

5

[
−10 cot

π

5︸ ︷︷ ︸
P

+ tan
2π

5

(
2 tan

π

5
+ tan

2π

5

)
︸ ︷︷ ︸

NP

]
e

4π i
5 . (4.18)

These two indeed agree up to a phase and the phase difference agrees with the conjecture made in
Ref. [60]. Observe that the contributions from the P and NP poles are interchanged under the duality.
See Fig. 3(a), (b) for the structure of the P and NP poles in the two theories.

For a discussion on the pole structure in more general cases, we refer the reader to Appendix E.

4.2.3. Even k case. The even k case is technically a little more tricky. Using a trick similar to the
one used in Ref. [36], the integral (4.10) for even k can be shown to be equal to the following contour
integral:

I (1, N2)k = − 1

2π i

∫
C

π ds

sin(πs)

(
a − s

k

) N2−1∏
l=1

tan

(
(s + l)π

k

)
, (4.19)

where a is an arbitrary constant. For |k|
2 − N2 + 1 ≥ 0, we can evaluate this by summing over pole

residues and obtain

I (1, N2)k =

⎛⎜⎝
|k|
2 −N2∑
n=0

+
|k|−N2∑
n=|k|

2

⎞⎟⎠(a − n

|k|
)
(−1)n

N2−1∏
j=1

tan
π(n + j)

|k|

+
N2−1∑
n=1

(−1)
|k|
2 −n

⎡⎢⎢⎣−
(

a − 1

2
+ n

|k|
) N2−1∑

j=1
( j �=n)

2

sin 2π
( |k|

2 − n + j
)
|k|

+ 1

π

⎤⎥⎥⎦ N2−1∏
j=1
( j �=n)

tan
π(n + j)

|k| .

(4.20)

The first line comes from P poles, which are simple, while the second line comes from double poles
created by simple NP and P poles sitting on top of each other. We also note that, despite its appearance,
this expression does not depend on the constant a. The expression of I (1, N2)k for |k|

2 − N2 + 1 ≤ 0
is more lengthy and we do not present it, because the Seiberg duality proven in Appendix E guarantees
that it can be obtained from (4.20).

Let us study in detail the following duality:

U (1)4 × U (2)−4 = U (4)4 × U (1)−4 . (4.21)

15/39

 at St B
artholom

ew
's &

 the R
oyal on N

ovem
ber 11, 2016

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 

http://ptep.oxfordjournals.org/


PTEP 2013, 053B04 H. Awata et al.

The partition functions of this dual pair yield

ZABJ(1, 2)4 = 1

32

⎡⎢⎢⎣ 1︸︷︷︸
P

− 2

π︸︷︷︸
P+NP

⎤⎥⎥⎦ , (4.22)

ZABJ(1, 4)−4 = 1

32

⎡⎢⎢⎣− 2

π︸︷︷︸
P+NP

+1︸︷︷︸
NP

⎤⎥⎥⎦ eπ i . (4.23)

These two agree up to a phase. The phase difference is again in agreement with Ref. [60]. The pole
structure of the two theories is shown in Fig. 3(c), (d). In the above, “P + NP” means the contribution
from a double pole that comes from P and NP poles on top of each other. Again, the contributions
from the P and NP poles are interchanged under the duality. Actually, in the even k case, there is a
subtlety in interpreting simple poles as P or NP, but for details we refer the reader to Appendix E.

5. Conclusions and discussions

In this paper, we have studied the partition function of the ABJ theory, i.e., the N = 6 supersym-
metric U (N1)k × U (N2)−k Chern–Simons-matter theory dual to M-theory on AdS4 × S7/Zk with
a discrete torsion or type IIA string theory on AdS4 × C P3 with an NS–NS B2-field turned on [9].
More concretely, we have computed the ABJ partition function (2.1) and found the expression (2.19)
in terms of min(N1, N2)-dimensional integrals as opposed to the original (N1 + N2)-dimensional
integrals. This generalizes the “mirror description” of the partition function of the ABJM theory [43]
and may serve as the starting point for the ABJ generalization of the Fermi gas approach [31]. We
have taken an indirect approach: Instead of performing the eigenvalue integrals in (2.1) directly, we
have first calculated the partition function of the L(2,1) lens space matrix model (2.7) exactly and
found the expression (2.13) as a product of the q-deformed Barnes G-function and a generaliza-
tion of the multiple q-hypergeometric function. We have then performed the analytic continuation
N2 → −N2 of the lens space partition function to obtain the ABJ partition function. As checks,
we have shown that our main result (2.19) correctly reproduces perturbative expansions and in the
N1 = 1 case, i.e., for the U (1)k × U (N2)−k theories, the Seiberg duality indeed holds. In particular,
we have uncovered that the perturbative and nonperturbative contributions to the partition function
are interchanged under the Seiberg duality and derived, in the N1 = 1 case, the formula for the phase
difference of dual-pair partition functions conjectured in Ref. [60]. It is also worth remarking that the
ABJ partition function (2.19) vanishes for |N1 − N2| > k in line with the conjectured supersymmetry
breaking [44].

As commented before, we note, however, that the analytic continuation is ambiguous and we have
adopted a particular prescription that required a posteriori justification. In particular, our prescrip-
tion involves an intermediate step, namely an infinite sum expression (2.15), which is non-convergent
and becomes singular for an even integer k. Although the integral representation (2.19) provides a
regularization and an analytic continuation of the formal series (2.15) in the complex q-plane, it
would be better if we could render every step of the calculation process well defined. In this con-
nection, it is somewhat dissatisfying that the q-hypergeometric structure enjoyed by the lens space
partition function becomes obscured after the analytic continuation to the ABJ partition function.
It might be that there is a better way to perform the analytic continuation that manifestly respects
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the q-hypergeometric structure and directly yields a finite sum expression for an integer k without
passing to the integral representation.

Although the successful test of the Seiberg duality for the U (1)k × U (N2)−k theories provides
compelling evidence for our prescription, a general proof is clearly desired. In this regard, we note, as
discussed in Sect. 4.2, that the Seiberg duality acts on the U (|N1 − N2|)k CS factor and the integral
part separately. Namely, apart from a phase factor, the CS and the integral parts are respectively
invariant under the duality, where the invariance of the former follows from the level-rank duality.
Thus the general proof amounts to showing the invariance of the integral part, i.e., the second line
of (2.19). We leave this proof for future work.

Following this work, there are a few more immediate directions to pursue: It is straightforward to
generalize our computation of the partition function to Wilson loops [61–65]. Indeed, we can proceed
almost in parallel with the case of the partition function for the most part, including the analytic
continuation, although the computation inevitably becomes more involved. We hope to report on our
progress in this direction in the near future (H. Awata et al., manuscript in preparation). It may also be
possible to apply our method to more general CSM theories with fewer supersymmetries, provided
that a similar analytic continuation works. Meanwhile, we have stressed in the introduction that this
work may have significance to the study of higher spin theories, especially in connection to the recent
ABJ triality conjecture [24]. As mentioned towards the end of Sect. 3, it is in fact feasible to analyze
the U (1)k × U (N2)−k and U (2)k × U (N2)−k partition functions at large N2 and k (H. Awata et al.,
manuscript in preparation). This may shed light on the understanding of the N = 6 parity-violating
Vasiliev theory on AdS4. In particular, for the U (1)k × U (N2)−k theory, the fact that the Seiberg
duality separately acts on the U (N2 − 1) CS and the integral parts seems to suggest that it is only
the integral part that may be dual to the vector-like Vasiliev theory.

Last but not least, it is most important to gain, if possible, new physical and mathematical insights
into the microscopic description of M-theory through all these studies. Although the ABJ(M) theory
is a very useful and practical description of maximally supersymmetric 3d conformal field theories,
the construction by Bagger–Lambert and Gustavsson based on a 3-algebra [66–70] is arguably more
insightful, potentially suggesting a new mathematical structure behind quantum membrane theory.
What we envisage in this line of study is to search for a way to reorganize the ABJ(M) partition
function in terms of the degrees of freedom that might provide an intuitive understanding of the
N 3/2 scaling and suggest hidden structures behind the microscopic description of M-theory, such as
3-algebras.
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Appendix A. q-analogues

Roughly, a q-analogue is a generalization of a quantity to include a new parameter q, such that it
reduces to the original version in the q → 1 limit. In this Appendix, we will summarize the definitions
of various q-analogues and their properties relevant to the main text.
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q-number: For z ∈ C, the q-number of z is defined by

[z]q := 1 − qz

1 − q
. (A.1)

q-Pochhammer symbol: For a ∈ C, n ∈ Z≥0, the q-Pochhammer symbol (a; q) is defined by

(a; q)n :=
n−1∏
k=0

(1 − aqk) = (1 − a)(1 − aq) · · · (1 − aqn−1) = (a; q)∞
(aqn; q)∞

. (A.2)

For z ∈ C, (a; q)z is defined by the last expression:

(a; q)z := (a; q)∞
(aqz; q)∞

=
∞∏

k=0

1 − aqk

1 − aqz+k
. (A.3)

This in particular means

(a; q)−z = 1

(aq−z; q)z
. (A.4)

For n ∈ Z≥0,

(a; q)−n = 1

(aq−n; q)n
= 1∏n

k=1(1 − a/qk)
. (A.5)

Note that the q → 1 limit of the q-Pochhammer symbol is not the usual Pochhammer symbol but
only up to factors of (1 − q):

lim
q→1

(qa; q)n
(1 − q)n

= a(a + 1) . . . (a + n − 1). (A.6)

We often omit the base q and simply write (a; q)ν as (a)ν .8

Some useful relations involving q-Pochhammer symbols are

(a)ν = (a)z
(aqν)z−ν

= (a)z(aqz)ν−z, (A.7)

(q)ν = (1 − q)ν�q(ν + 1), (A.8)

(qμ)ν = (q)μ+ν−1

(q)μ−1
= (1 − q)ν

�q(μ+ ν)

�q(μ)
, (A.9)

(aqμ)ν = (aqμ)z−μ(aqz)μ+ν−z = (aqμ)z
(aqμ+ν)z−ν

= (aqz)μ+ν−z

(aqz)μ−z
, (A.10)

where μ, ν, z ∈ C, and �q(z) is the q-Gamma function defined below. For n ∈ Z, we have the
following formulas, which “reverse” the order of the product in the q-Pochhammer symbol:

(aqz)n = (−a)nqzn+ 1
2 n(n−1)(a−1q1−n−z)n, (A.11)

(±q−n)n = (∓1)nq− 1
2 n(n+1)(±q)n. (A.12)

If ν = n + ε with |ε| 
 1, the correction to this is of order O(ε):
(aqz)n+ε = (−a)nqzn+ 1

2 n(n−1)(a−1q1−n−z)n(1 + O(ε)), a �= 1. (A.13)

Here we assumed that a �= 1 and a − 1 � O(ε).

8 We will not use the symbol (a)ν to denote the usual Pochhammer symbol.
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q-factorials: For n ∈ Z≥0, the q-factorial is given by

[n]q ! := [1]q [2]q · · · [n]q = (q)n
(1 − q)n

, [0]q ! = 1, [n + 1]q ! = [n]q [n − 1]q ! . (A.14)

q-Gamma function: For z ∈ C, the q-Gamma function �q(z) is defined by

�q(z + 1) := (1 − q)−z
∞∏

k=1

1 − qk

1 − qz+k
. (A.15)

The q-Gamma function satisfies the following relations:

�q(z) = (1 − q)1−z (q)∞
(qz)∞

= (1 − q)1−z(q)z−1, (A.16)

�q(z + 1) = [z]q�q(z), (A.17)

�q(1) = �q(2) = 1, �q(n) = [n − 1]q ! (n ≥ 1). (A.18)

The behavior of �q(z) near non-positive integers is

�q(−n + ε) = (−1)n+1(1 − q)q
1
2 n(n+1)

�q(n + 1) log q

1

ε
+ · · · , �q(n + 1) = [n]q !, (A.19)

where n ∈ Z≥0, and ε → 0. As q → 1, this reduces to the formula for the ordinary �(z),

�(−n + ε) = (−1)n

�(n + 1)

1

ε
+ · · · , �(n + 1) = n! . (A.20)

q-Barnes G function: For z ∈ C, the q-Barnes G function is defined by [71]

G2(z + 1; q) := (1 − q)−
1
2 z(z−1)

∞∏
k=1

[(
1 − qz+k

1 − qk

)k

(1 − qk)z

]
. (A.21)

Some of its properties are

G2(1; q) = 1, G2(z + 1; q) = �q(z)G2(z), (A.22)

G2(n; q) =
n−1∏
k=1

�q(k) =
n−2∏
k=1

[k]q ! = (1 − q)−
1
2 (n−1)(n−2)

n−2∏
j=1

(q) j =
n−2∏
k=1

[k]n−k−1
q , (A.23)

∏
1≤A<B≤n

(q A − q B) = q
1
6 n(n2−1)(1 − q)

1
2 n(n−1)G2(n + 1; q). (A.24)

The behavior of G2(z; q) near non-positive integers is

G2(−n + ε; q) = (−1)
1
2 (n+1)(n+2)G2(n + 2; q) (log q)n+1

q
1
6 n(n+1)(n+2)(1 − q)n+1

εn+1 + · · · , (A.25)

where n ∈ Z≥0, and ε → 0. As q → 1, this reduces to the formula for the ordinary G2(z),

G2(−n + ε) = (−1)
1
2 n(n+1)G2(n + 2)εn+1 + · · · . (A.26)

q-digamma and q-polygamma functions The q-digamma function ψq(z) and q-polygamma
function ψ(n)q (z), n ∈ Z≥0, are defined by

ψq(z) := ∂z ln�q(z), ψ(n)q (z) := ∂n
z ψq(z) = ∂n+1

z ln�q(z). (A.27)
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From the definition of �q(z), it straightforwardly follows that

ψq(z) = − log(1 − q)+
∞∑

n=0

qn+z

1 − qn+z
ln q, ψ(1)q (z) =

∞∑
n=0

qn+z

(1 − qn+z)2
ln2 q. (A.28)

q-hypergeometric function (basic hypergeometric series): The q-hypergeometric function, or
the basic hypergeometric series with base q, is defined by [49]

rφs

(
a1, . . . , ar

b1 . . . , bs
; q, z

)
:=

∞∑
n=0

(a1)n · · · (ar )n

(q)n(b1)n · · · (bs)n

[
(−1)nq(

n
2)
]1+s−r

zn. (A.29)

In particular, for r = k + 1, s = k,

k+1φk

(
a1, . . . , ak+1

b1 . . . , bk
; q, z

)
=

∞∑
n=0

(a1)n · · · (ak+1)n

(b1)n · · · (bk)n

zn

(q)n
. (A.30)

Appendix B. Lens space matrix model

The partition function for the lens space matrix model was defined in (2.7). Here, we explicitly carry
out the integral and write the result in a simple closed form as given in (2.11), (2.13). The following
computation can be thought of as a generalization of the matrix integration technique using Weyl’s
denominator formula (see e.g. Refs. [15,41]), explicitly worked out.

First, we note that the 1-loop determinant part can be reduced to a single Vandermonde determinant
by shifting the integration variables as μ j → μ j − iπ

2 , νa → νa + iπ
2 , as follows:

�sh(μ)�sh(ν)�ch(μ, ν)

=
∏
j<k

e−μ j +μk
2 (eμ j − eμk )

∏
a<b

e− νa+νb
2 (eνa − eνb)

∏
j,a

e−μ j +νk
2 (eμ j + eνa )

→
∏
j<k

e−μ j +μk
2 (eμ j − eμk )

∏
a<b

e− νa+νb
2 (eνa − eνb)

∏
j,a

e− iπ
2 e−μ j +νk

2 (eμ j − eνa )

= e− iπ
2 N1 N2− N−1

2 (
∑

j μ j +
∑

a νa)�(μ, ν),

(B.1)

where N := N1 + N2 and �(μ, ν) is the Vandermonde determinant for (μ j , νa), which can be
evaluated as

�(μ, ν) :=
∏
j<k

(eμ j − eμk )
∏
a<b

(eνa − eνb)
∏
j,a

(eμ j − eνa )

=
∑
σ∈SN

(−1)σ e
∑N1

j=1(σ ( j)−1)μ j +
∑N2

a=1(σ (N1+a)−1)νa . (B.2)

Here, SN is the permutation group of length N and (−1)σ is the signature of σ ∈ SN . Because each
term in (B.2) is an exponential whose exponent is linear in μ j , νa , the integral in (2.7) is trivial
Gaussian. After carrying out the μi , νa integrals and massaging the result a little bit, we obtain

Z lens(N1, N2)k = Nlens(−1)
1
2 N1(N1+1)+ 1

2 N2(N2+1)+N1 N2e− gs
6 N (N+1)(N+2)

( gs

2π

) N
2

Z0
lens,

Z0
lens :=

∑
σ,τ∈SN

(−1)σ+τ e
gs
∑N

A=1 σ(A)τ (A)+ iπ
2

(∑N1
A=1 −∑N1+N2

A=N1+1

)
(σ (A)+τ(A))

.

(B.3)
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Note that the summation over τ in (B.3) can be written in terms of a determinant as

Z0
lens(N1, N2)k =

∑
σ

(−1)σ e
iπ
2

(∑N1
j=1 −∑N1+N2

j=N1+1

)
σ( j)

det W (σ ), (B.4)

W (σ )AB :=
{

e(gsσ(A)+ iπ
2 )B (1 ≤ A ≤ N1),

e(gsσ(A)− iπ
2 )B (N1 + 1 ≤ A ≤ N ).

(B.5)

The matrix W is essentially a Vandermonde matrix and its determinant can be evaluated using the
formula

det[(xA)
B] =

(
N∏

A=1

xA

)N ∏
1≤A<B≤N

(x−1
A − x−1

B ) (B.6)

as follows:

det W (σ ) = eNgs
∑N

A=1 σ(A)+ iπ
2 N (N1−N2)

∏
j<k

(
e−gsσ( j)− iπ

2 − e−gsσ(k)− iπ
2

)
×
∏
a<b

(e−gsσ(a)+ iπ
2 − e−gsσ(b)+ iπ

2 )
∏
j,a

(e−gsσ( j)− iπ
2 − e−gsσ(a)+ iπ

2 )

= e
iπ
4 (N1(N1+1)−N2(N2+1)−2N1 N2)e

gs
2 N 2(N+1)

∏
j<k

(e−gsσ( j) − e−gsσ(k))

×
∏
a<b

(e−gsσ(a) − e−gsσ(b))
∏
j,a

(e−gsσ( j) + e−gsσ(a)). (B.7)

Plugging this into (B.3) and (B.4), the expression for Z lens is

Z lens(N1, N2)k = Nlens

( gs

2π

) N
2
(−1)

1
2 N1(N1+1)q− 1

3 N (N 2−1)
∑
σ∈SN

(−1)σ+∑N1
A=1 σ(A)

×
∏
j<k

(qσ( j) − qσ(k))
∏
a<b

(qσ(a) − qσ(b))
∏
j,a

(qσ( j) + qσ(a)) (B.8)

where q = e−gs .
We can rewrite (B.8) in a simpler form as follows. σ is a permutation of length N = N1 + N2. Let

us take its first N1 entries σ(1), σ (2), . . . , σ (N1), permute them into increasing order, and call them
C1, . . . ,CN1 (C1 < · · · < CN1). Similarly, we take the last N2 entries σ(N1), . . . , σ (N ), permute
them into increasing order, and call them D1, . . . , DN2 (D1 < · · · < DN2). Let the signature for
the permutation to take (C1, . . . ,CN1) to (σ (1), . . . , σ (N1)) be (−1)C and the signature for the
permutation to take (D1, . . . , DN2) to (σ (N1 + 1), . . . , σ (N )) be (−1)D . Namely,

(−1)C := sign

(
C1 . . . CN1

σ(1) . . . σ (N1)

)
, (−1)D := sign

(
D1 . . . DN2

σ(N1 + 1) . . . σ (N )

)
. (B.9)

Then the factors in (B.8) can be rewritten as∏
j<k

(qσ( j) − qσ(k)) = (−1)C
∏

C j<Ck

(qC j − qCk ),

∏
a<b

(qσ(a) − qσ(b)) = (−1)D
∏

Da<Db

(q Da − q Db). (B.10)
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These relations are easy to see by looking at the left-hand side as Vandermonde determinants.
Also, note that

sign

(
1 . . . N1 N1 + 1 . . . N

C1 . . . CN1 D1 . . . DN2

)
= (−1)

1
2 N1(N1+1)+∑N1

A=1 σ(A). (B.11)

This is seen as follows. First, let us permute (C1, . . . ,CN1) into (CN1, . . . ,C1), which gives

(−1)
1
2 N1(N1−1). Next, let us permute (CN1, . . . ,C1, D1, . . . , DN2) into (1, . . . , N ), starting by mov-

ing CN1 to the correct position. For this, CN1 commutes through other CN1 − 1 numbers to its right,
giving (−1)CN1−1. Next, we move CN1−1 to the correct position, which gives (−1)CN1−1−1. We keep

doing this until we get (1, . . . , N ). In the end, we obtain (−1)
∑N1

j=1(C j −1) = (−1)
∑N1

A=1 σ(A)−N1 =
(−1)

∑N1
A=1 σ(A)+N1 . Combining this with the previous factor, we obtain (B.11). Equations (B.9)

and (B.11) mean that

(−1)σ = (−1)C+D+ 1
2 N1(N1+1)+∑N1

A=1 σ(A). (B.12)

Plugging (B.10) into (B.8) and using (B.12), we obtain the following nice concise formula for the
partition function for the lens space matrix model:

Z lens(N1, N2)k = i−
κ
2 (N

2
1 +N 2

2 )
( gs

2π

) N
2

q− 1
3 N (N 2−1)

×
∑

(N1,N2)

∏
C j<Ck

(qC j − qCk )
∏

Da<Db

(q Da − q Db)
∏

C j ,Da

(qC j + q Da ), (B.13)

which is the expression presented in (2.11). Here,
∑
(N1,N2)

means summation over different ways to
decompose {1, 2, . . . , N1 + N2} into two disjoint sets N1 and N2 with #N1 = N1, #N2 = N2. Their
elements are

N1 = {C1,C2, . . . ,CN1}, C1 < C2 < · · · < CN1, (B.14)

N2 = {D1, D2, . . . , DN2}, D1 < D2 < · · · < DN2 . (B.15)

Note that, using the identity (A.24), Eq. (B.13) can also be rewritten as

Z lens(N1, N2)k = i−
κ
2 (N

2
1 +N 2

2 )
( gs

2π

) N
2

q− 1
6 N (N 2−1)(1 − q)

1
2 N (N−1)G2(N + 1; q) S(N1, N2),

(B.16)

S(N1, N2) =
∑

(N1,N2)

∏
C j<Da

qC j + q Da

qC j − q Da

∏
Da<C j

q Da + qC j

q Da − qC j
, (B.17)

which is the expression presented in (2.13).

Appendix C. Analytic continuation to the ABJ matrix model

Here, we will obtain the ABJ matrix model partition function by analytically continuing the lens
space matrix model partition function (B.16) under N2 → −N2.

C.1 Normalization

It has been shown [42] that the partition functions for the lens space and ABJ theories agree order
by order in perturbation theory upon analytic continuation in the rank as N2 → −N2. Our strategy is
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to apply this analytic continuation to the lens space partition function to obtain the exact expression
for the ABJ partition function. However, in order to analytically continue the partition functions, not
just their perturbative expansion, we must properly normalize them, which is what we discuss first.

Because we already know [42] that the analytic continuation works perturbatively, all we have to
do is to match the tree level part of the partition function. In the weak coupling limit gs → 0, the
lens space partition function (2.7) reduces to

Z lens,tree := Z lens(gs → 0)

= 22N1 N2Nlens

∫ ∏
j

dμ j

2π

∏
a

dνa

2π

∏
j<k

(μ j − μk)
2
∏
a<b

(νa − νb)
2e− 1

2gs
(
∑

j μ
2
j +
∑

a ν
2
a ).

(C.1)

This is essentially the product of two copies of the Gaussian matrix model partition function:

Z lens,tree = i−
κ
2 (N

2
1 +N 2

2 )
22N1 N2

N1!N2!
V (N1, gs)V (N2, gs), (C.2)

where V (n, gs) is the U (n) Gaussian matrix model integral,

V (n, gs) :=
∫ n∏

j=1

dλ j

2π
�(λ)2e− 1

2gs

∑n
j=1 λ

2
j , �(λ) =

∏
1≤ j<k≤n

(λ j − λk). (C.3)

V (n, gs) can be computed explicitly as [72]

V (n, gs) = g
n2
2

s (2π)−
n
2 G2(n + 2), (C.4)

where G2(z) is the (ordinary) Barnes function. In the present case we have gs = 2π i
k and the

integral (C.3) is the Fresnel integral. Similarly, the ABJ partition function (2.1) reduces in the weak
coupling limit to

ZABJ,tree ≡ ZABJ(gs → 0) = i−
κ
2 (N

2
1 −N 2

2 )
2−2N1 N2

N1!N2!
V (N1, gs)V (N2,−gs). (C.5)

Note that

V (n,−gs) = (−gs)
n2
2 (2π)−

n
2 G2(n + 2) = i−κn2

g
n2
2

s (2π)−
n
2 G2(n + 2) = i−κn2

V (n, gs). (C.6)

In the second equality, we used the fact that, because gs = 2π i/k, the Gauss integrals we are doing
are actually Fresnel integrals and therefore

(±gs)
1
2 =

√
2π

|k| i±
κ
2 . (C.7)

Using (C.6), the tree level ABJ partition function (C.5) can be written as

ZABJ,tree = i−
κ
2 (N

2
1 +N 2

2 )
2−2N1 N2

N1!N2!
V (N1, gs)V (N2, gs). (C.8)

Looking at (C.2) and (C.8), one may think that Z lens is analytically continued to ZABJ under N2 →
−N2. However, this does not work because N2! = �(N2 + 1) and V (N2, gs) do not transform in the
right way under N2 → −N2.
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To find the correct way to normalize the partition function, we observe that the Gaussian matrix
model (C.3) can be thought of as coming from gauge fixing the “ungauged” Gaussian matrix integral,

V̂ (n, gs) :=
∫

dn2
M e− 1

2gs
trM2 = (2πgs)

n2
2 , (C.9)

to the eigenvalue basis. Our claim is that it is such ungauged matrix integrals that should be used
for analytic continuation between the lens space and ABJ theories. Let us make this statement more
precise. Note that the relation between the ungauged Gaussian matrix integral (C.9) and its gauge-
fixed version (C.3), (C.4) is

V̂ (n, gs) = (2π)
1
2 n(n+1)

G2(n + 2)
V (n, gs). (C.10)

Based on this observation, we define the ungauged partition function for the lens space theory as
follows:

Ẑ lens(N1, N2)k := i−
κ
2 (N

2
1 +N 2

2 )
(2π)

1
2 N1(N1+1)+ 1

2 N2(N2+1)

G2(N1 + 2)G2(N2 + 2)

∫ N1∏
j=1

dμ j

2π

N2∏
a=1

dνa

2π

×�sh(μ)
2�sh(ν)

2�ch(μ, ν)
2e− 1

2gs (
∑

j

μ2
j +
∑

a

ν2
a) (C.11)

= (2π)
1
2 N1(N1+1)+ 1

2 N2(N2+1)

G2(N1 + 1)G2(N2 + 1)
Z lens(N1, N2), (C.12)

where we used the relation G2(n + 2) = n! G2(n + 1). The weak coupling limit (gs → 0, k → ∞)

of this is

Ẑ lens(N1, N2)k→∞ = i−
κ
2 (N

2
1 +N 2

2 )22N1 N2(2πgs)
N2

1 +N2
2

2 , (C.13)

which does not involve G2 or N2!. In a similar manner, we define the ungauged partition function
for the ABJ theory by

ẐABJ(N1, N2)k := i−
κ
2 (N

2
1 −N 2

2 )
(2π)

1
2 N1(N1+1)+ 1

2 N2(N2+1)

G2(N1 + 2)G2(N2 + 2)

∫ N1∏
j=1

dμ j

2π

N2∏
a=1

dνa

2π

×�sh(μ)
2�sh(ν)

2�ch(μ, ν)
−2e− 1

2gs
(
∑

j μ
2
j −
∑

a ν
2
a ) (C.14)

= (2π)
1
2 N1(N1+1)+ 1

2 N2(N2+1)

G2(N1 + 1)G2(N2 + 1)
ZABJ(N1, N2). (C.15)

The weak coupling limit of this is

ẐABJ(N1, N2)k→∞ = i−
κ
2 (N

2
1 −N 2

2 )2−2N1 N2(2πgs)
N2

1 +N2
2

2 . (C.16)

By comparing (C.13) and (C.16), we find that the tree level partition functions are related simply as

Ẑ lens,tree(N1,−N2)k = ẐABJ,tree(N1, N2)k . (C.17)

Therefore, including the perturbative part, we expect that the full partition functions satisfy

Ẑ lens(N1,−N2)k = ẐABJ(N1, N2)k . (C.18)

We will see that this indeed holds in explicit examples.
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In terms of Ẑ lens, our result (B.16) for the lens space partition function can then be written as

Ẑ lens(N1, N2)k = i−
κ
2 (N

2
1 +N 2

2 )(2π)
N2

1 +N2
2

2 g
N1+N2

2
s

× q− 1
6 N (N 2−1)(1 − q)

1
2 N (N−1)B(N1 + N2, N1, N2) S(N1, N2), (C.19)

where we defined

B(l,m, n) := G2(l + 1; q)

G2(m + 1)G2(n + 1)
. (C.20)

Recall that G2(z) has zeros at z = 0,−1,−2, . . . . Therefore, B(l,m, n) for l,m, n ∈ Z is finite if
m, n ≥ 0 but can be divergent if m ≤ 0 or n ≤ 0.

In going from the lens space matrix model to the ABJ matrix model, we flipped the sign of the
quadratic term for νa . However, we could have flipped the sign of the quadratic term for μ j . This
implies a simple relation between Ẑ lens(N1,−N2)k and Ẑ lens(N2,−N1)k . The relation is

Ẑ lens(N1,−N2)k = Ẑ lens(N2,−N1)−k . (C.21)

Here we have −k on the right-hand side because flipping the sign of the quadratic term in μ j , not
νa , will change the sign of gs → −gs in perturbative expansion. In view of the relation (C.18), this
is nothing but (2.6).

C.2 Analytic continuation

We would like to analytically continue Ẑ lens(N1, N2)k in N2. The explicit expression for
Ẑ lens(N1, N2)k is given by (C.19). In particular, we are interested in continuing N2 to a negative
integer −N ′

2 where N ′
2 ∈ Z>0. However, this is not so simple because Barnes G2(z) vanishes for

negative integral z and hence B(N1 + N2, N1, N2) in (C.19) diverges at N2 = −N ′
2. To deal with

this situation, let us analytically continue N2 to

N2 = −N ′
2 + ε, N ′

2 ∈ Z>0, |ε| 
 1 (C.22)

and send ε → 0 at the end of the computation. Using the behavior of G2(z; q),G2(z) near the
negative integral z given in (A.25) and (A.26), one can show that B(N1 + N2, N1, N2) diverges
as ε → 0 as

B(N1 + N2, N1, N2) = B(N1 − N ′
2 + ε, N1,−N ′

2 + ε)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1)

1
2 N ′

2(N
′
2−1)B(N1 − N ′

2, N1, N ′
2) ε

−N ′
2 (N ′

2 ≤ N1),

(−1)N1 N ′
2+ 1

2 N1(N1+1)q
1
6 (N1−N ′

2)((N1−N ′
2)

2−1)

×(1 − q)N1−N ′
2 g

−N1+N ′
2

s B(N ′
2 − N1, N1, N ′

2) ε
−N1 (N1 ≤ N ′

2),

(C.23)

where we only kept the leading term. Therefore, in order for the entire Ẑ lens to remain finite as ε → 0,
the function S(N1,−N ′

2 + ε) should vanish as

S(N1,−N ′
2 + ε) ∼

{
εN ′

2 (N ′
2 ≤ N1)

εN1 (N1 ≤ N ′
2)

= εmin(N1,N ′
2). (C.24)

In the following, we will explicitly carry out analytic continuation of S(N1, N2) and find that it
indeed behaves as (C.24). We will begin with simple cases with N1 = 1, 2 to get the hang of it, and
then move on to the general N1 case.
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C.2.1 N1 = 1The simplest case is N1 = 1, for which (B.17) gives

S(1, N2) =
N2+1∑
C=1

∏
C<a

qC + qa

qC − qa

∏
a<C

qa + qC

qa − qC
=

N2+1∑
C=1

N2−C+1∏
j=1

1 + q j

1 − q j

C−1∏
j=1

1 + q j

1 − q j
(C.25)

=
N2+1∑
C=1

(−q)N2−C+1

(q)N2−C+1

(−q)C−1

(q)C−1
=

N2∑
n=0

(−q)N2−n

(q)N2−n

(−q)n
(q)n

, (C.26)

where n = C − 1. (a)n is the q-Pochhammer symbol defined in Appendix A. We want to analytically
continue this expression in N2. The explicit N2 dependence of the sum range seems to be an obstacle,
but it can be circumvented by the following observation: as a function of z, (q)z has poles of order 1 at
z ∈ Z<0, while (−q)z has no poles. Therefore, the summand in (C.26) vanishes unless 0 ≤ n ≤ N1,
and we can actually extend the range of summation as

S(1, N2) =
∞∑

n=0

(−q)N2−n

(q)N2−n

(−q)n
(q)n

. (C.27)

This expression can be analytically continued to complex N2, including negative integers.9

We can rewrite (C.27) in different forms that we will find more convenient. First, using (A.10)
and (A.11), one can show that

S(1, N2) = β(1, N2)(1, N2), (C.28)

where

β(1, N2) := (−q)N2

(q)N2

, (1, N2) :=
∞∑

n=0

(−1)n
(q−N2)n(−q)n
(−q−N2)n(q)n

= 2φ1

(
q−N2,−q

−q−N2
; q,−1

)
.

(C.29)
This expression is useful because the relation to the q-hypergeometric function is manifest. The
q-hypergeometric function 2φ1 is defined in Appendix A. In addition, this way of writing S is useful
because it splits it into β, which vanishes for the negative integral N2 ∈ Z<0 and , which is finite
for all N2 ∈ Z. It is easy to see that the first factor β vanishes for negative N2 = −N ′

2 ∈ Z<0:

β(1,−N ′
2) =

(−q)−N ′
2

(q)−N ′
2

=
(q1−N ′

2)N ′
2

(−q1−N ′
2)N ′

2

= (1 − q1−N ′
2) · · · (1 − q0)

(1 + q1−N ′
2) · · · (1 + q0)

= 0. (C.30)

However, we are actually setting N2 = −N ′
2 + ε and we have to keep track of how fast this vanishes

as ε → 0. β(1,−N ′
2 + ε) involves (±q)−N ′

2+ε , which, using (A.7) with z = −1 + ε and (A.12), can
be rewritten as

(±q)−N ′
2+ε = (∓1)N ′

2−1q− 1
2 N ′

2(N
′
2+1) (±q)−1+ε

(±q)N ′
2−1

. (C.31)

The behavior of (±q)−1+ε can be seen, using the definition (A.3), as follows:

(q)−1+ε = (1 − q)(1 − q2) · · ·
(1 − qε)(1 − q1+ε) · · · = − 1

ε ln q
, (−q)−1+ε = (1 + q)(1 + q2) · · ·

(1 + qε)(1 + q1+ε) · · · = 1

2
,

(C.32)

9 We did not make n run over the entire Z because it would give S = 0. Namely, including n ∈ Z<0

would exactly cancel the contribution from n ∈ Z≥0. Showing this requires regularization of the sum, e.g., by
n → n + η for n ∈ Z<0 with η → 0.
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Table 1. The ε → 0 behavior of various quantities for N1 = 1. Although B and S = β = γ
 can be
individually singular, the partition function Ẑ ∝ BS is always finite.

B β  γ 
 S = β = γ
 Ẑ ∝ BS

N2 > 0 finite finite finite ε ε−1 finite finite
N2 < 0 ε−1 ε finite ε finite ε finite

where we kept only leading terms. We will do this kind of manipulation to extract ε → 0 behavior
over and over again below, but we will not present the details henceforth. So, the behavior of β(1, N2)

near integral N2 is

β(1, N2 + ε) =

⎧⎪⎪⎨⎪⎪⎩
(−q)N2

(q)N2

(N2 > 0),

(−1)N ′
2
ε ln q

2

(q)N ′
2−1

(−q)N ′
2−1

(N2 = −N ′
2 < 0).

(C.33)

The O(ε) behavior for N2 < 0 is the correct one to cancel the divergence of B that we saw
in (C.23), (C.24). On the other hand, the second factor in (C.28) is finite for all N2 ∈ Z. For N2 > 0,
(q−N2)n becomes zero for n ≥ N2 + 1 and the sum reduces to a finite sum. For N2 = −N ′

2 < 0, the
sum (q−N2)n = (q N ′

2)n is non-vanishing for all n ≥ 0.
There is another useful expression for S(1, N2). Using q-Pochhammer formulas, we can show that

S(1, N2) = γ (1, N2)
(1, N2), (C.34)

where

γ (1, N2) := (−q)N2(−q)−N2−1

(q)N2(q)−N2−1
, 
(1, N2) :=

∞∑
s=0

(−1)s
(qs+1)−N2−1

(−qs+1)−N2−1
(C.35)

and we relabeled n → s. This expression is useful because some symmetries are more manifest, as
we will see later in the N1 ≥ 2 cases. At the same time, however, 
 is slightly harder to deal with
for N2 > 0 than , because (qs+1)−N2−1 = 1

(qs−N2 )N2+1
can diverge. So, in this way of writing S,

we should introduce ε even for N2 > 0 and set N2 → N2 + ε. Just as we did for β, we can evaluate
γ (1, N2) near integral N2 and the result is

γ (1, N2 + ε) = (−1)N2
ε ln q

2
for all N2 ∈ Z. (C.36)

For N2 < 0, this just cancels the ε−1 divergence from B given in (C.23), while 
 is finite. For
N2 > 0, for which B is finite, the ε coming from (C.36) is canceled by 
, which goes as ε−1 in this
case. In more detail, for N2 > 0, it is only the 0 ≤ s ≤ N2 terms in 
 that behave as ε−1 and cancel
against γ ∼ ε, whereas the s > N2 terms are finite and vanish when multiplied by γ ∼ ε. This is a
complicated way to say that, in the sum (C.27), only 0 ≤ s ≤ N2 terms contribute.

The introduction of all these quantities may seem an unnecessary complication, but this will
become useful in the more general N1 ≥ 2 cases discussed below. The way in which various
quantities behave as ε → 0 is summarized in Table 1.

Now we are ready to present the expression for the analytically continued partition function Ẑ lens

for N1 = 1 and N2 = −N ′
2 < 0. Combining (C.35) and (C.36), and using (C.23), we obtain the
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expression for the ABJ partition function ẐABJ(1, N ′
2)k = Ẑ lens(1,−N ′

2)k :

ẐABJ(1, N ′
2)k = i−

κ
2 (1+N ′2

2 )(2π)
1+N ′2

2
2 g

1+N ′
2

2
s (1 − q)

(N ′
2−1)(N ′

2−2)
2

G2(N ′
2; q)

2G2(N ′
2 + 1)


(1,−N ′
2), (C.37)

where


(1,−N ′
2) =

∞∑
s=0

(−1)s
(qs+1)N ′

2−1

(−qs+1)N ′
2−1

. (C.38)

C.2.2 N1 = 2
For N1 = 2, the general formula (B.17) gives the following expression for S:

S(2, N2) =
∑

1≤C1<C2≤N2+2

C2−1∏
a=C1+1

qC1 + qa

qC1 − qa

N2+2∏
a=C2+1

qC1 + qa

qC1 − qa

N2+2∏
a=C2+1

qC2 + qa

qC2 − qa

×
C1−1∏
a=1

qa + qC1

qa − qC1

C1−1∏
a=1

qa + qC2

qa − qC2

C2−1∏
C1+1

qa + qC1

qa − qC1
(C.39)

=
∑

1≤C1<C2≤N2+2

(−q)C2−C1−1

(q)C2−C1−1

(−qC2−C1+1)N2−C2+2

(qC2−C1+1)N2−C2+2

(−q)N2−C2+2

(q)N2−C2+2

× (−q)C1−1

(q)C1−1

(−qC2−C1+1)C1−1

(qC2−C1+1)C1−1

(−q)C2−C1−1

(q)C2−C1−1
. (C.40)

Just as we did for the N1 = 1 case, we want to analytically continue this expression by eliminating the
explicit N2 dependence of the sum range by extending it. However, this turns out to be a nontrivial
issue and, in particular, the way to do it is not unique. Before discussing it, let us first consider
rewriting S in different forms.

First, just as in the N1 = 1 case, we can rewrite S in a form closely related to q-hypergeometric
functions. Namely,

S(2, N2) = β(2, N2)(2, N2), (C.41)

where

β(2, N2) = (−q)N2(−q2)N2

(q)N2(q
2)N2

,

(2, N2) =
∑
n1,n2

(−1)n2
(−q)n1(q

−N2−1)n1

(q)n1(−q−N2−1)n1

(−q)2n2
(q2)2n2

(q)2n2
(−q2)2n2

(q−N2)n1+n2(−q2)n1+n2

(−q−N2)n1+n2(q
2)n1+n2

(C.42)

and C1 − 1 = n1,C2 − C1 − 1 = n2. The original range of summation corresponds to n1 ≥ 0,
n2 ≥ 0, n1 + n2 ≤ N2, but we did not specify the range here for the reason mentioned above. This
expression is the analogue of the N1 = 1 relation (C.28); β diverges for N2 < 0 while is finite for
both N2 > 0 and N2 < 0.  has the same form as the double q-hypergeometric function defined in
Ref. [49], if the summation were over n1, n2 ≥ 0.

The second expression for S is

S(2, N2) = γ (2, N2)
(2, N2), (C.43)
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where

γ (2, N2) = −(−q)21
(q)21

(−q)N2(−q2)N2

(q)N2(q
2)N2

(−q)−N2−2(−q2)−N2−2

(q)−N2−2(q2)−N2−2
,


(2, N2) =
∑
s1,s2

(−1)s1+s2
(qs1+1)−N2−2

(−qs1+1)−N2−2

(qs2+1)−N2−2

(−qs2+1)−N2−2

(qs2−s1)21

(−qs2−s1)21
, (C.44)

and s1 = C1 − 1, s2 = C2 − 1. This expression is the analogue of (C.34). The original range of
summation corresponds to 0 ≤ s1 < s2 ≤ N2 + 1.

Now let us discuss the issue of the sum range. For the purpose of studying when the summand
vanishes, the β expression (C.41) is convenient, because β just cancels the divergence of B while
 is always finite. So, all we need to know is when the summand in  vanishes. Note that, when
regularized, (qm)n with m, n ∈ Z has the following behavior:

n > 0 : (qm)n = (1 − qm) · · · (1 − qm+n−1) =
{
O(ε) m ≤ 0 and m + n − 1 ≥ 0,

O(1) otherwise,

n < 0 : (qm)n = 1

(qm+n)−n
= 1

(1 − qm+n) · · · (1 − qm−1)

=
{
O(ε−1) m + n ≤ 0 and m − 1 ≥ 0,

O(1) otherwise.

(C.45)

Here, regularizing (qm)n means to replace N2 entering m, n by N2 + ε. Furthermore, when n1,

n2 < 0, we must regularize the summand in (C.42) by setting n1 → n1 + η, n2 → n2 + η with
η → 0. In this case, we must replace O(ε) in (C.45) by O(ε, η) and O(ε−1) by O(ε−1, η−1). Using
this, it is straightforward to determine the range of (n1, n2) for which the summand in  remains
non-vanishing after setting ε, η → 0.

In Fig. 4, we describe the regions in the (n1, n2) plane in which the summand appearing in(1, N2)

is non-vanishing. Figure 4(a) shows that, for N2 > 0, the summand is non-vanishing in the original
range of summation, n1 ≥ 0, n2 ≥ 0, n1 + n2 ≤ N2 (region I), as it should be. We would like to
extend the range in order to eliminate the N2 dependence and thereby analytically continue(1, N2)

to negative N2. The requirements for the extension are

(i) the range specification does not involve N2,
(ii) for N2 > 0, it reproduces the original result (C.40).

Clearly, there is more than one way to extend the range satisfying these requirements. One simple
way would be to take n1 ≥ 0, n2 ≥ 0 as the extended range. For N2 > 0, this reduces to region I and
reproduces the original result, while for N2 < 0 this sums over region I in Fig. 4(b). (We consider
N2 ≤ −2, since N2 = −1 is rather exceptional, as one can see in Fig. 4(c). The latter case will be
discussed later.) Another possible extension is n2 ≥ 0. This also reproduces the original result for
N2 > 0, but for N2 < 0 this sums over not only region I but also regions IIA and IIB.

Therefore, the way to analytically continue (1, N2) is ambiguous and, mathematically, any such
choices are good (ignoring the fact that the sum may not be convergent and is only formal). Namely,
the data for discrete N2 ∈ Z>0 are not enough to uniquely determine the analytic continuation for
all N2 ∈ C. Additional input comes from the physical requirement that it reproduce the known
ABJ results for N2 < 0. Furthermore, for N2 = −1, Ẑ lens(2,−1)k is expected to be related to
Ẑ lens(1,−2)−k by the relation (C.21).
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(a) (b) (c)

Fig. 4. The regions that can contribute to (1, N2). (a), (b): For (n1, n2) ∈ Z
2 in the shaded regions (denoted

by dots), the summand in(1, N2) in (C.42) is O(1). Outside the shaded regions, the summand is O(ε, η) and
vanishes as ε, η → 0. (c): the N2 = −1 case is special and the summand is non-vanishing only on the dots.

(a) (b) (c)

Fig. 5. The regions that can contribute to (1, N2). These are the same as in Fig. 4, but plotted for
(s1, s2) instead.

Here we simply present the prescription that satisfies these physical requirements. The explicit
checks are done in the main text, where it is shown that its perturbative expansions agree with
the known ABJ result and, when exact nonperturbative expressions for the ABJ matrix integral are
known, it reproduces them. Moreover, the fact that the prescription reproduces the relation between
Ẑ lens(2,−1)k and Ẑ lens(1,−2)−k is shown for general N1 below.

The key observation to arrive at such a prescription is that, as we can see from Fig. 4(a), the
summand is non-vanishing not only in the original region I but also in region IV. The meaning of
this is easier to see in the γ
 representation in terms of s1, s2. In Fig. 5, we present the same diagram
as in Fig. 4 but on the (s1, s2) plane. As we can see from the figure, the non-vanishing regions have
the symmetry

s1 ↔ s2. (C.46)

Actually, as we can immediately see from the explicit expression for 
 given in (C.44), this is a
symmetry of the summand, not just its non-vanishing regions. Therefore, it is natural to relax the
ordering constraint s1 < s2 in the original range and sum over both regions I and IV, after dividing
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by 2. If s1 = s2, the summand in (C.44) automatically vanishes. Namely, we can write 
 as


(2, N2) = 1

2

∞∑
s1,s2=0

(−1)s1+s2
(qs1+1)−N2−2

(−qs1+1)−N2−2

(qs2+1)−N2−2

(−qs2+1)−N2−2

(qs2−s1)21

(−qs2−s1)21
. (C.47)

Here we have extended the sum range so that s1, s2 run to infinity, which is harmless in the
N2 > 0 case.

Our prescription is that we use the expression (C.47) even for N2 = −N ′
2 < 0. As we can see from

Fig. 5(b), this sums over regions I and IVA. As we have been emphasizing, it is by no means clear
at this point that this is the right prescription. The justification is given in the main text, where it
is shown that this is consistent with all known results. One can also show that the other possible
prescriptions, such as n1 ≥ 0, n2 ≥ 0, which covers region I, and n2 ≥ 0, which covers regions I,
IIA, and IIB, would not reproduce the known results and hence are not correct.

If we set N2 → N2 + ε, the behavior of γ is

γ (2, N2 + ε) =
(
ε ln q

2

)2

for all N2 ∈ Z. (C.48)

Substituting this and (C.23) into (C.19), we finally obtain the expression for the ABJ partition
function ẐABJ(2, N ′

2)k = Ẑ lens(2,−N ′
2)k :

ẐABJ(2, N ′
2)k = i−

κ
2 N ′2

2 (2π)2+ N ′2
2
2 g

1+ N ′
2

2
s (1 − q)

1
2 (N

′
2−2)(N ′

2−3)G2(N ′
2 − 1; q)

4G2(N ′
2 + 1)


(2,−N ′
2), (C.49)

where it is assumed that N ′
2 ≥ 2 and 
(1,−N ′

2) is given simply by setting N2 = −N ′
2 in (C.47):


(2,−N ′
2) = 1

2

∞∑
s1,s2=0

(−1)s1+s2
(qs1+1)N ′

2−2

(−qs1+1)N ′
2−2

(qs2+1)N ′
2−2

(−qs2+1)N ′
2−2

(qs2−s1)21

(−qs2−s1)21
. (C.50)

The above formula is valid for N ′
2 ≥ 2 but not for N ′

2 = 1. This case is important, because
(N1, N ′

2) = (2, 1) is related to (N1, N ′
2) = (1, 2) by (C.21) and therefore the summation over two

variables s1, s2 should truncate to a sum with one variable; this provides a further check of our
prescription. We will discuss this more generally below, where we discuss general N1.

C.2.3 General N1With the N1 = 1, 2 cases understood, the prescription for general N1 is straightfor-
ward to establish, although the computations get cumbersome. Much as in the N1 = 1, 2 cases, the
general expression for S in (B.17) can be rewritten in the following form:

S(N1, N2) =
∑

1≤C1<···<CN1≤N

N1∏
j=1

⎧⎨⎩
⎡⎣N1−1∏

k= j

Ck+1−1∏
a=Ck+1

qC j + qa

qC j − qa

⎤⎦ N∏
a=CN1+1

qC j + qa

qC j − qa

×
C1−1∏
a=1

qa + qC j

qa − qC j

⎡⎣ j−1∏
k=1

Ck+1−1∏
a=Ck+1

qa + qC j

qa − qC j

⎤⎦⎫⎬⎭
=

∑
1≤C1<···<CN1≤N

N1∏
j=1

⎧⎨⎩
⎡⎣N1−1∏

k= j

(−qCk−C j +1)Ck+1−Ck−1

(qCk−C j +1)Ck+1−Ck−1

⎤⎦ (−qCN1−C j +1)N−CN1

(qCN1−C j +1)N−CN1

× (−qC j −C1+1)C1−1

(qC j −C1+1)C1−1

⎡⎣ j−1∏
k=1

(−qC j −Ck+1+1)Ck+1−Ck−1

(qC j −Ck+1+1)Ck+1−Ck−1

⎤⎦⎫⎬⎭ . (C.51)

In expressions such as this, it is understood that
∑b

l=a . . . = 0 and
∏b

l=a . . . = 1 if a > b.
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Again, we can rewrite this in the β and γ
 representations. The β representation is

S(N1, N2) = β(N1, N2)(N1, N2), (C.52)

β(N1, N2) :=
N1∏
j=1

(−q N1− j+1)N2

(q N1− j+1)N2

, (C.53)

(N1, N2) :=
∑

n1,...,nN1

(−1)
∑N1

l=1(N1−l+1)nl

×
⎡⎣N1−1∏

j=1

N1−1∏
k= j

(qk− j+1)n j+1,k
(−qk− j+1)2n j+1,k+1

(qk− j+1)n j+2,k+1

(−qk− j+1)n j+1,k
(qk− j+1)2n j+1,k+1

(−qk− j+1)n j+2,k+1

⎤⎦
×
⎡⎣ N1∏

j=1

(q N1− j+1)n j+1,N1
(q−N1−N2+ j )n1, j

(−q N1− j+1)n j+1,N1
(−q−N1−N2+ j )n1, j

⎤⎦[N1−1∏
k=0

(−qk+1)n1,k+1
(qk+1)n2,k+1

(qk+1)n1,k+1
(−qk+1)n2,k+1

]
, (C.54)

where we defined n1 = C1 − 1, n j = C j − C j−1 − 1 ( j = 2, . . . , N1), and na,b :=∑b
l=a nl .

Furthermore, we define nN1+1,b = na,N1+1 = 0. The original sum range 1 ≤ C1 < · · · < CN1 ≤ N
corresponds to n j ≥ 0 ( j = 1, . . . , N1), n1 + · · · + nN1 ≤ N2, but we did not specify it in (C.54)
for the same reason as in the N1 = 2 case.  has the form of the multi-variable generalization of
q-hypergeometric functions, discussed e.g. in Ref. [73]. When we analytically continue by N2 →
−N ′

2 + ε, β(N1,−N ′
2 + ε) goes to zero, while (N1,−N ′

2) remains finite. The behavior of β as
ε → 0 is

β(N1,−N ′
2 + ε)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

−ε log q

2

)N ′
2

(−1)
1
2 N ′

2(N
′
2−1)∏N ′

2−1
j=1

(q) j

(−q) j

∏N1−1
j=N1−N ′

2

(q) j

(−q) j
(N ′

2 ≤ N1),(
−ε log q

2

)N1

(−1)N1 N ′
2+ 1

2 N1(N1+1)∏N1−1
j=1

(q) j

(−q) j

∏N ′
2−1

j=N ′
2−N1

(q) j

(−q) j
(N1 ≤ N ′

2).

(C.55)

On the other hand, the γ
 representation is

S(N1, N2) = γ (N1, N2)
(N1, N2), (C.56)

γ (N1, N2) = (−1)
1
2 N1(N1−1)

N1−1∏
j=1

(−q)2j
(q)2j

N1∏
j=1

(−q j )N2(−q j )−N1−N2

(q j )N2(q
j )−N1−N2

, (C.57)


(N1, N2) = 1

N1!

∞∑
s1,...,sN1=0

(−1)s1+···+sN1

N1∏
j=1

(qs j +1)−N1−N2

(−qs j +1)−N1−N2

∏
1≤ j<k≤N1

(qsk−s j )21

(−qsk−s j )21
, (C.58)

where s j := C j − 1, j = 1, . . . , N1. The original sum range corresponds to 0 ≤ s1 < · · · < sN1 ≤
N − 1. However, because of the s j ↔ sk symmetry of this expression, we can forget about the order-
ing constraints and let s j run freely, if one divides the expression by N1!, which we have already
done above. Furthermore, just as in the N1 = 2 case, we can safely remove the upper bound in the
summation for N2 > 0. Our prescription for analytic continuation to N2 < 0 is to use this same
expression (C.58), by setting N2 = −N ′

2 + ε with ε → 0.
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The behavior of γ (N1, N2) near integral N2 can be shown to be

γ (N1, N2 + ε) = (−1)N1 N2+N1

(
−ε ln q

2

)N1

for all N2 ∈ Z. (C.59)

By substituting (C.56) and (C.23) into (C.19), we obtain the expression for the ABJ partition function
ẐABJ(N1, N ′

2)k = Ẑ lens(N1,−N ′
2)k :

ẐABJ(N1, N ′
2)k = i−

κ
2 (N

2
1 +N ′2

2 )(−1)
1
2 N1(N1−1)2−N1(2π)

N2
1 +N ′2

2
2 g

N1+N ′
2

2
s

(1 − q)
1
2 (N

′
2−N1)(N ′

2−N1−1)B(N ′
2 − N1, N1, N2)
(N1,−N ′

2)

= i−
κ
2 (N

2
1 +N ′2

2 )(−1)
1
2 N1(N1−1)2−N1(2π)

N2
1 +N ′2

2
2 g

N1+N ′
2

2
s

×
∏N ′

2−N1−1
j=1 (q) j

G2(N1 + 1)G2(N ′
2 + 1)


(N1,−N ′
2), (C.60)

where we assumed that N ′
2 ≥ N1 and


(N1,−N ′
2) = 1

N1!

∞∑
s1,...,sN1=0

(−1)s1+···+sN1

N1∏
j=1

(qs j +1)N ′
2−N1

(−qs j +1)N ′
2−N1

∏
1≤ j<k≤N1

(1 − qsk−s j )2

(1 + qsk−s j )2
.

(C.61)

The above expression is valid only for N ′
2 ≥ N1. If N ′

2 < N1, then the summation in (C.61) over
N1 variables should reduce to that of Ẑ lens(N ′

2,−N1)k over N ′
2 variables to be consistent with the

symmetry (C.21). Let us see how this works by setting N ′
2 → N ′

2 − ε in (C.61). Because of (C.23)
and (C.59), only terms that diverge as ∼ ε−(N1−N ′

2) in the s-sum survive. Divergences can appear
from

(qs j +1)N ′
2−N1−ε = 1

(qs j +1+N ′
2−N1−ε)N1−N ′

2

= 1

(1 − qs j +1+N ′
2−N1−ε) · · · (1 − qs j −ε)

, (C.62)

where we are keeping only the leading term. For this to give a divergent (∼ ε−1) contribution, it
should be that s j + 1 + N ′

2 − N1 ≤ 0, namely, s j ≤ N1 − N ′
2 − 1 (this is impossible for N1 ≤ N ′

2).
Because s1, . . . , sN1 should be different from one another, the most singular case we can have is when
{s1, . . . , sN1} ⊃ {0, 1, . . . , N1 − N ′

2 − 1}. In this case, we have precisely O(ε−(N1−N ′
2)). Concretely,

let us set

s j =
⎧⎨⎩ j − 1 (1 ≤ j ≤ N1 − N ′

2),

N1 − N ′
2 + s′

j−N1+N ′
2
(N1 − N ′

2 + 1 ≤ j ≤ N ′
2)

(C.63)

with s′
j ≥ 0 and multiply the result by a combinatoric factor

( N1
N1−N ′

2

) · (N1 − N ′
2)! = N1!

N ′
2! . By

substituting these into (C.61) and massaging the result, we can show


(N1,−N ′
2 + ε) = (−1)N1 N ′

2+N1

(
− 2

ε ln q

)N1−N ′
2

× 1

N ′
2!

∞∑
s′
1,...,s

′
N ′

2
=0

(−1)
s′
1+···+s′

N ′
2

N ′
2∏

j=1

(qs′
j +1
)N1−N ′

2

(−qs′
j +1
)N1−N ′

2

∏
1≤ j<k≤N ′

2

(qs′
k−s′

j )21

(−qs′
k−s′

j )21

(N ′
2 ≤ N1).

(C.64)

Namely, the summation over N1 variables s1, . . . , sN1 correctly reduced to summation over N ′
2 vari-

ables s′
1, . . . , s′

N ′
2
, and the ε dependence of 
, combined with γ ∼ εN1 , is the correct one to cancel
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Table 2. The ε → 0 behavior of various quantities for general N1. If N2 < 0, we define N ′
2 = −N2.

Range of N2 B β  γ 
 S = β = γ
 Ẑ ∝ BS

N2 > 0 finite finite finite εN1 ε−N1 finite finite
N2 < 0, 0 < N ′

2 ≤ N1 ε−N ′
2 εN ′

2 finite εN1 εN ′
2−N1 εN ′

2 finite
N2 < 0, N1 ≤ N ′

2 ε−N1 εN1 finite εN1 finite εN1 finite

the divergence of B ∼ ε−N ′
2 (see (C.23)). So, for N ′

2 < N1, the expression for the ABJ partition
function ẐABJ(N1, N ′

2)k = Ẑ lens(N1,−N ′
2)k is

Ẑ lens(N1,−N ′
2)k = i−

κ
2 (N

2
1 +N ′2

2 )(−1)
1
2 N ′

2(N
′
2−1)2−N ′

2(2π)
N2

1 +N ′2
2

2 g
N1+N ′

2
2

s q− 1
6 (N1−N ′

2)((N1−N ′
2)

2−1)

× (1 − q)
1
2 (N1−N ′

2)(N1−N ′
2−1)B(N1 − N ′

2, N1, N ′
2)
(N

′
2,−N1)

= i−
κ
2 (N

2
1 +N ′2

2 )(−1)
1
2 N ′

2(N
′
2−1)2−N ′

2(2π)
N2

1 +N ′2
2

2 g
N1+N ′

2
2

s

×
q− 1

6 (N1−N ′
2)((N1−N ′

2)
2−1)∏N1−N ′

2−1
j=1 (q) j

G2(N1 + 1)G2(N ′
2 + 1)


(N ′
2,−N1), (C.65)

where


(N ′
2,−N1)

= 1

N ′
2!

∞∑
s′
1,...,s

′
N ′

2
=0

(−1)
s′
1+···+s′

N ′
2

N ′
2∏

j=1

(qs′
j +1
)N1−N ′

2

(−qs′
j +1
)N1−N ′

2

∏
1≤ j<k≤N ′

2

(qs′
k−s′

j )21

(−qs′
k−s′

j )21

(N ′
2 ≤ N1).

Using the explicit expressions (C.60) and (C.65), it is straightforward to show that the rela-
tion (C.21) between Ẑ lens(N1,−N ′

2)k and Ẑ lens(N ′
2,−N1)−k holds.

In Table 2, we present a summary of the way in which various quantities behave as ε → 0 for
various values of N2.

Appendix D. The perturbative free energy

In this Appendix, we present the free energy of the lens space matrix model computed by perturbative
expansion, up to eight-loop order O(g8

s ):

Flens(N1, N2)− F tree
lens(N1, N2) = gs

(
N 3

1

12
+ N 2

1 N2

4
+ N1 N 2

2

4
+ N 3

2

12
− N1

12
− N2

12

)

+g2
s

(
N 4

1

288
+ N 3

1 N2

48
+ N 2

2 N 2
1

16
+ N 3

2 N1

48
+ N 4

2

288
− N 2

1

288
+ N1 N2

48
− N 2

2

288

)

+g4
s

(
− N 6

1

86 400
− N 5

1 N2

7680
− N 4

1 N 2
2

1536
− 5N 3

1 N 3
2

1152
− N 2

1 N 4
2

1536
− N1 N 5

2

7680
− N 6

2

86 400

+ N 4
1

34 560
+ 7N 3

1 N2

4608
− N 2

1 N 2
2

768
+ 7N1 N 3

2

4608
+ N 4

2

34 560
− N 2

1

57 600
− N1 N2

960
− N 2

2

57 600

)

+g6
s

(
N 8

1

10 160 640
+ N 7

1 N2

645 120
+ N 6

1 N 2
2

92 160
+ N 5

1 N 3
2

92 160
+ 7N 4

1 N 4
2

92 16
+ N 3

1 N 5
2

92 160
+ N 2

1 N 6
2

92 160
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+ N1 N 7
2

645 120
+ N 8

2

10 160 640
− N 6

1

2177 280
+ N 5

1 N2

92 160
− N 4

1 N 2
2

2304
+ N 3

1 N 3
2

27 648
− N 2

1 N 4
2

2304
+ N1 N 5

2

92 160

− N 6
2

2177 280
+ N 4

1

1451 520
+ N 3

1 N2

11 520
+ N 2

1 N 2
2

3840
+ N1 N 3

2

11 520
+ N 4

2

1451 520

− N 2
1

3048 192
− N1 N2

12 096
− N 2

2

3048 192

)

+g8
s

(
− N 10

1

870 912 000
− 17N 9

1 N2

743 178 240
− 17N 8

1 N 2
2

82 575 360
− N 7

1 N 3
2

774 144
+ 97N 6

1 N 4
2

4423 680
− 2821N 5

1 N 5
2

14 745 600

+ 97N 4
1 N 6

2

4423 680
− N 3

1 N 7
2

774 144
− 17N 2

1 N 8
2

82 575 360
− 17N1 N 9

2

743 178 240
− N 10

2

870 912 000
+ N 8

1

116 121 600

+ 29N 7
1 N2

123 863 040
− 259N 6

1 N 2
2

17 694 720
+ 937N 5

1 N 3
2

8847 360
+ 53N 4

1 N 4
2

442 368
+ 937N 3

1 N 5
2

8847 360
− 259N 2

1 N 6
2

17 694 720

+ 29N1 N 7
2

123 863 040
+ N 8

2

116 121 600
− N 6

1

41 472 000
+ 853N 5

1 N2

58 982 400
− 1487N 4

1 N 2
2

11 796 480
− 83N 3

2 N 3
1

1769 472

−1487N 2
1 N 4

2

11 796 480
+ 853N1 N 5

2

58 982 400
− N 6

2

41 472 000
+ N 4

1

34 836 480
− 23N 3

1 N2

37 158 912
+ 325N 2

1 N 2
2

3096 576

− 23N1 N 3
2

37 158 912
+ N 4

2

34 836 480
− N 2

1

82 944 000
− 17N1 N2

1382 400
− N 2

2

82 944 000

)
.

This perfectly agrees with the result in Ref. [41] to the order presented there. Meanwhile, we have
explicitly checked that the perturbative free energy of the ABJ matrix model is indeed related to the
lens space free energy by

FABJ(N1, N2) = Flens(N1,−N2) , (D.1)

including the tree contribution with the normalization discussed in Appendix C.1.

Appendix E. The Seiberg duality

In this Appendix, we show that the (1, N1) ABJ partition function ZABJ(1, N1)k given in (4.8) is
invariant under the Seiberg duality (4.7) up to a phase. Because in the main text we have shown that
Z0

CS(N2 − 1)k is invariant and that the phase factor precisely agrees with the one given in Ref. [60],
all that remains to be shown is the invariance of the integral I (1, N2)k defined in (4.10).

As claimed in the main text, for Seiberg dual pairs, we can show that the integrand appearing in
I (1, N2)k is the same up to a shift in s. More precisely, the claim to be proven is that the integrand

fN2(s) := π

sin(πs)

N2−1∏
j=1

tan
π(s + j)

|k| (E.1)

has the following property:

fN2(s) = f Ñ2

(
s − |k|

2
+ N2 − 1

)
, Ñ2 := 2 + |k| − N2. (E.2)

Therefore, as long as we take the prescription (4.13) for the contour, I (1, N2)k defined by the contour
integral (4.10) remains the same.

Note that, if two meromorphic functions f (s) and g(s) have poles and zeros at the same points
and with the same order, then they must be equal to each other up to an overall constant. This can
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(a) (b)

Fig. 6. The pole/zero structure of the integrand function for odd k. “+” (red) denotes the P pole, “×” (blue)
the NP pole, and “•” (green) the NP zero. Some poles and zeros are shown slightly above or below the real s
axis, but this is for the convenience of presentation and all poles and zeros are on the real s axis. If the original
theory is in case (a) |k|

2 − N2 + 1 ≥ 1, then the Seiberg dual is in case (b) |k|
2 − N2 + 1 ≤ 1, and vice versa. In

the figure, actual Seiberg dual theories are shown. In the upper panels, all P poles coming from π
sinπs and all

NP poles and NP zeros coming from
∏

j tan are shown. In the lower panels, P poles and NP zeros that cancel
each other are removed. We see that the actual poles are the same in the dual theories (a) and (b), with P and
NP poles interchanged.

be shown as follows. If z = α is a pole or a zero, we can write f (s) = a(z − α)n, g(s) = b(z − α)n

near z = α by the assumption. This means that f ′/ f = g′/g = n(z − α)−1 near z = α. Now, recall
that Mittag–Leffler’s theorem in complex analysis states that, if two functions have poles at the same
points and if the singular part of the Laurent expansion around each of them is the same, then the two
functions are identical. So, because f ′/ f and g′/g share poles and residues, they must be identical.
This means that f (s) = cg(s) with a constant c. In the present case, it is easy to show that the
overall scale of fN2(s) and f Ñ2

(s − |k|
2 + N2 − 1) is the same asymptotically, because both tend to

2π i N2−2e−πσ for s = iσ , σ → +∞. So, in order to show that these two functions are equal, we
only have to show that they share poles and zeros.

So, let us compare the poles and zeros of the two functions fN2(s) and f Ñ2
(s − |k|

2 + N2 − 1).
Recall the expression for fN2(s) given by (E.1). First, π

sin(πs) gives simple poles at s ∈ Z (P poles) but

no zero. On the other hand, tan π(s+ j)
|k| gives simple poles at s = |k|(p + 1

2)− j , p ∈ Z (NP poles),
and simple zeros at s = |k|q − j , q ∈ Z (NP zeros). Using these data, we can find the pole/zero
structure of the two functions, as we discuss now. We should consider odd and even k cases separately,
Odd k: For odd k, fN2(s) has poles but no zeros. All poles are simple poles and they can be divided
into two groups:

P : s = 0, . . . , |k| − N2,

NP : s = |k|
2

− N2 + 1, . . . ,
|k|
2

− 1,
(E.3)

where periodicity s ∼= s + |k| is understood; see Fig. 6. Note that this is valid even for |k|
2 − N2 + 1 <

0, for which some of the poles are at s < 0. P means poles coming from π
sinπs while NP means poles

coming from
∏

j tan. Some of the P poles are canceled by NP zeros and reduced to regular points.
NP poles are not canceled. P and NP poles never collide, because the former are at integral s while
the latter are at half-odd-integral s.
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(a) (b)

Fig. 7. The pole/zero structure of the integrand function for even k. See Fig. 6 for explanation of the symbols.
In the figure, actual Seiberg dual theories are shown. In the upper panels, all P poles coming from π

sinπs and all
NP poles and NP zeros coming from

∏
j tan are shown. In the lower panels, poles that are canceled by NP zeros

are removed. If a P pole, an NP pole, and an NP zero all collide, the resulting simple pole is interpreted as an
NP pole. The surviving poles are the same in the dual theories (a) and (b), with P and NP poles interchanged.

(E.3) means that f Ñ2
(s) has simple poles at

P : s = 0, . . . , |k| − Ñ2 = 0, . . . ,−2 + N2,

NP : s = |k|
2

− N2 + 1, . . . ,
|k|
2

− 1 = −|k|
2

+ N2 − 1, . . . ,
|k|
2

− 1,
(E.4)

which in turn means that f Ñ2
(s + N2 − |k|

2 − 1) has simple poles at

P : s = |k|
2

− N2 + 1, . . . ,
|k|
2

− 1,

NP : s = 0, . . . , |k| − N2.

(E.5)

This is the same as (E.3), with P and NP interchanged. This proves the identity (E.2) for odd k.
Figure 6 shows the explicit pole/zero structure in the specific case of U (1)7 × U (3)−7 = U (1)−7 ×
U (6)7.
Even k: For even k too, the function fN2(s) has poles but no zeros. Some of the poles are simple
while others are double. Let us think of a double pole as being made of two simple poles on top of
each other. Then there are two groups of simple poles, as follows:

P : s = 0, . . . , |k| − N2,

NP : s = |k|
2

− N2 + 1, . . . ,
|k|
2

− 1,
(E.6)

where s ∼= s + |k| is again implied; see Fig. 7. For k even, NP zeros can cancel P poles and NP
poles, and it becomes ambiguous whether we should call a particular pole P or NP. This happens
in the |k|

2 − N2 + 1 < 0 case, where a P pole, an NP pole, and an NP zero all can be at the same
point. When this happens, we think of the P pole getting canceled by the NP zero, and group the
remaining simple pole into NP, as we did above. This is arbitrary, but it is a unique choice for which
the structure (E.6) becomes identical to the odd k case, (E.3).

Because (E.6) is the same as the odd k case, (E.3), the rest goes exactly the same, and we conclude
that fN2(s) and f Ñ2

(s + N2 − |k|
2 − 1) are identical, with P and NP interchanged. Figure 7 shows

the explicit pole/zero structure in the specific case of U (1)8 × U (3)−8 = U (1)−8 × U (7)8.
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