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Abstract

Background: Autoimmune diseases, like multiple sclerosis, are triggered by uncontrolled
activation of cells of the immune system against self-antigen present, for instance, in the central
nervous system. We have reported novel biological functions for Annexin Al, an effector of
endogenous anti-inflammation, to produce positive actions on the adaptive immune system by
reducing the threshold of T cell activation. In this study, we investigated the potential modulatory
role of Annexin Al in the development of experimental autoimmune encephalomyelitis, a model
of multiple sclerosis.

Methods: Male control C57/BL6 and AnxAl null mice were immunized subcutaneously with an
emulsion consisting of 300 pg of MOGj; 55 in PBS combined with an equal volume of CFA. Lymph
node cells obtained from mice immunized with MOGg;; 55 for 14 days were re-stimulated in vitro
with MOG;; 55 (100 pg/ml) for 4 days and the Th1/Th17 cytokine profile measured by ELISA. Spinal
cords were processed either to isolate the infiltrated T cells or fixed and stained with haematoxylin
and eosin. Statistical analyses were performed using two-tailed, unpaired Student's t tests or
ANOVA.

Results: Our results show a direct correlation between Annexin Al expression and severity of
EAE. Analysis of MOGj; s5-induced EAE development in Annexin Al null mice showed decreased
signs of the disease compared to wild type mice. This defect was significant at the peak of the
disease and accompanied by reduced infiltration of T cells in the spinal cord. Finally, analysis of the
T cell recall response in vitro following stimulation with MOGj5; s showed a decrease proliferation
of Annexin Al null T cells, with a significantly reduced Th1/Th17 phenotype, compared to wild type
cells.

Conclusion: Together these findings suggest that Annexin Al null mice have an impaired capacity
to develop EAE. Furthermore strategies aiming at reducing Annexin Al functions or expression in
T cells might represent a novel therapeutic approach for multiple sclerosis.
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Background

Multiple sclerosis (MS) is chronic disabling disease caused
by malfunction of the immune system. Like many other
autoimmune diseases, it is initiated by an uncontrolled T
cell response to autoantigens presented in the context of
MHC molecules of antigen presenting cells. Several factors
have been described as involved in the pathogenesis of MS
including environmental, genetic and viral [1]. However,
one feature is common to all these cases: the hyperespon-
sivity of T cells. In MS it is thought that myelin peptides
presented by glial cells in the central nervous system
(CNS) induce proliferation and activation of Th effector
cells. These cells are in turn responsible for the develop-
ment of the inflammatory reaction and consequent demy-
elination [2].

Recent views on differentiation of naive CD4+ T cells in
effector Th cells have shown that there are at least 3 differ-
ent categories (Th1, Th2 and Th17) of effectors cell, a clas-
sification mainly based on the type of infection or
immune reaction and the cytokine signature produced.
Classically, Th1 cells are involved in the cellular-mediated
immune reaction and their differentiation is induced
upon infection by intracellular bacteria. On the other
hand Th2 cells develop during infections with extracellu-
lar bacteria and they play a major role in humoral-medi-
ated immune response [3]. Th17 are emerging as the
major pathogenic cell lineage responsible for the develop-
ment of autoimmune and inflammatory disorders [4,5].

Annexin Al (AnxAl), previously known as lipocortin-1,
was originally identified as a phospholipase A2 (PLA2)-
inhibitory protein and second messenger of glucocorti-
coid pharmacological effects [6,7]. Subsequent studies
have shown that this protein is also an effector of endog-
enous inflammatory resolution, where it acts to downreg-
ulate neutrophil trafficking and activation, promoting the
removal of apoptotic cells by tissue macrophages [8].
However, we have recently demonstrated a novel function
for AnxA1 on T cell activation and differentiation [8-10].
Addition of human recombinant (hr)AnxAl to T cells
stimulated with anti-CD3/CD28 increases their activation
and favours differentiation into Th1 [11]; conversely,
AnxA1-/-T cells display a decreased response to TCR stim-
ulation associated with a marked Th2 phenotype [12].
Analysis of AnxA1 expression in T cells from patients suf-
fering from rheumatoid arthritis showed higher levels of
this protein compared to healthy control volunteers
[11,13], providing clinical relevance to the role that
AnxAl might play in autoimmune diseases. Together
these findings suggest that AnxA1 acts as a positive modu-
lator of T cells and might facilitate the development of
autoimmune diseases contributing to aberrant T cell acti-
vation.
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On these bases, we have investigated here the develop-
ment of EAE in AnxA1 null mice monitoring macroscopic
signs of disease in a temporal fashion, together with his-
tological analysis of spinal cord and ex-vivo T cell reactivity
upon restimulation with the specific antigen. The results
obtained corroborate the hypothesis that blocking AnxA1
function or expression during autoimmune diseases
might open new avenues for the therapeutic control of
these pathologies.

Methods

Reagents

The Myelin Oligodendrocyte Glycoprotein peptide
(MOG)s; 55 (MEVGWYRSPFSRVVHLYRNGK) was synthe-
sized and purified by Cambridge Research Biochemicals
(Billingham, UK). Complete Freund's adjuvant contain-
ing Mycobacterium tuberculosis H37a was purchased from
Difco while Bordetella pertussis toxin was from Sigma-
Aldrich Co (Poole, UK). Unless otherwise specified, all
the other reagents were from Sigma-Aldrich Co.

Mice

Male AnxA1 null mice were previously described [14,15]
(9-11 week old) and were backcrossed on a C57BL/6
background for >10 generations and bred at B&K animal
care facilities (Hull, UK). Age and gender-matched control
C57BL/6 mice were used as control for all experiments.
Animals were kept under standard conditions and main-
tained in a 12 h/12 h light/dark cycle at 22 + 1°C in
accordance with United Kingdom Home Office regula-
tions (Animal Act 1986) and of the European Union
directives.

Induction of EAE

Mice were immunized subcutaneously on day 0 with 300
ul of emulsion consisting of 300 pg of MOG;5_ 55 in PBS
combined with an equal volume of CFA containing 300
pg heat-killed M. tuberculosis H37Ra. The emulsion was
injected in both flanks and followed by an intraperitoneal
injection of B. pertussis toxin (500 ng/100 pl) in 100 pl of
saline on days 0 and 2. Mice were observed daily for signs
of EAE and weight loss. Diseases severity was scored on a
6-point scale: 0 = no disease; 1 = partial flaccid tail; 2 =
complete flaccid tail; 3 = hind limb hypotonia; 4 = partial
hind limb paralysis; 5 = complete hind limb paralysis; 6 =
moribund or dead animal.

Cell proliferation assay

Lymph node cells (105 cells/200 ul) obtained from mice
immunized with MOG;; 55 for 14 days were stimulated
with MOGg;; 55 (50-100 pg/200 pl) for 48 h in 96 well
plates. During the last 12 h, cultures were pulsed with 1
pCi of [3H]-thymidine (Amersham Pharmacia Biotech,
Buckinghamshire, UK) and incorporated radioactivity
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was measured by automated scintillation counter (Pack-
ard Instrument Company, Inc., Illinois, US).

Cytokine ELISA

Lymph node cells (10¢ cells/ml) obtained from mice
immunized with MOG;;_ 55 for 14 days were stimulated
with MOGg; 55 (100 pg/ml) for 4 days. Cell supernatants
were collected and analyzed for IFN-y, IL-2, IL-17A and
TNF-a content using ELISA kits (eBioscience, Dorset, UK)
according to manufacturer's instructions.

Isolation of inflammatory cell from the spinal cord

Mice were killed using CO,. The spinal cords were
expelled from the spinal column with PBS by hydrostatic
pressure using a syringe attached to a 21-gauge needle. Tis-
sues were cut in small pieces and passed through cell
strainer (70 nm; BD Falcon) using the plunger of a sterile
1 ml syringe. The single cell suspension was centrifuged
for 10 min at 390 x g, resuspended in 20 ml of PBS con-
taining 30% of Percoll (Sigma) and overlayed onto 10 ml
of PBS containing 70% Percoll. After centrifugation at 390
x g for 20 min, the mononuclear cells were removed from
the interphase, washed, and resuspended in FACS buffer
(PBS containing 1% FCS and 0.02% NaN,) for further
analysis.

Flow cytometry

Cell samples from Percoll-purified spinal cord tissues or
Ficoll-purified lymph nodes were resuspended in FACS
buffer containing CD16/CD32 FcylIR blocking antibody
(clone 93; eBioscience) for 30 min at 4°C. Thereafter, cell
suspensions were labelled with the FITC-conjugated anti-
CD3 (1:100; clone 145 2C11) or anti-F4/80 (1:100; clone
BMT) while lymph node cells were stained with anti-CD4-
FITC (1:500; clone L3T4) and anti-CD8 (1:1000; clone Ly-
2) for 30 min at 4°C, prior to analysis by FACS calibur
using CellQuest software (Becton Dickinson). At least 104
cells were analyzed per sample, and determination of pos-
itive and negative populations was performed based on
the staining attained with irrelevant IgG isotypes.

Histology

Spinal cord tissues were dissected and fixed in 4% neutral
buffered formalin for 48 hrs and then incubated with
decalcifying solution containing EDTA (0.1 mM in PBS)
for 14 days prior to paraffin embedding. Histological eval-
uation was performed on paraffin-embedded sections
sampled at various time points depending on disease
severity. Spinal cord sections (5 um) were deparaffinized
with xylene and stained with haematoxylin and eosin
(H&E) to asses inflammation. The staining for AnxA1 was
performed on frozen sections using anti-AnxA1 (dilution
1:500; Zymed, Invitrogen) and anti-rabbit Ig horseradish
peroxidase (HRP)-conjugated antibodies (dilution 1:500;
Dako). Double staining for AnxA1 and CD3 or F4/80 was
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carried out as previously described using FITC-conjugated
anti-CD3 (1:100; clone 145 2C11) or anti-F4/80 (1:100;
clone BMT). Sections were also counterstained with hae-
matoxylin. In all cases, a minimum > 3 sections per ani-
mal were evaluated. Phase-contrast digital images were
taken using the Image Pro image analysis software pack-
age.

Statistical Analysis

Prism software (GraphPad software) was used to run all
the tests. Statistical evaluations of cell frequency, prolifer-
ation and cytokine production were performed using two-
tailed, unpaired Student's t tests. ANOVA were applied to
analyze the EAE clinical grading. A p value of < 0.05 was
considered to be statistically significant. P-values lower
than 0.05 were considered significant. Data are presented
as mean + S.E.M of n samples per group.

Results

AnxA|l expression correlates with the severity of EAE
Previous studies on the role of AnxA1 in the development
of EAE in Lewis rat demonstrated a correlation between
AnxA1 levels in the spinal cord content and extent of infil-
trating mononuclear cells in the CNS [16]. We started off
by assessing these phenomena in a mouse model of MS
induced by immunization with MOGg;5 55. To this aim, we
collected spinal cords and brains of wild type mice immu-
nized with MOG;; 55 peptide at different stages of the dis-
eases i.e. at day 12 (score 0), day 18 (score 2) and day 20
(score 4) and performed immunohystochemistry for
AnxA1 side by side with hematoxylin and eosin staining.

As shown in Figure 1, spinal cord tissues collected during
the induction phase of mice with no signs of disease
showed a faint staining for AnxA1 (score 0, Fig. 1A and 1B,
respectively). However, with the onset of clinical signs
and the appearance of inflammatory infiltrates in the
CNS, discrete patches of AnxAl immunostaining were
observed all around the meninges (score 2, Fig. 1A and
1B, respectively). As the disease progressed, an increase in
number of AnxAl-positive cellular infiltrate patches was
observed (score 4, Fig. 1A and 1B, respectively), suggest-
ing that the infiltration of inflammatory cells expressing
high levels of AnxA1 might be correlated with the severity
of the disease.

To identify the cellular sources of AnxA1l immunoreactiv-
ity in the spinal cord, we performed double immunofluo-
rescence staining of the sections with anti-AnxA1 and
either anti-CD3 (marker for T cells) or anti-F4/80 (marker
for macrophages). As expected, we detected a large
number of infiltrated T cells and macrophages in the spi-
nal cord sections of mice at the peak of EAE (Fig. 2A and
2B, middle panels, respectively). However, AnxAl stain-
ing in the same sections showed a partial co-localization
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AnxA| expression correlates with the severity of EAE. C57BL/6 mice were immunized with MOGj3; 55 and CFA and
spinal cords removed at day 12 (score 0), day 18 (score 2) and (C) day 20 (score 4). The sections were stained with hematox-
ylin and eosin (A) or anti-AnxAl (B) as described in Materials and Methods. For each staining, the right panels (20%) show a
higher magnification of an area of the left panels (4x). Results representative of 3 experiments.

with both T cells and macrophages without particular
preference for one or the other cell types (Fig. 2A and 2B,
right panels, respectively).

AnxAI--mice develop an impaired EAE

Since AnxA1l expression was upregulated at the peak of
EAE, we next investigated the role of this protein on the
development of EAE. AnxAl+/+and AnxAl-/- mice were
immunized s.c. with MOG;; 55 peptide in CFA on day 0,
and then injected i.v. with B. pertussis toxin on both day 0
and day 2. Both AnxA1++ and AnxAl”/- mice started to
develop EAE from day 12 after immunization, reaching
peak disease around day 20. However, AnxA1-/- mice had
reduced levels of disease compared to AnxAl+/+ (Figure
3A). Interestingly, this was evident and significant only at
the later stage of the disease i.e. from day 18 to 23 and
onwards.

Studies on animal models of EAE have demonstrated that
the acute phase of the disease coincides with weight loss,
probably due to anorexia and deficient fluid uptake.
Weight measurement of immunized mice correlated with
the severity of the clinical score and showed a reduced
weight loss - from day 18 onwards - in the AnxA1-/- mice
compared to AnxA1+/+ controls (Figure 3B). Further com-
parison of development of EAE in AnxA1+/+ and AnxA1l-/-
mice showed a decrease in both the mortality rate and
maximum disease score, without differences in the inci-
dence rate or disease onset (Table 1).

In vitro recall response to MOG;; 55 in AnxAl-- mice

T cells play a key role in the development of EAE [17] and
AnxA1-/-T cells have an impaired capacity to respond to
anti-CD3/CD28 stimulation [12]. In light of these find-
ings, we investigated whether the decreased development
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Overlay

Cellular phenotype of AnxAl expressing cells in spinal cord sections of mice with severe EAE. C57BL/6 mice
were immunized with MOGgs; 55 and CFA and spinal cords removed at day 20 (score 4). The sections were stained with anti-
AnxAl and anti-CD3 (A) or anti-F4/80 (B) as described in Materials and Methods. The right panels show an overlay of the two
single stainings on the right. Results representative of 3 experiments.

of EAE in AnxAl’/- mice was associated with a lower
response to antigen-stimulation. Lymph node cells from
AnxA1+/+and AnxA1-/-mice, collected 14 days after immu-
nization, were stimulated in vitro with MOG;5 5. In line
with our expectations, AnxA1--lymph node cells showed
a decreased rate of proliferation and produced lower lev-
els of IL-2 when stimulated with MOG;; 55 compared to
wild-type mice (Figure 4A and 4B, respectively). Similar
results were obtained with splenocytes (data not shown).

These results on cell proliferation were mirrored in the
number of cells recovered from the spleen and the drain-
ing lymph nodes of the immunized mice. The total cell
count of Ficoll-purified spleen and lymph node mononu-
clear cells from the same animals, revealed a significant
decrease in AnxA1--mice compared to controls (Figure 5A
and 5B, respectively), with no measurable changes in the
percentages of CD4 or CD8 positive cells (Figure 5C and
5D, respectively).

Reduced MOG;;_ss-specific Thl and Thl7 cytokine
responses in AnxAl-- mice

Studies using draining lymph node cells from MOG;; 55
immunized C57/BL6 mice showed significant changes in
Th1 and Th17 cytokine production. Analysis of cytokine
production from AnxA1--lymph node cells upon re-chal-
lenge with MOGg;; 55 for 96 h showed a decreased produc-
tion of Th1 cytokines IFN-y, IL-2, and TNF-a compared to
wild type cells (Figure 6A-C). Similarly, measurement of
Th17 signature product IL-17, revealed decreased levels of
this cytokine in AnxA1-/- compared to wild type (Figure
6D).

T cell infiltration in the nervous system of AnxAI-- mice
during EAE

The reduced signs of EAE in AnxA1-- mice from day 18
onwards, prompted us to investigate whether there could
be a neuro-pathological correlate. The spinal cords of
AnxA1++and AnxA1-/-treated mice, collected at day 18 or
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AnxAl-- mice developed less severe EAE than AnxA|** C57BL/6 mice were immunized with MOGj; 5 and CFA and
monitored daily for signs and symptoms of EAE (A) or weight gain/loss (B) for 23 days. Results are means + SEM (n = 10/

group). ¥* p < 0.01, representative of 3 experiments.

22, were analyzed for histological evidence of inflamma-
tion. It was found that there were reduced numbers of
immune cell infiltrates detected in AnxA1l-/- mice com-
pared to AnxA1++animals. (Figure 7A and 7B).

The reduced histological signs of inflammation in AnxA1-
/-mice were associated with a reduced number of CD3 and
F4/80 positive cells infiltrating the CNS (Figure 7C and
7D, respectively). These qualitative analyses were con-
firmed by FACS measuring the percentages of CD3 and
F4/80 positive leucocytes isolated from day 18 spinal cord
tissues. Consistent with the immunohistochemistry
results, AnxA1-/- mice had about 60 and 80% less T cells
and macrophages, respectively, compared to AnxAl+/+*
mice (Figure 8A and 8B, respectively).

Discussion

Emerging evidence over the last five years has shown that
AnxA1 exerts a dual function on the innate and adaptive
immune systems [8,9]. In the innate immune system,
endogenous AnxAl plays a homeostatic anti-inflamma-
tory role that controls events occurring at the very early
stage of the inflammatory process. For instance, studies in

AnxAl/- mice have shown that neutrophils exhibit
enhanced transmigration in vivo in the inflamed cremaster
microcirculation and increased responsiveness in vitro
upon challenge with PAF, fMLP or PMA [8,9]. Similarly,
AnxA1-/- macrophages produce higher levels of TNF-o and
IL-6 when challenged with LPS either in vitro or in vivo
[18].

Investigation on the role of AnxAl in the adaptive
immune system provided us with an opposite scenario.
AnxA1-/-T cells showed an impaired capacity to proliferate
upon anti-CD3/CD28 stimulation and a skewed Th2 phe-
notype when differentiated in vitro [12]. Consistent with
this, when we investigated the immune response of
AnxAl/- mice in a model of allergic peritonitis, we
observed an increased recruitment of eosinophils in the
cavity upon challenge with the ovalbumin [12]. Most
interestingly, we also found that AnxA1l plays an unpre-
dicted proinflammatory role in chronic autoimmune dis-
eases. Administration of human recombinant AnxAl
during the immunization phase of the collagen-induced
arthritis model exacerbates signs and symptoms of dis-
eases [11].

Table I: Clinical parameters of MOG;; ;-induced EAE in AnxA1**and AnxAl--mice (mean & SEM, n = 10/group)

Mice Incidence$ Mortality Onset day Max. score
(mean t SEM) (mean t SEM)
AnxAl|+*+ 100% 33.3% 164 +23 57%02
(1o710) (3/10)
AnxAl-- 100% 0% 159+1.3 4.3 £ 0.1%*
(10/10) (0/10) **
*¥p < 0.01, representative of 3 experiments
§EAE clinical score equal or greater than |.
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< 0.05, ** p < 0.01, representative of 3 experiments.
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These results, together with the investigations on the
innate immune system, suggest different effects of AnxA1
in inflammatory diseases depending on the relative con-
tribution of the innate and adaptive arms of the immune
systems. With this idea in mind, we approached this study
knowing that the phenotype of EAE in AnxA1l+/+ mice
could not readily be predicted.

MOGg;; 55-induced EAE is a model for autoimmune demy-
elination of the central nervous system and it has been
widely used to investigate pathogenic mechanisms
responsible for the development of MS. Myelin-reactive T
cells are considered an immunological hallmark of both
EAE and MS and thought to be the driving force for the
recruitment of inflammatory cells in the CNS. These
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recruited cells include mainly macrophages especially in
the C57BL/6 mouse strains.

Our results on the development of EAE in the AnxA1+/+
mice show a decreased capacity to fully develop signs of
disease. This was particularly significant at the later stage
i.e. when the mice start to show signs of full paralysis.
Hystological analysis of the spinal cord supported these
results and showed a reduced level of T cell and macro-
phage infiltration in the AnxA1l-/- mice compared to wild
type controls.

We hypothesized that the reduction of clinical signs of
EAE in AnxA1/- mice might be due to defect in the activa-
tion and expansion of encephalitogenic T cells. The results
confirmed our expectation and showed a reduced number

w0 [ JAnx-A1+
= I Anx-A1--
£ 4004 T
B
£ 3004
N
= 200+ *%
1004
odl=—
MOG;; 55 - -
(100ug/ml) + +
D
100+ —
g 75+
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2
{:. 50+
=
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- N
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Impaired Thl and Thl7 cytokine production of MOG;; ;s-immunized AnxAl--mice. Levels of (A) IFN-y, (B) IL-2,
(C) TNF-a and (D) IL-17 in the cell supernatants of lymph node cells obtained from AnxAl**and AnxAl--mice immunized

with MOG;; 55 and CFA and sacrificed after 14 days. Cells were stimulated with the indicated concentration of MOG;; 5 for 4
days and the supernatants used for cytokine ELISA. Results are means £ SEM (n = 4/group). * p < 0.05, ** p < 0.0l, represent-

ative of 3 experiments.
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Histological changes in spinal cord sections of MOG;; s;-immunized AnxA |-~ mice. Haematoxylin-eosin staining of
spinal cord sections obtained from AnxAl*/* (A) and AnxAl--(B) mice immunized with MOGg;; s and CFA and sacrificed after
22 days. For each staining, the right panels (20x) show a higher magnification of an area of the left panels (4x). Consecutive

sections were stained with anti-CD3 (C) or anti-F4/80 (D) as described in Materials and Methods. Pictures are representative

of three separate experiments with similar results.

of cells in lymph nodes of AnxAl+/- mice as well as a
reduced in vitro recall proliferative response to MOG;s ss.
In agreement with these data, when we measured the total
number of infiltrated T cells in the spinal cord of AnxA1-/
-mice, a significant decrease in the number of CD3+ cells
was observed. Collectively these data indicate important
support properties of endogenous of AnxA1l in modulat-
ing T cell activation in this model.

Several explanations can be provided for the AnxA1-/-mice
phenotype. Studies from our lab have shown that AnxA1-
I-T cells acquire a marked Th2 - but reduced Th1 and Th17
-phenotype when differentiated in wvitro under optimal
Th1, Th2 or Th17 skewing conditions [19]. Here we con-
firm these results and show that in vitro stimulation of
lymph node cells from MOG;; ssimmunized mice with
the same antigen produced reduced amounts of Thl

(TNF-a, IL-2 and IFNy) and Th17 (IL-17) cytokines. Anal-
ysis of Th2 cytokine IL-4 and IL-5 showed almost double
basal production in AnxA1-/-lymph node cells compared
to AnxA1+/+ but no further increase upon MOG5s 55 stim-
ulation (data not shown). This might be due to the fact
that fully differentiated Th2 cells appear during the late
remission stage of the disease [20,21], while our analyses
have been carried out soon after the onset of the disease.

Studies on Th cell differentiation during the development
of EAE have shown the involvement of Th1 and Th17 cells
during the first phase. However, controversial results
present in the literature on this aspect do not provide a
conclusive answer on what would be the exact role(s) of
Th1 or Th17 [22]. Indeed, administration of IFN-y exacer-
bates signs of disease in MS patients [23] and adoptive
transfer of Th1 cells effectively induces EAE in mice
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[24,25]. On the other hand, mice deficient for IL-12 (p35)
[26], IEN-y [27] and TNF-a [28,29] showed no overt
impairment in the development of EAE. Similarly, multi-
ple sclerosis lesions contain high levels of IL-17 [30] and,
in animal models, adoptive transfer of Th17 cells induce
a more severe EAE compared to the lesions produced by
the transfer of Th1 cells [31]. This conclusion, again, is in
contrast with investigations where overexpression or abla-
tion of IL-17A, specifically in T cells, had no effect on the
development of EAE [32].

Our results showing an impaired production of both Th1
and Th17 cytokines in AnxA1-/- deficient T cells suggest
that the downstream events elicited by this protein might
be shared by both the Th1 and Th17 pathways. However,
further studies are needed to verify this hypothesis. One
possibility might be that the decreased strength of TCR
signalling observed in AnxA1/-T cells contributes to the
inhibition of Th1 and Th17 development [17,33]. Most
interestingly, an elegant study by Juedes et al. has shown
that in the MOG;; ss-induced EAE in C57/BL6 mice the
early infiltration of Th1 cells is the key to sequential cas-

cade of events i.e. activation of microglia, induction of
VCAM and ICAM and finally traffic of mononuclear cells
across the endothelium. Our phenotypic characterization
of the cellular infiltrates of the MOGs; 55 immunized
AnxA1l7/- confirmed these results and showed a reduced
number of macrophages compared to wild type mice rein-
forcing the hypothesis that the reduced development of
Th1 cells in the AnxA1l-/- mice might be responsible for
this effect.

Previous studies on the effects of a truncated version of
human recombinant AnxA1l (amino acid 1-188) on the
development of EAE in Lewis rat have shown a significant
inhibitory effects on mild but not severe EAE [34]. These
apparently contrasting results can be explained by the fact
that in this study the authors tested the well-known antin-
flammatory action of exogenously administered AnxAl
by administering the recombinat protein intracerebroven-
tricularly at the onset and throughout the peak of the dis-
ease. Interestingly, the same study showed that
intracerebroventricular administration of a neutralizing
antibody against AnxA1 did not modify the development
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of EAE [34]. Together these results support our findings
showing a prominent role of endogenous AnxAl in influ-
encing the activation of the immune system that precedes
the development of EAE.

Previous studies on role of AnxA1 in the development of
EAE demonstrated that the cerebellum and spinal cord
content of AnxA1l correlated with appearance of infiltrat-
ing lymphocytes and macrophages in the CNS [16,34,35].
We confirmed these results also in this model of MOG;5_
55 induced EAE. Immunohystochemistry for AnxA1 in spi-
nal cord of wild type mice showed a faint staining during
the induction phase of the disease. However, with the
onset of clinical signs and the appearance of inflamma-
tory infiltrates in the CNS, a marked increase in AnxAl
immunostaining was observed. This was maximal at the
peak of the symptoms and suggested that the infiltration
of inflammatory cells expressing high levels of AnxAl
might be correlated with the severity of the disease and the
consequent tissue damage. In agreement with this
hypothesis, previous studies have shown an increase in
AnxA1l content in post-mortem CNS tissue samples from
MS patients, in particular in the diseased white matter as
well as in multiple sclerosis plaque tissue [36].

Conclusion

In conclusion, this study presents novel evidences of piv-
otal roles for AnxA1 in a mouse model of multiple sclero-
sis. Based on the data produced, we propose that AnxA1l
deficient T cells might be responsible for the failure to
recruit significant number of inflammatory cells into
CNS. More analysis is needed to characterize the pheno-
type of the T cells infiltrating into the CNS in order to fur-
ther understand the molecular mechanisms by which
AnxA1 influences the development of EAE. Nevertheless,
our results clearly suggest that the level of expression of
this protein in T cells may have a causal function. Future
studies on the identification and generation of neutraliz-
ing antibodies against AnxA1l, currently under develop-
ment, will provide us the opportunity to validate novel
therapeutic approaches for the treatment of multiple scle-
rosis that target AnxA1 expression or function.
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