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1 Introduction

The core is an anchoring concept in game theory going back, in its origins,

to Edgeworth’s contract curve, and the contributions of Debreu and Scarf

(1963) and Aumann (1964). The core remains a central concept in economics

and most recently, in market design; see, for example, Roth (2002). Even in

games with many, but finite numbers of players, however, the core may be

empty. The addition of a single player to a large game with a nonempty core

may result in a game with an empty core. The problem of the emptiness

of the core is especially salient in economies with public goods subject to

congestion and exclusion (local public goods) or in economies with clubs.

Even in pure exchange economies, the nonemptiness of the core can depend

on whether commodities are infinitely divisible. It is, however, a remarkable

fact that, as established by Wooders (1983) and a number of subsequent

papers, games with many players satisfying apparently mild conditions have

nonempty approximate cores.

In this paper, inspired by the payoff dependent balancedness notion2 of

Herings and Predtetchinski (2004) and Bonnisseau and Iehlé (2007), 3 we

demonstrate nonemptiness of approximate cores for sequences of games with

arbitrary distributions of players. Recall that much of the literature on ap-

proximate cores of NTU games, beginning with Wooders (1983) and most

recently Kovalenkov and Wooders (2001, 2003) and Wooders (2008), estab-

lishes nonemptiness of approximate cores of large games by showing that

payoffs in the cores of derived “balanced cover” games can be approximated

by feasible payoffs of the original games. Quite surprisingly, a modification of

a key construct from the literature on payoff dependent balancedness, a cor-

respondence from limiting feasible payoffs to distributions of players types4

achieving them, enables us to establish that for large games limiting payoffs

vary continuously with the distribution of player types. With such a corre-

2Payoff dependent balancedness generalizes the well-known notion of Scarf balancedness

for NTU games.
3As they discuss, the intuition behind the Bonnisseau and Iehlé (2007) result comes

from the existence of a general pricing rule equilibrium in an economy with a non-convex

production sectors, as in Bonnisseau and Cornet (1988, 1991) and Bonnisseau (1997),

which show that core payoffs correspond to equilibrium allocations of a suitably con-

structed two-production-set auxiliary economy.
4In interpretation, a distribution of player types reflects a set of players á la Aubin

(1979), where players have different participation rates (see also Florenzano, 1990; Allouch

and Florenzano, 2004).
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spondence in hand, we can bypass approximation of the original games by

balanced cover games and simply appeal to a fixed point argument rather

than to approximating balanced games. An especially interesting aspect of

our proof is that we obtain a limiting payoff set that is the analogue of the

limiting utility function of Wooders (1994) describing TU games with many

players as market games. This paper lays a foundation for further investiga-

tion of many player non-transferable utility games as market games.

More specifically, for sequence of games with growing numbers of players

of each of a finite number of types and arbitrary distributions of player types

we introduce a set of limiting equal treatment payoffs, denoted by Γ, and

a correspondence from payoffs in Γ to distributions of players types able to

achieve them. A limiting equal treatment payoff is approximately feasible

for some group, possibly large, described by the distribution of player types

in the group. We require essentially four conditions for our results:

1. Superadditivity (SA): Any group  of players can realize at least the

payoffs achievable by cooperation only within groups in a partition of

 ;

2. Players of the same type are substitutes (PSTS): The payoff possibilities

set of a group  depends on the types profile of the group and not on

the names of its members;

3. Convexity (CONV): For each group  the payoff possibilities set is

convex;

4. Small group effectiveness (SGE): All or almost all gains to group for-

mation can be realized by groups uniformly bounded in size.

Our result extends that of Wooders (1983) in that our limiting construct

is not restricted to games with a fixed distribution of player types; instead

we consider all sequences of games with growing player sets converging to

some given distribution of types. While we use SGE, Wooders (1983) uses

the apparently milder condition of boundedness of per capita payoffs. We

use SGE since it is easier to work with and closely related. Recall that

Wooders (2008, Theorem 2) uses similar conditions as employed in this paper

to demonstrate that, for games with a compact metric space of player types,

given   0 there is an integer 0() such that all games with more than

0() players have nonempty equal-treatment -cores.
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Although both this paper and Predtetchinski (2005) and Allouch and

Predtetchinski (2008) use the notion of payoff dependent balancedness, their

approaches differ in many aspects from that of the current paper. First,

the current paper deals with a sequence of games defined in characteristic

form with possibly ever-increasing equal-treatment payoff sets. Our frame-

work, as Wooders (1983) and subsequent papers on games with many players,

can accommodate a general class of exchange economies including ones with

(local) public goods and clubs. In contrast, Predtetchinski (2005) and Al-

louch and Predtetchinski (2008) treat a pure exchange economy, where equal-

treatment payoff sets are identical under replications of the total player set.

In our approach, since the set of feasible equal treatment payoffs may be

ever-increasing we must treat appoximate cores and limiting notions. More-

over, the crucial argument in our paper, based on small group effectiveness,

is to show that payoffs achieved in the limit by a distribution of player types

vary continuously with the distribution of player types. However, in Allouch

and Predtetchinski (2008) such a continuity argument is inferred directly

from the upper semi-continuity of utility functions over feasible allocations.

Finally, in our approach we seek a fixed point for an arbitrary limiting dis-

tribution of player types, (both rational and non-rational), unlike Allouch

and Predtetchinski (2008) where the distribution of players type is fixed and

rational.

The paper is organized as follows. In Section 2, we present the basic

features of games with a finite number of types of players. In Section 3,

we present our main result on the nonemptiness of approximate cores of a

sequence of games with a finite number of types of players. Section 4 provides

the proof of our main result and we conclude in Section 5 with a comparison

to the literature.

2 NTU games with a finite number of types

of players

We investigate games with a fixed finite set of player types  = {1     }
Let

N = {( ) |  = 1      and  ∈ Z+}
where Z+ is the set of non-negative integers. Note that N is a countable

set. A group of players is a finite subset of  , with a typical group denoted
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by  ⊂ N  The profile of  , denoted by pro() is defined as follows:

pro() = (pro1()     pro ())

where pro() denotes the number of players of type  in  . Also, let

| | =P∈ pro() denote the number of players in  .

We assume that there is a correspondence V mapping each group  into

a subset of R . For each group of players  the correspondence has the

following properties:

V() is a closed subset of R ;

0 ∈ intV();
V() is comprehensive from below (that is, if  ∈ V() and there is

some  ∈ R such that  ≤  then  ∈ V());
V() ∩R

+ is bounded above.

We also assume that correspondence V satisfies the following properties.
Superadditivity (SA). For any group of players  and any partition

P() = ()

=1 of  into groups with the property that  ∈ V()×R\

for each , it holds that  ∈ V() that is,
\
=1

¡V()×R\
¢ ⊂ V()

Superadditivity implies that any payoff vector that can be realized by groups

in a partition of a group of players is feasible for the entire group of players.

The following notion of substitute players in NTU games was introduced

in Wooders (1983). For NTU games, to capture the notion of substitutes it

is necessary to require not only that substitute players make the same con-

tribution to any group they may join but also that they are interchangeable

when they are both in the same group.

Players of the same type are substitutes (PSTS). For any group of

players  and any two players ( ) and ( 0) (a) if ( ) ∈  and ( 0) ∈
 , given any  ∈ V( ∪ {( )}) it holds that 0 ∈ V( ∪ {( 0)}), where
0 is defined by 00 =  and 0 =  for all  ∈  ,  6= ( ) ( 0) and
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(b) if ( ) ( 0) ∈  , given any  ∈ V() it holds that 0 ∈ V() where
00 =  

0
 = 0 and 0 =  for all  ∈   6= ( ) ( 0).5

Given  = (1      ) ∈ R  for any group of players  define  ∈ R

such that for each ( ) ∈  it holds that () = . When  ∈ V() we
say that  represents an equal treatment payoff in V() Let

Vetp() def= { ∈ R |  ∈ V()}
denote the subset of payoff vectors that represent equal treatment payoffs in

V() Note that Vetp() is nonempty since it always contains the 0 payoff
and is unconstrained for player types that do not appear in  Moreover,

in view of PSTS, it holds that the equal treatment payoff set Vetp() of a
group of players  depends only on the profile pro().6

Convexity (CONV). For each group  ⊂ N the set V() is convex.

Convexity of payoff sets is often used in studies of NTU games and is satisfied

for the special case of games with transferable utility. For our purposes in

this paper, convexity is used to ensure that the average of any finite set of

feasible payoffs is feasible.

Small group effectiveness (SGE). For every   0 there is a positive

integer () such that each group  ⊂ N has a partition P() = ()

=1

with the properties that || ≤ () for each , and

Vetp() ⊂
\
=1

Vetp() + 1

where 1 = (1     1) ∈ R 

5For the reader familiar with Wooders (2008), we note with this requirement, that

players of the same type are substitutes, the correspondence V determines a “pregame”
with a finite number of types.

6To see this, let  and  0 be groups of players with the same profiles. Let  be a type-
preserving one-to-one mapping from  onto  0 (that is, if ( ) ∈  then (( )) = ( 0)
for some 0 such that ( 0) ∈  0). Given a set  ⊂ R , let  ( ) ⊂ R 0

denote the set

formed from  by substituting the values of the coordinates according to the mapping  . In

view of PSTS, it holds that V() = −1 (V( 0)) which implies that Vetp() = Vetp( 0)
Hence PSTS implies that the equal treatment payoff set Vetp() of a group of players 
depends only on the profile pro()
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Small group effectiveness ensures that, given arbitrarily small , almost all

(within ) gains to group formation can be realized by a partition of the

group of players into groups uniformly bounded in size.7

3 The limiting utility possibilities set for NTU

games

Following Scarf’s (1967) definition of an NTU game, with every group ⊂ N
we associate an NTU game ( ) defined by the property that for each

nonempty subset  of  it holds that  () = V()×R\ Thus, given the
player set  , the correspondence V determines the NTU game (in coalitional
function form) ( ) where  is a finite set (the set of players) and  is

a set-valued function that assigns to each nonempty subset  of  (a group

or coalition) a nonempty subset  () of R , called a payoff possibilities set

or simply a payoff set.

A payoff vector for the game ( ) is a vector  in R . A payoff vector

 is feasible for  if  ∈  (). A payoff vector  is in the -core of the

game (  ) if it is feasible for  and if, for every subset  of  ,  + 1
∈ int  (). Informally, a feasible payoff vector  is in the -core if no group
of players can improve upon  by more than  for each player in the group.8

During the proof of the following Theorem, we will use the following

notation: Denote by k·k the sum-metric in R ; that is, for  ∈ R we

have kk = P

=1 || For each point  ∈ R let supp() denote the set

{ ∈  |   0}, called the support of . Let ∆ denote the simplex in R :

∆={ ∈ R
+ | kk = 1} and let int∆ denote its (relative) interior.

Theorem. Assume that V satisfies SA, PSTS, SGE, and CONV. Let {(  )}
be a sequence of games such that ||→∞ and

lim
→+∞

pro()

|| = ∗ ∈ int∆

7While other related conditions appear in the literature, such as boundedness of the

set of equal treatment payoffs and strict small group effectivenes, the condition of SGE,

which precisely limits the power of small groups, was introduced in Wooders (2008) for

NTU games and in Wooders (1992) for TU games. Our notion here of SGE is slightly

more restrictive than that of Wooders (2008) but the difference is simply for convenience.
8This notion of -core is sometimes called the uniform -core.
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Then there exists ∗ ∈ R satisfying the property: for every   0 there is an

integer  such that for each  ≥ , (
∗ − 1) is in the -core of (  ).

Our novel proof is contained in the next Section. In the remainder of this

Section we introduce some notation used in the proof and indicate how the

result is obtained.

Define a subset Γ of R as follows:

Γ
def
=

⎧⎨⎩ ∈ R

¯̄̄̄
¯

There exists  ∈ ∆ ∩Q such that,

for each   0, there exists a group  satisfying
pro()

|| =  and ( − 1) ∈ Vetp()

⎫⎬⎭ 

The set Γ represents equal treatment payoffs that are feasible or approxi-

mately feasible for some group, possibly large, described by the fixed distri-

bution of player types in the group. When ( − 1) ∈ Vetp() we say that

 approximately achieves .

Note that given  ∈ Γ it may be that there does not exist a group  that

can fully achieve , that is, there need not exist a group  such that  ∈
Vetp(); there will exist such a group only if all gains to group formation
can be exhausted by groups bounded in size.9 Note also that, by SA, if

( − 1) ∈ Vetp() then ( − 1) ∈ Vetp( 0
) for every group  0

 containing

a positive integer multiple of players of each type as , that is, for every

group  such that pro( 0
) = pro() for any positive integer .

Given  ∈ Γ, there are multiple groups with different distributions that

can all approximately achieve . Thus, we define the correspondence Π :

Γ⇒ ∆ as follows:

Π()
def
=

⎧⎨⎩ ∈ ∆ ∩Q

¯̄̄̄
¯

For each   0

there exists a group  satisfying
pro()

|| =  and ( − 1) ∈ Vetp()

⎫⎬⎭ 

The set Π() consists of those distributions  of player types for which 

is approximately feasible that is, those distributions of player types that, in

the definition of Γ, are required to exist . Note that the groups  may need

to become arbitrarily large as  becomes small. Note also that nonemptiness

of the set Π() follows immediately from the definitions of Γ and Π.

9That is, unless a form of strict small group effectiveness is satisfied.
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Define the correspondence eΠ : cl(Γ)⇒ ∆ as follows: for each  ∈ cl(Γ)
eΠ() def= { ∈ ∆ | ∃{( )} in G(Π) converging to ( )}

We will show that, for each  ∈ cl(Γ), the set eΠ() is non-empty and convex.
The graph of the correspondence Π is denoted by G(Π) and defined by

G(Π) = {( ) ∈ Γ× (∆ ∩Q ) |  ∈ Π()}

Let G(eΠ) denote the graph of the correspondence eΠ. We will show that
G(eΠ) is the closure of G(Π) with respect to R ×∆.

Our proof proceeds by showing that limiting payoffs vary continuously

with the distribution of player types. That is, we show that eΠ is a con-

tinuous correspondence from distributions of player types to limiting equal

treatment payoffs achievable, or almost achievable, by large games with all

close distributions of players types. We can then appeal to a fixed point

Theorem to obtain the result that there is a point ∗ ∈ ((Γ)) such that

∗ ∈ eΠ() which turns out to be sufficient to prove our main theorem.
4 The proof of the main result

Proposition 1. Let ( ) ∈ R ×∆. Let {( )} be a sequence in G(Π)
converging to ( ) :

(1). If  ∈ ∆ ∩Q then ( ) ∈ G(Π)
(2). For any sequence of groups {} satisfying lim→+∞

pro()

|| =  ∈
int∆ (with possibly

pro()

|| 6= ) and ||→∞, for every   0 there
exists  such that for each  ≥ , it holds that ( − 1) ∈ Vetp()

Proof of Proposition 1.

(1). The proof of (1) has two parts. In Part (a), given the sequence

{( )} converging to ( ), using SGE, we determine a finite collec-

tion of distributions of player types such that for any distribution 0 in the
collection it holds that (− 2

3
1) ∈ V(0) for any group 0 with distribuiton

of types equal to 0. LetM∗ denote this collection of profiles. We use this
result in Part (b) where it is shown that we can restrict attention to distibru-

tions in the collectionM∗.
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Part (a): Let us fix   0. Since  ∈ Π() and thus has rational

coefficients, there exists a group 
 such that

pro(
 )

|
 |

=  and ( − 

3
1) ∈ Vetp(

 )

Since V satisfies SGE, there is an integer ( 
3
) and a partition P(

 ) =

(
)


=1 of 


 such that

Vetp(
 ) ⊂

\
=1

Vetp(
) +



3
1

with the property
¯̄




¯̄
≤ ( 

3
) for each 

 ∈ P(
 ). Since there is only a

finite number of profiles for groups  satisfying | | ≤ ( 
3
) we can denote

their number by a finite integer  and let 1           be a list of

these profiles. Thus, we can write

pro(
 ) =

X
=1



where  is the number of subsets 

 ∈ P(

 ) such that pro(

) = .

Since 0 ≤  ≤ |
 | we can assume, without loss of generality, that for each

 = 1     , the sequence (

|

 |) converges to a real number 
∗
. Let

M∗ = { | ∗  0}
Then it holds that

 =
X

∈M∗
∗ (1)

Thus it holds that

supp() = ∪∈M∗supp() (2)

Moreover, by PSTS, for every group  such that pro() =  for some

 ∈M∗ for all  sufficiently large, it holds that

( − 

3
1) ∈ Vetp() + 

3
1

Rearranging terms, it follows that

( − 2
3
1) ∈ Vetp()
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Since Vetp() is a closed set it holds that

( − 2
3
1) ∈ Vetp() (3)

Part (b): We next show that we can restrict attention to groups with profiles

in the set M∗. Since  ∈ ∆ ∩ Q , there is an integer  such that  has

integer components. In view of (2), for each , the set

A = { ∈ Z+ |  ≥
X

∈M∗
}

is nonempty. Let  = inf A We claim that

lim
→∞

P
∈M∗ 




kk = 

Suppose not. Then passing to a subsequence if necessary, we may assume

that

lim
→∞

P
∈M∗ 




kk = lim
→∞

°°P
∈M∗ 




°°
kk

P
∈M∗ 


°°P

∈M∗ 



°° = ∗

where ∗ ∈ [0 1[ Thus, since  →∞, it also holds that,

lim
→∞

( − 1)−P∈M∗ 



kk = (1− ∗)

Hence, in view of (2), given  ∈]0 1− ∗[, for all  sufficiently large, it holds
that

( − 1)−P∈M∗ 



kk ≥ 

which implies that

( − 1)−
X

∈M∗
 ≥ 0

This implies that ( − 1) ∈ A which is a contradiction to  being the

infimum of A.
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Let ∗
 ⊂ 

 be a group satisfying pro(
∗
 ) =

P
∈M∗ 


 Let also


 be a group satisfying ∗

 ⊂ 
 and pro(

 ) =  Given the

construction of these groups, we have

lim
→∞

|
 \∗

 |
|

 | = lim
→∞

°°−P∈M∗ 



°°
kk = 0

Moreover, by PSTS, SA and (3), it holds that

( − 2
3
1) ∈ Vetp(∗

 )

The equal treatment payoff ( − 2
3
1) is feasible for all groups  in


 with pro() = pro(∗

 ). Consider the payoff vector

(( − 2
3
1) 0

 \) ∈ V(
 )

Take the average payoff vector over all such groups , which yields an equal-

treatment payoff vector that belongs to V(
 ) since CONV.10 For suffi-

ciently large , this average payoff vector will be greater than ( − 1)

.

Hence, it holds that

( − 1) ∈ Vetp(
 )

which implies that  ∈ Π()

(2). In the following, we will show that for any sequence of groups {}
with a limiting distribution of player types given by , for all  sufficiently

large,  can be approximated (in terms of numbers of players of each type)

by groups with profiles in the collection ()∈M∗, which, in turn, implies

that  can approximately achieve the payoff .

We require the following theorem about projections on a convex set.

Projection theorem Let  be a nonempty closed convex set of R .

(i). For any  ∈ R there exists a unique vector () = arg min
∈

k − k2
called the projection of  on .11

10This approach to the “leftovers problem” was initiated in Wooders (1983). Details of

this sort of argument are contained therein.
11As usual, k·k2 denote the Euclidian norm.
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(ii). The vector () can be defined as the only vector with the property

( − ()) · (− ()) ≤ 0 ∀ ∈ 

Let {} be an arbitrary sequence of groups satisfying lim→+∞
pro()

|| =

 (with possibly
pro()

|| 6= ) and ||→∞. Then taking  (and other de-
finitions) as given in the proof of Part (a) in (1) above, let c() denote the

projection of pro() on the convex cone C spanned by ()∈M∗. First,

note that since C is a convex cone spanned by ()∈M∗ it follows from (1)

that  ∈ C We claim that

lim
→+∞

c()

|| = 

Suppose not. Then passing to a subsequence if necessary, we may assume

that

lim
→+∞

c()

|| = 0 6= 

Since  ∈ C and C is a convex cone, it holds that for each 

(||− c()) · (pro()− c()) ≤ 0
or equivalently,

(− c(
)

|| ) · (
pro()

|| −
c()

|| ) ≤ 0

Taking the limit it holds that k− 0k22 ≤ 0, which is a contradiction.
For each , let F = { ∈ [0 1] | pro() −  c() ≥ 0}, which is

nonempty since it contains 0. Let  = max FWe claim that lim→+∞  =

1. Suppose not. Then passing to a subsequence if necessary, we may assume

that lim→+∞  = ∗ for some ∗ ∈ [0 1[ Hence,

lim
→+∞

pro()− (+1)

2
c()

|| =
(1− ∗)
2



Then, since (2) and  ∈ int∆, for some   0, for all  sufficiently large, it

holds that
pro()− (+1)

2
c()

|| ≥ 

13



which implies that
(+1)

2
∈ F This is a contradiction since, for all  suffi-

ciently large, it holds that  
(+1)

2
.

Note that we can write c() =
P

∈M∗ 

 for some real numbers

 ∈ R+ Let
Integer(c()) =

X
∈M∗

[]

where, for any  ∈ R+, [] denotes the integer part of  Let c ⊂  be a

group satisfying pro(c) = Integer(c()). Note that

lim
→∞

| \ c|
|| = lim

→∞
kpro()− c()k+ kc()− Integer(c())k

||
≤ 0 + lim

→∞
kP∈M∗ k

|| = 0

Moreover, from SA and (3) it follows that for a large enough 

( − 2
3
1) ∈ Vetp(c)

Therefore, by CONV, one could subsidize the left-overs ( \ c) so that

( − 1) ∈ Vetp()¥

Proposition 2. There is a bound  ∈ R+ such that for all ( ) ∈ G(Π)
for each  ∈ supp() it holds that   .

Proof of Proposition 2.

Taking again  (and other definitions) as given in the proof of Part (a)

in (1) above, for each  ∈ {1    }, let  denote an arbitrary group

satisfying

pro() = 

 = max
∈supp(pm)
∈Vetp()



and

 = max
=1

 +
2

3

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Clearly,  is well-defined and finite. Let  ∈ supp() From (2) it follows that
 ∈ supp() for some  ∈M∗, which in view of PSTS and (3), implies that
 ≤ ¥

Recall that

G(Π) = {( ) ∈ Γ× (∆ ∩Q ) |  ∈ Π()}

Obviously, given that the domain of G(Π) is Γ × (∆ ∩ Q ), there are some

converging sequences {( )} with each element in the sequence contained
in the graph but the limits of the sequences are not. Given that having a

closed graph is crucial to be able to use a fixed point argument, we get

around this difficulty by constructing an auxiliary correspondence with a

closed graph.

Define the correspondence eΠ : cl(Γ)⇒ ∆ as follows: for each  ∈ cl(Γ)

eΠ() def= { ∈ ∆ | ∃{( )} in G(Π) converging to ( )}

Let G(eΠ) denote the graph of the correspondence eΠ. The following proposi-
tion shows that G(eΠ) is the closure of G(Π) with respect to R ×∆.

Proposition 3. G(eΠ) = cl(G(Π)).
Proof of Proposition 3. Indeed, G(eΠ) = cl(G(Π)) holds from the definition

of eΠ¥
Proposition 4. For each  ∈ cl(Γ) the set eΠ() is nonempty and convex.
Proof of Proposition 4. Let  ∈ cl(Γ)Then there exists a sequence {} ∈ Γ

that converges to . This implies that there exists a sequence {( )} sat-
isfying  ∈ ∆ and  ∈ Π() Since ∆ is compact, passing to a subsequence

if necessary, we may assume that lim→+∞  =  ∈ ∆ Hence  ∈ eΠ().
Hence eΠ() is nonempty.
Now, let 1 2 ∈ eΠ() and  ∈ [0 1]. Then for each   0, there exists

two sequences {(1  1)} and {(2  2)} converging to respectively ( 1)
and ( 2) such that 


1 ∈ Π(1 ) and 2 ∈ Π(2 ), for each . This implies

that 1  

2 ∈ Γ Then there exists two groups 1

 and 2
 satisfying

pro(1
 )

|1
 |

= 1 
pro(2

 )

|2
 |

= 2  (

1−1) ∈ Vetp(1

 ) and (

2−1) ∈ Vetp(2

 )
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Let 12 = (inf{(1 )1 (2 )1}     inf{(1 )  (2 )}) Note that 12 also con-
verges to . Moreover, given that Vetp(1

 ) and Vetp(2
 ) are comprehensive

from below it holds that

(12 − 1) ∈ Vetp(1
 ) ∩ Vetp(2

 ) (4)

Let  = 


, where ,  ∈ Z+ and   , be a sequence of rationals

converging to . Let b1
 
b2
 ⊂ N such that b1

 ∩ b2
 = ∅,

pro( b1
 ) = 

¯̄
2



¯̄
pro(1

 ) and pro( b2
 ) = (

 − )
¯̄
1



¯̄
pro(2

 )

By SA and (4), it holds that

(12 − 1) 1
∪ 2


∈ ¡¡V( b1

 )×R 2

¢\¡

R
1
 × V( b2

 )
¢¢ ⊂ V( b1

 ∪ b2
 )

which implies

(12 − 1) ∈ Vetp( b1
 ∪ b2

 )

Moreover, note that

pro( b1
 ∪ b2

 )¯̄̄ b1
 ∪ b2



¯̄̄ =
 |2

 | pro(1
 ) + (

 − ) |1
 |pro(2

 )

 |1
 | |2

 |
= 1+(1−)2 

Hence

(12 
1 + (1− )2) ∈ G(Π)

which, by taking the limit, implies that

( 1 + (1− )2) ∈ G(eΠ)
Thus, eΠ() is convex.¥
The set cl(Γ) is a nonempty, closed, and comprehensive from below subset

of R . Note that the set cl(Γ) is a proper set of R . Define  as the set


def
= cl(Γ) ∩ [−∞  + 1] 

where  is defined in Proposition 2. A point  ∈ belongs to the boundary

of  if and only if either  ∈ (cl(Γ)) or  =  + 1 for some  = 1      .
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Proposition 5. There is a homeomorphism  from the space ∆ to the space

 ∩ [−1+∞[ such that () = −1 whenever  ∈ ∆ and  ∈  \ supp().
Proof of Proposition 5. Let  ∈ ∆ be given. Let  be the ray emanating

from −1 = (−1    −1) in the direction of . Thus, every point  of  is of
the form  = −1+  for some non-negative real number . It is clear that,

since  is closed, comprehensive from below, and bounded from above, 

intersects the boundary of  at exactly one point.

To see that  does intersect  observe that −1 belongs to both the
set  and the ray . Thus, the set 1 = ∩ is nonempty. Furthermore,

there is a  ∈  such that  ≥  + 1 for some  ∈ supp(), so that 
lies outside the interior of  Therefore, the set 2 =  ∩ (R\ intW) is
nonempty. Thus, 1 and 2 are nonempty closed subsets of  whose union

is . By connectedness of , the set 1 ∩2 =  ∩  is nonempty.

To show that the intersection of  and  is a singleton, suppose that

the set ∩ contains two distinct points  and . Thus,  = −1+ and

 = −1+ for some non—negative reals  and . Without loss of generality,

we can assume that   . For each  ∈ supp(), we have      + 1.

For each  ∈  \ supp() (possibly empty), we then have  =  = −1. Note
that since  ∈ cl(Γ) it is easy to check that

̂ =

½
 if  ∈ supp()
0 otherwise

also belongs cl(Γ) Since   ̂ for each  ∈  it follows that  is in the

interior of cl(Γ) Moreover, since    + 1 for each  ∈  , it follows from

comprehensiveness that  is in the interior of  , which is a contradiction.

Define the map  from∆ to ∩[−1+∞[ by letting () be the unique
point in the intersection of the ray  and the set  We now demonstrate

that  has an inverse. Let  denote the map from  ∩ [−1+∞[ to ∆

given by the equation

() =
 + 1P

∈ ( + 1)


The map  is well-defined since the point −1 lies in the interior of  It

is easy to see that  is indeed the inverse of , that is,  ◦  and  ◦ 
are equal to the respective identity maps. Clearly,  is a continuous map.

Furthermore, because its domain is compact and the codomain is Hausdorff,

it carries closed sets to closed sets. Therefore,  is also a continuous map.

This proves that  is a homeomorphism¥
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The rest of the proof relies on the Talman and Yang (2009) version of

the well-known Fan’s coincidence theorem, as stated below. That Theorem

addresses a domain consisteing of a nonempty and convex subset  of R .

For ease of translation of the Theorem to our context we restrict the domain

to be the simplex in R . Let(∆ ) = { ∈ R | (−0)> ≥ 0 for each 0 ∈
∆} denote the normal cone of the set ∆ at the point . A zero point of a

correspondence Φ : ∆ ⇒ R is a point  of ∆ such that Φ() contains the

zero point.

For ease in reading, we state the following result using the simplex rather

than an arbitrary compact convex set.

Theorem. (Talman and Yang). Let Φ : ∆⇒ R be a correspondence with

nonempty convex values having a compact graph. Suppose that for each

 ∈ ∆ and for each  ∈ (∆ ) there exists a  ∈ Φ() such that > ≤ 0.
Then, Φ has a zero point.

Proposition 6. There exists ∗ ∈ (cl(Γ)) such that ∗ ∈ eΠ(∗).
Proof of Proposition 6. Define the correspondence Φ : ∆ ⇒ R by letting

Φ() = eΠ(()) − {∗} for each  ∈ ∆. Clearly, the correspondence Φ has

nonempty and convex values. Its graph is closed, because  is continuous

and the graph of eΠ is closed. Since Φ maps a compact set ∆ into a compact

set ∆− {∗}, its graph is, in fact, a compact set.
We now need ti verify that the conditions of the above fixed point theorem

are satisfied. Let  ∈ ∆ be given and let  denote the vector (). Then, the

normal cone of ∆ at  is the set

(∆ ) =
n
 ∈ R

¯̄
 = 1+

P
∈\supp() e  ∈ R  ≤ 0

o


where (e1     e ) is the standard canonical basis of R  Let  ∈ (∆ )

be given. If supp() =  then every  ∈ (∆ ) is proportional to the

vector 1. In this case, since Φ() ⊂ ∆− {∗} the equality > = 0 holds for
each  ∈ Φ(). If  \ supp() is nonempty, then,  = () = −1 for each
 ∈  \ supp(). Let ̂ ∈ ∆ defined as follows

̂ =

⎧⎨⎩
̂ = ∗ +

1
|\supp()|

P
∈supp() 

∗
 if  ∈  \ supp()

0 otherwise
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and {(̂)} be a sequence in ∆ ∩Q such that lim→+∞ ̂ = ̂ and ̂ = 0,

for each  ∈ supp(). Let  be a group satisfying

pro()

|| = ̂

Since  = −1 ∈ intV() it holds that ̂ ∈ Π() for each , which

implies ̂ ∈ eΠ() = eΠ(()). The vector  = ̂− ∗ is therefore an element of
Φ(). Since 0 ≤  for each  ∈  \ supp(), the inequality > ≤ 0 holds for
each  ∈ (∆ ). By Fan’s coincidence theorem, the correspondence Φ has

a zero point, say ̃. Letting ∗ be equal to (̃), we see that ∗ ∈  and

∗ ∈ eΠ(∗). Since ∗ ∈ int∆ it follows from (taking the limit in) Proposition

2 that ∗   + 1 for each  and thus ∗ ∈ (cl(Γ))¥
Finally, Proposition 6, together with (2) in Proposition 1, implies that

for every   0 there exists  such that for each  ≥ , (
∗ − 1) is in

the -core of (  ).¥

5 Some relationships to the literature

To relate our work to the literature we begin with Wooders (1983). We note

that the results of that paper have played a role in much subsequent work

on cooperative games with many players (see, for example, Wooders (1994)

and Kovalenkov and Wooders (2001, 2003) and on economies with clubs or

local public goods (see, for example, Wooders, 1997; Conley and Wooders,

2001; Allouch and Wooders, 2008).

Before proceeding we require another definition:

Per capita boundedness (PCB): The correspondence V satisfies per

capita boundedness if there is a constant  such that if  ∈ Vetp() then
 ≤  for each  such that ( ) ∈  for some .

Note that PCB is less restrictive than SGE but when there are many

players of each type then the two concepts are closely related. Following is a

re-statement of the main Theorem of Wooders (1983) using the notation of

this paper and Lemmas in Wooders’s proof.

TheoremWooders (1983). Assume V satisfies SA, PSTS, PCB, and CONV.
Let  ∈ int∆ ∩ Q and let {(  )} be a sequence of games such that

19



||→∞ and, for each ,

pro()

|| = 

Then there exists ∗ ∈ R satisfying the property: for every   0 there is an

integer  such that for each  ≥ , (
∗ − 1) is in the -core of (  ).

Note that  can be any vector in int∆ ∩ Q . Thus, for sequences of

games where all games in the sequence have the same percentage of players

of each type, the main Theorem of Wooders (1983) implies the result of this

paper. The proof, however, is quite different. In some sense Wooders (1983)

approaches the limiting payoff ∗ “from below” while the current paper starts
with defining a limiting set for every possible player profile. Essentially,

Wooders’s proof shows that the limit of the set of equal treatment payoff

vectors achievable by a sequence of games with a fixed distribution of player

types is the same as the limit of those equal treatment games achievable by

the associated squence of balanced cover games. In contrast, we look directly

at the limiting sets. We also show that the sets of equal treatment payoffs

vary continuously with as the distribution of player types varies. Our result

also extends that of Wooders (1983) since she treats a fixed distribution of

player types while we treat all sequences of growing games converging to the

same limiting distribution of player types; this difference is reflected in the

part of our proof using the Projection Theorem.

Our work in this paper also relates to Wooders (2008) which considers a

compact metric space of player types and demonstrates non-emptiness of ap-

proximate cores for all sufficiently large (but finite) games derived from the

structure. That paper uses somewhat different conditions than the current

paper and has a different purpose — namely to relax the finite-type assump-

tion, so we will not discuss the relationships in any detail.

6 Conclusions

We present an extension of the main result of Wooders (1983). In work in

progress we use our approach in this paper to relate the Aumann-core (with

coalitions of positive measure) and the  -core of Kaneko and Wooders (1986,

1996)12 and show their equivalence for games with many players.

12See also Hammond, Kaneko and Wooders (1989).
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