ANALYSIS AND DESIGN
OF
PIEZOELECTRIC SONAR TRANSDUCERS

Gerard Christopher Rodrigo

Department of Electrical and Electronic
Engineering,
Queen Mary College,
London E.1.

Thesis presented for
the Degree of Doctor of Philosophy
of the
University of London

August 1970



ABSTRACT

In this study techniques are developed for the
analysis and design of piezoelectric sonar transducers based
on equivalent circuit representations.

For the purposes of analysis, equivalent circuits
capable of accurately representing every element of a
transducer in the full operating frequency range, are
developed. The most convenient fashion in which these
equivalents could be derived is also discussed. For the
purposes of design the accurate equivalents are approximated
by L-C-R circuits. The limits of both representations
are discussed in detail.

The technique of analysis developed is capable of
determining the frequency characteristics as well as the
transient response to any electrical or acoustic input
which can be specified analytically or numerically in the
time domain.

The design technique is based on the formulation of
a ladder-type generalized circuit incorporating the
essential components of any transducer. The generalised
circuit is then used to extract particular bandpass filter
designs which possess wide passbands and which are
mechanically realizable. By this procedure it is found
possible to design transducers exhibiting bandwidths of
around 100%.

The performance of a 'test' transducer constructed
to verify both analysis and design theories is also

discussed.
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LIST OF MAIN SYMBOLS

Radius of radiating face

Cross-sectional area normal to the direction of
propagation of longitudinal waves

Inverse of the bandwidth g
Velocity of longitudinal waves
c(l-kgs)i; effective velocity in a ceramic stack

Generic symbeol for electrical capacitance and
mechanical compliance in the impedance analogy

Bond compliance
Low frequency compliance of a ceramic stack
Electrical capacitance of a ceramic segment

Effective component of the piezoelectric tensor
(strain/field at constant stress)

Electric flux density

Electric field

Frequency

(flfz)i; centre frequency

Cut-off frequency at lower half-power point
Cut-off frequency at upper half-power point
Frequency of resonance

Complex representation of force

Effective component of the piezoelectric tensor

(electric field/stress at constant D)
Electrical conductance
Instantaneous value of current
Complex representation of current
(-1>?

2v/)2; wave number
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d 33° €33

33/(S

Effective electromechanical coupling factor

Coupling factors associated with filter circuits
2 . .

keff/(l - keff)i; measure of effective coupling

Low frequency value of K

Generic symbol for electrical inductance and mass
in the impedance analogy

Mass of the radiating head
{C/(C+Cb)}%; correction factor for bonding
Number of segments in a ceramic stack

Power radiated or absorbed from the supply by a
transducer

Maximum power that can be delivered from a given
supply (see equation (4.2))

Quality factors associated with filter circuits

Output or mechanical Q of a transducer

Terminating resistance of normalized filter circuits

Generic symbol for electrical and mechanical

resistance and in particular radiation resistance

Generator resistance
Radiation resistance

Laplace transform variable

Effective component of the elastic compliance tensor

at constant D

523/(1‘k§3)5 effective component of the elastic
compliance tensor at constant E

Time
Stress
Instantaneous velocity

Instantaneous voltage



' Complex representation of voltage

Vg Supply voltage

X = 2ak

X Length in the direction of propagation of

longitudinal waves

X Radiation reactance

Y Generic symbol for admittance

Y Young's modulus

yA Generic symbol for electrical and mechanical
impedance

Zo = pAc; mechanical characteristic impedance

Z, Radiation impedance

B = (fz-fl)/(flf2)%; fractional bandwidth

) Dirac delta function

e§3 Free dielectric constant

A Wavelength of longitudinal waves

n Function of coupling (see equation (4.u40))

£ Particle displacement

p Density

¢ Electromechanical transformation ratio

X Packing factor of a transducer array

w = 2xf; angular frequency

wos W, 2w x corresponding frequency (see above)

etc.

@ Actual centre frequency of a normalized filter

network



CHAPTER I

INTRODUCTION

l.1. Aims and Scope of Study

The objectives of this study are twofold. First
the development of a general technique of analysis applicable
to piezoelectric sonar transducers, based on electrical
equivalent circuits which accurately represent the transducer
in the sonic range. Second, the investigation of the
possibility of extending the bandwidth of piezoelectric
sonar transducers, by a systematic design technique based on
equivalent circuits.

The scope of the study is restricted to the commonly
used extensional type transducers, which employ longitudinal

mode operation of the main constituent mechanical elements.

1.2. Use of Equivalent Circuits

The analysis of complex electromechanical systems,
by means of the direct solution of the intrinsic differential
equations, is fraught with difficulties. The preferred
and well-established method of attack is to formulate the
related 'steady-state' or frequency domain problem in terms
of an analogous electrical circuit. The latter problem is
generally much more tractable on account of the powerful and
well-developed techniques of electrical circuit theory.
The recently developed method of modern systems theory,
employing the state-space formulation, is advantageous in

that it finds the time domain solution directly, while



simultaneously tracing all the variables. At present,
however, its scope is severely limited in comparison with
the equivalent circuit technique. A further advantage of
the equivalent circuit method is that once the basic
analogies are set up, it is usually much easier to form the
equivalent circuit than to derive the intrinsic system
equations. Thus in sonar transducer design and analysis
in general and in this study in particular, the equivalent
circuit method is used. Where required, the time domain
solutions are obtained from the steady state responses by
inverse Fourier transformation.

In the formulation of a circuit representation of a
mechanical system, two alternatives are possible: depending
on whether the impedance analogy or the mobility analogy is
used. The two alternatives, however, are dual networks
and easily interconvertible. The subject of mechanical
analogies is briefly dealt with in section 2.2. In this
study both analogies are employed, depending on suitability
for a particular purpose. For the sake of convenience,
however, equivalent circuits are written in the impedance
analogy, unless specifically stated to the contrary.

Until quite recently, most sonar transducer

1-3 have employed the approximate lumped element

studies
model; a series resonant circuit in parallel with the
electrical capacitance. The elementary theory of transducer
design and operation, including the derivation of this

approximate equivalent circuit, is outlined in section 2.4.
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The inadequacies of this representation, however, had been
felt as far back as the Second World War, in the light of

greater demands on power handling capacity, bandwidth and

frequency of operation. Increasing discrepancies between
predicted and measured performance has now made imperative
the use of more accurate representations, valid throughout
the operating frequency range.

The first attempts at updating the simplified
equivalent circuit, consisted of corrections for the losses
in the ceramicz, bolt and bond compliancesu and even for the
distributed nature of the ceramic and end mass propertiess.
These corrections have not proved to be of much use as they
were still based on the approximate lumped equivalent.
Recently, however, a successful analysis routine based on
an accurate representation of all transducer components, has
been briefly outlined by Beckens. The method involves the
solution of a complex equivalent circuit, which is only
feasible as a result of the development of high speed,
digital computers.

Thus, the primary task of this study is the
development of accurate equivalent circuits to represent
every element of a composite transducer in the full operating
frequency range. This is done in Chapter 3, together with
the derivation of the geometric limits on the elements to
satisfy a prescibed accuracy of representation. These
circuits are such that they account for the distributed mass
and compliance of both piezoelectric and non-piezoelectric
elements, wherever necessary. The effects of the extra

compliance introduced by the resin bonds of a ceramic stack
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have also been derived, it is believed, for the first time.
For the purposes of design, the lumped element approximations
of the accurate equivalent circuits are derived as well in
Chapter 3.

The success of any analysis technique ultimately
hinges on the accurate circuit representation of 'radiation
loading' which is the reaction of the fluid medium on the
vibrating piston. The accurate representation of the
radiation loading in arrays has been made possible by the

28 on the average radiation impedance

recent work of Morris
of regular plane arrays. Morris' results are scrutinized

in section 3.7 and recast in a form suitable for analysis

and design, as an equivalent constant 'mass' and resistance.

The accuracy of the complete transducer representation
is estimated at within + 5% in analysis. For the purposes
of design, however, a marginof 10% error is tolerated to
effect the lumped element reduction. The frequency range
in which the equivalent circuits and the above estimates are
valid is 0-15 kHz, it being assumed that the upper cut off
frequency of any practical transducer is under 15 kHz.

A peculiarity of the accurate equivalent circuits
developed in Chapter 3, is the trigonometric frequency
dependence of individual impedances. Computationally,
however, this is of little consequence and these elements

are no more difficult to handle than the more orthodox

circuit elements.
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1.3. Analysis

The technique of analysis employed in this study is
based on the accurate equivalent circuit representation
outlined above. Since it is found possible to represent all
transducer components to within 5% accuracy in the full
frequency range of interest, the technique is considerably
superior to the approximate methods used formerly. Though
a similar representation has been used by Beckens, it is
believed that the intersegment bonding in the ceramic, has
not been accounted for in his equivalent circuit.

The impedance analogy equivalent is generally more
convenient for the purpose of analysis than the mobility
equivalent. In this study the impedance equivalent of the
complete transducer is derived from the mobility equivalent
which is formulated first. The formulation of the mobility
analogue and its transformation to the impedance form, are
both relatively simple operations. The direct formulation
of the impedance equivalent on the other hand, is a formidable
task in the case of complex mechanical systems.

Consequently the procedure adopted here is an improvement
on current analysis practice (including that of Becken)
which employs the latter method.

Further it has been found possible to cast the
impedance analogy representation of any extensional type
transducer as a slightly modified ladder network. Since
this network could be analysed almost as easily as a ladder

network, the resulting circuit analysis problem is
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considerably simpler than that encountered by Becken.

This circuit is used to calculate the frequency
characteristics of the transducer. The derivation of the
complete equivalent circuit and its subsequent analysis is
described in Chapter 5.

The derivations of the transient responses of the
transducer to voltage step and other inputs, is also
considered in Chapter S. The step response is derived from
the frequency characteristic by inverse Fourier trans-
formation. The response to other inputs is then cobtained
from the step response by time domain convolution with the
derivative of the input. The great advantage of this method
is that it is applicable to any system whose frequency
characteristic can be computed or measured. Further, the
convolution technique is able to handle any input which can
be specified algebraically or numerically, in the time
domain.

Analysis has also been performed with the approximate
lumped element representation of transducers by means of a
simpler method. This method is briefly outlined in section
5.4, The scope of the method is restricted to ladder
networks consisting of conventional electrical elements and
formulated in an impedance and frequency normalized form.
Though this method is inferior to the above analysis technique,
it is extremely useful in computing the characteristics of

the normalized filter networks on which design is based.
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Transcripts of the analysis routines, which are

written in Fortran, are included as Appendices.

l.4. Design Theory

The criteria, on which the design of sonar transducers
attempted here is based, are the realization of as large a
fractional bandwidth as possible, with reasonably steady
values of input impedance and group delay in the paseband.
Wide operating bandwidths are needed for the achievement of
better 'object resolution' and for more efficient signal
processing against background noise and reverberationl’s.
Since the characteristics of the supply amplifiers are
affected by the load, it is also necessary to ensure that the
input admittance of the transducer does not fluctuate too
widely. The group delay is an import#ht factor in array
operation since the directivity of the array is controlled
by the relative phase of the electrical inputs.

The subject of transducer design is treated
systematically in Chapter 4. The approach adopted there is
to formulate a generalized ladder-type equivalent circuit
description of possible transducers and to then derive the
conditions for broadband operation. The first step in this
process is to reduce the transducer essentials to their
simplest form. The practical constraints imposed by the
transducer essentials and their consequences in terms of
optimum performance, are then derived from the generalized

circuit. Finally, it is attempted to synthesize realizable
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broadband circuits, the performance of which approach the
theoretical optimum.

The derivation of realizable broadband circuits is
not, however, attempted on an a priori basis of transfer
function synthesis. Rather, the store of available filter
design data is scanned to pick out those circuits which
satisfy the design criteria and which could be built around
the transducer essentials. The parameters of the suitable
filter circuits are then adjusted within the limiting
constraints for optimum performance.

In practice the choice of suitable filter circuits,
is severely limited by the practical constraints. It is
shown in section 4.1, that both high pass and low pass filter
types are excluded. Of available bandpass circuits,
only two types are suitable - the 'analogous' or 'canonice'
circuits derived from the canonic low pass to band pass
transformation, and the coupled rescnator bandpass circuits.
The circuits could also be based on a variety of different
lowpass approximations (such as Butterworth, Chebychev, etc.)
and be of two pole or three pole construction. Circuits
of order higher than three pole are excluded on account of
their complexity.

In section 4.5 the advantages and disadvantages of
all these possibilities are investigated and a procedure is
evolved to choosethe most suitable of them for mechanical
realization. It is found that the three pole coupled

resonator designs based on equally terminated Butterworth
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and low-ripple Chebychev lowpass prototypes, are the most
convenient to realize mechanically. The performance
characteristics of the Butterworth design are, however,
superior to that of the Chebychevs.

It is believed that the procedure described above
is an original contribution to the design of piezoelectric
sonar transducers. The extraction of transducer designs
satisfying prescribed performance criteria from a
generalized equivalent circuit description with reference to
realizable broadband filter circuits, has not been
previously attempted. Furthermore, the systematic design
procedure developed, is a considerable improvement on
conventional design practice, which is somewhat empirical
in nature.

By the procedure outlined above, it is found possible
to design transducers possessing bandwidths of the order of
100%. This value is a great improvement on the bandwidths
of around 20% realized with conventional designs. The
broadband designs are also not much more difficult to

construct than the conventional types.

1.5. Experimental Verification of Theory

A 'test' transducer was constructed and tested to
verify the equivalent circuit representation assumed in both
analysis and design. The design was based on a predominantly
mechanical, three pole Butterworth coupled resonator band
pass filter. The test design is similar to but not identical
to the transducer designed in Chapter 4.

The test transducer was also analysed by means of the

analysis technique developed. The experimentally determined
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characteristics are presented and compared with the computed
results in Chapter 6. The difference between the predicted
and measured performance, while not being of unacceptable
magnitude (around 10%), is indicative of certain short-
comings in the equivalent circuit representation. In
section 6.2 it is attempted to locate the cause of this
discrepancy. The design improvements inferred from the
performance of the test transducer are incorporated in the

transducer designed in section u4.6.
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CHAPTER 2

PRELIMINARY CONSIDERATIONS

The theory of conventional sonar transducer design
and operation is well treated in the literaturel™3, In
this chapter, it is proposed to merely outline the salient
features of the subject, to serve as an introduction to the
more rigorous and detailed treatment of subsequent chapters.
The chapter is introduced with a survey of piezoelectric
materials that have been used in sonar transducers and the
criteria which govern the optimum choice. This is followed
by a brief account of the mechanical analogies, on which
the equivalent circuit representations are based. The
elementary theory of composite sonar transducers is
presented in section 2.4 with details of the main
constructional features. This is preceded by the
derivation of the complete equivalent circuit representation
of the commonly employed 'length mode' excitation of a
uniform piezoelectric resonator. Finally the constructional

features of a ceramic stack designed for high power

operation are described.

2.1. Piezoelectric Materials for Sonar Transducers

Though a wide variety of transducer types are
possible, operational sonar equipment has up to now
incorporated either piezoelectric or magnetostrictive

transducer materials. The latter is beyond the purview of
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this study. The former could be divided into two types;
the naturally piezoelectric crystals and polarized ceramic.

Crystal devices have usually employed cut quartz,
Rochelle salt or ammonium dihydrogen phosphate (ADP). of
these, ADP was the most widely used until about 1956 when
the operating frequencies were generally in the ultrasonic
range. Subsequently crystals have been largely displaced
by piezoelectric ceramics, which are more readily adaptable
to sonic range operation. These are currently employed in
sonar devices as in most other high power applications.

The inferiority of crystals is broadly with respect to their
mechanical strength lower piezoelectric coupling, lower
permittivity and lower resistance to severe ambient
conditionss.

The ceramics most commonly used are the barium
titanate types and lead zirconate titanate with trace
additives (the PZT-types). Such ceramic materials are
strongly electrostrictive and exhibit the piezoelectric effect
on polarization. This is effected by heating the cast
ceramic above the Curie temperature and allowing to cool under
a high electric field when remanent polarization is induced
in the direction of the field. The properties of the
polarized ceramic are isotropic in directions perpendicular
to that of the remanent polarization. The driving force or
voltage may be applied parallel to or perpendicular to this

direction, depending on which mode it is desired to excite.
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The method of manufacture of the ceramic (casting)
makes possible a variety of shapes and sizes. In most high
power applications, however, it is customary to use solid
eylindrical or tubular construction with axial polarization
and excitation. The advantage of this mode (referred to as
the longitudinal, length or bar mode with parallel
excitation) is that it has the highest practically attainable
electromechanical coupling coefficient. The coupling
coefficient determines not only the fraction of energy
'coupled' mechanically but also the maximum attainable
bandwidth.

Even within the range of available piezoelectric
ceramics, a wide variation of properties is obtained. The
coupling factor for instance ranges from around O.4 (for
barium titanate types) to 0.7 (for PZT types). For use in
sonar transducers, as in all high power applications, the
following ceramic properties are highly desirab1e3’7.
1. High length mode coupling (see above).

2. Low dielectric loss. This is essential in high power
applications to keep the ceramic temperature well below
the Curie point. Efficiency is also affected, but this
is too small to be of consequence.

3. High Curie temperature to reduce the risk of thermal
depolarization by the dielectrically generated heat.

4. High temperature and time stability of the ceramic
parameters.
Schofield2 uses the expression k233/tan6 as a

measure of the suitability of a particular ceramic for sonar
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transduction. Its highest value is obtained with PZT-4
or PXE-4 ceramics. For these ceramics, the coupling factor
is around 0.7 and tané is below 0.02 under normal operating
conditions. They also possess high Curie temperatures in
the region of 300 - 340 °C.

In spite of the obvious superiority of the PZT-4
types, barium titanate is often used on account of ease of

manufacture, especially when wide bandwidths are not desired.

2.2. Electromechanical Analogies

The use of analogous electrical circuits for the
solution of vibration problems of mechanical systems, is
well establishede-lo. The impedance (or Z) analogy sets
up the correspondence

force - voltage
velocity - current .

The more recent mobility (or Z’l) analogy employs
the alternative equivalence of

force - current
velocity - voltage .

The consequences of these two analogies, in terms of
mechanical element-electrical element correspondence, follows
directly from the above relations. The derivation of
mechanical analogies is well treated in the literatures-lo.
The most important of these equivalences are set out
schematically in Figure 2.1. Here, all elements are
considered in relation to a reference frame, viz., the

'mechanical earth', which is identified with the electrical

earth line in the mobility analogy. The instantaneous
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values of force and velocity, F and u respectively,
ugsed in Figure 2.1 could be replaced by the r.m.s. values,
provided the time differentials in the defining equations
were also replaced by a factor jy, where  is the angular
frequency. It is important to note that the correspondence
indicated in the diagram between the directions of 'input
force' and input current, etc., implies the 'compression
positive' rule for stress, which is assumed throughout the
text. The two terminals of every mechanical element are
marked by the small circles. The H- configuration is used
in the schematic representation of mass, because the second
terminal of any rigid mass is the reference earthlo.

The following conclusions from the presentation of
Figure 2.1 are of particular relevance to this study.
1. Since the impedance equivalent is the dual or
resistance reciprocal of the mobility equivalent in every
case, the two representations are easily inter-convertible.
In this respect it is useful to note that on conversion, a
node is replaced by a mesh and vice versa.
2. The most striking feature of the mobility anaology
is the preservation of the topological form of the schematic
representation, even as regards mechanical open and short
circuits (which are not shown in the figure). Since this
greatly facilitates the derivation of equivalent circuits,
the equivalents of complex mechanical systems are always
initially 'written' in the mobility analogy. The topological
similarity is really a reflection of the intrinsic harmony
of the force-current, velocity-voltage analogy. Whilst

velocity and voltage are both measured with respect to some



- 25 -

reference, force and current are 'absolute' measures.

The preservation of an easily identifiable reference is in
fact an added advantage of this particular analogy.

3. A short circuit to earth is effected by the attachment
of a very large, rigid mass to the relevant terminal. The
more obvious method of 'connecting to earth' through a very
low compliance is no solution for it then poses the problem
of locating a satisfactory earth, which again has to be a
large rigid mass.

4., An open circuit is realized either by a free terminal
or a highly compliant‘support.

5. The series capacitance in the mobility analogy and
the parallel inductor in the impedance representation have

no mechanical counterpart. This is a serious limitation
from the standpoint of circuit synthesis employing mechanical
elements.

Though the superiority of the mobility analogy has

11, 12, the impedance analogy

been demonstrated in general
continues to be widely used in the study of piezoelectric
devices. This is partly because the use of the latter
obviates the need for the inclusion of a gyrator, which is
mandatory in the mobility representation of piezoelectric
devices (see section 5.1).

2.3. Derivation of the Equivalent Circuit of a

Longitudinally Poled Piezoelectric Bar for

Parallel Excitation (after Masonl® and Redwoodlq

)

Figure 2.2. depicts the length mode excitation of
a uniform piezoelectric bar of area A and length X. The

exciting voltage v is applied across the electrodes €18,
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which are also the mechanical boundaries of the bar. The
electric field and the particle displacement at the section
t't" are denoted by E and g respectively. T is the
stress (compression positive) at t't" and D is the flux
density throughout the bar. The forces and velocities at
the boundaries are indicated in the figure. All variables
are functions of position x and time t, except D, i and v
which are dependent on t alone.

The piezoelectric equations for pure length mode

excitation are shown3 to be

35 = 83D - ST (2.1)
E=8lp T (2.2
= P33P - 833 -2)

where 333, Sga are the relevant components of the piezo-
electric tensor (electric field/stress at constant D) and

the elastic compliance tensor at constant D respectively.

T
B33

dielectric constant. It is also easily demonstrated that

(= 1/¢§3) is the relevant component of the free

T _ 2 2
T -p3~§/at (2.3)
2
v = J E dx (2.4)
1
i = A dD/dt (2.5)

where p is the density of the material. Differentiating
equation (2.1) with respect to t and substituting u for the

particle velocity ?3¢/3t

au _ 9 D
32 % - 33(S35T - 835D) . (2.6)
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If T is replaced by F/A (where F is the total compressional
force at the plane x) equations (2.3) and (2.6) are readily

cast into the form

au - o D -1 t

I - 833A .3aF'/at (2.7)
aF’ du
ax - - DA.at (2.8)

where F' = F - A.Dg33/S (2.9)

D

33 *
Now equations (2.7) and (2.8) are similar to the equations
for current and voltage on a lossless transmission line.
Therefore the variables u and F' could be represented by

the current and voltage on a lossless line of propagation

velocity c and propagation constant Zo given by

D ,~%
= (9833) (2.10)

Q
!

Z

o pAc . (2.11)

Since the second term of the 'voltage' F' is
independent of x, F' could be replaced by F, provided the
lower end of the line was biassed to the 'voltage v' above

the mechanical earth (see Figure 2.3) where

D

33 ° (2.12)

v! = AD.g33/S

This converts the line into a true impedance analogy
representation of the force and particle velocity along the
length of the piezoelectric bar. Also, substituting for E
in equation (2.4) from equation (2.2) and eliminating T and
D (by means of equations (2.1) and (2.5)) it is easily shown

that
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dv _ D
_ T 2 D
where Co = A/{X(B33 + g33/833)} . (2.14)

The rest of the equivalent circuit is derived from equations
(2.12) and (2.13) to yield the complete representation of

Figure 2.3 where

¢ = C_gq3/Sh, (2.15)

is the conversion ratio of the electromechanical trans-
former.

A more detailed derivation of the equivalent circuit

14 17

is given by Redwood™ " and Martin~'.

2.4. Elementary Theory of Conventional Composite
Transducers

The simplest method of piezoelectric sound generation
is the excitation of a single ceramic bar (such as depicted
in Figure 2.2) at its fundamental resonance. In practice,
the ceramic block is mass loaded at the ends, in the manner
illustrated by the prototype of Figure 2.4. The advantages
of this arrangement are as follows:
1. The natural resonant frequency is lowered by the
extra mass. It is thus possible to use shorter blocks of
ceramic, which considerably reduce the manufacturing problems.
2. The ceramic is fully utilized unlike in the
elementary resonator where only the central portion is active.
Consequently the dielectric and mechanical dissipation is
lower. The dynamic or effective coupling is also much higher

and almost equal to the static value.
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3. Since the radiating area is increased, a better
impedance match to a fluid medium such as water, is
possible.

4, Heat dissipation problems are considerably reduced.

The (Z-analogy) lumped equivalent circuit of this
composite transducer, is given in Figure 2.5 (see section 3.3
for derivation). The correspondence between the mechanical
elements and the circuit representation is indicated by the
suffices in the latter which correspond to the parenthesised
symbols of the former. The two masses are represented by

Ll, L, and the ceramic compliance by Cc. The radiation

2
load on either side is accounted for by R1 and R2. In the

elementary theory of transducers, it is customary to neglect
the mass of the ceramic and assume plane wave radiation from

the two faces Al' A2 whence

R c,A (2.16)

1 T f1%147> R

2 T P2Coh, .

Here p, ¢ refer to the density and velocity of propagation
of the fluid media. The values of the electrical
capacitance Co’ the electromechanical transformation ratio
¢ and the ceramic compliance Cc in terms of the basic ceramic
parameters, is given in section 3.2. The dielectric loss
is accounted for by the resistance Rd.

In practical sonar transducers, one side (say 1) is
exposed to the fluid medium in which it is desired to transmit
sound. The other (2), is commonly 'air backed'. The mass

L, is then referred to as the radiating mass and L2 as the

1
countermass. Since the countermass is usually about an
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order of magnitude greater than the radiating mass, the

branch containing L2’ R, may be deleted from the circuit
without incurring significant loss of accuracy in the vicinity
of the resonance of Cc and Ll. The resulting circuit, that
of Figure 2.6, is the one most commonly used in elementary

2,3

analyses of composite transducers The most relevant

results of such analyses are summarized below.

1. The operating (or centre) frequency of the transducer is
given by
2

w, T llLlcc . (2.17)

The approximate representation of Figure 2.6 is
valid up to around W, provided Ll is an order of magnitude

greater than the ceramic mass.

2. The mechanical or output Q is defined as

Q, = w.Ly/R; . (2.18)

m
For conventional designs Qm is typically in the range 3-8,

3. If E is the electric field in the erami , it can be
shown3 that the p wer Pr per unit volume of the ceramic
delivered to the mechanical side of the circuit is given by

. .2.2 T
Pr - er kefftsa Qm *

(2.19)
Here keff is the effective coupling factor (see below).

4. The dielectric loss per unit volume of ceramic is

- 2T
Pd = wE €33 tan$ (2.20)

where tané = I/NCORd.



- 33 -

$. The effective coupling of the transducer can be

defined? as

K2

- a2 2
eff - ‘ cc/(co + ‘ cc) . (2.21)

The effective coupling (which is close to kq3) is
around 0.4 for barium titanate and around 0.7 for PZT type
ceramics.

In this study the factor K, defined by

2 2

- 2
K® = keff/(l -k

eff) (2.22)

is found to be a more convenient measure of coupling. The
corresponding K values for barium titanate and PZT-ceramic
are 0.436 and 1.0 respectively. In practice the coupling
is reduced somewhat below these values by bonds, etc., (see

Chapter 3).

6. The most important consideration from the standpoint of
this study is the maximum bandwidth obtainable from the
conventional design. In ordinary operation the electrical
capacitance Co is 'tuned out' at w, by a shunt or series
inductance Lo and the transducer is fed through a resistance
Ro. The characteristics of such arrangements has been

13, who concludes that the effects of the

studied by Thurston
shunt and series coil are nearly the same. He estimates
the maximum 3-dB power bandwidth to be about K. In section
4.3 (two pole design) and Appendix I it is shown that a half-
power bandwidth of v2 K is possible. The shortcoming of

both of these derivations, however, is the assumption that K
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is the sole limiting criterion. In practice, the low
values of Qm required to achieve the above bandwidth,
cannot be realized.

In Appendix I, however, the fractional bandwidth

of a shunt tuned transducer (with negligible Rd) is derived
as a function of the Q-factors as well as the coupling.
It is there shown that though a maximum bandwidth of /2 X
is theoretically possible, it can in practice only be
achieved with barium titanate transducers. For barium
titanate with a 'keff' around 0.35, the maximum realizable
bandwidth is 50%. The bandwidths of the commonly used
sonar transducers, however, are generally around 20%.

In acoustic terms, the elevation of L2 well above

L. creates a node near the countermass end of the ceramic.

1
On account of this, composite transducers are usually
supported near the ceramic-countermass interface, or at some
point on the countermass. The support is commonly a highly
compliant diaphragm which effectively isolates the transducer
from the case. A typical sonar transducer incorporating
the chief constructional features is depicted in Figure 2.7.
The transducing section is realized as a stack of
ceramic rings, bonded together and insulated from the rest of
the transducer. The reasons for and details of stacking
are discussed in the next section. The centre bolt, which
maintains the bias stress on the ceramic, also serves to hold
the assembly together. The bias stress is such that the
ceramic is never in tension under ordinary operating

conditions. The presence of the bonds, the bolt and the

insulators however reduce the effective coupling.
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The radiating head and the diaphragm are usually
constructed out of beryllium copper whereas the countermass

and the bolt are of steel.

2.5. Construction of the Ceramic Stack

The main constructional features of a conventional
type sonar transducer were described in the previous section.
The tubular shape of the ceramic section is dictated by the
need to accommodate a centre bolt. The reason for the
adoption of a segmented construction of a ceramic stack in
high power applications is briefly as follows.

The power handled by a ceramic transducer is
proportional to the ceramic volume and the square of the
exciting field (see equation 2.19). Since the lateral
dimensions of the ceramic are limited by the requirements of
length mode operation (see section 3.5), the power is
maximised by making the ceramic as long a§ possible and by
using the highest practicable field. Both of these
conditions for high power operation are simultaneously
satisfied without entailing very high voltages by the
segmented arrangement depicted in Figure 2.8.

The complete bar is made up of p identical short
segments with individual electrodes. The directions of
polarization and excitation alternate along the stack (as
indicated). Mechanically, the result is as if the bar were
continuous, with uniform polarization and excitation
throughout. Electrically, however, two advantages accrue.
The required voltage for the same output power is reduced by
p. Further if p is even the two end electrodes, which are

in mechanical contact with the rest of the transducer, can
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be kept at the potential of the low side of the supply.

The impedance seen at the electrical terminals is reduced by
a factor pz. The sole disadvantage of this arrangement is
the necessity of bonding the segments together to obtain good
mechanical contact.

The process of construction of the stack is as
follows. The individual segments are cast in moulds and
then ground down to the required length specifications as the
surfaces of contact must be finished to a high degree of
precision. Before polarization, the conducting surfaces are
sputtered or painted on. The segments are bonded together
by thin layers of resin cement which commonly incorporates a
sheet of wire cloth. The wire cloth ensures good electrical
contact and the formation of a mechanically efficient joint.
The resin is allowed to set under compressive stress.

Since a high field is necessary to induce the
required remanent polarization, the dielectric strength of
the ceramic imposes a limit on the length of bar that could
be effectively polarized. This 1limit is of the order of a
few inches. In practical high power stack construction,
however, it is unusual to employ segments longer than a
centimetre on account of operating voltage restrictions.

The power handling capacity of a ceramic stack is

usually governed by the following considerations3’7.

1. The dynamic strength and the level of mechanical
depolarization.
2. The dielectric dissipation which should be small enough

to ensure no appreciable thermal dipolarization.
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3. The electric field should be small enough to preclude
electric depolarization.
The practical limits of high intensity operation

are usually supplied with the ceramic specifications.



- 40 -

CHAPTER 3

EQUIVALENT CIRCUITS

This Chapter is primarily concerned with the
following aspects of equivalent circuit representation of
piezoelectric transducer elements:

1. The representation of the mechanical and electro-
mechanical (ceramic) elements, so as to allow for the
distributed mass and compliance of practical transducer
components. This representation, which for convenience is
referred to as the 'accurate' formulation, is the one used
in analysis.

2. The reduction of the accurate formulation of solid
elements into conventional type mechanical circuit
components, such as pure masses and compliances. This
reduction, which is necessary for transducer design, is
referred to as the 'approximate' formulation.

3. The derivation of the geometric limits on the elements
within which each of the above formulations is justified,
vis-a-vis the operating frequency range.

4, The representation of the radiation loading on a
transducer in a regular array, as a combination of analogous
circuit elements, in the frequency range of interest.

The equivalent circuits of this Chapter are based
on the analogies described in section 2.2. For convenients,
the impedance analogy is used throughout. Since the
detailed studies of equivalent circuits presented here are
not essential to transducer design theory, the Chapter may

be omitted on a first reading.
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The accurate and approximate representations of
plain mechanical and ceramic elements is considered in
sections 3.1 - 3.3. The effect of the inter-segment bonding
on the equivalent circuit of the ceramic stack is treated
next in section 3.4, The elements considered in these
sections are all assumed to be of uniform cross-section.

The circuit representation of such an element, in either
analogy, is a uniform transmission line (see section 2.3).
The transmission line analogy with its spatially distributed
parameters is necessary for the study of the propagation of
transient signals (see Redwoodlu). For the purposes of this
study, however, it is more convenient to use the T or I
representations of a line at steady sinusoidal frequencies.
This reduction, while entailing mo loss of accuracy in the
steady state, casts the equivalent circuit in the form of
lumped impedances, thus rendering it amenable to the
techniques of circuit analysis.

The line analogy itself is based on the assumption of
pure longitudinal mode propagation in all the solid elements.
In section 3.5 it is found that the lateral dimensions of
practical transducer components are such that this condition
is closely approximated to. Practical transducers are
currently designed with centre frequencies of around 5 or 10
kHz. The corresponding upper cut-off frequencies are
usually no more than 7.5 and 15 kHz respectively. Thus these
values are used in estimating the validity of the approxi-
mations effected in this study. Further, it is assumed that
spurious resonances fall outside the passband.

The chapter is concluded with the derivation of the

equivalent circuit representation of the radiation impedance



- 42 -

of piston sources, radi ting singly and in arrays.

Though the accurate equivalent circuits of solid
elements can be derived to a high degree of precision
(1 - 3% error), the radiation load in arrays is only
determinate to within + S%. Further, the parameters of
ordinary ceramic materials are prone to drift by as much as
+ 5%, Thus the individual elements of the accurate
formulation are no more accurate than +5%. For the purposes
of design, however, a greater margin of error (+ 10% off the
low frequency value) is tolerated in the approximate

formulation.

3.1. Mechanical Elements

The transmission line model of longitudinal wave
propagation on a bar of uniform cross-section, is indicated
in Figure 3.1 (for derivation, see sections 2.2.and 2.3 and
Skudrzykls). There F and u represent the force and particle
velocity on the bar. If Zo’ c are the characteristic

impedance and velocity of propagation on the line

A p Ac

2 (3.1)

and c® = Y/
where p, Y, A are the density, Young's modulus and area of
cross-section of the bar. At steady sinusoidal frequencies,
the line model could be replaced by the T or I equivalents
of Figure 3.2 where s is the angular frequency, k (= w/c),
the wave-number and X the length of the bar.

When kX is small compared to unity, the following

approximations can be effected

sin kX = 2 tan kX/2 = kX . (3.2)
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This reduces the steady-state equivalents to the simpler

form of Figure 3.3, where

L = pAX
. (3.3)

C X/YA

Here C and L are the effective compliance and mass
of the bar at low frequencies. If C is small compared to
the mass L, then the bar behaves as a pure mass and if L is
small compared to C, as a pure compliance; reducing to the
'ideal' elements considered in section 2.2. The condition

for approximately ideal behaviour, in either case

f2 << 1/2n(LC)i

(3.4)
or m2X/c << 1

is the same as the condition for the LC reduction of the
line. Here f2 is the upper cut-off frequency. A more
explicit limit of applicability of the reduction can be
derived from a plot of the functions sin kX/kX and
tan(kX/2)AkX/2) against kX (Figure 3.4).

It is observed that both functions are accurate
to within + 2.5% of the low frequency values for kX < w/8.
For kX < /4, however, the maximum deviation is increased
to + 10%. Thus the former limit is adopted in analysis
and the latter in design. These limits imply the
following restrictions on the length of bar.

Maximum length of bar (in cm) to satisfy the ideal element
reduction up to 7.5 kHz

+ 2.5% accuracy + 10% accuracy
Steel 4.3 8.7
Beryllium Copper 3.3 6.5

Aluminium 4.2 8.4



- 45 -

If the upper cut-off frequency is 15 kHz (instead
of 7.5) the values are halved. These restrictions on the
length of mechanical elements are generally quite easy to
satisfy in practical designs. In analysis, however, if the
2.5% limit is not satisfied the accurate formulation of
Figure 3.2 must be used.

The limits on the lateral dimensions, necessary to
satisfy the longitudinal wave approximation, are considered

in section 3.5.

3.2. Equivalent Circuit of a Tubular Ceramic Segment

The equivalent circuit representation of the longi-
tudinal mode excitation of a uniform piezoelectric bar with

parallel field, has been derived in section 2.3. This

16 in its frequency domain

1y

circuit was first derived by Mason
formulation and subsequently by Redwood in the form
presented in Figure 2.3. Martinl7 has extended the
representation to include lateral effects and losses in
commonly used ceramic tubes. Martin's formulation is
particularly important as the limits of pure longitudinal
mode operation can be derived from it (see section 3.5 on
'Lateral Effects and Losses'). In the immediately foregoing
treatment, however, it is assumed that lateral effects and
losses are negligible.

Under steady sinusoidal excitation, the equivalent
circuit of a uniform ceramic bar (such as depicted in

Figure 2.8) is easily reducible from the form of Figure 2.3

to that of Figure 3.5 where
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Zl = jpAc tan kX/2
Z, = -jpAc/sin kX + $4°/uC_
k = w/c

c = (9523)—;

(3.5)

E
¢ = Ad33/933X

. 2 \ T
C, = (1 - k3zlezq A/X

Here in addition to the symbols defined in section

2.3, d is the relevant component of the piezoelectric

33
tensor (strain/field at constant stress) and kaa, the
longitudinal coupling factor defined in equation(3.8).
A and X are the area of cross-section and length of the
ceramic segment. Co is the electrical capacitance and ¢
the electromechanical transformation ratio. In Figure
3.5 (and subsequent diagrams) the mechanical terminals are
marked TM and the electrical terminals Tg.

In the absence of an electrical input the equivalent
circuit reduces to that of a purely mechanical line (compare
with Figure 3.1). Thus, as in the case of a purely

mechanical line, the complete equivalent of rigure 3.5 may be

approximated by that of Figure 3.6, for values of kX << 1

where
C = 353 X/A
(3.6)
L = pAX/2

In practice X never exceeds 1 cm and the upper

frequency limit is 15 kHz. The value of kX corresponding
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to these two limiting values for lead zirconate titanate

type ceramics is 3x/u40. From the graphs of Figure 3.4 it is
clear that the error incurred by the use of the approximate
value is less than 1% for both L and C at the greatest value
of kX. The approximation is even better for barium
titanate. The above practical limit on kX is very important
as many of the approximations effected in this Chapter are
based on it. Restated in terms of angular frequency it
becomes

wX/c < 0.2355 (3.7)

The two impedances Z1 (and L in the low frequency
approximation) represent the effective mass of the ceramic.
Similarly z, (or C) is the effective ceramic compliance.

For small values of kX the two terms of Z2 can be algebraically
combined to yield the nett compliance C. Comparing these
circuits with the equivalent circuit of Figure 3.1 it is

clear that the term j¢2/mCo increases the effective compliance
of the ceramic. This term accounts for the field generated
piezoelectrically from the strain in the material,which is a
form of 'back E.M.F.', It is in fact absent in those cases
where the direction of motion is perpendicular to the

applied field. In the earlier publications it has been
customary to include this term in the equivalent circuit as

a negative capacitor - Co on the electrical side. This
alternative is somewhat more convenient when considering the
effects of incident mechanical transients on a transducer.

In most cases, however, the formulation adopted here, of

including it in the mechanical compliance, is preferable.
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One of the most important parameters of a piezo-
electric transducer, is its energy coupling factor which is a
measure of the fraction of total energy that is coupled
into the mechanical side. The static, or low frequency

couplinga, for the particular mode considered, is given by

E
33 *

2

Y

2 ,. T
This value also represents the upper limit on dynamic
or effective coupling3, under other operating conditions.
A consideration of coupling in the fundamental terms of
energy is not however of direct relevance in a study of

16 has

transducers from their equivalent circuits. Mason
shown that the effective coupling factor can be expressed as
a function of the ratio C/Co. Thus with reference to
Figure 3.6 which is applicable at low frequencies, it is

observed that

2

33 ° (3.9)

1/(1 + co/c¢2) = k

Extending this relation to the general case of
Figure 3.5 the effective coupling factor Kegg could be

defined as follows (after SchofieldQ)

2

. 2
kZee = 1/(1 + 30C Z,/4%) . (3.10)

It is clear from the form 22 that the effective coupling at
higher values of kX is less than the static coupling value

of k Since high coupling is of prime importance in the

33°
design of sonar transducers it is desirable to work in the
range of frequency for which kX << 1, A further advantage

from the point of view of broadband transducer design is
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that the effective values of mass and compliance are
constant in this range.

The coupling factor as defined above is not a
convenient measure to use when considering the effect of
bonds on the coupling and the dependence of the maximum
bandwidth on the coupling. In such cases a simple function

of the effective coupling given by

2 2

K eff

2 - .2
= keff/(l -k ) = ¢ /ijoz (3.11)

2
proves to be more useful. The reciprocal relationship is

X = k27(1 + X% . (3.12)

Since a one-to-one relationship exists between the two

variables (only positive values of both being admissible)

K is just as good a measure of the coupling. As such the

term 'coupling factor' will be used to refer to K as well.
If Ko is the value of K at low frequencies (when

kX << 1)

. (3'13)

Ko is referred to as the low frequency coupling factor.

3.3. Equivalent Circuit of the Ceramic Stack

(after Martinlg)

The equivalent circuit of a single tubular segment of
the stack of Figure 2.8 has been studied in the previous
section. If p such segments are bonded together as
described in section 2.5, the equivalent circuit of the

composite electromechanical system, neglecting the bonding,
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is that of Figure 3.7. Martinle’lg

has shown that when

the electrical terminals are connected in parallel this

circuit is reducible to the relatively simple form of

Figure 3.8. The rationale of this contraction is as follows.
Since the electrical terminals are connected in parallel

the electrical capacitances Co add up to the aggregate value

of pC,. Further, as the primaries of the electromechanical

transformers are now in parallel the potential differences

across the secondaries must be equal. The secondaries are,

however, commoned on one side. Therefore the other sides

of the secondaries are at a common potential as well and are

thus effectively connected together. The mechanieal side

of the circuit now consists of p identical T-sections

connected in cascade. Thus if Zo is the characteristic

impedance and y the propagation constant of each section,

the cascaded mechanical system as a whole is represented

exactly by a single T section of characteristic impedance

Zo and propagation constant py. This leads directly to the

contracted circuit of Figure 3.8. Z° and vy for a

symmetrical T-section having Z4 in the series arms and Z,

in the parallel arm, are

- 3
zo = [2122(2 + 21/22)]
(3.14)

- . 3
Yy = 2 arcs1nh(21/222) .

Therefore it follows that the impedances of the contracted

equivalent circuit of Figure 3.8 are

le Z, tanh pY/2

(3.15)

Z2p 20/51nh pPY
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Circuit of a Ceramic Stack
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Figur 3.9~ LC Reduction of the Equivalent Circuit
of a Stack Bonded to a Countermass LM
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These equations, when used in conjunction with equations

(3.6) for a single segment, determine the contracted form of
the equivalent circuit as precisely as that of a single
segment. It was shown in section 3.2 that the elements of
the circuit of a single segment are determinate to an
accuracy of 1% by the approximate LC equivalent of Figure 3.6.
The use of the LC approximation, rather than the exact
equivalent of Figure 3.5, is found to greatly simplify the
explicit mathematical formulation of le, ZZp' Since the
loss of accuracy suffered by this procedure is inconsequential
the LC formulation is used in the derivation of Z° and vy

which now become

2

z (2 - w2LO)L/C

o) (3.16)

Y 2 arcsinh(—mzLC/ﬂi

Substituting for L, C in terms of the ceramic constants
and the stack geometry (from equations (3.6)) these equations

reduce to

- 2,3
= 2j arcsin §
2 _ 2 _ 2
where 6% = w®LC/2 = (w X/20e) (3.18)
_ 2 .3
and Cg = (1 - k33) c

In section 3.2 (equation 3.7) it was shown that for
practical designs the condition wX/c < 0.2355 was operative
in the frequency range of interest. Combining this
condition with a value of 0.7 for ky3 (which is typical for

lead zirconate titanate type ceramicsg) it follows that
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§ < 0.118 . (3.19)

Therefore the errors incurred in the estimation of

Zo’ vy by the approximations

(1-sHt -
(3.20)
arcsin § = §
applied to equations (3.17) are fractional parts of 1% at
the highest frequency of operation. Since the errors are
less at lower frequencies, the above approximations are

completely justified in relation to the predetermined margin

of tolerable error. Thus equations (3.17) simplify to

ZO = pACe
y = ij/Ce (3.21)
which, on substitution in equations (3.15), yield
le = ijce tan(me/2ce)
. (3.22)
Z2p = pAc,/] sin(pr/ce)

The form of these equations is similar to that of the
exact equation of a single segment as is to be expeéted.
Thus it is possible to identify pX as the effective length
and c, as the effective longitudinal velocity with respect
to the ceramic stack. While pX is in fact the actual length
of the stack the effective velocity Ce is between 70-70% of
the actual longitudinal velocity c (for lead zirconate
titanate ceramics).

Subject to a correction for bonding, the accuracy of the

above formulation of the equivalent circuit of a ceramic

stack is both necessary and sufficient to satisfy the



- 56 -

requiremente of transducer analysis. It will be shown in
the foregoing section that the correction for bonding leaves
the mathematical form of the equivalent circuit elements
intact and merely introduces a modification of the parameters
Cor ¢ Z, and y. The trigonometric nature of the expressions
for 2

sy Z,_ are no more difficult to program for the

1p 2p
purposes of analysis than are the conventional impedance
functions jwL and 1/jwC. Synthesis, however, in terms of
these functions, is clearly impossible if available circuit
synthesis data is to be utilized. Thus it becomes necessary
to invoke the low frequency approximations of equations (3.2)
again, to reduce le, 22p to LC form as well. The result

is naturally similar to the LC reduction of a single segment.
The LC reduction of the stack which is depicted in Figure

3.9 is drawn inclusive of a large rigid mass L, to which,

it is assumed, one end of the stack is firmly bonded. The
mass itself is assumed to be held by supports of negligible
stiffness.

The reason for anchoring the stack to a large mass
(usually called the countermass) is clear from the diagram.
If LM is large enough the 'current' through that branch is
negligibly small. In real terms this means that the
'countermass side' of the stack is kept effectively stationary
thus ensuring that mechanical power transfer takes place
through the other side. In terms of topology the result is
a network having one electrical port and one mechanical port
(the other mechanical port being effectively open circuited).
Thus the equivalent circuit of a stack is reduced to its
simplest form of a capacitance coupler pair pCo, pC separated

by the ideal transformer l:¢. The magnitude of these capacitors
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are controllable by means of the geometric parameters X, A
but their ratio is constant at K° (see equation (3.13)).
The presence of the mass pL (before the output terminal
TMO) is of little consequence from the standpoint of
synthesis because in any transducer circuit the mechanical
output would be via a mass (the radiating mass in simple
transducers) which is generally larger than pL and to which
pL conveniently adds.

In practice it is difficult to make LM large enough
though its anchoring (to the case) by means of high
compliance supports, presents no special problems.

For the purposes of synthesis it has already been
decided to tolerate a deviation of 10% on the low frequency

value. From Figure 3.14 this is equivalent to
wpX/e, < w/b . (3.23)

For lead zirconate titanate ceramics, this limit implies
a maximum stack length of 2.5 cm for an upper cut-off
frequency of 15 kHz. If the upper cut-off frequency is
7.5 kHz, as is often the case, the stack length could be as
high as 5 cm. The corresponding limits for barium titanate
are 3.6 and 7.2 cm. These limits are unfortunately quite
restrictive and constitute a serious obstacle to the design
of wide-band transducers.

Since the fractional deviation of compliance is

2, the maximum error can be reduced by half

proportional to w
if the design value is satisfied at 2.23 times the lower cut
off frequency. From equation (3.11) it is seen that this

implies working at an effective coupling K of 97.2% of the
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low frequency value Ko. The further reduction of K, by the
elevation of the tolerated deviation, is not very desirable
as the coupling is reduced by the bonding as well.

The nett result of the above restrictions on stack
length is to impose a limit on the power handling capacity
of broadband transducers.

3.4, Effect of Bonds on the Equivalent Circuit
of a Ceramic Stack

A major shortcoming of Martin's formulation of the
equivalent circuit of ceramic stacks is the scant attention
paid to the intersegement bonding. Martin states that
current bonding techniques '... permit the assembly of ...
segmented systems, with small effects due to the cement
joints'. This is certainly not the experience of the
practice on which this study is based. In fact, it is
extremely unlikely that efficient joints could be set up in
any sonar transducer stack, such that their effects are
negligible. In view of this it is essential to develop a
theory for the effects of bonding on the contracted
equivalent circuit if this is to be preserved as a reasonably
precise representation of the ceramic stack.

The chief effect of the bonding is to introduce extra
compliance between the ceramic segments. The bond compliance
Cb is typically about 10% of the segment compliance C, for
a 3 cm segment. An exact representation of the bonds
would, of course, allow for the finite though small mass of
the bonds ( 1% of the segment mass) and the losses in the
joints. It is unlikely, however, that these would

significantly improve the correction for bonding which, by
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itself, is a second order effect. As such, in the foregoing
theory, bonds are represented by pure and constant
compliances Cy.

The equivalent circuit of Figure 3.7 incorporating
the LC approximation of Zl’ zZ, and modified to include the
bonding, is re-drawn in Figure 3.10. As it stands this
equivalent circuit is not amenable to reduction into a
compact form. Consider however the T-section of Figure 3.11
which is extracted from Figure 3.10 and which consists of a
bond compliance with its adjacent elements. This network
is very easily transformed into the N-section of Figure 3.12

where

L!

(1 - W?LC /2L

(3.24)

t
and Cb

2
Cb/(l - w'LCy/2) .
Involving the parameter &, defined in equation (3.18),
these equations become

L' = (1 - GZ.Cb/C)L

. (3.25)
Ct

- 2
1=/ - s%c sc)

Combining the upper limit on §2 (from equation (3.19))
with a value of 0.1 for Cb/C, it is clear that the

approximation

L' = L, Cb' = Cb (3.26)

is correct to within 0.14% in the frequency range of
interest. The assumed value of 0.1 for Cb/C is, in fact,
an upper limit on this particular ratio, as it is unusual
to design segments shorter than i3 cm.  Further the

approximation does not depend on the elements L, C being
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constant, provided they do not fall far below their low
frequency values. It is in fact easily demonstrated that
provided the segment length does not exceed 1 cm, the above
approximation is valid up to about 15 kHz.

The importance of the above transformation is that
it shifts the bonds such that they appear in parallel across
the segment compliance C and the secondary of the electro-
mechanical transformer. Inserting the equivalent N-network
of Figure 3.12, in place of the T-extract of Figure 3.11,
the equivalent circuit of a single segment of the stack is
now transformed into that of Figure 3.1l3a. This circuit

itself can be simplified into that of Figure 3.185, where

2 _
M C/(C + Cb)

R
o0 = Moo (3.27)
v 2.2
Co = Co + M7 Cb

The circuit of Figure 3.13b, however, is of the same
form as the original equivalent circuit of a ceramic segment
(Figure 3.6). Thus the composite equivalent circuit,
consisting of p such sections is suitable for the application
of Martin's contraction, as described in section 3.3.

Since the only difference between Figures 3.6 and 3.13b is that
és Co, C in the former are replaced by ', Co', C' in the
latter, the result follows by direct substitution. The
resulting contracted equivalent which now includes the

bonding, is depicted in Figure 3.14 where

Z

1p ° JeAcgM tan(wpX/2c M)
(3.28)

yA

2p pAc M/ sin(pr/ceM)
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Comparing this result with equations (3.22) of
section 3.3, it is clear that the bonds reduce the effective
characteristic impedance Zo by a factor M and increase the
effective length in the ratio of 1/M. Further the
electrical capacitance is increased and the electromechanical
transformation ratio ¢ is reduced by M2, The two residual
compliances Cb/2 of Figure 3.14 are small enough to be
neglected. In actual analysis, however, they are conveniently
incorporated in the compliances of the insulating blocks
which usually flank a ceraric stack.

If X' is the effective coupling inclusive of the

effects of bonding, it follows from equation (3.11) that

(k"2 = (412 /xuC 'z . (3.29)

2p
It is also very easily shown, by direct substitution,

from equations (3.27) that the low frequency coupling Ko'

is reduced from K (defined by equation (3.13)) to

(x,"? = (xo)2/(1+cb/c+xozcb/C) . (3.30)

In the derivation of the broadband filter circuit
on which the design of the broadband transducer is based,
the above reduction of coupling has to be accounted for
as well as the depreciation resulting from the dependence
of K' on frequency.

In a typical design incorporating % cm ceramic
segments, the presence of the intersegment bonds was found
to have the following effect:

c'/C = 1.10 ¢'/¢ = 0.91

(3.31)
t = '
Co /Co = 1.065 Ko /Ko = 0.925 .
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It is important to note that the modifications
caused by bonding, being a second order correction, has
negligible effect on the criterion of equation (3.8). It
also does not affect the validity of the approximations of
equations (3.20) and Figure 3.9. Thus the LC reduction
of a ceramic stack inclusive of the effects of bonds is
obtained simply by the replacement of Co’ ¢, C in Figure 3.9

by C ', ¢', C' respectively.

3.5, Lateral Effects and Losses

The equivalent circuit representation of longi-
tudinal waves on a uniform cross-section bar (derived in
section 3.1) is valid provided the lateral dimensions are
much smaller than the wavelength A. Otherwise the lateral
motion may be accounted for by a corrected value of the
velocity c. From the graph of the exact velocity correction
for lateral inertia against a/A for a circular bar of radius
a (Skudrzykls), it is observed that if a < A/8 the error
incurred by the use of the uncorrected value is less than 3%.
For an upper frequency limit of 7.5 kHz this implies a
maximum bar diameter of 17 cm for steel and aluminium and
12 cms for beryllium copper. At 15 kHz the maximum values
are reduced by half. The lateral dimensions of practical
transducer elements generally fall within these limits.

In the case of piezoelectric ceramic, however, the
corresponding limits are derived from Martin's solution.

17 of the vibrations of longitudinally

Martin's solution
polarized ceramic tubes accounts for lateral motion as well
as losses. Further, he has cast the correction for lateral

motion as functional modifications of the basic ceramic
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parameters governed by the variable f,fr' Here fr is the
frequency of first radial resonance of the tube. It is
observed from Martin's results that the ceramic parameters
are accurate to within 1% of their low frequency values

(for both barium titanate and lead zirconate titanate) if
£/€, < 0.3 . (3.32)

The dependence of fr on the inner and outer radii
(r1 and r, respectively) of the ceramic tube, culled from

20,21

experimental estimations » is given approximately by

fr = c/w(r'l + rz) (3.33)

in the range 0.2 < r,/r, < 0.5. Here c is the longitudinal
velocity in the ceramic. The upper bound on (rl+r2) thus

becomes

(py + r,) < 0.34 c/sf, (3.34)

where f2 is the upper frequency limit. Since the inner
radius ry of a ceramic stack is generally under 0.75 cm,

the outer radius is restricted to 6.3 cm for barium titanate
and 5 em for lead zirconate titanate for an f, of 7.5 kHz.
If, however, f2 is 15 kHz the respective bounds are reduced
to 2.8 cm and 2.2 cm. These limits are very easily
satisfied in practice.

In the synthesis of electrical filter networks it is
customary to treat elements possessing Q-factors greater than
50 as lossless. The resulting errors in the filter
characteristics are found to be negligible. The mechanical

elements, including the mass and compliance of the ceramic
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stack, satisfy this criterion as their Qs are generally
above 100. The effective Q of the electrical capacitance

element C however, is usually lower on account of dielectric

o’
loss (see section 2.4). It is also a function of the drive
level and the frequency. In practice it is customary by the
proper choice of ceramic (see section 2.1) and by limitation

of the drive level, to ensure that the effective Q is above

50. This condition is satisfied if tans < 0.02.

3.6. Radiation Impedance of a Single Piston Source

In the study of the performance of sonar transducers
it is usual to represent the reaction of the fluid medium
on the radiating face (or piston face) as a complex impedance
Zr22. The radiating face is generally plane and circular
in shape as this simplifies consatruction and minimizes the
lateral dimensions for a given face area. Sonar transducers
are commonly operated in regular packed arrays and the
impedance characteristics of arrays are accordingly dealt
with in the next section. A brief account of the character-
istics of the individual elements of arrays (viz. single,
circular piston sources) is however a necessary pre-requisite
to the study of arrays. Further, since transducers are
usually tested out as single sources, it is necessary to
explicitly formulate the impedance of such sources.

Under steady operating conditions, if F is the
r.m.s. reaction force on the face of a rigid piston and V is

the r.m.s. velocity of the face, the radiation impedance Zr

is defined as

Z, = R, + iX_ = F/V . (3.35)
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The variables F, V are in general complex and a
function of frequency f and piston radius a for a given
medium. R, and X are the radiation resistance and
reactance respectively. The quantity Xr/“ is usually
referred to as the 'equivalent mass' of the fluid medium for
a particular frequency w, by analogy with mechanical mass
in the impedance analogy. The general method of handling
radiation in an equivalent circuit is to represent Z, which,
by virtue of its definition, is an impedance in the impedance
analogy, as ordinary circuit elements. Thus, in the first

instance, Z_ is represented by a resistance Rr and an

r
inductance Xr/u, in series. In the mobility analogy the
radiation load becomes a conductance Rr and a capacitance
Xr/m in parallel. The complexity of analysis is hardly
affected at all by the frequency dependence of R, and Xr/w
provided this dependence is explicitly determined. In the
synthesis of broadband transducers, however, it is essential
to work in a frequency range for which Rr and Xr/w are
substantially constant. Sometimes, even when xr/” is not
constant, it is possible to swamp its variation by a large
enough head mass with which it appears in series in the
equivalent circuit. Since the design of broadband trans-
ducers is based on electrical filter circuits the output
variable, with respect to which the broadbanding is effected,

is the output power. In either analogy the output power

is given by

_ 2 _ 2
P = |F] /R, = ervl . (3.36)

The determination of the radiation impedance of

underwater sound sources is based on acoustic radiation
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theory rather than direct experiment. The derivation is
simplest for the case of a plane piston source in an infinite
rigid baffle and is consequently well treated in the

22’23. The result which is given below is

literature
commonly formulated as a function of the compound variable

x, which is defined in terms of k and the piston radius a as
x = 2ak . (3.37)

The use of the double subscript for impedance becomes
meaningful in the context of array interactions. In this
section the coincident double subscript merely indicates
that it is the self-impedance (or resistance, or reactance)

which is being considered. Thus if

YA

11 = Ry G0+ 3Xg5 60 (3.38)

and Z°

pcA (3.39)

where A is the piston area and p, c are the density and
velocity of sound in the fluid medium, the explicit
formulation of impedance cast in a form that facilitates

computation is

Ryp = nzl R s Xy = nzl X (3.40)
where
R = -{x?/(un?surR__., R, = 2_x2/8
X, = -{le(unz-l)}xn_l, X, = uzoxlsw .

These functions are displayed graphically in

Figure 3.15 where the epithet 'baffled' means 'infinitely
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baffled’'. The functions are plotted against the compound

variable a.f, which is simply related to the variable x by

aof = X-C/'H! . (3.'41)

The above functions can be approximated to simple

22, in the regions x > 4 and x < 2,

algebraic expressions
The low frequency approximation (x < 2) is applicable when
the piston behaves as a simple source and is not of much

interest in sonar transducer design. The high frequency

approximation (x > u4) is

R,,/Z_ = 1.0, xll/zo = 4/mx . (3.42)

11" %o

In this region the radiation resistance is constant
at Z while the reactance is negligibly small (see Figure
3.15). It is in fact possible to cast X11 as a negative
capacitance for greater precision in a circuit represen-
tation, but for output Qs greater than 2, its effect is
inconsequential. Thus the high frequency region is ideally
suited, circuit-wise, for broadband operation. The lower

cut-off frequency f, (for sea water) is then set at

a fl = 478 . (3.43)

Thus for an f, of 4.78 kHz which implies that f,
is in the region of 15 kHz, the piston radius a has to be
greater than 10 cms. In practice it is not possible to
construct suitable pistons of diameter 1N cms (or over),
which do not flex in the region 5-15 kHz. Thus the design
of broadband transducers to operate in isolation in a large
rigid baffle is not a practical proposition. The above

approximation is not even useful from the standpoint of
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analysis as the exact expressions are not much more difficult
to program. In the analysis programs the values of Rll’ xll
are calculated at each individual frequency from the series
expressions of equations (3.40) the summation being carried
out up to 100 terms.

The effect of finite baffles on the radiation
impedance of single piston sources has been studied in some
detail by Crane?®. His calculations indicate that a baffle
radius of 3-5 times the piston radius is adequate to
approximate to infinite baffle performance, except in the
lower reaches of frequency. The computational technique
adopted by Crane is not described here on account of its
extreme complexity. His results for unbaffled piston
sources are, however, included in Figure 3.15 as this is of
relevance in the testing of transducers. In the analysis
program the radiation impedance of an unbaffled projector
is obtained by writing Crane's values, numerically, into
the program. Intermediate values are approximated to by
linear interpolation.

It is important to observe that even though the
radiation impedance is resistive and constant for x > 4
the radiation pattern is 'closer' to that of a simple source
up to x - 622, A 'beam' type pattern is not in fact
approached until x v~ 24, Thus in the case of transducer

arrays which are operated near x - 2, acoustic interaction

effects are strong.

3.7. Average Radiation Impedance of Piston Sources
in Regular Plane Arrays

In order to radiate large quantities of energy in

highly directive patterns which are also electronically
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steerable, it is customary to group many individual trans-
ducer elements into regular arrays of diverse configuration.
The effective impedance seen by the jth element of a

regular array of n elements is given by25

Zj = igl Zijvilvj (3.u4)
where Vi is the velocity (phasor) of the ith element.

Zij is the mutual impedance between the ith and jth elements.
The self-impedance of the jth element is included as ij.

Zij is a function of the array geometry and the frequency.
Thus the effective impedance of any individual element is
dependent on frequency, its position in the array and the
drive levels. The variation of Zj through a regular plane
array has been studied by Freedmaan. He has also
formulated certain approximations to zij which are valid in
particular ranges of 'a.k'.

The design of individual elements of an array is
beyond the scope of this study. The procedure adopted here
is to develop a single design based on a value which is the
arithmetic mean of the effective impedances of all the
elements of a plane regular array.

The estimation of average radiation impedance of
regular arrays was first attempted by Toulis27. His results
however are valid only in very limited ranges of frequency.
The technique adopted by Morris28 is to determine the
average value of Zj from equation (3.44%), assuming equal
piston velocities. The calculation is based on Freedman's

approximations for Zij' Morris' results which are used in

this study for the design of array elements are given below.
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Thus, if Rr and Xr are the average radiation resistance
and reactance of the elements of a regular plane array of

transducers, in a large baffle, then

Rp = Ry * Ryp-Dy/Ny
Xr = xll + Rll'DZ/Nl
where (3.45)
Ny = 1.0 - 0.0411 a.k + 0.138 (a.k)?
N, = 1.0 - 0.0090 a.k + 0.118 (a.k)? .
Rll’ Xll and a have the same meaning as in section 3.6 and

D,, D, are functions of the piston spacing and packing
configuration only. Morris has shown that if Al is the
area of array associated with each element, then Dl’ D2

are functions of Aa/x2 only, whatever the packing
configuration (square or triangular). Thus if yx (= A/Aa)
is the packing factor, Dl’ D, are functions of A/Azx.

It follows that the computation of average impedance for a
square packed array would yield results of general
applicability to any regular packed array of the same piston
radius and packing factor. The computation is most
convenient for a square packed array. For a regular square
N * N array of inter-element spacing 'd', the formulae for

1 D, as given by Morris are

2 N N N N
(/8% 1 I 1 I sine(di,j,t,md/e(i,],t,m)

D1 =
i=1l j=1 £=1 m=1
, N N N N (3.46)
D, = (/N> I 1 ] cose(i,j,t,m)/6(i,j,t,m)

izl §=1 2=1 m=1
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6(i,3,0,m) = kd{(i-3)2 + (t-m)2)}

where the terms for which i = j and ¢ = m are excluded

from the summations. The above formulae are programmable

as they stand but the computing time associated with the
calculation could be reduced in the ratio of 250:1 by
exploiting the symmetry of the array. Thus equations (3.u46)

could be reduced to

2 (N-1) 1 s ]
D, = (1/N%) 121 jzo ugysinéy /8y,
(1/8%) Nfl % 8,./6
D, = (1/N . sCO8
2 oLk ij i3’ 14§
izl j=0 (3.47)
84 = ak(i? + 322
“ij = 4¢(N-1)(N-3)
where ¢ = 1 when i = Jjorj =20
and ¢ =2when i £ jand § #0 .

The packing factor for a square packed array is

defined by the d/a ratio according to the formula

x = ma?/a? . (3.u8)

Thus a d/a ratio of 2.5 corresponds to a packing factor of
0.5025. A computer program for the determination of the
average radiation impedance of regular arrays, according
to the above formulae, is included in Appendix II.

Plots of the average radiation impedance of 10 x 10
and 15 x 15 square arrays of packing factor 0.5025, against
a.f, are depicted in Figure 3.16. The average impedance

values are calculated from equations(3.40),(3.45) and(3.47).
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In these equations for a fixed value of d/a, it is observed
that the variables a and f are everywhere combined. Thus

a plot of average radiation impedance against the compound
variable a.f is sufficient to disclose all the necessary
information pertaining to its dependence on both a and f.
Further the actual extent of the array (N) appears to have
little influence on the average radiation impedance except at
low values of a.f when the wavelength is of the order of the
lateral dimensions of the array (N.d). The packing factor
can hardly be considered as an independent parameter as it is
usually kept close to its highest practically realizable
value of 0.5 for square arrays. However, for the sake of
completeness, impedance curves for d/a ratios of 2.5 and 3.0
are compared in Figure 3.17.

The most important consideration with regard to the
estimation of average radiation impedance is the validity
limits of the theory. Since Morris' derivation of average
impedance is based on Freedman's 'second approximation' it
is necessary to consider the range of applicability of the
latter. Freedman has compared the results of his
approximations for mutual radiation impedance with tables
of exact data. He places no restrictions on the permissible
values of d.k, but concludes that his 'second approximation'

is valid throughout the range

0.2 < a.k < 1.6 (3.49)

but not beyond the upper bound. He does not define an
explicit lower limit. If 'average radiation impedance', as
calculated above, is to be freed of any dependence on the

extent of the array, however, it is necessary to establish a
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lower bound beyond which the concept of average impedance
ceases to be meaningful. For square arrays of extent

greater than M x M, the lower limit could be set at
af > SO0/M . (3.50)

This limit is inferred empirically from Figure 3.16 on the
basis that the least array length is determined by the
greatest value of wavelength (for a d/a of 2.5). If it is
assumed that practical arrays are not less than 10 x 10,

the above inequality reduces to
af > 50 (3.51)

which is practically the same as the lower bound of (3.49).
Thus the limits expressed in (3.49) are adopted as the
validity limits of the average impedance derivation.

Expressed in terms of af they are
50 < af < 382 . (3.52)

Since Freedman is primarily concerned with the applicability
of his 'second approximation' to every single element of
the array, the upper bound may well be more stringent than is
warrantable in an estimation of average impedance for the
whole array. An examination of Figure 3.16, however,
reveals that it is only within these bounds that the
radiation resistance and reactance exhibit the degree of
'linearity' which is necessary for the design of broadband
transducers. Thus the applicability of the formulation
outside these limits is not of primary interest within the
purview of this study.

The frequency range available within these bounds

expressed as a ratio of upper to lower frequency is 7.64.
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This range is more than adequate for the design of all
conceivable broadband devices (see section 4.5). In fact
the lower limit is placed somewhat higher (at around 100)
in practical designs to ensure reasonable 'linearity'.

It is interesting to observe that the Freedman upper limit

is closely equivalent to

The linear approximations for R, and X derived

from the graphs of Figure 3.16 are

Rp

0.475 Zo

(3.54)

X
r

a.f Zo/1125 .

The fractional variation of R, about the mean value is less
than + 5.4% throughout the Freedman range. This level of
constancy is excellent for the incorporation of Rr as the
terminating resistance of a broadband filter circuit (see
section 4.5).

In any transducer,X, appears in series with the
reactance of the head mass Xh. A plot of a typical value of
X,, (for an output Q of around 2) is included in Figure 3.16.
It is clear from the figure that the adoption of the linear
approximation for Xr (also depicted in Figure 3.16) results
in a maximum drift of the sum (X, + X ) of around # 5% in the
a.f range 100 to 400. This variation has negligible effect
on the transducer characteristics. The only undesirable
effect of this variation is the imposition of a lower limit
on the output Q.

Thus it is possible to represent the average radiation

impedance of an array by a constant resistance and an
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'equivalent mass' in series, in a frequency range adequate
for the design of a broadband transducer. The synthesis of
a broadband transducer for array operation is based on the
approximations of 3.54, which are assumed to hold in the
range

100 < af < 400 . (3.55)

If fo is the centre frequency of a transducer
operating in th's range, it is p s ible to separate the
total output Q into two components Qn and Qr which are

defined as

1]
Hh

Q = (xh/Rr) at f (3.56)

]
+h
L[]

Q. = (X./R) at f (3.57)

Using the approximations of equations (2.54%), Q,. reduces
to

Q, = af /535 . (3.58)

Qh is, of course, adjusted such that the sum works out to
the desired output Q. If afo is fixed at 200, Qr becomes
0.37uy, If afo is raised to 225, Qr rises to 0.421.

The increase is not too significant if the total Q is not
less than 1.6, the lower limit adopted in practice. The
design value of af° must be fixed as high as possible to

facilitate mechanical realization of the filter circuit.
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CHAPTER 4

DESIGN OF PIEZOELECTRIC SONAR
TRANSDUCERS

In this Chapter a technique is developed for the
design of broadband piezoelectric sonar transducers. The
technique is based on the formulation (in section 4.1) of a
generalized equivalent circuit incorporating the essential
components of any extensional type transducer. This
generalized circuit is then used to elicit particular
configurations which operate as broadband filters.

The theory of the optimum filter circuits
realizable within the framework of the generalized
formulation is developed in sections 4.3 and 4.4. In
section 4.5 the most suitable of these circuits is chosen
on the basis of performance and mechanical realizability.
The detailed design of a broadband transducer based on the
optimum choice is presented in section 4.6. The computed
characteristics of the designed transducer are also included
in section 4.6.

The transducer design discussed in section 4.6 is
somewhat different from the test design discussed in
Chapter 6. The former was developed some time after the
construction and testing of the latter and, in fact,
incorporates certain design improvements derived from the
measurements on the test transducer.

4.l. Generalized Equivalent Circuit of a Piezoelectric
Sonar Transducer

In section 3.3 it was shown that the 'transducing
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section' of a piezoelectric sonar transducer could be
represented, for the purposes of design, by a capacitance
coupler pair, separated by the ideal electromechanical
transformer. If the transformer is excluded by referring
the circuit to the electrical side, the network of Figure

4.1 results. Here
c,/C, = K2 (4.1)
2° "1 ¢

where K is a measure of the effective coupling (see
section 3.2) and Cl’ 02 are dependent on the parameters of
the ceramic stack. TM’ TE represent the mechanical and
electrical terminals, respectively.

In section 3.7 it was found possible to represent
the radiating head and the radiation load in an array, as
a series L-R combination. It was shown that if the
radiating head mass was included with the radiation reactance
in the equivalent mass L both L and R (the radiation
resistance) were substantially constant in a particular
range of frequency. Thus if the transducer passband was
chosen to fall within this frequency range the 'radiating
section' can be represented by the circuit of Figure u4.2.

The transducing and radiating sections are integral
parts of any extensional piezoelectric transducer with the
circuits of Figures 4.1 and 4.2 being their most succinct
expression. Together with the supply they constitute the
essential ingredients of such a transducer. Between the
transducing and radiating sections, however, it is possible
to introduce extra-mechanical elements. Similarly
electrical elements could be interposed between the trans-

ducing section and the supply. Consequently any practical
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transducer could be represented by the generalized circuit
of Figure 4.3 where the networks E and M represent the
optional electrical and mechanical elements. The supply
is agsumed to be a constant voltage source of constant
internal resistance Rg.

The generalized equivalent circuit of Figure 4.3
is clearly a ladder network with constant source and load
resistances. Also if the elements of M are chosen subject
to the restrictions discussed in sections 3.1 and 3.5, the
circuit components are conventional LC type series and
parallel elements. Thus the problem of design for broadband
operation could be solved by choosing the elements of E, M
and the component values such that the resulting circuit
is a ladder type filter with a broad passband.

This method of transducer design is adopted in this
study, as a large store of circuit synthesis data for
ladder networks is already availableso‘sz. Further, since
modern filter synthesis is executed on the basis of matched
impedance and constant group delay operation in the passband,
the other design criteria are automatically satisfied.

It is immediately obvious, however, that on account
of the presence in the circuit of C1 and C, which are of the
same order of magnitude, both high pass and lowpass networks
are excluded. The choice of available bandpass circuits is
also severely curtailed by the need to satisfy the mechanical
realizability conditions for the elements of M. In particular
parallel inductors are excluded as they possess no mechanical
counterpart (see section 2.2). The electrical elements too

must be neither cumbersome nor too costly to realize.
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Consequently only two types of bandpass filter

32 are found to be realizable within the framework

circuits
of the generalized circuit. These are the canonic (or
analogous) bandpass designs and the coupled resonator designs.
Both bandpass designs are derived from the same low pass
configurations. The canonic bandpass circuits are obtained
by the exact lowpass to bandpass transformation. The

coupled resonator circuits are narrow band approximations

of the corresponding canonic designs.

The derivation of the two types of bandpass circuits
and the tailoring of the circuit parameters for realizability
and optimum performance is dealt with in sections 4.3 and
by, As a necessary prelude to this, however, the practical
and theoretical consequences of the generalized represen-
tation of Figure 4.3 are discussed in section 4.2.

Since filter design is more convenient with
normalized circuits the generalized circuit is impedance
scaled to the level of the radiation resistance R and
frequency scaled to the chosen centre (angular) frequency w, e
This is done by multiplying the resistances in the circuit
by 1/R, the inductances by uo/R and the capacitances by Rmo.
Consequently the terminating resistance in the normalized
circuit and the centre (angular) frequency are both reduced

to unity.

4.2. Properties of the Generalized Equivalent Circuit

The maximum power Pm that could be drawn from the

supply (of Figure 4.3) is given by

2
P = V '-}R . uiz
m = Vgl /e, (4.2)
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If P is the radiated power and V is the 'voltage' across R

P = |[v]2/R . (4.3)

Clearly P is always less than P+ If Vo is the value of V

corresponding to P = P_, |V| is also always less than |le.

m’
The passband of the generalized transducer circuit is

defined as the region of frequencies for which

P<P /2 (4.4)
or |V/Vm| > 0.7071 . (4.5)

Most transducers are designed such that their P or
V characteristic has the standard bandpass shape depicted
in Figure 4.9, Thus if £, f2 are the lower and upper
cut-off frequencies, corresponding to the half-power points
(or the 3dB points on the IV/VmI characteristic) the
centre frequency fo and the fractional bandw'dth B8 are

given by

f = f (4.6)

o 1f

2

>
"

(f2 - fl)/fo (4.7)

If P = Pm at f fo the maximum bandwidth Bma that could

X
be obtained from the generalized circuit of Figure 4.3 is
governed primarily by the effective coupling of the
transducing section. Baerwald29 has shown that, if equation
(4.1) is the sole constraint on the generalized circuit,

Bmax is given by

Bmax = 2K . (4.8)

This limit is also equivalent to
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= ’ 2 2
(f2/f1)max = (K + (JK°+1) . (4.9)

If finite mid band loss is tolerated (i.e., if P < Pm at
f = fo), the maximum bandwidth could be even higher.

In practice, however, equation (4.1) is not the sole
constraint on the generalized circuit. The output or
mechanical quality factor Qm is another. In relation to the

generalized representation Q  is defined as

Q, = w,L/R . (4.10)

For a given circuit configuration, the bandwidth is

dependent on Q  as well as K though less sensitively on the
former. The dependence is explicitly derived for the case
of the conventional (2 pole, canonic) transducer, in

Appendix I. On account of the need to design for pistons
that do not flex (or 'flap') in the passband, the practically

realizable values of Qm are limited to
Q. 2 1.6 . (4.11)

A lower value of Q is also undesirable from the point of
view of the radiation impedance approximation (see
section 3.7).

It has been shown in Chapter 3 that the representation
assumed in the generalized equivalent circuit holds to within
+ 10% of the true value up to the upper limit of frequency
provided the derived geometric limits are adhered to. The
upper limit of frequency is 7.5 or 15 kHz depending on the
centre frequency chosen. In the case of the radiating
section in particular the representation is justified
provided Qy 2 1.6 and a.f (where a is the piston radius)

lies in the range
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100 < af < 400 . (4.12)

Thus the chosen centre frequency and piston radius
must be such that afl - af2 falls within this range. Since
fz/f1 for realizable broadband circuits rarely exceeds 3.5,
the frequency span available within this range (4:1) is more
than adequate. The centre frequency implicit in equation
(4.12) (afo = 200) is used when comparing the mechanical
realizability of alternative broadband circuits. In actual
transducer designs, however, the highest possible value of
afo is employed as this facilitates realizability. The
optimum value of afo which does not violate the restrictions
of equation (4.12),.is plotted against f2/f1 in Figure 4.4,
The nett result is that there is little independent control
over a and fo. For the circuits considered in this study

afo lies within the range

200 < af_ < 250 . (4.13)

4.,3. Canonic Bandpass Circuits

Low-pass Prototype

The general n-pole lowpass prototype from which the
bandpass designs are derived is given in Figure 4.5, This
circuit is impedance and frequency normalized such that the
terminating resistance is unity and the 3-dB cut-off
frequency is at » = 1.0. The amplitude characteristic of
the filter lV/Vm| (as defined in section 4.2) is depicted in
Figure 4.6. The shape of the characteristic and the actual
values of the elements C1 - L, depend on the specific lowpass
filter used (such as a Butterworth 3-pole, Chebychev 2-pole,
etc.). An equally terminated Butterworth 3-pole filter

would, for instance, have
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1 1 3 = 1.0, L, = 2.0 (4.14)

and the frequency characteristic would be 'maximally flat'.
The dual network of the n-pole lowpass prototype is that
of Figure 4.7 where

Cp= Lyy eeny L = C . (4.15)

Since the dual network has the same frequency characteristic
as the original it could be used as an alternative lowpass
prototype when necessary.

The normalized k (coupling) and q factors defined

with respect to the normalized lowpass filter of Figure 4.5

are as follows (see Zverev32 for details)
- -3 - -3
QI = Rl 1° qn = Ln . ('4-17)

The k and q factors constitute an alternative description
of a lowpass filter instead of the element-wise
specifications of Figures 4.5 and 4.7, In the case of

circuit of Figure 4.7 the k and q values are

x
1]

<L1c2>'i‘, Kby = (c2L3>'§ etc. (4.18)

R,L

e
=
"

qn' = C . (4.19)

171

Ffrom equations (4.15) it is clear that the k and q values
are the same for either network. Thus the normalized k
and q description of a filter is more general than the
element-wise description.

Derivation of the canonic bandpass circuit from the
lowpass prototype

The canonic bandpass circuit is derived from the



1 1
R, BL,' BL, Bln || Bln
VWWWWA— i I ROV pp—e = = = = e hadd 11
E J—— m——— p—— 1.0
=& BC, 1 E ] =5 c
BCy 30, BC, BCh, [ BCny
Figure 4.8- Normalized n-pole Canonic Bandpass Filter Circuit
I_V...
7l
1.0 - - - —
t
|
0.707 - -=--- S
{
]
' : ]
| t
' . I
| '
l
i : :
: i : w in radians
Wy 1.0 Wy,
Figure 4.9- Frequency Characteristic of Canonic Bandpass
Filter
R Ly R L,
——— ANV -~ OB ST ..__Jwvtfvs___m,wn
¢y G ciJ 2
= 1.0 o —T %1.0
1

Figure 4.10- Two Pole lowpass

Prototype

Figure 4.11- Three Pole

lowpass Prototype



- 97 -

lowpass prototype by the application of the s-plane trans-
formatjion

8, = %(3/“0 + “0/8) (4,20)

to every reactive element of the latter circuit. In the
above transformation 8 is the fractional bandwidth and w

the centre frequency of the desired bandpass filter. If B
is the inverse of 8 and w, is fixed at unity (for a frequency
normalized bandpass circuit) the above transformation

reduces to

S, = B(S + 1/58) . (4.21)

Thus a series impedance snL in the lowpass circuit is

transformed into sL' + 1/sC' where

L' = BL and C' = 1/BL . (4.22)

Similarly a shunt admittance an is transformed into

sC" 4+ 1/sL" where

c" = BC and L" = 1/BC . (4.23)

Applying this transformation to the lowpass filter of

Figure 4.5 the impedance and frequency normalized canonic
bandpass filter of Figure 4.8 is obtained. The amplitude
response IV/le of this filter is depicted in Figure 4.9.

It is very easily shown (from equation (4.21)) that the 3-dB

oints w,, w, are such that
P 1° “2

Uz - wl = 1/B (uo2u)

and Wlﬂz = 1 .

Since the lowpass to bandpass transformation is exact, the

characteristic possesses geometric symmetry about w = 1.0.
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If the lowpass prototype of Figure 4.7 had been used instead,
the resulting bandpass circuit would have 'begun' with a
series LC pair and terminated with a parallel LC pair.

The bandpass circuit of Figure 4.8 can clearly be
fitted into the generalized transducer circuit of Figure 4.3.
The transducing section must however be realized in the
end capacitor pair Bcn—l’ 1/BLn for otherwise an unrealizable
shunt inductor would appear on the mechanical side of the

circuit. The conditions for mechanical realization are

BLn = Qm (4,.25)

2 - 2
and 1/(B°L C )= K . (4.26)

These equations are derived from equations (4.1) and (4.10).
Using equations (4.16) and (4.17) the above relations

simplify to

Bq (4.27)

"
O
=

/X . (4.28)

]
a3

and B

It is observed that a particular choice of K in equation
(4.28) alone explicitly defines all the element values of
the bandpass circuit. For the resulting circuit to be
practically realizable, however, B and q, must be such that
the condition of equation (4.11) is satisfied. Further
since the fractional bandwidth is 1/B,the maximum bandwidth
is obtained for the least value of circuit coupling kn-l,n
and the maximum value of piezoelectric coupling K. Thus it
is advantageous to use lowpass prototypes with low values

of kn-l,n
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In practice it is not feasible to realize bandpass
circuits of order higher than 3-pole. Further a perusal
of the k, q table532 for standard lowpass filters reveals
that no significant reduction of kn—l,n igs obtained for
higher order filters.

Specific bandpass designs derived from the 2-pole
and 3-pole lowpass prototypes of Figures 4.10 and 4.1l
are given in Figures 4.12 and 4.13. The element values
of these circuits are given in terms of the k, q values and

B and K, as this is the most convenient form.

k.4, Coupled Resonator Bandpass Circuits

The canonic lowpass to bandpass transformation,
though theoretically correct, is not always justified in
practice. An alternative circuit is available in the
coupled resonator approximation of a canonic bandpass design.
The coupled resonator bandpass circuits are generally less
sensitive to variations of the element values. They are
also more convenient to realize mechanically. Since they
are only an approximation to the exact canonic designs, the

32, only within a narrow

formulations are theoretically valid
frequency band (20% of the centre frequency). As a result
of actual analysis, however, it has been established that
passbands up to 120% could be obtained from Butterworth
type standard coupled resonator designs without serious
deterioration of characteristics. The transformation does
not hold satisfactorily for filter types other than
Butterworth and low ripple Chebychev equally terminated

designs at such large bandwidths.
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The theory of coupled resonator bandpass filter

31’32. The rules

design is well treated in the literature
for the derivation of the relevant filter circuits from the
normalized k and q values are given below.

Couplied resonator bandpass circuits consist of
basic L-C resonator pairs 'coupled' together by reactive
elements and terminated at either end in a pure resistance.
The L-C resonator elements may be in parallel in the nodal
circuit designs or in series in the mesh circuit designs.
The coupling elements could be capacitative, inductive or
mutual inductive. For realization as piezoelectric sonar
transducers, however, only series resonator pairs coupled
by shunt capacitors are suitable. The circuit diagrams
of such coupled resonator filters based on 2-pole and 3-pole
lowpass prototypes are given in Figures 4.14 and 4.15.

As in the case of the canonic designs higher order circuits
are not considered on account of the complexity of the
resulting circuits and because improved performance cannot
be obtained from them.

Clearly both circuits are realizable within the
framework of the generalized transducer circuit. In the
case of the 3-pole design, however, the transducing section
could be incorporated in the pair Cios C2 or the pair 023,

C If the former course is chosen the broadband transducer

3°
would consist of one electrical resonator and two mechanical
resonators and vice-versa if the latter alternative is
adopted.

The mesh circuit designs of Figures 4.14 and 4.15
must satisfy the following requirements for operation as

bandpass filterssz.
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1. The value of the coupling capacitance Cij between the

ith and jth meshes must be such that

- i

where C'i, C'j are the total series capacitances of
the ith and jth meshes respectively and kij is the
appropriate value of normalized circuit coupling.

2. Each mesh must resonate at the centre frequency with the
other meshes open circuited. For the frequency

normalized circuits considered in this section

! -
C iLi =1 (4.30)

for each mesh where L, is the appropriate mesh
inductance.
3. The input and output Q factors must be Bql and Bqn

respectively. Thus

L,/Ry = Bay, L. = Bq, . (4.31)

In addition to the above requirements for operation
as a bandpass filter, two extra constraints are introduced
by the need to realize the circuit as a sonar transducer
(see section 4,1). The first of these (equat’on (4.1))
could be expressed in the context of the mesh circuits of
Figures 4.14 and 4.15 as

2

C: = K . (4.32)

. C
]

i3
The second which is a lower limit on the realizable Q,
(equation (4.11)) is not formulated here as an explicit
algebraic constraint. The significance of this constraint
in relation to realizable bandpass circuits is further

discussed in section 4.5.
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In the foregoing formulation of the above relations
for 2-pole and 3-pole designs the variables C';, C'j are

replaced by Li'l, Lj'l from equation (4.30) for convenience.

Two-pole coupled resonator bandpass design

The circuit of Figure u4.l4 would behave as a bandpass
filter suitable for realization as a piezoelectric sonar

transducer provided the following equations were satisfied.

-1 _ 3

€17 = (L3L)%k,,/B (4.33)
o oa-1 -1

L, =C]" +C]; (4.34)
A=l -1

L, = C;~ + CJ5 (4.35)

Ly = R,Bq, (4.36)

L, = Bq, (4.37)

c. = xlc (4.38)

2 12 . .

The factors k12’ 1> 9, depend on the specific
lowpass prototype chosen and K is the effective piezoelectric
coupling. In spite of the extra constraint introduced by
the piezoelectric coupling, the seven parameters of the
filter circuit, inclusive of B, are related by only six
equations. This is a consequence of the flexibility of
coupled resonator designs. As a result it is possible to
tailor the parameters for an optimum value of B. Since
maximum bandwidth is desired the required optimum is the
least value of B. The minimization of B is effected as
folloyg.

Eliminating C, between equations (4.38) and (4.25)

- -1
L2 = uCl2 (4.39)
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where vz (K2+1)/K2 . (4.40)

Substituting for C,, from equation (4.33) in equations

(4.34) and (4.39) and eliminating L,y it is easily shown

that

2 _ 2 -1.-1
B® = “klz/(l - Ly Cl ) . (4.41)
Thus the least value of B is obtained for the greatest value
of L1C1° C1 can, however, be made effectively infinite by
eliminating it altogether from the circuit when the above

expression reduces to

3

The reduction also determines the element values explicitly
as it eliminates one variable from the original set. The

resultant optimum circuit design is given in Figure 4.16.

Three-pole coupled resonator bandpass design

The constraining equations for the 3-pole coupled
resonator circuit of Figure 4.15 are given below. The
design is based on the 3-pole lowpass prototype which is

defined by the values Q5 Q> k12 and k23'

=1 ;
]y = (LyL,)%k,,/B (4.43)
. L.r)dxk../B (4.44)
23 2L3? ko3 .
-1 -1
L, = CI" + CI) (4.45)
-1 -1 -1
Ly = Ci2 + G + Co3 (4.46)
. | -1
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R,Bqq (4.48)

Ly = Bqg . (4.49)

The specific formulation of the 'piezoelectric
coupling' equation depends on the position of the transducer
coupler. Assuming this is realized in Cy2s Cy for a

'predominantly mechanical’ circuit

c. = xic (4.50)

12 *

In this case ten variables are constrained by eight equations.
The derivation of the least value of B is similar to that
for the case of the 2-pole filter.
Using equation (4.50), equation (4.46) can be
restated as

-1, -1

L2=uC

where y was defined in equation (4.40). Substituting for

C,, and C,, from equations (4.43) and (4.44), equations

12 23
(4.45), (4.51) and (4.47) become

. 1-1s~-1 3

1l = Ll C1 + (L2/Ll) k12/B (4.52)
- 3 3

l-= u(Llle) k12/B + (L3/L2) k23/B (4.53)
_ -1, -1 3

Eliminating (Ll/L2) and (L3/L2) between the above equations
it can be shown that

-1
3

2 _ 2 -1.-1
B® = uk12/(1 -~ L,°C

-1
1 6 C ) . (4.55)

2
) + k23/(1—L 3
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As bafore the least value of B is obtained when C, = C, = »
when

2

- 2 i
B = (uk12 + k23) . (4.56)

The corresponding 'predominantly mechanical' optimum design
is given in Figure 4.17.
If, however, the transducing section is realized

in the pair C23, Cy equation (4.50) is changed into

C. = K2

3 c . (4.57)

12

In this case it is easily demonstrated that the optimum
value of

2

2 3
12 ¥ uk23) (4.58)

B = (k

is obtained when Cl s C2 T -, The corresponding
'predominantly electrical' optimum design is given in
Figure 4.18.

A great advantage of the optimum designs is the
elimination of all but one of the series capacitances from
the general circuit which considerably reduce realization
problems. The derivation of such optimum designs is
possible for W4-pole coupled resonator circuits as well.
The resulting bandwidth, however, is not greater than that
for 3-pole designs though the cut-off is sharper.

The bandwidth and centre frequency of the derived
optimum circuits is found (on analysis) to deviate
considerably from that predicted by the theory. The
bandwidth is around 35% in excess of the predicted value
for 2-pole designs and around 60% higher for 3-pole circuits.

The centre frequency is depressed to around w, 3 0.78, from
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the nominal value of wy 2 1.0. Thus in using coupled
resonator designs the effective centre frequency () and
bandwidth (8) must be measured from the computed character-
istics. The reasons for this discrepancy, which is not
present in the exact canonic designs, have been given at the
beginning of this section.

Further, the variable B can no longer be regarded as
the inverse of the bandwidth 8. Thus, in the case of the
three coupled resonator optimum designs, B must be taken to
be defined by equations (4.42), (4.56) and (u4.58). It is
also worth noting that though equations (4.56) and (4.58)
define values of B greater than that given by equation
(4.42) the computed bandwidths of the 2-pole and 3-pole
circuits are about the same.

As in the case of the canonic designs, it is
observed that the output Q of the three coupled resonator

-1,

designs is Bqn (though B is no longer equal to 8 Bq,

must, however, be such that equation (4.11) is satisfied.

4,5, Properties of the Alternative Broadband Circuits

In sections 4.3 and 4.4 two canonic and three
coupled resonator bandpass circuits were developed for
realization as broadband piezoelectric sonar transducers.
Further, any of these circuits could be based on a number of
alternative sets of k and q values. Thus it is necessary
to devise some means of choosing the most suitable of these
circuits for mechanical realization.

Before considering mechanical realizability, however,
it is convenient to eliminate the filter circuits whose

computed characteristics are unsuitable. For this purpose
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the circuits considered were analysed by means of the technique
developed for normalized ladder-type filter networks. This
technique is described in section u4.4.

It is found on analysis that the coupled resonator
designs are satisfactory only for equally terminated Butterwortr
and low-ripple Chebychev prototypes. The canonic bandpass
circuits are not subject to this restriction. Even in the
case of the canonic circuits, however, only equally terminated
designs are considered as these are much less sensitive
to variations. Also for any given circuit the Butterworth
design is the least sensitive of all. Thus with respect to
this criterion alone it is the most suitable.

Of the two types of bandpass filter,the coupled
resonator circuits are less sensitive to variations of the
element values than the canonic designssz. It is'also found
that the 3-pole coupled resonator designs are better in this
respect than the 2-pole designs.

With equally terminated Butterworth and low ripple
Chebychev bandpass filters it is further possible to modify
the circuit by arbitrarily reducing the terminating resistance
without altering the other element values. It is found on
analysis that this modification has little effect on the
bandwidth or the shape of the characteristic provided the
reduction is not mgch more than 50%. This result could also
be justified theoretically. It does, however, introduce a
uniform mismatch loss of 0.5 dB for a reduction from 1.0 to
0.5. While the %oss sustained is tolerable the circuit is
modified in such a fashion that its mechanical realization

is greatly facilitated. In fact, without this particular
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artifice it is not possible to develop any realizable
3-pole broadband transducer circuits.

A comparison of the five broadband circuits reveals
that all except the predominantly mechanical 3-pole coupled
resonator design have identical mechanical configurations.
The mechanical circuit in these cases is a single mechanical
resonator consisting of the ceramic compliance, the
radiating head mass and the radiation resistance is series
(compare with Figure 4.3). This configuration is simply
realizable in the conventional transducer design illustrated
in Figure 2.7 and described in sections 2.4 and 3.3.

Further, it is clear that both 2-pole designs are particular
cases of the conventional design incorporating one mechanical
resonator and one electrical resonator. The 3-pole

canonic circuit and the predominantly electrical 3-pole
coupled resonator circuit are thus seen as electrical
extensions of the 2-pole designs.

In the case of the predominantly mechanical 3-pole
coupled resonator design alone, extra mechanical elements are
present in the circuit. The mechanical form of this circuit
is simply obtained by comparison with the equivalent circuits
of the single mechanical resonator designs. Thus, from
Figure 4.17 and section 2.2 it is clear that the extra
elements consist of a single series mass-compliance pair
introduced between the ceramic compliance and the radiating
head mass. The rest of the mechanical construction is
similar to that of the conventional design. The electrical
part of the circuit consists of the electrical capacitance

of the ceramic and a series inductor., Thus this circuit is



- 106 -

a mechanical extension of the conventional 2-pole design
incorporating two mechanical resonators and one electrical
resonator. A diagram of a transducer design based on this

circuit is given in Figure 4.22.

The five circuits derived in sections 4.3 and 4.4
are of course only the normalized versions of realizable
circuits. The 'un-normalized' or real element values
corresponding to a radiation resistance of R and a centre
frequency o are obtained by multiplying the resistances,
inductances and capacitances in the normalized circuit by

the factors Fr, Fz and Fc respectively, where

Fr = R/r (4.59)
F, = RU/rmo (4.60)
F, = rE/uoR . (4.61)

Here w is the effective centre frequency (as defined in
section 4.4%4) and r the terminating resistance value {reduced
if necessary from 1.0) of the normalized circuit. - Though
w is 1.0 in the canonic circuits, in the coupled-resonator
circuits it is generally around 0.77.

From equations (3.54) and (3.39) it can be shown that
if a is the piston radius

R = 2.3 x 105.a% . (4.62)

Substituting for R in the above equations

F, = (2.3 x 108/r)a? (4.63)
F, = (0.366 x 108 ;/r)aalafo (4.64)
Fo = (re/lu.uy x 106)/a(af°) . (4.65)
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Since afo as fixed for a particular circuit it follows

that

Fro< 32, F o« a and F. o< a . (4.66)

But the absolute value of the resistances in a particular
transducer design is determined by F.. Similarly Ft and
Fc determine the absolute values of the masses and the
compliances. Consequently the transducer scales precisely,
that is, if the centre frequency is increased in a certain
ratio, all the geometric dimensions must be reduced in the
same ratio. Thus a particular (normalized) broadband
circuit which is mechanically realizable at 5 kHz is also
realizable at any other frequency. For convenience, the
realizability of alternative c’rcuits is compared at 5 kHz.

An example of the deta’led design procedure of a
sonar transducer is given in section 4.6. Before the
execution of such a procedure, the most suitable circuit
for a particular value of effective coupling K, is chosen
in the following manner.

In practice it is found that of all the mechanical
components the ceramic compliance and the radiating head
are the most difficult to realize. A radiating head
approximating to 'rigid p'ston' conditions is realizable
provided Qn is greater than 1.6. A value of Q  greater
than 2.0 is, however, much more desirable.

The compliance of the ceramic stack is approximately

given by

E

33 PX'/A (4.67)

02 = S
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where pX' is the total length of the stack and A its area
of cross section. The maximum value of pX' for a PZIT-
ceramic transducer (at w = § kHz) is around 5.0 cm (see
gection 3.3). If flexing of the stack is to be avoided
and a reasonable quantity of power handled, the area A must
not be less than about § cm?. These two limits result in

the ceramic compliance C, being limited to

1

C, < 1500 x 1072 m/Nw (4.68)

2

for a 5 kHz transducer in PZT. The corresponding limit
for barium titanate is around

1

C, < 1400 x 1071% m/Nw : (4.69)

2

These limits on C, are of course somewhat arbitrary but
adequate as a guide to design.

The values of 02 and Qm'required by a number of
alternative broadband circuits are compared in the following
table. For the purposes of this comparison it is assumed
that K = 0.845, f° = 5 kHz and a = 4 cm (i.e., afo = 200).
If C2n is the ceramic compliance and L™ the 'output
inductor' in the respective normalized filter circuits,

C2 and Qm are given by

C, = FC," = ruC,"/1.156 x 108 (4.70)

2 2

and Q, * oL/ . (4.71)

The values of w, f,/f, and 8 are obtained from the
computed characteristics of the relevant filter circuit.
For convenience, the 'predominantly electrical' and
'predominantly mechanical' 3-pole coupled resonator designs

are abbreviated to CR3-E and CR3-M respectively. The
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canoni¢ 2-pole, 3-pole and coupled resonator 2-pole are

gsimilarly denoted by C2, C3 and CR3.

The value of r is

chosen arbitrarily, as explained earlier in this section.

Comparison of the Realizability of Alternative

Degigns for K = 0.845

Description C, in
of _ ff, o ¢ P Q 12
Circuit r w 2° 1 % 2 m 10 m/Nw
-
CR2 1.0 0.76 3.24 125 1.105 1.550 1.180 7270
Butterworth
C2 1.0 1.00 3.12 120 .845 1.180 1.180 7300
Butterworth
Cc3 1.0 1.00 3,12 120 1.195 .837 .837 10340
Butterworth
(0.5 dB .
ripple)
C3 Legendre (1.0 1.00 3.82 14§ ++666 1,500 1,500 5760
CR3-E 1.0 .72 3.25 125, 1.315 1.303 0.940 8210
Butterworth
CR3-M 1.0 .77 3.05 117 548 1.303 1.004 3640
Butterworth 5
CR3-M 0.5 .77 3.05 117  .5u48 1.303 2.008 1820
Butterworth
CR3-M 0.5 .77 3.06 118 481 1.485 2.280 1598
Chebychev
(0.01 dB
ripple)
CR3-M 6.5 .77 3.06 118 L409 1,750 2,690 1356
Chebychev
(0.1 dB
ripple)

It is clear from the table that the 2-pole designs are

quite unrealizable.

In fact 02 is so much in excess of the

upper limit, that it is not even necessary to try alternative
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designs such as Chebychev etc. Clearly r has to be around
0.25 before 2-pole designs in PZT begin to be realizable.

The 3-pole canonic designs are just as unsuitable
for mechanical realization, on account of excessive values
of C2. In canonic designs, however, it is possible to use
'unequally terminated' prototypes with non-symmetrical k
and q values. Though it is possible to reduce C, by this
means the resulting values are still unrealizable. These
designs are not included in the table.

The same as true of the predgpinantly electrical
CR3-E circuit. .

The predominantly mechanical CR3-M circuits alone
possess values of C, and Q which fall within or closely
approach the realizability limits. Even these circuits
however are realizable only when r is reduced to 0.5.

It is further observed that mechanical 'realizability'
improves as the ripple tolerance is increased from zero
(Butterworth) to 0.01 dB and 0.1 dB. Thus the Chebychev
designs could be regarded as modifications of the Butterworth
circuit for improved realizability at the expense of ripple
in the passband.

On analysis, however, it is found that the ripple
amplitude is magnified by the lowpass to coupled resonator
bandpass transformation. Consequently the 0.1 dB ripple
Chebychev design has to be rejected on account of large
variations in the passband.

Thus the only acceptable, mechanically realizable
designs, are the CR3-M Butterworth and 0.01 dB ripple

Chebychev, with r = 0.5. Fortunately these designs are also
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the least sensitive to variations of the element values.
In both cases Qm is greater than 2 but C2 is somewhat beyond
the design limit. In an actual design, however, afo is
generally higher than the value of 200 used in the above
comparisons. Since F_ o 1/afo (equation (4.65)), 02 is,
as a result, reduced to fall below the limit of equation
(4.68). Since the realization of C, is the critical factor
in the realizability of a particular circuit it is essential
to make af as large as possible. The optimum value of af,
for a particular f2/f1 is given by the graph of Figure u.u.
It is observed that the highest value of bandwidth B
is obtained for the C3 Legendre design (145%). The maximum
possible bandwidth for a K of 0.845, as predicted by
Baerwald (equation (4.8)) is 169%. Thus the realizable
CR3-M Butterworth and Chebychev circuits harness only 70%
of the 'potential' bandwidth for this value of K.

4.6. Transducer Design in Lead Zirconate Titanate
Type Ceramic

In section 4.5 it was shown that the CR3-M Butterworth
or low-ripple Chebychev circuits were the most suitable for
realization as broadband transducer designs in PZT-type
ceramics. It was also shown that the mechanical form of this
circuit is a simple modification of the conventional trans-
ducer design. The derivation of the detailed mechanical
design from the normalized bandpass filter circuit is as
follows. The symbols and formulae used in this section are
defined or derived in Chapter 3 and section 4.5.

Choice of circuit and centre frequency

It is assumed that the active section is to be

constructed of a PZT~type ceramic (AM 525), possessed of the
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following properties:

kyy = 0.69

dgy = 2.96 x 10727 m/v

S, = 16.2 x 10717 n?/Nu
: 7670 kg/m°

€3, = 11810 x 1072 F/m

From which it is easily shown that

Cq = 2835 m/s

and K2 = .9075 .
(o]

It is found by experiment that the value of a gauze-
resin bond between alternate ceramic segments could be
expressed as

E

Cb = 0.000442 s

where A is the bond (and ceramic) area of cross-section.
Assuming a ceramic segment thickness of 0.5 cm the effective
value of low-frequency coupling Ko' inclusive of the effect

of bonds is found (from equation (3.30)) to be given by

1 =
Ko - 0.881 .

The effective coupling at operating frequencies drops off
from the above value according to equation (3.29). Thus a
value of coupling lower than Ko' has to be used as the
working value. The working value of effective coupling,
which is chosen by a trial-and-error process, is taken in

this instance to be

K = 0.8uS.
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For this value of coupling the 0.0l dB ripple
Chebychev version of the CR3-M circuit of Figure 4.17 works
out to that of Figure 4.19. The terminating resistance r
is reduced to 0.5 for the reasons given in section 4.5.
Though the Butterworth design is less sensitive than this
Chebychev, the latter is chosen as it is easier t realize
mechanically. The derived bandpass circuit is based on

the following k and q values:

k = k

12 0.6818

23

1.1811 .

q Q)

It is decided to centre the transducer at 4.01§
kHz. Since f2/fl for this circuit is 3.06 (see table
section 4.5), the optimum value of afo (from Figure 4.4) is
229. This results in a piston radius 'a' of 5.71 cm and

cut-off frequencies of

f, = 2.3 kHz and f, = 7.0 kHz .

1 2

The appropriate scaling factors are found from equations

(4.63) - (4.65) to be

|
"

14880

F, = 0.457

2033 x 10”12 .,

ot
"

The scaling of the normalized circuit by these factors
yields the actual mechanical circuit to be realized (Figure

4,20). The numerical values of the elements are as follows:

R 7490 Nw.s/m

R B/2
g

L=L"

0.6785 k
g g
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Cy = C;™ = 1.368 x 10™° m/Nw
L2 = 2.310 kg

c = 976 x 10°12 p/N

2 -4 m W -

The above transformation presents all the circuit elements
referred to the mechanical side. This is indicated on the

electrical elements by the superscript 'm'.

Constructional features of Broadband Design

The mechanical realization of the circuit of Figure
4.20 is given in Figure 4.22. In this circuit R is the
effective radiation resistance and L the sum of the
radiating head mass and the mass equivalent of the radiation
reactance. 03 is clearly a series compliance between the
radiating head mass L and the centre mass L2. C3 is most
conveniently realized as three cylindrical rods positioned
symmetrically as depicted in Figure 4%.22. Clm, 02
represent the ceramic stack which is anchored on one side
to the countermass (described in section 3.3). The ceramic
stack consists of a number of cylindrical rings bonded
together by gauze-resin joints. The stack is insulated
from the countermass and the centre-mass by two
rings and from the centre bolt by an insulating sheath of
a highly compliant material (see section 2.5 for details of
stack construction). All transducer components are of
circular cross-section.

The whole assembly is held together in compression by
the centre bolt and adjacent elements are bonded to ensure

good mechanical contact. The transducer assembly is

supported in the case by a highly compliant diaphragm and
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rubber rings, so as to effective isolate it, vibration-wise,
from the case. The rubber ring on the head mass also serves
as a seal. The electrical connections to the ceramic stack
are led out through the two holes in the countermass and out

of the case via a watertight gland and cable.

Design of the Ceramic Stack

From equation (3.28) the effective compliance of
the ceramic stack is given by

C, = (sin pr/ceM)/pceAM .

Since X has already been fixed at 0.5 cm, the only controllable
parameters in this expression are the area A and the number of
segments p. In section 3.3 it was shown that the length of a
PZT-type ceramic stack should not exceed 5 cm for approxi-
mately 'linear' behaviour up to 7.5 kHz. Thus p is
conveniently fixed at 10 and A is adjusted such that 02 is
equal to the design value at 2.23 times the centre frequency
(see section 3.3).

2

If A is 8.53 cm® it is found that

C, = 976 x 10°12 m/Nw at 5.13 kHz (2.23 £.)
c, = 1023 x 10712 m/Nw at 2.30 kHz (£,)
C, = 926 x 10712 p/Nw at 7.00 kHz (£, .

Thus the maximum variation about the design value is 5%.
Further this value of A corresponds to an effective electro-
mechanical transformation ratio ¢' of 2.86 and an effective
electrical capacitance (pCo') of 10950 pF. The value of C,

required by the designed circuit is however

= 2, m _
c, = (#")°c;™ = 11180 pF .
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The difference of 230 pF is made up in the capacitance of
the connecting cable. Since the electrical supply and the
inductor L8 are located at some distance from the transducer,
the capacitance of the connecting cable is appreciable.

In practice the design value of K is also treated
as a controllable parameter and adjusted for a satisfactory
design.

The above value of ceramic area A is obtained by
making the inner and outer diameters of each segment equal
to 1.430 em and 3.598 cm respectively. The inner diameter
is made large enough to accommodate the centre bolt and the
insulating sheath.

The mass of the ceramic stack (pAXp) works out to
0.327 kg. Half of this value plus the mass of the
steatite insulating ring is effectively added onto the masses
on either side of the ceramic stack. For the dimensions
indicated in the diagram each steatite insulator has a mass

12 m/Nw

of 0.005 kg and an effective compliance of 44 x 10~
inclusive of the bonding on either side.
The values of the electrical elements are obtained

by inserting the electromechanical transformer appropriately

to yield the equivalent circuit of Figure 4.21 where

L
g

R
and g

83 mH

1832 q.

Lg is realized as a ferrite pot-core inductor.

Design of the other mechanical elements

The rod compliances are realized in three identical

rods of diameter 0.635 cm. The total compliance of the
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joints on either side of the rods is estimated at 143 10-12

12

m/Nw.  Thus the design value of C; = 1368 107" m/Nw is

satisfied if the total compliance of the three rods is

-12

1225 * 10 m/Nw. This value is realized for a rod length

of 1.443 cm assuming the rods are constructed of beryllium
copper of density 8.33 gr/cm3 and Young's modulus 0.124 x 1012
Nw/m. The mass of the rods which is effectively added

onto the masses on either side in equal proportion,is

0.011% kg.

Thus the required value of centre mass corrected for
the masses added from either side is 2.135 kg. This value
is realized in a cylindrical steel block of outer diameter
8.5 ecm and thickness 4.84 cm, allowing for a cylindrical
cavity of 0.96 cm diameter to accommodate the bolt. The
thickness is kept close to 4.3 cm in view of the limits
derived in section 3.1.

From equation (3.54) the mass equivalent of the
radiation reactance of a piston of radius 5.71 cm works out
to 0.1272 kg. Correcting for this value and foé the added
masses of the rod compliances and the bolt the radiating
head mass is required to be 0.4874 kg. The radiating

head is constructed of aluminium.

The countermass is generally constructed of steel
and its value made as large as possible. Its length,
however, is restricted to about 9 cms (see section 3.1) and
its outer diameter is conveniently made equal to the diameter
of the radiating head to facilitate insertion into the case.

For the construction depicted in the figure, the effective
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value of the countermass inclusive of the added masses,
is 8.07 kg.

The centre bolt is a steel rod of diameter 0.952 cm
and length of approximately 21 cm. Its mass is 0.112 kg

-

and its low-frequency compliance is approximately

12 m/Nw. This value is large enough to justify

15,000 x 10~
its exclusion from the design circuit as it is an order of
magnitude greater than the other circuit compliances. Its
normalized value (for insertion in the circuit of Figure 5.15)
is 7.u42,

The compliance of the supporting diaphragm is even
higher, at 275,000 x 10~12 m/Nw. This value is thus

sufficient to effectively isolate the transducer assembly

from the case.

Computed characteristics of the designed transducer

The computed characteristics of the designed trans-
ducer are depicted in Figures 4.23 to u4.25. P is the power
radiated by the device and P, is defined in equation (4.2).
In Figure 4.23 curve A is the power characteristic computed
from the normalized 'design' circuit of Figure 4.18.

Curve B is calculated from the circuit of Figure 5.15 in
which modifications are made for the inclusion of the
countermass and the bolt. The countermass appears as a
shunt inductor of value 17.7 between C2 and L2 (see Figure
5.15) and the bolt can be accounted for by a series capacitor
of value 7.42 between C; and L. Curve C is calculated from
the complete equivalent circuit by the analysis technique

described in section 5.2. So also are the phase sghift and

impedance characteristics of the transducer.
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It is observed that the characteristic A computed
from the design circuit of Figure 4.19 does not closely
agree with the more accurate curve C. Thus the values of
w and B derived from the design circuit do not accurately
represent the performance of the corresponding practical
transducer., They are, however, adequate as a guide to
design. A somewhat better approximation is effected by
curve B which includes the effects of the countermass and
the bolt.

According to curve C the designed transducer has
a passband of 2.7 - 6.85 kHz. This corresponds to a centre
frequency of 4.3 kHz and a bandwidth of 96.5%. It is
also observed that while the phase shift of the device is
reasonably linear in the passband, the input impedance

characteristic is somewhat less than satisfactory.
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CHAPTER §

ANALYSIS

In this Chapter a technique is developed for the
time and frequency analysis of extensional type piezoelectric
sonar transducers. The analysis technique is based on the
accurate equivalent circuits derived in Chapter 3. In
section 5.1 the complete equivalent circuit is formulated
for the specific case of the designed transducer of Figure
u,22. It is shown, however, that the resultant equivalent
circuit is representative of conventional transducers as
well, with simple modifications which do not affect the
analysis theory. In section 5.2 the special structural
features of the complete equivalent circuit are exploited
to derive a method of frequency analysis which is
particularly suitable for extensional type transducers.
This is followed in section 5.3 by the description of a
general method for the determination of the time responses
from the frequency characteristics.

Finally, a technique applicable to the analysis of
any ladder type filter network consisting of conventional
electrical elements is described in section 5.4,

Computer programs for the execution of the above
analysis techniques are presented in Appendices III and IV,
The computed time and frequency characteristics of the
designed broadband transducer and the conventional transducer

of Figure 2.7 are also included.

5.1. Formulation of the Complete Equivalent Circuit

The design theory of Chapter 4 was developed on the
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basis of the approximate LC representation of transducer
components. For the purposes of analysis it is necessary to
use instead the more accurate equivalents which allow for
the distributed mass and compliance wherever necessary.
The accurate equivalents of individuals components derived in
Chapter 3, are all formulated in the impedance analogy. The
complete equivalent circuit of a transducer assembly is,
however, best formulated in the mobility analogy, on account
of the topological similarity between the mechanical circuit
and its mobility analogue (see section 2.2). The rules
for interconversion between the two representations are
given in section 2.2.

The uniform mechanical line of Figure 3.1 is exactly
represented in the impedance and mobility analogies by

the dual networks of Figure 5.1 in which

yl =z jz_/sin kX

(5.1)

and 2t = Y" = jZ_tan kX/2

Zo, etc. are defined in section 3.1. The superscripts i
and m indicate the analogy in which the equivalence is
formed. The alternative impedance-I representation of
Figure 3.2b or its dual the mobility-T, are not considered
here as it is not used in this Chapter.

Similarly the ceramic¢ stack could be represented by
the mobility analogy equivalent of Figure 5.2 which is easily
derived from the impedance representation of Figure 3.14.

In this circuit the symbols Zcm and ch are defined in terms

of le and Z2p of equations (3.22) as follows
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zm
c

/2., ch = 7 . (5.2)

2p lp

The network element G is a unit gyrator which is defined

by the transmission matrix
A B 0O 1
= . (5.3)
CcC D 1 0

The derivation of the mobility analogy equivalent
circuit of a composite extensional type transducer is now a
relatively simple matter. It is observed that the
configurations depicted in Figures 2.7 and 4.22 both consist
of simple mechanical ‘'extensions' on either side of the
ceramic stack which link up again via the centre bolt.

Thus the mobility analogy equivalent of the transducer of
Figure 4.22 is derived by building up the circuit around the
equivalent circuit of the ceramic stack to yield the result
of Figure 5.3. The correspondence between mrechanical
elements and their circuit equivalents is indicated in the
figure itself. The electrical elements Rg and Lg are left
out for convenience.

The type of representation used for a particular
element is determined by the criteria derived in section 3.1.
Thus in the case of the designed transducer circuit the
ceramic stack, the bolt, the centre mass and the rod
compliances are represented by equivalent N sections of the
form shown in Figure 5.1b. The remaining components are
represented by LC type elements. In the case of the rod
compliances shown in Figure 4.22 an LC reduction would have

been quite justifiable. The more accurate form is used
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however, as in some designs their length is in excess of
the limiting value. The representation of the countermass
by a single 'C' element in spite of its appreciable length,
is justified later on in this section.

Though the mobility analogue of a transducer is
much easier to derive, the impedance analogue is more
convenient in analysis. As such the mobility analogy
equivalent of Figure 5.3 is converted into the impedance
equivalent of Figure 5.4 (according to the rules of section
2.2) before analysis. In particular, the E-sections
representing the centre mass, rod compliances and bdplt are
converted into the T-sections of Figure 5.4. The Z, Y
values of these T-sections are estimated from the dimensions
of the respective mechanical elements according to
equations (5.1). The elements Y_, Z, of the ceramic stack

are obtained from le, Z,, (of equations (3.22)) as

P
follows

Y

c 1/Z2p

(5.4)
Z

Z

c 1p * Jaly

where Li is half the mass of each steatite insulator.

A similar correction could be made to the Zm nearest to Ci
and to Lcm‘ Also, the insulator compliance Ci could bdbe
corrected to include the icb shown in Figure 3.14% plus
another Cb to allow for the bond on the other side of the
insulator. Though these corrections are included in the
analysis programme, their effects have been found to be

negligible,
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The radiation load (Rr + jXr) is given by equations
(3.54) and L. is the mass of the radiating head.

The compliance of the diaphragm Cd appears in parallel
with a mass Lc which is some indeterminate fraction of the
case mass. In practice, however, the uncertainty in the
value of L, is of little consequence, as Cd is generally
large enough to constitute a virtual short circuit in the
frequency range of interest.

Further, since both the impedance of L., and the
admittance of Yb is very large, the current through L.,
is small. Thus the error introduced by the representation
of the countermass by a single constant mass L., is
negligible. The effective compliance of the countermass

is also negligible.

5.2. Computation of the Frequency Characteristics

The formulation of the complete equivalent circuit
of the designed transducer of Figure 4.22 is discussed in
section 5.1. It is clear that any extensional type
transducer could be represented by a circuit similar to that
of Figure 5.4. The conventional type transducer of
Figure 2.7 could for instance be considered as a particular
case of the mechanical configuration of Figure 4.22, in which
the centre mass and the rod compliances are absent. Thus
the theory developed for the analysis of the circuit of
Figure 5.4 is applicable with simple modifications to any
extensional transducer.

The most striking feature of the impedance equivalent

of Figure 5.4 is its near ladder-like structure. On account



of this the network can be frequency analysed without
recourse to a general network analysis program. A ladder
structure is much simpler to handle computationally and
consequently requires much less computing time.

The piston velocity is represented in the circuit of
Figure 5.4 by the 'current' I. The power radiated by the
transducer is then

- 2
P=R|I] . (5.5)
The complex frequency function G(w) which is defined by

I = G(w) Vg (5.6)

is referred to as the transfer function of the system.

Eliminating I between these two equations

- 2 2
P = R |G(w)] |vg| . (5.7)

The radiated power P is commonly expressed as a fraction

of the maximum power P defined in equation (4.2). Thus

P/P, = UR_|Gw)| /R : (5.8)

The other frequency functions of interest are the phase
shift ¢ and the input impedance zin of the transducer which
are defined as

¢(v) amp G(w) (5.9)

and zin

Vg/Ig - Rg . (5.10)

The frequency functions G(w), ¢ and Zin are derived
as follows. The complete impedance equivalent of Figure
5.4 is first summarized by the circuit of Figure 5.5. In
this circuit T is a simple ladder network of transmission

matrix (é g]. It is then very easily demonstrated that



- 132 -

Figure 5.5~ Contracted Form of the Equivalen* Circuit
of Figure 5.4
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Figure 5.6~ Computation of the Transmission Matrix of T

1.0 o

0.5 ¢

Frequency in kHgz

10 12 14 16

6 8

Figure 5.7- Frequency Response of Unbaffled Conventional
Transducer
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V, = AV, + BI, (5.11)

I1 = CV2 + (D-l)I2 (5.12)

Vl ] V2 - Zch . (5.13)
Also, if Z, is the impedance of the series arm containing

Zy» Lcm and the parallel combination of Cq4 and Lc ’

I

(JuCg#Y, +3wCiY 7,0V, + (142,Y)1, . (5.18)
But from equations (5.11) and (5.13)
V2 = (B + ZC)IZ/(I-A) . (5.15)

Therefore by substituting for V2 in the above equations,

Vl, I, and I are obtained as linear functions of I,. Now
Vg and Ig are related to Vl and I1 by

I = (07 ¢ 3upC /Y (4T + (Gupcy /(40P (5.16)
and

Vo s (V) ¢ T /YO /e0% 4 TR Hul) (5.17)

It is clear that Ig and Vg are also linear functions of 12.

Thus I, is eliminated in the formation of the ratios I/VS,

2
Vg/Ig. G(w), Zin are obtained (from equations (5.6)
and (5.10)) as functions of the network elements alone.

In actual computation, however, (Appendix III)
I, Ig and Vg are most conveniently calculated from the above
equations (in the order indicated) with I, arbitrarily fixed
at unity.

The frequency functions A, B, C, D are estimated by

the stepwise procedure indicated in Figure 5.6. Thus a shunt
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admittance Y is assimilated by the transformation

A' B' A B
= (5.18)
c' D' C+YA D+YB
and a series impedance Z by
A' B’ A+ZC B+ZD
= . (5.19)
ct D C D

Computational Details

A program for the computation of the frequency
characteristics of the designed transducer circuit of
Figure 5.4 is given in Appendix III under the subroutine
title FRERES. This program executes the operations described
above at 100 equally spaced frequency values in the range
0 - 10 kHz (or any other upper limit). Specific values of
the circuit parameters for a particular transducer are fed
into the program as a series of DATA statements.

The radiation load is computed by the sub-programs
ARRAY, INFBAF and UNBAF, depending on whether the load
termination chosen is that of an array or of a single piston
source in infinitely baffled or unbaffled conditions.
ARRAY is based on equations (3.54) and INFBAF on equations
(3.38) - (3.40). The 'unbaffled load' values, on the other
hand, are obtained from the graph of Figure 3.15 which is
'written' into the subroutine UNBAF. Provision is also made
in the FRERES routine for computing the response of the
transducer in air.

The parallel combination of Cq and Lc is not included

in the subroutine FRERES as in practice it constitutes a
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virtual short circuit (see section 5.1). The program is
also modified to allow for mechanical loss at the rubber
rings and for dielectric loss at low operating fields.

FRERES computes P/Pm according to equation (5.8) and
displays its frequency dependence graphically by means of the
subroutine GRAPH. The functions ¢, ‘zin‘ and ampZin are
also displayed graphically. The results of such computations
for the designed transducer of Figure 4,22 are given in
Figures 4,23 - 4.25. The result of a computation of P/Pm
for the conventional transducer of Figure 2.7 is displayed
in Figure 5.7. In this case it is assumed that the
transducer is fed from a voltage source of internal impedance

100009, with a tuning inductor included in the circuit.

5.3. Evaluation of the Time Responses

In addition to the frequency characteristics it is
necessary to evaluate the response of the transducer to
electrical and mechanical excitation which is specified in
the time domain. The commonly employed exciting signals
are step, steady sinusoidal and steady square-wave voltages
applied suddenly (at t = O say). The output variable in
the case of voltage inputs is chosen as the piston velocity.

The voltage generated across R_ as a consequence of an

g
explosion in the vicinity of the transducer is also of
interest.

The above time responses are computed in this study
from the frequency characteristics by means of the numerical
Fourier transform technique described below. The technique
is applicable to any linear, time-invariant network and its

validity is unaffected by the nature of the frequency

dependence.
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The numerical technique is particularly useful in
handling complex systems, such as composite transducers
whose time responses cannot be derived analytically. The
method is also applicable to physical systems whose frequency

characterigtics are known as a set of measured data.

Theory
If an input v(t) is applied at t = 0 to a linear,

passive, two-port physical system, the output f(t) is
obtained by time domain convolution of the input with the

impulse response of the system. Thus

t
f(t) = J glt).v(t-1)dr (5.20)
0

where g(t) is the response of the system to a unit impulse
§(0) applied at t = O.
Now if
g(t) = 3 1ew) (5.21)

it can be shown that

£0t) = 371 6Cw). Fvit)) (5.22)

where 1}, :}-1 are the Fourier transform and inverse Fourier
transform operators respectively. In the special case when
both f, v are steady sinusoidal signals, capable of
representation as complex phasors F, V, the above equation
becomes

F = G(w)V . (5.23)

Thus G(w) is the transfer function of the system which can
be derived from its 'steady-state' circuit representation.

The computation of G(w) f r the transducer equivalent circuit
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of Figure 5.4 is dealt with in section 5.2. G(w) is
usually a complex function of w. For all systems of

interest it can be shown that
G(-w) = Glw) . (5.24)

Thus two alternative methods of computing the time
responses are evident. The one used by Liou33 involves the
application of equation (5.22); the Fourier transformation
of the input followed by multiplication by G(w) and an
inverse Fourier transformation. The other method consists
of the determination of the impulse response by inverse
Fourier transformation (equation (5.21)) followed by time
domain convolution with the input signal (according to
equation (5.20)). The latter method is preferred as it is
generally more comprehensive and convenient.

In this study a variation of the latter technique
is employed. On account of certain computational
considerations which are elaborated on below, convolution
from the impulse response is found to be unsatisfactory.
The response of the system to a general input can also be

derived from the step response. Thus from equation (5.22)

£(8) = F166) /0l (5 Fv(t)} ] (5.25)
But
jow Fv(t) = F(dv/dt) (5.26)
and
_1 t
FLalw)/ e} = ] g(t)dt = u(t) (5.27)
0

where u(t) is the response of the system to a unit step
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input applied at t = O. Therefore in the time domain

equation (5.25) is equivalent to

t
£(t) = J u(x).ﬁ%‘—)-.dr . (5.28)
0

Thus f(t) emerges as the result of the convolution of u(t)
with the derivative of the input. The step response is obtained
by the inverse Fourier transformation of G(w)/je (according
to equation (5.28)). The derivative of a general input
specified numerically in the time domain can, of course, be
computed numerically. For the inputs considered here,
however, the derivative is specified just as easily as the
input itself.

In the case of the transducer circuit of Figure 5.4
it can be demonstrated from reciprocity considerations that
a force function 8(t) incident on the piston face produces

a voltage vm(t) across Rg (with Vg shorted) such that

vpt) = TR G Fecnr) . (5.29)

If 6(t) is caused by an explosion in the vicinity of the

transducer, its waveform is described approximately by

8(t) = eoe““t (5.30)

where eo is the maximum force in Nw and a is the time
constant.

Since

Fs (1)

00/(0 + jw) (5.31)

v (1) eongﬁi‘l[e(m)/(a s 3u)) . (5.32)
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The voltage response to a mechanical input is thus obtained

by an inverse Fourier transformation alone.

Numerical inverse Fourier Transformation (after Liousa)

The general inverse Fourier transformation problem
of
£(t) = 37 (W) (5.33)

is expressed explicitly as

£(t) = (1/2-)j Fw)ed®tay . (5.34)

In principle, for the solution of this equation F(w) must
be known for the full range of w. In practice, however, it
is sufficient if F(w) is known up to a certain maximum
frequency w . Since equation (5.24) is satisfied for all
frequency functions of interest, the range of integration
is thus shortened to O-wp - F(w) itself is approximated

in the integration by a piecewise linear function built up
of the values of F(w) calculated at a finite set of
frequencies in the range O—wm and spaced Aw apart. The
values of Wy and Aw necessary to achieve a specified degree
of accuracy is considered later.

In the case of the functions considered here, both
the real and imaginary parts of F(w) are continuous, finite
functions of w which are readily capable of piecewise linear
approximation. F(w) is calculated at N equally spaced
frequencies in the range O-wm and stored in two N x 1

dimensional arrays Fl and F, such that

2

Fl(M-l) + sz(M—l) = F(aw.M), M=1, N . (5.35)
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Since equation (5.24) is satisfied for F(u), F, and F,
are respectively even and odd in w. If F(e) is continuous
and piecewise linear in w and |[F(e)| + 0 as w+=, it is

easily shown that
T L1(dF(w)/de) = -5t F 7 F0) . (5.36)

From equations (5.33) and (5.35) it can be further

demonstrated that

£(t) = -[i}‘lr"l(u> + jﬂ}'lrzﬂcw)]/tz (5.37)

where F,", F2" are the second derivatives of Fi, F, with
respect to w. Now Fl’ Fz are respectively even and odd and
piecewise linear in w. Therefore it follows that Fl"’

F2" are also respectively even and odd and consist of sets of
delta functions distributed regularly at intervals of Aw.

Let the magnitudes of the delta functions be represented by

the N x 1 arrays Dl’ D2 where

N

F.(w) = { D;(M)§[w-(M-1)bu], 1, 2 . (5.38)

e
"

Then
Dy (M) = [F;(M+1)-2F; (MI+F,(M-1)]/4u,
i=1, 2, M=2, N
and (5.39)
D,(1) = [F(2) - F;(1)}/bw , D,(1) =0 .

Since Fl", F2" consist only of delta functions distributed
regularly on the frequency axis it is possible to convert
the continuous integral transformation of equation (5.34)

into the sum of the finite series;
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N
£0t) = -(1/xt?)[[D, (M) .cos(M-1)Au.t -
1

(5.40)
D2(M).sin(M-1)Awt] .

The time function f(t) is computed at discrete intervals of
time At up to a required maximum to. For accurate time
information up to Tt however, the frequency interval Aw
should be less than '/tm' Also no detail which can be
shown on a time scale division of At is missed out if the
computation is extended to w_ > w/At. These rules are
very easily extracted from the above equation; s8ince for a
given t_, At, the argument of the trigonometric expressions
(M-1)Aw.t need not be greater than s for the limiting
values of M and®& (see Bracewellsq for details).

The signals normally applied to a 5kHz transducer
have periods of around 200 ys. Consequently, if f(t) is
required at 10 ys intervals up to 1000 ys, Aw/2x must be
less than 500 Hz and wm/2w greater than 50 kHz. The -
transducer equivalent circuits from which the frequency
information is calculated are, however, unreliable beyond
15 kHz. Fortunately in the case of the broadband trans-
ducers, |F(w)] is effectively zero beyond 10 kHz for a
5 kHz transducer (see Figure 4.23). Therefore no information
is lost if the computation is not taken beyond 10 kHz.

The conventional transducers on the other hand exhibit
multiple resonances, some of which are close to or beyond
15 kHz (see Figure 5.7). The above method is thus not
applicable to the determination of the impulse response of
conventional transducers. The step response can, however,

be determined accurately, even in this case, for here
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[FCw)] = [G(w)|/w . (5.41)

The division by w reduces to insignificance the high

frequency resonances and |F(w)| is again effectively zero
beyond 15 kHz. Consequently in the analysis of conventional
transducers at least, the use of the step response for
convolution is mandatory. Since the impulse response is

not of much interest in any case, 'step response convolution'
is used in the time analyses of both broadband and conventional
transducers.

Since the high frequency components in g(t) are
eliminated by the integral transformation to u(t) (equation
(5.27)), the latter function is much smoother than the
former. Consequently convolution from the step response

is computationally much simpler than 'impulse convolution'.

Further Computational Details

The numerical inverse Fourier transformation is
effected by the subroutine INFTRA (Appendix III) according
to equation (5.40). The necessary frequency information
is calculated by the subroutine FRERES, as described in
section 5.2. INFTRA is used to obtain the step response
(according to equation (5.27)) and the voltage response to
a mechanical input caused by an explosion. The latter is
calculated from equation (5.32) with 6_ = 1.0 and a = 10"
which corresponds to a waveform of time constant 100 ys.

The responses to sinusoidal and square-wave voltage
inputs applied at t = O are obtained by convolution with
u(t) from equation (5.28). The convolution integral is

evaluated numerically by means of the subroutine CONVNL

(Appendix III). The integration process is based on the
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trapezium rule with both functions assumed to be linear

and piecewise continuous in intervals aAt. For accurate
convolution the interval At must be small compared to the
period of the highest frequency components present in either
function. Consequently the time responses are calculated
at 10 us intervals up to 1000 us. )

In the case of a square-wave input, convolution is

unnecessary for the derivative of a square wave is given by

dv/dt = 6(0) - 28(t-t') + 28(t-2t') - ... (5.42)

where 2t' is the period of the square wave. Substituting
for dv/dt in equation (5.28), the response to a square wave
is

£(t) = u(t) - 2u(t-t') + 2u(t-2t') ...

i+

2u(t-mt')

where m is such that mt' < t and (m+1)t' > t.

The computed time responses of the conventional
transducer depicted in Figure 2.7 are given in Figures 5.8
to 5.10. The time responses of the designed broadband
transducer of Figure 4.22 are displayed in Figures 5.11 to
5.14, In these figures the responses to sinusoidal and
square-wave inputs applied at t = 0 are referred to as the
'sinestep’ and 'square-wave' responses respectively.

In both cases the input waveform is assumed to be of unit
amplitude. The response of the designed transducer to an
explosion, depicted in Figure 5.14, is calculated from
equation (5.32) with 6_ = 1.0 and a = 10°.

It is observed that the sinestep and square-wave

responses of the designed transducer build up to their
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steady state values within a cycle. The corresponding
interval in the case of the conventional transducer is three
cycles. The faster rise time of the designed transducer
is consequent on its larger bandwidth.

It is also observed that the shape of the response
to a mechanical explosion input is very similar to that of

the step response of the transducer.

5.4. Analysis of Ladder Networks

In addition to the analysis techniques described in
sections 5.2 and 5.3, a technique was developed for the
analysis of ladder type circuits consisting of conventional
electrical elements. The technique was used to compute
the characteristics of the normalized filter circuits (of
Chapter 4), on which the design was based.

A computer program incorporating this method of
analysis is given in Appendix IV. In this program, details
of the constitution of the ladder network to be analysed are
fed into the subroutine LAPLACE as DATA statements. This
subroutine then computes the transmission matrix of the
network by means of the stepwise assimilation process
indicated in Figure 5.6 and defined by equations (5.18) and
(5.19). Unlike in section 5.2, however, the elements Y, Z
are assimilated as sC, sL, etc., and the functions A, B, C, D
are built up as a set of polynomial functions in the Laplace
transform variable s. The transfer function relating the
output I to the input Vg is obtained from the transmission
matrix in the form

N(s)

I(s) = Dls)

Vg(s) (5.44)
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where N(s), D(s) are polynomial functions in s. The
frequency response of the system is then obtained by simply
gsubstituting ju for s in the above equation.

Some of the time responses of the system can also be
determined from the above equation. If the input signal is

a voltage step of unit magnitude

Vg(s) = 1/s . (5.45)

Alternatively, if the input is a sine wave of unit magnitude

_ 2 2
Vg(s) = w /(8" + 0. ") (5.46)

where L is the angular frequency of the wave. In either
case the output I(s) is obtained as a rational polynomial
function of s, with a denominator of higher order than the
numerator. The corresponding time domain solution is then
obtained by inverse Laplace transformation.

In the program of Appendix IV the resulting rational
polynomial functions are inverse Laplace transformed by the
state variable technique given by Liousa.

By the above method it is found possible to compute
the response of the system to any input which can be expressed
as a rational polynomial function in s. Examples of such
computations are not, however, included in this study since
the time responses of the filter networks analysed are not of
much interest.

The program was also used to analyse the approximate
LC formulation of the designed transducer. Thus i1f the
elements of Figure 5.4 are approximated by their low frequency
values and sophistications such as the compliance of the

centre mass and Ci are ignored, the complete equivalent circuit
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reduces to that of Figure 5.15. This circuit is clearly a
conventional type ladder network which can be analysed by the
method described above. It is also observed that the
original design circuit of Figure 4.21 is a further
simplification of the above circuit in which the countermass
and the bolt have been excluded. The transducer performance
as predicted by the LC approximations of Figures 4.21 and 5.15
are compared with the results of the more accurate analysis

in Figure 4.23.
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CHAPTER 6

EXPERIMENTAL RESULTS AND CONCLUSIONS

In this Chapter the input admittance measurements
carried out on a test transducer are presented. They are
compared with the corresponding computed characteristics
predicted by the analysis routine.

Finally the major conclusions arrived at in this

study are stated and discussed.

6.1l. Characteristics of the Test Transducer

A test transducer was designed and constructed for
the purpose of verifying the equivalent circuit
representation. The transducer was derived from a
Butterworth three pole coupled resonator bandpass circuit
and is similar in construction to the transducer designed
in section 4.6. The transducer was designed to have a
bandwidth of around 100% at a centre frequency of 4.5 kHz,
when operating in a regular array. ;

Since it was necessary to construct the test
transducer within a limited period of time, the design
specifications were not closely adhered to in construction.
Further it was necessary to use a ceramic whose properties
were somewhat different from the one designed for. The
resulting deterioration of performance was not considered to
be of much account since the primary purpose was the
verification of the equivalent circuit representation.

Consequently, the original design specifications are
not included in the text. A full scale sectional diagram

of the test transducer, as constructed, is however given in
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F'igure 6.2- Pnotographs of Test Transducer with
case removed
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Figure 6.1, Two photographs of the transducer assembly
with the case removed are included in Figure 6.2. The
electrical elements needed to complete the transducer circuit

are shown in Figure 6.3. The resistance R shown in this

g®
Figure, would under ordinary operating conditions be the
internal resistance of the supply.

The test transducer differs from that designed in
section 4.6 only as regards the geometric dimensions and the
ceramic used. The materials used for the other elements
are the same in both transducers. Further the diaphragm
construction and the lateral dimensions of the piston, the
centre mass, the countermass and the bolt are the same in
both cases. The designed transducer, however, incorporates
a larger ceramic section and countermass and shorter rod
compliances than the test transducer. This is mainly a
result of improvements to the mechanical design which were
inferred from the performance of the test transducer and,
subsequently, incorporated in the transducer designed in
section 4.6.

The test transducer was constructed and tested at the
Admiralty Underwater Weapons Establishment in Portland,
Dorset. The tests consisted of input admittance measure-
ments at the terminals T, (in Figure 6.3) of the complete
transducer circuit. In all three sets of measurements were
taken; firstly with the encased and unbaffled transducer
supported freely in air, secondly in an acoustic tank and
finally at about 20 yards depth in the Portland Harbour.
Since the measurements in the tank agreed very closely with
the measurements taken in the harbour, the two sets are not
differentiated and reffered to jointly as the 'water

measurements'.
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In both cases the admittance diagrams were first
obtained on an XY-recorder linked to a Dranetz impedance
bridge and subsequently checked at individual frequency
points by independent bridge measurements. The admittance
diagrams obtained in air and water are displayed in Figures
6.4 and 6.5 respectively. The frequencies corresponding to
certain points on the diagrams, are indicated in kilohertz.
In all cases the diagrams were obtained in the range 2-7 kHz.

The admittance diagrams of the test transducer were
also computed by means of the analysis technique described
in sections 5.1 and 5.2. In the computation allowance was
made for mechanical loss at the rubber rings and for the
appreciable capacitance of the connecting cable. It is
important to note that in the case of the test transducer,
the rod compliances require the full representation indicated
in Figure 5.3. The computed admittance diagrams are
displayed in Figures 6.6 and 6.7.

The power absorbed by the transducer circuit,
exclusive of Rg’ is easily inferred from the admittance
characteristic. Vhen operating in water, the power absorbed
is approximately equal to the power radiated. Thus if Y is
the input admittance measured at the terminals T, in Figure
6.3 where

Y =G + 3B . (6.1)

The power P, absorbed for a particular operating voltage

Vg, is given by
2

2
= 4R - RG° - R_B 6.
P/P g(G g g ) (6.2

where P, the maximum power that can be delivered from a

supply Vg of internal resistance Rg, is given by equation
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(4.2). Consequently the passband could be located on the
admittance diagram as the region defined by

2

2 ¢
g

(6-1/2R )7 + B
The boundary of the passband (or half-power region) is
indicated in Figure 6.5.

The power absorbed by the unbaffled test transducer
in water, as estimated by the measured and computed results
are compared in Figure 6.8, In both cases P/Pm is

calculated from equation (6.2).

6.2. Comparison of the Measured and Computed Characteristics

An examination of the computed and experimentally
determined admittance characteristics, reveals that the
two sets agree closely as regards general form. Each
diagram consists of three loops which correspond to the
resonance-antiresonance pairs the three pole circuit. The
resonances and antiresonances are displayed with greater
clarity in the |Y| vs frequency plot of Figure 6.10.

It can be shown that the diameter of each loop is
inversely proportional to the resistance associated with the
corresponding resonance. Thus it is found that the size of
the first loop of all diagrams and of the second loop in the
air diagrams alone is largely governed by the resistance Rg.
The second loop of the water diagrams is reduced by the
increased dissipation in the radiation load. The size of
the third loop of the air diagrams is mainly dependent on the
internal power dissipation in the transducer.

The cusp that appears at 5.8 kHz in the measured

diagram in water (Figure 6.5) is absent in the corresponding
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computed characteirstic (Figure 6.7). It has been established
that the cusp is a reflection of the lowest flexural mode of
the piston, which falls at 5.8 kHz. Clearly the presence of
this spurious mode in the passband has little effect on the
shape of the admittance characteristic. This is probably on
account of the mode being inhibited by the constructional

form of the transducer. It is also inferred that other
spurious modes fall outside the frequency range covered by

the experimental diagrams or are too weak to affect the
rerformance.

A comparison of the air diagrams with the water
diagrams shows that the characteristic frequencies are
depressed when operating in water. This is a result of the
extra reactance introduced into the circuit by the water load.

It is observed, however, that the computed character-
istic frequencies differ from the experimentally determined
values. The discrepancy is somewhat regular in the case of
the water diagrams; the measured frequencies being
approximately 10% lower than the computed values. The
difference is less, but irregular, in the case of the air
diagrams. The discrepancy in the water diagrams is also
reflected in the power vs frequency characteristics of
Figure 6.8.

Clearly the magnitude of the discrepancy is too large
to be understood within the margin of error inherent in the
analysis technique. For instance, a 5% increase in the
electrical capacitance and compliance of the ceramic stack,
results in a 2.5% drop in the characteristic frequencies.

It is obvious however that the discrepancy is a result of a
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higher compliance value or a higher mass value somewhere in
the circuit from that assumed in the computation. Since

the mass values were calculated and subsequently checked by
weighing, a large error in them is extremely unlikely. It
has also been egstablished that likely errors in the assumed
value of radiation reactance are too small to cause a 10% drop
of frequency. Further the ceramic compliance is determinate
to within 5%. Thus the most probable source of error is

an increase of the effective value of the rod compliances,
above that assumed in the computation.

It has been established, by a computational trial-
and-error procedure, that a 50% increase in the compliance
value of the rods reduces the characteristic frequencies
almost uniformly by 10% to about the values obtained by
experiment. The modified power characteristic resulting
from this increase in compliance is compared in Figure 6.9 with
the characteristic inferred from experiment. Further,
the modulus of the input admittance of the equivalent circuit
incorporating this modification is compared with the
experimentally determined |Y| in Figure 6.10. Clearly the
agreement is close in both Figures.

Consequently, it is inferred that the value of the rod
compliances is raised by about 50% from that predicted by
the longitudinal mode theory. The increased compliance of
the rods could plausibly be traced to bending of the rods

induced by their slenderness, especially under heavy loading.

6.3. Summary and Conclusions

The main objectives of this study, which are stated in

section 1.1, have been achieved. The analysis technique
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developed is adequate for the determination of all the
time and frequency responses of interest. It is also
sufficiently general to be applied to any extensional
transducer. As regards design it has been possible to
develop a transducer with a bandwidth of about 100%. This
transducer is not only greatly superior to the conventional
designs bandwidth-wise but it is also less sensitive to
variations of the individual element values.

It is found that the equivalent circuits developed
are adequate to accurately represent transducer for the
purpose of analysis, subject to the proviso that
longitudinal mode operation is approximated to by all
mechanical elements. Thus the unusually large divergence
of 10% between the analytically determined and measured
frequencies of the test transducer is attributed to a
breakdown of the longitudinal wave model for the rod
compliances. In the absence of such a contingency the
analysis technique is capable of predicting the transducer
characteristics to an accuracy of a few percent.

In any case the analysis technique used is a
considerable improvement on the conventional method employing
a simplified equivalent circuit. The graphs of Figure 4.23
indicate that the simplified circuit of Fipure 5.15 is a
reascnable guide to the performance of the designed trans-
ducer up to the centre frequency. This result is not
unexpected as the values of the simplified circuit elements
are clearly more accurate at the lower frequencies. Further
the circuit does include the bonding correction and the

effects of the bolt and countermass, albeit in a lumped and
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frequency invariant form. Thus the simplified circuit is
adequate, provided frequency information beyond the centre
frequency and time information is not desired. Even then,
only the radiation termination of a regular array element
can be handled by the simplified model.

The only bandpass filter circuit that is practically
realizable as an acceptable transducer design is the
predominantly mechanical three pole coupled resonator circuit
derived from a Butterworth or low-ripple Chebychev prototype.
Since the values of a low-ripple Chebychev circuit are
slightly different from those of a Butterworth, the broadband
design is variable within certain narrow limits. A
Chebychev circuit is easier to realize mechanically than a
Butterworth. The increase in realizability is, however,
offset by a deterioration of characteristic.

It is observed that the designed broadband transducer
is not much more complex than the conventional designs and
in any case raises no significant constructional problems.
The 'weak spot' in the broadband design has been revealed
as the slenderness of the rod compliances by the performance
of the test transducer. Consequently, in the broadband
design of section 4.6, the slenderness ratio of the rods
has been reduced by shortening them. Further, since the low
frequency side of the characteristic is adversely affected
by a low countermass, the transducer of section 4.6 is
designed with a larger countermass than the test transducer.
The former is also capable of handling about twice as much
power for the same input than the latter, on account of a

larger ceramic stack.
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The broadband designs developed in this study possess
output Q factors which are generally much less than what is
common in conventional designs. The values employed in both
designs are not, however, low enough to result in radiating
heads which are appreciably non-rigid in the passband.

The resiliance of the transducer characteristic to
variation of the element values is illustrated by a comparison
of the computed characteristics of Figures 6.8 and 6.9. Thus
a 50% variation of the rod compliance value shifts the pass-
band down by 10% without appreciably affecting the pass-range.
It has also been found that the characteristic is most
sensitive to variations of the electrical capacitance of the

ceramic and the compliance of the rods.
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APPENDIX I

Radiated Power and Bandwidth of Shunt
Tuned Elementary Transducer
(with reference to section 2.4)

The basic circuit of a shunt tuned elementary

composite transducer, with all elements referred to the

electrical side, is given in Figure A.1l.

is fed from a constant voltage source V through the

resistance Ro'

If P is the power dissipated in the

resistance R, it is easily demonstrated that

p/|v|?

where

1]

2
R/(R_|T|)

1+ Z(Y + 1/Ro)

R + ij - j/mC

Now the shunt inductor Lo is such that

o O

= LC = 1/%2

and the input and output Qs are defined as

Qo
and Qm
Also LO/L

From equations

T

= 1/4 "—'mCR

o r oo
= l/dm = er/R -
- Y
= C/Co = K .

(A.2) - (A.7) it can be shown that

- . . 2
= 1 4 (dm+]ﬂ)(do*jﬂ)/K

The transducer

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)



Figure A.l- Shunt Tuned Elementary Transducer Circuit
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Q= -
where 0Vu? wr/w. (A.10)
From which
2

4 2

K*.IT]12 = a% + (b? - 2a)02 + a (A.11)
where a= (K2 +dd)
mo
(A.12)
and b = (dm + do) .

From equation (A.l) it is clear that the shape of the power-
frequency characteristic is completely determined by the
behaviour of lT|2. From equation (A.1ll) the condition for

a single resonance at w = ., is

2,

b 2a . (A.13)

Assuming that this condition is always satisfied,

the half-power points are obtained from the solution of

2

4 - 2a)ﬂ2 - a“ =0 . (A.1u)

Q + (b2

This equation has a positive and negative root of al. If
X is the positive root (the negative one being inadmissible)

the half-power frequencies are given by
W, W, = (w2 - ml)/ur = B . (A.15)

Thus B is the fractional bandwidth as well. Equation
(A.14) has a relatively simple solution (for 22) under two

2 > Sa, 82 is given to

different conditions. Thus if b
within 5% of the exact value by
82  a2/(b? - 2a) . (A.16)

This is equivalent to a fractional bandwidth Bl of
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_ w2 2 2 2,3
B, = (K° +d d)/(d “ +d° - 2K%) (A.17)

The solution being valid for values of dm, do such that

2

< d + do - 3dmd° . (Aola)

The second solution, which is valid for b? = 2a, yields a

fractional bandwidth 8, of

2

_ou2 3
By, = (K° +dd)? . (A.19)

The condition of validity is equivalent to

+ a2 2% . (A.20)
From equations (A.17) and (A.18) it can, however, be sho%%
that

2 3
By < (K° +d d)*//3 <8, . (A.21)

Thus in practical design the second condition (that .of
equation (A.20)) is aimed at, as it yields a higher

fractional bandwidth. It can, however, be further

demonstrated that 82 is a maximum for
d =d =K (A.22)

when (8,) /2K .

2 “max

But the condition of equation (A.22) can only be
achieved in practice with barium titanate ceramic. For
realizable designs in PZT-type ceramics, Qm has to be
greater than about 4.5 (see section 4.7).

The maximum power delivered to the load is obtained

from equations (A.1l) and (A.1l1l), for a? = o. Thus



or

P

P

max

max

/1v|?

/{v|?

- 17 -
Y 2,,2 2
RK /Ro (K® + dmdo)

2 2 2
dmdoK /RO(K + dmdo)

(A.23)

(A.24)
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APPENDIX I

Program for the Determination of the Average

Radiation Impedance in a Regular Array

#»FORTRAN OUJRCE

12

11

DIM NSIO F1(¢191),F2¢(131)
TEXT A/'MOR 1S'/

CLEAR F1(1),F2(1)
PM=1(0.0

PM=50,0

PO=25n0.0

DO 11 RR=0.03,0,761,0,01
DO 12 J=2,101
F=(Je=1)#PM+PO
W=2,083.14159245%F

CALL RADIFP(RRaWnSR.S()
F1(J)=SR

F2eJ)=SX/W

CALL GRAPH(101,F1,4)
CALL GRAPH(101.F2,4A)
CONTINUE

END

«FORTRAN SOURCE

103

104

SURROUTINF RADIMP(RR,4,SR,3X)
REAL M

RN=2,5&RR

N=15

N=10

RK=W/1503,0

CLEAR SR,SX,RDp1,RD?
X=2,0%R]sRX
M=(X/3.1)84,0/3,141592256
T=XeX/8.0

00 103 1=2,100

SR=SRsT

SX=SXeM
Ts=laxsX/(4,0%12(1+1,9))
MzeMaXax/(4,0%l01~1,9)
CONTI! UE
RN1=1.,0-0,0411sRR#RK+), 1784 (RR#RK)#52
RN2=1.0+0,709#RR*RX+0,1188(RR&RKy %2
DO 104 1=21,( 1)

DO 104 Jl=1,(1+1)

Jzdl=1

XD=1sle sl

XD=RK#RDNsSIRT (XD)
RFzb#(Na])#(N=J)

IFCJ,FO.1. RJJ.E ,9)RF=RF/2,0
RD1zRNY14FaSIN(XM) /XD
RND2=2RN2+RFE#CNSIX™Y /XD

SX=SX+S #R 2/(R\"#" &)

SR= ReSR#RJI1/(IN1s &)

RET RN

END
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FORTRAN OURCF

SURROUTINE GRAPH(N1,FX,A)
TEX F4,FS(101)/101wt=?/
TEXT A,F3,F(101)
DIM-NSION FX(N1)
N=N1/100
CLF*R F,FXL,FXG
po0 80 I=1, 1
IF(FX(1),GT  FXBIFXG=FX(])
IFCEX(TY LT, FXLYFXL=FX(])

B0 CONTINUF
GFX=FXG=-FXL
L==100,0%FXL/GFX+1.5
DO 81 k=L,101,10

81 F(K)=1',!
DO 82 K=L,1,"19

B2 F(K)=t ¢
F(LY=1]¢
WRITE(6,83)A:FXLFXG

83 FORMAT(1H1,'RESPINSE TI'3X,A8,5X, ' FXL=',E1),3,3X,'FAC=",F10,
FS(LY='1"
IM=39
DO 85 I=1,V1,N
IM=IM+q
J=100, 08 (FX(1)=F(LY/RFX+1,5
IFCIM.NF,1)G0 TO 86
F4zFS(J)
FS(JY='#"?
WRITE(&,84)FS
FS{(J)=F4
60 T0 85

86 F3I=F())
F(d)="'wr
WRITF(6,84)F

B4 FORMAT(IH ,101A1)
FCJ)=F3

85 IF(IM,FQ.19)1IM=0
FS(LY=1=-"
RETURN
END
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APPENDIX TII

Program for the Analysis of a Piezoelectric
Sonar Transducer

FCRTRAN
BFCIt
N1=101
Al=1.0E4
~1=100
FmM=10000,0
TT=1OOE"3
EECIt
CIMEMNSIOH F1(ML+1),FP2(M1+1),F(N1)»PH(M1)
DIMEMSJOr F3I(M1+1),F4(M1+1)
DItELSIOL FF(N1)
TEXT A
BY=1T/7(N1-1)
_D2=200*DT
C2=LT
Dhz2.0#3,141592686%F\/M1
CALL FRERES(M1,Fl4,F1,F2)
k=FM
pe 11 1=22,(Mi+1)
w=Twe(]-1)
FIOIY=T*(AL®F1(1)+ 18F2C1) )/ (AL=AL+48})
FA(IY=Fa(AL®#F2(1)-WeF1(1))/(AL=AL »H&l)
FFF=s-Fi1(I)/w
Fi(l)=t2¢1) 7}
11 Fz(l)=F}F
CALL IMFP "RACMILNILFL,F2,EF,DWsD2)
A=tCTEF
CAILL GFAFKR(N1,FF+A,5.0F=5,-5,0E-5)
Ws=5C,ite#rw
L=3,1415626/(wS*L2)+0.5
Tt =LZ%nS
kT=Tt«(7-1)
14 FH(1)Y=COS(WT)&eWS
CALL CCN CL(FF,PH,N{,D2,*'SIIFSTEP®)
CLEAK PH
re 13 I[=2,M1
Ci=1.0
C¢ 1% uv=1,1,L
LG=2.0%FF (I-J+1)=l1
Li=-1.0#T1
15 PE{I)=FR(T)+IG
13 FR(I)=FH{I1D)=FF (1)
CALL CHhAFF(N1,PH,'SQ WAVE',2.5E-4,-2.5F=4)
CALL INFTRA(M1I,N1,F3,F4,PH,DW,D2)
X"'=0-1
CALL CGFAFF(NL1,FPH,'EXPLOS®',XM,=-XM)
EN

ENC
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FCRTYRA®
SLERCULTINE FRERES(M1,FM,F1,F2)
BILENSIO Fi1(M1+1),F2(HM1+1)
CTLENSION FP(MLI+1),F3(M1+1),F4(M1+1),F5(M1+1)
REAL M,M7C
TEXT A
IMFLICIT REALC(L)ICCMPLEX(Z,Y)
CATA C70,7C,FI1,PCC/15590.0,1.84E-5,2,51,9.606F -9/
DATA LI,C},M20,TV/0.005,4,.6E-11,2,28F5,8,2E~6/
CATA LR,LF/0.404,8,07/
CaATA €70, ©,$20,78/2897.0,4,06F-5,3050.0,4.77E-6/
CATA RFE,LG,RC/0.(571,0.0947,2380.0/
TAG=0.014
ZU“‘O-D:J. )
RC=4.84E¢#PR#RR
CLEAR F1€1),F2(1),FP(1),F3(1),F4(1),F5(1)
PvzfFiM/si1
CO 102 J=2,(M1+1)
Fz(J=1)%fp
h=2.0'3.]415926*F
AF=RFaf
RC=0.,3x%}
CLEAFR SR,SX
X=z,0%RR*#Ww/1510,(
CALL AFKAY(AF,SR.,SX)
Go 1C 101
CALL ULABAF(AF,SR.SX)
SR=Z.78k~4
CALL IHFEAF(X,SR,S¥)
101 R=FC*SF
XR=RC#SX
R=F¢FC
CLEAF 7B,2C
ZA=(1.,0,0,0)
Ir=(1.,0.,0.0)
Z27=20LaCZCaTAM (TC2Ww/2.0)
T 2RzZZ+Zuxhul ]
YI=k#CIu7(
TTY=Y1
2Az=20428wY
2C=2C+7ZDsY
21 =ZL %) ZCHTANC(WETM/2.0)
T =7k al]
2E=Z0+7%7A
I0=2T+27227C
Y=CJ}t (b MIZD/MZC
ZAz=Z2A+7BsY
IC=2C+7Dsy
27S=ZL#S7CeTAN(W®TS/2.0)
2=72%+7M
ZE=2F+727A
Ir=2r+2« C
Y=Z2L#SIN(W®*TS)/SZC
A=2A+7RaY
LC=2C+Z0eY
27FE=7Lah/CETAN(WN®TR/2,0)
Z=7L%hwL++F+ZUsXR+Z22ZR+Z22Z5
ZB=2E+7%74
i10=2D+724#2¢C
Y=72U*SIN(W#TB)/BZ0 -
YB=Y
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ZA=ZA+7BuyY
7C=2C+7D=Y
Z2=7Lsh%(LF+LI)+ZZE«RC
IB-2t+72%7A
ZD-72T+7#7C
Y-Y]
ZA=7A+72BsY
2C=7C+72D=Y
IVR=(22+,Laws [+ZB)/(1.0-74)
IVvS=Z2A%2\VR+2
71=2C%ZVvR+2[=1.0
ZIC=ZVR®(Y+YR#(1.0+Y1%#Z))+1.0+Z2YP
YT=h#FCO#(ZU+TAND)
YC=Z( »S[r (LeTC)/C2Z0
ZVI=(2VS+21/YC)H/F
ZIN=ZI*FT+ZNT=YT
ZVN=sZVT+72 1AM (RC+ZL #WaL i)
222=7VT/711 +Z2UsnelG
26:=1.0FE0682IN/7VN
G=FEAL(Z6)
B=AJtAG(Z76)
CIN=AINAG(1,0E12%2IN/(ZVT*W))
WRITEC(6,1133F,GoR,CIN

111 FCrMAT(LER ,4(2%X,F7.1))
YV =ZI0/7Z7V0
FI(J)=REAL(YVN)
F2(J)=A1FAGC(YVN)
FP(U)Y=R#1,{E6%(F1(J)au2+F2(J)%x2)
F3(u)=CALS(Z22Z)
IF(F2(JY.CT.An(N0.0)F3(J)=10000,0
FA(U)=ATANZCAIMAG(ZZ7),REAL(Z22))%180,0/3.14159265
FOCU)=AtAN?CF2(J),F1(U))=183,0/3.14159265

102 CCMPTINLGE
As'h F 1KV
FxXC=0.25F €/RG
CALL CRAFF(101,FF,A,FXG,0.0)
Az b [ME M )
CALL CRAFF(301,F3,A,20070,0,0.,0)
A=vIr [MF P
CALL GRAFKk(1 1,F4,A,100.0,=100.0)
A='TF [MF P*
CAlLL CGRAFW(101,FS5,A,200.0,=200.0)
FM=RG
RETURN
E+D
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FCRTRAN
SLERCLTItE INFTRA(MI,NLI,FA1,F2,F,DNW,DT)
CIVEMSION F1(ML1+1),F2(M1+1),F(M])
CLEAF T,F(1)
rc 32 N=2,M1
T-LT#(N-1)
TS=F1(2)-F1(1)
CO 31 v=Z,Kr1
TEl sCha(k=91)sT
FT1=sF1(M+1)+F1(M=1)-2,.0&Fv( )
FPeaF2(Me1)+F2(M=1)=2,08F2(11)

31 TS=TS+FD1#COS(TEM)~FD2=S1 (TFM)

I2 F(t)==-TS/(DwW=T#T%3,141593)
KETLFN
ErE

FCRTRAN

SLERCLTIMNE GRAPHINL,FX,A,FXG,FXL)
TEXT F4,FS(101)/101%r-1/
TEXT A,F3,F(101)
CIMENSION FX(N1)
N=N1/7100
CLEAR F
Cc EC I1=1,M1
IFCFXC1) ,GT.FXGIFXG=FX(I)
IFCFXCI)LLTFXLYFXL=FX(])

80 CCNTINUE
GFX=sFXG=FXL
L='100-0‘F¥L/GFX*1.5
Cc &1 k=1,101,10

81 F(r)=:,"
[C 82 K=L,1,-10

g2 Flr)='."
FeL)=r1"
WRITE(E,83)A,FXL,FXG

83 FCFMAT(1r1,'RESPCNSE TN'3XsA8,5X, '"FXL=",E10.3,3X,'FXG="',E10,
Fs(LY='1"
Iv=0
DC 85 I=21,N1,N
IM=1rel
J=100.0(FX(I)-FX )/GFX+1.5
IF(IH.ANE.1)GO TO 86
FA4=FS(.)
FS(ud)=*a
RFITE(6,E4)FS
FS(J)=F4
GG TC 85

86 F2=F(J)
F(J):l'l
WRITE(6,64)F

84 FCFMAT(IH ,101A1)
F(J)=F3

&85 IF(IM.EQ.10)1IM=0
FS(L)="'
RETULRN
EN
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FCRTRA®

SUERCLTIt E UNBAF (AF,SR,SX)
DIMENSIO AR(B),AX(8)
EATA AR/C.U:O.C:'M 9100021D0039’005500-72!0089/
CATA AX/0.0,0.2,0.4,0.58,n,65,0.62,0.5,0.4/
I=INT(AF/75.0)+1
R=AF/775.0+1.0-1
IF(1.CE.E)CO TO 32
SF=AR(1)+(AR(I+1)-ARC(I))*R
SY=AX(I)+(AX(I+1)-AX(T1))&P
Ge 1C 33

32 SR=1.0
Sx=0.,0

33 SR=1.08SR
RETLRN
END

FCRTRAN
SUBRCUTINE INFRAF(X,SR,SX)
REAL ¥
T=)"){/8-f'
Co 103 1=2,100
Sk=SF+T
SX=SX+M
T=-TexeX/(4,0%12([+1,0))
M=-MexaX/(4.0%]]~1,0)
103 CONTINLE
ENT

FCRTRAR
SUERCULTINE ARRAY(AF,SR,SX)
SR=0.475
SX:OOO()"(EOSE'é)“AF*AF
IF(AF.GT.600.0)SX=0,0
IF(AF .,CT.€00.0)Sk=1.)
RETURN
END

FORTRA}
SUPRCLTItE CONMVOL(F,PH,N1,CT,A)
CItENSION F(N1),PE(N1),C(11)
TEXT A
CLEAR C(1)
CC 42 h=Z7,MN1
CLEAF C»C1,G62
LC 41 M=1,(N-1)
FAzFF (M)
PE=FF(M+1)
FAzF(N-M+1)
FP=F(N=-M)
G1=Gi<+(PF=-PA)#(FE-FA)
GZ=CZ2+(FA®(PE-FA)+PA=(FB-FA))
41 G:=C+FAxF
42 C(M)=CT#(G+G6G2/2.0+61/3.))
CALL GRAF’-(hlanA;Z.SF-4.-2.5E-4)
RETULRA
END
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APPENDIX IV

Program for the Analysis of
Ladder Networks

FORTRA{
BECIN
TEXT C(7),CCC7)/ 'F T ', 'S, 'h','E*, "Q", "R/
TEXT CF(?2)/7* ', 'ELFC.IMP*,'D.C.STEP',*'S] ESTEP','XPLOSION',2#
REALC(E,11)M,C
11 FCFRMAT(12,1%,74A1)
BECIt

TEXT INFI(M),ItF2(M)
DIMEI SICE A1(M+1),A2(M+1),A301 +1),44(M+1),VALC )
DIMEMSICH ALD(MP+6),AN(M+6),BD(F+86),BN(M+6)
CLEAR AL,AN,BL,EN
Be 71 1=1,¥
23 FCFVATI(ZAl,F12.4)
21 REAC(E,ZI)INFACDI), INF2CI),VALCD)
DC 22 Izlrk
20 FCOFMAT(1+ ,2A1,F12.6)
22 WRITE(6,20)INFICI),IHF2C1),VALC])
Ri=VAL (M)
R2=VAL (1)
CALL LAFIACE(NM,INFL,INF2,VAL,AL1,A2,A3,A4,1 B,N)
CALL WRITE(I,A1,A2,A3,A4,"B,)
TRCE L
FC:E.C
WC=FC#2,0%3 41.59265
2=1.0F-6
pDC 24 1=1,N
24 AD(1)=AZ(])
ANM(NE+1)=1.
EO 25 I=N,31:-1
L=1
IF(ANCI).CT.2)GC TO 225
IFCAC(I).CT.2)GC TO 2580
25 CCPMTINLE
250 Do 2€ J=1,L
AN (J)=ANCII/ZAT (L)
26 AD(J)Y=AT (JQ)/ZALC(L)
27 IFC(AT(1).LT.Z.AMNDLAN(1) LT .2).29
Do ¢8 J=1,L
AD(J)-AD(J+1)
28 AN(J)Y=AN(J+1)
L=L-1
Go 10 27
TRACE EN,EL,N1,TT
29 CLCC 214 k=1,7
TT=wt/1C030.0 - -
N1=4C"
G 21t J1=1.,7
J-J1
IF(C(KY.FG.CC(JY))IGO TO 21t
21 CCNTIN E
GC 70 214
211 GNP TC(21%,216,218,221,223,291,292),J
215 CALL STEALY(AN,AD,L»P1sR2,2)
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G 1L 21
216 Dr 217 L
B (1)~
217 EBD(1)
=L
GC TG 212
292 CALL ©TE LY(AZ,A4,N,R1,R2,1)
291 € TC 214
218 IF(AM(1).LT.2)CC 70O 220
Lo 216 J=1.L
ED(I+1)=ACCD)
219 Er(I)=AT (1)
6D(1)-0.0
I={+1
6C TC 212
220 [0 202 1=1.,L
Et(1)-AM(I+1)
202 BD(I)=AL(])
I=L
6 TC 212
221 [C 222 1=1.,L
ENCI)=ANCT)
222 ED(I+Z)=AL(I+2)+AT(])
BD(Z2)=AT(2)
BL(1)-AL(1)
=L +2
GO TC 212
223 [bBg 224 1=1,L
ENCIY=ANC])
224 ED(1+1)=0.265AC(1+1)+AD(T)
BD(1)-0.2€5%AT (1)
1= +1
212 T=7T«1 C0CO .P/WC
wRITF(6,213)CF(J),T
213 FCFMAT(1F1,'TRANSIENT RESPO*SE TO UNIT ',A8)'~ccccccccccnuana
1=--TC7AL TIVME = ',F6.1,*' MICROSECS--~--ccecmaccrcnacan- 1)
CALL "KA SIEMTC(ILEBN,BD,N ,TT)
CLEAF BN,ELC
214 CCNTINUE
225 CrrTIMLE
ENE

END

FCRTRARN
SLERCUTIME CRAPF(NL,FY,F L,FXG)
DIVMENSICE FX(AND)
TEXT F3,F(1 1)
CLEAR F
GFasFXC-fFxL
L--310C.0%FXL/CFX+1.5
CO 81 K:l_'l 1;10

81 F(t)=',"
bC €2 K=L,1,-10

82 F(r)='.»
FeLy=r'1»
RO €5 1=1,N3
J=10 O0#(FX(I)-FXL)/GFX*1.5
F3=F(J)
F(J):I'l
NRITE(6,84)F

84 FCFPAT(1F , 01A1)

85 F(J)=F3
REYLAL

4
1311
ANCT)
AC (1)
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FCRTRAN
St CUTINKE <TEALY(A,RB,t, 1,R2,1)
CIMENSICr ACNILEB(N),LFX(1) ),FY(1 0)
CCM LEX WIs,xMN,XD»2Z
CLEAR FXG,W,Ry¥
RR=1.(
P1-2.14156265%76
IF(4.FR.1)RM=R1
IF( JFC.2)RF=4,C*R1#R?
Do 102 .=1, 0O
W=y +0.02
ClEAR Xh,XxD
Wl=¢1.0,0.0)
DC 1 1 I=1,t
Xh=XN+hI®AC])
XD=xC+v J#E(C])
101 WI=wI«CMFLX(0.0,W)
Z=XN/¥YD=kV
FXCJ)=FFR#(CABS(Z))nsn
IF(FX(JY.CT.FXGIFXQR=FY(J)
102 FY(L)=ATAN2(AIMAG(Z),PEAL(Z))
WRITF(6,1C03)
103 FOFVMAT(1H1, 'NCKMALIZED FRFQUENCY RESPOISE FROM 0.0 KH7 Tn 1
12 IN €41 KHZ STEPSe~cccecccecmecercccnncre e ccccaca. ')
IF(MWEC.2)FXG=1.0
CALL CRAFF(100,FX,0.0,FXG)
WPITE(6,133)FXG
133 FCIMAT(1F ,'FXG=',E12.4)
WRITE(E,104)

104 FOFFAT(1H1,'PFASE AS PERCENT OF Ple-cmeaceccmcocnacamaaacman,
R e L L R PP ')
CALL CRAFF(200,FY,-PI,PD)
RETURN
END
FORTRAN

SLERCL TIME TRANSIENT(N,CA,CB,N1,TT)
DITENSICN CACNISCE(NI X (*=1),AC0IN-1),(N-1)),Fx( 1),%X(*~-1)
¥zt -1
CLEAK A,FXL,F¥XG
OC ¢2 1=1,WM
A(M,1)=-CE(])
XC(1)=CA(N-1)
IF(].FGC.1)GL TC 92
ACIN=I),(N-1+1))=1,0
Lo ¢1 ou=1,(1-1)

91 XCE1)=XC(1)-XC(J)=CB(N=-1+J)

92 CCNTINLE .
T=TT/N1
CALL CEAT(T,M,A)
DC 65 I1=1,\N1
CLEAR X
DC ¢3 o=1,M
DC 63 K=1,M

93 X( )=X( )+A(J,K)®XN(K)
DC 94 v=1i,M

G4 XC(,)=x( )
IF X(*), T.FEXPH)FXr=X(1)
IF(XCI) L TOXLIFXL=X (1)

% FXx(I)=X(1)
CALL CRAFF(M1,FX,FXL,FXGQ)
WRITEC(6,S€)FX] ,FXG

96 FCFMAT(1F ,'LEAST VALUE=',E10.3,45X,'GREATEST VAL F=', 1 ,3)
RETUERN
END
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FORTRAM
SIERCUTINE LAFLACE(M,INF1,! F2,VAL,A1,A2,A3,A4,NB,N)
TEXT TMFI(M), 1 F2(M)
DIMENSICH A1(M+1),A2(M+1),43(M+1),A4(M+1),VAL(M)
CLEAKR A1,A2,A2,A4,NB
A1(1),A4(1)-1.0
N=1
DO 42 1=1,M
AzVALC(I])
IF (IMFTCI).EG.'R*) GO T 38
Nzt +1
IF (INFZ(I).EC.'P*') GO TO 34
IF (IMFICI).EG.'C*) GO T 32
Do 31 u=2,N
AL( ) =zAL(L)+AT(J-1)*A
31 A2( )=AZ( . )+AxA4(J=-1)
GC 70 472
32 A=z1,0/A
NB=AB+1
Lo 33 J=’\92"1
AL( ) =A% AT (L)+A1(U~1)
A2¢ )=A%24( )+A2(J~1)
A3C,)=A2(_-1)
33 AL, )=-Ad4(_.-1)
A1(1)=A+A2(1)
A2€1)=Axp4(1)
A3(1),A4(1)=0.0
G0 7C 4¢
34 IF (IMFAC(I).EGQ.'L') GO To 36
DO 35 uzzp'\
AB( ) =AZ( ) +A0AT(U-1)
35 Ad(_ )=Ad( )+AsAZ(_~-1)
GC TC 4z
36 A'—']oO/A
NB=AE+1
DO 37 v=f‘:2"1
AJCU)=AZ (L= D+A#AL ()
ATCL )AL (- )
Ad( ) =RAA( _~-1)+A%A2())
37 A2¢.)=AZ( .- )
AJ(1)=Axp3 (")
Ad(1)=A=pz2(.)
A1(1),A2(1)=0.0
GO TC 42
38 IF (INFZ(I).EG.'P') 6D TO 4
DO 39 v=1,N
ALY =AL (L )Y+ARA2()
39 AZ( )=AZ( )+AxA4(y)
GC 1C 42
40 A=1,0/A
Lo 41 J:IDN
AJCL)=A2( )Y+AxpAL ()
41 Ad(_ Y=Ad(_)+AuAZ())
42 CCI'TITLE
RKETLFPA
END
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FCRTRA}

61

62

63

64
65

SLERCLTI F CEAT(T, 1, )

DItEMCICH A(M,M),AR(M,M),ABY(M,M)

CLEA AF

DC €1 1=1,M

DC €1 u=1,M
AM=AM4A(T,J #ACT,J)
AM-S FT(AN)
AMT=Al #7
KsAIRTOANT)
Y=AVT=-FLCAT(K)

DC €2 [-1,M

CC €2 J=31.,¥

AB(], )=A(1,J)/AV
AF (1,u)=Y%AB(1,J)
CALL CEAF(M,AEY)
CALL CEAE(},AE)

CC 65 kl-=1,hk

CLEAR A

DC 53 I=1af

DC €3 o=1,V

DO €3 h=1,M
ACL,Jd)=ACT,u)+ABCI,N)=#ABY(N,J)
DC €4 1=1,M

DO €64 J=1,¥

ABY (I, u)=AC1, )
CCMTIMLE

RETUkH

EN

FORTRAN

70
71

72
73

74
75

SLFRCLTINE CEAB(M,R)

DIMENSICH A(M,M),B(M,M),BT(M,M)

I! TEGFR X

bC 71 I=1,¥

DC 70 u=1,¥
ACL,J)=F(1,.)
B(IJJ)vET(I:J)=D-0
B(I,I)=1.¢C

BcC 75 x=3C0,1,-1

BC 73 1=1,V

DC 72 J=1,M

DC 72 k=1,¥M

BTCI, )=FT(I, )+ACI,k)#B(K,J)/X

BT(I,1)=FT(]1,1)+1.0
LC 74 1=1,M

DO 74 J=1,¥M
B(1,u)=ET(1,J)
BT(l,. )= .0
CGMTINLE

RETLF}

ENT

FORTRA®

50

51

52
53

SULRCLTIME VYRITEC(M,A1,A2,A3,A4,\B,1)
DITENSICI A1(M+1),A2(M+1),A3(M+1),A4(M+])

WRITF(6,5C)
FCRMAT(LE ,°*
WRITF(6,51)M6

FCFMAT(LIE ,.5X,'A',12%X,'B*'412X,'C',12X, 'D',6X, N3

DL 83 I=1,N
Jz1-1

FCRVMAT(4 ,'S12,12,85X,4(F1 .3,2X%X))
WRITE(6,5Z2),A1(0]),AP(]1),A3(1),A4(])

RETLFA
ENE

TRANSFER MATRIX OF SYSTEM®)

5 12)
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