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Abstract: 

Large wood is an important physical component of woodland rivers, and significantly influences 
river morphology. It is also a key component of stream ecosystems. However, large wood is also a source 
of risk for human activities, since it may damage infrastructure, block river channels and induce flooding. 
Therefore the analysis and quantification of large wood and its mobility is crucial for understanding and 
managing wood in rivers. As the amount of large wood-related studies by researchers, river managers and 
stakeholders increases, documentation of commonly used and newly available techniques and their 
effectiveness has also become increasingly relevant as well. Important data and knowledge has been 
obtained from the application of very different approaches, and has generated a significant body of 
valuable information representative of different environments. This review brings a comprehensive 
qualitative and quantitative summary of recent advances regarding the different processes involved in 
large wood dynamics in fluvial systems including wood budgeting and wood mechanics. First some key 
definitions and concepts are introduced. Second, advances in quantifying large wood dynamics are 
reviewed, in particular how measurements and modeling can be combined to integrate our understanding 
of how large wood moves through and is retained within river systems. Throughout, we present a 
quantitative and integrated meta-analysis compiled from different studies and geographical regions. 
Finally, we conclude by highlighting areas of particular research importance and their likely future 
trajectories and we consider a particularly under-researched area, so as to stress the future challenges for 
large wood research.  

 
Keywords: (large wood) mobility, (large wood) transport rate, (large wood) transport modelling, 

riparian vegetation, (large wood) budgeting, (large wood) tracking techniques, (large wood) hydraulics. 
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1. Introduction Over recent decades, large wood in rivers has received increasing interest among scientists who 

have recognized its significance as a functional component of fluvial ecosystems, considering it to be as 
important as sediment and riparian vegetation [Gurnell et al., 2002, Gregory et al., 2003; Gurnell 2013, 
Wohl 2011, 2013, Le Lay et al., 2013]. Large wood significantly influences river morphology and 
sediment dynamics [Montgomery et al., 2003; Wohl and Scott, 2016], and represents a key component of 
stream ecosystems [Gregory et al., 2003]. It also plays an important role in supporting the biodiversity of 
fluvial corridors, influencing the nutrient cycle and providing a variety of physical habitats [Gurnell, 
2013]. Although the removal of wood from rivers has been a widespread practice [Wohl, 2014], re-
introduction of wood into fluvial systems has recently become a component of many river restoration 
projects aimed at improving the hydrological, morphological, and ecological status of degraded streams 
and rivers [Kail et al., 2007; Antón et al., 2011].  

Large wood, like sediment, remains relatively stable for most of the time within river corridors, 
with only the smaller and loose wood pieces able to move. However, large quantities of wood may be 
mobilized during infrequent high-magnitude flood events [Mao et al., 2013] and may induce potential 
hazards for human populations and infrastructure [Comiti et al., 2012; Badoux et al., 2015; Lucía et al., 
2015]. The deposition of wood at critical locations [e.g., bridges] can cause a reduction of channel cross-
sectional area and related conveyance loss [Gippel et al., 1996; Beebe, 2002], thus inducing more frequent 
flooding. This may be accompanied by other processes such as bed aggradation, channel avulsion and 
local scouring. Therefore, understanding how, where, and why wood moves is fundamental to interpreting 
and predicting the way in which wood is stored in river systems. The potential related damage during 
floods make wood management necessary, although in many regions no clear guidelines exist on how to 
manage wood. Overall, an integrated approach to large wood management along the entire river 
continuum is needed, rather than site-specific responses to local problems generated by network-wide 
dynamics. Integrated management requires a holistic view covering the watershed, forest and riparian 
management, maintenance of water courses, and non-structural and administrative measures [Rudolf-
Miklau and Hübl, 2010; Mao et al., 2013].  

The challenge is to find sustainable conditions that can maintain wood and the good ecological 
status of rivers while minimizing the potential hazards. Therefore the quantification of the large wood 
dynamics within river networks is crucial for managing rivers under contemporary human pressures. 
Approximately 3000 contributions on “woody debris”, “large wood”, or “instream wood” were published 
between 1904 and 2015, with enormous advances in scientific understanding, particularly over the last 
two decades. From these publications, which may also include aspects which are not exclusively related to 
dynamics of large wood in rivers in the strictest sense [e.g., focusing on biomass estimation, biodiversity 
analysis, biological studies, restoration assessments, social science], 149 contributions can be described as 
review papers. Some of the most recent reviews concerning wood in rivers include Gurnell et al. [2002], 
Gurnell [2013], Gurnell et al. [2012], Wohl et al. [2010]; Wohl [2011, 2013] or Le Lay et al. [2013]. In 
these papers, the authors describe the impact of wood on river morphology, the main characteristics of 
wood that govern its dynamics, and the characteristics of rivers that dictate the way in which wood is 
mobilized, transported and retained [Gurnell et al., 2002; Le Lay et al., 2013]. The authors also consider 
interactions between wood and riparian vegetation [Gurnell, 2013], and the ways in which wood drives 
and responds to floodplain dynamics [Wohl, 2013]. In some of the reviews [Gurnell et al., 2012] the 
importance of wood for stream ecosystems and as a key component in river restoration is also highlighted.  

To date, however, tools to understand, quantify, and model large wood-related processes have not 
been reviewed in an integrated way. MacVicar et al. [2009] provide a partial exception, as they describe 
the integrated use of repeat high-resolution aerial surveys, measurement of wood physical characteristics, 
as well as the use of passive and active radio frequency identification tags, radio transmitters, and videos 
to establish an overview of large wood dynamics. Other research has focused on field surveys that capture 
a set of properties of wood at the time of survey, with Wohl et al. [2010] summarizing and defining the 
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most important features to be considered. In terms of the temporal dynamics of large wood, long-term 
observations of are extremely rare [Iroumé et al., 2014], although methods for monitoring and tracking 
wood are progressing rapidly [MacVicar and Piégay, 2012; Ravazzolo et al., 2014], and modelling is 
increasingly being used. In this latter context, Welber [2013] provides recent examples of physical 
experiments, and Ruiz-Villanueva et al. [2014a] have proposed a numerical model to simulate transport of 
large wood in rivers. 

Knowledge on how much wood we should expect to have in a river, or how much wood we might 
expect to be transported during floods is essential. Bisson et al. [1987] explored these issues some decades 
ago, and concluded that no simple answers existed. The problem is compounded by a severe lack of 
information from many biogeographical regions, but some generalizations are now possible, based on 
information available from the open literature. Therefore, this review synthesizes information from the 
literature to provide for the first time a comprehensive qualitative and quantitative summary of recent 
advances regarding the different processes involved in large wood dynamics including the recruitment, 
transfer and storage of wood in fluvial systems. 

Following Martin and Benda [2001], wood dynamics can be considered from two perspectives: a 
mass balance approach, and a transport mechanism viewpoint (Figure 1). The first perspective can be 
understood as a large wood cycle (similar to the water cycle and equivalent to the floodplain large wood 
cycle described by Collins et  al. [2012]), in other words the linkages and feedbacks associated with the 
primary processes (i.e., recruitment, transport, deposition) that govern wood dynamics and mass balance 
in fluvial systems. The main questions related to large wood dynamics from the perspective of a mass 
balance approach concern wood budgeting and wood fluxes or wood “discharge” (i.e., how much wood 
would be transferred from upstream to downstream) and their complexity through space and time. The 
second perspective is large wood mechanics, or the physical factors controlling wood entrainment and 
transport processes. The questions to be answered under this second perspective are related to hydraulics 
and fluid mechanics.  

Our aim is to provide a comprehensive review of recent advances in the field of large wood 
dynamics in rivers, compiling both technical and scientific advances that can contribute to the 
understanding of the large wood cycle in river basins and wood mechanics. The paper is organized as 
follows: section 2 reviews advances in the quantification of elements of the wood budget, including the 
quantification of wood fluxes, the analysis of wood storage and the description of preferential sites for 
wood deposition, and the assessment of residence time of wood in rivers. Section 3 reviews advances in 
quantifying wood motion, in particular considering the tracing of wood kinematics and how measurements 
and modeling can be combined to integrate our understanding of how large wood moves in river systems. 
This section also describes some potential large wood related hazards and summarizes advances in their 
estimation. Section 4 highlights areas of particular research importance and their likely future trajectories 
from the previous sections and develops a particularly under-researched area so as to stress the future 
challenges faced by large wood research.  

Throughout, we present and analyze quantitative information from different studies and 
geographical regions. We compiled information on wood fluxes exported during floods, showing data 
from 83 events, including recent events from France, Italy and Switzerland, but also data from Japan and 
Canada. We update previous databases about wood storage in rivers to 390 sites (including data from 
Canada, Chile, France, Italy, New Zealand, Poland, Spain and the U.S.). We also provide a synthetic 
overview on the mean residence time of large wood in different river systems. Lastly, we assembled all 
published data on the movement of individual pieces of wood in rivers, integrating for the first time 
aspects of wood mobility across a variety of environmental settings.  
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Figure 1: Large wood dynamics in forested river basins illustrated as a cycle where recruitment from 
wood sources (i.e., hillslopes and fluvial corridor) might be transported and/or stored. t0-t3 illustrate the 
nonlinearity of these processes, as recruitment and transport can be induced by both steady and episodic 
disturbances. The time between the processes (t0-t3) may vary among different rivers, or within the same 
river, and this defines the residence time of wood in the system. The two white rectangles show the main 
aspects described in this paper: section 2 focuses on the wood budget, and section 3 focuses on wood 
transport. I is lateral wood recruitment; D is in situ decay; and Qi and Qo, are fluvial transport of wood into 
and out of the sytem. 

 
 

2. Advances in quantifying large wood budgeting 
This section is focused on the three main processes driving the large wood budget: wood 

recruitment or delivery; wood transfer; wood deposition. These processes are considered in relation to 
three themes; wood budgeting and fluxes (section 2.2); wood storage and depositional sites (section 2.3); 
and wood residence time (section 2.4). However, before considering these processes, we review how large 
wood is defined and measured. Therefore, in section 2.1, we summarize the most common definitions of 
large wood and the recommended metrics for quantifying large wood.  
 

2.1. Background: defining large wood volume and mass 
Large wood in rivers can occur in a variety of sizes and forms ranging from very large 

accumulations and jams to individual logs (Figure 2). By large wood we generally refer to wood pieces 
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that have dimensions of at least 10 cm in diameter and 1 meter in length [Swanson and Lienkaemper, 
1978; Keller and Tally, 1979; Marston, 1982; Platts et al., 1987; Bryant, 1981; Nakamura and Swanson, 
1993; Wohl et al., 2010]. However, other definitions have been utilized, in order to scale wood size to 
stream dimensions [Hassan et al., 2005 and Seo et al., 2010]. For example, Bilby and Ward [1991] 
defined large wood as any piece of wood larger than 10 cm in diameter and 2 m long in large streams in 
the foothills of the Cascade Range and Willapa Hills, Angradi et al. [2004] chose 5 m and 0.3 m for length 
and diameter, respectively, in a large meandering river, and Comiti et al. [2006] used 0.3 m for length and 
0.05 m for diameter in headwater alpine streams.  

Whatever definition is used, measurements of individual pieces of large wood are often converted 
to volumes, commonly using the equation for a cylinder. This introduces some imprecision in estimating 
the volume of wood pieces which have a complex morphology [Wohl et al., 2010]. To address differences 
between species, Bragg et al. [2000] developed an equation to calculate volume with species-specific 
coefficients. To simplify calculations and streamline repeat measurements, large wood has also been 
reported in various size classes [e.g., Marcus et al., 2002; Daniels, 2006]. Imprecision in calculating large 
wood volumes is magnified when large wood jams are present because many wood pieces are not visible 
and the spacing between pieces is difficult to measure [Livers et al., 2015]. Therefore, some researchers 
have applied a wood-air box model to estimate volume [Piegay and Marston, 1998; Thévenet et al., 1998; 
Gurnell et al., 2000; Wyżga and Zawiejska, 2005; Wyzga et al. 2015], whereas others have made a 
distinction between a large wood accumulations of two to four pieces and jams containing more than four 
pieces [Moore et al., 2002]. In some very large rivers [drainage areas from 30,000 to 500,000 km2] and 
deltas, large wood may accumulate in very extensive wood rafts [Sedell and Froggatt, 1984; Triska, 1984; 
Sedell et al., 1988; Wohl, 2011, Boivin et al., 2015]. In this case, exact volume estimation is very 
challenging and is usually approximated using the area occupied by wood [Boivin et al., 2015; Benacchio 
et al., 2016]. 

As highlighted by Hering et al. [2000], the different sampling procedures and metrics used for 
wood volume estimation, together with the definition of survey area boundaries within which wood 
properties are recorded (e.g., including/excluding elements located on banks) result in marked differences 
in wood volume estimates and consequent uncertainties when combining estimates across different 
studies. Agreement on the measurement and reporting of variables could help to resolve some of these 
uncertainties [Barker et al., 2002; Wohl et al., 2010].  

At the reach scale, recording of wood volume is recommended (e.g., m3·100-1m, m3·ha-1, 
pieces·100-1m) to facilitate comparisons between sites and regions [Wohl et al., 2010]. However, when 
large wood budgets are being calculated, volumetric mass balance is usually expressed in m3 of wood per 
year [Boivin et al., 2015]. When large wood transport is being monitored, and wood flux or wood 
discharge is assessed, the recommended metric is m3·s-1 or kg·s-1 [Turowski et al., 2013]. 

Mass quantification is strongly influenced by wood density and the degree of wood decay, which 
are critical parameters when evaluating a large wood mass budget. Decay may in some cases be discerned 
from visual indicators such as the presence/condition/absence of leaves/needles, bark, sapwood, and 
heartwood (e.g. Maser et al., 1979; Wohl et al., 2010; Harmon et al., 2011, see also section 2.4.2). These 
findings underline the importance of reporting more about wood storage than mere volumes: the 
geography of the stored wood matters [Wohl and Cadol, 2011; Ryan et al., 2014; Jackson and Wohl, 
2015]. 
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Figure 2: Rivers showing different types and sizes of wood accumulations (A) The braided Sense River 
(Switzerland) usually shows wood accumulations comprised of a mix of individual, larger wood pieces 
and whole, multi-stemmed shrubs (photograph: V. Ruiz-Villanueva) (B) The wood accumulations in the 
Vuelta de Zorra Stream (Chile) are almost entirely composed of very large wood pieces (photograph: V. 
Ruiz-Villanueva); (C)Wood raft at the Saint Jean River in Canada (photograph: H. Piégay); (D) Second 
order stream in the Mazák River basin, Beskydy Mountains (Czech Republic) with wood mainly recruited 
from hillslopes forming log bridges or log ramps (photograph: V. Ruiz-Villanueva). 

 
 

2.2. Large wood budget and fluxes 
2.2.1. Large wood recruitment and budgeting 

A first conceptual framework for large wood budgeting was proposed by Martin and Benda [2001], 
(Figure 3). They considered the volumetric mass balance of large wood within a unit channel length, in 
small basins (approx. 100 km2), where channels are narrow compared to tree height or length, large wood 
mobility is fairly low, and so some large wood budgeting assumptions can be based on the existing in-
channel wood. In this context, large wood recruitment comes from processes close to the river such as tree 
mortality, tree toppling following fires and windstorms, bank erosion, and also large wood delivery to the 
river from surrounding hillslopes by episodic disturbances such as debris flows, landslides and snow 
avalanches [Benda and Sias, 2003; Lancaster et al., 2003; Miller et al., 2003]. Other processes that were 
considered to affect the large wood budget included wood decay and wood transport. In some landscapes 
wildfires may dominate long-term wood supply. Benda and Sias [2003] proposed equations to provide 
theoretical predictions of wood delivery and other characteristics in response to different fire cycles, but 
they were not able to fully test their modelling because of a lack of field observations to quantify different 
parameters. More recently, Benda and Bigelow [2014] applied the same approach to small streams in 
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northern California [drainage basin area <30 km2] and showed that differences in large wood storage 
mainly reflect local difference in bank erosion rates, forest mortality and mass wasting, which are related 
to differences in basin physiography, orographic and geological setting, and forest types and management. 

 
Figure 3: Illustration of variables used in wood budgeting analysis for the Game Creek basin, southeast 
Alaska [after Martin and Benda, 2001]. I is lateral wood recruitment; O is loss of wood from the active 
channel due to overbank deposition during flood events, abandonment of jams, and burial; D is in situ 
decay; and Qi and Qo, are fluvial transport of wood into and out of a segment of length Δx.  

 
A strategy of using the total large wood deposited as a surrogate for large wood output at the 

watershed scale has been adopted in small Alpine catchments by Rickenmann [1997] and Rimböck et al,. 
[2003]. This has allowed the development of pioneer empirical equations linking large wood volume to 
catchment size. These studies distinguished between wood volume that is effectively transported 
[exported] and large wood potential that could be recruited and transported by exceptional flood events. 
They estimated the latter from processes that could introduce wood to the streams and the standing wood 
volumes in areas where such large wood mobilization processes are probable. It is important to distinguish 
between these two different concepts. The former refers to the volume of large wood that is recruited and 
then exported from a watershed [here referred to as exported wood], whereas the latter refers to the 
potential volume of wood that could be recruited and subsequently exported during extreme events. The 
latter could be used as an indicator of the magnitude of wood flux a given basin could produce under 
specific circumstances. As observed by Rickenmann [1997], a relationship exists between the drainage 
area and the volume of large wood exported during floods, but such empirical formulae, which do not take 
account of other key processes and parameters, should be used with caution. 

Some more detailed models have been used at regional and catchment scales to identify the 
potential source areas of large wood, including different recruitment processes, and to compute potential 
recruitable volumes of wood and transport rates [Czarnomski et al., 2008; Marcus et al., 2011; Wohl, 
2011; Eaton et al., 2012 and 2013]. Recent approaches have employed geographic information systems 
[Mazzorana et al., 2009; Rigon et al. 2012; Lucia et al., 2014], and have applied fuzzy-logic principles 
[Ruiz-Villanueva et al., 2014a] to quantify wood potential volume in a spatially distributed way. However, 
a reliable prediction of potential wood fluxes still remains to be developed. We reviewed available data 
concerning large wood exported during floods and the relationship between exported wood volume, flood 
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magnitudes and drainage basin characteristics [Figure 4]. Following the work by Rickenmann [1997], we 
updated his database from the original 34 events to 83, including recent events from France, Italy and 
Switzerland [Bezzola, 2006; MacVicar and Piégay, 2012; Badoux et al., 2015; Lucia et al., 2015; Steeb et 
al., 2016], data compiled by Seo et al. [2008] from observations of wood volumes exported and stored in 
reservoirs in Japan, information from the Génissiat reservoir in France [Moulin and Piégay, 2004], and the 
large raft in the Saint-Jean River in Canada [Boivin et al., 2015]. These last two sources were only used to 
provide an upper limit or maximum values of wood volume during the highest magnitude floods observed. 

 

 
Figure 4: (A) Large wood volume (m3) exported (wood volume quantified at retention structures, bridges, 
deposited along streams, retained in reservoirs and in lakes) from different watersheds during different 
flood events (only the upper values from sources are plotted in the graph). The black line shows the upper 
boundary as a power function. Data from Seo et al., [2008] and Fremier et al., [2010] cannot be related to 
single flood events since wood volume is quantified annually (B) Boxplots of exported volume of large 
wood grouped by catchment area.  
 

The graph shown in Figure 4A provides an upper limit for large wood delivery following 
exceptional floods according to catchment size which is consistent with some of the observations of Seo et 
al. [2008] in Japan, of Rickenmann [1997] and Waldner et al. [2006] in Swiss basins, and of Lucía et al. 
[2015] in Italy, and thus seems a fairly robust global generalisation. Observations conducted on the Rhône 
and the Ain rivers (France) in Figure 4A represent systems that producee sizeable amounts of wood in the 
absence of exceptionally large events (i.e. usually smaller than the 10-year flood). Thus, for the first time, 
the graph allows case studies to be compared and to assess how exceptional wood delivery is for a given 
event. Nevertheless, we still need to better characterize the magnitude of events, to be able to distinguish 
secondary factors such as land-use (wood availability) and other key acting processes (i.e. factors 
promoting delivery). Among these parameters are the magnitude (Figure 5) and frequency of floods but 
several others, including riparian forest management, river and/or antecedent flood characteristics, are all 
likely to be highly influential. Thus, Millington and Sear [2007] noted that the first significant flood after 
recruitment plays a disproportionately large role in wood dispersal, while subsequent events can be 
relatively ineffective in removing wood regardless of their magnitude. When the relationship between the 
exported wood volume and the maximum discharge of the transporting flood event is analyzed, a positive 
relationship is revealed (Figure 5A). However, since flood frequency (i.e. return period) is not considered 
(although in general all analyzed events were characterized by high intensity, therefore low frequency) the 
absolute values of discharge cannot be considered a causative indicator (i.e. 1000 m3·s-1 can be a 
minimum flow on a large river and no wood would be exported, whereas 100 m3·s-1 could be a very 
extreme event in a medium to small river, transporting a significant amount of wood). However, the 
relationship presented in Figure 5A provides information on size effects which seems to be fairly constant 
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(for 10 m3 s-1 we have 100 m3 of wood, for 1000 m3 s-1 we have 10,000 m3). When specific discharge 
(m3·s-1 km-2) is related to the exported large wood, the relationship is negative (Figure 5B), indicating that 
larger watersheds (which in general have lower specific discharge) export larger quantities of wood. This 
means that for a given event in a smaller catchment less wood is exported even when more wood could be 
recruited (in comparison with a larger river), because large wood mobility is generally lower in small 
rivers and more wood is trapped, although many other factors can influence this process. 

 

 
Figure 5: Relationship between large wood volume exported during flood events and (A) the maximum 
discharge observed, (B) the specific maximum discharge observed. 
 

2.2.2. Monitoring wood flux at the catchment and reach scales  
The ability to accurately determine wood fluxes is fundamental to understanding wood transport 

processes and also is a critical need in river and flood management. Observation windows in which to 
gather this data can be reservoirs [Moulin and Piégay, 2004; Seo et al., 2008], delta branches [Boivin et 
al., 2015], natural lakes [Waldner et al., 2006] or trapping structures, such as those described by Lyn et al. 
[2003], where wood can be trapped for days, months, years or decades.  

Moulin and Piégay [2004] were the first to use historical data on routine wood removal to link 
wood output and discharge in the Génissiat reservoir on the Rhône. They identified a critical discharge, 
the one in 1.5 year flood, above which wood output increased significantly. They also estimated statistical 
relationships between wood delivery and peak flow which were complex because of the time series 
characteristics, particularly the timing of a critical flood and the origin of floods, which tapped wood 
sources and intermediate storage areas of different sub-catchments. Seo et al. [2008, 2010] analyzed 
archived series of wood trapping within 131 reservoirs in Japan. They showed changes with catchment 
size. Intermediate catchments (drainage areas between 100 and 1000 km2) exported more wood per unit 
area than smaller (< 10 km2) and larger ones (> 1000 km2). They hypothesized that these results were 
related to both wood recruitment and trapping which can differ according to river size. In intermediate 
sized rivers, recruitment is high and similar to small catchments but trapping efficiency is much lower 
than in small catchments because rivers have a larger width relative to tree height/length. Even small trees 
can be trapped in the narrow streams of headwater catchments and may persist for decades within the 
stream channel and its margins.  

A similar analysis by Boivin et al. [2015] used adjustments in a 3 km long wood raft at the mouth of 
the Saint-Jean River to estimate minimum wood delivery from the catchment. They used information from 
aerial photos, field measurements, and wood volume calculations using the method of Thevenet et al. 
[1998]. The raft volume [≈25,000 m3 between 1963 and 2013] combined with wood storage in the channel 
(≈5950 m3) compared favorably with estimated wood recruitment between 1963 and 2004 (≈27,000 m3 ± 
400m3). The analysis was applied at a decadal scale, expressing mass balance in m3 per year, but also at an 
annual and event scale, allowing for a better link to be established among Qo, I and O within the studied 
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reach and confirming that a delay can exist between wood production and export downstream, thereby 
explaining the complex relationship between peak flow intensity and Qo. The precise causes of this delay 
remain unclear but depend on the functioning of wood trapping areas which may need to reach a certain 
storage threshold before they deliver wood downstream. However, analogies can be drawn with torrents or 
debris flows, where the term susceptibility is usually used as a first step in identifying active systems [the 
spatial probability of occurrence] without incorporating their particular physical setting [Bertrand et al., 
2013].  

In some recent research, assessment of Qo has focussed on shorter time scales by considering not 
only wood output [m3 per year or per event] but also wood flux or transport rate [m3 per day, hour or even 
second]. The approaches developed to attain this improved temporal resolution not only consider how 
much wood a drainage basin can produce as a whole over a few years, months or during a single event, 
but also how much a reach can produce by simultaneously considering upstream input (Qi) and 
downstream output (Qo). Moulin and Piégay [2004] evaluated the feasibility of continuously monitoring 
wood raft evolution within the reservoir of Génissiat, Rhône using ground photography. This has now 
been automated [Benacchio et al., 2016.] allowing hourly wood flux to be estimated from 12 minute 
observations of wood raft area and an empirical relationship between raft area and extracted wood 
volume. Lyn et al. [2003] were the first to use ground cameras to study wood delivery to a given point. 
They monitored a bridge that was sensitive to wood trapping in order to assess deflector efficiency. 
Unfortunately, they did not quantify wood flux but rather used the photographs qualitatively to confirm 
that wood transport was intermittent with short periods of active wood delivery occurring mainly on the 
rising limb of flow events.  

While all of the previously-described methods depend on the presence of a fixed trapping structure, 
MacVicar and Piégay [2012] evaluated the potential of using a streamside video camera to detect large 
wood passage and measure quasi-instantaneous rates of large wood transport. Based on visual detection of 
wood pieces during three floods on the Ain River, France, they determined the critical discharge for wood 
transport as approximately two thirds of the bankfull discharge and concluded that transport rates were 
approximately four times higher on the rising limb of the hydrograph than on the falling limb. They also 
defined a step-by-step protocol to study the large wood transport rate from video, including tests of 
detection frequency, wood velocity, and piece size, which all depend on orthorectification of the images 
and flow stage. Subsequently, processing of the video data was automated so that transport rates could be 
estimated in real-time [MacVicar et al., 2012]. Comparison of the number of automatically detected wood 
pieces with those that were visually detected revealed an approximate 90% agreement between the two 
methods. Errors accrued in relation to detection of wood piece size [as only a part of a wood piece is 
usually visible] and discontinuity in the series due to the absence of records at night. Similarly, Kramer 
and Wohl [2014] monitored large wood transport with time-lapse photography [1 to 15 min] on the Slave, 
a large subarctic river with very low surface velocity. They also identified a critical discharge for large 
wood transport [approximately 4500 m3·s-1] and observed more wood being transported on the flood rising 
limb than falling limb. In a different approach, Turowski et al. [2013] estimated wood flux from direct 
field measurements using wood traps and basket samplers, permitting investigation of a wide range of 
wood piece sizes and coarse particulate organic matter transported from a small catchment, the Erlenbach 
[0.7 km2] in Switzerland. From repeated surveys, they established a rating curve of the form  

Qwood=aQb          [|1] 
where a=4.42×10−15, b=4.47±0.21, R2=0.94 (Qwood in kg·s-1 and Q in l·s-1). The authors also showed 

that a single scaling exponent (1.8) can describe the mass distribution of coarse particulate organic matter 
heavier than 0.1 g. This scaling was also observed on the Ain river data [MacVicar and Piégay, 2012].  

Numerical modelling provides another approach to investigating wood flux under unsteady flow 
conditions. Ruiz-Villanueva et al. [2016a] analyzed the influence of the hydrograph [in terms of peak 
discharge, time to peak and total flood duration] on the transport of previously deposited wood in the 
Czarny Dunajec River (Poland). Model results revealed a lag between the beginning of a flood and large 
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wood remobilization, where the lag is related to the flood responsible for the initial wood deposition. 
Furthermore, the peak in large wood transport is generally reached before the flood peak, and wood 
transport decreases close to or slightly after the hydrograph peak. During the falling limb of the 
hydrograph, large wood transport is usually negligible unless an additional supply of wood is provided to 
the river, since the available wood has already been subject to the same or larger discharges during the 
rising limb. As a consequence, there is hysteresis in the relationship between discharge and large wood 
transport, which has also been observed in the field using video monitoring of the Ain River [MacVicar 
and Piégay, 2012]. 
 
 

2.3. Large wood storage and deposition 
 

2.3.1. Surveys of large wood stored in rivers 
To quantify wood storage (i.e. wood deposited in a river reach), a wide variety of surveying and 

computing methods have been used. Information gathered from either field surveys or aerial imagery are 
often used to determine the amount of large wood stored within a reach [Lassettre et al., 2008]. Field 
surveys have employed the line-intersect method [Wallace and Benke, 1984], have focused on transects 
[Baillie et al., 2008] or have inventoried all wood pieces in a study reach [Mácka et al., 2011]. Aerial 
imagery helps to overcome the sampling problem inherent in field studies, which are usually confined to a 
set of reaches of the studied river. However, high resolution images (i.e. image resolution of at least 10 
cm) are required to accurately measure large wood pieces. Pecorari [2008] and Comiti et al. [2008b] 
suggested that the resolution of the image should be at least twice the minimum log diameter if they are to 
be measured with low error (<15%). In addition to air photographs, a considerable amount of fluvial 
research and development has been performed on images captured by airborne and space-borne, 
multispectral and hyperspectral imaging systems [Marcus and Fonstad, 2008, 2010; MacVicar et al., 
2009; Carbonneau and Piégay, 2012]. One crucial aspect is the spatial resolution of such data sets 
[Greenberg et al., 2009; Rango et al., 2009]. The platforms from which the data sets are captured [e.g. 
ground-tethered devices, conventional planes and helicopters, unmanaged aerial and ultra-light vehicles] 
influence the spatial resolution achieved [Carbonneau et al., 2012] with the choice of platform 
constrained by costs, flying ability, flying regulations, and limitations regarding battery autonomy. 

High-resolution, multispectral imagery in four or more bands combined with good geometric 
correction, image mosaicing, and the application of appropriate automatic classification techniques offer a 
viable tool for stream mapping and detection of individual logs and log jams [Leckie et al., 2005]. 

High spatial resolution hyperspectral (HSRH) imagery is capable of acquiring detailed information 
of the distribution of stored wood over an entire stream’s length, but the spatial resolution (typically >1 to 
5 m) is usually insufficient to map accurately smaller deposits of large wood. However, objects with a 
clear spectral signal, such as wood, can be distinguished even when they make up only a fraction of a 
pixel [Marcus et al., 2003; Smikrud and Prakash, 2006].  

New platforms such as kites, microlights and drones are becoming widely used in fluvial 
environments [Lejot et al., 2007]. They are very promising tools that could provide very high resolution 
images to allow detailed wood censuses along channels that capture spatial and temporal changes in wood 
storage [Haschenburger and Rice, 2004; MacVicar et al., 2009].  

Airborne Light Detection and Ranging (LiDAR) and terrestrial laser scanning (TLS) also have been 
recently evaluated to analyze large wood characteristics [Fleece, 2002; Kasprack et al., 2012; Tonon et 
al., 2014]. TLS appears to be a reliable tool for providing additional data on wood characteristics, such as 
orientation with respect to the flow direction, shape and, as also shown by Boivin and Buffin-Bélanger 
[2010], wood accumulation porosity. For larger wood pieces, TLS has proved capable of discriminating 
between coniferous and deciduous wood, based on the foliage of woody elements [Tonon et al., 2014]. 
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LiDAR-based analysis has been found to provide a comprehensive solution for detecting log jams in 
lowland rivers where vegetation cover is not obscuring the deposits [Abalharth et al., 2015]. 

 
2.3.2. How much large wood is retained in rivers? 

The above-mentioned measurement approaches have been employed in many studies, generating a 
large body of published information on wood storage in rivers. We compiled and analyzed such data from 
the scientific literature, updating the databases compiled by Gurnell [2003, 2013], from 314 to 390 sites 
for which the amount of channel-stored wood [specific wood storage expressed as mass of wood per 
hectare of channel area; m3 ha-1] is either quoted or could be estimated from other published data or 
graphs. For most sites it was also possible to quantify drainage area, channel width, channel slope and 
information concerning the nature of the riparian woodland. 

Figure 6 shows that river systems in Canada and Chile, as well as in the U.S. and New Zealand have 
significantly more wood than European river systems, which is potentially related to their naturalness. 
Variability in European systems is fairly high and may be linked to various factors, such as the time of 
observation or the degree of naturalness and maintenance pressure [Evans et al., 1993]. Even where 
riparian woodland is present, European floodplain vegetation has been managed for many centuries, 
unlike many riparian zones in Canada, Chile, the U.S. and New Zealand. For example, active floodplains 
along lowland alluvial rivers in France have been used for grazing and, when human pressure has been 
high, for arable agriculture, with alluvial forest showing only slight recovery since the end of the Second 
World War [Marston et al., 1995; Liébault and Piégay, 2001]. If we can assume large wood stored in the 
channel is a good minimum estimate of what is produced (i.e. only a small part is exported), then it is 
possible to compare reaches to identify the most wood productive ones. This does not address questions 
concerning the amount of large wood produced by individual events, nor how representative a synoptic 
measurement of wood storage is in a temporal context. 

  

 
Figure 6: Boxplot of log-transformed specific large wood volume storage (m3·ha-1) estimated during 
wood inventories and grouped according to geographical region (country). ‘n’ shows the number of river 
reaches or sites. UK: United Kingdom, USA: United States of America, NZ: New Zealand. 

 
Many studies from diverse geographical settings have demonstrated that in-stream storage of large 

wood varies with position in the watershed (i.e. expressed by measuring drainage area upstream of the 
point of measurement), bankfull channel width, channel slope, and the type of trees (Figure 7).  
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Figure 7: Boxplot of log-transformed specific large wood storage (m3·ha-1) in river channels grouped 
according to drainage area (km2), channel width (m), channel slope (m·m-1) and the type of trees bordering 
the channel. 

 
Specific wood storage (per unit channel area) decreases with drainage area because larger streams 

have a greater capacity to transport large wood [Martin and Benda, 2001; Marcus et al., 2002; Wohl and 
Jaeger, 2009]. For the same reason, large wood storage also decreases as channel width increases and 
channel slope decreases, because channel width normally increases and slope decreases in the downstream 
direction. When channel width is greater than the typical length of the large wood, the trapping capacity of 
the channel decreases and pieces are more likely to be transported downstream. In mountainous headwater 
streams, channels are narrow and confined by hillslopes. As a result, large wood pieces are commonly 
longer than bankfull channel width in headwater streams, exhibit a random spatial distribution, tend to fall 
and thus be oriented perpendicularly to the axis of water flow and often remain suspended above the 
channel banks [Bilby and Ward, 1989]. In these environments large wood usually functions as a dam or 
log steps once it enters the channel. Marston [1982] found that the frequency of log steps increased as 
channel width increased, until streams became so wide that wood pieces could not be trapped or anchored 
readily in the banks, but instead were floated downstream. In these larger river systems, wood pieces are 
too small to span the river channel, and so they can only be retained in locations where they become 
snagged by particular morphological features or marginal vegetation, or where they become stranded 
during the recession of flood flows. Piégay et al. [1998] showed that on the Drôme river [1600 km2], in-
channel wood storage along the main stem is only 1.3–3.7 times the annual wood input delivered from the 
floodplain by bank erosion. The storage capacity of reaches is also strongly linked to the presence of 
trapping structures, notably bars. On large rivers, wood recruitment from bank retreat has been well 
studied by combining estimates of eroded areas from sequences of air photographs with field surveys of 
sampling plots close to the eroded area and with similar radiometric and textural values on the aerial 
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photos to provide measures of stem density and standing wood volumes [Piégay et al., 1998; Boivin et al., 
2015]. Using such data sources, Boivin et al. [2015] showed that on the heavily forested Saint-Jean River, 
Gaspesia (Canada), in-channel wood storage can reach 9 times the annual delivery from bank erosion. 
However, in single-thread wide river channels lacking significant reaches where wood can be deposited 
(e.g., wider sections with large bars), wood storage is likely to be much lower than the effective 
recruitment. Using similar methods, researchers have also shown that wood stored in the channel is 
usually delivered at the end of the last flood event and can be a small part of the quantity introduced into 
the channel during the flood event. A diffusion effect has also been observed with the amount of stored 
wood decreasing with distance from the bank erosion source [Lassettre et al., 2007; Welber et al. 2013]. 

Wyżga and Zawiejska [2010] showed that large wood deposits were more abundant in multi-thread 
reaches than in channelized single-thread reaches of the same river. Comparable observations have been 
reported by other researchers in similar fluvial environments. For example, wood storage was observed to 
vary significantly between reaches of different geomorphic configurations (island-braided and bar-
braided) along the Tagliamento River in Italy [Van der Nat et al., 2003], whereas in the Piave River, Italy, 
Pecorari [2008] reported higher storage in braided than wandering reaches. Contrasting patterns of wood 
storage have been observed in mountain watercourses of low to medium width in comparison with those 
of large width. In the former, similar lateral inputs of large wood to stream segments of different width 
and a lack of long-distance transport of wood results in similar total wood storage but a decreasein specific 
wood storage as channel width increases. In the latter, preferential retention of large wood in wider river 
reaches leads to an increase in both total and specific wood storage with in-creasing river width [Wyzga et 
al., 2015]. This propensity for large wood to be preferentially retained in the widest sections of mountain 
rivers can be used as a natural buffer attenuating transfer to intensively managed valley reaches [Wyżga 
and Zawiejska, 2010; Wohl et al., 2015]. 

Storage of large wood is also related to catchment and riparian tree management. Streamside 
logging and timber harvest throughout a watershed tends to increase wood loading in streams, unless 
fallen trees are removed from the channels [Gomi et al., 2001]. Historic tie-drives reduce wood storage 
overall and leave persistent changes in channel morphology that affect wood storage for many decades 
thereafter [Young et al., 1994; Ruffing et al., 2015]. Large wood storage tends to be higher in streams 
draining old-growth forest than in young forests [Jackson and Wohl, 2015], although exceptions have 
been reported [Benda et al., 2002]. Bilby and Ward [1991] and McHenry et al. [1998] examined the size 
distribution of large wood in streams traversing old-growth forests and second-growth forests. They found 
that, following removal of old-growth riparian forests, the loss of old-growth large wood is very rapid 
initially. Inputs of large wood from second-growth forests up to 73 years old were of smaller diameter, 
higher mobility and high decay rates than those observed in old-growth settings. Furthermore, large wood 
is in general missing from channelized rivers because of the absence of retentive sites [Angradi et al., 
2004] and the low wood storage found in many rivers is frequently a consequence of a long history of 
clearance activities [Hering et al., 2000; Comiti et al., 2012; Wohl, 2014].  

Quantitative information on the volume of wood required to maintain adequate habitat is generally 
lacking in the literature, as well as the role of episodic disturbances in supplying wood to rivers [Benda et 
al., 2003; Miller et al., 2002], despite the fact that the typical distribution of wood storage in relatively 
undisturbed rivers and streams might be used as the upper limit of what is ecologically useful. The range 
of values shown in Figures 6 and 7 is quite large, and it is a challenge for ecological research to define the 
lower limit of the volume of wood required to maintain ecological functioning in various environments. 
Similarly, for regulated rivers, it is important to define the upper limit of wood volume that can remain or 
be placed in the channel without compromising the hydraulic efficiency required for conveying flows or 
for mitigating flood risk [Kail et al., 2007]. 
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2.3.3. Preferential sites of large wood deposits  
Since the earliest large wood research, a plethora of studies has analyzed the spatial distribution of 

large wood describing the variability of its deposition along river systems in a wide range of environments 
[Gurnell et al., 2002; Abbe and Montgomery, 2003; Montgomery et al., 2003; Swanson, 2003; Bigelow et 
al., 2007]. These studies have shown that in steep streams (i.e., channel gradients between 0.06 and 0.20) 
most large wood deposits comprise pieces anchored on irregularities of the channel boundaries (i.e. 
bedrock outcrops, boulders) or on trees growing along channel margins [Abbe and Montgomery, 2003]. 
Large wood can occupy a large part of the channel (up to 80% according to Keller and Swanson [1979]). 
The main large wood features in these low order channels are channel-spanning log steps (Figure 8; Abbe 
and Montgomery [2003]) significantly contributing to step-pool long profiles of steep, narrow channels 
[Curran and Wohl, 2003]. 

 
Figure 8: (A) Bridge log, ramped log (at left), and log step (in background) in Cape Creek, Lane County, 
Oregon Coast Range (photograph: R. Marston); (B) log step in the Kamienica stream, Poland 
(photograph: V. Ruiz-Villanueva); (C) isolated logs deposited on top of bars and wood jams accumulated 
along island margins of the Tagliamento River, Italy (photograph: V. Ruiz-Villanueva); (D) logs deposited 
along the outer margins of channels along the Drôme River, France (photograph: H. Piégay). 

 
In larger and multi-thread rivers, large wood is preferentially retained on the top of gravel bars, 

often forming bar apex jams as defined by Abbe and Montgomery [2003]. Island-braided reaches may 
store considerably more large wood than bar-braided reaches due to greater contact between the active 
channel and forested islands [Gurnell, 2002]. In contrast, along large single-thread to wandering alluvial 
rivers, large wood is mainly stored along the outer margins of channels, on concave banks and point bars 
of meandering rivers, and also along the edges of islands and secondary channels in wandering rivers 
[Gurnell et al., 2002; Abbe and Montgomery, 2003; Gurnell, 2013].  
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2.4. Assessing the residence time of large wood  

The residence time of wood refers to the average amount of time that a piece of large wood spends 
in a river system. It begins from the moment that a standing tree enters the river system from bank erosion, 
landslides, logging, storms and mortality, and ends when the same piece of large wood leaves the river 
system. Residence time has been calculated as the difference between the year of a specific survey and the 
year of mortality often based on an empirically-derived cumulative distribution of large wood ages 
[McVicar et al., 2009]. This approach requires an aggregate, steady-state view which assumes that over 
several decades, and over an entire watershed or reach, wood is recruited to the channel at approximately 
the same rate that it is depleted. In general terms, it can be assumed that the larger the system, the larger 
the residence time will be, provided that inflow and outflow rates are held constant. However, under 
natural conditions, Hyatt and Naiman [2001] argue that residence time cannot easily be determined until a 
wood piece disappears from the channel, a point that is not practically measurable. As a consequence, they 
used the term depletion rate instead, which refers to the removal of large wood from a channel through 
decay, transport, and burial. In contrast to residence time, the term depletion also takes account of the 
various factors affecting wood and sees depletion in a stream as a product of the interaction between 
downstream transport, burial, and decay of large wood [Gurnell et al., 2002]. 

 
2.4.1. Quantifying time from death and depletion rate 

The amount of time that a piece of large wood has spent in a stream can be assessed using dating 
approaches (e.g., dendrochronological techniques or radiocarbon dating) or with semi-quantitative, yet 
more descriptive approaches (e.g., wood decay, wood density, resistance). Dendrochronology has been 
used in a series of studies (e.g., Hyatt and Naiman [2001]; Jones and Daniels [2008]; Jochner et al. 
[2015]), mostly in temperate climates in which trees form annual rings. Analyses were primarily based on 
ring-width series, preferably from conifer wood, with their growth patterns matched against reference 
chronologies from riparian trees of the same species. This approach allows determination of the year of 
formation of the last ring in a wood core [Fritts 1976, Cook and Kairiukstis 1989] but also provides 
information about tree age before it entered the stream system. Hyatt and Naiman [2001], for instance, 
analyzed the size and species composition of large wood in the Queets River [USA] and compared it with 
the size and species composition of forest trees, allowing them to determine a depletion rate for large 
wood in the active channel.  

In cases where large wood pieces are decayed and so are unable to provide cores for dating, or are 
simply much older than the locally available reference chronologies, sample dating can be attempted with 
radiocarbon (14C) techniques. Radiocarbon dating will provide reasonable estimates (yet usually less 
precise than dendrochronology; Stoffel et al. [2010]) for the time since death, which can then be used to 
assess the mean residence time of in-channel wood. However, while the approach is certainly very 
valuable for older wood pieces, analyses of modern samples may contain ambiguities especially in regions 
which have been subjected to elevated 14C concentrations from atmospheric nuclear tests [Hyatt and 
Naiman, 2001]. McVicar et al. [2009] were able to avoid this ambiguity by correlating existing annual 
measurements of 14C in wood and other vegetation against the 14C data obtained from tree rings in wood 
samples, such that an estimate for the year of mortality could be given with a resolution of ±2 years.  

The residence time of large wood is governed by a series of variables with climate representing a 
first-order control [Wohl, 2013]. In addition, differences in tree species composition [in terms of chemical 
content], wood piece size (i.e. diameter, length), wood position (suspended, ground, buried, fully 
submerged), site conditions (temperature, moisture levels, oxygen and carbon dioxide levels), channel bed 
stability, channel morphology, flood intensity and riparian forest composition will further influence the 
residence time of large wood [e.g., Harmon et al., 1986; Naiman et al., 2002; Forrex, 2004; Wohl, 2013]. 
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Large wood from mature stands persists longer than large wood from younger stands where the wood is 
typically shorter, smaller in diameter, more easily broken, and less easily anchored [Maser et al., 1988].  

In general terms, turnover times in tropical forests would be typically in the order of <10 years for 
fallen wood [Lang and Knight, 1979; Clark et al., 2002], whereas wood has been described to persist for 
centuries in temperate and boreal environments [Knowles and Grant, 1983; Veblen, 1986; Hofgaard, 
1993; Krankina and Harmon, 1995]. 

 
2.4.2. Wood decay as a proxy for residence time 

Decomposition rate (or decay coefficient) and subsequent breakdown of large wood is yet another 
critical factor as it chiefly determines how pieces decrease in size and thus increase in mobility [Gurnell, 
2003; Sear et al., 2010; Wohl et al., 2012]. The decomposition rate involves a series of biological and 
physical processes [Harmon et al., 1986] including fragmentation or breakage, leaching, collapse and 
settling, seasoning, transport, respiration, and biological transformation.  

Decomposition of wood is most often expressed as a negative exponential decay rate function of  
Mf=Mi·e[-kt]           [2] 
where Mi is the initial mass, density or volume of wood, Mf is the quantity of material left at time t 

[in years] and k represents the decay rate constant. Although numerous studies have calculated wood 
decomposition rates in terrestrial ecosystems only a few have documented decomposition rates in stream 
environments [Golladay and Webster, 1988; Murphy and Koski, 1989; Bilby et al., 1999; Hyatt and 
Naiman, 2001]. The decomposition of cubes, sticks and twigs of wood have revealed a wide array of 
decomposition rates among tree and shrub species [e.g., Diez et al., 2002; Janisch et al., 2005], with 
notable differences also occurring when wood from different parts of a plant and pieces of different size or 
diameter are compared [Janisch et al., 2005]. These studies have shown that wood mass decomposition 
rates in streams range from approximately 0.01 to 1.20 per year, but variations are highly dependent on 
wood species, wood chemistry, piece size, and stream environment [Scherer, 2004]. The estimated 
decomposition rate of old-growth conifer wood in temperate climates has been reported to be in the order 
of 1% per year, but differences exist between species [Grette, 1985]. For North American coastal stream 
ecosystems, Benda and Sias [2003] confirm these values, obtaining rates of decomposition 1 to 3% per 
year, but again with clear differences between species [Naiman et al., 2002]. The lignin content in conifers 
may be responsible for slower decay, in addition to leachates from debris which have been described to 
impede microbial decay as well [Melillo et al., 1982]. For the Ain River [France], McVicar et al. [2009] 
infer that 20–30 years of in-channel storage in exposed conditions would be sufficient to decompose logs 
from a deciduous softwood species, Populus nigra, to the point that they would break-up into smaller 
pieces during transport.  

The relative importance of different depletion processes for instream wood is also poorly 
understood [Hassan et al., 2005]. According to Harmon et al. [1986], tree species directly influences 
decay and breakage because it governs the resistance of wood to biochemical decay processes and 
mechanical breakage. Nevertheless, river organisms, especially bacteria, living within the channel or on 
the floodplain, critically influence decay and breakage of wood by colonizing and biogeochemically 
altering, ingesting, or breaking apart wood [Harmon et al., 1986; Bilby, 2003; LeLay et al., 2013].  

Environmental factors also have an important impact on decay rates, including the degree and 
duration of submersion [Braccia and Baxter, 2008; Collier, 2014], and water quality [Gulis et al., 2008; 
Arroita et al., 2012]. Bilby et al. [1999] and Wohl [2013] stated that wetting and drying of wood can 
accelerate decay, and submersion of dense logs within a channel can retard decay. Differences in 
decomposition rates are also influenced by wood piece size. Harmon et al. [1986] demonstrated that 
biological breakdown of pieces is most active on the surface of large wood, meaning that larger pieces 
have a lower surface area to volume ratio than small pieces and so microbial decomposition occurs more 
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slowly [Bisson et al., 1987; Spänhoff and Meyer, 2004]. At the same time, size also affects the stability of 
large wood in the stream channel, such that larger, resident pieces would experience less physical abrasion 
[Naiman et al., 2002]. In addition, Wohl [2013] states that the degree to which wood is embedded in the 
streambed is particularly important, because even partial burial can greatly enhance wood stability [Abbe 
and Brooks, 2011]. Due to anaerobic conditions, degradation of wood in aquatic ecosystems can be much 
slower than in terrestrial ecosystems [Keller and Swanson, 1979]. However, where aerobic conditions 
affect aquatic environments, as in intermittent streams, a faster decay rate may be experienced as has been 
observed in Mediterranean regions [Vaz et al., 2013]. 

Decay of wood can be assessed visually according to the physical condition of the center and 
surface of large wood pieces, or by measuring wood resistance to penetration. Resistance to penetration 
can be measured using a simple knife penetration test [Hottola and Siitonen 2008; Rickli and Bucher, 
2006 and Rickli, 2009] or by employing a rod with a calibrated cone tip driven into the wood to measure 
impact velocity and penetration depth [McVicar et al., 2009]. Wood density may be a proxy for structural 
integrity of large wood, and the mass or density loss is often used to quantify decay [Merten et al., 2013]. 
Indeed, penetration measures can be related to density [Mäkipää and Linkosalo, 2011] and density to 
residence time. 

Visual decay (see Table 1) has been correlated with wood density [Eaton and Sanchez, 2009; 
MacVicar et al., 2009] and appears to have the potential to be used as a fast, inexpensive method for 
assessing residence time in the field, although Hyatt and Naiman [2001] concluded that decay class is not 
necessarily a particularly good indicator of wood age. They demonstrated that large wood in decay classes 
1 and 2 (Table 1) had been dead <10 year, and that almost all wood in decay class 7 had been dead >30 
year but age variation and overlap in the intermediate decay classes (3–6) was so high that these classes 
were virtually meaningless. The oldest wood sampled, including two pieces >1300 years old, were 
remarkably undecayed and capable of producing a relatively solid increment core. By contrast, many of 
the younger wood pieces had residence times of <10 years, and were grouped in decay classes 3–6. Often 
these younger, decayed pieces were lodged in wet or shady areas where the surface wood appeared to 
decay relatively rapidly, again pointing to the influence of location of deposition on wood quality. As a 
result of these limitations, McVicar et al. [2009] and other authors have recently suggested replacing the 
classes in Table 1 with only three classes: rotten; decaying; almost intact [Maser et al., 1979; Grette, 
1985; Andreoli et al., 2007; McVicar et al., 2009]. 

 
Table 1: Definition of the decomposition classes for the wood samples, from 0 (most decayed) to 

7 (almost intact). Adapted from McVicar et al. [2009] 
Class Conditions of the center Conditions of the external surface Bark cover [%] Description 

0 Uniformly rotten Highly degraded, soft 0  1 Largely rotten Moderately degraded 0  2 Largely solid but rotten core, patchy Moderately degraded 0  3 Solid but signs of mass loss Moderately degraded 0  
4 Intact Slightly degraded , firm 0 No root wad, upper broken 

bole 
5 Intact Bark loose [<20%] Major roots remaining 

6 Intact Bark intact [20–60%] 
Bark intact, limbs and 

twigs absent. Medium roots 
intact. 

7 Intact Bark intact [60–100%] 
Bark intact, limbs and 
twigs present. Dirt or 

previous vegetation intact. 



20 
 

 
We compiled information concerning wood residence time in rivers and analyzed the data with 

respect to the type of vegetation and the region (Figure 9). 

 
Figure 9: Boxplot of mean residence time [in years] of wood grouped by (A) tree type and (B) region.  

 
Figure 9A provides a synthetic overview on the mean residence time of large wood in river 

systems, showing that coniferous wood tends to stay longer in a stream than hardwood, deciduous species, 
indicating faster decomposition or breakdown of wood pieces and hence increased mobility in the latter. 
In Figure 9B, mean residence times are shown by region and exhibit substantial differences. Several 
studies have shown that wood exposed to wetting and drying normally remains in the channel for just a 
few decades in coastal regions of the Pacific Northwest. For example, in the Queets River, Hyatt and 
Naiman [2001] report large wood depletion curves with a half-life of large wood ~20 years, and thus 
nearly all wood now in residence will be exported, buried, or broken down within three to five decades. 
Lienkaemper and Swanson [1987] similarly found mean residence times of 12–83 years. In contrast, a 
study performed in Sweden, Dahlströhm et al. [2005] demonstrated that the oldest piece of pine wood 
originated from the late 1600s, while the oldest spruce pieces were just over 100 years old. At the same 
time, the authors also point to the limited data on deciduous trees which possibly indicates rapid 
decomposition. Based on a sample of multiple radiocarbon dates from eight trees, Webb and Erskine 
[2003] report a maximum residence time since 240±40 years BP for water gum (Tristaniopsis laurina) 
timber in a study site in southeastern Australia. Large wood in tropical streams has the potential to be 
more mobile than its equivalent in temperate streams because of warm and humid conditions promoting 
decay [Zabel and Morrell, 1992] and more frequent and flashier floods [Cadol et al., 2009]. For 
neotropical streams of north-eastern Costa Rica, Cadol and Wohl [2010] obtain mean residence times of 
2.2–10.6 years for wood pieces, and 3.0–83.2 years for a unit volume of wood (with a mean residence 
time of 4.9 years for a piece of wood and 6.9 years for a unit volume of wood). 

Several studies have also shown that some large wood can remain buried or jammed in the river 
floodplain where it can persist for hundreds of years [Swanson et al., 1976, 1984; Swanson and 
Liekaemper, 1978; Murphy and Koski, 1989; Becker et al., 1991; Hyatt and Naiman, 2001; Davies and 
Gibling, 2011], and then exhumed and reintroduced to the active channel [Naiman et al., 2002]. Wood 
buried in alluvium may have extraordinarily long residence times, facilitated by preservation from aerobic 
decomposition [Bilby et al., 1999] and shelter from transport processes. On the Queets River floodplain in 
Washington, buried large wood may persist for 3,000 years [Abbe and Montgomery, 1996]. Instream 
wood in Tasmania was dated at 2000 years old, and buried floodplain large wood was over 17000 years 
old [Nanson et al., 1995]. In Western Europe, Becker [1986] dated buried wood in the Rhine and Danube 
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Rivers at >10000 years, whereas Guyette et al. [2008] showed that large wood in alluvial sediments in 
streams of Missouri, USA dates to 14000 years ago.  

 
 

3. Advances in quantifying large wood entrainment and transport mechanics 
The previous section reviewed approaches used and knowledge gained regarding wood budgeting 

in space and time and in mass or volume per unit time considering its input, storage, and output. This 
section focuses on large wood entrainment and transport mechanics and the complex relationships with 
flow and morphodynamics with an explicit physics-based understanding. This second perspective on 
wood dynamics is illustrated by Figure 10 (figure b from Martin and Benda, 2001] and should be 
compared with Figure 3 (figure a from Martin and Benda, 2001) which illustrates the large wood budget 
and flux perspective on wood dynamics that was reviewed in section 2. The following subsections review 
advances in quantifying wood motion (section 3.1), general principles of large wood entrainment (section 
3.2) and how measurements and modeling can be combined to integrate our understanding of how large 
wood moves in river systems (section 3.3). This section also describes some of the potential large wood 
related hazards and large wood stability assessment section 3.4). 
 
 
 
 
 
 
 
Figure 10: Illustrations of variables used to study large wood entrainment and transport in the Game 
Creek basin, southeast Alaska (after Martin and Benda [2001]). Lp is piece length; wc channel width; wj is 
the width (normal to the channel axis) of the in-channel portion of the jam; Ɛ is transport distance over the 
lifetime; Lj is the distance between jams; Tp is the lifetime of wood in fluvial environments (individual 
pieces or aggregated); Tj is jam longevity.  

 
3.1. Field-based observations of large wood entrainment and transport mechanisms:  

Direct observations of wood movements are rare, but tracing of large wood movement is even less 
common. Tracing or tagging wood is the most accurate approach to analyzing large wood kinematics 
when transport distances are fairly short [Comiti et al., 2006, 2008; Warren and Kraft, 2008; Wohl and 
Goode, 2008; Iroumé et al., 2010; Lassettre and Kondolf, 2012; Ravazzolo et al., 2013]. Tagging is 
usually achieved with paint or by inserting metal plates that can be located with a metal detector [Moulin, 
2005; Warren and Kraft, 2008; Wohl and Goode, 2008; Iroumé et al., 2010]. Recently large wood has also 
been tracked with transponders, active and passive RFID radio-transmitters [MacVicar et al., 2009; 
Schenk et al., 2014], and GPS [Ravazzolo et al., 2015]. Schenk et al. [2014] used both active RFID and 
metal tags installed on wood pieces to track their movements along the lower Roanoke River, North 
Carolina, during floods. They monitored large wood movements during the flood rising limb, estimating a 
mean traveled distance of 13.3 km and a maximum distance of 72 km within a week.  
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Table 2: Mean annual transport rate (in %) and distance travelled by tagged logs derived from published studies 

Location River 
Mean 
river 
width 
[m] 

Mean 
river 
slope 

Mean 
drainage 

area 
[km2] 

Number 
of 

tagged 
logs 

Monitoring 
Time 

[months] 

Mean 
annual 

transport 
rate [%] 

Mean 
travelled 

distance [m] 

Maximum 
travelled 
distance 

[km] 

Max. 
discharge 

[m3/s] 
Source 

Chile Tres Arroyos 10.65 0.11 9.07 322 24 8.8    Andreoli et al. [2007] 

USA 
Ogeechee 
River and 

tributaries in 
the Coastal 

Plain 
 0.02  290  17 11090 101 600 Benke and Wallace, [1990] 

USA 
6 streams in 

central Sierra 
Nevada 

 

2.10-
12.8 

0.02-
0.078 8.3-25 1700 36 15.9 215.5   Berg et al. [1998] 

Costa Rica 10 streams 4.9-
13.4 

0.002-
0.062 

0.003-
0.067  28 9-39    Cadol and Wohl, [2010] 

USA Popular Creek 15 0.001 56 140 15 83 95 > 320 15 Daniels, [2006] 
UK Highland 

Water 4.5 0.01 9.25 162 32 55 148 5.6 36.8 Dixon and Sear, [2014] 
UK      <12 36   5 Gregory, [1985] 

USA       6    Gregory, [1991] 
USA       18    Grette, [1985] 
Japan Oyabu Creek 9 0.04 5.3 63 9 92 840 4 14.4 Haga et al. [2002] 
Chile Vuelta de 

Zorra 9.8 0.01 9.07 484 4 12.4 117 0.5 1.45 Iroumé et al. [2010] 

Chile 4 streams 4.8-
12.9 

0.01-
0.1 

4.31-
17.8 79-395 12 7-14.8     

Africa Kuiseb River    2105    125 159 Jacobson et al. [1999] 
Switzerland Erlenbach  0.18 0.7 236 6  10  1.25 Jochner et al. [2015] 

USA 3 streams in 
Oregon Coast 6-7 0.0004-

0.01 7-15.5 238 36 44 203 0.7  Keim et al. [2000] 
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Range 
USA Queets 125 0.006 386 222 24 36.5 conifer 1520, 

hardwood 916 12  Latterell and Naiman [2007] 
USA  13.75 0.2 30.3  84-108 10   3.08 Lienkaemper and Swanson [1987] 
Italy Rienz 3.5 0.01 630 238  34.5 500 3  Lucia et al. [2014a] 
UK Highland 

Water 4.5 0.01 9.25 74 118 30.4 209.45 1.2 2.59 Millington and Sear [2007] 

Chile 2 streams 9.8, 
10.6 

0.01, 
0.04 

9.07, 
5.87  12 2.5, 16    Mao et al. [2008] 

Alaska  19.5 0.17  252  2    Murphy and Koski [1989] 
Italy Tagliamento 800 0.003  113 17 78 6555.5 51.1  Ravazzolo et al. [2015] 

Switzerland 10 streams   0.081-
0.3   33-72    Rickli and Bucher [2006] 

USA Roanoke 85 0.0016  290, 54  80, 41 1190, 1330 101.1, 72.1 600 Schenk et al. [2014] 

USA 
Little 

Topshaw 
Creek 

35 0.002 37   61    Shields et al. [2004] 

Italy Tagliamento up to 
1500 0.01 2580   89 13000 51  Van der Nat et al. [2003] 

USA Rocky Branch 8 0.065 7.4 112 36 25 5 0.3 356 Warren and Kraft [2008] 

USA 
headwaters 
Colorado 

Rocky 
Mountains 

5.4 0.06 20.5   19.5    Wohl and Goode [2008] 

USA Crow´s Creek 7 0.055 49.5  12 20.5    Young [1994] 
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Passive RFID transponders and radio transmitters are reliable for large wood tracking. Radio 
transmitters are suited to multi-year (~5 year) surveys and can be detected at a distance of 800 m, whereas 
passive RFID are limited by a read range of 0.30 m but are suitable for longer term studies. Active RFID 
combine a moderate read range (with an antenna) and low cost with the ability to monitor large wood 
transport during floods. Active GPS are still costly but they provide the only method to track the entire 
large wood movement trajectory, recording periods of rest and movement from the position of the wood at 
different times [Ravazzolo et al., 2015].  

We assembled all available literature to compile published data on the movement of individual 
pieces of large wood in rivers (Table 2). 

The data presented in Table 2 permitted a first integrated analysis of some aspects of large wood 
mobility across a variety of environmental settings. Figure 11 shows contrasts in annual transport rate 
(percentage of logs moved related to the total surveyed) observed in different regions. Widely varying 
conditions can be observed, ranging from very small upland streams with low annual transport rates such 
as those studied in Chile, to very active wide systems such as the ones studied in Italy. However, there is 
inherent variability in these data related to the different conditions adopted in the experiments, such as the 
hydrological regime during the study, the type [artificial or natural logs, previously placed or introduced to 
the river], shape and number of large wood pieces monitored [in relation to the natural conditions at the 
site]. Furthermore, the overall investigative approach adopted varied considerably. For example Latterell 
and Naiman [2007] mapped and dated logs deposited along the Queets River; Haga et al. [2002] and 
Millington and Sear [2007] monitored artificial, introduced wood dowels; whereas Lucía et al. [2014a] 
and Jochner et al. [2015] used natural logs but some were introduced into the studied areas. These 
differences make comparison of results difficult. For example, when logs are introduced into a river, it is 
likely that they will move even under low flow conditions until they find a more stable position typical of 
sites where wood might naturally be deposited. Furthermore, monitoring times ranged between 5 months 
[Jochner et al., 2015] and more than 100 months [Lienkaemper and Swanson, 1987], and in most cases 
flow conditions were below or close to the bankfull discharge, although Berg et al. [1998] reported near 
extreme flows. 

Despite these cautions, the data set displayed in Figure 11 reveals useful information, most notably 
that a maximum travelled distance during a single event of more than 100 km [Schenk et al., 2014] is 
possible and that distances of a hundred meters to a few kilometers are commonly observed (Figure 11B, 
C).  

Furthermore, the previously mentioned size effect is helpful in explaining the annual wood transport 
rate both in terms of slope and channel width even if our meta-analysis only provides a small dataset 
(Figure 12). The three variables (slope, channel width, specific discharge) that are illustrated appear to be 
useful proxies of the size effect on downstream wood delivery. On small, narrow, upland streams, wood is 
mainly trapped in the channel and not delivered downstream whereas on large, gently sloping downstream 
systems, trapping structures are less numerous and large wood is more easily transported downstream. 
This suggests the need to distinguish the aspects of large wood production and large wood delivery or 
output within a given reach or catchment that differ according to river or catchment size. 
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Figure 11: Boxplots of (A) Annual transport rate (%) of tagged logs grouped by region, (B) Mean 
transport distance of tagged pieces (n shows the number of tagged pieces, (C) Maximum transport 
distance of tagged pieces. CH: Switzerland, UK: United Kingdom, USA: United States of America. 
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Figure 12: Relationships between the annual transport rate (%) and maximum travelled length (km) of 
tagged logs and the log transformed (A, B) channel slope; (C, D) channel width; and (E, F) specific 
maximum discharge recorded during tracking experiments. 
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3.2. General physical principles of large wood entrainment and transport  

Two fundamental questions are usually embedded in attempts to quantify or monitor large wood 
mobility: how does large wood move in rivers and what are the factors that control large wood transport? 
To answer the first question, the pioneer flume experiments of Braudrick and Grant [2000] provided a 
basis for a quantitative model of large wood movement. They described the incipient motion of a piece of 
wood (assuming this as a cylinder) by the balance of forces acting on the mass center of the piece (Figure 
13). These forces are: (i) the driving forces, including the gravitational force (Fg) acting on the log, equal 
to the effective weight of the log in a downstream direction, and the drag force (Fd), also acting in the flow 
direction, which is the downstream drag exerted on the log by the water in motion; and (ii) the resisting 
forces, including the friction force (Ff) acting in the direction opposite to flow, which is equal to the 
normal force (Weff) acting on the log multiplied by the coefficient of friction between the wood and the 
bed. According to the balance of forces, once the log is in motion, two possible transport mechanisms are 
possible: traction (sliding or rolling on the river bed) or floatation, based on the hydrodynamics conditions 
and the log size and wood density.  

 
Figure 13: (A) Schematic and body-force diagrams of some of the components of the force balance acting 
on a log without a root wad (according to Braudrick and Grant [2000]). (B) Wood transport regimes 
according to Braudrick et  al. [1997]. Fg gravitational force, Fd drag force, Ff friction force, Weff normal 
force, dw water depth, Llog log length, Dlog log diameter, α angle. 

 
The factors controlling large wood motion were also analyzed by Braudrick and Grant [2000 and 

2001] who studied the influence of different log characteristics (orientation, size, density, presence of 
roots) on large wood mobility, comparing a theoretical approach with the results of flume experiments and 
field observations. Dimensionless ratios were proposed to describe transport and the probability that wood 
will be deposited (the relative log input rate, which is the volumetric log input rate divided by the 
discharge (Qlog·Qw-1); the relative log length, which is the log length divided by channel width (Llog·wc-1); 
and the relative log diameter, which is the log diameter divided by the average depth of the channel 
(Dlog·dw-1). In their experiments they observed that wood floats until Dlog·dw-1 drops below the critical value 
for flotation for a given density. Similarly, floating wood is deposited or lodged when Llog·wc-1 increases 
above a certain threshold which varies depending on the river morphology. To define the likelihood of 
large wood retention or deposition, Braudrick and Grant [2001] proposed the variable ‘debris roughness’, 
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which varies with Dlog·dw-1 and Llog·wc-1, and characterizes a stream reach in a similar way to hydraulic 
roughness.  

Wood piece dimensions with respect to channel morphology and water level seem to provide a 
good first-order approximation for the likelihood of piece movement and these have been used by many 
researchers [Lienkaemper and Swanson, 1987; Bilby and Ward, 1989; Abbe et al., 1993]. However, other 
factors besides length and diameter can affect frequency of wood piece transport, such as the presence of 
root wads or branches, which can inhibit large wood movement by anchoring pieces to the river bed, 
increasing drag and thereby decreasing mobility [Abbe and Montgomery, 1996; Welber et al., 2013]. In 
general terms, smaller logs are likely to move farther than larger ones [Young, 1994]. However, two 
factors can make larger pieces more mobile than smaller pieces, namely the higher momentum of larger 
moving pieces, and the reduced influence of local changes in the depth and velocity fields. Larger pieces 
have higher mass and, therefore, higher momentum, which allows them to overcome frictional resistance 
offered by obstructions, such as individual bed particles, shallow bars and banks. Longer pieces also 
encompass a wider range of water velocities and water depths than shorter pieces, reducing the influence 
of local reductions in velocity and depth. This effect has been observed in braided multithread channels 
during flume experiments and numerical modelling [Welber et al., 2013; Ruiz-Villanueva et al., 2016b]. 

Another parameter influencing large wood dynamics is wood density. Wood density is one of the 
main parameters controlling the initial motion (i.e., entrainment) and transport of wood in rivers [Gurnell, 
2003]. A common value of 500 kg·m-3 has been widely used in the literature [Harmon et al., 1986]. 
However, wood density varies quite widely as a function of several factors, including tree species, wood 
type (i.e. early and latewood), tree age, decay status, and water sorption [Thévenet et al., 1998; Millington 
and Sear, 2007; MacVicar et al., 2009; Curran, 2010; Shmulsky and Jones, 2011], but unlike more 
general forest assessments, wood density has only rarely been accurately quantified in fluvial systems 
studies [Harmon et al., 1986; Abbe and Brooks, 2011]. 

For example, the relative frequency histogram in Figure 14A summarizes estimates of the density of 
wood from tropical tree species, whereas the enormous variability in wood density of pieces of wood 
stored at the Génissiat dam in the Rhône River in France is presented in Figure 14B. Although 45% of the 
tropical trees densities (Figure 14A) fall in the range 0.4 to 0.6 g cm-3, more than half fall outside of this 
range (n=1180, mean=0.58 g cm-3, standard deviation=0.16 g cm-3, maximum=1.25 g cm-3, 
minimum=0.12 g cm-3; data from Brown [1997]). These estimates are for wood that is dry and free of 
decay, specifically for oven dry biomass per unit green volume. Further variability is introduced when 
moisture and varying decay status is included, particularly as decay not only affects wood density but also 
the potential of wood to absorb moisture from the water column. Thus, Figure 14B shows the variability in 
the density of instream wood [including contained moisture] delivered from a single catchment in France 
surveyed after different floods. Environmental conditions and processes in rivers are very different from 
the forests that supply the wood, suggesting that using standard values or relationships extracted from 
inventories of living trees or dead wood in forests should be incorporated into fluvial large wood studies 
with caution [Ruiz-Villanueva et al., 2016c]. 

Hydraulic parameters are also often used to explain large wood mobility, for example, using the 
simplified continuity or Manning equations [Braudrick et al., 2001; Wilcox and Wohl, 2006]. Unit or total 
stream power are also often used to analyze large wood mobility and deposition [Seo and Nakamura, 
2009; Wohl and Goode, 2008; Wohl and Jaeger, 2009; Marcus et al., 2011; Rigon et al., 2012; Dixon and 
Sear, 2014; Iroumé et al., 2015; Lucía et al., 2015]. 

Three distinct transport regimes (i.e. uncongested, semi-congested and congested; Figure 3) have 
been proposed [Braudrick et al., 1997]. Large wood transport is considered uncongested when piece-to-
piece contact between logs occurs rarely or not at all during movement. During congested transport, logs 
move as a single mass because the spacing between logs is small, with many piece-to-piece contacts 
preventing logs from moving independently of each other with little rotation or pivoting of individual 
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logs. Semi-congested transport is intermediate between these two transport types with some logs moving 
individually and others moving in clumps.  

 

 
Figure 14: Relative frequency of wood density (kg·m-3) for (A) American, African and Asian tropical tree 
species (source: Brown [1997]) and (B) instream wood pieces stored in a reservoir and extracted during 
several surveys (June 2013, September 2013 and November 2014; source: Ruiz-Villanueva et al. [2016c]]. 

 
Two primary patterns of large wood transport have been observed within these dominant transport 

regimes: steady or pulsed movement. Wood moves in pulses during congested transport and semi-
congested transport, when a cohort of logs moves together [Braudrick et al., 1997]. This could be 
associated with episodic wood loading due to disturbances such as bank erosion, landslides or debris flows 
[Miller et al., 2003; Wohl et al., 2009, 2011]. Congested transport has been observed to increase the 
probability of wood jam formation, as large wood pieces occupy more of the available space than they 
would do individually, under uncongested transport [Bocchiola et al., 2008].  

Besides the factors controlling wood motion, the effect of large wood on stream hydraulics has been 
a further major research topic, especially the effects on flow resistance [Young, 1991; Gippel, 1995; 
Shields et al., 1995]. Flume experiments and visual estimates have been used to quantify the effects of 
removal of wood from streams [Young, 1991; Shields et al., 1995], variables contributing to flow 
resistance were manipulated in a step-pool channel in order to measure the effects of various parameters 
(i.e. large wood configurations, steps, grains, discharge, and slope) on total flow resistance. Results have 
illustrated the complexity of flow resistance and have highlighted flow conditions [discharge] as the 
dominant variable [Wilcox and Wohl, 2006]. In small mountain streams the presence of wood may 
increase flow resistance by up to one order of magnitude [Comiti et al., 2008]. Wood has significant 
influence on energy dissipation, bed scour, bank erosion and sediment storage [Cherry and Beschta, 1989; 
Piegay and Marston, 1998; Daniels and Rhoads, 2003, 2007]. On meander bends, large wood 
accumulations on the outside of the bend serve to deflect high flows toward the inner bank, which can 
influence meander migration and avulsions [Daniels, 2006].  
 

 
3.3. Linking large wood and hydrodynamics 

The understanding of large wood entrainment and motion allowed the first attempts to use models 
to simulate large wood transport. Without explicitly taking account of the influence of large wood on the 
hydraulics, computational fluid dynamics (i.e., 1D or 2D hydraulic modelling; CFD) have been used, first 
computing the hydraulics and then using the results to calculate large wood mobilization and deposition 
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[Merten et al., 2010; Comiti et al., 2012; Hafs et al., 2014]. As an example, Merten et al. [2010] applied 
the 1D Hec-Ras model to estimate unit stream power, stage, mean water velocity, energy grade slope, and 
the hydrodynamic drag acting on wood pieces lying on the river bed.  

Mazzorana et al. [2011] made one of the first attempts to simulate wood transport using CFD. On a 
cell-by-cell basis and under unsteady conditions, they delineated possible pathways for a given wood 
volume and computed the transport conditions using results from a hydrodynamic 2D simulation for 
different time steps.  

Lagasse et al. [2010] explicitly included the effect of large wood on the hydraulic calculations, 
using the 1D hydraulic model Hec-Ras to simulate a wood raft on a bridge by setting the width 
dimensions of the wood accumulation to form a continuous blockage. They also simulated wood 
accumulating on the bottom of the bridge deck and they also proposed the use of two 2D models 
(FESWMS and RMA2) to simulate the additional drag force caused by a bridge pier and wood 
accumulation as an effective Manning roughness coefficient. Ruiz-Villanueva et al. [2013] presented a 
similar approach, using Hec-Ras to simulate the effect of bridge clogging due to large wood accumulation 
during a flash flood. They reduced the cross sectional area of the bridge section to produce clogging 
curves [i.e. the relationship between the percentage of obstruction and the backwater elevation]. 

In a further step, a 2D hydrodynamic model coupling large wood transport and hydrodynamics was 
developed by Ruiz-Villanueva et al. [2014a]. This model fully couples a two-dimensional hydrodynamic 
model based on the finite volume method with a second order Roe Scheme with a Lagrangian framework 
(i.e, discrete element method) for large wood dynamics (i.e., considering logs or wood pieces as specific 
objects which are tracked through time). The model was validated by flume experiments and has already 
been applied to several real cases to study different aspects of large wood dynamics, such as the large 
wood related hazards in small mountain streams [Ruiz-Villanueva et al., 2014b, 2014c], the factors 
controlling wood transport [Ruiz-Villanueva et al., 2015] and deposition [Ruiz-Villanueva et al., 2016b] 
and the influence of flood hydrograph in the wood dynamics [Ruiz-Villanueva et al., 2016a].  

Some of these results showed (Figure 15) that in single thread channels, the factor controlling large 
wood transport is the log length, while in wider braided multithread channels the main factor is the log 
diameter. These observations are in agreement with those made by many other researchers in the field and 
in flume experiments [Welber et al., 2013; Bertoldi et al., 2014]. In addition, the preferential sites for large 
wood to be deposited under different flow conditions were also identified by means of a depositional 
probability. Results showed that the preferential sites of wood deposition vary and the probability of 
deposition is significantly controlled by the relative elevation of the different geomorphic units in relation 
to the water level [Ruiz-Villanueva et al., 2016b].  

 
Figure 15: Numerical model results: black circles illustrate the location of initial logs and red circles the 
final location after being mobilized by a simulated a 25-year flood in two different reaches of the Czarny 
Dunajec River (Poland): (A) single and channelized reach with weirs and (B) an unmanaged, multithread 
reach. 



31 
 

 
Allen and Smith [2012] have conducted one of the few 3D modelling attempts. They quantified the 

numerical effect of wood geometric simplifications on the surrounding flow field, comparing 3D CFD 
modelling results with flume experiments. Following the same approach, Lai and Bandrowski [2014] and 
Lai et  al. [2015] presented a strategy for combining field observations and 3D models. However, 3D 
modelling of wood is still rare since mesh representation of complex wood shapes can be a daunting task 
and simulation of related flows is very challenging and computationally demanding.  

 
3.4. Understanding the complexity of interactions between large wood, morphodynamics and 
vegetation 

The presence of wood in channels usually results in declining sediment and organic matter transport 
capacity, causing local or channel-wide aggradation and altering hydraulic forces and associated erosion 
and deposition, influencing bank stability [Wohl, 2013]. As monitoring or observing these interactions in 
the field is very challenging, modeling is also being used increasingly as a tool for deciphering complex 
relationships between large wood dynamics and morphological processes. As described before, while the 
use of numerical modeling is relatively recent, physical modeling has been used for this purpose over 
several decades. Cherry and Beschta [1989] were probably the first to conduct flume experiments that 
investigated the effect of large wood on stream morphology. They analyzed the effect of a single fixed log 
on local scour and found that maximum scour depth was significantly correlated with both the vertical 
orientation of the dowels and the channel opening ratio, and scour surface area was significantly 
correlated with both the flow depth and the vertical orientation of the log. Experiments conducted by 
Braudrick et al. [1997] were the first to model large wood dynamics (transport, deposition and 
remobilization) and morphological evolution of the bed of a mobile bed flume. Subsequently, Braudrick 
and Grant [2001] studied the transport and deposition of wood in the context of different channel patterns, 
observing that large wood tended to deposit on the outside of bends, heads of islands, and bar cross-overs, 
which was in general agreement with field observations. 

More recently, Welber et al. [2013] and Bertoldi et al. [2014] studied the strong relationship 
between large wood and channel planform dynamics in a mobile bed flume modelling a braided channel. 
Results showed that large wood deposition patterns were mainly determined by the formation and shape of 
sediment bars. The downstream distribution and accumulation size indicated that travel distance is 
primarily controlled by log diameter, whereas log length and presence of roots affect the tendency to form 
large jams. These experiments highlighted also the tendency of complex morphologies to create scattered 
distributions of logs, with jams generally including a limited number of logs and deposits of single logs 
being common. This is a major difference compared with wood retention patterns in single thread, 
narrower rivers, where many authors have reported the occurrence of log jams containing tens or even 
hundreds of wood elements. In order to analyze the relationships between riparian vegetation and large 
wood dynamics, Bocchiola et al. [2006] mimicked the transport of logs among standing trees (using 
vertical rigid obstacles in a flume). They observed two different lodging mechanisms, bridging and 
leaning and were able to calculate the probability of occurrence of the two lodging mechanisms depending 
on the space between obstacles, the length of the wood and the flow conditions, and the formation of jams. 

A recent, pioneer experiment investigated the coupled effects of living vegetation and large wood 
dynamics on river morphology [Bertoldi et al., 2015; Figure 16]. The experiments confirmed that 
vegetation increases bank stability, reducing erosion and the number of active channels [Tal and Paola, 
2010; van Dijk et al., 2013], and showed also how this affects large wood dynamics, promoting the 
formation of stable wood jams, where logs accumulated constantly during sequences of floods, further 
increasing the effect on river morphology. They confirmed the important joint impact of riparian 
woodland and large wood on river channel form and dynamics, illustrating their aggregate effects on 
morphology. 
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Figure 16: Comparisons between (A) flume-scale and (B) field-scale (Tagliamento River, Italy) wood 
deposition patterns in a braided morphology (from Bertoldi et al. [2015]). 

 
Numerical modelling is still challenging, but it provides another approach for analyzing large 

wood-morphology dynamics (Figure 14). In order to include the complexity and stochastic variability of 
large wood dynamics in a determinist model, Ruiz-Villanueva et al. [2015] proposed a multi-run approach 
(modifying different input parameters of the model), which by manipulating and controlling boundary 
conditions, as done in a flume, modelled different scenarios to extract general patterns of large wood 
transport and deposition and compute probabilities. Following this approach, the proposed model (i.e., 
Iber-Wood) can be used to simulate sediment transport and wood transport, to analyze feedbacks between 
wood and wood. However, this is a complex process which requires validation data, and it is still in its 
early stages [Bladé et al., 2016]. 

 
 

3.5. Large wood stability and related hazards 
As described in the previous sections, the presence of large wood induces changes in hydraulic and 

sediment transfer patterns, and it creates flow resistance and obstructions within the channel [Young, 
1991; Gippel, 1995; Shields et al., 1995; Wilcox and Wohl, 2006; Comiti et al., 2008]. The impacts on the 
flow resistance and flow patterns may increase flow complexity and dissipate energy, therefore increasing 
channel stability. However, when large wood is not stable and is transported, mainly during high flows, it 
can cause a substantial increase in the destructive power of floods. Therefore, large wood stability is an 
important issue that should be analyze carefully. In the case of single logs and small streams, stability 
analysis of each piece could be evaluated [Richmond and Fausch, 1995; D’Aoust and Millar 1999, 2000; 
Abbe, 2000, Shields et al., 2000, Braudrick and Grant, 2000; Brooks et al., 2006; Abbe and Brooks, 2011; 
Rafferty, 2013; Wohl et al., 2016]. However, potential hazards associated with large wood strongly depend 
on the volume of wood within a channel and on whether a large volume of wood remains stationary or 
becomes mobile during floods [Wohl et al., 2016].  
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When wood interacts with critical stream geometry configurations (e.g., narrow sections or 
bridges), a decrease in channel cross-sectional area usually reduces flow velocity and channel conveyance 
and produces a backwater effect upstream. This backwater effect of afflux can be accompanied by bed 
aggradation, channel avulsion and local scouring processes, which can ultimately lead to 
embankment/bridge collapse and floodplain inundation [Diehl, 1997; Comiti et al., 2007; Lyn et al., 2007; 
Mao and Comiti, 2010; Comiti et al., 2012; Badoux et al., 2015; Lucía et al., 2015]. As a result, the nearby 
area can be flooded more frequently [Ruiz-Villanueva et al., 2013], and may result in the 
incorrect/uncertain estimation of flood risk. 

The experiments of Lagasse et al. [2010] were one of the first studies to analyze interactions 
between large wood and infrastructures. They analyzed bridge pier scour and its relationship with the 
shape of the wood accumulation, showing that rectangular, blocky wood masses tend to produce the 
greatest scour at the pier when the extent of the large wood accumulation upstream of the pier is on the 
order of one flow depth. Total scour at the pier also significantly increased with the total frontal area of 
flow blockage (as a percentage of the cross- sectional area of the approach channel). The authors 
concluded that given the same size and shape of logs, a slender pier with a wood accumulation will 
experience less total scour than a wider pier with the same amount of wood under the same hydraulic 
conditions of the approaching flow. With similar aims, Pagliara and Carnacina [2011] proposed 
empirical relationships (based on laboratory experiments) to estimate the effect of large wood 
accumulation on bridge pier scour, both in terms of the relative maximum scour and temporal scour 
evolution. 

Lyn et al. [2003] analyzed the potential for wood to accumulate at bridge piers by investigating 
relationships between large wood accumulations and channel hydraulics (i.e. flow depth and velocity). In 
general, the experiments showed that under small flow velocities and depths the potential for wood 
accumulation increased. They also analyzed the effectiveness of deflectors in reducing the likelihood of 
wood clogging at piers, concluding that under certain conditions large wood accumulations developed 
even in the presence of deflectors. In addition, the shape of the piers has been found to be important for 
the blocking probability, with triangular and flat shape piers more prone to accumulate large wood 
[DeCicco et al., 2015]. Bridges without piers were physically modeled by Schmocker and Hager [2011] 
and Gschnitzer et al. [2015] who explored the blocking probability of bridge decks using different log 
dimensions, bridge types, and flow characteristics. Their findings highlight freeboard and flow Froude 
number as the main factors driving bridge deck blockage probability.  

In general, relatively small and loose wood pieces are the most mobile and large pieces (longer 
than the bankfull width and/or partly buried) are relatively less mobile and they often trap smaller pieces, 
reducing overall wood mobility. With this idea, large wood management could be adapted to different 
river basins [Gurnell, 2013]. For example, Mazzorana et al. [2009] proposed a catchment-wide approach 
for assessing potential large wood hazard, whereas Piégay and Landon [1997] proposed gradual wood 
removal based on sub-reach characteristics and objectives along the channel network of the Drôme River, 
France. These catchment-wide assessments and management approaches can then be complemented by 
local solutions (e.g., retention structures) to protect particularly vulnerable areas [Piton and Recking, 
2015; Wohl et al., 2016]. Retention structures have been installed in many watercourses to prevent large 
wood transport (e.g. upstream of critical bridges) and to retain large wood [Uchiogi et al., 1996; 
Wallerstein and Thorne, 1996]. Such structures have been installed in many locations, such as the Alps 
(Austria, Italy and Switzerland; Figure 17), and adopt different designs [Piton and Recking, 2015] 
including vertical piles crossing the entire river width (Figure 17A), V-shaped sectional dams (Figure 
17B), complex rakes (Figure 17C) or cable nets (Figure 17D). 
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Figure 17: Retention structures intalled in Rivers: (A) vertical piles crossing the entire river width in the 
Gürbe stream, (Switzerland); (B) V-shaped sectional dam in the Grossbach (Switzerland). (C) complex 
rake in the Rienz (Italy); (D) and cable net in the Rienz (Italy). Photographs: V. Ruiz-Villanueva. 

 
Flume experiments are usually used to evaluate the efficiency of these structures. For example, 

physical models made by Rimböck and Strobl [2002] and Bezzola et al. [2004] used rack structures with 
different configurations and orientations to test their wood retention capacity. More recently, Schmocker 
and Hager [2013] and Schmocker and Weitbrecht [2013] designed a bypass channel located at outer river 
bends, with a rack parallel to the main flow, where wood logs are stored in a side channel located at the 
outer bank.  

Hydraulic models can be also used to design retention structures and identify the most effective 
installation location a long a river. Comiti et al. [2012] used both a 1D (Hec-Ras) and a 2D model (Flo-
2D) to derive flow paths, flooded areas, flow depth and velocity, as well as Froude number distributions, 
to identify the most suitable sites for the installation of retention structures along the Rienz River in Italy. 
Models can be used to predict entrapment and analyze the potential impacts. Mazzoranna et al. [2011] 
proposed a retention probability for each colliding log to estimate entrapment at the considered obstacle. 
In the model developed by Ruiz-Villanueva [2014a] interactions among logs and internal conditions and 
obstacles can be also simulated. Using the model they reproduced a flash flood event which transported a 
significant amount of large wood and triggered the blocking of a bridge opening, enhancing the flood 
effects upstream [Ruiz-Villanueva et al., 2014b]. In order to identify the most critical bridges for wood 
passage along a river passing through a village in a mountainous region in Spain, the same authors used 
the numerical model under different scenarios, identifying one bridge as critical and the potential effects 
of this bridge clogging on flood risk [Ruiz-Villanueva et al., 2014c].  
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4. Remaining challenges In this concluding section, we revisit and summarize some key challenges identified in previous 
sections and consider how these may develop in the future (section 4.1). We then consider an area that we 
have only briefly touched on in the preceding text, because it has been relatively neglected. This research 
area, the properties of the trees that provide the sources of the large wood to the fluvial large wood 
dynamics (section 4.2), presents a major challenge for future research. 
 4.1. Open questions and future challenges 

Unlike water and sediment dynamics, for which extensive research commenced at the beginning 
of the twentieth century [Haschenburger, 2013], research on large wood dynamics in rivers has only 
become an important focus for research over the last three decades. As a result, this research remains at a 
relatively early stage, perhaps similar to that reached in the 1960s for water or suspended sediment 
monitoring, with many fundamental questions still open.  

One important aspect is the regional applicability of preliminary empirical formulae based on 
catchment size, and the need to better link wood volume delivered with peak flow frequency, a topic 
highlighted by many researchers for future attention. In addition, it is desirable to take account of other 
influential factors such as land cover, basin physiography and drainage network connectivity. In this 
context, additional case studies, particularly incorporating monitoring of large wood movement, would 
greatly facilitate and reinforce the quality and utility of meta-analyses. Recent and varied technological 
advances make such research feasible, and further testing is desirable to improve the precision and 
accuracy of the collected data. For example, video monitoring is now operational and equipped sites are 
providing data, but the technique needs to be applied to a larger set of reaches to evaluate its 
transferability, and the efficiency of detection algorithms also needs to be tested over longer periods of 
time. Tracking techniques (e.g., RFID or GPS) have also been proved useful for understand large wood 
travel distance and related hydraulic conditions of transport and deposition, but, again, these approaches 
need to be applied on different rivers and under different flow conditions to establish transferable laws and 
understand the impact of local conditions (river patterns and basin contexts) on travel patterns.  

Improved understanding of both spatial and temporal variability of wood transport conditions are 
needed to improve large wood transport prediction and assessments of the susceptibility of catchments to 
produce large wood. Buoyancy and other wood properties vary in time and in different catchments in 
relation to flow magnitude and the spatial properties of flood events, but continuous survey of relevant 
wood characteristics (species, size, decomposition rate) remains challenging. In addition the critical 
question of how rapidly a single trunk, perhaps with branches and bark, can pass through a channel reach 
remains unanswered. The assessment of large wood transport rates is subject to uncertainty because it is 
not only influenced by flow properties, particularly magnitude of the flow peak, but also by other factors 
related to large wood production potential and output. The latter are difficult to describe and even more 
complicated to quantify, because “seasonal” effects appear to have a high impact, indicated by factors 
such as the time since the last flood event, the timing and intensity of a transporting event, forest 
management practices; as do breakage process during wood transport.  

Enormous efforts have been made to incorporate numerical modeling into the analysis of large 
wood dynamics. Such models might be particularly useful to river managers, but considerable research is 
needed before their systematic application is feasible. The first and most obvious challenges to the 
development of modeling tools, are the continuing development of both knowledge and computer 
technology. Such developments should lead to models of greater detail that, at the same time, can be run 
for longer river reaches and longer periods of time (e.g., long-lasting floods, sequencing of floods), and to 
developing or applying models which reproduce more accurately the complex shape of wood pieces, 
although the incorporation of logs with root wads or branches remains a particular challenge. Furthermore, 
when any model is to be used for prediction or to understand processes it is necessary to verify the model, 
to obtain enough field-data to properly set boundary conditions and to validate results. Thus the challenge 
is not just related to model development and computing power but to obtaining enough good quality data. 
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Large wood related topics are crucial to flood risk assessment, particularly in European mountain 
environments where human occupation and pressures are significant, and at the same time river and 
torrent margins are becoming more and more forested. Therefore, large wood research, in particular in 
these environments, is critical for planning actions and risk prevention. Furthermore, in relation to 
management of regulated rivers in which maximization of flow capacity is a priority, the optimum large 
wood loading is the minimum required to maintain ecological integrity, and thus a pressing research 
question is to determine the minimum loading of large wood required to sustain viable aquatic 
communities. 

 
4.2. Tree and wood properties 

The preceding sections of this paper have amply illustrated that, to date, large wood research has 
focused strongly on themes related to large wood budgets and physics related to entrainment and 
transport. However, the behavior of large wood within fluvial systems is highly variable and is strongly 
linked to the tree species, and yet this aspect has received remarkably little explicit attention. While 
research from the northwestern U.S. has amply illustrated how large wood generated from large, slow-
decaying conifers behaves within fluvial systems, less evidence is available from other biogeographical 
regions of the World. Although a rapidly increasing body of international research has emerged since the 
start of the 21st century, which indicates the importance of tree species in determining wood behavior. Key 
tree properties, which include the density and susceptibility to decay of the large wood that is produced; 
above- and below-ground tree architecture, strength and biomass; and the ability of trees and wood to 
interact with sediment erosion and deposition processes through regeneration from living wood and the 
production of adventitious roots or shoots when plants are buried; have the potential to profoundly 
influence the large wood cycle. These constitute a set of remaining key challenges in large wood research, 
which deflect the focus to some extent from the large wood in river systems to the trees that produce this 
wood, and are elaborated in this final section of our paper. 

 
4.2.1. Dead wood properties 

Much research effort has been devoted to establishing the quantities and dimensions of large wood 
pieces and accumulations found within river channels and, to a lesser extent, within areas marginal to the 
active channel on the channel banks and floodplain surfaces. To date little account has been taken of 
buried wood in fluvial research, and the few existing studies have focused on slow-decaying dead wood 
buried in naturally-functioning floodplains. These studies have shown that enormous quantities of wood 
may be buried in alluvial deposits and so are available for remobilization by bank erosion and lateral 
migration of river channels (e.g., Nanson et al., 1995; Brooks and Brierley, 2002; Arsenault et al., 2007). 
Indeed, large buried, slow-decaying wood jams, have been described as forming floodplain ‘hard points’ 
[Montgomery and Abbe, 2006] on which riparian forest develops to maturity, eventually providing the 
largest wood pieces to the large wood cycle [Collins et al., 2012], indicating important connections 
between buried wood and river and floodplain morphology and turnover that require further research. 

In addition, changes in tree species distribution within the riparian forest maybe also important. As 
an example when streamside conifers of western red cedar and Douglas fir in the Pacific Northwest were 
removed and replaced with monotypic stands of red alders, large wood storage decreased because of a 
drop in the size and density of large wood [Marston, 1982; McHenry et al., 1998]. Tabacchi et al. [2003] 
speculated on the river landscape scale significance of inter-species differences when they considered the 
likely impact of the replacement of the native white poplar (Populus alba) by the alien boxelder (Acer 
negundo) along French rivers. They hypothesized that the resultant “increase in the proportion of 
hardwood fragments in wood jams would: (i) increase the stability of the jams; and (ii) decrease the rate of 
carbon release through decomposition, and thus, carbon supplies in aquatic and terrestrial systems” 
[Tabacchi et al., 2003]. If their hypotheses are correct, this implies a major and very significant change in 
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the functioning of the wood cycle and budgets in such rivers, because decomposition has pronounced 
effects on wood permeability, buoyancy, mobility and length of storage.  

Despite the wide variability in wood properties that is apparent from previous detailed research, the 
literature needs to be synthesized and distilled so that these properties can be incorporated into wood cycle 
research at reach to landscape scales.  

 
4.2.2. Tree canopy properties 

According to Lintunen and Kaitaniemi [2010], tree canopy architecture follows species-specific 
growth rules coupled with responses to the environment, which jointly influence the structure a tree 
develops during its lifespan. The canopy develops to efficiently balance constantly changing growth 
resources, displaying a trade-off between safety and efficiency [Fan et al., 2011]. Thus, tree canopies vary 
enormously in size, shape, and flexibility, and these properties vary with age as well as species and as a 
result of many other factors including competition with surrounding trees [Cao, 2001; Lintunen and 
Kaitaniemi, 2010; McLean et al., 2011], moisture availability and the occurrence of disturbances such as 
major floods [Lawson et al., 2015]. As a result, different tree species display traits that reflect their 
environmental conditions, of which the character and seasonal persistence of their foliage, and the 
hydraulic, mechanical and storage properties of their xylem [Méndez-Alonzo et al., 2013] are of particular 
importance to their performance within large wood dynamics. Furthermore, within their environmental 
range, the growth performance, morphology, and mechanical properties of a single species can vary 
widely in response to local environmental conditions [Gurnell, 2016].  

Particularly relevant to large wood dynamics is riparian vegetation and its influence on flow 
hydraulics [Jalonen and Järvelä, 2014]. The flow resistance of riparian vegetation varies with leaf, stem-
branch, and stand characteristics, including the degree to which plant canopies are flexible and can 
reconfigure [Jalonen and Järvelä, 2013, 2014]. In laboratory experiments, Västilä et al. [2013] found that 
leaves contributed 74-98% of the total drag of twigs of Populus nigra, illustrating the importance of the 
period of the year when foliage is present. In reality, the relative importance of foliage varies with the 
structure of the canopy, which often varies as trees grow and mature, in relation to the level of inundation 
experienced by the tree during flood events, and the period of the year over which the plant shows full 
foliage [Jalonen and Järvelä, 2014; Västilä and Järvelä, 2014].  

Therefore, the hydraulic resistance of woody riparian vegetation and its role as a morphological 
component of the river channel-floodplain system have the potential to affect floodplain flow conditions 
during over-bank events that in turn affect the degree to which woody plants may be uprooted, break or 
may retain other woody or sedimentary material, and also the likely fate of mobile wood. It also affects 
the flow conditions in the channel that influence sediment dynamics and the potential lateral erosion or 
undermining of the woody vegetation. Recently, laboratory experiments have started to capture some of 
this complexity [Manners et al., 2015] including interactions between living vegetation and wood 
[Bertoldi et al., 2015] but much remains to be explored.  

 
4.2.3. Tree root properties 

While research on buried dead wood is scarce, research on the impact of buried living wood, in the 
form of tree root systems, on large wood dynamics is particularly rare. A vast biological literature exists 
on the underground biomass of trees relating to its architecture and function, and considerable interest also 
exists in the mechanical properties of root systems and their consequent contribution to stabilizing soils 
and sediments [Pregitzer, 2008; Bardgett et al., 2014]. This literature provides an important starting point 
for considering how the root systems of trees of different species and in different environmental contexts 
might influence large wood dynamics. 
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Uprooting resistance is a useful measure of the overall physical performance of a root system, and 
so is particularly relevant to the influence of roots on the large wood dynamics. Burylo et al. [2009] 
reviewed the literature on this topic and concluded that stem basal diameter, tap root length, root topology 
and the proportion of fine lateral roots are all important influences on root anchorage and uprooting 
resistance. In relation to tree species, Gale and Grigal [1987] found that early successional species (e.g. 
pioneer riparian species) had a significantly greater proportion of roots at depth than late successional 
species, which is probably attributable to the ability of the former to adapt to sites where moisture and 
nutrients are limiting, whereas the shallower roots of the latter are adapted to sites where resources are 
concentrated in near-surface soils. Furthermore, tree species adapted to dry climates generally have deeper 
root systems with greater specific root length than those more suited to moister conditions and the biomass 
of finer roots is often less [Brunner et al., 2015]. Root systems also consist of many different sizes of root 
(Figure 17, Holloway et al., 2016 a), which perform different functions. While coarse woody roots provide 
perennial anchorage structures that transport water and nutrients and store nutrients and carbohydrates, 
fine roots forage for resources and are more ephemeral [Comas et al., 2013]. The length and diameter 
structure of these fine roots differs considerably among trees species [Pregitzer et al., 2002]. In addition, 
root strength generally varies with root diameter, with different strength-diameter relationships apparent 
for different tree species [Simon and Collison, 2002; Pollen et al., 2004]. Finally, the 3D distribution of 
root position, orientation and size defines the architectural structure of the root system [Danjon et al., 
2013]. 

Although root properties vary considerably between species, they also vary enormously within 
species in relation to the age of the tree and also because roots respond strongly to environmental 
gradients and interactions among species [Brassard et al., 2009; Pasquale et al., 2012; Bardgett et al., 
2014, Holloway et al., 2016 b,c]. In riparian systems, alluvial sedimentary structures are complex and 
ever-changing in response to sediment erosion and deposition, and they have highly varying moisture 
retention characteristics, providing an extremely complex environment within which tree root systems 
develop. We know little about rooting depth, strength and architecture among riparian tree species or how 
these vary under different environmental conditions, but these properties have important impacts on the 
ability of trees to reinforce sediments [Docker and Hubble, 2008]; avoid uprooting [Edmaier et al., 2014]; 
and when uprooted, the portion of the root system that is released and the portion that may be retained 
within the soil [Danjon et al., 2013]. When translated into the context of the large wood dynamics, root 
biomass determines the amount of living below-ground wood present within a river corridor; root 
reinforcement affects river bank dynamics and the rate of release of trees to the river channel; root 
architecture influences the proportion of the root system that remains to reinforce bank and floodplain 
sediments and the proportion that becomes part of the river’s wood load when a tree is uprooted or 
undermined.  

 
4.3. Living wood  

Large wood and trees are closely linked within fluvial systems, but the nature of that linkage varies 
according to the dominant tree species and environmental conditions. In their description of the large 
wood cycle in the rivers of the northwest USA, Collins et al. [2012] emphasize the crucial importance of 
hard points formed by accumulations of very large pieces of slow-decaying, dead wood, on which tree 
seedlings germinate and grow to maturity over centuries as the wood accumulations become embedded in 
the floodplain. They also illustrate how removal of the largest wood and trees from this large wood cycle 
leads to a more disturbed, dynamic river and floodplain environment, where trees do not remain long 
enough to grow to maturity and produce wood to create future hard points and where, as a result, the river 
style changes from single thread, sinuous or anabranching to bar braided.  

In other systems, where different tree species dominate that produce wood that decays more rapidly, 
creation of hard points similar to those described by Collins et al. [2012] cannot happen. However, many 
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riparian tree species show other traits that enable them to engineer their fluvial environment. These have 
been recently reviewed in detail [Gurnell, 2014], and so only a brief overview will be presented here.  

One extremely important trait is the ability of many riparian species to reproduce vegetatively by 
sprouting from wood fragments or entire uprooted trees (Figure 18). Thus, although once dead, the wood 
may decompose rapidly; if it sprouts, its roots systems stabilize alluvial sediments and its shoots interact 
with fluvial processes to create a range of morphological features, including small (pioneer) landforms. 
These trap further dead and living wood as well as sediment, expand laterally, aggrade and coalesce to 
create large established islands whose surface can protrude several meters above the initial bar surface on 
which they were initiated [Gurnell et al., 2001, 2005]. The trait of sprouting from wood fragments, plus 
the ability to generate adventitious roots from shoots and shoots from roots, characterize members of the 
riparian Salicaceae and provide them with the ability to produce living hard points from vast, deep webs 
of roots and shoots developed within and stabilizing sediments that are retained to form islands and 
floodplains. As in the case of the dead wood hard points, the removal of living wood and trees from a 
fluvial system greatly disrupts large wood dynamics and can lead to a transformation in river style [Zanoni 
et al., 2008; Gurnell, 2016]. 

In summary, an outstanding challenge for the future of large wood research is to develop 
understanding of the key characteristics of tree species found in riparian woodlands. An integrated 
understanding of wood, canopy and root properties and growth performance of individual species, and 
how these vary under different environmental conditions, is fundamental to understanding the large wood 
budgets and cycles of systems dominated by different tree species. 

 
Figure 18: (A) Willow sprouting after being transported and deposited on a bar in the Sense River, 
Switzerland (photograph: V. Ruiz-Villanueva); (B) Exposed tree root system and (C) sprouting deposited 
poplar log, Tagliamento River, Italy (photographs: A. M. Gurnell). 



40 
 

APPENDIX: Glossary 
Biomass: Mass of living or dead organic matter in an organism, expressed as mass of dry matter. For a 

tree, biomass is expressed in kg. By extension, the biomass of an area is the sum of the biomasses of 
the organisms found in the area. This is usually measured in kg per unit area. 

Bridge log: Log spanning the channel, above the streambed, touching both banks and resting on the 
floodplain. 

Clogging: Deposition of large wood pieces of different sizes, at a given point in the river, which results in 
reduced cross sectional area. 

Contributing area: Synonym of source area, refers to the probable area delivering large wood within a 
basin which is used in developing large wood budgets. 

Decay: Biological process by which cellulose and lignin are converted to carbon dioxide and water with a 
release of energy.  

Decomposition rate: Series of biological and physical processes including fragmentation or breakage, 
leaching, collapse and settling, seasoning, transport, respiration, and biological transformation 
contributing to destroy wood. 

Depletion: Removal of large wood from a channel through decay, transport, and burial processes. 
Driftwood: Often used as synonym of large wood, but refers to the mechanism which allows the 

downstream migration of large wood when simply drifting with the flow. 
Entrainment: Initiation of motion, process of initial motion. 
Floodplain: Part of the valley bottom which undergoes flooding. 
Flow resistance: Resistance due to friction (momentum transfer to the solid walls) and dissipation of 

mechanical energy when the configuration or the direction of flow is sharply changed, by the 
formation of vortices and secondary flows. 

Hardwood: Generic term for a broadleaf tree (i.e., a tree that is not a conifer). This includes both 
deciduous trees (e.g., willow, alder, cottonwood, maple) and evergreen trees.  

Hydraulics: Science studying flow behavior of liquids, in particular, flow processes in open channels. 
Hydrology: Science studying water, its spatial and temporal distribution on the earth’s surface, as well as 

its associated biological, chemical and physical characteristics. 
Instream/in-channel wood: Tree or portion of a tree (including snags, tree tops, logs, chunks of wood, 

limbs, branches, stumps, and root wads) that has fallen into a stream. Sometimes used as 
synonymous of large wood. 

Jam/Dam/Logjam: Accumulation of wood pieces, usually a minimum of two or three, within a river 
channel or along its banks, including at least one piece, which may completely or partly block the 
channel.  

Key piece/log/member: Piece of large wood that, either because of its size or because of its position, is 
stable within a stream channel and can trap and stabilize other wood pieces, creating a jam. The key 
piece is responsible for creating the jam or is the piece responsible for stabilizing and maintaining 
the jam. 

Large wood (or LW): Tree or portion of a tree (including snags, tree tops, logs, chunks of wood, limbs, 
branches, stumps, and root wads) that has fallen into a fluvial corridor. Usually considered to be 
greater than 0.1 m in diameter, and over a meter long. 

Living wood: Wood piece capable of sprouting. 
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Log orientation: Angle of a wood piece with respect to the overall flow direction.  
Log step: Single key member large enough to remain immobile during at least moderate flows with 

possible racked wood oriented oblique or perpendicular to flow, forming a step within the flow 
channel which is usually followed by a plunge pool. 

Loose log: Log resting entirely on the streambed. 
Manning equation: Empirical equation used to estimate the velocity, and hence discharge, of a flow. 
Manning´s n: Roughness coefficient expressing the resistance to flow in a channel. 
Monitoring: Gathering information about something. May involve measuring or simply observing 

change.  
Organic matter: Carbon-based matter of organic origin. This includes vegetable matter as well as the 

bodies of dead animals.  
(Coarse) Particulate organic matter (POM or CPOM): Pieces of organic matter with a size larger than 

1mm, it spans the range from leave and wood fragments over twigs and branches to logs and 
complete trees, being large wood at the top of this range. 

Ramp log: Log side resting on one bank and the other on the streambed. 
Reach/Stretch: Stream length, which is relatively homogenous with regard to the hydrology, physical 

form, water quality and aquatic life. 
Recruitment: Process(es) of large wood delivery to streams, such as bank erosion, landsliding, 

blowdown, fluvial transport, decay, or mortality. 
Residence time: Time which a piece of large wood spends in a river system. Often, it is, however, 

calculated as the difference between the year of a specific survey and the year of mortality. 
Roughness: General measure of the hydraulic resistance caused by obstructions to flow (often measured 

by the ‘n’ coefficient in Manning’s equation). 
Shear stress: Force applied to a stream bed (product of the water depth, water surface slope and weight 

density of water). 
Softwood: Generic term for wood from gymnosperm trees such as conifers. 
Source area: Synonym of contributing area, refers to the probable area delivering wood within a basin 

which is used in developing wood budgets. 
Storage capacity: wood accumulated within a river reach, is usually measured in m3·100-1m, m3·ha-1 (also 

referred as specific wood storage) or pieces·100-1m. 
Trap efficiency/retention efficiency: Proportion of wood material trapped in a particular storage zone 

(e.g., a dam or stream reach). 
(Large) Wood budget: Balance between the standing crop of wood stored within a river reach and the 

quantity of wood produced, input to the reach and output from it within a specific time period. 
(Large) Wood delivery: Process(es) of wood recruitment to streams, such as bank erosion, landslides, 

fluvial transport, decay, or mortality. 
(Large) Wood deposit/Wood storage: Accumulation of driftwood within a channel or its alluvial 

corridor 
(Large) Wood discharge/Wood flux: Volume (or mass) of wood transferred in a certain time, usually 

measured in m3·s-1 or kg·s-1 
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(Large) Wood dynamics: Processes involved in the motion and equilibrium of wood under the action of 
forces. 

(Large) Wood input: Amount of wood (usually volume or mass of wood including previously stored 
wood and freshly recruited wood) transferred to the inlet of the considered river reach or watershed 
in a certain time. 

(Large) Wood load: Amount of wood (usually volume or mass) introduced to the channel by different 
recruitment processes. 

(Large) Wood mobility: Rate and manner with which wood moves through river systems.  
(Large) Wood output/Wood export: Amount of wood (usually volume or mass of wood including 

previously stored wood and freshly recruited wood) transferred to the outlet of the considered river 
reach or watershed in a certain time.  

(Large) Wood potential: Wood volume or mass which can potentially be transferred or exported from a 
watershed during a critical event. 

Wood raft: Accumulation of wood that completely spans the active channel and has a length at least 
several times the average channel width. 

(Large) Wood retention: Duration and manner with which wood is retained within river systems. 
Wood-air volume: Measurement of piece/jam size along three orthogonal axes and the estimation of 

wood to air ratios for logs, jams, and shrubs to improve volume estimates in log jams. 
(Large) Woody debris (or LWD): Commonly used over the past decades by scientists and river 

managers to refer large wood, is nowadays considered inappropriate because it is negatively 
perceived whereas large wood has significant positive biological effects in term of habitat structure. 
It is preferably replaced by large wood or in-channel wood. 

Woody plants: Vegetation with a distinct trunk and branch structure, ranging from trees to small shrubs. 
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