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Abstract. The “winning” system in the 2013 MIREX Latin Genre Clas-
sification Task was a deep neural network trained with simple features.
An explanation for its winning performance has yet to be found. In previ-
ous work, we built similar systems using the BALLROOM music dataset,
and found their performances to be greatly affected by slightly changing
the tempo of the music of a test recording. In the MIREX task, however,
systems are trained and tested using the Latin Music Dataset (LMD),
which is 4.5 times larger than BALLROOM, and which does not seem to
show as strong a relationship between tempo and label as BALLROOM.
In this paper, we reproduce the “winning” deep learning system using
LMD, and measure the effects of time dilation on its performance. We
find that tempo changes of at most ±6% greatly diminish and improve its
performance. Interpreted with the low-level nature of the input features,
this supports the conclusion that the system is exploiting some low-level
absolute time characteristics to reproduce ground truth in LMD.
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1 Introduction

Consider the machine music listening system that “won” the Audio Latin Genre
Classification task at MIREX 2013.3 Among the ten classes in the cleanly labeled
Latin Music Database (LMD) [14], three systems based on deep learning of
spectral periodicity features (DeSPerF) reproduced an average of 77% of the
ground truth of each class – more than any of the other systems submitted.
Figure 1(a) shows the overall figures of merit (FoM) of these three systems. These
FoM, being significantly better than from just guessing, leads one to believe
that these systems have successfully learned to identify a good set of musical
characteristics associated with each class in LMD that are general (common to
a class) and discriminative (distinguishing one class from another). At the heart
of this claim, however, sits a false assumption, not to mention an unjustified
confidence in the validity of this evaluation.

3
http://www.music-ir.org/nema_out/mirex2013/results/act/latin_report/summary.html



(a) MIREX (Overall) (b) Our Reproduction

Fig. 1. Figures of merit (FoM, ×100) for the (a) three DeSPerF-based systems in
MIREX 2013, and (b) our reproduced DeSPerF-LMD system. Column is “true” class,
and row is selected class. Off diagonals are confusions. Precision is the right-most
column, F-score is the bottom row, recall is the diagonal, and normalised accuracy
(mean recall) is at bottom-right corner.

Despite being studied for more than 15 years, music genre recognition (MGR)
still lacks an explicit, specific and reasonable definition [1, 19]. The definition
most commonly used is that given implicitly by, or by proxy of, some labeled
dataset. Critically, the conclusions drawn about systems trained to reproduce
labels in a dataset often belie the artificial and unreasonable assumptions made
in creating that dataset, not to mention its specious relationship to genre in the
real world [6]. Most of these conclusions also implicitly assume that there are
only two possible ways to reproduce the ground truth: by chance or with music
intelligence [17,19]. When a system reproduces an amount of ground truth much
more than that expected from chance, success is declared, and the line of inquiry
stops short of proving the outcome to be a result of music learning.

In earlier work [20], we sought to explain the winning performance of DeSPerF-
based systems in MIREX 2013. Since we did not have access to LMD at that
time, we used the BALLROOM music dataset [4]: a dataset consisting of short
music audio excerpts labeled in seven classes. With a 70/30 train and test set
partition of BALLROOM, we found that the DeSPerF-based system (DeSPerF-
BALLROOM) reproduced an average of 88.8% of the ground truth in each class
of the test set. We then showed how DeSPerF-BALLROOM can perform per-
fectly, or no better than random, by time-stretching the test dataset recordings
by at most ±6% – effectively changing music tempo without affecting pitch. Fur-
thermore, we showed how minor tempo changes make DeSPerF-BALLROOM
label the same music in several different ways. For instance, a waltz with a
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Fig. 2. Tempo distributions in LMD (smoothed with 3rd-order moving average).

tempo of 87 BPM became a jive at 86 BPM, a rumba at 90 BPM, a samba at
72 BPM, and a cha cha cha at 99 BPM. The explanation for these observations
comes from the fact that the labels in BALLROOM are highly correlated with
the tempo of the excerpts – a characteristic of BALLROOM that has been no-
ticed before [4, 7]. Nearest neighbour classification using only annotated tempo
produces accuracies from 78% [20] to 82.3% [7]. Hence, no matter the meter of
the music in the recording, no matter its rhythm, or whether a clave is involved
or a bandoneon, a system that can accurately estimate tempo will appear quite
capable, from being trained and tested in BALLROOM, to recognise rhythm,
meter, style, instrumentation, and so on.

These results, however, are limited to DeSPerF-BALLROOM and do not ex-
plain the “winning” performance of the DeSPerF-based systems in MIREX 2013
(DeSPerF-LMD). Just what has DeSPerF-LMD learned such that it appears
able to recognise Merengue with its “crisp, zippy beat, hissed and scratched out
on a metal grater quira in jaunty 2/4 time” [14]; Pagode with its “[unpreten-
tious lyrics], focusing on situations from [Brazilian] daily life” [14]; Salsa with
its “essential” clave [14]; or Bachata with its standard instrumentation of guitar,
maracas and bongos [14]? What has it not learned since it does not appear to
recognise Gaucha with its lyrics about “respect for the women, the love for the
countryside, the culture and the animals” [14]? A brief look at the characteris-
tics of the labels in LMD show that some are musicological and performative,
but many are topical, cultural, and geographical, which are of course outside
the purview of any artificial algorithm focused exclusively on recorded musical
audio. Since DeSPerF-based systems have by design features containing no infor-
mation about instrumentation or lyrics [12], might DeSPerF-LMD be exploiting
a strong correlation between tempo and label in LMD?

Recent work [5] suggests that there does not exist a very strong correlation
between tempo and label in LMD. Figure 2 (created using data collected by Es-
parza et al. [5]) shows large overlaps in tempo distributions between classes.
Table 1 summarises the results from 3-nearest neighbour classification with
only estimated tempo, using 10-fold cross validation in LMD. Furthermore,



Table 1. FoM of 3-NN classification in LMD by tempo (10-fold CV).

Class Recall Precision F-score
Axe 0.1629 0.2615 0.2008

Bachata 0.6154 0.5680 0.5908
Bolero 0.4268 0.5076 0.4637
Forro 0.1538 0.2712 0.1963

Gaucha 0.3204 0.1704 0.2225
Merengue 0.7229 0.5791 0.6431

Pagode 0.1480 0.1744 0.1601
Salsa 0.2706 0.3727 0.3136

Sertaneja 0.3156 0.4208 0.3607
Tango 0.5025 0.3764 0.4304
Mean 0.3639 0.3702 0.3582

the size of LMD is more than 4.5 times that of BALLROOM, and has com-
plete songs instead of 30 second excerpts. Hence, one important question to
answer is whether DeSPerF-LMD is as sensitive to “irrelevant” tempo changes
as DeSPerF-BALLROOM. If it has a high sensitivity, then DeSPerF-LMD might
have learned to exploit absolute temporal characteristics in LMD that are not
visible from Fig. 2. If, on the other hand, DeSPerF-LMD is not as sensitive
as DeSPerF-BALLROOM, then perhaps DeSPerF-LMD has learned to exploit
relative temporal characteristics correlated with the labels of LMD, e.g., the
rhythmic characteristics to which Pikrakis [12] alludes. Indeed, given the record-
ings in each of the classes of LMD have a far wider variation in tempo than
BALLROOM, we expect DeSPerF-LMD should be robust to minor changes in
tempo as long as the training dataset similarly displays the same variation.

In this work, we seek to answer these questions, which ultimately carry im-
plications for the applications, limitations and improvement of DeSPerF for ma-
chine music listening. We begin by reviewing these systems, and then discuss
how we create DeSPerF-LMD. We then perform two experiments to determine
how time dilation affects the performance of DeSPerF-LMD. We discuss the
implications of our results, and propose several avenues for future work.

2 DeSPerF-based Systems

2.1 The Extraction of SPerF

DeSPerF-based systems combine hand-engineered features – spectral periodicity
features (SPerF) – and deep neural networks (DNNs) [12]. A SPerF is generated
from an audio extract of 10 seconds. This is broken into 100 ms frames skipped
by 5 ms. The first 13 MFCCs [15] are computed for each frame, which produce a
modulation sonogramM = (mt : 0 ≤ t ≤ 10), where mt ∈ R13 is a vector of the
MFCCs extracted from the frame over time [t, t+ 0.1]. For offset l ∈ [1, 4/0.005]
define the two sequences, Mbeg,l = (mt ∈ M : 0 ≤ t ≤ 10 − 0.005l) and
Mend,l = (mt ∈ M : 0.005l ≤ t ≤ 10). Mbeg,l are the features starting from
the beginning of extract;Mend,l are the features up to its end. The time overlap
between features in these two sequences will always be larger than 2 s.



Now, define the distance between the sequences for an offset l as

d[l] =
‖Mbeg,l −Mend,l‖F

|Mbeg,l|
(1)

where the columns of Mbeg,l and Mend,l are the sequences Mbeg,l and Mend,l,
and ‖ · ‖F is the Frobenius norm. The denominator is the number of columns in
both matrices. The sequence d[l] is then filtered y[l] = ((d ∗ h) ∗ h) [l], where

h[n] =

{
1
n , −0.1/0.005 ≤ n ≤ 0.1/0.005, n 6= 0

0, otherwise
(2)

and adapting h[n] around the end points of d[l] (shortening its support to a
minimum of two). The sequence y[l] then is an approximation of the second
derivate of d[l]. Finally, a SPerF is created by a non-linear transformation:

x[l] = [1 + exp (−(y[l]− µ̂)/σ̂)]−1 (3)

where µ̂ is the mean of y[l] and σ̂ is its standard deviation. The function of σ̂ is
to remove the influence of energy in the modulation sonograms computed from
many audio extracts, thereby making them comparable.

From this derivation, we clearly see that SPerF describe temporal period-
icities of modulation sonograms. If the sequence M is periodic with period T
seconds, then the sequence d[l] should be small, and y[l] should be large positive,
for all l ≈ kT/0.005 with k a positive integer. At some of these offsets x[l] will
be close to 1. The hope is that x[l] provides insight into musical characteristics
such as tempo, meter and rhythm, when they exist over durations of at most
10 seconds. An estimate of a multiple of the tempo can come from a spectral
analysis of x[l], i.e., the amplitudes and frequencies of its harmonics. Predict-
ing meter requires approaches that are more heuristic, e.g., deciding on the beat
level and then grouping peaks of x[l]. Describing rhythm from x[l] should involve
even more heuristics, not to mention information SPerF does not contain, e.g.,
instrumentation. By using SPerF as input to deep learning systems, one hopes
that it automatically develops such heuristics meaningful for music listening.

2.2 The Construction and Operation of DeSPerF-based Systems

The deep neural network (DNN) used in DeSPerF-based systems specifically use
feedforward architectures, whereby the input data is propagated through one or
more hidden layers. This forward propagation is achieved via a series of cascaded
operations consisting of a matrix multiplication followed by a non-linear function
(e.g., a logistic sigmoid or hyperbolic tangent). Since each DNN layer computes
a feature representation of the data in the previous layer, the hidden layers are
said to compute “features-of-features.” The hierarchical nature of DNNs is a
commonly cited motivation for choosing to work with them [3,10]. For instance,
it might be argued that music rhythm perception is hierarchical in nature, e.g.,



beat-level, measure-level, and so on, which motivates the application of DNNs
to recognising rhythmic qualities in recorded music.

Several efficient DNN training techniques have been developed [2, 8, 16]. A
DeSPerF-based system employs a DNN trained using a common two-phase pro-
cess: unsupervised pre-training followed by supervised fine-tuning. Pre-training
initializes the network with a ‘good’ set of weights, which can be critical for
achieving learning times that are independent of depth [13]. The pre-training
phase is accomplished by greedily training a stack of restricted Boltzmann ma-
chines using 1-step contrastive divergence [8]. In the subsequent fine-tuning step,
backpropagation is used to adjust the network parameters in order to minimize
the expected misclassification error on the labeled training data. The DeSPerF-
based systems in MIREX 2013 have five hidden layers with 400 units each.

The final layer of a DeSPerF-based system involves a softmax unit, the out-
put of which can be interpreted as the posterior probability of the classes for
an input SPerF. The class of the largest posterior is thus applied to the unla-
belled observation. In LMD, however, observations are longer than 10 s, and so
a single music recording can produce many SPerF. Since the classification prob-
lem implicit in LMD is to classify whole recordings and not 10 s excerpts, the
DeSPerF-based systems in MIREX employs majority vote. In other words, for
each SPerF extracted from the same music recording, a vote is recorded for the
class of the maximum posterior probability. Once all SPerF have been processed,
the class with the most votes is selected.

2.3 Evaluating DeSPerF-LMD

Though we have access to LMD we do not have access to the specific folds used
in this MIREX task. We thus reverse engineer the folds given the results of
MIREX 2013,4 and using the claim that the task employs artist filtering. Table
2.3 shows the number of tracks of each class appearing in each fold. We create
an approximately 70/30 train/test partition by combining the numbers in the
coloured cells. Our copy of LMD contains 3229 excerpts (1 extra each in Pagode
and Sertaneja). We compose the train and test folds using the blocks of artists
in each class. Since more than 81% (334/408) of the tracks in LMD Tango are
by one artist (Carlos Gardel), we have to violate artist filtering by including 41
excerpts of his in the test set. We use his first 41 excerpts listed by filename.

Figure 1(b) shows the FoM of our DeSPerF-LMD system. Comparison with
Fig. 1(a) shows some possible discrepancies. First, the normalised accuracies
differ by more than 15 points; however, the FoM in Fig. 1(a) is the overall
FoM for three systems tested on the three folds summarised by Table 2.3. In
fact, the three normalised accuracies measured in the MIREX 2013 folds for
each DeSPerF-LMD system are reported 73.34, 65.81 and 51.75.5 Hence, our
observation of 61.98 is not alarming. With the exception of Bachata, the FoM of
our system is worse than those seen in MIREX 2013. We see large differences in

4
http://www.music-ir.org/nema_out/mirex2013/results/act/latin_report/files.html

5 The fold composition in the MIREX task is problematic. Table 2.3 shows folds 1 and
2 are missing examples of 2 classes, and fold 1 has only one example in another.



Table 2. An overview of the composition of the three folds used in the 2013 MIREX Au-
dio Latin Genre Classification Train-test Task. We construct an approximately 70/30
split in each class by combining the shaded numbers of tracks to the test partition.

\ Fold 1 2 3 Total Proportion
Class \ in our test

Axe 257 14 42 313 17.9 %
Bachata 1 131 181 313 41.9 %

Bolero 68 172 75 315 23.8 %
Forro 183 0 130 313 41.5 %

Gaucha 0 126 186 312 40.4 %
Merengue 224 80 11 315 28.9 %

Pagode 60 246 0 306 19.6 %
Salsa 75 217 19 311 30.2 %

Sertaneja 0 272 49 321 15.3 %
Tango 114 0 294 408 27.9 %
Totals 982 1258 987 3227 28.7 %

the recall and precision for Axe, Merengue, Sertaneja, Tango and Bolero. Again,
looking over the FoM for the individual systems in MIREX 2013, these are not
alarming. Of all DeSPerF-LMD systems tested in MIREX 2013, the one built
using folds 1 and 2 performed the worst in these classes. For Axe, its recall and
precision was 0.43 and 0.23, respectively. For Merengue, these were 0.72 and 0.35;
for Sertaneja: 0.43 and 0.15; for Bolero: 0.71 and 0.37; and for Tango: 0.82 and
0.95. Hence, we conclude that our DeSPerF-LMD system is working comparably
to those built in MIREX 2013 with respect to their FoM.

3 Measuring the Sensitivity to Tempo of DeSPerF-LMD

Given the above results, we now attempt to inflate and deflate its FoM by the
method of irrelevant transformation [18] through pitch-preserving time stretch-
ing using the RubberBand library.6 We then attempt to make DeSPerF-LMD
apply different labels to the same music by the same transformation.

3.1 Inflation and Deflation of FoM

By the same deflation and inflation procedures we applied in [20], we find that
DeSPerF-LMD obtains the FoM shown in Fig. 3 with changes of at most ±6%
(i.e., a dilation factor 0.94 or 1.06). Comparison with Fig. 1(b) shows severe
harm or great benefit to the FoM of DeSPerF-LMD. If we change the tempo
by at most ±10%, we find the normalised classification accuracy reaches 0.11
with deflation, and 0.94 with inflation. Figure 4 shows how even for small tempo
changes the F-scores for all classes are dramatically affected.

3.2 Picking Any Class in LMD

We now randomly select one excerpt of each label from the test set, and at-
tempt to make DeSPerF-LMD classify them in every way. Table 3 shows the

6
http://breakfastquay.com/rubberband/



Fig. 3. FoM ( ×100) resulting from deflation (left) and inflation (right) for DeSPerF-
LMD. The maximum change in tempo here is ±6%. Interpretation as in Fig. 1.
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new tempo of each track (using data from [5]), and the resulting classifications.7

From Fig. 1(b) we see that Bachata receives the highest recall and F-score, and
second highest precision. DeSPerF-LMD classifies the Bachata tracks in 6 cate-
gories, with the largest change of 0.79. It classifies as Bachata six not-Bachata
tracks, with the largest change of 1.23. In Merengue, DeSPerF-LMD has the sec-
ond highest F-score, and third highest precision. It labels the Merengue excerpt

7 Audition this table at http://www.eecs.qmul.ac.uk/~sturm/research/DeSPerFtable2/exp.html



Table 3. LMD tracks (left column, and red circles in Fig. ??) are classified in a number
of different ways by time-stretching. Resulting estimated tempi are shown.
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Axe Batom Na Cueca,
Arrasta (168.36)

168.36 141.48 134.69 160.34 177.22 155.89 181.03 154.46 157.34

Bachata Aventura, Ense-
name A Olvidar (124.71)

125.97 118.77 145.01 113.37 164.09 124.71

Bolero Emilio Santiago -
Dilema (101.92)

118.52 101.92 80.89 141.56 113.25 102.95

Forro Trio Forrozao - Ze
do Rock (163.85)

176.18 163.85 180.05 195.06 142.48

Gaucha Alma Serrana, O
Garrafao (178.82)

178.82 155.50 173.61 177.05 158.25 184.35

Merengue Ronny Moreno
- Matame (279.49)

288.14 268.74 321.26 234.87 279.49 297.33 221.82 220.07

Pagode Grupo Sen-
sacao, Sorrriso de marfin
(142.11)

175.45 129.19 122.51 142.11 194.67 124.66

Salsa Eddie Santiago,
Hagamoslo (168.67)

168.67 165.36 170.37 191.67 167.00 172.11 137.13

Sertaneja Leandro &
Leonardo, Eu Juro (87.04)

87.04 106.15 70.77 83.70 69.64

Tango A Passion For
Tango, Milonga de Mis
Amores (112.29)

155.96 113.43 111.18 129.07 142.14 112.29 118.20

eight different ways. The hardest classification to force was Tango, where only
one not-Tango track was classified Tango with a change 1.25.

3.3 Pick Any Class outside of LMD

We now attempt to make DeSPerF-LMD classify in every way time-stretched
versions of the ten music recording excerpts used in [18]. Table 4 shows that we
were able to do this for most labels and with minor time-stretching factors.

4 Discussion

The results of our experiments show the performance of DeSPerF-LMD to be
strongly dependent upon some characteristic related to absolute time. Figure 3
shows the normalised accuracy of DeSPerF-LMD drops 40 points or increases 30
with tempo changes of at most ±6%. Figure 4 shows that small tempo changes
greatly impact the reproduction of ground truth of all labels. Table 3 shows
DeSPerF-LMD can be made to classify several LMD excerpts in most ways it has
learned; and Table 4 shows the same result for music excerpts that are not a part
of LMD. Though Fig. 1 is evidence that DeSPerF-LMD has certainly learned
something about LMD, the results of our experiments show that what it has
learned may not be of much use when it comes to identifying or discriminating
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Little Richard Last Year’s
Race Horse (82.00)

96.47 110.81 82.00 79.61 78.10 128.12 113.89 81.19 70.09

Rossini William Tell
Overture (164.00)

165.66 146.43 164.00 157.69 160.78 133.33 298.18 182.22 150.46 140.17

Willie Nelson A Horse
Called Music (63.00)

70.79 68.48 66.32 56.25 75.00 92.65 70.00 63.00

Simian Mobile Disco 10000
Horses Can’t Be Wrong
(130.00)

128.71 106.56 113.04 130.00 149.43 111.11 114.04

Rubber Bandits Horse
Outside (114.00)

110.68 121.28 109.62 142.50 112.87 114.00 193.22 106.54

Leonard Gaskin Riders in
the Sky (95.00)

84.07 120.25 95.00 82.61 66.43 68.84 148.44 102.15 95.96 74.22

Jethro Tull Heavy Horses
(113.00)

97.41 124.18 114.14 113.00 221.57 137.80 166.18 108.65 125.56

Echo and The Bunnymen
Bring on the Dancing
Horses (120.00)

118.81 127.66 104.35 146.34 114.29 120.00 110.09 115.38

Count Prince Miller Mule
Train (91.00)

95.79 121.33 91.00 86.67 105.81 88.35 110.98 94.79

Rolling Stones Wild
Horses (70.00)

51.09 71.43 54.26 75.27 70.00 68.63

Table 4. Not-LMD tracks (left column) are classified in a number of different ways by
time-stretching. Resulting tempi (found manually) are shown.

Latin music genre or style. An impressive precision in Bachata inspires hope
that DeSPerF-LMD has automatically learned why something does or does not
“sound like” Bachata. By the results in Table 3, DeSPerF-LMD says slightly
speeding up the Bolero excerpt makes it sound more like Bachata than Bolero;
and slightly slowing down the Bachata excerpt make it sound more like Bolero
then Bachata. Table 4 shows how for DeSPerF-LMD the “original” excerpt of
the “William Tell Overture” sounds most like Bolero, but slowing it down 11%
makes it sound more like Bachata, slowing it down by 15% makes it become
Tango, and slowing it down 19% creates Merengue. This is not good behaviour.

In their brief musicological descriptions of the music labels in LMD, Silla et
al. [14] allude to tempo only twice: Merengue has a “zippy” beat, and Axe is
“energetic.” Supported by Fig. 2, minor changes in tempo should be insignifi-
cant to LMD. For the mode of the narrowest distribution (Bachata, 130 BPM),
a tempo change of ±6% is a difference of about 8 BPM. For the mode of the
Merengue tempo distribution (255 BPM), such a change is a difference of about
15 BPM. Since these intervals are well within the spreads of each distribution,
one hopes DeSPerF-LMD would not be so sensitive to these changes. While the
input SPerF are by construction intimately connected to absolute time char-
acteristics (Sect. 2.1), the results of our experiments suggest that the deeper
features produced by deep learning are sensitive to changes of a characteristic
that has minor importance for the designation of a recording of music as any
LMD label.



From the size of LMD, the distribution of tempi of its excerpts, and the fact
that the FoM in Fig. 1 are produced using artist filtering, it is hard to believe
there to be a specific absolute time characteristic confounded with the labels.
In our previous experiments [20], we found the mechanism introducing such a
confound into the BALLROOM dataset. So, we must discover the cue used by
DeSPerF-LMD to produce an illusion of music understanding. An opportunity
for this is given in Fig. 3(b) and Fig. 4. Analysing the SPerF extracted from
the set of time-stretched test signals inflating these FoM might reveal the cues
learned by DeSPerF-LMD. While these are negative results, they are also oppor-
tunities to improve assumptions and models, as well as machine music listening
systems and approaches to their evaluation. Our work motivates in particular
the transformation of SPerF (3) to be time-relative rather than time-absolute,
and then to measure the impact of this change by performing the experiments
above with the new system. Our work also suggests new ways to evaluate systems
submitted to the MIREX LMD task, and in fact any of its train-test tasks.

5 Conclusion

DeSPerF-LMD appears to be quite adept at a complex human feat, in spite of the
fact that it does not have access to many of the most significant characteristics
identifying and distinguishing the labels in LMD (e.g., topical, geographical,
instrumental). When one claims the only two explanations for such an outcome
are either by chance or by music learning, it is easy to see why one would accept
the conclusion that the system has learned something general and useful about
music. Along with our results in [20], there is however little to support the
claim that DeSPerF-based systems trained in BALLROOM and in LMD have
learned anything general about music, meter or rhythm. The story of Clever Hans
[11,18] provides a third and much more reasonable explanation: the old horse (el
caballo viejo) has learned to exploit cues hidden by the lack of control over the
independent variables of the evaluation. Once these cues are removed, e.g., giving
Clever Hans a private office in which to solve the firm’s accounting, or slightly
adjusting the tempo of a music recording, the horse reveals its shenanigans.

Speaking more broadly, the 2013 MIREX victory of DeSPerF-LMD, and in-
deed any victory in the current MIREX train-test tasks, is hollow. When an
experimental design lacks an accounting for all independent variables, then one
cannot conclude a system has learned to solve some problem implicitly defined
by a labeled dataset no matter how good is its FoM [17, 19]. A machine mu-
sic listening system can appear to be solving a complex listening task merely
by exploiting irrelevant but confounded factors [18, 20]. “Solutions” will freely
masquerade as advancements until evaluation methods are required to possess
the relevance and validity to make the desired conclusions. The development of
these valid methods is impossible as long as the problem remains undefined; but
we have shown in this paper that it is possible to test claims such as: “System X
is performing significantly better than random because it has learned something
general about music.” It just requires thinking outside the stable.
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