ECCOMAS Congress 2016

VII European Congress on Computational Methods in Applied Sciences and Engineering
M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)

Crete Island, Greece, 5-10 June 2016

HYBRID PARALLELISATION OF AN ALGORITHMICALLY
DIFFERENTIATED ADJOINT SOLVER

Pavanakumar Mohanamuraly’, Jan C. Hiickelheim' and Jens D. Mueller!

1Queen Mary University of London
Mile End Road, E1 4NS, London, United Kingdom
{p.mohanamuraly | j.c.hueckelheim | j.mueller } @qmul.ac.uk

Keywords: Parallel computing, MPI, OpenMP, Algorithmic differentiation, Source transfor-
mation, Adjoint CFD

Abstract. We present a novel approach to parallelise an unstructured node-based finite volume
solver using a hybrid MPI and OpenMP paradigm. The basic ingredients of this approach are,
(i) zero-halo partitioning of the unstructured mesh and (ii) shared node residual accumulation.
These two ingredients preclude the need to explicitly exchange the state information across
partitions, allowing the computations to run independently in each partition. As a consequence,
we retain the original loop structure for the numerical flux kernels, which can be parallelised
using OpenMP directives. Due to the hand-assembly of reverse-differentiated routines in our
adjoint solver, the adjoint MPI recipes presented in earlier work can not be applied without
modifications. We present a modified adjoint MPI treatment for two MPI operations in the
context of our hand-assembled nonlinear iterative solver, namely: (i) shared node accumulation
and (ii) in-place all-reduce summation. We demonstrate the parallelisation approach on our in-
house solver mgopt, which uses the Tapenade AD tool to generate the adjoint code. We show
preliminary scalability results for a simple 2d problem.

P. Mohanamuraly, J. C. Hiickelheim and J. D. Miieller

1 PDE constraint optimisation

The present work aims at parallelising the primal and adjoint solvers used in the context of PDE
based optimisation, namely aerodynamic shape optimisation problems. The problem can be
formulated as follows,

min J(u, o) (1)
s.t. R(u,a) =0 (2)

Where, J is referred to as the objective or cost function, which is minimised subject to PDE
constraint R. The variable u is called the state and « is the control or design variable. Gradient
based optimisation methods require one to calculate the quantity %. When the number of
design variables (dimension of «) is higher than number of output variables (dimension of
J), it is computationally efficient to obtain adjoint sensitivity %T given by equation (3| The
cost of calculating the adjoint sensitivity is proportional to the dimension of the output .J and
independent of the dimension of the input o. Algorithmic differentiation (AD) in the reverse or
adjoint mode is used to obtain the transposed values. Tapenade[11] AD tool is used in this work
to obtain the terms of the adjoint equation] which solves for the so-called adjoint variable v.

art_ oIt "
do Oa do

ar\" (aJ\" A
(o) = (o) ®
In the present context, the PDE constraint is the compressible steady Navier-Stokes equation, o
is the shape design parameter and u is the fluid state. Node-based finite volume discretisation is
used in the present work to solve both the primal and the adjoint system. Details of the numeri-
cal method and implementation are available in reference [4]. The distributed parallelisation of

the node-based finite volume discretisation using Message Parsing Interface (MPI) is presented
in the next section.

3)

2 Zero-halo partitioning and MPI adjoints

A popular choice for distributed parallelisation in scientific codes is the use of halo or ghost
layers. They are an extra layer(s) of cells placed adjacent to the mesh partition boundary to
mimic cells from neighbouring mesh partition. The adjoint of the MPI calls for this approach
can be obtained using the framework described in reference [[1]. An over?view of the halo-layer
approach is depicted in figure [Il The main drawback of this approach is that the MPI oper-
ations are not self-adjoint, i.e., the primal and adjoint have different MPI call sequence. In a
source transformed AD, this forces one to replace MPI calls within the code with its adjoint
equivalent. Currently, there are no tools available to automate this task and one has to manu-
ally implement the forward and reverse MPI calls. The AMPI[1] library reduces this burden
by providing MPI wrappers for both forward and reverse mode. The wrappers typically tape
appropriate MPI function arguments in the case of operator overloading or push/pop to stack
in the case of source transformation. Lastly, the halo approach gives rise to artificial increase
in number of computations per partition by duplicating operations at the halo boundary. This
in-turn reduces the strong scaling efficiency. In most practical scientific codes, graph based
mesh partitioning tools are used, which try to minimise the graph edge cuts (communication

P. Mohanamuraly, J. C. Hiickelheim and J. D. Miieller

rank=0 rank=1

Original MPI call

b=ua
(@]
halo recv -—— send
layer (®) (a) Adjoint MPI call
(0] _
+b

a=a
b=0

rank=0

(0]
send — recv halo
(a) ® o layer

Figure 1: Parallel implementation based on halo layers and their MPI forward-adjoint equiva-
lents

rank=1

cost) maintaining good load balance. In reference [6], the authors show that for large number
of partitions the load balancing severely degrades for graph based methods. The problem is
exacerbated in the adjoint [7], which amplifies the load imbalance in the primal causing further
reduction in scaling.

In a zero-halo layer approach, the partition local fluxes are computed and accumulated at the
partition shared nodes/cells as shown in figure 2. At the partition boundaries, flux calculated
at one partition face exactly cancels with its neighbouring partition face pair. As a result, one
imposes a no-flux or empty boundary condition at the partition boundary faces. In addition,
one should ensure that the flux residuals are accumulated at the shared nodes across partition
boundaries to account for the flux residual from the adjacent partition. As a result, flux accu-
mulation at shared-nodes preclude the need for an explicit exchange of the state information.
Unlike halo-layer implementation, here it is easier to avoid the duplication of operation and
improve scalability. The most attractive feature of this approach is the self-adjoint nature of
the MPI call sequence: figure[2(a). This simplifies the implementation in a fixed-point iteration
(FPI) type primal/adjoint solver as shown in listing (1) and (2).

Listing 2: Hand assembled adjoint FPI [4]

Listing 1: Primal FPI J =1

T — —
call cost_fun_b (u, (g—i) J, J, J)
do iter = 1, n

do i =1 T
o iter r call residue_b (u, (B—R) v, R, v)
R

call residue (u, R)
call accumulate (R) or\T
- .. 11 1 ot
call update (u, R) ca accumu ate(() V)
end do _ ror\T a7
R = (5:) v - (5)

call cost_fun (u, J) call ggdate(v aﬁ)

end do

Although the adjoint of the MPI operation for shared-node accumulation is symmetric, other

P. Mohanamuraly, J. C. Hiickelheim and J. D. Miieller

rank=2 -

Forward mode MPI Adjoint mode MPI

b=a+b=———>a=a+b

self adjoint

rank=0 rank=1
accumulate

rank=1

Partition edge

\

— e partition \
MPI accumulation boundary
accumulate Y
(a) Zero-halo accumulation and the forward- (b) Exploded view of a three partition
adjoint mode MPI equivalents zero-halo flux exchange

Figure 2: Zero-halo implementation, flux accumulation, and self-adjoint MPI operation

MPI operations warrant careful examination. Consider evaluation of a scalar cost function (.J),
for example, the aerodynamic lift or drag. The pseudo code to calculate the cost function is
shown in listing (3). Here the cost function subroutine receives as an input a vector quantity u
and returns the scalar J.

Listing 3: Cost function (drag) evaluation (parallel)

! Input : u (vector)
! Output : J (scalar)
subroutine cost_fun(u, J)
call drag_force(u, J)
call Allreduce(IN_PLACE, J, ..., SUM)
end subroutine cost_fun

The adjoint in the serial case (without Allreduce) is simply obtained by passing the drag_force
subroutine to a source transformation engine like Tapenade. On the contrary, it is not straight-
forward to construct the cost function adjoint in parallel (with IN_.PLACE Allreduce). One
would be tempted to use the MPI adjoint recipe from reference [2] for the Allreduce operation
as shown in listing (4). For the hand assembled adjoint shown in listing (2), verbatim use of the
recipe results in an incorrect source term.

P. Mohanamuraly, J. C. Hiickelheim and J. D. Miieller

Listing 4: Allreduce recipe from [2]

! Original call
Allreduce(x, Yy, ,,, SUM)
! Adjoint call

Allreduce(§, t, ,,, SUM)
y =0

T =z +1

The hand assembled adjoint source term becomes unambiguous when viewed in the context
of solving the (adjoint) linear system shown in eation The subroutine cost_fun_b calcu-

aJ
a U
to set the values of J = 1 and @ = 0. The serial version of the subroutines can now be recast
into the mathematical equivalent as shown in listing (5) and (6).

T
lates the right hand side forcing term of equation , namely () . In order to do that one has

Listing 5: Cost function primal (serial) Listing 6: Cost function adjoint (serial)
cost_fun(u, J): cost_fun_ b(u, @, J, J):
J = J(u) a=a+ ()" T

In parallel execution, each rank ¢ calculates .J; local to the partition and an Allreduce sum is
performed to obtain the global cost function value J = }_; J;. Following a similar argument it
can be shown (with reference to figure [3) that the cost-function adjoint calculates a local value

of ((%)T J in each rank. The only inconsistency appears at the shared nodes, which require
accumulation of the source term from neighbouring partition: listing (8). Note that it is possible
to completely avoid the shared-node accumulation inside cost-function by deferring and com-
bining the accumulate with the adjoint residual as shown in listing (10). Listing (9) is shown
for comparison with accumulation in cost function. This idea can be extended to find the MPI
adjoints of other types of cost functions like total pressure loss, entropy loss, etc.

rank=0 rank=1 rank=0 rank=1

Listing 7: Cost function primal (parallel) o
cost_fun(u, J): o
u® I I u a® _

al
J»L = J(U) T accumulate 1
J = Zi Jl AT T
Jo Jy u:u+<%g J ﬂ:ﬂ+<g>_
Listing 8: Cost function adjoint (parallel) \/ \O/
cost_fun_b(u, @, J, J): J= ZJz’ ‘_IZ (1)
i u=

u:a+(§—;})TJ

Figure 3: Schematic of cost function and its
call accumulate (u)

hand-assembled adjoint implementation

P. Mohanamuraly, J. C. Hiickelheim and J. D. Miieller

Listing 9: Adjoint FPI (accumulate) Listing 10: Adjoint FPI (no accumulate)
J=1 -) J =1 _)
call cost_fun_b (u, (%) J, J, J) call cost_fun_b (u, (g—i) J, J, J)

T
call accumulate((g—i))
do iter = 1, n - do iter = 1, n -
call residue_b (u, ‘g—f) v, R, v) call residue_b (u, (g—f) v, R, v)
T T T
call accumulate((a—lj) V) R = (%) v - (%)
_ (oR\T aJ\T

R = (E) v - (%) call accumulate (R)

call update (v, R) call update (v, R)
end do end do

3 Shared memory OpenMP parallelisation

The primal solver is using a shared-memory parallelisation strategy based on edge colouring
as presented e.g. in [8, [9]. In this strategy, the edges are coloured in such a way that edges
with the same colour do not share any nodes. More formally, for two edges £, = (V;,V;) and
Ez = (Vi, V}) we demand that

colour(E,) = colour(Ejg) < 1, j, k, [pairwise distinct Q)

We can then perform all flux updates on edges of the same colour simultaneously. This is illus-
trated in Figure [6] The adjoint CFD solver performs adjoint flux updates in the same fashion,
i.e. as a loop over edges. The memory access pattern that describes read and write access of the
primal and adjoint CFD solver are shown in Figure 4] and Figure [5]

U | « U

i-2] i-1 1 i+l i+2 1-2 i-1 1 i+l i+2

\
/

r{ ... Y (R i

i-2) i-1 1 i+l i+2 1i-2 i-1 1 i+l i+2

L ——h=__

Figure 4: Primal communication pattern Figure 5: Adjoint communication pattern

Since the memory access of the adjoint and primal solver are identical, the mesh colouring that
is used during the primal computation can be reused for the adjoint solver and helps to avoid
write conflicts during the adjoint flux update in the same way as in the primal, see Figure [/| for
an illustration.

P. Mohanamuraly, J. C. Hiickelheim and J. D. Miieller

\\/ Primal AdjOint
Fe€S<ru ~—resb
<\7 ub!
ubx-resb
res<t-u
Figure 6: Edge colouring for primal shared- Figure 7: Equivalence of primal and adjoint
memory parallelisation communication

The AD tool Tapenade does not support OpenMP pragmas at the time of writing. We there-
fore employ subroutine outlining [10], a technique that encapsulates all private variables inside
a subroutine and uses all shared variables as subroutine arguments. When this technique is used,
the AD tool generates adjoint code in which only an OpenMP parallel loop with the DEFAULT
SHARED clause has to be inserted in a postprocessing step.

Listing 11: Forward and reverse parallel flux computation

do colour=1,nColours !forward
!SOMP PARALLEL DO DEFAULT SHARED
do edge=firstEdge (colour), lastEdge (colour)
call flux_loopbody (edge, res, u)
end do
!'SOMP END PARALLEL DO
end do
do colour=nColours,1 !/reverse
!'SOMP PARALLEL DO DEFAULT SHARED
do edge=lastEdge (colour), firstEdge (colour)
call flux_loopbody_b (edge, res, resb,u, ub)
end do
!'SOMP END PARALLEL DO
end do

The flux computation at boundaries could be parallelised in a similar fashion. The primal solver
uses a loop over boundary nodes and performs a computation using data from ghost nodes. Each
ghost node is exclusively connected with one boundary node, and there is no communication
with other nodes during the boundary flux computation. The parallel boundary treatment has
not been used for this work.

4 Results

The primal and adjoint solvers in our in-house code mgopt have been parallelised using both
MPI and OpenMP paradigm. As an initial attempt, scaling of the inviscid first order primal and
adjoint solver on subsonic flow (M., = 0.3, @404 = 0°) over an 2d rae2822 airfoil is shown.
The cost function for the adjoint system is the aerodynamic drag on the airfoil. The mesh has
11,510 cells and it is run on a four core Intel i7 processor. Pure MPI and OpenMP scaling is
shown in figure [O(a) and a hybrid run of two MPI ranks each running two OMP threads within
the ranks is compared against four MPI ranks and four OMP thread runs in figure O(b). The
baseline serial timing was obtained by running the solver with MPI code removed and using
a single OMP thread. The relative error in the serial and parallel solution matches to machine
precision for both primal and adjoint. The adjoint continuity for the serial and parallel case on

P. Mohanamuraly, J. C. Hiickelheim and J. D. Miieller

four partitions is shown in figure[8] The scaling results are not conclusive due to the small size
of the test case. The scalability study for larger 3d meshes using the second order solver with
the viscous terms is planned for future work.

Pseudocolor Pseudocolor
Var: adjeintContinuity Var: adjeintContinuity
-18.0 -4.0 . 1 . -18.0 -4.0

Max: 36.7 Max: 36.7
Min: -18.0 Min: -18.0

(a) Serial run (b) Parallel run (on 4 partitions)

Figure 8: Drag adjoint continuity solution contour for subsonic flow over rae2822 airfoil
(Moo = 0.3, dA0A = OO)

5 Conclusion

We have demonstrated that naive application of adjoint differentiation for MPI calls can fail
for hand-assembled adjoint CFD solvers with zero-halo partitioning. We presented a correct
reverse-differentation of MPI al1lgather calls in such scenarios in the context of an unstruc-
tured Finite Volume solver for compressible flow. In addition, we exploited the fact that memory
access patterns for the primal and adjoint solvers are identical to implement shared-memory par-
allelism using OpenMP based on edge colouring. The hybrid parallelisation strategy was used
in this work to obtain adjoint results based on a drag cost function for inviscid flow around
a RAE2822 airfoil with truncated trailing edge. The results from serial and parallel execu-
tion runs were validated to be identical to machine precision, and scalability was presented for
shared memory, distributed memory and hybrid parallelisation.

6 Acknowledgement

This research has been supported by the European Commission under the HORIZON 2020
Marie Curie fellowship (grant no. 642959).

REFERENCES

[1] J. Utke, L. Hascoet, P. Heimbach, C. Hill, P. Hovland, and U. Naumann, Toward Adjoin-
able MPI, 1IEEE International Symposium on Parallel & Distributed Processing, 2009.

[2] J. Utke, L. Hascoet, P. Heimbach, C. Hill, P. Hovland, U. Naumann, M. Schanen, and C.
Hill, Gradient of MPI-parallel codes, slides from talk, June, 2012.

P. Mohanamuraly, J. C. Hiickelheim and J. D. Miieller

Speed up

4
Y
7/
— — — - Ideal d 4
—=—— Primal MPI , ® Primal
—-=y—-- Primal OpenMP ,
—@—— Adjoint MPI @ Adjoint
3k —-—&—-- Adjoint OpenMP 3
o
=]
T2
@
.4 Q
. T (7]
""""""" 11
__________ E 4
P 0 +
18 3 4 2ranks +2 4 ranks 4 threads
N threads (MPI only) (OpenMP only)
(a) Pure MPI and OpenMP (b) Hybrid MPI and OpenMP
p y p

Figure 9: Strong scaling for the rae2822 on Intel i7 processor (four core)

[3] Y. Liu, Hybrid Parallel Computation of OpenFOAM Solver on Multi-Core Cluster Sys-
tems, Master of Science Thesis, KTH Sweden, 2011.

[4] C.Faidon, Aerodynamic shape optimisation using adjoint sensitivities, PhD Thesis, Queen
Mary Univ. London, 2012.

[5] Hohenwarter, M. and Borcherds, M. and Ancsin, G. and Bencze, B. and Blossier, M. and
Delobelle, A. and Denizet, C. and Elids, J. and Fekete, A and Gal, L. and Konec¢ny, Z.
and Kovacs, Z. and Lizelfelner, S. and Parisse, B. and Sturr, G., GeoGebra 4.4, Dec 2013

(http://www.geogebra.org).

[6] P. Mohanamuraly, and K. Nagarajan, Revisiting the space-filling curves for storage, re-
ordering and partitioning mesh based data in scientific computing, IEEE HiPC confer-
ence, Dec 2013.

[7] A. Griewank, and A. Walther, Evaluating Derivatives: Principles and Techniques of Al-
gorithmic Differentiation, 2nd edition, SIAM, 2008.

[8] Guo X, Gorman G, Sunderland A et al, Developing hybrid openmp-mpi parallelism for
fluidity-next generation geophysical fluid modelling technology.

[9] Giles MB, Mudalige GR, Sharif Z et al, Performance analysis and optimization of the op2
framework on many-core architectures, The Computer Journal, 2011

[10] Liao C, Hernandez O, Chapman B et al, Openuh: An optimizing, portable openmp com-
piler, Concurrency and Computation: Practice and Experience, 2007, 19(18): 2317-2332.

[11] H. Laurent, and P. Valérie, The Tapenade Automatic Differentiation Tool: Principles,
Model, and Specification, ACM Trans. Math. Softw., vol. 39, no. 3, pp. 20:1-20:43, 2013.

http://www.geogebra.org

	PDE constraint optimisation
	Zero-halo partitioning and MPI adjoints
	Shared memory OpenMP parallelisation
	Results
	Conclusion
	Acknowledgement

