VIDEO INTERVIEW TRANSCRIPT

Derrett, Christopher: transcript of a video interview (22-Mar-2016)

Interviewer: Tilli Tansey
Transcriber: Debra Gee
Editors: Tilli Tansey, Adam Wilkinson
Date of publication: 25-Oct-2016
Date and place of interview: 22-Mar-2016; Queen Mary University of London
Publisher: Queen Mary University of London
Collection: History of Modern Biomedicine Interviews (Digital Collection)
Reference: e2016111
Number of pages: 6
DOI: 10.17636/01016055

Acknowledgments: The technical support (filming and production) of Mr Alan Yabsley is gratefully acknowledged. The History of Modern Biomedicine Research Group is funded by the Wellcome Trust, which is a registered charity (no. 210183). The current interview has been funded by the Wellcome Trust Strategic Award entitled “Makers of modern biomedicine: testimonies and legacy” (2012-2017; awarded to Professor Tilli Tansey).

Citation: Tansey E M (intvr); Tansey E M, Wilkinson A (eds) (2016) Derrett, Christopher: transcript of a video interview (22-Mar-2016). History of Modern Biomedicine Interviews (Digital Collection), item e2016111. London: Queen Mary University of London.

Related resources: items 2016112 - 2016123, History of Modern Biomedicine Interviews (Digital Collection)

Note: Video interviews are conducted following standard oral history methodology, and have received ethical approval (reference QMREC 0642). Video interview transcripts are edited only for clarity and factual accuracy. Related material has been deposited in the Wellcome Library.

© The Trustee of the Wellcome Trust, London, 2016
Derrett, Christopher: transcript of a video interview (22-Mar-2016)*

Biography: Dr Christopher Derrett MBBS MPhil (b. 1947) is a former general practitioner (GP). He graduated in applied physics from Durham University in 1968, and his first permanent job was as a member of the non-clinical scientific staff at the Medical Research Council (MRC) Air Pollution Research Unit. During his time at the Unit he helped develop instrumentation for the measurement and processing of respiratory signals and for the measurement of sulphur dioxide. After his MPhil, for a Thesis entitled ‘Respiratory function: some aspects of its measurement, analysis and interpretation’ in 1977, he enrolled as an undergraduate medical student at the Royal Free School of Medicine. He qualified in medicine (MBBS) in 1982, and went on to GP vocational training in East London. In 1986, he became a GP partner in Newham, and later in Hackney. During his GP career, he has been a GP Trainer, an Appraisal Lead, a Senior Clinical Lecturer at Bart’s and the London School of Medicine, and also Head of GP Development for City and Hackney Primary Care Trust. Since retiring from clinical practice, he continues to teach medical students and practice support staff. He also conducts educational work with refugee doctors and GPs in Romania, and is a student of medical history.

[1]. GETTING INTERESTED IN SCIENCE - HOME AND SCHOOL

My mother was a doctor, but a rather reluctant doctor. She’d been pushed into it by her mother, and so I wasn’t exactly encouraged to consider that as a career, although she was interested in getting us thinking about biological things. I remember she had a microscope, she kept her microscope from her medical student days, and she had a whole box of slides which she made herself. In those days medical students made their own histology slides and we had a lot of fun looking at that, and she was quite interested in botany. So there was quite a lot of interest in those subjects, but not very, not in a way that it might be a way of earning a living really.

And then at school I don’t think I had terribly good teaching, but I had a very keen, rather nerdy, physics master. Thinking about it now he was probably, probably had Asperger’s, I suspect, but I thought he was great and he was very, very obsessional about organising the course, and I became interested in the way education was organised then because it was the only bit of my education at school which looked like it had been properly thought through from beginning to end as a proper course. Most of the teachers were terribly ad hoc and I got the feeling that they thought what they were going to do as they walked in the door of the classroom. And there was very little homework even actually, it was remarkable how little work we had to do and how we got away with blue murder.

[2]. GETTING INTERESTED IN SCIENCE - SCHOOL AND UNIVERSITY

Well, I think when I was interested in science at school it was put into my head by the physics master, who was a rather obsessional man but a very, very good teacher and a very inspiring teacher. And he was particularly interested in the applications of science, and that’s the thing that really grabbed me, the idea that science was not only a discipline but actually something that could do some use. So that’s what got me going at school in the Sixth Form. One of the applications of physics to life was in the school play. I remember

* Interview conducted by Professor Tilli Tansey, for the History of Modern Biomedicine Research Group, 22 March 2016, in the School of History, Queen Mary University of London. Transcribed by Mrs Debra Gee, and edited by Professor Tilli Tansey and Mr Adam Wilkinson.
that I wasn’t any good at acting but the physics master got me involved in the sound effects. He had a lot of quite sophisticated recording and playback equipment and we set this up to provide sound effects for the play which he was producing. And I really enjoyed that activity where one was in the periphery of a theatrical production, but not actually performing in it.

And then I went to university and studied applied physics, which was a new science at that time. It was the application of electronics to all sorts of things and in the lab that we had at Durham, we made transistors and we had microwave transmitters and we did all kinds of wonderful electronic things which at the time was really cutting edge. At this time, this is the mid-60’s we’re talking about, there was a great wealth of expansion in universities and particularly for technology, there was lots of new buildings and new facilities being commissioned and it was a very exciting time to be a student. And when I’d finished at Durham - that was in 1968 - I was looking for a job and I got in touch with MRC’s Air Pollution Unit, which was based in Charterhouse Square in the City. And I went for an interview there and it was conducted in a very informal way by some rather unusual people. I was very struck with them as being very bright people who were doing a very exciting job, and I decided this was what I wanted to do and they took me on. And I went to work there for nine years and during that time we were involved in studying the air of London and looking particularly at the physiological effects of it. And the two pollutants that I was involved in were sulphur dioxide and particulate smoke. And those were the main pollutants of London at that time.

[3]. THE AIR POLLUTION UNIT: PERSONNEL

I was employed as what was called a member of the scientific staff of the MRC, which sounded very grand and it was quite grand really because there was definitely a sort of throwback to the old officer and other ranks’ class in the MRC. It was almost a sort of model of the military, I think, so there were people who were scientific staff, who were graduates and generally had I think 2:1 or above, but you could go in without a PhD in those days. And then there were the other people who were mainly not graduates and were often people who previously had service in the Forces and learned a lot of their skills from the military. So people who could make all sorts of amazing things, people with incredible manual skills. And we had a couple of those people in the Unit. We also had a few, a couple of people who had sort of been spat out by the military, who were a little bit too difficult for the military to handle but were very brilliant and had been working in military kind of microbiological type of things, in Porton and those sort of thing.

Pat Lawther was the only clinician. He’d had various clinicians pass through the lab, but very fleetingly, and there was quite clearly, he had a problem with other clinicians and they didn’t stay very long. So he was most of the time when I was there, there was not any other clinician. The only other person that was there was a guy called Will Wimpster who was a pathologist, histopathologist, and he was there for a little while and did lung sections and stuff. But he, again, didn’t stay very long.

[4]. THE AIR POLLUTION UNIT: THE LONDON BRIDGE WALK

At the Air Pollution Unit, we did experiments mainly with ourselves as the subjects, and one of the experiments we were involved in was the so-called London Bridge walk where two of the team walked into the Unit from London Bridge station every day. And when they arrived they immediately got into a contraption called a body plethysmograph, which was a sealed box that measured airways resistance. And the idea was that we compared the pollution levels on that day with their airways resistance and see whether in fact there was any correlation. And that experiment went on for something like three years. We also did experiments where we exposed ourselves to various pollutants and I remember being exposed to sulphur dioxide and getting bronchospasm quite severely. And really it was, thinking about it now, it was quite a dangerous thing to be doing, but we merrily plodded on and measured our airways resistance and other parameters whilst breathing this sulphur dioxide from a bag. Other things we breathed were carbon monoxide, which I remember on one occasion was so concentrated that the subject actually collapsed, and that was the Director of the Unit. He had to be resuscitated, which was a difficult situation because he was the only medical person there. So there was nobody with any First Aid, proper First Aid experience, which
in this day and age seems extraordinary, but that was quite the norm for that time and I don’t think it was the only place where those kinds of experiment took place.

[5]. **THE AIR POLLUTION UNIT: WOMEN, WHITE COATS AND THE TEA LADY**

Most of the women were young technicians and secretaries and a tea lady. And I think we forget that, there was a tea lady employed, you know, and you think a tea lady for a group of what was probably 12 people was extraordinary really, and she used to solemnly come round with her trolley and what was that all about? We all had white coats. That was the other thing, I mean I didn’t do anything that merited a white coat and certainly John Ellison, but he always used to come in and the tea lady, she was also this sort of office, I think she did a bit of cleaning as well, she used to have these pristine laundered white coats. Every week we got these with our names in. And I don’t know whether that was a thing, I think it was probably an MRC thing, the white coat thing. I mean I remember abandoning the white coat after a while and then we used to put the white coats on when anybody came from Head Office when it was sort of said, ‘Oh you must put your white coat on.’

But the tea lady thing is, I think, interesting, because I wasn’t quite sure whether, you know, there’s the thing about the water cooler, the meeting around the water cooler that people talk about now, how it’s important in multidisciplinary teams to chill out together. And I don’t know whether that was all about that kind of thing, because I do remember we kind of took a long time drinking our coffee.

[6]. **THE AIR POLLUTION UNIT: CARBON MONOXIDE FROM CIGARETTES AND FROM LONDON AIR**

I remember one of the experiments we did on carbon monoxide was to try and see how the levels of carbon monoxide people got from smoking cigarettes compared with that that they got from traffic pollution, and so we rigged up one of the technician’s cars with a sampler in the headlight. They took the headlight out and put a sampler into the headlight socket and four of us rode around in the City. Two of us had not been exposed to carbon monoxide, one was a medical student who smoked 20 cigarettes in quick succession and had got very high levels of carbon monoxide from that, and the other person had been breathing carbon monoxide from a bag and had also got really quite high levels. And over the course of a couple of hours driving around my level went up and the level of the two people who’d had the exposure went down and we met in the middle, as it were.

[7]. **THE AIR POLLUTION UNIT: JUMBO JETS AT HEATHROW, AND THE BLACKWALL TUNNEL**

When the 747 Jumbo Jets came in, there was some concern about the levels of pollution that they might be producing, and so a group of people from the lab went down to Heathrow Airport and the people at the airport said, ‘Well, if you just set your equipment up over here, we’ll just go and start the engines up.’ So they duly set up their samplers and then the engines went on this plane and they were blown, almost blown across the tarmac by this great gale of jet engine. And it was really another situation where one wonders whether health and safety would allow that to happen these days. But, anyhow, it certainly was commonplace in the 1960s.

Another situation where there was almost a disaster but we got away with it was when the lab was sampling in the Blackwall Tunnel, which in those days was just a single tunnel running both directions. And we had carbon monoxide set up in the tunnel and people went up and down a ladder, a vertical ladder, to get in and out of the tunnel. And one of the team got down the ladder and was so taken aback by the strength of the carbon monoxide that he was unable to climb back out again via the ladder. And the only way he could get out was to walk out along the very, very narrow footpath that was along the side and he had to make his way out that way. Again, another slightly difficult situation which wouldn’t be allowed these days.
[8]. THE AIR POLLUTION UNIT: AMATEUR SCIENTISTS?

In those days there were quite a large number of small MRC Units that really operated around a single person, the Director. And that was the way the MRC worked in those days and they were very much run like gentlemen’s clubs. It was, they were full of gentlemen scientists who did their own thing and when they went in in the morning they often decided what they were going to do that day. It wasn’t quite the strategic planning that we see today when research exercises are undergone. And there certainly wasn’t the amount of documentation required before anybody could do an experiment. I can remember very vividly many of the experiments were thought up by people walking in from London Bridge and they were actually then done later on that day. And that was the way that science worked in those days. We were a group of amateur scientists really in many respects. Most of the people had not had the degree of formal training that people get today in research techniques.

[9]. LEAVING THE AIR POLLUTION UNIT FOR MEDICAL SCHOOL: DENIS THATCHER AND STEVE JONES

In 1977 I didn’t feel that my research career was going very far and Professor Lawther, who was the Director, was about to retire. So I decided that I needed to rethink the way I was going and I decided that I really wanted to read medicine and become a doctor. And so I applied to the Royal Free Medical School and very fortunately the Dean of the Medical School had been an attendee at a conference that I’d spoken at a few weeks before, and he remembered me, and so I got an interview. And the interview was rather peculiar, because one of the people on the interview panel was Denis Thatcher. And Denis had been put on the interviewing committee because they were trying to get Margaret into a position where she could become the Leader of the Conservative Party, and they wanted to make Denis’ image as squeaky clean as they could. So they put him on the Board of the Royal Free Medical School, and he asked me some very benign questions, which I gave very benign answers to, and managed to get in.

I also met a guy at the Royal Free called Steve Jones, who is now an Emeritus Professor at the UCH, of Genetics. And he was a young callow youth in those days, a rather sort of laid back sort of guy. But an amazing teacher. Even in those days he had this amazing ability to communicate. And he ran this course for two weeks and he taught us all the biology we needed to know, all the biology and all the biochemistry we needed to know to do medicine in two weeks. It was amazing. And I’ve never forgotten that and I’ve always followed his career with great interest because I thought, ‘Well, you know, he is a great communicator.’

[10]. GENERAL PRACTICE IN EAST LONDON

After I had completed my medical training, I decided to go into general practice because that seemed to me to be the way to be a most complete doctor. And I’ve had a very, very happy time as a GP, I’ve just recently retired. And I’ve worked all my career in East London, in group practices, and I’ve seen quite a few changes. General practice was already on the up when I started. It had been in the doldrums. After the war general practitioners were not very well trained and not very well resourced and general practice needed a bit of an uplift. But by the time I was training it had already had a lot of injection of money to improve premises, to create proper practice teams, to improve on techniques that were available for GPs within the surgery. So things were really on the up and I’ve been very lucky to be involved in a lot of educational things in general practice, and that again is some area which has had enormous amounts of development starting with things like Barnet Groups in the 1950s and moving through proper compulsory GP training, and the development of CPD, Continuing Professional Development. All those things I’ve been lucky to be associated with and have all, to my mind, made a huge difference to the quality of general practice that’s delivered particularly in East London today. I think the standard of general practice in East London is really quite high now and it’s mainly due to the educational developments and some of the structural developments that have been put in place as people begin to realise that you can’t do everything in hospital, and if you try and do that it just costs an enormous amount of money. It’s much cheaper to do it in the community.
[I’ve had] two sabbaticals, both very, very enjoyable, three months each, one in Northern Territory, one in Western Australia, both connecting with rural clinical work, and they were both connected with teaching really. So the first one I did was helping them to set up a mechanism where the students from Sydney and from down south could go to a rural community, and be housed in the community, and work in the community with the Aboriginal people to understand what was going on, and actually to provide a service for them.

When I first went there [in Hackney] the practice was housed in a council flat. And it was horrendous. The patients used to sit outside the room on a chair which was preloaded by the receptionists. So they sat outside. You’d be having a consultation with somebody inside and then as soon as they went out the next person came in and everything that was said could be heard outside. It was an appalling situation. They were doing five minute consultations. You had to be finished in time because the room was being boxed-and-coxed for the next person, and it was the sort of medicine that I didn’t want to practice. So we built a really nice health centre at a time when, again, there was money around for building new premises. There was money for people, for practices to borrow. As you know GPs are in a sense independent contractors, they’re self-employed. So if you want to have a new surgery and own it, you have to get a mortgage and build it. But there were all sorts of schemes at that time which no longer exist, which were supported by the Government, so that you could get a loan at very, very attractive rates and I think we got, we borrowed about a million pounds for this. This was in 1990 or thereabouts.

[12]. HOPES AND PREDICTIONS FOR THE FUTURE?

I’ve often wondered what’s going to happen in the next 20 or 30 years in medicine, and I suppose what might happen is that some of the, there may be some payback for all of the research that has gone into the Human Genome Project. I hope there will be some real applications because that to me will really justify all the work that Crick and Watson and people that followed on, have done. So I hope that there will be some real advances in medical therapeutics and in diagnostic techniques as a result of that. I hope also there’ll be some new developments resulting from the way that medicine is administered. I think the way we do things today probably won’t be the way we’ll do them in a few years’ time. There will be many more people involved in seeing patients, it won’t all be doctors doing everything. There will be all kinds of other specialist people seeing patients and doing things for them. And it won’t be a doctor-centric health service. I think it will be much more multidisciplinary. But I think there’ll also be reorganisations around all kinds of things, particularly information. To my mind the thing that’s been most striking in medicine in my lifetime and I think will carry on being striking is the development of information technology and particularly the way information is available to patients as well as to doctors, the fact that you can now look up your disease on the internet and see pictures of the rashes that you might have or might not have, and the conditions are much more available to people than they used to be. And that I think is a really positive thing and has made all sorts of things possible, which we shall see in the next few years.

[END OF TRANSCRIPT]

Further related resources: